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ABSTRACT 

An idealized steady state model of a stream of energetic electrons 

neutralized by a reverse current in the pre-flare solar plasma is 

developed. These calculations indicate that, in some cases, a signifi­

cant fraction of the beam energy may be dissipated by the reverse current. 

Joule heating by the reverse current is a more effective mechanism for 

heating the plasma than collisional losses from the energetic electrons 

because the Ohmic losses are caused by thermal electrons in the reverse 

current which have much shorter mean free paths than the energetic 

electrons. 

Analysis of the steady state model indicates that it can not 

adequately describe the interaction of the beam w~th the solar plasma 

because the atmosphere is rapidly heated. If the time scale for this 

heating is short enough, the density of the atmosphere can be taken 

constant in time. The charge separation required to drive the reverse 

current is expected to respond to changes on a time scale very short 

compared to the time for the ambient plasma temperature to change signi­

ficantly, so it is a reasonable approximation to use the steady state 

results for the electric field. With these simplifications, the heating 

due to reverse currents is calculated for two injected energetic electnn 

fluxes. For the smaller injected flux, the temperature of the coronal 

plasma is raised by about a factor of two. The larger flux causes the 

reverse current drift velocity to exceed the critical velocity for the 

onset of ion-cyclotron turbulence, producing anomalous resistivity and 

an order of magnitude increase in the temperature. The heating is so 
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rapid that the lack of ionization equilibrium may produce a soft x-ray 

and EUV pulse from the corona, 
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1. INTRODUCTION 

This dissertation examines the consequences of reverse currents that 

muy be expected to develop in the solar atmosphere in response to the 

imposition of a directed stream of energetic (non-thermal) electrons. 

The phenomena which indicate the presence of streams of electrons mani­

fest themselves primarily in the "flash phase" of solar flal'es (Svestka 

197:'). Not all flares exhibit a "flash phase" (Svestka 197), Sweet 19:J9, 

Sturl'ock and Coppi 19(6) and the existence of directed streams of non­

thermal electrons is not universally accepted (Svestka 197), Brown 1974, 

Brown and Melrose 19(7). A short historical review is presellted (cf. 1.1) 

as an attempt to place the phenomena in perspective. Observations that 

indicate the presence of euel'getic electrons in the solar atlnosphere are 

reviewed and the introduction concludes with a short summary of our 

present theoretical understanding of the :flare process. 

In Chapter 2 the objections to unneutralized electron beams and 

previous work On reverse curl'ents are summarized and a steady state model 

of a stream of energetic electrons neutralized by a reverse current is 

developed. In Chapter 3 the model is modified to inClude time dependence 

for a restricted case. The l'esul ts of Chaptel'S 2 nnd 3 are summarized 

in Chapter l~ and possible extensions of the present work are suggested. 

Details of the numerical calculations of Chapters 2 and 3 are discussed 

in the appendices. 

1.1 Historical Overview 

The sun is the closest stal' to the earth and the only star Which we 

cun presently observe in great detail. Aside from the intrinsic interest 

of solar phenolllena, we can hope that by understanding solar pheuomenu we 
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will gain insight into what is likely to happen on other stars like the 

sun. The sun is a normal G type main sequence star, but by virtue of its 

position it is the brightest object in the sky. The importance of the 

sun to life on earth cannot be overstated. In the introduction to his 

book, The Sun, C. A. young (l902a) emphasizes this pOint. 

"It is true from the highest point of view the sun is 
only one of a multitude - a single star among millions -
thousands of which, most likely, exceed him in brightness, 
magnitude and power. He is only a private in the host of heaven. 

"But he alone, among the countless myriads, is near 
enough to affect terrestrial affairs in any sensible degreej 
and his influence upon them is such that lt is hard to find 
the word to name it; it is more than mere control and dominance. 
He does not, like the moon, simply modify and determine certain 
more or less important activities upon the surface of the 
earth, but he is almost absolutely, in a material sense, the 
prime mover of the whole. To him we can trace directly nearly 
all the energy involved in all phenomena, mechaniclil, chemical 
or vi tal. Cut off his rays for even a single month, and the 
earth would die; all life upon its sur:Eace would cease." 

The great preponderance of the energy flux from the sun is, to the 

best of our knowledge, very nearly constant (Smith and Gottlieb 19(4). 

It is only in those portions of the electromagnetic spectrum where the 

solar output is small (radio XW1J X-ray), in individual spectral lines 

(e.g. H ,Ca Hand K), and in particle emission (the solar wind, energetic 
a 

electrons and nuclei)) that the sun's output varies significantly due to 

solar activity. 

The most obvious manifestations of solar activity are sunspots. 

Sunspots have been observed telescopically since l6ll, shortly after the 

invention of the telescope, and with the unaided eye on infrequent occa-

sions since ancient times (Bray and Loughhead 1964). It is not clear 

which of four men, Galileo Galilei, Johann Goldsmid, Thomas Harriot or 

Christopher Scheiner, actually made the first telescopic observation of 
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sunspots (Bray and Loughhead 1964). 'l'hat another manifestation of solar 
\ 

r 
activity, facuIae, Wel'e observed at about the same time is demonstrated 

by the title of Christopher SC.heiner's (1630) book, Rosa Ursina Sive Sol , 

ex Admirando Facularum and Macularum Fuarum Pheonomeno Varius (see Eddy 

et a1. 1977, I\Ieadows 19(0). In the first half of the 19th century Schwabe 

(1841+) announced the possible existence of the sunspot cycle with a per-

iod of about 10 years ("von ungefahr 10 Jahrentl). Wolf (1852) later 

deduced a lnore accurate period of l1.ll11 ± .038 years or Ilde sorte que 

neuf periodes equivalent justemellt a un siecle". Wolf (l8:)2) also deduced 

from earlier records the yea1.'S of sunspot minima back to 1 'TOO, but the 

earlier portion of this historical reconstruction has been questioned 

recently (Eddy 1976). 

The first recorded observation of a solar flare occurred on September 

lst, 18;'9. A relatively rare Itwhite light fla1.'e lt
, visible against the 

photosphere, was simultaneously observed by Carrington (l859) and 

Hodgson (1879). In l868 Janssen (H369) and Lockyer (1869) independently 

discovered that prominences could be seen outside eclipse with a spectro-

scope with a wide entrance slit. Thereafter various observers, espe-

cially Secchi (18'77) made extensive visual observations of the £01.,I1S of 

the chromosphere and prominences using this technique. Flares in 

individual lines were observed quite often from the l870's onward (see 

Young 1871, 1902b,c for early examples). The first photographs of flares 

we1.'e obtained by Hale (l892) with tl spectroheliograph of his own inven-

tiOll (Hale l891). Deslandres (l893) independently developed a similar 

instrument, and the baSic principle of the spectroheliograph was known to 

Janssen (18{59) who actually constructed an instrument similar to the 

3 

11.1 •• " 



spectrohelioscope (Millochau and Stefanik, 1906) for observing promi­

nences but abandoned it in favor of a widened spectroscope slit. The 

basic principle was independently discovered by Braun, and Lohse attemp­

ted the construction of a spectroheliograph (Hale 1906). The matter of 

who actually used a "spectroheliograph" first was the subject of some 

debate between Deslandres and Hale (Hale 1905, Deslandres, 1905) but 

this distinction is generally given to Hale. In 1908 Hal~ (1908) made 

the first observation of magnetic fields on the sun, and realized soon 

thereafter that magnetic fiolds, sunspots and flares were intimately 

connected (Hale 1929). Because the spectroheliograph took a relatively 

long time to form an image of the whole sun, the systematic investigation 

of flares did not begin until the spectrohelioscope, constructed by Hale 

in 1926 (Hale 1929), was fully developed (Smith and Smith 1963). The 

development of the polarizing monochromatic filter (Lyot filter) by 

Ohman in 1938 (Ohman 1938), independently of Lyot's original proposal 

(Loyt 1933, Evans 1949), allowed photographs of the entire solar di5k in 

one spectral line to be made rapidly. This type of filter is still 

widely used in flare patrol telescopes and solar observatories. 

Jansky (1933) made the first observation of radio emission from an 

extra-terrestrial source. It was not until 1942 that Hey (1946) dis­

covered meter wavelength radiation from the sun. At about the same time 

Southworth (1945) discovered centimeter wavelength radiation from the 

sun. Reber (1944) made the first publisbed report of radio emi ssion 

from the sun; the earlier work was not published due to its association 

with the war effort. Appleton (1945) published evidence for radio 

emission from the sun in the '7-30 meter wavelength band, Appleton's 
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results were based on amateur radio ope1'atOl.'s' reports (dating from 

1936) of "hiss" heard only during the daylight hours and frequently 

before sudden fade outs. Appleton and Hey (l94t~) noted that some radio 

btu'sts were associated with flares. Covington (l948) first reported 

microwave bUl~sts f1'om the sun near the maximum of solar cycle l8. 

Burnight (l949) reported the first observation of X-ray emission 

from the sun. BUl"night's observation was made using photographic film 

with aluminum and beryllium filters flown in a captured V2 rocket. 

Peterson alld Winlder (l,;Y,8) made the fil"st observation of a flare asso-

ciated impulsive X-ray burst using a balloon borne proportional counter. 

l.2 Review of Observations 

The presence of ellel.'getic electc.:·ons in the solar atmosphere is 

inferred from impulsive lu\xd X-ray bUl"sts, impulsive microwave bursts 

and observations of energetic electl"ons by satellites ill earth orbit. 

Impulsive microwave bursts are rapid enhancements of radio flux at 

frequencies greater than...., 1 GHz. These impulsive enhancements occur 

simultaneously with impulsive X-l'ay aud EUV bursts and often show very 

si111ila1' time structure, even dm'ln to the flne details of the time profiles 

(Petel'son and Winkler 19:'9, Kundu 19l~1, Anderson and Winkler l':A::{~J Kane 

atld Donnelly 1971, deFeit0;l' l;)7:', Svestlm 19'1")' The impulsive 111icro-

wave bursts are genel"ally attl"ibuted to gyro-synchrotron radiation from 

electrons with enel"gies g-reater than ~ 100 keY (Holt and Ra111aty 19l~9J 

Svestka 197:\). The gradual post-burst i11m'eases call be interpl"eted as 

thel"mal bl"el11sstl"ahlung from the :flare-associated soft X-l"ay plasma and 

a:1.'e usually accompanied by l"adio emissic-::" at lower frequel1cies (S\restka 

197::'). The appa.rent discrepancy between the number of electrons required 



to produce the impulsive X-ray bursts and the number of electrons required 

to produce the impulsive microwave emission (Peterson and Winkler 1959) 

can be resolw3d if the details of the microwave emission in the solar 

atmospheN~ are considered (Holt and Ramaty 1969, Takakura 19(2). The 

generation and propagation of microwaves in the solar atmosphere during 

a solar flare are complicated processes involving the magnetic field 

configuration, ambient plasma density and temperature and density and 

energy spectrum of the non-thermal electrons (Holt and Ramaty 1969, 

Kruger 1972 .• Takakura 1972, Svestka 19(5). Therefore, it is difficult to 

unambiguously infer the number and energy spectrum of the non-thermal 

electrons from the observed microwave emission. 

In some flares, non-·thermal electrons escape into the interplane­

tary medium and are observed by satellites in earth orbit (Svestka 1975, 

Lin 19(4). Since the electrons apparently propagate primarily along 

magnetic field lines itt the interplanetary medium, electrons are observed 

primarily from flares in the western half of the visible hemisphere of 

the sun or from flares be!lind the west limb of the sun (Svestka 1975, 

Lin 19(4). Lin (l97L~) concludes that there are two distinct types of 

non-relativistic electron' bursts (E < 500 keY) observed at l AU, "pure 

electron events", that is those not accompanied by energetic (> lO mev) 

protons, and "mixed events" during which both energetic electrons and 

protons are observed. The energy spectra of the "pure electron" events 

can be well fitted between 5 keY and lOO keY by a power-law in energy, 

dN/dE cc E~Y , with y,... 2.5-5.5 but exhibit a rapid steepening at ener­

gies above lOO l~eV (Lin 19(4). On the other hand the typical spectra of 

energetic electrons for "mixed events" extend smoothly in a power-law 
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(Lin ~'9fl'!~). Whon il11l)ulsivo X-:l'ny bursts I.u:e 11S8ociRtod with olectl'ons 

f) 3 
ObS01'vod nt 1 AU, 10""-10 lllore electrons urt.' l,'Cql.lil'cd to produce the 

(Lin nnd Hudson 19'71 .. Lin 19';)1.). 

It is noW g'cuC>l'nlly bol:leved thnt tho mechrmis\ll for tho produ¢tion 

SmullN' ilnpuls1v(~ ovents gel1crally consist of ana 01' 11 few spiltcs with 

of \\\11\tlt(;):; 01' to\1S o:f lIIim\'tcs~ usuUll~r htWo 1.1 complo::\: spil,y timQ stl.'tlct;u:ro 

X-l·n~·1-' find tho "gl.'lHh)Ul compononts" :i.l\ thQ low (\nCl.'l~Y chtutl1cls (" "0 keY) 

':I.'he spc>ct1'nl in:fol'll\trcion. on impl.l.lsi vc burd X-l'UY bu).'sts is lilni'i:Od" 

'r' 



Most events show a softening of the spectrum at higher energies (Kane 

1974, Svestka 1975). This bend or "knee" in the power-law spectrum 

usually occurs between 60 and lOO keY (Brown 1975, Svestka 1975) but in 

some events can occur as high as 500 keY (Brown 1975). Since the high 

energy cut-off of many instruments is below 500keV [e.g. OSO-7 

(Peterson et ale 1974), OSO-5 (Frost et ale 1970) or OGO-5 (Kane and 

Anderson 1970)J such a break in the spectrum may be present in many 

events for which no break is reported. It is obvious that the power­

law must flatten at low energies, otherwise the total X-ray flux would 

diverge. However, the determination of the low energy cut-off is diffi­

QuIt because the X-ray emission at low energies « lO keY) is dominated 

by the gradual quasi-thermal component in most events (Brown 1975, 

Svestka 1975). 

Although the interpretation of the X-ray spectrum as bremsstrahlung 

from a non-thermal (Le. non-1Vlaxwellian in energy) distribution of 

electrons is widely accepted, some workers advocate a thermal inter­

pretation for many impulsive X-ray bursts (for example Chubb 1970, 

Elcan 1976, Crannell et ale 1977) and some events seem to fit an 

exponential rather than a single power-law spectrum (Elcan 1976, 

Crannell et ale 1977). However, the spectral data are poor, particularly 

at higher energies (primarily due to counting statistics), and it is not 

clear that an exponential spectrum is to be preferred over two power­

laws or some other form for the spectra, Brown (l974) has demonstrated 

that any observed hard X-ray spectrum can be produced by a thermal 

plasma with a suitable temperature distribution in the source. Brown 

(l975) has also pointed out that the emitted X-ray spectrum is rather 
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i 1150n5i ti '10 to tho SOl11'CO ele(ri;l'Ol\ (ll\Ol'gy Spoctl'Ull\ m,1d concludes tl~';\t n 

powe:r-law electron spectl'um is not strongly mandated by the presently' 

tlvu.:i.lnblo dn tn. 

'1'1\0),'0 n:l'O theoretical objections to llmlti-thol'l\\tll models 0:1: 

luw spectl'u by s\rpe).'posiug' diffol'cnt c~ponol\,l;itll spt';!c'l:l'U SOOlll somowhllt 

00111:).'ivod to this 3utho:1:' dt';!spi te Ussol'tions to the contl'n).'y b~Y SOlllO 

dist,ribution is not Q~pect(ld 'UO be MU:-twollitn'l. Noi tho!' tho thcol'otiQnl 

objections (l\nhlcl', l.9T') 01' the limi ted ObSN'vut;:lonnl S\lPP01't; :('Ol.' thormnl 

to this t~fpO o:t model.. 

:tOl' the vicw thtYI: tho impulsive hurd X-l'U.y b\I).'Sts In'o Pl'O(hlCQd b~r 1\on-

clo$O 'l:il(\O coiucidence wi t1\ the impulsi vo X-l'UY und mim.'owave bUl'/:rt:s find 

tho tit\\e 131'O:(':U,os closely l'C'sQll\blc t1\(;' X-;t.'n~· H\\d l\\:lCl.'oWUVQ bursts 



Coulomb collibional losses to bremsstrahlung emission from a thick-

target hard X-l'ay source (Koch and Motz 19'59, Petrosian 1973, Donnelly .' 
1974, Brown 197:5). There are indications that the EDV radiation origi-

nates low in the chromosphere. The density of the EUV emitting region 

1~ -3 ( can be estimated to be ~ 10 'cm Donnelly 1974, Kane and Donnelly 

19(1), corresponding to the solar chromosphere, and the EDV bursts 

exhibi t (statistical) limb darkening' which would be expected if the 

radiation orig'inates in the chromosphere (Kane and Donnelly 1971). 

Although the obsel'vations presently available do not exclude other 

interpretations, the preponderance of evidence seellls to favor bremsstrah-

lung' from a non-thermal distribution of energetic electrons as the 

source of impulsive hard X-ray bursts (Svestka 197')). 

If the emergent X-ray spectrum were kll0Wl1 exactly, the spectrum of 

the ene:rgetic electrons that produce the radiation, averaged Over the 

source, could in principle, be recovered (Drown 197:». The two exb'eme 

approximations that are usually considered are "thick-target" and tlthin-

target" (Drown 197:', Svestlm 197:', Hudson 197L~). In the thin-target 

approximation the electrons lose a negligible amount of energ'y in the 

hard X-ray source (Drown 197:", Svestlca 19T', Hudson 1974). In this 

approximation, the mean elecb'on source spectrum [:i,. e. the instantaneous 

average of the electron ene;l.'gy spectrum over the e111i tting volume 

weighted by the baclcground density, see Drown (197))J is just the spect-

rum of accelerated electrons. In the thick-target approximation, this 

is not the case. 

In the thick-turget approximation, the electrons lose all their 

energy (primal'ily by Coulomb collisions) in the source l'egion. Since 
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the l1Iean free path of the 1IIore energetic electl'ons is longer, the energy 

spectl'ulll of the electl'ons avel'aged over the emitting volume is harder. 

If we aSSUme the density is unifol'llI in the source, that the electrons 

are all streaming downward and that the accelel'uted electron energy 

spectrum is a fairly steep power-law, then the approximate difference 

between the inferred mean electron source spectl'ul1l in the thin and 

thick-tlll'get approximations can be estimated. In this case, since the 

l1Iean fl'ee path of an electron against Coulomb collisions is approxi­

mately proportiollal to ;:" the effective source volume for electrons 

of energy E in the accelerated spectrulll is also approximately propor-

tional to ff Since the injected spectrum is very steep (by assumption), 

once an electron hus lost an appreciable fraction of its enel'gy, it no 

longer contributes significantly to the emergent X-:ray flux. Therefore, 

to produce the sallie power-law index of emergent X-rays the index of the 

injected electron beam llluSt be .... :2 g'l'eatel' (a softel' injected spectrum) 

in the thic]~-targ'et case than in tho thin-tal'get approximation. The 

preceeding simple analysis neglects beaming effects in the case the 

energetic electron veloei ty distri),HJtion is anisotropiC (Petl'osian 1973, 

Brown 1972) and the exact behavior of the Coulomb C1'OSS section. However, 

the conclusion is found to be qunlitntively correct in thick-target 

models of impulsive hnrd X-l,'ny blll'sts fOl' X-ray energies below"", 100 ](eV 

even when a more detailed analysis is pel':/.'ormed (Brown 1975, Pet1'osian 

1973, Hudson 1972, Browll 1971). 'rhe more detailed calculations indicate 

that, depending 011 the nssl.llllptions and model clUll'acteristics, thick­

tal'get lllodeis l'equire injected eloctron power-law indices ...... 1.·')-2 grcate:t' 

than thin-target models for the same emergent X~ray spectra. 
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Some early models of impulsive X-ray bursts considered impulsive 

injection of the energetic electrons and the subsequent decay of the 

impulsively injected electrons in the source region (e.g. Taltakura and 

](ai 1966). In its simplest f011n this model does not agree with observa-

tions since it predicts a systematic hardening of the burst spectra 

during the decay of the hal.'d X-ray burst (Brown 1975, Petrosian 19(3) 

for the same reason that the source averaged energetic electron spectrum 

is harder in the thick-target models, i. e. the low energy electrons lose 

their energy more rapidly than the high energy electrons. Brown (l972) 

has introduced a modification of the usual coronal impulsive hard X-ray 

source that removes this particular objection, but it requires the 

assumption of an average source density that is energy dependent 

en cc: Eet , a: > 3/2) • Brown (l9(2) motivates this assumption by invoking 

an energy dependent pitch angle distribution for the accelerated elec-

trolls, but the simplicity of the original "coronal trap" model is lost. 

This type of model can eh-plain the observation of impulsive X-ray bursts 

from "behind-the-limb" flares since p01'tions of the X-ray source are 

high in the corOna. However, since behind-the-limb flares also produce 

high 0nergy X-rays, this model requires denSities II -3 
~ lO cm high 

(~ l09 cm) in the solar atmosphere. If this were the case, impulsive 

X-ray bursts from behind-the-limb flares could be explained by thiclt-

target models as well. Since the product of the instantaneous number of 

energetic electrons in the source and background density determines the 

emergent X-ray flux, Brown's (l972) model requires a much larger number 

of energetic (> 20 keY) electrons than equivalent thiclt-target models. 

Addi tionally, since IllOSt of the energy l'esides ill the low energy electrons 

l2 



which encoullter only low densities ("'" 109) , these electrons cannot be 

invoked to account for the impulsive EUY bursts which are emitted from 

regions where the density is ~ 1012 cm - 3 (Donnelly 19(74) and which are 

observed simultaneously with impulsive X-ray bursts (thiS is also true 

of more recent "thermal" models, e.g. Smith and Lilliequist 19(78). 

Aside from some difficulty ill accounting for impulsive X-ray bursts 

from behind-the-limb flares, thick-target models for the hard X-ray 

bUl.'stS are at least not excluded by present observations. Since they 

have the advantage of also providing the energy required for the impul-

sive EUV bursts (Donnelly 19(74), it seems reasonable to accept the thick 

target approximation for the production of the hard X-ray bursts. In 

this case, since the time for the electrons to lose all their energy is 

short compared to the time scale of the impulsive X-ray burst (Brown 

1975, Petrosian 19(73), variations in the X-ray flux and spectrum are 

attributed to changes in the (unspecified, c.f. 1.3) acceleration process. 

In the thick-target model the energy flux of the electl.'on stream 

required to produce a specified X-ray flux at 1 AU depends on (a) the 

anisotropy of the electron velocity distribution, (b) the power-law 

index of the X-ray flux and (c) the lowest energy to which the power-law 

in energy is assumed to extend for the enel.'getic electrons (Brown 19'75, 

Petrosiau 19(73). Neglecting possible beaming of the bremsstrahlung 

l.'adiation (petrosian 19'73, Brown 19(72) and bacltscatter from atmosphere 

(Langer and Petrosian 19'7(7), we can obtain an order of magnitude esti-

" mate for the :Uux of non-thel.'mal electrons at the sun for an observed 

flux of X-rays at 1 AU. If the flux of X-rays at some energy EO at 

earth is :f. (photons cm-2 s -1 kev-1 ), then the total X-ray photon flux 
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-l -l 
photons keY s Since the observed power-law spectra 

are typically fairly steep (Brown 1975, Svestka 1975), most of the X-rays 

at EO are produced by electrons with only slightly higher energies. The 

total efficiency (the ratio of bremsstrahlung losses to Coulomb collisional 

losses) is approximately lO~E for a thick-target hydrogen plasma 

(Koch and Motz 1959, Petrosian 1973). Therefore, the total non-thermal 

electron flux in the source above 

l.3 Review of Flare Theories 

t b l033.45 'f ",-l 
mus e Ad J J"O 

-l 
keY • 

In the preceeding sections we have discussed some of the observed 

properties of solar :flares as they relate to the inferred presence of 

non-thermal electrons in the solar atmosphere during a flare. We have 

not dealt with most of the diverse phenomena associated with solar 

flares. Svestka (l975) lists thirty-seven "basic properties of flares". 

When all the subtopics are counted, Svestka's list contains more than 

eighty observational aspects of flares. With such a large number of 

properties to be considered, it is not surprising that a wide variety 

of flare theories and models have been proposed. Since reviews of flare 

theories exist in the literature (Svestka 1975, Sweet 1969), the selec-

tion of theoretical ideas discussed here is only representative and not 

exhaustive. This discussion of flare theories is included only to show 

how the production of non-thermal electron streams fits in the present 

theoretical picture of solar flares and therefore no particular model 

will be treated in detail. 

It is now widely believed that the energy released in solar flares 

is stored in the magnetic fields in the upper solar atmosphere (Rust 

1977, Svestka 1975, Sweet l)l69). The energy which is available for 
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release is the excess energy of the non-potential ma~rietic field con­

figuration above the energy in the potential (current-free) field (Rust 

1.977, Svestka 1975, Sweet 1.969). Because the magnetic field energy 

density is generally believed to be greater than the thermal energy 

density of the plasma in the upper solar atmosphere, the non-potential 

field configurations must be nearly force-free (Gold and Hoyle 1.960, 

sturrock 19(4). Although many non-potential field configurations have 

been proposed, these configurations can be divided into two broad cate­

gories depending on the distribution of currents in the solar atmosphere 

(Svestka 1975, Sturrocl;: 19(4). One' possibility is a force-free configu­

ration in the form of twisted flux tubes (Gold and Hoyle 1960, Alfven 

and Carlqvist, 1967, Spicer 19(7) or sheared field lines (Ta.naka and 

Nakagawa 19(3). In this case the currents are distributed over a large 

volume in the,atl_llQsphere. The other possibility is that the field is 

largely current-free wi tIl i-lie current concentrated in currElllt sheets 

(Sweet 1.958, Syrovatsky 1966, sturrock 1968, Priest and Heyvaerts 19(4). 

A large number of flare models have been developed under the assumption 

'that current sheets develop in the ,solar atmosphere as a result of 

motions in the photosphere 01" the emergence of new flux (Svestka 1975, 

Sweet 19$9). Barnes and Sturrock (1912) have studied the development of 

non-potential force-free fields due to photospheric Illotions and found 

that the stored energy ill the force-free configuration can exceed that 

of a configuration with a current sheet. They concluded that one possible -

sequence of events that \vould prOduce a cur1'ent sheet in the solar atmo­

sphere was the conversion' of a more energetic force-fl'ee configuration 

to a configuration with a sheet. Priest and Heyvaerts (1974) examined 

15 



the pl'oduc1;ion of a current sheet when new flux emerges into a pre-

existing magnetic fiel9~i configuration. 

The earliest electl.'Omaglletic models of fHu.'es invoked the production 

of non -thel.,nul electrons and realized the importance of electl.'ic fields 

at Uneutl.'ul POilits" ill the magnetic field (Giovanelli 1911-6, 1911-'7, 1948, 

Ha'yie 1911-8). Dungey (3-9:58) pointed out that, when l'econnection of 

n\agnetic field Tines OCCUl'S, a DC electric field will be developed in 
1-

the, l'ecounection region Which could lead to acceleration of clnu'gad 

pal'tioles. In "curl'ent int,el'ruption" models (Alfven and Ctlrlq.vist ;l.907) 
I 

eleci t:J.'ons are accelerated by the DC elecb'ic field that develops whell. 

the, "indllOti ve c11.'cui til is opened. Itl Il\OU'US in which ':l'econnection 

t 

OCClll.'S ill a, Cul.'l'ent sheet (Shtrl'cc};: 1908, Fl.'iedlllall and Hambel'gel' 1969, 

Coppi and li'de~land19(1) .. SOlUe acceleration by a DC electl.'ic field at 

the neutl'al poilltmny occur, but the bulk of the acceleration is usually 

attl.'ibuted to stochastic accelerat!on of" electrons by hig'h fl.'equency ,', I 

eleCtric fields that develop durilll! the l'ecomtactioll process due to 

plasma i llstabili ties (stul'l'ock 197~" Smi tl1 1974). It has proved diff!-

cult to develop a self consistent theoretical model of the l.'apid 

acceleratioll of the 111l1l1bel.' of electrolls required to pl'oduce the obse:l'ved 

X-l.'ay :flux(Smi tIl 19'na" b, Bl'own and fllelrose 19(7). At present, the 

)nechnnisl1l by which electrons al.'e accelerated in the ilnpulsi vc phase of 

salai' flares is not well understood theoretically (Svestlm 19'1:5) . 

H1wevel'" 
1 

nlagn~tic 

I 
e~pected 

simple cOllsidel'atiOlls indicate tmrt if the energy stored ill the 

field is l'cleased in the low clensi ty cOl'oua" partioles can be 

the ingl'edients of lllany possible acceleration mechanisms (DC electric 
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I 

fields, plasma turbulence) are natural by-products of most processes 

which release the energy stored in the magnetic field. Therefore, 

: 
since there is observational evidence for the acceleration of electrons 

in'the impulsive phase of flares, we will assume that this acceleration 

does occur even though the exact mechanism has yet to be elucidated. 

1 

,\, 
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2. STEADY STATE MODEL OF BEAIvi AND REVERSE CURRENT 

2.1 ,---Objections to Unneutralized Beams 

The simplest thick-target model for the production of. impulsive 

X~ray bursts is that considered by Petrosian (l973). In this model a 

beanl of energetic electrons is assumed to propagate from the corona to 
I 

the chromosphere. All the electrons are assumed to have their velocities 

in the same direction until they lose all their energy, approximating a 

source in which the energetic electrons stream down a nearly vertical 
I 

magnetic field line with small pitch angles into an atmosphere with a 

small density scale height (petrosian 19(3). Several authors (Brown 

1976, Brown and Melrose 1977, Colgate et ~. 1977, Hoyng 1977, Hoyng et 

~. 1976) have pointed out difficulties if this electron stream is not 

neutralized by a reverse current. 

Brown (1976) pointed out that the number of electrons required to 
, 

Sitream from the corona to the denser portions of the solar atmosphere 

during some impulsive hard X-ray bursts was quite large. Indeed in some 

e~e~ts as large as l039 (Hoyng et ale 19(6), or all the electrons in the 

, I h b 1 - -1 - tilt l 2,-3 - 3 
sol~r atmosp ere a ove the evel Wlere le e ec ron density is "'" 0 - cm 

(Isrown 19(6). Another objection to the existence of an unneutralized 

bea1)i is that the magnetic energy that would be stored in this beam is 

many orders of magnitude larger than the total flare energy (Colgate et 

ale 19(7). If N is the total number of electrons streaming downward 

over the duration 'I'(s) of the impulsive phase, the magnitude (emu) of 

I 

the current may be estimated from 

-1 
I """ ec N'I' (2.1) 

18 
[ --



& ............. ' 

I If the transverse and longitudinal dimensions of the s.tream are of 
.. 1 

order R (cm), an estimate of the strength B (gauss) of the magnetic 
,.:.,,-,.., 

field produced by the stream is given by 

-l 
B::::.. 2IR ; 

and the total energy U (ergs) of this magnetic field may be estimated 

from 

(2.3) 

which becomes 

(2.4) 

Ka~e and Anderson (l9'70) estimate the total energy involved in a 

typical small flare to be,..; l029 ergs, the time scale to be f'Jl02 s , and 

the chal'acteristic length scale to be "'" l08.5 cm and infer from the X-ray 

data that the total number of energetic electrons is """ l035. For these 

values the above formulae lead to estimates of I """ lOl3.2 , B """ l05 , 
,) 

and u,... l034. F01' a large event the total flare energy could be 

i 1032 ergs, the length scale ""'-' l09. 5, the characteristic time ~ l03 

f~d the total number of energetic electrons ~ l039 (Hoyng et ala 19'76). 

In this case 
! 

l l6.2 l '7 4l 
I "'"' 0 , B """ 0 and U "'" lO . Clearly a model which 

involves an unneutralized beam leads to unacceptably high values of the 

mag1-letic field and magnetic energy associated with the beam. 

Problems associated with the propagation of high current beams of 

charged particles not neutralized by a reverse current have been c.onsidered 

in other contexts. Alfven (l939) examined the limitaUons on the propa-

gation of electrostatically neutralized high current beams of relativistic 
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charged particles, motivated by an apparent sidereal day variation in 

the cosmic ray flux (Alfven 1938, compton and Getting 1935), which 

later proved to be spurious (norman 19(4). Consider a cylindrically 

symmetric, mono-energetic, uniform beam of charged particles moving 

through a background of opposite charge so distributed that the charge 

density (esu) is everywhere zero. If the beam is infinite in extent 

along the symmetry axis and has a radius of R, then the magnetic field 

as a fUnction of distance from the axis for r ~ R is 

B(r) 2I(r) 
~~'- = 2rcjr , 

r 

where I(r) is the current inside rand j is the current density 

(assumed uniform). The gyro radius of a charged particle in a magnetic 

field is 

pc 
qB 

where p is the particle momentum and q is the particle charge. 

(2.6) 

Consider a test particle of the same charge and mass as the beam particles 

m "~'ing in the magnetic field of the beam. Suppose the test particle is 

initially at the outer edge of the beam (r=R) and has the same momentum 

as the beam particles. We denote by RA the beam radius for which the 

gyroradius of this particle in the average field it sees in its trajectory 

is equal to the beam radius. For a beam of this radius (R
A

) , the _ 

particle will cross the axis of symmetry with its momentum perpendicular 

to that of the beam particles. If the radius of the beam is increased, 

the particle will cross the symmetry axis with the component of its 

momentum opposite in Sign from that of the beam particles and its average 

20 



velocity over the trajectory will also be negative. Clearly increasing 

the beam radius beyond RA will not increase the current. If we esti-

mate the average magnetic field as Ad 1/2 the field at the edge of the 

beam, we find that there is a maximum current which can be carried by a 

beam which satisfies our original assumptions: 

_ IA IA IA 
B""'-= -""" 

RA v pc 
g 

(2. '7) 

qB 

Therefore 

2 
I """ 

pc 
= mc Y(3 

A q q , (2.8) 

IA is called the "Alfven current limit" 

or the "Alfven-Lawson current limit" and for electrons we find 

in agreement with Alfven's (1939) more rigorous derivation. This restric-

tion is much more stringent than the objections to the stored magnetic 

energy. For an electron energy of 100 keY, the currents estimated for 

the hypothetical small and large events are Ad 1010 
IA and Pd 1013 

IA 

respectively. The value of the current limit derived by Alfven depends 

on all the original assumptions being satisfied. Arbitrarily large 

currents can in principle be propagated by relaxing the assumption of 

exact electrostatic neutralization (Lawson 195'7, 1958, 1959), the 

assumption that the beam is mono-energetic (Bennett 1934), the assumption 

that the current density (particle flux) is uniform (Hammer and Rostoker 

19'70) or adding a very strong magnetic field along the symmetry axis 
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(Hammer and Rostoker 1970). However, none of these mechanisms seem 

particularly likely to be applicable in solar flare impulsive hard 

X-ray bursts, although some are relevant to particular laboratory experi-

ments. The simplest resolution to these objections is the existence of 

a reverse current (cf. 2.2). 

2.2 Previous Work on Reverse Currents 

It is well known that a plasma tends to preserve charge neutrality. 

A process which tends to give an excess positive or negative charge in 

some region will lead to electric fields which act upon the plasma. 

Movement of electrons in response to this electric field will then 

restore charge neutrality. One expects that analogous process will also 

tend to maintain current neutrality. If an electron beam is suddenly 

introduced into a plasma, a sudden change occurs in the magnetic field 

structure which will develop induced electric fields opposing the primary 

current. 

Although interest in beams of relativistic electrons is not recent 

(see for example Bennett 1934, Alfven 1939), theoretical and experimental 

work on high current relativistic electron beams was stimulated by the 

development of devices capable of producing relativistic e.lectron beams 

with currants on the order of or greater than the Alfven-Lawson current 

limit (See for example Graybill and Nablo 1966, Roberts and Bennett 1968, 

Yonas and Spence 1969). Roberts and Bennett (1968) injected a beam of 

3.5 mev electrons (~=.992, Y=7.85) with a beam current of 3000 emu 

(1::0.. .23I
A

) into a linear pinch with ne "", 1018.5cm-3. They found that 

the beam current was nearly completely neutralized by a reverse current 

in the ambient plasma and that the change in the total current (measured) 
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was a very small fraction of the beam current. Similar results have 

been obtained with other experimental apparatus (Prono et a1. 1975, 

Ekdahl et ale 1974, Goldenbaum et al. 1974, Klok et ale 1974, Miller and 

Kuswa 1973, Levine et ~. 1971) when the ambient plasma density was 

sufficiently high. 

Several theoretical models of energetic electron beams neutralized 

or partially neutralized by reverse currents in the ambient plasma have 

been developed (for example Cox and Bennett 1970, Hammer and Rostoker 

1970, Lee and Sudan 1971, Lovelace and Sudan 1971, Chu and Rostoker 1973). 

Since these theoretical. treatments are primarily concerned with the high 

current energetic electron beams that are typically produced in labora-

tory studies and not in the electron beams thought to be responsible for 

impulsive hard X-ray bursts, some of the results are not relevant to the 

solar flare case (cf. 2.3). The models cited treat cylindrically symmet-

ric mono-energetic beams of the type considered by Alfven (cf. 2.1) with 

the possible addition of a uniform magnetic field along the symmetry 

axis. When the beam current is small compared to lA' then the induced 

reverse current flows primarily outside the beam cylinder (r > R) while 

for I »1 the reverse current is confined to 
A 

r ~ R and the current 

neutralization is local in the sense that the ambient electrons drift 

with the velocity 

nb 
- -v 

n b 
e 

, (2.10) 

where Vd is the reverse current drift velocity, Vb is the velocity of 

the beam electrons and and n 
e 

are the beam and plasma electron 

number densities (Cox and Bennett 1970). Depending upon the sharpness 
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of the leading edge of the beam, large amplitude coherent plasma oscilla-

tions may be generated by the passage of the beam head (Hammer and 

Rostoker 1970, Cox and Bennett 1970, Lee and Sudan 1971, Chu and Rostoker 

19(3). The amplitude of these plasma oscillations is 

~ is the plasma frequency (~=(4n ~ e2/m )l/2) 
p \ pee 

and 

-((,1.) T) -l , 
p 

where 

T is the rise 

time of the beam (Lee and Sudan 1971). These oscillations decay with a 

scale length of V,. where 
b ee' 

,. 
ee 

is a phenomenological momentum 

relaxation time for the plasma electrons. If the lateral dimension (R) 

of the beam is large compared to the electromagnetic skin depth 

(AE=C/~P) , after the plasma oscillations decay the net current will be 

,.... A /R times the beam current. The current of the beam will be neutral­
E 

ized for a length of The theoretical models for mono-

energetic beams are not appropriate for the streams of energetic electrons 

that are responsible for impulsive X-ray bursts. We argue in Section 2.3 

that the beams in solar flares will be current neutralized in steady 

state. 

2.3 Steady State Model 

We now examine a simple model for an impulsive X-ray burst. We 

consider a vertical flux tube extending from the corona to the chromo-

sphere and assume that electrons are accelerated at the top of the flux 

tube by the development of stochastic el.ectric fields (Sturrock 1966, 

Hall and Sturrock 1967, Newman 19(3) or by some other mechanism (cf. 

Section l.3). The injection of these electrons down the field toward the 

chromosphere then leads to the development of a reverse current both by 

the mechanisms considered for mono-energetic beams in laboratory plasmas 

(Cox and Bennett 1970, Hammer and Rostoker 1970, Chu and Rostoker 19(3) 



and due to an electrostatic field due to charge imbalances. The strong 

tendency of a pla::,ma to remain charge neutral implies that, if a current 

is generated in the plasma that would systematically violate op/ot=O 

on time scales much greater than a plasma period (i.e. a non-MHD current), 

then this current will generate a neutralizing secondary reverse current. 

In contrast to the mono-energetic beams typical of laboratory experi­

ments, the streams of energetic electrons that produce impulsive X-ray 

bursts probably have smooth distributions in energy. This is inferred 

from observations (cf. 1.2) and theoretical considerations indicate it 

is likely that the number of electrons does not increase with energy 

(Brown and Melrose 197'7, Smith 19(5). We consider below an energetic 

electron stream with a distribution of this type, that has electrons of 

all energies present. The low energy electrons are constantly merging 

with the background plasma and can build up charge imbalances. In the 

case of a mono-energetic beam considered by other workers (for example 

Cox and Bennett 1970, Chu and Rostoker 19(3), charge imbalance would only 

build up at the ends of the plasma device since the energetic electrons 

do not interact with the plasma significantly except through the reverse 

current. Charge built up at the ends of an experimental plasma column 

would either be conducted away by external return paths or be shielded 

from the bulk of the plasma within a few Debye lengths of the ends and 

not drive reverse currents in most of the volume of the plasma column. 

Lovelace and Sudan (1971) pointed out that the microscopic process 

involved in heating the plasma with reverse currents are equivalent to 

heating with currents induced by external fields. However, the reverse 

currents avoid the skin effect limitations of currents induced by 
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external fields. Similarly, since charge can be supplied by the beam in 

the case of solar flares, charge imbalances can build up within the plasma 

and drive reverse currents. Although these charge imbalances arise 

throughout the plasma, we can estimate the time (,. ) required to accumu­
c 

late sufficient charge separation from the time required to accumulate 

enough charge per unit area on a parallel plate capacitor to produce an 

electl'ic field sufficient to drive the required reverse current. This 

requil'ed charge separation is related to the current density by 

jll ::: E :>.< 4:rc l: = l~:rcj c,., 
Ul111 C 

(2.11) 

where l: is a surface charge density, 11 is the resistivity, and j 
unn 

is the ullneutralized portion of the beam current density. Then the time 

to accumulate the required charge is 

,. 
c (2.12) 

The ratiO of tllmeutralized current density to the beam current density is 

AE/R (of. 2.2) so that 

, (2.13) 

This assumes that the resistivity is the usual Spitzer value. If the 

reSistivity is "anomalous" the effective collision frequency can be of 

orrier the electron plasma frequency Co ) . Actually this is an upper 
p 

limit, for the Buneman instability the effective collision frequency is 
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"",.1m (Buneman 1958). The resistivity is proportional to the collision 
p 

frequency so we can write 

so that T becomes 
c 

(2.l5) 

(2.l6) 

We see that the time to accumulate charge imbalances sufficient to drive 

a neutralizing reverse current is short compared to time scales of 

interest. 

If the resistivity is written 

then T becomes 
c 

m c 
e 

11 = --2 
n e 

e 

R ( )-1 'T' = - :.l) 'T' 
c c p ee 

(2.11) 

(2.18) 

and the ratio of the charge accumulation time to the time the current 

remains neutralized ('T') by the mechanisms considered for a mono­
n 

energetic beam (cf. 2.2) becomes 

(2.20) 
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so that the charge accumulation time is much shorter that the time the 

current would remain neutralized if no charge imbalance arose in the 

plasma. For time scales and length scales of interest in solar impulsive 

X-ray bursts, the reverse currents will be caused primarily by charge 

separation (Hoyng and Melrose 1977). Also, since beams of interest for 

solar impulsive X-ray bursts are not expected to have sharp fronts, the 

plasma oscillations excited by passage of the "beam head" will be of 

extremely small amplitude and consequently of ho great significance 

(Melrose 1974). Therefore, we are justified in considering a steady 

state in which the beam current is exactly balanced by a reverse current 

in the background plasma. For the present (cf. Chapter 3), we assume 

that the background plasma can be .adequately described by a Maxwellian 

velocity distribution and use transport coefficients based on this 

assumption (Sptizer 19(2). 

We are interested in the case in which;the primary electron stream 

is composed of high-energy electrons with consequently long mean free 

paths in the tenuous solar corona. However, we shall find that the 

electric field that develops to drive the reverse current also decelerates 

the electron stream (cf. Lovelace and Sudan 1971). But when the electron 

energy becomes comparable with the thermal energy, the mean free path 

will be sufficiently short that the primary electrons will merge with 

the background plasma. As a simple representation of this process, we 

ignore collisions in discussing tJlP.. primary beam but we assume that an 

electron of the primary beam is absorbed into the background plasma 

when it is decelerated to zero energy. This approximation is justified, 

if the temperature of the ambient plasma is sufficiently low. 
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If, as a further simplification, we consider a flux tube of uniform 

cross section, we may use the following simple one-dimensional form of 

the Vlasov equation: 

(2.2l) 

where s measures length along the tube, v is velocity (along the tube), 

f(s,v) is the velocity distribution function of the primary electron 

stream, and q, is the electrostatic potential. 

At the top of the flux tube (s=o) , the primary electron stream is 

moving with positive velocity and electrons that are decelerated to zero 

velocity are assumed to be removed from the beam. Hence we may without 

ambiguity, express f in terms of '¥, which is defined by 

2 
'¥ = 

mv 
2e (2.22) 

The initial distribution function may therefore be expressed as 

f( 0, v) = F('¥) . (2.23) 

Wi th this ini ti:U condition, we find that the solution of the Vlasov 

equation (2.2l) is 

f(s,v) = F('¥-q,) • (2.24) 

The current density js in the primary electron stream is given by 

0:> 

j 
s ZJ f(s,v)v dv , (2.25) 

° 
which may be expressed as 
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j e
2 f F(,!, -'+')d,¥ • s - mc 't' 

o 
(2.26) 

Since q, will prove to be negative in the region of interest, it is 

convenient to write 

8=-4>, (2.2'7) 

so that Equation (2.26) may be reexpressed as 

::J F(x)dx • (2.28) 
8 

We have seen that the beam current will be nearly completely neutralized 

by currents in the. background plasma, so we may write 

(2.29) 

where is the secondary current induced in the background plasma. 

here assume that the density and temperature are such that jp may be 

represented by Ohm's law, 

We 

-1 
J. = 'T1 E 

P 'I 

-1 d8 
= T] ds 

(2.30) 

It is convenient to introduce a new independent variable S to 

replace s by the relationship 

dIS: = T] ds (2.31) 

Then, on substituting Equations (2.28) and (2.30) into Equation (2.29) 

and differentiating with respect to IS: , we obtain 
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(2.32) 

It is convenient to solve this equation for ~ in terms of G, 

~ = X( G) , (2.33) 

ruther than vice versa. Equation (2.32) becomes 

(2.34 ) 

which may be integrated once to g'i ve 

, 

if we assume that G::: 0 (<1>=0) and X = 0 (~=O) at s = o. We find 

from Equations (2.28), (2.29) and (2.30) that 

00 

e
2

l.de) =jF(G/)dG I 

mc \d~ 
~=o 0 

(2.36) 

Hence Equation (2.35) becomes 

(2.37) 

It is noW convenient to introduce a specific form for F(':!'): 

31 

, . 

j < 

) I 

i 



This is a power-law distribution at high energy which flattens at low 

energy, with the "knee" characterized by 1f
O

• 

We introduce the symbol H(1',s) for the flux of electrons 

-2 -1) (cm s of energy exceeding e1f at the position s : 

eo 

H(~,s) =;./ F(~' + 9(S))d~' 
1f 

If the initial flux is written as H
O

C1f) , we find that 

so that the total particle flux is given by 

( 0) eK 1f -Y+1 
HO == (Y-1)m 0 

With the form of Equation (2.38) for F(1f) , Equation (2.3'7) 

integrates to give 

(2.39) 

(2.40) 

(2.41) 

(2.42) 

We easily obtain from Equation (2.42) an expression for the (negative) 

electric potential 9 in terms of the resistivity weighted distance 

measure ~ : 

Hence from Equation (2.39), we find that 
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eK Y Y e K 

[ 

2 ) l/y]-(Y-l) 

H('l', s) = (Y-l)m 'l' + ('l'0 + y-l ~ . (2.44) 

On noting that the electric current carried by the stream is related 

to HeY, s) by 

- ~ B(O,s) , 

we see that 

-{ (Y-l)/y] 

~) (2.46) 

In order to specify the current, particle flux, and electric field 

as functions of s, We must adopt a specific form for l1(s). A con-

venient approximation to the density and temperature structure of the 

solar atmosphere, which is expressible in analytic form, is provided by 

the constant heat flu..'C model. If we noW assume that s measures distance 

vertically downward from the corona, and that and at 

s '" 0, this model (Adams and Sturrock 19(75) yields the following 

e::-""pressions: 

T(s) , 

(2.48) 

where b """ 106 .58 and , , F (ergs cm -2 s-l) is the downward 

heat flux. 

The resistivity, in modified Gaussian units, may be derived from the 

expression given by Spitzer (1.962): 
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where Hence we find from Equation (2.31) that ~ is 

related to s by 

7 L [rl- _ (T 7 /2 _ bFS) 4/7]· .. 
4" bF 0 0 

(2.50) 

OUr model is then completely specified by the choice of the coronal 

temperature, the coronal density, the coronal heat flux, V, the energy 

corresponding to ~O' and the injected energetic electron flux. For the 

coronal parameters, we adopt values typical of the corona above an 

active region (Noyes 1971) : 

, 

n""" 109 cm-3 , 

We choose ~ 0 to correspond to 25 keY j and we choose y;::: 2.5. The 

fraction of the beam energy deposited and the total energy deposited by 

Joule heating between T;::: 3 X 106 
K and T == 3 X 104 

K as a function 

of the energetic ele8tron flux are displayed in Figure 2.1. For a flare 

area of 1019.5 cm2 , the energetic electron flux inferred from a large 

17 -2 -1 
impulsive X-ray burst corresponds to"" 10 cm s (Hoyng et ~. 1976). 

Figure 2.2 illustrates the energy deposition rate due to Joule heating 

as a function of temperature of the atmosphere for this injected energetic 

electron flux. The ordinate of Figure 2.2 is the time required to raise 

the ambient plasma temperature by 107 K, if the plasma were heated at the 

steady state rate. As we will see (cf. Chapter 3), the heating rate 
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the energetic particle number flux. 
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decreases as the temperature of the plasma increases, so the ordinate of 

Figure 2.2 is only representative of the heating rate immediately after 

the beam is turned on. 

We can check the assumption that Coulomb collisions are not impor-

tant for the energetic electrons in the beam. Since the reverse current 

losses are proportional to the resistivity for a constant current density, 

these losses are proportional to 
-3/2 T . The Coulomb collisional losses 

for energetic electrons of the same kinetic energy are proportional to 

n. Therefore, we expect the ratio of reverse current losses to co]-

( 3/2)-l lisional losses to be proportional to nT . Reverse current 

losses will be more important than Coulomb collisional losses for an 

energetic electron in the beam if 

(2.5l ) 

where V is the velocity of the energetic electron, V
t 

is the electron 

thermal veloCity, and Vd (cf. Equation 2.l0) is the reverse current 

drift velocity (Hoyng et a1. 1978). As we expected, for the same kinetic 

energy and current density, a: is proportional to ( nT3/2)-l since 

l/2 
V ex: T and 

t 
-l 

V ex: n 
d 

If we define the injected energetic electron 

flux as the flux of electrons with kinetic energies greater than e'fO 

then from Equation (2.40) we find 

Since the reverse current drift velocity is related to the current 

density by 
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c j 
;:: --p-

en 
, (2.53) 

\'1e may write the drift velocity in terms of the injected energy flux as 

Y-1 

(1 + 
Y2 Y-1 e 

. -[ (Y-1)/Y] 

Vd ~~ H s) (2.54) = 
c'1'O E 

For the adopted values Y:Q.5 and e'1'0=2.5 keV, we find that the ratio 

of reverse current losses to Coulomb collisional losses (Co) for a 

beam electron With kinetic energy 25 keV in the adopted (.!onstant heat 

flux model atmosphere is 

-{ ('y-1)/Y] 

In Figure 2.3, the energy at which cx=l is plotted as a function of 

temperature for several values of HE We see that for any energetic 

electron flux We have considered, the energy at which Coulomb collisions 

are as important as the reverse current losses for the energetic electrons 

is reasonably low, indicating that our assumption that Coulomb collisions 

may be neglectecl is an adequate approximation. 
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3. REVERSE CURRENT HEATING 

3.l Generalization of Steady Model to Time Dependent Case 

As we have indicated, for the energetic electron fluxes required to 

account for the observed X-ray flux by thick-target bremsstrahlung, the 

ambient plasma is rapidly heated by the reverse current. The rate at 

which the background plasma is heated by the reverse current depends on 

the beam current density and the ambient plasma density and temperature. 

If the ratio of Vd to the electron thermal velocity (V
t 

= (2 kT 1m )l/2) 
, e e e 

is large enough, the background plasma may be unstable to the growth of 

electrostatic plasma turbulence which can dramatically enhance the plasma 

resistivity and therefore, the reverse current heating rate. For example, 

the reverse current will be unstable against the excitation of ion-

acoustic or electrostatiC ion-cyclotron turbulence unless for Te and 

T. the electron and ion temperatures, respectively, (Kindel and Kennel 
1. 

1911) 

2·5 for T = .l T. (ion-acoustic turbulence) 
e 1. 

·9 for T ::>.< .3 T. (ion-cyclotron .turbulence) 
e 1. 

V/Vt,e ~ .3 for T ::x T. (ion-cyclotron turbulence) 
e 1. 

. l for T :::>< 3 T . (ion-cyclotron turbulence) 
e 1. 

.05 for T := lO T. (ion-acoustic turbulence) 
e 1. 

Reverse current heating is a self quenching process. If the reverse 

current is stable against the growth of electrostatic turbulence, then, 

as the plasma is heated by the reverse current, the resistivity decreases 

and the reverse current losses are reduced. If the reverse current is 

unstable to the growth of electrostatic turbulence, the plasma will be 

40 



heated until the instability criterion is no longer satisfied. The 

heating of the plasma will also cause a pressure imbalance. The time 

T (s) for the plasma to .respond to changes of pressure by bulk motions 

can be estimated from 

T "'" L!Vt . , 
,1. 

(3.l) 

where L is a characteristic length and V is the ion thermal velo-
t, i 

city. Even for a temperature as large as l07 K, this time is long 

(l02 s) compared with the heating time for a length scale of l09.7 cm, 

so that the plasma density will not change appreciably during the 

heating. Since we expect reverse currents to be established locally on 

time scales on the order of a plasma period (~ lO-9 s) which is much 

shorter than the time scale for heating of the plasma (~ lO-2 s), it 

should be a reasonable approximation to use the results of Chapter 2 

for the instantaneous velocity distribution of the energetic electrons 

as a function of distance from the injection point. 

We have calculated the heating due to reverse currents for two 

injected energetic electron fluxes (HE). The heating rate was taken 

to be just that which results from the Ohmic losses suffered by the 

reverse current and is given by 

c .2 
--'T)J 3n K p e 

The electron and ion temperatures were assumed to be equal. We shall 

say more about this assumption later. At each time step the current at 

each spatial grid point was calculated using Equation (2.46). The time 

step was regulated so that the largest change in temperature at any grid 



point was 1% in one time step. Since we have not :found an analytic 

solution to the time dependent problem considered here, the constant 

heat flux model of the atmosphere was abandoned in :favor of a more 

accurate numerical model which is discussed in Appendix B. The spatial 

grid spacing was chosen so that for the initial temperature profile 

(t=o) the temperature change between spatial grid points was less than 

l<t. The atmosphere was assumed static; that is, the number density (n) 

was held constant in time. The details o:f the numerical methods used 

are discussed in Appendix A. 

We have used the S,ame Y and '¥ 0 as in Chapter 2. The results 

for an injected energetic electron :flux of 1.414 X 1017 are displayed 

in Figure 3.1 while similar curves for an injected energetic electron 

:flux of 5.656 X 1017 are displayed in Figure 3.2. Figure 3.3 depicts 

the density structure of the model atmosphere. The abscissa,' 1 , of 

the figures is integrated number density from the injection pOint, 

defined by 

1(s) = J n(s')ds' 

o 
, 

where n is the total number density (sum of neutral hydrogen and 

(3.3) 

proton dens1ty). Because we have used a numerical model rather than 

the simple analytic constant heat flux model, we Were not free to choose 

the density at the injection point (see Appendix B). The initial density 

in the adopted model is approximately twice the density in the constant 

heat flux model used in Chapter 2. Since the reverse current heating 

rate is proportional to and inversely proportional to density, the 
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Figure 3.l Temperature (T) as a function of integrated 

number density (1) from the injection point, for an 

energetic electron number flux of l.4l4 X lOl7 cm-2 s-l. 

The temperature is displayed before the beam is injected 

(t = 0 s) and for two times after the beam is injected 

(t = l sand t = 4 s). 
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Figure 3.2 Temperature (T) as a fUnction of integrated 

number density (1) from the injection pOint, for an 

energetic electron number flux of 5.656 X 1017 cm-2 s-l. 

The temperature is displayed before the beam is injected 

(t = 0.25 sand t = 1 s). 
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Figure 3.3 Number density of neutral and ionized hydrogen 

(n) as a function of integrated number density (1) from 

the injection point. The model serves only to represent 

the gross overall structure of the solar atmosphere above 

an active region (see Appendix B). 



lower energetic electron flux corresponds roughly to the initial heating 

rate shown in Figure 2.2. 

Figure 3.1 shows the temperature as a function of I for two times, 

1s and 4s after the injection of the beam. The energetic electron flux 

used in the calculation of the results displayed in Figure 3.2 is four 

times that used for Figure 3.1. Figure 3.2 displays the temperaturG 

after .25s and 1s corresponding to the same total energy input as the 

curves for 1s and 4s in Figure .:3.1. Thermal conduct! vi ty was neglected 

in these calculations, but computer runs with thermal conductivity 

included indicated that thermal conductivity did not have significant 

effects for the short time scales (::; 4s) involved in here (see Appendix A). 

3.2 Anomalous Resistivity and Reverse Current Heating Rate 

The electrical resistivity used in the calculations depended on the 

reverse current drift velocity as indicated below: 

where 

proton mass, 

Vd ::; 13 Vt . 
, 1. 

fOl' the ion temperature, m. 
1. 

(3.4) 

is the 

11 is the resistivity due to Coulomb collisions derived 
s 

by Spitzer (1962), and l1A is an anomalous resistivity due to the 

presence of electrostatic ion-cyclotron turbulence calculated by 10nson 

(1976) • For the purposes of calculating· the value of the anomalous 

resistivity we have adopted 13dOO gauss} a reasonable value for the 

pre-flare corona. Since we are considel'ing a flux tube of constant 

cross section, the field is the same for all values of s, the distance 



from the injection point. For the smaller energetic electron flux, the 

reverse current drift velocity did not exceed the critical velocity for 

the onset of electrostatic ion-cyclotron turbulence. In this case the 

temperature of the tenuous coronal plasma was raised by a factor of ~ 2, 

but most of the beam energy was deposited in the dense portion of the 

model atmosphere. 

The larger energetic ele0tron flux: however, caused the reverse 

current drift velocity to exceed the critical velocity for the onset of 

electrostatic ion-cyclotron turbulence in the low density portion of the 

atmosphere, resulting in an anomalous resistivity and an order of magni-

tude increase in the temperature in these regions in a relatively short 

time. Since Coulomb collisions were neglected in this calculation, the 

heating of the denser portion of the atmosphere is not calculated accu-

rately after thE; first few tenths of a second (also see Appendix B). If 

collisions were taken into account for the primary electrons in the 

beam, the heating of the d~nser regions below the corona would be more 

localized and higher temperatures would be reached. However, these 

results indicate that an energetic electron beam may significnntly heat 

the low density coronal plasma much more rapidly than would be calculated 

from considering only the effects of Cou.lomb collisions on the beam 

electrons. 

The time for electron and ion temperatures to equilibrate by 

Coulomb collisions assuming only one species rather than both species 

are heated as we have assumed may be estimated (Spitzer 1962) from 

s 



For the temperatures, densities, and the time scales considered here, 

Coulomb collisions alone will not establish equal electron and ion 

temperatures. We have taken the electron and ion temperatures to be 

equal for computational convenience; however, and must, therefore, 

address the question of whether one species is preferentially heated. 

For the case depicted in Figure 3.1, for which the resistivity is 

just classical Spitzer resistivity, only the electrons are heated at 

first. According to Equation (3.5), the ions are not likely to be 

heated significantly in turn by energy exchange with the electrons. The 

heat capacity of the plasma is therefore reduced by a factor of 2, and 

the times given in Figure 3.1 should simply be reduced by a factor of 2. 

The situation in which pl.<tsma turbulence develops, as for the case 

depicted in Figure 3.2, is considerably more complicated. As we have 

indicated., the critical drift velocity for the onset of electrostatic 

ion acoustic or ion-cyclotron turbulence depends on the ratio of the 

electron and ion temperatures. Just what happens when this drift velo­

city is exceeded is not well understood, however. 

The anomalous resistivity which we have assumed to result from the 

presence of electrostatic ion-cyclotron turbulence was calculated by 

10nson (1976) under the assumption that the turbulence saturates by ion 

resonance broadening (Dum and Dupree 1970) and that the electron and ion 

temperatures were equal. palmadesso et al. (1974), on the other hand, 

made the first of these assumptions and calculated heating rates of 

electrons and ions. They found that the ions are heated much more 

:rapidly than the electrons, and Papadopoulos (1977) has subsequently 

concluded that the instability turns off When the ion heating has 
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proceeded to the point at which the instability criterion is no longer 

satisfied. If only the ions are heated, the situation will differ from 

that depicted in Figure 3.2. The temperature plotted should be inter-

preted as the ion temperature (note that this affects the calculation of 

the expected excitation and ionization rates) and the times given reduced 

by a factor of 2 for the same reason those in Figure 3.1 should be 

reduced if only the electrons are heated. 

It has also been suggested that the ion-cyclotron turbulence satu-

rates, not by ion resonance broadening, but by the formation of a plateau 

on the electron velocity distribution, instead, in which case no signi­

ficant anomalous resisti vi ty results (papadopoulos 19Tf). If this 

happens, then as in the case without plasma turbulence, only the electrons 

are heated at first, at a rate given approximately by classical resisti-

vity. In this case, however, larger electron beam current densities 

must have been involved to begin with in order for the reverse current 

drift velocity to have exceeded the critical velocity for the onset of 

ion-cyclotron turbulence. Since j is larger than in the case without 

turbulence, the classical heating rate is higher for this case. If the 

electrons are heated sufficiently in this manner, the critical drift 

velocity for the onset of ion-acoustic turbulence will be exceeded. In 

that case, the electrons will be heated until the criterion for insta-

bility is no longer satisfied, or until 

where C is the ion sound speed. 
s 

, (3.6) 



This latter scenario for rapid electron heating would apply, for 

instance, to an electron beam strength equal to that assumed in Figure 

3.2. More precisely, assuming the ion-cyclotron turbulence does satu-

rate by electron plateau formation, a beam of this strength would result 

first in electron heating given approximately by the results in Figure 

3.l with a time scale reduced by a factor of about 32. After roughly 

.5 s, ion-acoustic turbulence would develop, resulting in rapid heating 

of the electrons to a final temperature which may be estimated from 

In short, the exact behavior of the ratio of the electron and ion 

temperatures is not well understood and cannot be determined without a 

much more detailed analysis than is appropriate for the present work. 

We have assumed that the electron and ion temperatures are about equal 

as a useful and reasonable approximation with which to estimate the 

magnitude of the reverse current heating. As discussed above, however, 

temperature enhancements much larger than those depicted in Figures 3.l 

and 3.2 are possible. 



4. CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH 

We have examined a simple model for the production of impulsive hard 

X-ray bursts during solar flares. The model involves a beam of energetic 

electrons propagating from the corona to the chromosphere. We have 

found that if this beam is to exist, the current carried by the beam 

electr.ons must be neutralized by a reverse current in the background 

plasma. The requirement that the reverse current exist has two conse­

quence:; that have not been previously recognized in the context of this 

type of simple model of impulsive hard X-ray bursts. The reverse 

current heats the ambie.nt plasma and the electric field that is developed 

to drive the reverse current decelerates the primary electrons. Joule 

heating by the reverse current is a more effective mechanism for heating 

the tenuous coronal plasma than Coulomb collisional losses from the 

energeti9 electrons, because the ohmic losses are caused by thermal 

electrons in the reverse current which have much shorter mean free paths 

than do the energetic electrons. 

We have found that the time scale for heating the ambient plasma 

by reverse currents can be comparable with the time scales characteristic 

of impulsive X-ray bursts (Hoyng et al. 1976). It is possible that 

thermal bremsstrahlung from the rapidly heated plasma can account for a 

significant portion of the observed impulsive X-ray flux. Hence this 

mechanism can offer an explanation of the fact that some flares first 

produce high-energy X-ray emission near the top of a loop rather than at 

the footpoints of the loop (Brueckner 1976). Anothe.J:' important conse­

quence of this process is that, if thennal emission can account for a 

substantial fraction of the impulsive flux up to A4 50 keY, then the 
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number of electrons required to produce the nonthermal X-ray flux is 

greatly reduced '(Brown 1975). 

The tim.e scale for heating can also be short compared to the 

ionization times of the plasma ions and may therefore produce non­

equilibrium line-emission strength enhancements of lines present in the 

plasma spectrum just prior to the rapid heating (Shapiro and Knight 

1978). These non-equilibrium effects are likely to be observable only 

if plasma turbulence develops causing a large enhancement in the plasma 

resistivity (Shapiro and Knight 1978). 

We have made seve:r:al simplify;i.ng assumptions in order to facilitate 

the calculations presented in Chapters 2 and 3. In a more realistic 

model, some or perhaps all of these restrictions could be relaxed. We 

now briefly discuss how the relaxation of some of these assumptions is 

liltely to change the conclusions we have drawn and suggest possible 

extensions of the work we have presented in Chapter 3. We have assumed 

that all the electrons in the beam are moving in the same direction, or 

equivalently that they have zero pitch angle. The reverse current 

arises to balance the flux of electrons in a given direction due to any 

anisotropy in the energetic electron velocity distribution. If the 

energetic electron velocity distribution is nearly isotropic, no signi­

ficant reverse current will arise (see for example Smith and Lilliequist 

1978). Even if the distribution is strongly anisotropic, but the 

electrons streaming down from the corona to the chromosphere have non­

zero pitch angles, the Coulomb collisional losses will be enhanced 

relative to reverse current losses since the collisional losses are 

proportional to the total path length of the energetic electrons in the 
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atmosphere, while the reverse current losses are proportional to the 

average component of the energetic electron velocity along the field. 

Since the emergent X-ray spectrum is relatively insensitive to the angular 

distribution of the energetic electron velocities (Langer and Petrosian 

19(7) , it is extremely difficult to infer the reverse current drift 

velocity from measurements of the X-ray flux. A more detailed discussion 

of this and other difficulties in inferring the reverse current drift 

velocity .from X-ray observations can be found elsewhere (Hoyng et al. 

19(8). 

We have neglected the effects of Coulomb collisions on the primary 

electrons. As Figure 2.3 demonstrates, this is an adequate approxima-

tion immediately after the .flux of energetic electrons is initiated i 

however, Coulomb collisions become relatively more important as the 

plasma is hep,ted since the reverse current losses are reduced. Until a 

significant increase in the density of the coronal plasma is effected 

by the evapol'ation of material from the chromosphere, Coulomb collisions 

are unlikely to be important in the upper portions of the atmosphere. 

In the lower lying dense regions, Coulomb collisions will rapidly domi-

nate over reverse current losses, and, as we have indicated, affect 

the heating of this portion of the atmosphere. One extension of the 

work presented in Chapter 3 that should provide additional insight ihto 

the behavior of energetic electrons in the solar atmosphere during flares 

would be to perform a calculation similar to that we have presented, but 

include the effects of Coulomb collisions and a distribution of pitch 

angles for the energetic electronS. 



We have neglected the dynamics of the background plasma. As we 

have indicated, the rapid heating of the plasma can cause a large pres­

sure imbalance. For the results presented in Figures 3.l and 3.2, the 

pressure is a factor of - 20 higher in the high density portion of the 

atmosphere than in the low density regions indicating that evaporation 

of high density material would occur if the dynamics of the ambient 

plasma were accounted for. This would not have a large effect on the 

calculations presented in Chapter 3 because the time scales considered 

are so short. However, on longer time scales mass motions in the atmo­

sphere could have important effects. Previous work with fluid dynamic 

models of solar flares (for example see Kostyuk and Pikel'ner 1975, 

Kostyult 1975, Craig and McClymont 19(6) has not included reverse current 

losses. The development of a numerical fluid dynamic model of the 

solar atmosphere heated by a beam of energetic electrons, including 

reverse current losses could provide valuable information about the 

formation of the quasi-thermal soft X-ray plasma that is produced during 

solar flares. 

We have not calculated either the radiation from the heated plasma 

or the bremmstrahlung from the energetic electrons. Since almost all 

the information we noW have and are likely to accumulate in the fore­

seeable future about solar flares comes from the observation of the 

emitted radiation, it would be useful to calculate the emitted radiation 

from any realistic model to ascertain to what degree it resembles the 

solar atmosphere during a flare. 

More realistic models than those we have considered that include 

the effects of Coulomb collisions, the dynamics of the background plasma, 



a reasonable magnetic field configuration, radiation and thermal conduc­

tion are necessary to account for the complicated phenomena that are 

observed in solar flares. However, our study of the reverse current 

and the heating it can cause indicates that reverse currents can play 

an important role, at least in the initial heating of the solar plasma 

during a flare. 
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Appendix A 

NUMERICAL AND COMPUTATIONAL METHODS 

As we have indicated in Chap-ter 3, the results for the time depen­

dent case are calculated by using the steady state results for the 

current as a function of distance from the injection point and calcula­

ting the change in temperature from a suitably discretized form of 

equation (3.2). In reality, the calculation is done for the more 

general case of partially ionized hydrogen. Since the reverse current 

heating calculation is only accurate in the tenuous high temperature 

portion of the atmosphere, this generalization did not have a. substan­

tial effect on the results of the calculation. However, the manner in 

which the partial ionization is included could in principle be accurate 

in any astrophysical plasma that is sufficiently tenuous that the gas 

is optically thin to its own radiation, photo-excitation and ionization 

are unimportant and collisional de-excitation can be ignored. The 

ionization state of the plasma is then a function of temperature only 

provided non-equilibrium effects can be ignored. The only elements in 

astrophysical plasmas that are sufficiently abundant for their ioniza­

tion potential to affect the heat capacity of the gas are hydrogen and 

helium. Only hydrogen is included in the present calculation, but since 

the effects of partial ionization on the heat capacity are included via 

a pretabulated interpolation table (discussed below) the effects of 

helium could be included with only minor modification. The modified 

version of equation (3.2) actually solved numerically is 
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where TE is defined by 

2EION 
TE = (l + X)T + X ~ , 

(A.l) 

(A.2) 

where X(T) is the fraction of the hydrogen nuclei that are ionized and 

E
ION 

is the ionization potential of hydrogen. That is,the thermal 

energy content of the plasma per cubic centimeter is 

(A.3) 

The temperature is obtained f~om T via the interpolation tables men-

tioned above, and it is obvious that the inclusi.on of helium only in-

volves calculating a different interpolation table. In fact we have 

included only hydrogen and used the expression given by Moore and Fung 

(l972) for X(T) 

X(T) ~ (l + lO-5.69p eP [.4288 + ~ In p + • 4698p -l/3Jr~, (A.4) 

where f3=l58oo/t. Then T is implicitly defined as a function of TE 

by Equations (A.3) and (A.4). 

Spitzer gives the resistivity of a hydrogen plasma as: 

11s 

where 1\ is defined by 
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l04.09 T3i2n-l/2 
4:: 

A ;::: 

so that we may write ~s as 

(A.6) 

'i' ~ 4.2 X lOSk , 

TIs = 
{

l03.3l T-3/2 r3/2 In T - ~ In X - ~ In n1 l 2 2 j 

l03.S4 T-3/ 2 [In T - } In X - ~ In nJ 

Therefore, 'l1 can be written as a sum of a function of T only and a 
lIS 

function of T only times In(n) : 

11s ;::: TL(T) + TIvI('r) 1n(n) , (A.8) 

where 

and 

~ { 1Q3.01 T-
3/

2 T :5: lL2 X lO5k 

TM(T) (A.10) 

103.24 T-3/2 
T >- 4.2 X 105k 

The calculation of the current as a function of distance depends 

only on the resistivity weighted distance measure ~ In Chapter 2 we 

were able to write an analytic expression for ; as a fUnction of s, 
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but in the present case the resistivity varies with time. The value of 

S at the ith grid point is approximated by 

g~ + (~~ + 'Il~) (s. - sl·_l)/2 l-l 'Il-l 1 1 
, (A.ll) 

where superscripts refer to time steps and subscripts refer to spatial 

grid points, and 
j 

~l = 0 . So long as the reverse current drift velocity 

is less than the critical velocity for the onset of ion cyclotron turbu-

lence, the calculation of in this manner is straightforward. How-

ever, when the background plasma is ut~table to the growth of ion cyclo-

tron turbulence, the situation is somewhat more complicated. In this 

case the value of 'Il~ dependH on the current, and a transcendental 
1 

equation must be solved to find 'Il~ from Equations (2.46), (2.49) and 
1 

the result for anomalous resistivity due to ion cyclotron turbulence 

(Ionson 19(6) 

'Il = 0.06 (c nJn :I.').)(l - l3V
t 

./V
d

) , 
a 1 pe pl ,1 

(A.l2) 

where n. == (eB/m.c) 
1 1 

and ~l) == (4rcn elm )l/2 , we find that J~ is 
Pex ex ex 1 

defined implicitly by 

l/2 

+ .rb (::) 
(s.-s. l) 

1 1-

j 
2n.X. 

1 1 
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where vj 
d

i 

G(J~) = 

cJ~/enx~ :::: 
1 1 

J~ + 
1. 

e2K 
(V-1)mc 

B 
41te 

( j) then when G J. =0 , 
1 

and ~ :::: 13 
j 

V
t 

. 
c. ,1 

1 

I 

ye
2

K tj 
w
y 

+ (Y-l)mc Si-1 + 0 

If we define G(J~) by 
1 

(~~ 1 + ~j ) (s. - s. 1)/2 
'1 1- 'IS. 1 1-

~ 

~ e n.x~)] I[ (Y-1)/Y] 
(s. - s. 1) ( c. 1. 1 1 1- 1 

----2-n-X~j--- 1 - ---C-J~J1:---- ( , 

i i ) (A.14) 

~ satisfies Equation (A.13). When the current 

calculated neglecting anomalous resistivity corresponds to a drift velo-

city tliat is greater than 

J/~ 
1 

vj 
, we take an initial estimate for 

c. 
1. 

vj 

J/j 
c. 

X~ 1 
:::: --- e n. , 

i c 1. 1 

j 
J. , 

1. 

(A.15) 

and refine this estimate by application of Newton's method to Equation 

(A.14). Examination of Equation (A.13) shows that Newton's method will 

always converge for this initial estimate and the convergence is usually 

reasonably rapid, i. e. usually 6 or fewer iterations are required. 

The functions needed for the calculation [TL, TM, X and the impli-

citly defined T(T
E

)] are evaluated by cubic interpolation on pretabula-

ted tables. The method used is dependent on the architecture of the 

IBM 360-370 series computers and the internal representation of double 

precision floating point numbers used on these machines. The use of 

pretabulated functions is considerably faster than calls to the FORTRAN 

library routines that would otherwise be necessary. This is particularly 

true in the case of the implicitly defined function T(T
E

) which would 
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have to be solved iteratively at each spatial grid point for each time 

step. The internal representation of double precision floating numbers 

on IBl\! 360-370 computers is presented diagramatically below. 

hexadecimal exponent (excess 64) 
o 1 + 7 8 63 

II I ~4 digit hexadecima~ ~raction 
+ 

sign bit 

FIG. A.l. Internal representation of double 

precision floating' point numbers on IBlII 360 
and 370 series computers. 

In the interpolation procedure} the first 16 bits (bits 0-1:,) are 

extracted} an offset substracted and the result treated as a double 

word displacement from the base address of an interpolation table. The 

remaining h8 bits (16-63) are used to form a floating point fractional 

displacement (frac) from the largest value of the temperature for which 

the function is tabulated which is smaller than the value of the tempera-

ture for which the value of the function is desired. The value of this 

displacement is such that 0 ~ frac < 1 ; frac is used to calculate 

weights for the four nearest tabulated values of the function in a cubic 

polynomial interpolation. Once the weights for the cubic interpolation 

are calculated only 4 double precision float~,ng point multiplies (.- .61 ].LS 

each on IBM 370-168 with high speed multiply) and 3 adds ( ....... 30 I-1S each) 

are required to produce an interpolated value from a table. Since the 

weights are to be calculated for TL} TlI1 and X they are also used to 

calculate the critical velocity for the onset of ion-cyclotron turbulence. 

This would require. a cull to the l~ORTRAN library subroutine "nSQRT" which 
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is sufficiently fast that interpolation would be slower for the calcula­

tion of the square root alone. However, since the weights must be cal­

culated for TL, X , TM and TE, interpolation is faster than a call to 

"nSQRT" because the weights are effectively "free" for this calculation. 

The semi-logarithmic tabulation scheme allows interpolation from 

T=4.0g6 X 103 K to 6.710 X 107 K with a maximum relative displacement 

from a value of T for which the function is tabulated of ..... 3% with 

only 820 table entries. In fact some of the 820 entries are never used 

due to the nature of the signed magnitude normalized representation of 

floating point numbers on these machines, but the reason for using this 

sort of tabulation scheme is that a reasonably large range can be 

covered with relatively few table entries, and the correct tabulated 

values can be ace"ilssed extremely rapidly. 

Listings of two main programs and several subroutines are provided 

for the sake of completeness. All of the time consuming routines have 

been hand coded in assembly language. Routines that perform initial­

ization and diagnostic functions as well as the main program are coded 

in FORTRAN. The first main program produces the tables that are required 

for the cubic interpolation. The second main program reads in the inter­

polation tables, model parameters and starting values. The starting 

values used initially are from the steady state model atmosphere described 

briefly in Appendix B. 

The assembly language programs calculate the current at each spatial 

grid point (CURCAL), calculate the change in temperature at each point 

and determine the time step ('I'ESTP) and write out the arrays at the 

designated intervals (TOUT). In addition the calculation of the current 
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(CURCAL) requires takin~ the -(V-1)/V power of a number, which if done 

with FORTRAN library routines would require taking the natural logari.thm 

and exponentiating. Both the library routines "DLOO" and IDEXp" are 

slower than " DSQRT" so an assembly language routine was written that 

calculates the 3/5 pOWAr of a number (F35), the routine is called by 

CURCAL. The subroutine DJAG is used primarily for monitoring the per­

formance of th~ model during program changes and subsequent debugging. 

In production runs it could be replaced with a subroutine that does 

nothing (i.e. returns as soon as it is called) without affecting the 

model calculations; the~efore it is not reproduced here. The FORTRAN 

subprograms initialize the array containing TE (EINIT) and read in the 

starting values (INIT and RDR). The calculation that includes thermal 

conductivity which is referred to in Chapter 3 is not discussed in detail 

here. In order to avoid undue restriction on the time step [to satisfy 

the Courant-Friedrichs-Lewy condition - see Richtmyer and Morton (1%7)J, 

the method employed" is implicit and requires the inversion of a tridia­

gonal matrix (dimension 846) and is rather slow. RUns with this program 

indicated thermal conduction did not change the results substantially 

so these routines are not reproduced here. 
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Iiif4INXb PXCJI II 
OF. POOR QUALITY 

C 
C 
C 
C 
C 
C 
C 

TABULATION ROUTINE 

IMPLICIT REAL*8 (A-H,O-Z) 

THIS PROGRAM CALCULATES SEMI=LOGARITHMIC TABLES NEEDED FOR 
CALCULATION OF REVERSE CURRENT HEATING I~ITH RESISTIVITY THAT 
IS A FUNCTION OF THE DRIFT VELOCITY. 

THE TABLES ARE WRITTEN OUT TO LOGICAL UNIT 9 

REA L * 8 T L( 820) , T M ( 820) , V IT H ( 820) , CHI N ( 820) , C I N V ( 564'> 
REAL*8 DTO/Z4310000000000000/,TBO/Z4410000000000000/, 

.KAY/l.38054D-16/,EC/4.80298D-10/,MH/l.67530890-24/, 

.PI/Z413243F6A8885A31/,MP/l.672520-24/,ME/9.1090-28/, 

.HBAR/1.05450D-27/,MU,EIoN,ONE3/ZC0555555555555551, 

.C/2.997925010/,CSIG,LSIG,K32,CKAP,LNS1,LNS2,DCoN,BETA,PSI 
INTEGER*4 LIM(4)/242,242,242,S1/ 

9001 
C 

FORMA T( 1 OAB) 

C 
C 

C 

CALCULATE CONSTANTS 

MU=(ME*MP)/(ME+MP) 
EION=(MU*EC**4)/(2.DO*HBAR**2) 
TION=e2.DO*EIoN)/e3.00*KAY) 
CSIG=0.500*PI 
K32=KAY*OSQRTCKAY) 
CSIG=CO.SDO*CSIG*OSQRTCCSIG*ME)*EC*EC*C)/K32 
LSIG=e3.DO*K32)/C2.DO*EC*EC*EC*DSQRTePI» 
CVITH=2.00*169.DO*KAY/MP 
CCHIN=1.5*KAY 
LNS1=DLOGCLSIG) 
LNS2=DLOGCLSIG*4.2DS) 
DCON=1.DO/C4.SDS*1.S8DS) 

C CALC TABLES: ELECTRICAL CONDUCTIVITY CTL,TM), CRITICAL 
C VELOCITY eVITH*13.) AND INVERSE IONIZATION FRACTION (CHIN). 
C 

C 

DT=DTO 
TO=TBO 
00 20 rr=1,4 

K=(256*CII-1»)+1 
L =K+L HI( 1 1) 
T=TO-OT 
DO 10 J=K, L 

BETA=1.580S/T 
PS1=4.S05/CBETA*OEXPCBETA)*e.428800+.500*DLOGCBETA) 
+ .469800*BETA**ONE3» 
VITHeJ)=DSQRTCCVITH*T) 
CHINCJ)=CCHIN*el.00+PSI)/PSI 
CHI=PSI/C 1. OO+PS1) 
IFCT.GT.4.20S)GOTO 5 
TMCJ)=CSIG/(T*DSQRTCT») 
TLCJ)=TMCJ)*CLNS1+1.5DO*OLoGCT)-.500*OLOGCCHI» 
GOTO 10 

5 TMCJ)=CSIG/CT~DSQRT(T» 
TLCJ)=T~1(J)*(LNS2+0LOGCT)-.SOO*DLOGCCHI» 

10 T=T+OT 
TO=TO*16.DO 

20 OT=OT*16.00 

C CALCULATE TABLES FOR CHI INVERSE (Cl+CHI)*T+CHI*TION AS FUNC OF T) 
C 

THEW=TBO-OTO 
OT=OTO 
TO=TBO 
00 40 11=1,3 

K=C256*CII-l»+1 
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C 

l=K+LIMCII+1) 
T=TO-OT 
DO 30 J=K,l 

TCH=4.0-16*TNEW 
25 TOlO=TNEW 

BETA=I.5805/TOLO 
EBETA=OEXP(BETA) 
B 13=BETA n ONE3 
TEMP1=0.428800+0.500*OlOGCBETA)+.469800*B13 
PSI=4.505/(BETA*EBETA*TEMP1) 
C=PSl/( 1. OO+PSI) 
OC=OCON*C*C~BETA*BETA*EBETA*C(1.00+BETA)~ 
TEMPI + ('500-.156600*B13» 
TNEW=TOlO-«(1.00+C)*TOLO+C*TION-T)/Cl.00~C+ 
(TOLO+TION)*OC) 
IFCOABS(TNEW-TOLO).GT.TCH)GOTO 25 

CINV(J)=TNEW 
30 T=T+OT 

TO=TO*16.DO 
40 OT=OT*16.00 

C WRITE OUT TABLES 
C 

WRITE(9,9001HL 
WRITE(9,9001HM 
WRITE(9,9001)VITH 
WRITEC9,9001)CHIN 
WRITE(9,9001)CIHV 
STOP 
EHO 
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_ ._-,--~r.J 

au~ Q\JA\Jl'r1 
Of· 

REVERSE CURRENT HEATING MAIN ROUTINE 

IMPLICIT REAL*8 (A-H,O-Z) 
C 
C THIS PROGRAM CALCULATES REVERSE CURRENT HEATING OF A MODEL 
C ATMOSPHERE READ IN AS UP TO 1024 VALUES OF TEMPERATURE (T) NUMBER 
C DENSITY (N) AND DISTANCE (S) FROM THE INJECTION POINT (TOP OF 
C MODEL. THE PROGRAM DOES NOT HAVE TO START AT TIME 0 (INJECTION 
C TIME) AS THE CURRENT TIME, TIME STEP AND ITERATIONS TO THIS POINT 
C ARE READ IN ALSO. THE PROGRAM READS IN THE MAXIMUM NUMBER OF 
C ITERATIONS TO BE PERFORMED (NITER), THE ENERGETIC ELECTRON NUMBER 
C FLUX (EFLUX), PSIO WHICH CORRESPONDS TO AN ENERGY CHARACTERISTIC' 
C OF A LOW ENERGY KNEE IN THE ENERGETIC ELECTRON DISTRIBUTION 
C (SEE KNIGHT AND STURROCK 1977) , FRAC, THE MAXIMUM PERCENTAGE 
C CHANGE IN THE THERMAL ENERGY CONTENT OF THE PLASMA PER HYDROGEN 
C NUCLEUS ALLOWED AT ANY GRID POINT IN ONE TIME STEP, TIMMAX 
C THE MAXIMUM TIME FOR THIS RUN (REAL TIME NOT COMPUTER TIME) AND 
C DTOUT. THE INTERVAL AT WHICH THE ARRAYS CONTAINING THE TEMPERATURE 
C AND CURRENT DENSITY AS WELL AS THE CURRENT TIME AND TI~'E STEP. 
C 
C CALLED SUBROUTINES: 
C 
C INIT - READS IN STARTING VALUES OF DENSITY, TEMPERATURE AND 
C DISTANCE AS WELL AS TIME, TIME STEP AND NUMBER OR PREVIOUS 
C ITERATIONS. 
C 
C EINIT - CALCULATES INITIAL TE DEFINED AS (1+CHI)T+2*EION/3*K FOR 
C EACH SPATIAL GRID POINT. ENERGY INPUT INCREASES TE 
C AND T IS CALCULATED FROM CHINV. 
C 
C NOUT - WRITES OUT DENSITY AND DISTANCE ARRAYS AS WELL AS INPUT 
C PARAMETERS (TO FORTRAN LOGICAL UNIT 9) 
C 
C CURINT - INITIALIZATION FOR CURCAL (SEE CURCAL) 
C 
C TESTPI - INITIALIZATION FOR TESTP (SEE TESTP) 
C 
C CURCAL - CALCULATES CURRENT AS A FUNCTION OF DISTANCE USING 
C STEA]V STATE RESULTS OF KNIGHT AND STURROCK AND A 
C RESISTIVITY THAT DEPENDS ON THE REVERSE CURRENT DRIFT 
C VELOCITY. 
C 
C TESTP - UPDATES TEMPERATURE AND ADJUSTS TIME INCREMENT SO THAT 
C MAXIMUM CHANGE IN TE AT ONE GRID POINT IS FRAC*TE AT THE 
C GRID POINT 
C 
C DIAG - OUTPUTS A SMALL SUBSET OF THE CALCULATED CURRENT DENSITY 
C AT INTERVALS DETERMINED BY VALUES IT READS FROM LOGICAL 
C UNIT 5 - CAN BE RECOMPILED WITHOUT RECOMPILING THE REST 
C OF THE PROGRAMS AS IT DOES NOT AFFECT CALCULATIONS. 
C 
C TOUT - WRITES OUT TEMPERATURE AND CURRENT ARRAYS AND CURRENT 
C TIME, TIME STEP AND ITERATIONS TO LOGICAL UNIT 9 
C 
C CTOUT - CLOSES LOGICAL UNIT 9 (I.E. END FILE 9) 
C 
C 
C DECLARE VARIABLES: 
C 

REAL*8 KAY,ME,C,GAM,NORM,SFST,EFLUX,PSIO,DTOUT, 
. EL, EFACT, NElJDT 
REAL*8 T(1024),N(1024),J(1024),S(1024),OSIG(1024),LN(1024), 

.TE(1024),TUP(1024),SD(1024), 

.TL(820),TM(820),CNV(820),VITH(820),CINV(564) 
INTEGER*4 IND(2,1024) 

5001 FORMAT(5F7.0) 
5002 FORntH (17) 
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9001 fORMAT(10A8) 
C 
C INITIALIZE CONSTANTS: BOLTZMANN'S CONSTANT, ELECTRON REST MASS, 
C ELECTRON CHARGE (ESU), # ERG/KEV, SPEED Of LIGHT 
C 

C 

KAY=1.3S054D-16 
ME=9.1091D-27 
EL=4.8029SD-l0 
EFACT=1.60210D-9 
C=2.997925Dl0 

C READ IN MODEL PARAMETERS 
C 

C 

READ(S,S002)NITER 
READ(S,5001)EFLUX,PSIO,fRAC,TIMMAX,DTOUT 
READCS,9001)TL 
REAO(S,9001)HI 
REAO(S,9001)VITH 
REAO(S,9001)CNV 
REAO(S,9001)CINV 

C UNITS OF INPUT PARAMETERS ARE: 
C EFLUX 1.017 CCM~*2 SEC)*~-l, PSIO IN KEV, FRAC IN PERCENT, 
C TIMMAX IN SEC CMAXIMUM TIME),DTOUT IN SEC (OUTPUT INTERVALS) 
C 
C SCALE INPUT VARIABLES 
C 

C 

EFLUX=EFLUX*1.017 
PSIO=(PSIO*EFACT)/EL 
FRAC=FRAC:t-0.Ol00 

C CALCULATE CONSTANTS FOR CALCULATION OF CURRENT 
C 

C 

TEMP 1 =PSI O+PSI 0 
GAM=2.5DO 
GAMfll=1.S00 
TEMP1=TEMP1*DSQRTCTEMP1) 
TEMP2=PSIO*DSQRTCPSIO) 
NORM=CEFLUX~GAMM1~ME*JEMP1)/EL 
TEMP1=-(EL*EL%NORM)/(GAMM1~ME*C) 
J(1)=TEMP1/TEMP2 
TEMP2=TEMP2*PSIO 
T U1P3=-GAI'I'l.THIP 1 

C INITIALIZE TIME AND ITERATIONS 
C 

C 
C 

NEI·!DT=O. DO 
IITER=O 
TU1=0. DO 

C INITIALIZE TEMPERATURE AND DENSITY 
C 

C 

NTAB=1024 
CALL INITCT,N,S,DELT,TIM,NIT,NTAB) 
OUT I ~IE=D TOUT+T I M 
NITER =N IT+N I TER 
I ITER=N IT 
TCNTAB+l)=TCNTAB) 
SCNTAB+l)=SCNTAB)+CS(NTAB)-SCNTAB-l» 
CALL EINITCT,TE,NTAB) 

C OUTPUT INPUT PARAMETERS AND INITIAL DENSITY AND DISTANCES 
C 

CALL NOUTCEFLUX,PSIO,FRAC,TIMMAX,NTAB,N,S) 
C 
C NEED l/N IN LOOP SO WE CHANGE N TO l/N AND CALCULATE 
C DIFFERENCES OF DISTANCES USED IN TIME STEP. 
C 
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c 

SF'ST=-S(2) 
DO 10 I=1,tHAB 
SDCI)=(SCI)-SF'ST)*0.5DO 
SF'ST=SCI) 
LNCI)=0.5DO*DLOGCNCI)) 

10 NCI)=2.DO/C3.DO*KAY*HCI)) 
LNCHTAB+1)=LNCNTAB) 

C PASS ADDRESSES OF' INTERPOLATION TABLES AND OTHER 
C CONSTANTS TO CURCAL AND TESTP 
C 

C 

CALL CURINTCTEMP1,TEMP2,TEMP3,GAM,TL,TM,VITH,CNV, 
.N,LH,SD,OSIG,J,T,NTAB) 

CALL TESTPICT,TE,J,OSIG,N,TUP,DELT,FRAC,NTAB,CINV) 

C START TIME STEPPING LOOP 
C 

CONTINUE 
C 
C CALCULATE CURRENT AND RESISTIVITY AT EACH GRID POINT 
C 

CALL CURCALCOSIG,J,T,N,LN,NTAB) 
C 
C CALCULATE ONE TIME STEP WORTH OF' HEATING, UPDATE TEMPERATURE 
C . AND ADJUST TIME STEP ACCORDING TO FRAC 
C 

CALL TESTPCT,TE,J,OSIG,N,TUP,DELT,F'RAC,NTAB,CINV) 
C 
C WRITE OUT SOME STUFF TO MAKE SURE THINGS ARE WORKING RIGHT 
C 

CALL DIAGCS,T,TE,J,OSIG,N,TUP,DELT,TIM,NTAB,IITER) 
C 
C STEP tIME 
C 

C 

IITER=IITER+1 
IF'CIITER.GT.NITER)GOTO 40 
TIM=TH1+DELT 
IFCTIM.LT.OUTIME)GOTO 
OUTIME=OUTIME+DTOUT 

C OUTPUT CURRENT VALUES OF TIM,TEMP AND J 
C 

CALL TOUT CTIM,T,J,DELT,IITER,NTAB) 
IFCTIM.LT.TIMMAX1GOTO 1 

40 CALL CTOUT 
WRITEC6,*)IITER,DELT 
STOP 
END 
SUBROUTINE EINITCT,TE,NTAB) 
IMPLICIT REAL~8 CA-H,O-Z) 
REAL*8 TCNTAB),TECNTAB) 
REAL~8 KAY/1.38054D-16/,EC/4.80298D-10/,MP/1.67252D-24/, 

.ME/9.1091D-28/, 

.HBAR/1.05450D-27/,ONE3/ZC055555555555555/, 

.BETA,CHI 
TION=(ME*MP)/CME+MP) 
TION~CTION*EC**41/C2.DO*HRAR**21 
TION=C2.DO*TION)/C3.DO*KAY) 
DO 10 I=l,NTAB 

BOA=1. 5805/TC I 1 
CHI=4.5DS/CBETA*DEXPCBETA)*C.4288DO+.5DO*DLOGCBETA) 
+.4698~BETA*~OHE3)) 
CHI=CHI/C1.DO+CHI) 

10 TECI)=TCI)+CCHI*CTCI)+TION)) 
RETURN 
END 
SUBROUTINE INITCT,N,S,DELT,TIM,NIT,NTAB) 
IMPLICIT REAL*8 CA-H,O-Z) 
REAL*8 T(1024),NC1024),S(1024) 
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1001 FORMAT(10A8) 
READ(10,1001)NTAB,NIT,DElT,TIM 
CAll RDR(T,N,S,NTAB) 
RETURN 
END 
SUBROUTINE RDR(T,N,S,NTAB) 
REAL~8 T(NTAB),SCNTAB),N(NTAB) 

1001 FORMATC10A8) 
READe la, 100nN 
READC10, loons 
READ( la, 1001n 
RETURN 
END 
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CUR CAL 
:+: 

CSECT 

CUR CAL 

:+: 
;t: 

ROUGHLY EQUIVALENT TO THE FORTRAN CODE BELOW, EXCEPT 
THE FUNCTIONS PASSED IN THE ARGUMENT LIST OF THE 

:+: 
:+: 

FORTRAN ENTRY POINT CURl NT (TL,TM,VTH,CNV) ARE IMPLEMENTED 
IN LINE IN THE ASSEMBLY LANGUAGE VERSION AND A CALL TO 

:+: THE ASSEMBLY LANGUAGE VERSION SHOULD PASS THE ADDRESSES 
* 
* 

OF SEMI-LOGARITHMIC TABLES CTL(820),TMC820),VTHC820),CNV(820» 
VIA THE ENTRY POINT CURINT RATHER THAN FUNCTION NAMES. 

:+: CUR CAL DOES THE EQUIVALENT OF A FORTRAN RETURN 1 WHEN A 
:+: 

* 
VALUE OF T IS OUTSIDE THE TABULATED RANGE. THERE IS NO 
OBVIOUS WAY TO MAKE THIS APPARENT IN THE FORTRAN VERSION. 

* THE ARGUMENTS PASSED TO CURCAL ARE IGNORED AND 
* OBTAINED FROM LOCAL STORAGE WHERE CURINT PUT THEM. 
* * NOTE THAT THIS MEANS CURINT MUST BE CALLED BEFORE THE * FIRST TIME CURCAL IS CALLED OR A REAL MESS WILL RESULT. 
* :+: 
:+: SUBROUTINE CURINTCTEMP1,TEMP2,TEMP3,GAM,TL,TM,VTH,CNV, 
* .N,LN,SD,OSIG,J,T,NTAB) 
* * DECLARE VARIABLES 
* * IMPLICIT REAL*8 CA-H,O-Z) 
* REAL*8 NCNTAB),LNCNTAB),SDCNTAB),TCNTAB),JCNTAB),OSIGCNTAB), 
* .TL,TM,VTH,CNV * REAL*8 TEMP1,TEMP2,TEMP3,CONAN,ESU,C,CONAN1,B,CHT, * .VC,VITH,TSI.JA,NCON,NCON1,ME,MI,PI,JCON,JCl * DATA C/2.997925Dl0/,ESU/4.80298D-10/,ME/9. 109D-28/, * .MI/1.67252D-24/,PI/Z413243F6A8885A30/,ERR/1.0-6/ 
* * INITIALIZE CONSTANTS FOR CURCAL 
* * INTEGER*4 COUNT/30/ 
* 8=1.02 * CONAN=6.D-2*DSQRTCME/MI)*8/C4.00*PI*ESU) * TCON=CCGAM-1.DO)/GAM) 
* COHAN1=-TCON*TEMP3*CONAN*ESU/C 
* TCON=TCON*TEMP1 
* CE=-C/ESU * RETURN * ENTRY CURCALCOSIG,J,T,N,LN,NTAB,*) 
* * CALCULATE CURRENT AND RESISTIVITY COSIG) FOR FIRST POINT 
* * OSIG(1)=TLCTC1»+TMCTC1»*LNC1) * CHT=CNVCT(l)) 
* VITH=VTHCT(1» * VD=J(1)*NC1)*CHT*CE * IFCVD.LT.VITH)GOTO 10 
* * THE NEXT STATEMENT CALCULATES THE ANOMALOUS PART OF THE * RESISTIVITY IF THE DRIFT VELOCITY IS GREATER THAN THE 
* CRITICAL VELOCITY fOR THE ONSET OF TURBULENCE 
* * OSIG(1)=OSIG(1)+CONAN*N(1)*CHT*C1.00-VITH/VD) 
* * INITIALIZE TSI TO ZERO 
* * 10 TSI=O.OO 
* DO 20 I=2,NTAB 
* OSIG(I)=TL(TCI»+TMCTCI»*LNCI) * TSI=TSI+COSIGCI-1)+OSIGCI»*SO(I) 
* JCON=CTEMP2+TEMP3~TSI) 
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:t: 
:t: 
:t: 
:t: 
:t: 
:t: 
:t: 
:t: 
:t: 
:t: 
:t: 
:t: 
:t: 
:t: 
:t: 
:t: 
:t: 
:t: 
:t: 
:t: 
* 
* 
:t: 
:!: 

* 
* 
* 15 
* 16 
* 
* 
* 20 
;+: 

* 
* 

CURU'll 

AREA 
REG1 
REG2 
REG3 
REG4 
REGS 
REG6 
REG7 
EIGHT 
REG9 
TLA 
H1A 
VTHA 
CNVA 
COUNT 
ARGA 

TBND 
TDISP 

lm1 
WP1 
lm3 
l~P3 
FLOAT 
CONAN 

F35C1=1.DO/JCON 
F35C2=F35(F35C1) 
CHT=CNV(HI» 
VITH=VTH(HI) 
J(I)=TEMP1*F35C2 
NCONO=N (I )*CHT 
CJA=NCONO~SD(I)*CONAN 
NCON=NCONO·t:CE 
VD=JT'*NCON 
IF(VD.LT.VITH)~OTO 20 

THIS SECTION CALCULATES ANOMALOUS PART OF RESISTIVITY USING 
NEWTON'S METHOD FOR INTERIOR GRID POINTS - SKIP IF 
DRIFT VELOCITY IS LESS THAN CRITICAL VELOCITY 

JA=(12.DO/13.DO)*VITH/NCON 
JCON=JCON+CJA*TEMP3 
CJA=CJA*JA 
NCON1=NCON*CONAN1 
J(I)=JA~(1.DO+(J(I)-JA)/(NCON1*SD(I):t:F35C1*J(I)+JA» 
DO 15 K=l,COUNT 
CJAT=CJA/J(I) 
TC1=TCON-CJAT 
JC1=JCON-CJAT 
JT=J(I)*«TC1+TEMP1*JC1)/(J(I)*JC1*F35(JC1)+TC1» 
IF(DABS«JT-J(I»/JT).LE.ERR)GOTO 16 
J(I)=JT 
TSIG=NCONO*CONAN*(1.DO-JA/JeI) 
TSI=TSI+TSIG~SD(I) 
OSIG(I)=OSIG(I)+TSIG 
CONTINUE 
RETURN 
END 

USING 
B 
DC 
DC 
ENTRY 
USING 
B 
DC 
DC 
OS 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
CNOP 
DC 
DC 
DC 
DC 
DC 
DC 

:t:, 15 
CFlRST 
X'06' 
CL7'CURCAL ' 
CUR Itn 
;+:, 15 
IFIRST 
X'06' 
CL7'CURINT ' 
18F 
AL4(ARGA) 
F'O' 
F'O' 
F'O' 
F'O' 
F'O' 
F'O' 
F'g' 
f'G' 
F'O' 
F'O' 
F'O' 
F'O' 
F'30' 
X'80' 
AL3( F35A) 
X'00000330' 
X'00004410' 
0,8 
D' o. ' 
0' O. ' 
0' O. ' 

BRANCH AROUND NAME, OTHER ENTRY ETC. 

BRANCH AROUND NAME, SAVE AREA ETC. 

R 1 (ADDR ARG LI Sf) 
R2 BASE T 
R3 (BASE OSIG - 8 - BASE T) 
R4 (BASE J - BASE T) 
R5 (BASE N - BASE T) 
R6 (BASE LN - BASE T) 
R7 (BASE SO - BASE T) 
R8 (INCREMENT - 8) 
R9 (BASE T + 8*(NTAB-1) COMPARAND) 
R10 (BASE TL TABLE CHANGf.S IN LOOP) 
Rll (BASE TM TABLE CHANGES IN LOOP) 
BASE VTH TABLE 
BASE CNV TABLE 
MAX # OF NEWTON'S METHOD ITERATIONS 
ARGUMENT LIST (ONE LONG) 
ADDR ARGU~lENT 

FORCE DOUBLE WORD ALIGNMENT 

D' O. ' 
X'4000000000000000' 
D '0. ' 

71 



CONAN1 
TEMP1 
TEMP2 
TEMP3 
GAM 
NCON 
NCONO 
TeON 
JCON 
CJA 
TCl 
JA 
TSI 
ERR 
C 
ESU 
~!E 
M! 
B 
PI 
CE 
f3SC 1 
f35C2 
f35:\ 
If I RST 

DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
OC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
OC 
DC 
DC 
DC 
DC 
STM 
LR 
LA 
DROP 
USING 
ST 
ST 
LM 
LD 
ST 
LOR 
ST 
LD 
ST 
STO 
ST 
LO 
U'! 
LO 
L 
STD 
SLA 
STO 
S 
SO 
SR 
OOR 
SR 
STD 
SR 
LD 
L 
00 
L 
STD 
BALR 
SR 
1'10 
SR 
MD 
AR 
LD 
MO 
S 
MO 

Diib1iVAn~ 
OF POOR QUALITlS 

0'0.' y 
D' O. ' 
OJ O. ' 
0' o. ' 
0' O. I 

0 1 0. ' 
D' O. ' 
D' O. ' 
0' o. ' 
0' G. ' 
D' O. ' 
D' O. ' 
D '0. I 

D'I.E-6' ERROR TOLERANCE fOR NEWTON'S METHOD 
O'2.997925El0' 
014.80298E-l0 1 
D' 9.1091E-28 1 

D' 1. 67252E-24 I 

0'1.E21 
X'413243F6A8885A30 ' 
D 10. I 

0' O. I 

0' O. I 

D 10. I 

14,12,12(13) 
2, 13 . 
13,AREA 
15 
AREA,13 
2,4(13) 
13,8(2) 
2,9,0(1) 
0,0(5) 
6, TLA 
2,0 
7, H1A 
4,0(4) 
8,VTHA 
4, TEMP3 
9,CNVA 
6,0(3) 
4,10,32(1) 
4,0(2) 
10,0(10) 
6, TH1P2 
10,3 
4,TU1Pl 
IO,EIGHT 
2,=0 11. 1 
4,9 
2,0 
5,9 
2,GAM 
6,9 
O,ME 
I,REGI 
O,MI 
15,=VCOSQRT) 
0, f 35A 
14, 15 
8,9 
0,6 
7,9 
0,=0'6.E-21 
10,9 
2, =0 14. I 

2 , PI 
7,EIGHT 
2,ESU 

SAVE CALLING ROUTINE'S GPR'S 
R2 <= AODR .OLD SAVE AREA 
R13 <= AD DR NEW SAVE AREA 
R15 NO LONGER BASE REG 
R13 NEW BASE REG 
LINK SAVE AREAS 

R2-R9 <= AODR!S 1ST 8 ARG'S 
FO <= GAM 
TLA <= BASE TL TABLE 
F2 <= GAM 
TMA <= BASE TM TABLE 
F4 <= TEr'1P3 
VTHA <= BASE VTH TABLE 
TEMP3 (LOCAL) <= TEMP3 
CNVA <= BASE CNV TABLE 
F6 < = TH1P2 

R4-Rl0 ADDR'S REST OF ARG'S 
F 4 < = TEl'lP 1 
RIO <= NTAB 
TEMP2 (LOCAL) <= TEMP2 
RIO (= NTAB:t:8 
TH1Pl (LOCAL) <= TEMPI 
RIb <= 8~(NTAB-l) 
F2 <= GMt-l.00 
R4 <= BASE N - BASE T 
F2 <= (GAM-l.DO)/GAM 
R5 <= BASE LN - BASE T 
GAM <= (GAM-l.DO)/GAM 
R6 <= BASE SO - BASE T 
FO < = I'IE 
Rl <= ADDR ARG LIST 
FO <= 1'IE/1'1I 
R15 <= ENTRY ADDR DSQRT 
F35A <= ME/MT 
FO <= DSQRTCME/MI) 
R8 <= BASE J - BASE T 
FO <= DSQRT(ME/MI)*B 
R7 <= BASE OSIG - BASE T 
FO <= 6.D-2*DSQRT(ME/MI)*B 
RIO <= BASE T + 8*(NTAB-l) 
F2 <= 4.DO 
F2 <= 4.00·t:pI 
R7 <= BASE OSIG - 8 - BASE T 
F2 <= 4.DO*PI*ESU 
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CFIRST 

* 

ST 
DDR 
ST 
STD 
ST 
LD 
MD 
ST 
MDR 
ST 
LD 
ST 
LCDR 
DDR 
ST 
MO 
DO 
STD 
L 
tlD 
STD 
LM 
STD 
L 
SR 
tlV I 
BR 
DROP 
USING 
STM 
LR 
LA 
DROP 
USING 
ST 
ST 
LM 
LH 
t1VC 
S 

LD 
BM 

C 
BH 
SD 
SLA 

9,REG2. 
0,2 
7;REG3 
O,CONAN 
8,REG4 
4,GAM 
0, TEMP3 
4,REG5 
0,4 
5,REG6 
2,C 
6,REG7 
2,2 
0,2 
10,REG9 
4, TEMP 1 
2.ESU 
4, TeON 
10,4(13) 
O,ESU 
2,CE 
14,10,12(10) 
0,CONAN1 
13,4(13) 
15, 15 
12(13),X'FF' 
14 
13 
CURCAL,15 
14,12,12(13) 
2,13 
13,AREA 
15 
AREA,13 
2,4(13) 
13,8(2) 

REG2. <= BASE T 
F2. <= 6.D-2~DSQRTCME/MI)*B/C4.DO*PI*ESU) 
REG3 <= BASE OSIG - 8 - BASE T 

CONAN <= 6.D-2*DSQRTCME/MI)*B/(4.00*PI*ESU) 
REG4 <= BASE J - BASE T 
F4 <= «GAM-l.DO)/GAM) 
FO <= TEMP3*CONAN 
REGS <= BASE N - BASE T 
FO <= CCGAM-l.DO)/GAM)*TEMP3*CONAN 
REG6 <= BASE LN - BASE T 
F2 <= C 
REG7 <= BASE SO - BASE T 
F2 <= -C 
FO <= -«GAM-1.DO)/GAM)*TEMP3*CONAN/C 
REG9 <= BASE T + 8~(NTAB-1) COMPARAND 
F4 <= TEMP1*CCGAM-l)/GAM) = TCON 
F2 <= -C/ESU 
TCON <= TEMP1*CCGAM-l)/GAM) 
R10 <= ADDR OLD SAVE AREA 
FO <= -(CGAM-1.DO)/GAM)*TEMP3*CONAN*ESU/C 
CE <= -C/ESU 
GPR'S RESTORED 
CONAN1 <= (CGAM-1.DO)/GAM)*TEMP3*CONAN 
R13 <= ADDR OLD SAVE AREA 
R15 <= 0 CRETURN CODE) 
INDICATE CONTROL RETURNED 
RETURN 

SAVE CALLING ROUTINE'S GPR'S 
R2 <= ADDR OLD SAVE AREA 
R13 <= AD DR NEW SAVE AREA 
R15 NO LONGER BASE REG 
R13 NEW BASE REG 
LINK SAVE AREAS 

"11,REG1 SET UP GPR'S 
12,0(2) R12 <= HIGH ORDER 2 BYTES OF T(1) 
FLOAT+1(6),2C2) FLOAT <= FRACTIONAL DISPLACEMENT 
12,TDISP REDUCER12 BY TOISP. NOW # DOUBLE WORDS 

. FROM BASE OF INTERPOLATION TABLES 
4,FLOAT F4 <= FRACTION 0 LE FRAC LT 1 
BADT IF RESULT NEGATIVE - OUT OF RANGE 

12,TBND 
BADT 
4,=D'.5' 
12,3 

GOTO BADT 
IF R12 GREATER THAN TBND 
GOTO BADT 

R12 <= R2*8 NOW BYTE DISPLACEMENT 
FROM BASE OF INTERPOLATION TABLES 

~ NOW COMPUTE WEIGHTS FOR CUBIC INTERPOALTION OF 
* FUNCTIONS OF T 
* LOR 2,4 F2 <= X 

MDR 4,4 F4 <= X**2 = X2 
HDR 4,4 F4 <= Xl/2 
SO 4,=0'1.125 1 F4 <= Xl/2 - 9/8 
LOR 6,4 F6 <= X2/2 - 9/8 
HDR 4,4 F4 <= Xl/4 - 9/16 
tlDR 6,2 F6 <= X3/2 - 9X/8 
LCDR 0,4 FO (= -Xl/4 + 9/16 
ADR 0,6 FO <= X3/2 - X2/4 - 9X/8 + 9/16 
STD 0,IJM1 Im1 <= WEIGHT FOR TABLE ENTRY CORRESPOND-

* ING TO CLOSEST SMALLER VALUE OF T. 
LCDR 0,4 FO <= -X2/4 + 9/16 
SOR 0,6 FO <= -X3/2 - X2/4 + 9X/8 + 9/16 
STD 0,I~P1 WP1 <= WEIGHT FOR TABLE ENTRY CORRESPOND-

* ING TO CLOSEST LARGER VALUE OF T. 
ADR 6,2 F6 <= X3/2 - X/8 
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AD 4,=0 1 .5' f4 <= X2/4 - 1/16 
1'10 6,=X I 4055555555555555' F6 <= X3/6 - X/24 
LOR 0,4 fO <= X2/4 - 1/16 
SDR 0,6 FO <= -X3/6 + X2/4 + X/24 - 1/16 
ADR 6,4 f6 <= X3/6 + X2/4 - X/24 - 1/16 
STD 0,WM3 WM3 (= WEIGHT fOR SMALLEST VALUE 0f T 
STD 6,WP3 WP3 <= WEIGHT fOR LARGEST VALUE OF T 

:t: 

:t: NOW CALCULATE INTERPOLATED VALUES OF TL AND TM 
* (HAVE WEIGHTS FOR TABLES ENTRIES 1 & 4 IN FPR'S 0 & 6) 
* LOR 4,0 

LOR 2,6 
MD 0, 0 ( 1(1, 12.) 
1'10 2,24(10,12) 
1'10 4, 0 ( 1 1 , 12) 
~lD 6,24(1',12) 
ADR 0,2 
ADR 4,6 
LD 2,IJMl 
LOR 6,2 
1'10 2,8(10,12) 
!'iD 6,8(1',12) 
ADR 0,2 
ADR 4,6 
LD 2,I~Pl 
LOR 6,2 
~1D 2, 16( 10,12) 
1'10 6"6(,,,,2) 
ADR 0,2 
ADR 4,6 
!'iD 4,0(6,2) 
ADR 4,0 
L 10,CNVA 
STD 4,8(3,2) 
L ,,,VT!-lA 
LD 0,~JM3 
LD 6,WP3 

F4 <= WEIGHT 1 
F2 (= I-lEIGHT .4 
fO <= WEIGHT 1 :t: TL 1 
F2 <= WEIGHT 4 :t: TL 4 
F4 <= WEIGHT 1 :t: TM 1 
f6 (= WEIGHT 4 :t: TM 4 
FO <= Wl~TLl + W4*TL4 
F4 (= W1~TM1 + ~4*TM4 
f2 (= WEIGHT 2 
F6 <= WEIGHT 2 
F2 (= W2'''TL2 
f6 < = ~J2*H12 
FO (= Wl*TL1 + W4*TL4 + W2*TL2 
F4 <= Wl*TM1 + W4*TM4 + W2*TM2 
F2 <= I.JEIGHT 3 
F6 (= I.JEIGHT 3 
F2 (= 1.J3'l'TL3 
F6 (= W3i:TM3 
FO <= INTERPOLATED VALUE OF TL 
F4 <= INTERPOLATED VALUE OF TM 
(4 (= Hl*UH 1) 
F4 (= TL + TM~LN(1) 
Rl0 <= BASE ADDR CHINV TABLE 
OSIG(1) <= TL + TM*LN(1) 
R11 <= BASE VTH TABLE 
FO (= WEIGHT FOR SMALLEST VALUE OF T 
F6 (= WEIGHT FOR LARGEST VALUE OF T 

* HOW CALCULATE INTERPOLATED VALUES OF CH AND VT 
* (HAVE WEIGHTS FOR TABLES ENTRIES 1 & 4 IH FPR'S 0 & 6) 

LOR 4,0 
LOR 2,6 
MD 0, O( 10,12) 
MD 2,24(10,12) 
MD 4, 0 ( 1 I • 12) 
~1D 6,24(11,12) 
ADR 0,2 
ADR 4,6 
LD 2,1~~11 
LOR 6,2 
MO 2,8(10,12) 
MD 6,8(11,12) 
ADR 0,2 
ADR 4,6 
LO 2,WPl 
LOR 6,2 
MD 2. 16 ( 10, 12) 
~iD 6,16(11,12) 
ADR 0,2 
ADR 4,6 
LOR 2,0 
SDR 6,6 
MD 2,CE 
L 10,TLA 
MD 2.0(5,2) 
L 1 1, Tt'1A 
STD 6,TSI 

F4 (= l·lEIGHT 1 
F2 <= I-lEIGHT 4 
FO <= WEIGHT 1 * CH I 
F2 (= WEIGHT 4 * CH 4 
F4 (= WEIGHT I * VT I 
F6 <= WEIGHT 4 * VT 4 
fO <= W1*CHI + W4*CH4 
F4 <= W1~VT1 + W4*VT4 
f2 (= I.JEIGHT 2 
F6 <= WEIGHT 2 
F2 <= 1J2*CH2 
F6 (= 1~2*VT2 
FO <= W1*CH1 + W4*CH4 + W2*CH2 
F4 <= W1~VT1 + W4*VT4 + W2*VT2 
F2 <= I.JEl GHT 3 
F6 <= I-lEIGHT 3 
F2 <= IB't:CH3 
F6 <= IB""VT3 
FO <= INTERPOLATED VALUE OF CH 
F4 (= INTERPOLATED VALUE OF VT 
F2 <= CHT 
F6 <= 0.00 
F2 <= CHT*CE 
R10 <= BASE TL TABLE 
F2 (= N(1)*CHT*CE 
R 11 <= BASE TM TABLE 
TSI <= 0.00 

74 



MO 
CDR 
BL 
LO 
MDR 
MO 
LO 
OOR 
SDR 
MDR 
AD 
STD 

ARNO AR 
LOOP LH 

MVC 
S 

:1: 

LO 
8M 

* 
C 
BH 
SO 
SLA 

2,0(4,2) F2 (= J(l)~N(l)~CHT*CE = VO 
2,4 IF(VO.LT.VITH) 
ARNO GO TO ARNO 
6,CONAN F6 <= CONAN 
6,0 F6 (= CONAN*CHT 
6,0(5,2) F6 (= CONAN~N(l)*CHT 
0,=0'1.' FO (= 1.00 
4,2 F4 <= VITH/VD 
0,4 FO <= 1.DO-VITH/VD 
6,0 F6 <= CONAN*N(1)~CHT~(1.00-VITH/VO) 
6,8(3,2) F6 <= OSIG(1)+CONAN*N(1)*CHT*(1.DO-VITH/VD) 
6,8(3,2) OSIG(1)<=OSIG(1)+CONAN*N(I)*CHT~(1.00-VITH/VD) 
2,8 R2 <= AODR T(2) 
12,0(2) R12 (= HIGH ORDER 2 BYTES O~ T(I) 
FLOAT+1(6),2(2) FLOAT <= FRACTIONAL DISPLACEMENT 
12,TDISP REDUCE R12 BY TOISP. NOW I DOUBLE WORDS 

FxOM BASE OF INTERPOLATION TABLES 
4,FLOAT F4 (= FRACTION 0 LE FRAC LT 1 
BADT IF RESULT NEGATIVE - OUT OF RANGE 

GOTO BAOT 
12,TBNO IF R12 GREATER THAN TBNO 
SAOT GOTO BAOT 
4,=0'.5' F4 <= FRAC -.5 LE FRAC LT .5 
12,3 R12 <= R2~8 NOW BYTE DISPLACEMENT 

* FROM BASE OF INTERPOLATION TABLES 
* * NOW COMPUTE WEIGHTS FOR CUBIC INTERPOALTION OF 
* FUNCTIONS OF T 
* LOR 

MDR 
HOR 
SO 
LOR 
HDR 
M~R 
LCOR 
AOR 
STD 

LCOR 
SDR 
STD 

ADR 
AD 
~lD 
LDR 
SDR 
ADR 
STD 
STD 

2,4 
4,4 
4,4 
4,=D'1.125' 
6,4 
4,4 
6,2 
0,4 
0,6 
O,lml 

0,4 . 
0,6 
O,WP1 

F2 <= X 
F4 <= X**2 = X2 
F4 <= X2/2 
F 4 < = X 2/ 2 - 9/8 
F6 <= X2/2 - 9/8 
F4 (= X2/4 - 9/16 
F6 (= X3/2 - 9X/8 
FO <= -X2/4 + 9/16 
FO (= X3/2 - X2/4 - 9X/8 + 9/16 
WM1 <= WEIGHT FOR TABLE ENTRY CORRESPOND­
ING TO CLOSEST SMALLER VALUE OF T. 
FO (= -X2/4 + 9/16 
FO (= -X3/2 ~ X2/4 ~ 9X/8 + 9/16 
WP1 (= WEIGHT FOR TABLE ENTRY CORRESPOND­
ING TO CLOSEST LARGER VALUE OF T. 

6,2 F6 (= X3/2 - X/8 
4,=0'.5' F4 <= X2/4 - 1/16 
6,=X'4055555555555555' F6 (= X3/6 - X/24 
0,4 FO (= X2/4 - 1/16 
0,6 FO <= -X3/6 + X2/4 + X/24 - 1/16 
6,4 F6 (= X3/6 + X2/4 - X/24 - 1/16 
O,WM3 WM3 (= WEIGHT FOR SMALLEST VALUE OF T 
6,WP3 WP3 <= WEIGHT FOR LARGEST VALUE OF T 

* NOW CALCULATE INTERPOLATED VALUES OF TL AND TM * (HAVE WEIGHTS FOR TABLES ENTRIES 1 & 4 IN FPR'S 0 & 6) 
* LOR 4,0 f4 (= WEIGHT 1 

LOR 2,6 F2 <= I~EIGHT 4 
MD 0,0(10,12) FO (= I~EI GHT 1 * TL 1 
~1D 2,24(10,12) F2 <= I~EI GHT 4 * TL 4 
MD 4,0(11,12) F4 <= WEI GHT 1 * HI 1 
MD 6,24(11,12) F6 <= WEIGHT 4 * HI 4 
ADR 0,2 FO <= 141 :I:TL 1 + W4*TL4 
ADR 4,6 F4 <= l~ 1 i:TM1 + 1~4*TM4 
LD 2,WM1 F2 <= I~EI GHT 2 
LOR 6,2 F6 <= l·lEI GriT 2 
~1D 2,8(10,'2) F2 (= 142*TL2 
~lD 6,8('1,12'> F6 (= W2*H12 
ADR 0,2 FO <= WP:TL 1 + W4*TL4 + W2*TL2 

75 



.J @ 5117!7 II I 

* 

ADR 
LD 
LOR 
MO 
MD 
ADR 
AOR 
MO 
AOR 
L 
STO 
L 
AD 
MO 
AD 
STO 
MO 
AD 
STD 
LD 
OOR 
L 
STO 
STD 
BALR 
STD 
LO 
LO 

4,6 
2,WPl 
6,2 
2, 16( 10,12) 
6,16(11,12) 
0,2 
4,6 
4,0(6,2) 
0,4 
10,CNVA 
0,8(3,2) 
11,VTHA 
0,0(3,2) 
0,0(7,2) 
O,TSI 
O,TSI 
0, TEMP3 
0, TE~'P2 
O,JCON 
6,=0'1. ' 6,0 
15,=V(F35) 
6,F35C1 
6, f35A 
14, 15 
0,F35C2 
a,lm3 
6,WP3 

f4 <= W1*TM1 + W4*TM4 + W2*TMl 
F2. <= I~EI GHT 3 
F6 <= WEIGHT 3 
F2 < = W3*TL3 
F6 <= W3*TM3 
FO <= INTERPOLATED VALUE OF TL 
F4 <= INTERPOLATED VALUE OF TM 
F4 <= nr':Ul(I) 
FO <= TL + TM~LN(I) 
Rl0 <= BASE AD DR CHINV TABLE 
OSIG(I) <= TL + TM~LN(I) 
R1' <= BASE VTH TABLE 
FO <= OSIG(I)+OSIG(I-1) 
FO <= (OSIG(I)+OSIG(I-1»*SO(I) 
FO <= TSI + (OSIGCI)+QSIGCI-1»*SO(I) 
TSI <= TSI + (n~IG(I)+OSIG(I-l)~SD(l) 
Fa <= TSl*TEMIl3 
FO <= TEMP2 + TEMP3*TSI 
JCON <= TEMP2+TEMP3*TSI 
F6 <= 1.00 
F6 <= 1.DO/(TEMP2+TEMP3*TSI) 
R15 (= ENTRY ADDR F35 
F35C1 <= 1.00/(TEMP2+TEMP3*TSI) 
F35 ARGUMENT <= 1.DO/(TEMP2+TEMP3*TSI) 
Fa <= F3S(1.DO/(TEMP2+TEMP3*TSI») 
F35C2. <= F35(1.00/(TEMP2+TEMP3*TSI) 
Fa (= WEIGHT FOR SMALLEST VALUE OF T 
FG <= WEIGHT FOR LARGEST VALUE OF T 

* NOW CALCULATE INTERPOLATED VALUES OF CH AND VT 
* (HAVE WEIGHTS FOR TABLES ENTRIES 1 t 4 IN FPR'S 0 & 6) 

* LOR 4,0 
LDR 2,6 
no 0, OC iO, 12) 
MO 2, 2. 4 ( 1 0, 1 2 ) 
MO 4,OC1'.12) 
1'"10 6,24Cl1,12) 
AOR 0,2 
ADR -1,6 
LO 2,W"" 
LOR 6,2 
MO 2,8(10,12) 
~1O 6,8(1,/12) 
AOR 0,2 
AOR 4,6 
LO 2,I~P1 
LOR 6,2 
~1O 2,16(10,12) 
MO 6,16(11.12) 
AOR 0,2 
AOR 4,6 
1'"10 0,0(5,2) 
LOR 6,0 
STO Q,NcoNO 
~1O 6,0(7,2) 
MO O.CE 
~lD 6, CONAN 
STD O,NCON 
STD 6,CJA 
LO 2.TEMP1 
~1O 2,F35C2 
L 1 1 , T Mil 
STD 2,0(4,2) 
MOR 2.,0 
L 10,TL.~ 
COR 2.4 
BL ARNOl 

F4 (= I~EIGHT 1 
F2. <= WEIGHT 4 
FO (= I~EIGHT 1 :t: CH 1 
F2. <= WEIGHT 4 :t: CH 4 
F4 (= WEIGHT 1 * VT 1 
FG (= WEIGHT 4 * VT 4 
FO <= Wl~CHl + W4*CH4 
F4 <= Wl~VTl + W4*VT4 
F2. <= I,JEIGHT 2 
F G (= I~ E I G H T 2. 
F2 <= W2'I'CH2 
F6 <= I·J2'i-VT2. 
Fa (= Nl~CH1 + W4~CH4 + W2~CH2 
F4 <= Wl~VT1 + W4~VT4 + W2.*VT2 
F 2 < = I,J EI G H T 3 
F6 <= I~ErGHT 3 
F 2. (= lB.: C H 3 
F6 <= 1~3iVT3 
FO <= INTERPOLATED VALUE OF CH 
F4 <= INTERPOLATED VALUE OF VT 
FO <= N(I ):t:CHT 
F6 <= N(r)~CHT = NeONO 
NeONO <= N(I)*Chf 
F6 <= NCOND~SD(I) 
fa <= N(I)*CHT*CE 
F6 <= CONAN~NCONO%SO(I) 
NeON (= N(I)*CHT*CE 
CJA <= CONAN~NCONO*SO(I) 
F2 < = TUIP 1 
F2 (= Tf~Pl*F35C2 = J 
Rl1 <= BASE TM TABLE 
J(I) <= TEnpl*F35C2 
F2 <= JT*NCON = VD 
Rl0 <= BASE TL TABLE 
IreVO.LT.VITH) 
GOTO ARNOl 
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* THE FOLLOWING CALCULATES THE CURRENT AND RESISTIVITY IN THE 
* CASE THE DRIFT VELOCITY EXCEEDS 13 TIMES THE ION THERrlAL 
* VELOCITY - - IN THIS CASE AT LEAST PART OF THE SLAB 
* IS CHARACTERIZED BY ANOMALOUS RESISTIVITY 
* 

NEWT 

* 

OUT 

LO 
MO 
LOR 
STD 
AD 
STO 
OOR 
LO 
MO 
MDR 
STD 
STO 
LO 
MO 
MO 
MOR 
AOR 
SOR 
OOR 
AD 

MOR 
STD 
L 
LO 
DDR 
L 
LO 
SDR 
STO 
MO 
STO 
BALR 
LO 
LO 
~IDR 
LO 
~IOR 
MO 
AOR 
AOR 
ODR 
MOR 

LOR 
LPDR 
SO 
MO 
LPOR 
CDR 

STO 

BNL 
BCT 
LO 
OOR 
L 
LO 
SDR 
MO 
MO 

LOR 

2,CJA 
2, TEr'IP3 
6,4 
2, CJA 
2,JCON 
2,JCON 
6,0 
2,CJA 
O,CONANl 
2,6 
6,JA 
2, CJA 
2,Oe4,2) 
0,0(7,2) 
0,F35Cl 
0,2 
0,6 
2,6 
2,0 
2,=0 11. 1. 

2,6 
2,Oe4,2) 
11,COUNT 
6,CJA 
6,2 
15,=VeF35) 
O,JCON 
0,6 
0,F35A 
6,TCO:-l 
6,TC1 
14, 15 
4,TC1 
6,F35A 
0.6 . 
2,Oe4,2) 
0,2 
6, TEMPl 
6,4 
0,4 
6,0 
2,6 

4,2 
0,2 
4,0(4,2) 
O,ERR 
4,4 
0,4 

2,0(4,2) 

OUT 
11, NEWT 
4,JA 
4,2 
1 I . TMA 
2,=0 1 1. 1 

2,4 
2,NCOtW 
2,CONAN 

4,2 

F2 <= CJA 
F2 <= TEMP3*CJA 
F6 <= VITH 
CJA <= TEMP3*CJA 
F2 <= JCON + TEMP3*CJA 
JCON <= JCON + TEMP3*CJA 
F6 <= (12./13.)*VITH/NCON = JA 
F2 <= CJA 
FO <= NCON*CONAN1 = NCONl 
F2 <= CJA*JA 
JA <= eI2./13.)*VITH/NCON 
CJA < = CJA*JA 
F2 <= JeI) 
FO <= NCON1*SD(I) 
FO <= NCON1*SOeI)*F35Cl 
FO <= NCON1*SDeI)*F35Cl*J(I) 
FO <= NCON*SOCI)*F35Cl*Jet)+JA 
F2 <= Je I)-JA 

F2 <= eJCI)-JA)/(NCON1*SOeI)*F35Cl*JCI)+JA) 
F2 <= 1.00 + eJ(I)-JA) 
/(NCON1*SDCI)*F35Cl*JeI)+JA) = MULCON 
F2 <= JA*~lULCON 
JeI) <= JA~MULCON 
Rl1 <= COUNTeMAX # NEWTON1S METHOD STEPS) 
F6 <= CJA 
F6 <= CJA/J(I) = CJAT 
R15 <= ENTRY ADDRESS F35 
FO <= JCON 
FO <= JCON - CJAT = JCl 
F35A <= JCl 
F6 <= TCON*CJAT = TCI 
TCl <~ TCON*CJAT 
FO <= F35eJC1) 
F4 <= TCI 
F6 <= JCl 
FO <= F3SCJC1)*JCl 
F2 <= JeI) 
FO <= JeI)*JC1*F35(JC1) 
F6 <= TEMP1*JC1 
F6 <= TCI + TEMP1*JCl 
FO <= TC1+JeI)*JC1*F3S(JC1) 

F6 (= (TC1+TEMP1*JC1)/eTC1+JeI)*JC1*F35(JC1» 
F2 <= JCI)*CTC1+TEMP1*JC1)/ 
CTC1+JCI)*JC1*F35(JC1» 
F4 <= NEW ESTIMATE OF J(l) 
FO <= DABS(NEW ESTIMATE OF J(I» 
F4 <= NEW ESTIMATE - OLD ESTIMATE 
FO <= ERR*DABSCNEW ESTIMATE) 
F4 <= OABSCNEW ESTIMATE - OLD ESTIMATE) 
IFCOABSeNEW ESTIMATE - OLD ESTIMATE) 
/OASSeNEW ESTIMATE).LE.ERR) 
JeI) (= JeI)*(TC1+TEMP1*JC1)/ 
CTC1+JeI)*JC1*F3SCJC1» 
GOTO OUT 

F4 <= JA 
F4 <= JA/J(I) 
Rl1 <= BASE ADDR TM ARRAY 
F2 <= 1.00 
F2 <= 1.00 - VITH/VO 
F2 <= NCONO*(l.DO-VITH/eJ(I)*NCON» 
F2 <= CONAN*NCONo*el.Do-VITH/eJeI)*NCON» 

= TSIG 
F4 (= TSIG 
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AD 2,8(3,2) 
MO 4,0(7,2) 
AO 4,TSI 
STO 2,8(3,2) 
STD 4, TSI 

ARNDl BXlE 2,8,lOOP 
l 13,4(13) 
lM 14,12,12(13) 
SR 15, 15 
MVI 12(13),X ' Fr ' 
BR 14 

BADT l 13,4(13) 
LM 14,12, 12( 13) 
lA 15,4 
MVI 12(13),X ' FF ' 
BR 14 
END 

F2 (= OSIG(I) + TSIG 
F4 (= TSIG;l:SD(I) 
F4 (= TSI + TSIG*SOCI) 
OSIG(1) (= OSIG<I) y TSIG 
TSI <= TSI + TSIG*SD(I) 
I <= 1+1 AND GOTO LOu? IF 
R13 <= ADDR OLD SAVE AREA 
GPR'S RESTORED 
R15 (= 0 (RETURN CODE) 
INDICATE CONTROL RETURNED 
RETURN 
R13 <= AD DR OLD SAVE AREA 
GPR'S RESTORED 
R15 <= 4 ( RETURN CODE> 
INDICATE CONTROL RETURNED 
RETURN 

'D.l«GJN'xD PAGE IS 
D.E ;POOR QUALITYi 
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f35 

f35 CSECT 
* * REAL fUNCTION F3S*8(X) 
* f35 RETURNS THE 3./5. POWER OF THE ARGUMENT If 
* THE ARGUMENT IS POSITIVE AND THE NEGATIVE Of THE 3./5. 
* POWER Of THE ABSOLUTE VALUE Of THE ARGUMENT IF THE ARGUMENT 
* IS NEGATIVE. THE COMMENTS REfER TO THE POSITIVE CASE. 
* THE ALGORITHM IS: 
* * CUBE X AND CALL THE RESULT Y, THEN WRITE Y AS 
* * Y = (16**(5*N» * (16**M) * (Z) 

* * WHERE M IS BETWEEN -4 AND +4 AND Z IS BETWEEN 1/16 AND 1. 
* THEN Z**(1/5) IS APPROXIMATED BY A MINI-MAX LINEAR fIT 
* fROM TWO TABLES WITH A MAXIMUM RELATIVE ERROR IN THE 
* APPROXIMATION Of 5.1E-4. THEN THE INITIAL ESTIMATE OF 
* * T**1/5 = (16**(M/S» * (Z**1/S) 

* IS REfINED BY TWO APPLICATIONS OF NEWTON'S METHOD. 
* X**3/S IS THEN CALCULATED FROM,(16**N) * (T**1/S). 

AREA 
FIRST 

NONNEG 

* 

HOEXTD 
*' 

USING 
B 
DC 
DC 
OS 
STM 
L 
LD 
LR 
STO 
LA 
DROP 
USING 
LTOR 
ST 
BHM 
NI 
o 
ST 
SR 
IC 
~lV I 
LD 
L 
SR 
~10R 
fl 
LA 
~1D 
SR 
LA 
STD 
I C 

AR 
SR 
SR 
LA 
BNM 
L 
o 

*,15 TELL ASSEMBLER NEXT INST ADOR IN R1S 
FIRST BRAHCH AROUND NAME AND SAVE A~EA 
X'03' LENGTH Of NAME 
CL3'f3S' NAME 
18f SAVE AREA 
14,12,12(13) SAVE CALLING ROUTINE'S GPR'S 
1,0(1) Rl <= AD DR ARGUMENT (X) 
4,0(1) F4 <= X 
9,13 R9 (= ADDR OLD SAVE AREA 
4,ARG ARG <= X 
13,AREA R13 <= ADDR NEW SAVE AREA 
lS R15 NO LONGER BASE REG 
AREA,13 R13 NEW BASE REG 
4,4' CHECK SIGN Of X 
9,4(13) LINK SAVE AREAS 
NONNEG If SIGN POSITIVE - NO FIXES OR FLAGS 
ARG,X'7F' TURN Off SIGN BIT Of ARG <= Ixl 
9,=X'80000000' SIGN BIT R9 ON - FLAG 
13,8(9) LINK SAVE AREAS 
3,3 ,R3 <= 0 
3,ARG R3 <= EXCESS 64 EXPONENET Of ARG 
ARG,X'40' ARG (= FRACTION OF ARG 
4,ARG F4 <= FRACTION OF ARG 
4,=io '64' R4 (= HEX 40 
3,4 R3 (= EXPONENT OF ARG 
4,4 F4 (= FRACTION OF ARG **2 
2,=F'3' R3 <= EXPONENT OF ARG**3 
6,TABl-16 R6 <= ADDR TABLE 1 16 
4,ARG f4 <= FRACTION OF ARG **3 
5,S RS<=O 
7,TAB2-16 R7 <= ADDR TABLE 2 16 
4,ARG ARG <= FRACTION ARG **3 
5,ARG R5 <= EXCESS 64 EXPONENT OF 

3,5 
2,2 
3,4 
8, TAB3+ 1 6 
NOEXTD 
2,=f'-1' 
2,=F'5' 

FRACTION Of ARG ~*3 
R3 <= EXCESS 64 EXPONENT Of Ixl**3 
R2 <= 0 
R3 <= EXPONENT OF Ixl**3 
R8 <= ADDR TABLE 3 + 16 
If R3 ) 0 NO SIGN EXTEND 
SIGN EXTEND FOP- DIVIDE 
R2 <= EXPONENT OF T 
R3 <= N (SEE COMMWTS) 
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A 3,=f I 65 1 R3 <= EXCESS 64 EXPONENT OF 16**N 
AR 4,2 R4 <= EXCESS 64 EXPONENT Of T 
STC 4,ARG ARG <= T 
LD 4,ARG F4 <= T 
SLL 2,2 R2 <= DISPLACEMENT fOR TABLE 3 
SDR 0,0 fO <= 0.00 
L S,ARG R5 <= 1ST 4 BYTES OF T 
IC 4,ARG+l LOW ORDER BYTE R4 <= fIRST BYTE Of * fRACTION Of T 
SLL 5,8 HIGH ORDER 3 BYTES Of R5 <= BYTES 

* 1-3 Of fRACTION Of T 
N 4,=X 1 000000fC 1 R4 <= DISPLACE FOR TABLES 1 e 2 
IC 5,ARG+4 R5 <= BYTES 1-4 OF fRACTION OF T 
LE 0,0(4,7) FO <= TABLE 2 ENTRY - SLOPE 
SRL 5,2 LOW 3 BYTES OF R3 <= FRACTION OF . * FRACTIONAL DISPLACEMENT FOR MINI-MAX LINE 
ST 5.fRAC FRAC <= FRACTIONAL DISPLACEMENT FRACTION 
MVI fRAC,X I 40 1 FRAC <= FRACTIONAL DISPLACEMENT 
ME O.fRAC FO <= FRAC*SLOPE 
AE 0,0(4,6) FO <= MINI-MAX ESTIMATE OF Z**1/5 
LTR 9,9 CHECK IF X NEGATIVE 
ME 0,0(2,S) FO <= MINI-MAX EST OF T**l/S 
BNM NOSIGN IF X POSITIVE, NO FIXES 
o 3,=F I 12S 1 SIGN OF EXPONENT OF 16**N MADE MINUS 

NOSIGN LOR 2,0 F2 <= MINI-MAX EST OF T**1/5 = EST 1 
:$: 

* BEGIN TWO APPLICATIONS OF NEWTON'S METHOD * WITH SOME GPR FIX-UPS IN.TERLEAVED. 
* 

FRAC 
ARG 
~lUL 
ONES 

TAB' 

MDR 
STC 
t'lOR 
L 
LOR 
MDR 
L 
SDR 
DER 
L 
ME 
L 
SDR 
LDR 
~1DR 
L 
t'lOR 
L 
LOR 
MDR 
L 
SDR 
L 
DDR 
SR 
no 
MIJI 
SOR 
L 
MD 
L 
BR 
CNOP 
DC 
DC 
DC 
DC 
LTORG 
DC 
DC 

2,2 
3.MUL 
2,2 
',24(9) 
6,L 
2,0 
2,28(9) 
2,4 
2,G 
(,32(9) 
2,ONES 
4,36(9) 
0,2 
2,0 
2,2 
5,40(9) 
2,2 
G,4~(9) 
6,2 
2,0 
7,48(9) 
2,4 
8,52(9) 
2,6 
1 S, 15 
L,ONES 
12(9)'X'FF 1 

0,2 
9,56(9) 
0, ~lUL 
12,4(13) 
14 
4.8 
F'O' 

F2 <= EST1 u 2 
MUL <= SIGN(X) * 16**N 
F2 <= EST 1 ** 4 
Rl RESTORED 
F6 <= EST 1 ** 4 
F2 <= EST 1 ** 5 
R2 RESTORED 
F2 <= EST 1 ** 5 - T 
F2 <= (EST 1 ** S - T)/EST ** 4 
R3 RESTORED 
F2 <= (EST , ** 5 - T)/5~EST 1 ** 4 
R4 RESTORED 
F 0 < = EST 2. 
F2 <= EST 2. 
F2 <= EST 2. ** 2 
R5 RESTORED 
F2. <= EST 2. ** 4 
R6 RESTORED 
FG <= EST 2. ** 4 
F2 <= EST 2. ** 5 
R7 RESTORED 
F2 <= EST 2. ** 5 - T 
R8 RESTORED 
F2 <= (EST 2. ** S - T)/EST 2 ** 4 
R15 (= 0 (RETURN CODE) 
F2 (= (EST L ** 5 - T)/5*EST 2. ** 4 
IHOICATE CONTROL RETURNED 
Fa <= EST 3 (FINAL ESTIMATE OF T**1/5) 
R9 RESTORED 
Fa <= ESTIMATE OF Ixl**3/5 
R13 RESTORED 
RETURN 
FORCE CORRECT ALIGNMENT 

0' O. ' 
X'0010000000000000' 
X'4033333333333333 ' 

X'40931BB3' 
Xl 4099CBC3' 
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DC X'409F7DF5' 
DC X'40A479CE' 
DC X'40A8EBB4' 
DC X '40ACF 139' 
DC X'40B09F20' 
DC X'40B40494' 
DC X' 405 12005' 
DC X'40BA214F' 
DC X'40BCE873' 
DC X'40BF8816' 
DC X'40C204D6' 
DC X'40C46286' 
DC X'40C6A45E' 
DC X'40C8CD17' 
DC X'40CADF05' 
DC X'40CCDC2C' 
DC X'40CEC64A' 
DC X'40D09EE7' 
DC X'40D2675C' 
DC X'40D4200A' 
DC X'40D5CC70 1 

DC X'40D76B12' 
DC X'40DSFD98' 
DC X'40DA84C8' 
DC X'40DC0153' 
DC X'40DD730A' 
DC X'40DEOCF1, 
DC X'40E03010' 
DC X'40E1940A' 
DC X'40E2E499' 
DC X' 40E42CC l' 
DC X'40E56DB3' 
DC X'40E6A7C8' 
DC X' 40E70B5 1 ' 
DC X'40E9089C' 
DC X'40EA2.FFO' 
DC X'40EBS1SF' 
DC X'40EC60B7' 
DC X'40ED84A1' 
DC X'40EE9685' 
DC X'4CiEFA397' 
DC X'40FOAC04' 
DC X'4CF1AFFB' 
DC X'40F2AFA6' 
DC X'40F3AB2D' 
DC X'40F4A2B6' 
DC X'40F59664' 
DC X'40F686SB' 
DC X' 40F772B9' 
DC X'40F8SB90' 
DC X'40F94124' 
DC X'40FA236A' 
DC X'40FB0288' 
DC X'40FBDE98' 
DC X'40FCB7Bl' 
DC X'40F080EA' 
DC X'40FE6159' 
DC X'40FF3211' 

TAB2 DC X'3F6BSESO' 
DC X'3FSB5AA7' 
DC X'3F4FE171' 
DC X'3F4736EF' 
DC X'3F40G9F9' 
DC X' 3F3AEB91' 
DC X'3F366146' 
DC X'3F328EEF' 
DC X'3F2F4AES' 
DC X'3F2C77S8' 
DC X'3F29FE5F' 
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TAB3 

DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 

. DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
END 

X'3F27CF79' 
X'3F25DDFD' 
X'3F242.004' 
X' 3F228DB5' 
X'3F2120C2' 
X'3F1FD408' 
X' 3F1 EA350 ' 
X'3F1D8B17' 
X' 3F1 CSS70' 
X' 3F1 B98DF' 
X '3F1ABA4B' 
X'3F19EAE6' 
X'3F192921 ' 
X'3F1S73A6' 
X' 3F 17C948' 
X'3Fl7Z902' 
X'3F1691EC' 
X' 3F16033B' 
X'3F157C3C' 
X, 3F14FC40' 
X'3F1482EO' 
X'3FH0F75' 
X'3F13A19S' 
X'3F1338El' 
X'3F1204F4' 
X'3F12757A' 
X'3F121A27' 
X'3FllC2B5' 
X'3F116EE4' 
X'3F111E78' 
X'3Fl0D130' 
X'3F108701' 
X'3F103F97' 
X'3EFFAD4E' 
X, 3EFB894 1 ' 
X'3EF78S10' 
X'3EF3BOAO' 
X'3EEFF820' 
X'3EEC5FC9' 
X'3EE8E50A' 
X '3E"E58806' 
X'3EE24740' 
X'3EOF1FE8' 
X'3EOC1167' 
X'3E091A9C' 
X'3ED63A6E' 
X'3ED36FD6' 
X'3ED089DC' 
X'3ECE1796' 
X'40180B8C' 
X'403080CO' 
X' 405<17201 ' 
X'4093088C' 
X'41100000' 
X'411BDBSC' 
X'413080CO' 
X'41S472Dl' 
X'4193088C' 
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TESTP 
:t: 
:t: 
:t: 
:t: 
:t: 
:t: 
:t: 
:t: 
:t: 
:t: 

* :t: 

TESTP 

CSECT 

ROUGHLY EQUIVALENT TO THE FORTRAN CODE BELOW EXCEPT THE 
THE FUNCTION CHINV PASSED IN THE ARGUMENT LIST 
IS IMPLEMENTED IN LINE IN THE ASSEMSLY LANGUAGE VERSION. 
A CALL TO THE ASSEMBLY LANGUAGE VERSION SHOULD 
PASS A SEMI-LOGARITHMIC INTERPOLATION TABLE CCHINV(884» 
RATHER THAN A FUNCTION NAME. ALSO THE PARAMETER ADDRESSES 
ARE OBTAINED FROM LOCAL STORAGE IN THE CALL TO TESTP 
NOT FROM THE PARAMETER LIST. THE PARAMETER ADDRESSES 
ARE INITIALIZED BY THE ENTRY POINT TESTPI IN THE ASSEMBLY 
LANGUAGE VERSION. 

:t: NOTE THAT THIS MEANS TESTPI MUST BE CALLED BEFORE 
:t: THE FIRST CALL TO TESTP OR UNPREDICTABLE ABENDS 
:t: WILL RESULT. 
* :t: TESTPCT,TE,J,OSIG,N,TUP,DELT,FRAC,NTAB,CHINV) 
:t: IMPLICIT REAL*8 CA-H,O-Z) 
:t: REAL*8 T(NTAB),TECNTAB),JCNTAB),OSIG(NTAB),NCNTAB),TUPCNTAB) 
:t: REAL*8 C/2.997925Dl0/FRAC,FRACI,DELT,DELTS 
:t: GOTO 10 . 
:t: ENTRY TESTPICT,TE,J,OSIG,N,TUP,DELT,FRAC,NTAB,CHINV) 
* FRACI=2.DO/FRAC 
* RETURN 
:t: 10 DELTS=DELT*FRACI 
:t: DO 20 I=1,NTAB 
:t: TUP(I)=C:t:JCI)*JCI)*OSIG(I)*N(I) 
:t: IF(DELTS*TUP(I).LE.TECI»GOTO 20 
:t: DELTS=TE(I)/TUPCI) 
:t: 20 CONT I NUE 
:t: DELT=FRAC*D£LTS 
:t: DO 20 I=1.NTAB 
:t: TECI)=TECI)+TUP(I)*DELT * 20 TCI)=CHINV(TECI» 
* RETURN 
* END 

rESTPI 

AREA 
TDISP 
TBND 
REGS 

C 
TION 
FRAC 
FRACI 
DELT 
WM1 
WP1 
FLOAT 
:t: 
:t: 

* IFIRST 

USING 
B 
DC 
DC 
ENTRY 
USING 
B 
DC 
DC 
OS 
DC 
DC 
OS 
CHOP 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 

:t:, 15 
TFIRST BRANCH AROUND NAME, SAVE AREA ETC. 
X' 05' 
CL5' TESTP' 
TESTPI 
:t:, 15 
IFIRST BRANCH AROUND NAME, SAVE AREA ETC. 
X'06' 
CL7' TESTPI ' 
18F SAVE AREA 
X'00004410' 
>:'00000230' 
lOF REGISTER STORAGE 
0.8 FORCE DOUBLE WORD ALIGNMENT 
D'2.997925E10' 
X'4519AEF8FF9F9C62 1 

o • O. 1 

0' O. • 
D' O. • 
0' O. 1 

0' O. ' 
X'4000000000000000' 

FIRST ENTRY POINT 

STM 14,12,12(13) 
LR 2,13 

SAVE CALLING ROUTINE'S GPR'S 
R2 {= ADDR OLD SAVE AREA 
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TF I RST 

LoOPt 

ARND 

LOOP2 

LA 
DROP 
USING 
ST 
ST 
LM 
lD 
L 
lD 
SLA 
STD 
SR 
OOR 
SR 
STO 
SR 
SR 
SR 
LA 
SR 
AR 
STM 
L 
lM 
SR 
MV I . 
BR 
DROP 
USING 
STM 
LR 
LA 
DROP 
USING 
ST 
ST 
LN 
LD 
~1O 
LD 
MDR 
NO 
MD 
MD 
STD 
~lDR 
CD 
BNH 
LD 
DO 
BXLE 
MD 
L 
STD 
LD 
~1O 
An 
~ro 
l.H 
i'WC 
~. 
~, 

LO 
BM 

(; 

BH 
SO 
SLA 

13,AREA 
1S 
AREA,13 
2,4(13) 
13,8(2) 
3,12,0(1) 
0,0(10) 
11,0(11) 
2, =0 '2. ' 
1"3 
O,FRAC 
3,4 
2,0 
5,4 
2, FRA,CI . 
6,4 
),4 
8.4 
10,8 
1" 1 0 
'1,4 
3,12, REG.S 
13.4(13) 
14,12, lZ( 13) 
15, '5 
12(13),X'ff' 
14 
13 
TESTP,1S 
14,12,12.( 13) 
2, 13 
13,AREA 
15 
AREA,13 
2,4(13) 
13,8(2) 

R13 <= ADOR NEW SAVE AREA 
R1S NO LONGER BASE REG 
R13 NEW BASE REGISTER 
LINK SAVE AREAS 

R3-R12 <= AODR'S ARGS 
fO <= FRAC 
R1'<=NTAB 
F2 <= 2.00 
R 1 1 < = NT AB*8 
FRAC(LOCAL) <= FRAC 
R3 <= BASE T - BASE TE 
F2 <= Z.OO/FRAC 
R5 <= BASE J - BASE TE 
FRACI <= 2.DO/fRAC 
R6 <= BASE OSIG - BASE TE 
R7 <= BASE 1'1 - BASE TE 
R8 <= BASE TUP - BASE TE 
R10 <= 8 (INCREMENT) 
R 11 <= g:t:OHAB-1) 
Rl1 <= BASE TE + 8*CNTAB-l) 
REGS <= R3-R12 
R13 <= AooR OLD SAVE AREA 
GPR'S RESTORED 
R1S <= 0 (RETURN CODE) 
INDICATE CONTROL RETURNED 
RETURN 

SAVE CALLING ROUTINE'S GPR'S 
RZ <= ADDR OLD SAVE AREA 
R13 <= ADDR NEW SAVE AREA 
R1S NO LONGER BASE REG 
R13 NEW BASE REGISTER 
LINK SAVE AREAS 

3.1Z,REGS SETUP GPRIS 
6,0(9) F6 <= DELT 
6,FRACI F6 <= OELT*FRACI = DElTS 
0,0(5,-0 FO <= J(n 
0,0 Fa <= J(I)*J(I) 
0, C F 0 < = C *J ( I ) :/: J ( I ) 
0,0(6.4) FO <= C*J(I)*J(I)*OSIG(I) 

COMPARAND 

0.0(7.4) FO <= C*J(I)*J(I)*OSIG(I)*N(I) 
0.0(8.~) TUP(I) <= C*J(I)*J(I)*OSIGCI)*N(I) 
0,6 FO <= TUP(I)~DELTS 
0,0(4) IFCOELTS*TUP(I).LE.TECl» 
ARNO GOTO ARND 
6,0(4) F6 <= TE(I) 
6,0(8,4) F6 <= TE(I)/TUP(I) = DELTS 
4,10.LOOP1 1<= I+1 f. GOTO LOOP1 IF NOT DONE 
6,fRAC F6 <= DElTS*FRAC = DELT 
4.REGS+4 R4 <= BASE TE 
6.G~9) DELT <= DELTS*FRAC 
0,0(8,4) FO <= TUP(I) 
0,0(9) FO <= TUP(I)*DELT 
0,0(4) FO <= TE(!) + TUP(I)*DELT 
0,0(4) TE(I) <c TE(I) + TUPCI)*DELT 
2,0(4) R2 <= HIGH ORDER BYTES OF TECI) 
fLOAT+l(6),2(4) FLOAT <= FRACTIONAL UISPLACEMENT 
Z,TDISP REDUCE R2 BY TDrsp NOW # DOUBLE WORDS 

4,FlOAT 
LOIH 

2,TBNO 
HI TE 
4, =0 1.5' 
2.3 

fROM BASE OF INTERPOLATION TABLES 
F4 <= FRACTION 0 LE FRAC LT 1 
IF RESULT NEGATIVE - OUT OF RANGE 
GOTO LOIH 
COMPARE R2 TO TBND IF GREATER 
OUT OF RANGE - GOTO HITE 
F4 <= X = fRAC - .5 -.5 LE X LE .5 
R2 <= RZ*8 NOW BYTE DISPLACEMENT 
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* * 
fROM BASE Of INTERPOLATION TABLE. 

* NOW COMPU~EWEIGHTS fOR CUBIC INTERPOALTION Of 
* fUNCTIONS OF T 
* 

* 

* 

L 0 t.JT 

HITE 

ARN01 

LOR 
MOR 
HOR 
SO 
lOR 
HDR 
MDR 
lCOR 
AOR 
STO 

lCDR 
SDR 
STO 

ADR 
AD 
~1D 
lOR 
SOR 
AOR 
MD 
~1D 
lD 
AOR 
lD 
~1D 
MD 
ADR 
ADR 
STO 
BXlE 
B 
STO 
BXlE 
B 
SD 
HOR 
STO 
BXlE 
l 
lM 
SR 
MVI 
BR 
END 

2,4 
4,4 
4,4 
4, =0 ' 1. 12;5' 
6,4 
4,4 
6,2 
0,4 
0,6 
O,WMl 

0,4 
0,6 
0, l~P 1 

F2 <= X 
f4 <= X**2 = X2 
F4 <= Xl/2 
F4 <= X2/2 - 9/8 
F6 <= X2/2 - 9/8 
F4 <= X2/4 - 9/16 
F6 <= X3/2 - 9X/8 
fO <= -X2/4 + 9/16 
FO {= X3/2 - X274 ~ 9X/8 + 9/16 
WM1 <= WEIGHT FOR TABLE ENTRY CORRESPOND­
ING TO CLOSEST SMAllER VALUE OF T. 
FO <= -X2/4 + 9/1& 
FO <= -X3/2 - X2/4 + 9X/8 + 9/16 
WP1 <= WEIGHT FOR TABLE ENTRY CORRESPOND­
ING TO CLOSEST LARGER VALL'E OF T. 

6,2 f6 (= X3/2 - X/8 
4,=0'.5' F4 <= X2/4 - 1/16 
6,=X'4055555555555555' F6 <= X3/6 - X/24 
0,4 fa <= Xl/4 - 1/16 . 
0.6 fO <= -X3/6 + X2/4 + X/24 - 1/16 
6,4 F6 <= X3/6 + X2/4 - X/24 - 1/16 
0,0(12.2) fa <= WEIGHT1 * CHNV1 
6,24(12,2) f6 <= WEIGHT4 * CHNV4 
2,WM1 F2 <= WWIGHT2 
0,6 Fa <= W1*CHNV1+W4*CHNV4 
4,WP1 F4 <= WEIGHT3 
2,8(12,2) F2 <= W2*CHNV2 
4,16(12,2) f4 <= W3:t:CHNV3 
0,2 fa <= W1*CHNV1+W2*CHNV2+W4*CHNV4 
0,4 fa <= INTERPOLATED VALUE Of CHINV(TE(I» 
0,0(3,4) T(l) (=CHINVCTECI» 
4,10.l00P2 1<=1+1 E;. GO TO LOOP2 IF NOT DONE 
ARND1 
0,0(3.4) 
4,10,lOOP2 
ARNOl 
O,TION 
0,0 
0,0(3,4)-
4,1o..l.:00P2 
13,4(13) 
14,12, 12C 13) 
15, 15 
12(13),X'FF' 
14 

TCI) (= TECI) (FOR T < 4096 K) 
I <= 1+1 AND GOTO LOOP2 If NOT DoNE 
GOTO ARND1 
fa <= TECI) - TION 
FO <= (TE(I)-TION)/2.DO 
YeI) <= (TECI)-TION)/2.00 
I <= 1+1 AND GOTO lOOP2 IF NOT DONE 
R13 <= ADDR OLD SAVE AREA 
GPR'S RESTORED 
R15 <= 0 CRETURN CODE) 
INDICATE CONTROL RETURNED 
RETURN 
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CSECT 

DRTGIN:m PAGE IS 
PE POOR QUALITY: 

TOUT 

ROUGHLY EQUIVALENT TO THE THREE FORTRAN SUBROUTINES BELOW. 
NOUT OPENS LOGICAL UNIT 9 (FT09F001) AND DOES THE OUTPUT 
OF THE SUBROUTINE HOUT. THE PARAMETER NTAB IS PASSED 
BY ENTRY POINT NOUT AND THE NTAB IN THE CALLING SEQUENCE 
TO TOUT IS IGNORED BY THE ASSEMBLY LANGUAGE VERSION OF 
THESE ROUTINES. FORTRAN CLOSES DATA SETS IT KNOWS ABOUT 
BUT FORTRAN WON'T KNOW ABOUT THIS DATA SET SO CTOUT MUST 
BE CALLED BEfORE THE STOP STATEMENT IN THE MAIN ROUTINE. 
THE FORTRAN CTOUT DOES THE SAME THING - I.E. IT CAUSES A 
CLOSE TO BE ISSUED FOR THE DATA SET REFERENCED BY THE 
DDNAME FT09F001. USES QSAM UNDER OS/VS2. 

****************************a:*********************************** 
*****************~***** NOTE *********************************** 
****************************~*********************************** 
**** **** 
**** ~OUT MUST BE CALLED BEfORE TOUT If TOUT IS TO **** 
**** WORK SINCE NOUT SETS UP AN AREA WITH THE **** 
**** REGISTERS THAT TOUT USES - THIS MAKES SENSE **** 
*'** IN THIS APPLICATION (NOUT IS ALWAYS CALLED **** 
**** FIRST) BUT MUST BE CHANGED IF NOUT IS NOT TO BE **** 
**** CALLED BEFORE TOUT **** 
**** **** 
************************************************~*************** 
*****************************************************:+::1::1.******** 
* * * 
* 
* 
* *9001 
* * 
* * * 
* * * * *9001 
* * 
* * * 
* * * * * * 

NOUT 
* 

SUBROUTINE NOUTCEFLUX,PSIO,FRAC,TIMMAX,NTAB,H,S) 
IMPLICIT REAL*S (A-H,O-Z) 
REAL*S NCNTAB),S(NTAB) 
fOR~lAT( 10AS) 
WRITE(9.9001)EFLUX,PSIO,FRAC,TIMMAX,NTAB 
I~RlTE C 9, 0001)N 
lJR IT£( 9 .• 9001) S 
RETURN 
END 

SUBROUTINE TOUTCTIM,T,J,DELT,IITER,NTAB) 
IMPLICIT REAL*8 (A-H,O-Z) 
REAL*S TCNTAB),J(NTAB) 
FORMAT( 10AS) 
WRITEC9,9001)TIM,DELT,IITER 
WR I TE (9,9001)T 
I~RITE(9,9001)J 
RETURN 
END 

SUBROUTINE CTOUT 
END fILE 9 
RETURN 
END 

lISING *,15 
6 lJFIRST 

DC 
DC 
ENTRY 
USING 
B 

X' 04 1 

CL51TOUT I 

NOUT 
* J 15 
OFIRST 

BRANCH AROllND NAME, VARIABLES, SAVE AREA 
AND OTHER ENTRY POINTS 
LENGTH OF NM1E 
NM1E 

BRANCH AROUND NAME, VARIABLES, SAVE AREA 
AND OTHER ENTRY POINT 
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CTOUT 

AREA 
BUF 
BLNCRD 
TEN 
L~10V3 
L~lOV4 
SREG 

* :I: 
:I: 

CFIRST 

DC 
DC 
USING 
ENTRY 
B 
DC 
DC 
DROP 
USING 
OS 
OS 
DC 
DC 
~1VC 
MVC 
OS 
DROP 
USING 

CTOUT 

STM 
LR 
LA 
DROP 
USING 
ST 
ST 
CLOSE 

X'04' 
CL5'NOUT ' *, 15 
CTOUT 
CFIRST 
X'05' 
CL5'CTOUT' 
15 
AREA,13 
18F 
20F 
20CL4' 
F' 10' 
BUF(1),0(3) 
BUF(1),0(4) 
5F 
13 
CTOUT,15 

14,12, 12( 13) 
2,13 
13,AREA 
15 
AREA,13 
2,4(13) 
13,8(2) 
LU9DCB 

LENGTH OF NAME 
NAME 

BRANCH AROUND NAME, VARIABLES AND AREA 
LENGTH OF NAME 

SAVE AREA 
OUTPUT BUFfER (ONE CARD - WE USE QSAM) 
A BLANK CARD - I'M LAZY 

TO BE EXECUTED BY AN EX 

SAVE CALLING ROUTINE'S GPR'S 
R2 <= ADDR OLD SAVE AREA 
R13 <= ADDR NEW SAVE AREA 
R15 NO LONGER BASE REG 
R13 NEW BASE REG 
LINK SAVE AREAS 

* RETURN SEQUENCE 
:I: 

L 
LM 
SR 
~lV I 
BR 
DROP 

13,4(13) 
14,2,12(13) 
15, 15 
12(13),X'Ff' 
14 
13 

R13 <= ADDR OLD SAVE AREA 
GPR'S RESTORED 
R15 <=0, RETURN CODE 
INDICATE CONTROL RETURNED 
RETURN 

:I: NOUTCEFLUX,PSIO,FRAC,TIMMAX,NTAB,N,S) 
:I: 

OFIRST 
USING 
STM 
LR 
LA 
DROP 
USING 
ST 
ST 
LM 
OPEN 
~1V C 
MVC 
~lVC 
MVC 
~1VC 
~lVC 

PUT 
LR 
LR 
L 
SR 
D 

LR 
M 

SLL 

Nour,15 
14,12, 1Z( 13) 
2, 13 
13,AREA 
15 
AREA,13 
2,4(13) 
13,8(2) 

SAVE CALLING ROUTINE'S GPR'S 
R2 <= ADDR OLD SAVE AREA 
R13 <= ADDR NEW SAVE AREA 
R15 NO LONGER BASE REG 
R13 NEW BASE REG 
LINK SAVE AREAS 

2,8,0(1) R2-R8 <= ADDR'S ARGS 
(LU9DCB, (OUTPUT» 
BUF(80),BLNCRD' FILL BUFFER WITH BLANKS 
BUF(S),OC2) FIRST 8 BYTES OF BUFFER <= EFLUX 
BUF+S(S),O(3) 2ND 8 BYTES OF BUFFER <= PISO 
BUF+16(8),O(4) 3RD 8 BYTES OF BUFFER <= FRAC 
BUF+24(S),0(S) 4TH I BYTES OF BUFFER (= TIMMAX 
BUf+36(4),0(6) 2ND HALF Of 5TH 8 BYTES OF 

LU9DCB,BUF 
3, 7 
4,8 
7,0(6) 
6,6 
6, TEN 

5,6 
6, TEN 

5,3 

BUFFER < = NT AB 
WRITE OUT 1ST RECORD 
R3 (= BASE ADDR N 
R4 (= BASE ADDR S 
R7 (= NTAB 
R6 (= 0 
R6 (= REMAINDER OF NTAB/10 
R7 <= INTEGER PART OF NTAB/10 
R5 (= REMAINDER OF NTAB/l0 
R7 (= (NTAB/l0)*10 INTEGER MODE 
# CARDS - 1 (UNLESS NTAB ENDS IN 0) 
F5 (= REMAINDER NTAB/10 * 8 
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LOOP1 
;t: 

ARND1 

LOOP2 
:+: 

;t: 

;+: 

* * ARND2 

:+: 

SLL 

LA 
LR 
LA 
SR 
STM 
STM 
AR 
MVC 

PUT 
BXlE 
LTR 
5Z 

7.3 

6,80 
2,3 
4,0(4) 
7,6 
5,7,SREG 
6.7,SREG+12 
7.3 
BUF( 80) ,0(3) 

LU9DCB.BUF 
3,6,LOOPI 
5,5 
ARNDI 

R7 <= (NTAB/I0)*10 :+: 8 
~ BYTES IN # CARDS - 1 
R6 <= 80 (INCREMENT FOR LOOP) 
R2 <= BASE ADDR N 
HIGH BYTE OF BASE ADDR S ZEROED 
R7 <= (NTAB/I0 - 1) * 80 
SAVE INCREMENTS AND OFFSET FOR COMPARAND 
TWO COPIES OF INCREMENTS AND OFFSET 
R7 <= BASE ADDR N + «NTAB/I01-l1*80 
PUT NEXT 80 BYTES IN BUfFER 
AND WRITE THEM OUT 

KEEP GOING TILL WE'RE DONE 
CHECK IF NO MORE THINGS TO WRITE 
IF NOT DON'T WRITE OUT ANOTHER CARD 
BECAUSE FORTRAN WOULDNIT 

MVC 
EX 

BUF(80),BLNCRD FILL BUfFER WITH BLANKS 
5,LMOV3 MOVE IN LAST fEW «10) VALUES 

AND WRITE OUT LAST CARD fOR N 
PUT 
SR 
AR 
MVC 

PUT 
5XLE 
LTR 
5Z 

LU9DCB.BUf 
7,2 
7,4 
BUF(SO)'0(4) 

LU9DCB,BUf 
4,6,LOOP2 
5,5 
ARND2 

R7 <= CNTAB/lu - 1) ;+: SO 
R7 <= BASE S + (CNTAB/I0)-I)*80 
PUT NEXT 80 BYTES IN BUffER 
AND WRITE THEM OUT 

KEEP GOING TILL WE'RE DONE 
CHECK If NO MORE THINGS TO WRITE 
If NOT DON'T WRITE OUT ANOTHER CARD 
BECAUSE fORTRAN WOULDN'T 

MVC 
EX 

~Uf(80).BlNCRD FILL BUffER WITH BLANKS 
5.LMOV4 MOVE IN lAST fEW «10) VALUES 

AND WRITE OUT LAST CARD FOR S 
PUT LU9DCB,BUF 

RETURN SEQUENCE 

L 13,4(13) 
LM 14,8,12(13) 
SR 15.15 
~lV I 1 2 ( 1 31 , X ' F F ' 
BR 14 
DROP 13 

R13 <= AD DR OLD SAVE AREA 
GPR'S RESTORED 
RIS <= 0, RETURN CODE 
INDICATE CONTROL RETURNED 
RETURN 

~ TOUTCTIM,T,J,DELT.!ITER,NTABl WE IGNORE LAST PARAMETER 

LOOP3 
* 

USING 
STM 
LR 
LA 
DROP 
USING 
ST 
ST 
LM 
NVC 
to1\' C 
MVC 
[,lVC 
PUT 
Ll'l 

AR 
AR 
rwc 
PUT 
BXLE 
LTR 
B2 

TOUT,IS 
14,12,12CI3) 
2, 13 
13,AREA 
15 
AREA,13 
2,4(13) 
13,8(2) 

SAVE CALLING ROUTINE'S GPR'S 
R2 <= AD DR OLD SAVE AREA 
R13 (= ADDR NEW SAVE AREA 
RIS NO LONGER BASE REG 
R13 NEW BASE REG 
LINK SAVE AREAS 

2.6,0(1) R2-R6 <= ADDR'S ARG'S WE USE 
BUf(SO),BLNCRD FILL BUFFER WITH BLANKS 
BUF(S),0(2) FIRST 8 BYTES OF BUFFER <= TIM 
BUF+S(S),O(S) 2ND 8 BYTES <= DELT 
BUF+20(4),OC6) 2ND HALF 3 8 BYTES <= lITER 
LU9DCB,BUF 
S,9,SREG 

7,3 
9,4 
BUFCS01,O(3) 

LU9DCB,BUF 
3,6,LOOP3 
5,5 
LOOP4 

RS-R9 <= NUMBER OF VALUES ON LAST CARD 
T AND J AND INCREMENTS AND COMPARANDS 
R7 (= COMPARAND FOR LOOP3 
R9 (= COMPARAND FOR LOOP4 
PUT NEXT 80 BYTES IN BUFFER 
AND WRITE THEM OUT 

KEEP GOING TILL WE'RE DONE 
CHECK IF NO MORE THINGS TO WRITE 
IF NOT DON'T WRITE OUT ANOTHER CARD 

S8 

FOR 

-1 

1 , 



LOOP4 
* 

MVC 
EX 

PUT 
MVC 

PUT 
BXLE 
MVC 
LTR 
BZ 

EX 

BECAUSE FORTRAN WOULDN'T 
BUF(80),BLNCRD FILL BUFFER WITH BLANKS 
5,LMOV3 MOVE IN LAST FEW (10) VALUES 

AND WRITE OUT LAST CARD FOR T 
LU9DCB,BUF 
BUf(80),OC4) PUT NEXT 80 BYTES IN BUFFER 

AND WRITE THEM OUT 
LU9DCB,BUF 
4,8,LOOP4 KEEP GOING TILL WE'RE DONE 
BUF(80),BLNCRD FILL BUFFER WITH BLANKS 
5,5 CHECK IF NO MORE THINGS TO WRITE 
ARND3 IF NOT DON'T WRITE OUT ANOTHER CARD 

BECAUSE FORTRAN WOULDN'T 
5,LMOV4 MOVE IN LAST FEW (10) VALUES 

AND WRITE OUT LAST CARD FOR J 
PUT LU9DCB,BUF 

* RETURN SEQUENCE 
* ARND3 L 13,4(13) R13 <= ADDR OLD SAVE AREA 

LM 14,9,12(13) GPR'S RESTORED 
SR 15,15 R15 (= 0, RETURN CODE 
MV! 12(13),X'FF' INDICATE CONTROL RETURNED 
BR 14· RETURN 

LU9DCB DCB DEVD=DA,MACRF=PM,DSORG=PS,RECFM=FB,LRECL=80,DDNAME=FTO9F001 
END 
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Appendix B 

STEADY STATE MODEL OF THE SOLAR ATMOSPHERE 

We have constructed a steady state numerical model of the solar 

atmosphere. The model was developed to investigate the effects of upward 

velocities and diverging magnetic field patterns on the temperature and 

density structure of the solar atmosphere; however, for this work the 

model is used only to provide reasonable temperature and density profiles 

for the estimation of the effect of reverse current heating on the atmo-

sphere. The computer program calculates the run of temperature and 

density in an individual flux tube. 

The equations governing the behavior of an inviscid compressible 

fluid in the presence of gravity are 

~p + V • (p~) 
~t 

. :t (p\i) + V • (pltU) 

o , 

- \7P + pg , 

o ..... 
~t (p e) + \7 • ( p e u) - \7 • q - pV • u - ~ + S , 

..... 

(B.l) 

(B.2) 

(B.3) 

where e is the total internal energy per unit mass, q is the heat 

flux, g is the gravitational acceleration, ~ is the energy lost via 

radiation, and S is the sum of all other non-thermal energy sources or 

sinks, .For flow along a magnetic flux tube, considering variation only 

along the field lines and assuming the radius of curvature of the field 

lines to be large compared to the dimensions of the flux tube, we see 

that the equations become one-dimensional. If we add the definition of 

the heat flux and an equation of state to Equations (B.l)-(B.3), we may 
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wl'i te a complete sot of oquations :£01' tho steady stnto (Cl/i;)t",Q) case 

dE: pu ~ 

s ds 

dp 
U ~-I-

$ els 

du u P s s dA 
P (i'S"' -I- A ds 

du 
dP s 

\l P -- - pg's s ds <is 

dq c;lu (pu + \,) s s - as- p~-as A 

It 
dfr 

tj;::; -- ds 

1 11'1" P -, - pr. A-
U 

J 

, 

o (n.l~) 

, 

dA 
£+ s -- , 

ds 

(B. '() 

(n.B) 

whel.'e A is the nron of tht') flux tube II is the 11\0lln p~\l.'ticlc muss" 

Ie is tho heat condlJcti vity, ];: is 1301 tzmttlltl' s constant, '1' is th0 

fluid tEllnpel'ntul'CJ S 1l\C'USUl'es distllnco Illong the fl\lX tub!;;' uod tho 

stlb::;cript s denotes tho COl1lpOnent of n vectol' nlong' the flux tube. We 

have l1cg:\ccted trlluspo:l't of encl'g'Y find l\\Ol\lentulIl nCl'OSS :ticld lines in 

writing' eqUl;t"tions (l3. l\.) -(n.·n. We wisll to npply :Ciquutions (n.l~) -(B.B) 

·to tho soltu,' ll'tmosphere. l!'tH' this cnsc we shnl1 assume the plasma to 

be pUl.'e hydrog'oll except ;fOl' computing tho l'ndiutive ),Qsses. To UCCOUl:tt 

for radintive lassos, we hnvc nss\llnccl 'l:hnt it is l'eusol\tlb:lc 'to 'trent tho 

sola;!,' o.tlilospherc ns opticnJ.ly thin (wa discuss this nsstlmption 1ntel'). 

We bnvo ndopted the J:ndintivo loss function culctllnt~d by Roymoud ~ ~. 

(l~rr(,) us modifieel by Rl1ymoncl (l~yrl') to illCl\lelC l'l1d;lnti vo lassos :El.'olll 

}\r unci llC\.\'Cl'I11 hydl'ogon exci tntion,l but excludillP; l.'udinti va los$(;)s duo 

to :l:t)l.'bidclon linos :eOl' t~l\lpCl'll'tlU'OS below rl"~lO~'J\. We htwa used the 

vnlues of \t t'tnd IC elori veel by Moo:\;e ml(~ lfunp; (19'(;:) fOl' n P\I1'O hy<lro-

gen plnS1111l. With these ltnd t:ho equation of stl.lte" We 1\IUy 01i1\\in(lto tho 



pressure. We choose as our dependent variables qs' T ,uS and n, 

the number density of hydrogen nuclei and rewrite (n.L~)-(B.7) in a form 

more convenient for numerical solution: 

dn (lllH 2)-l 
ds = (l+X)KT - Us 

\ 

:2 u n 
_s_ dA _ drr [(l+X)nk + 

A ds ds m
H 

n1\:T dX] { 
Il1H d'l' -n

g
s j , 

(n .lO) 

dq 
s 

CiS = 
dA 
ds ' 

(B.ll) 

nu A "" constant 
s (B.12) 

where Il1H is the mass of a hydrogen atom, X is the fraction of hydl'ogen 

nuclei that are ionized, fmd Ti is the hydrogen ionization energy 

') 

e::-'",})ressed as a temperature, ..... 1.0:' X lO K. Equation (n.12) is the inte-

gral of Equation (B.l~), We need only solve three :first order ordinary 

differential equations to calculate the nnl of temperature and density 

in a :flux tube. 

360 
dq 

s 
ds 

We have written an assembly-lnllgunge subroutine, to execute on IBM 

or 370 series computers, to evaluate the quantities 
dT dn 
ds ' ds 

and 

, given A dA S 
, ds ' gs' , n , T and This subroutine lllay 

be used with a standard library ordinary di:ffel.'ential solver, or as we 

have done with one coded specially fOl' tilis problem. 'rIle quantities 

dA 
g , -, aud S are tabulated as a fUllction of '1' 

s ds 



and s, and the values for a particular T or s are computed by a 

cubic interpolation scheme similar to the one described in Appendix A. 

The subroutine we have written to solve the coupled set of ordinary 

differential equations (B.9)-(B.12) uses an Adams-Bashforth-Moulton 

fourth order linear multistep integration scheme (see Isaacson and Keller 

1966) with a fourth order Runge-Kutta scheme (with a smaller step size) 

to "start up" the linear multistep method and provide intermediate values 

when halving the step size. The routine returns the values of T, u , 

q and n at intervals from the starting point specified by the calling 

program and reduces the step size or increases it according to the 

requested accuracy. The pretabulated quantities are read in by the main 

program which also reads in starting values, calls the differential 

equation solver and writes out the results of the integration. 

The downward heat flux in the corona above an active region is 

6 ""':3 X lO (Noyes 19'7l). Since the thermal conductivity of the solar plasma 

is a strong function of temperature (ex: '1,5/2) , this heat flux must be 

largely radiated away above the low chromosphere. We have the choice of 

starting with our initial values where the heat flux is large (in the 

corona) and calculating the solutions to a region where the heat flux is 

small (the chromosphere), or proceeding in the reverse direction from 

the region where the heat flux is small. It is well known that the 

latter choice is preferable lltlJllerically (Acton 1970, Isaacson and Keller 

1966). This is basically because the numerical calculation proceeding 

from the region of large heat flux to the region of small heat flux is 

not a "well posed" probl(~m (Isaacson and Keller 19(6) since a small 

relative change in the initial value of the heat flux can cause a large 
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relative change in the final value. We therefore shall choose our 

starting point near the temperature minimum. 

There are three major difficulties with starting the calculation 

4 below 3 X 10 K. The first is that the atmosphere becomes optically thick 

and therefore the radiative losses cannot be calculated simply. Second, 

the radiative loss function calculated by Raymond is not tabulated below 

10
4

K. Third, the approXimation that the atmosphere is purely hydrogen 

breaks down as the fraction of ionized hydrogen becomes very small 

because the electron density (which appears in the expression for the 

radiative losses) is grossly underestimated by (A.4), since the major 

contribution to the electron density is from trace elements with low 

ionization potentials (e.g. Na). However, for the purposes of this work, 

we only need a model that represents the overall structure of the atmo-

sphere reasonably well. This is particularly true since (cf. 'Chapter 3) 

the calculation of the heating of the cool dense portions of the atmo-

sphere by the reverse current is not accurate after the first few tenths 

of a second due to the neglect of Coulomb collisions. We do not attempt 

a solution of the radiative transfer problem. We use a power law extra-

polation of Raymond's (1976) radiative loss coefficient. We also use 

Equation (A.4) to find the electron density. The fact that the atmosphere 

is not optically thin is compensated for by the underestimate of the 

electron density. We have extrapolated Raymond's (1976) radiative loss 

function with a power law above and below the tabulated range 
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(T=lO -T 10 K). For the high temperatures above T=10 K, this should be 

a reasonable approximation since the losses for these temperatures are 

almost completely due to thermal bremsstrahlung and therefore should vary 
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present calculation. 

these tempera tures are not of impol'tance in the 

The power law extl'apolation below 104l( is purely 

ad hoc, but the l:ange over which extrapolated values are used is small 

("'" a factOl' of 2) and the calculation of radiative losses for these 

tempera tUl'es is at best approximate in any event. 'rhe resul tiug tempera-

ture and density profiles resemble the solar atmosphere in overall 

structure. Since the atmosphere varies from active region to active 

region, this should provide an adequate representation fOl' the purposes 

of the calculations of Chapter 3. 

',Co produce the model used (see Chapter 3), we integrate up from 

near the temperatul'e minimulll (T::::42001(, n",l.l02r." X 10
16

). The heat fl1.1X 

and velocity are taken to be zero at this point. No non-thermal energ-y 

input was included in the calculation. The resulting temperature, den-

si ty and heat flux at the top of the model (corresponding- to the injection 

point for the beam in Chapter 3) were '1'=.:3 X 10l\ no::1 X 109 cm-3 and 

t) -2-1 
F:d..'1.30 X 10· erg Cm s } in l'easonable agreement with the values given 

by Noyes (1971). 

Listings of two main progl'ams and several Subl'outines are provided 

for the sake of completeness. '1'he first main prog'l'am and aSSOCiated 

subroutines produce the tables that nre required for the cubic illterpola-

t:i,<;>n. The second mo:i,n program reads in starting values for the solution 

of the coupled set of d:i,ffcrential equations and writes out thE:! results 

both as tables sui tnble for people to loo}\; at and (if desh'ed) for 

machines to read. The subroutine j\BMINT is the differential equation 

solver described above. 'rhe present version is in FORrI'HAN tmd is cel'-

tainly ndequate fOl' the purpose of this work. An adaptation of the 



present main program to solve a boundary value problem rather than an 

initial value problem would (absent the wealth of Croesus) require this 

routine to be hand cOded. The assembly language subroutine DIVF calcu­

lates the quantities needed by ABMINT to integrate the differential 

equations. 
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c 

TABULATION ROUTINES 

IMPLICIT REAL*8 (A-H,O-Z) 
REAL*8 G(820),DADS(S20),SOR(820),ONEK(820),CHI(820),DCHI(820), 
.A(820),LU~1(820),TST/Z4410000000000000/,DT/Z4310000000000000/, 
.SST/Z4710000000000000/,DS/Z4610000000000000/ 

COMMON /PARAM/ FRAC,AMP,SCALE 
FORMATC10A8) 
FORMAT(~'3.6) 

THIS PROGRAM CALCULATES SEMI-LOGARITHMIC INTERPOLATION 
TABLES FOR A STEADY STATE MODEL OF THE PLASMA IN A MAGNETIC 
FLUX TUBE UNDER THE INFLUENCE OF GRAVITY. FOUR FUNCTIONS 
OF TEMPERATURE AND FOUR FUNCTIONS OF S (DISTANCE ALONG THE 
FLUX TUBE FROM THE SUN'S SURFACE) ARE TABULATED. THE 
FUNCTIONS OF TEMPERATURE CT) ARE: 

THE INVERSE OF THE THERMAL CONDUCTIVITY (ONEK) 
THE RADIATIVE LOSS COEFFICIENT (LUM) 
THE IONIZATION FRACTION (CHI) 
THE DERIVATIVE OF THE IONIZATION FRACTION CDCHI) 

THE FUNCTIONS OF S ARE: 

THE FORCE OF GRAVITY ALONG THE TUBE (G) 
THE AREA OF THE TUBE (A) 
THE LOGARITHMIC DERIVATIVE OF THE AREA CDADS) 
THE NON-THERMAL ENERGY INPUT (SOR) 

THE TABULATION RANGE IN TEMPERATURE IS 4.096E3 - 6.71E7 (K). 
THE TABULATION RANGE IN S IS 1.677E7 - 2.75E11 (CM). 

THE TABLES ARE WRITTEN OUT TO FORTRAN LOGICAL UNIT 9 AND THE 
PROGRAM READS IN 641 VALUES OF TEMPERATURE AND RADIATIVE 
LOSS COFFICIENT (RAYMOND, PRIVATE COMMUNICATION) USED TO 
TABULATE THE RADIATIVE LOSS COFFICIENT. 

THE PROGRAM ALSO READS IN SEVERAL PARAMETERS THAT CHARACTERIZE 
THE FLUX TUBE AND THE NON-THERMAL ENERGY INPUT: 

FRAC: THE AREA OF THE FLUX TUBE IS «D+S)/D)**2 WHERE 
D IS FRAC TIMES A SOLAR RADIUS. 

AMp: THE INTEGRAL OF THE NON-THERMAL ENERGY DEPOSITED IN 
A FLUX TUBE OF CONSTANT AREA IS AMP (ERG PER CM**2 PER SEC). 

SCALE: THE FORM OF THE NON-THERMAL ENERGY INPUT IS 
(COS(CS*PI)/(2*SCALE»)*~2 FOR S LESS THAN SCALE 
AND ZERO FOR S GREATER THAN SCALE. SCALE IS INPUT 
IN SOLAR RADII CINPUT OF 1. MEANS SCALE IS ABOUT 7.E10 CM). 

INITIALIZE TABLES: 

DO 1 1=1,820 
GCI)=O.DO 
DADSCI)=O,DO 
SORCI)=O.DO 
A(I)=1.DO 
ONEK(I)=O.DO 
CHICI)=O.DO 
DCHI(I)=O.DO 
LUMCI)=O.DO 

C READ IN PARAMETERS 
C 

READ(S,S001)FRAC 
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c 
READ(S, SOO1)M1P 
REAO(S,SOOl)SCALE 

C CALCULATE fUNCTIONS OF TEMPERATURE: 
C 

C 

DO 20 1=1,3 
T=TST-OT 
K=CI-1)%2S6+1 
00 10 J="243 

CHI (K)=FCHI (T) 
OCHl (K)=FOCHI (T) 
otlEK CK) =FKA P (T) 
L U fl ( K ) = fLU ~l ( T ) 
T=T+OT 

10 K=K+ 1 
TST=16.00~TST 

20 OT=16.00~OT 
r=:TST-OT 
DO 30 K=769,820 

CHI (Kl=FCH1 (n 
OCHr (K) =FOCllI (n 
ONEKCK)=FKAPCT) 
LU~1 (K) =f LU~1C T) 

30 T=T+OT 

C CALCULATE fUNCTIONS OF S~ 
C 

C 

DO SO 1= L 3 
S=SST-OS 
K=CI-l ):+·2S6+ 1 
DO ~O J=1.243 

G(K)=fGCS) 
AOO=FACS) 
OAOS(KJ =fOI'\OS(S) 
StJR(K)=FSOR(S) 
S=S+OS 

40 K=K+ 1 
SST= 16. 0 O'~SST 

50 OS=15.00~DS 
S=SST-DS 
no 50 K=76~,820 

G(K)=fG(S) 
A(K)=FA(S) 
DADSCK)=FDADS(S) 
SOROO=FSOR(S) 

60 S=S+OS 

C WRITE OUT TABLES: 
C 

C 

~~R ITE (9.900 1)G 
WRITEC9.9001)DADS 
WRITE(9,9001)sOR 
~~RITE(9, 9001)A 
WRITE(9,900l)ONEK 
WRITE(g,90Ql)LUM 
WRITEC9,9001)eHI 
WRITE(9,9001)OCHI 
STOP 
END 
REAL FUNCTION FCHl*8(T) 

C THIS FUNCTION CALcULATES THE IONIZATION FRACTION AS A FUNCTION 
C Of THE TEMPERATURE (T). THE IONIZATION FRACTION (FCHI) IS 
C DEFINED AS NE/CNH+NP) WHERE NE IS THE NUMBER DENSITY Of 
C ELECTRONS, AND NH AND NP ARE THE NUMBER DENSITIES OF HYDROGEN 
C ATOMS AND PROTONS RESPECTIVELY. SEE MOORE AND FUNG, SOLAR 
C PHYSIC.S 2.3 ('9;2.};n-l0~ FUR FOR~tULAE. 
C 

IMPLICIT REAL~8 (A~H,O-Z) 



C 

DATA ONE3/ZC0555555555555551 
COMMON BETA,EBETA,BI3,TEMP1,TEMP2,TCHI,D 
BETA=1.58D5/T 
EBETA=DEXPCBETA) 
B1 3=BETA~*ONE3 
TEMP1=0.4288DO+0.5DO*DLOGCBETA)+.4698DO*B13 
TEMP2=2.22D-6~BETA*TEMP1~EBETA 
TCHI=I.DO/Cl.DO+TEMP2) 
FCHI=TCHI 
RETURN 
END 
REAL FUNCTION FDCHI*8(T) 

C THIS FUNCTION CALCULATES THE DERYVATIVE OF THE iONIZATION FRACTION 
C (0 DHI lOT) AS A FUNCTION OF TEMPERATURE (T). SEE FUNCTION FCHI. 
C 

C 

IMPLICIT REAL*8 (A-H,O-Z) 
COMMON BETA,EBETA.BI3.TEMP1,TEMPC,TCHI.D 
FDCHI=1.406D-11*TCHI*TCHI*BETA*BETA*EBETA*C(1.DO+BETA)*TEMPI 

.+ (.5DO-.1566DO*BI3)) 
RETURN 
END 
REAL FUNCTION FKAP*8(T) 

C THIS FUNCTION CALCULATES THE INVERSE OF THE TOTAL THERMAL 
C CONDUCTIVITY AS A FUNCTION OF TEMPERATURE. THE DEPENDENCE OF THE 
C CONDUCTIVITY ON THE "COULO~1B LOGARITHtl ll IS APPROXHIATED IN A 
C MANNER SIMILAR TO MOORE AND FUNG, SOLAR PHYSICS 23 (1972), 78-102. 
C 

C 

IMPLICIT REAL*8 CA-H,O-Z) 
COM~ON BETA,EBETA,BI3,TEMP1.TEMPC,TCHI,D 
REAL~8 PO/0.DO/,CL/0.DO/,CKI/0.DO/,RKAY/1.38062D-16/, 
.~lFROT/1.67352D-24/,ESU/4.80325D-10/,PI/Z413243F6A8885A30/ 
IF(PO.NE.O.DO)GOTO 10 
PO=I.D5~I.Dl0~C2.DO~RKAY) 
CL=C3.DO~RKAY*~2)/(DSQRT(2.DO*PI*PO)*ESU**3) 
CK1=(9.DO~RKAY*DSQRT(RKAY))/(4.DO*DSQRTCMPROT)) 

10 CLAM=(T~T*CL)~DSQRT«1.DO+TCHI)/C2.DO~TCHI)) 
T12=DSQRTC T) 
IF(T.GT.4.2DS)CLAM=CLAM*6.480741D2/T12 
TEMPK=(CK1*T)/(9.12D-14+7.95D-l1/(TEMPC*TI2)) 
FKAP=1.DO/(TEMPK+(1.S9D-5*T*T*T12)/DLOGCCLAM)) 
RETURN 
END 
REAL FUNCTION FLU~*8(T) 

C THIS FUNCTION CALCULATES THE RADIATIVE LOSS COEFFICIENT 
C SUCH THAT THE RADIATIVE LOSSES FROM AN OPTICALLY THIN 
C PLASMA OF SOLAR ABUNDANCESARE FLUM~(NE~*2) WHERE NE IS 
C THE ELECTRON NUMBER DENSITY. THE CALCULATION OF THE 
C RADIATIVE LOSS COEFFICIENT IS RAYMOND'S CPRIVATE COMM.) 
C IMPROVEMENT OF THE CALCULATIONS OF RAYMOND, COX AND SMITH 
CAP. J. 204 (1976), 290-292. 
C 

IMPLICIT REAL*S (A-H,O-Z) 
REAL*8 T,L.TDC5411,LD(641),LOGT,ERR,FINT(101,XDIFC10),WRKC10) 
REAL*4 RTD(641).RLDC641) 
LOGICAL SORT/.FALSE./,EXTRAP/.FALSE./,FIRST/.TRUE./ 
EQUIVALENCE (TD(321),RTD(1)),CLDC321),RLD(I)) 

8001 FORMAT(20A4) 
IF(FIRST)GOTO 100 

lID LOGT=DLOG10(T) 
IF(LOGT.LT.TDC1))GOTO 200 
IFCLOGT.GT.TDCNRADPT»)GOTO 300 
ERR =-1 . DO 
CALL AITKENCL,LOGT, 10,ERR,TD,LD,NRADPT,SORT,EXTRAP,FINT,XDIF,WRK, 

.£.10,£.400,£.400) 
10 FLUM=10.DO*~L 

RETURN 
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100 NRAOPT==641 
C 
C CALCULATING LEAST SQUARE FITS fOR POWER LAW EXTENSION 
C OF CALCULATED RADIATIVE LOSS COEfFICIENT BEYOND TABULATED 
C RANGE. ONLY DO ON fIRST CALL. 
C 

C 

READ(S,SOOl)RTO 
HAD(S, 8001 )RLO 
0015I=',NRADPT 
TDCI)=OBLECRTD(r» 

15 LO(I)=OBLE(RLD(I» 
Al=O.OO 
Bl=O.OO 
TEttPl=O.DO 
TEMP2=0.00 
DO 20 1=2.,10 
Al=Al+LOCI) 
81=61+TO(1) 
TEMP1=TEMP1+TO(I)*TO(I) 

20 TEMP2=TEMP2+TO(I)~LD(1) 
B 1 = CT HIP 2. - TO ( 1 ) 'i.'A 1- L 0 ( 1) * ( 8 1 - 9. 0 O*T 0 ( 1) ) ) / 

. (HttP 1-2. 0 O*T 0 ( 1 J *8 1+9.0 O*T 0 ( 1 P-TO ( 1) ) 
Al=LD(1)-Bl~TD(I) 
A2=O.00 
B2=0.00 
TH1Pl=O.OO 
TH1P2.=0.00 
00 30 1=636,640 
A2=A2+L0(I) 
B2=S2+T0 U) 
TEMP1=TEMP1+TO(r)*TO(I) 

30 TEMP2=TEMP2+TD(1)~LO(I) 
B2=CTEMP2-TD(641)~A2-LO(641)*(B2-5.00*TD(641»))/ 
.(TEMPl-2.00~TD(641)~B2.+5.00~TD(641») 
A2=lO(641)-82~TD(641) 
FIRST=. fALSE. 
GOTO 110 

2.00 FlUM=10,OO~~(Al+Bl*LOGT) 
RETURN 

300 fLUM=10.DO**(A2.+B2~LOGT) 
RETURN 

400 ~RITE(6.6001) 
GOOI FORM~T('H I 'OOPS - WE SHOULD NOT BE HEREI) 

STOP 
EHD 
REAL fUNCtION FG~8CS) 

C THIS FUNCtION CALCULATES THE FORCE OF GRAVITY ALONG THE 
C FLUX TUBE AS A FUNCTION OF S. THE DISTANCE ABOVE THE 
C SOLAR SURFACE. 
C 

C 

IMPLICIT REAL*8 (A-H,O-Z) 
REAL~8 RSUN/G.9599010/,G/6.67D-S/.MSUN/1.989D33/ 
LOGICAL NOTlsT/.fALSE./ 
IFCNOT1ST)GOTO 10 
GM=NSlJNi-G 
NOT 1ST:::, TRUE. 

10 R=(RSUN+S) 
F G =G~lI (R :1;,\:2.) 

RETURN 
END 
REAL fUNCTION FA~S(S) 

C THIS FUNCTION CALCULATES THE AREA OF THE FLUX TUBE 
C AS A fUNCTION Of S, THE DISTANCE ABOVE THE SURFACE OF 
C THE SUN. 
C 

IMPLICIT REAL'l8 CA-H.O-Z) 
COMMON BETA,EBETA,BI3,TEMP1,TEMPC,TCHI,D 
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C 

REAl~8 RSUN/6.9599D10/,AO/1.DOI 
LOGICAL NOT1ST/.FALSE.I 
COMMON IPARAMI FRAC,AMP,SCALE 
IFCNOT1ST)GOTO 10 
D=FRAC1:RSUN 
R=S+D 
AR=R)f;:+!2 
AR=AO/AR 
FA=AR:I(R**2) 
NOT 1ST=. TRUE. 
RETURN 

10 R=D+S 
FA=AR*(R**2) 
RETURN 
END 
REAL FUNCTION FDAOS*8CS) 

C THIS FUNCTION CALCULATES THE LOGARITHMIC DERIVATIVE 
C OF THE AREA AS A FUNCITON OF S, THE DISTANCE ABOVE THE 
C SURFACE OF THE SUN. 
C 

C 

IMPLICIT REAL*8 (A-H,O-Z) 
COi'l~::JN BETA, EBET A, B 13, TEMP 1, TEMPC, TCH I, D 
FDADS=2.DO/(D+S) 
RETURN 
END 
REAL FUNCTION FSOR*8(S) 

C THIS fUNCTION CALCULATES THE (AD HOC) NON-THERMAL 
C ENERGY INPUT INTO THE SOLAR PLASMA AS A FUNCTION OF S, 
C THE DISTANCE ABOVE THE SUN'S SURFACE. 
C 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

IMPLICIT REAL*8 (A-H,O-Z) 
REAL*8 RSUN/6.9599D10/, 

.PIBY2/Z411921FB54442Dt81 
LOGICAL NOT1ST/.FALSE.1 
COMMON /PARAMI FRAC,AMP,SCALE 
IFCNOT1ST)GOTO 10 
SCALE=SCALE+RSUN 
ARG=l.D::J/SCALE 
M1P=AMP*ARG 
AMP=AMP+M1P 
ARG=ARG*PI BY2 
SO=S 
NOT1ST=.TRUE. 

10 SR=S-SO 
IFCSR.GT.SCALE1GOTO 20 
C=DCOSCARGi'SR) 
FSOR=AtlPi;C*C 
RETURN 

20 FSOR=O.DO 
RETURN 
END 
SUBROUTINE AITKENCF,X,M,ERR,XTAB,FTAB,N,SORT,EXTRAP,FINT, 

• XOI F ,1.JRK, :t:, *, :I:) 

SUBROUTINE AITKEN INTERPOLATES TO FIND THE VALUE OF THE fUNCTION 
(f) AT THE POINT X. IF THE ROUTINE DOES NOT ACHIEVE THE DESIRED 
RELATIVE ERROR (ERR) USING M POINTS OR IF ROUND OFF ERROR APPEARS 
TO BE PRESENT, THE ROUTINE RETURNS THE CURRENT ERROR ESTIMATE IN 
ERR, RETURNING TO THE MAIN PROGRAM AT THE FIRST STATEMENT NUMBER 
IN THE ARGUMENT LIST. THE ROUTINE REQUIRES THE TABULATED VALUES 
IN FTAB TO BE IN ORDER OF INCREASING VALUE OF X (IN XTAB). IF 
SORT IS TRUE ON ENTRY. BOTH TABLES ARE SORTED (SEE NOTE), IF THE 
VALUE OF X IS OUTSIDE THE RANGE OF THE TABLES SUPPLIED, THE 
ROUTINE RETURNS TO THE SECOND STATEMENT NUMBER IN THE ARGUMENT 
LIST - UNLESS EXTRAP IS TRUE. IF THE ROUTINE DISCOVERS TWO 
IDENTICAL VALUES OF X IN XTAB, THE ROUTINE RETURNS TO THE THIRD 
STATEMENT NUMBER IN THE ARGUMENT LIST. 
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C 
C !t M IS GREATER THAN 1'1 OR LESS THAN 2, IT IS SET TO 10. 
C 
C If ERR IS LESS THAN 16*1:-5, IT IS SET TO 16**-5. 
C 
C ARGUMENTS (OTHER THAN STATEMENT NUMBERS): 
C 
C F INTERPOLATED VALUE OF FUNCTION AT X (REAL - OUTPUT) 
C 
C X VALUE OF INDEPENT VARIABLE (REAL - INPUT) 
C 
C M LARGEST NUMBER OF DATA POINTS TO BE USED (INTEGER - INPUT) 
C 
C ERR REQUESTED RELATIVE ERROR (REAL - INPUT) 
C 
C XTAB TABLE OF X VALUES AT WHICH F(X) IS TABULATED 
C eREAL ARRAY - INPUT) 
C 
C FTAB TABLE OF F(X) AT THE CORRESPONDING POINTS IN XTAB 
C (REAL ARRAY - INPUT) 
C 
C 1'1 THE LENGTH OF TABLES XTAB AND FTAB (INTEGER - INPUT) 
C 
C SORT DETERMINES WHETHER OR NOT THE INTERNAL SORING ROUTINE 
C IS TO BE USED (LOGICAL - INPUT/OUTPUT) 
C 
C EXTRAP DETERMINES WHETHER OR NOT EXTRAPOLATION OUTISDE THE 
C RANGE OF THE TABLES IS ALLOWEDCLOGICAL -INPUT) 
C 
C FINT ARRAY OF SUCESSIVE INTERPOLANTS - WORKING ARRAY 
C (REAL ARRAY DIMENSION) OR = M) 
C 
C XDIF ARRAY OF DIFFERENCES BETWEEN THE POINTS AT WHICH FeX) 
C IS TABULATED AND X - WORKING ARRAY (REAL ARRAY 
C DH1ENSION ) OR::: ~1) 
C 
C WRK WORKING ARRAY FOR CURRENT LEVEL OF INTERPOLATION 
C (RtAL ARRAY DIMENSION ) OR ::: M) 
C 
C INTERNAL VARIABLES: 
C 
C TEMP TEMPORARY STARAGE LOCATION FOR INTERMEDIATE RESULTS 
C 
C FDIFf1 PREVIOUS ABSOLUTE RELATIVE DIFFERENCE BETWEEN 
C INTERPOLANTS - COMPARED WITH FDIFF2 TO CHECK FOR 
C CONVERGENCE (ROUND-OFF ERROR INDICATOR) 
C 
C FDIFF2 PRESENT ABSOLUTE RELATIVE DIFFERENCE BETI~EEN 
C INTERPOLANTS - USED TO CHECK FOR CONVERGENCE AT 
C CURRENT LEVEL (ALSO SEE FDIFFl ABOVE) 
C 
C DIfFMAX LARGEST REPRESENTABLE FLOATING POINT NUMBER (IBM 360) 
C 
C IUP USED AS POINTER IN SORT AND INTERPOLATION 
C 
C IMID USED AS POINTER IN SORT 
C 
C ION USED AS POINTER IN SORT AND INTERPOLATION 
c 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

XUPDIF DIffERENCE BETWEEN X AND CLOSEST UNUSED LARGER VALUE 
IN XTAB 

XDNDIF DIfFERENCE BETWEEN X AND CLOSEST UNUSED SMALLER VALUE 
IN XTAB 

LEVEL CURRENT LEVEL Of AITKEN TRIANGULAR SCHEME 

ISTEP COUNTER fOR INTERMEDIATE INTERPOLANT lOOP 
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C DONE LOGICAL FLAG TO INDICATE CURRENT LEVEL OF SHELL SORT 
C IS COMPLETE 
C 
C IDISP CURRENT EXCHANGE INTERVAL IN SHELL SORT 
C 
C ILAST N MINUS IDISP - UPPER LINIT FOR SORT DO LOOP 
C 
C COUNTER iN SORT DO LOOP 
C 
C REMARKS: 
C 
C THE ROUTINE AS PRESENTLY WRITTEN WILL NOT WORK IN WATFIV. TO 
C MAKE THE ROUTINE COMPATABLE WITH WATFIV, THREE CHANGES MUST BE 
C MADE. FIRST, THE ARRAYS FINT, XDIF AND WRK SHOULD HAVE 
C DIMENSION M AND THE ARRAYS XTAB AND FTAB SHOULD HAVE THE 
C DIMENSION N. SECOND, THE VARIABLES M AND N SHOULD BE REMOVED 
C FROM THE INTEGER DECLARATION STATEMENT. THIRD, THE STATEMENT 
C WHICH CHANGES M TO 10 IF CERTAIN CONDITIONS ARE MET SHOULD BE 
C DELETED. 
C 
C NOTE: 
C 
C SORT METHOD USED IS SHELL SORT - THIS METHOD MAY BE VERY 
C . INEFFICIENT WHEN XTAB IS PARTIALLY SORTED. 
C 
C 
C DECLARE VARIABLES 
C 

C 
C 
C 

C 
C 
C 
C 
C 

C 
C 
C 

C 
C 
C 
C 

C 
C 
C 
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REAL F,X,ERR,XTAB(1),FTAB(1),F!NT(1),XDIF(1),I~RKC1),EPS,XUPDIF, 
.XDNDIF,FDIFF,FDIFF2.DFIMAX,TEMP 

INTEGER M,N,ISTEP,ILAST,LEVEL,IDISP,IUP,IDN,IMID,I 
LOGICAL SORT,EXTRAP,DONE 

INITIALIZE VARIABLES 

DATA EPS/Z3C100000/,DIFMAX/Z7FFFFFFF/ 

CHECK TO SEE IF M > N OR IF M < 2, IF SO SET M TO 10 
(THIS CARD MUST BE REMOVED FOR WATFIV EXECUTION AND THE 

WORKING ARRAYS DIMENSIONED TO M) 

IFCM.LT.Z.DR.M.GT.N)M=10 

CHECK TO SEE IF ERR < 16**-5 IF SO SET IT TO 16**-5 

I~CERR.LT.EPS)ERR=EPS 

CHECK TO SEE IF TABLES ARE TO BE SORTED - IF NOT GO AROUND SORT 
SECTION. 

IFC.NOT.SORT)GOTO 200 

**** SORTING SECTION BEGIN 

IDISP=N 
IDISP=(IDISP+1)/2 
ILAST=N-IDISP 
DotlE=. TRUE. 
DO'103I=1,ILAST 
IF(XTABCI).LT.XTABCI+IDISP»GOTO 103 
IFeXTABCI).EQ.XTABCI+IDISP»RETURN 3 
TEMP=XJ AB e I) 
XTAB(I)=XTAB(I+IDISP) 
XTAB(I+IDISP)=TEMP 
TEMP=FTAB(I) 
FTAB(I)=FTAB(I+IDISP) 
FTABCI+IDISP)=TEMP 
DONE=.FALSE. 

'03 CONTI NUE 
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C 

IFC.NOT.DONE)GOTO 102 
IFClDISP.OT.l)GOTO 101 

C **** SORTING SECTION END 
o 

200 CONTINUE 
o 
o CHECK TO SEE IF X IS WITHIN RANGE OF TABLE - IF NOT AND IF EXTRAP 
C IS fALSE RETURN TO SECOND STATEMENT IN ARGUMENT LIST 
o 

IF(X.GE.XTABC1))GOTO 201 
C 
C X IS BELOW LONEST X VALUE IN XTAB - EXIT UNLESS EXTRAP IS TRUE 
C 

IF(,NOT,EXTRAP)RETURN 2 
c 
C EXTRAP IS TRUE - SET UP POlNTERS AND GO TO AITKEN 
C INTERPOLATION SECTION 
C 

C 

IUP=2 
I ON:::: 1 
GO TO 400 

2.01 CONTINUE 

C CHECK TO SEE IF X IS LARGER THAN LARGEST X VALUE IN XTAB - IF NOT 
C BRANCH TO SEARCH SEOTION 
C 

IFCX,LE.XTAB(N))GOTO 300 
c 
C X IS ABOVE HIGIIEST X VALUE IN XTAO - EXIT UNLESS EXTRAP IS TRUE 
C 

IF(.NOT.EXTRAP)RETURN 2 
c 
C EXTRAP IS TRUE - SET UP POINTERS AND GO TO AITKEN 
C INTERPOLATION SECTION 
C 

c 

lUP:::N 
lON::::N-l 
GOTO -laO 

C SEARCH SECTION - fIND XTAB VALUES THAT BRACKET X - USE BISECTION 
C 

300 CONIlNUE 
c 
C BET UP POINTERS FOR BISECTION 
C: 

C 

rup:::N 
1m O:::N/2 
10N:;1 

C CHECK TO SEE WHICH SIDE OF EXTABCIMIOl x rs ON AND UPDATE IUP, 
C tMIO AND ION - WHEN NEN IMID EQUALS ION WE ARE DONE 
C 

301 IfCX.OT.XTAB(IMIO))GOTO 302 
c 
C X LE XTAOCIMIOl so IUP(=lMID & IMIO<=CIUP+ION)/2 
C: 

C 

tUP=lrllO 
IMID=CIUP+IDN)/2 

C IF HHO > ION I,ll:: AREN IT OONE YET - 00 [lACK ANO CHECK An/UN 
C OTHERWISE GO TO AITKEN INTERPOLATION SECTION 
C 

IF<rmO.GT.IDN)GOTO :sot 
GOTO ,tao 

302 CONTlNUE 
C 
ex) XTAB(IMIDl so IDN<=JMID C IMID(=(IUP+IONl/2 
C 

104 

-



c 
IDN=IMID 
IMID=(IUP+IDN)/2 

C If IMID ) ION WE AREN'T DONE YET - GO BACK AND CHECK AGAIN 
C OTHERWISE ENTER AITKEN INTERPOLATION SECTION 
C 

If(IMID.GT.IDN)GOTO 301 
C 
C END Of SEARCH SECTION 
C 
C A!TKEN INTERPOLATION SECTION 
C 

400 CONTINUE 
C 
C IUP AND ION POINT TO fIRST TWO fUNCTION VALUES USED IN 
C INTERPOLATION - INITIALIZE VARIABLES 
C 

C 
C 
C 

C 
C 
C 
C 

C 
C 
C 

C 
C 
C 
C 

C 
C 
C 

C 
C 
C 
C 

403 
C 
C 
C 

C 
C 
C 

402 

C 
C 
C 
C 

C 
C 
C 

fDIFF2=DIFMAX 
XDNDIf=XTABlIUP)-X 
XUPDIF=XTABCIDN)-X 

START AITKEN INTERPOLATION 

DO 401 LEVEL=1,M 

DECIDE WHICH Of THE TWO TABLE VALUES POINTED TO BY IUP AND ION 
IS TO BE USED NEXT - THE ONE WITH XTAB CLOSER TO X 

IfeABseXUPDIF).GT.ABSCXDNDIF))GOTO 402 

WE WILL USE IUP - PUT INFORMATION IN WORKING ARRAYS 

WRK(1)=FTABCIUP) 
XDIFCLEVEL)=XUPDIf 

CHECK TO SEE IF WE JUST USED THE LARGEST VALUE OF X IN XTAB 
IF SO GO TO 403 AND DO fIX UP - IF NOT UPDATE Iur AND XUPDlf 

IFCIUP.GE.N)GOTO 403 
IUP=IUP+1 
XUPDIF=XTABCIUP)-X 

BRANCH AROUND CODE TO INTERPOLATION LOOP FOR THIS LEVEL 

GOTO 404 

FIX UP fOR USE OF LARGEST X IS TO SET XUPDIF TO LARGEST 
REPRESENTABLE FLOATING POINT NUMBER 

XUPDIf=DIFMAX 

BRANCH AROUND CODE TO INTERPOLATION LOOP fOR THIS LEVEL 

GOTO 404 

WE WILL USE ION - PUT INFORMATION IN WORKING ARRAYS 

WRK(1)=FTABCIDN) 
XDIFCLEVEL)=XONOIF 

CHECK TO SEE IF WE USED THE SMALLEST VALUE Of X IN X IN XTAB 
IF SO GO TO 405 AND DO FIX UP - IF NOT UPDATE ION AND XDNDIF 

IFCIDN.EQ.l)GOTO 405 
IDN=IDN-1 
XDNOIF=XTABCION)-X 

BRANCH AROUND CODE TO INTERPOLATION LOOP FOR THIS LEVEL 
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• c 
C 
C 
C 

C 
C 
C 

C 
C 
C 

c 
c 
c 
c 
c 
C 
c 

c 

405 

404 

407 , 

GOra 404 

FIX UP FOR USE OF SNALLEST X IS TO SET XONOrF' TO LARGEST 
REPRESENTABLE fLOATING porNr NUNBER 

XONorr~o t FN,,\X 

SKIP INTERPOLATION CALCULATION If LEVEL IS 1 

rF(LEVEl..U, D(;OTO 'lOG 

AITKEN INTERPOLATION LOOP 

00 407 ISTEP=2,LEVEl 
TENP=XOlfClEVEL)-XDIFCISTEP-ll 

CHECK TO SEE IF WE ARE GOING TO DIVIDE BY Q IF SO RETURN 
TO THIRD ST.<\TE~lI!NT Nu~mER 1 N ARGll~lENt LIST 

IFCTEMP.EQ.O.lRETURN 3 

CALCULATE INTERNEDJATE INTCRPOLANTS 

WRKClSTEP)=CFINTClSTEP-l)*XDlFCLEVEL) -
WRK(lSTEP-l)~XDJF(lSTEPM1))/TENP 

C ENTER INTERPOLANT IN fINT 
C 

406 FINTCLEVELl=WRKCLEVEL) 
c 
C SKIP CHECK FOR CONVERGENCE FOR LEVEL LESS THAN 4 
C 

IFCLEVEL.LT.4l00TO 401 
C 
C CHECK FOR CONVERGENCE Ar THIS LEVEL - IF SO BRANCH Qur 
c 

c 

rDlrF2=~.*ABSC(FrNTCtEvELJ-FINT(lEVEL-l))/ 
(FINT(LEVELl+FINTCLEVtL-l))) 

IfCFDIFF2.Ll.ERR)GOTO ~DS 

C SKIP ROUND OFF ERROR CHECK fOR LEVEL LESS THAN 6 
C 

IFCLEVEL.LT.6)OOTO ~UI 
c 
C IF INTERPOLANTS ARE NOT CONVERGING - EXIT 
C 

IFCFOIFF2.GT.FIDFfl)GOTO SOl 
C 
C UPDATE FDIFF! AND CONTINUE 

40, FDtFF1=FOIFF2 
c 
C IF' INTERPOLATED TO LEVEL=N WITHOUT CONVERGENCENCE - EXIT 
C 

GOTO 501 
C 
C SET f EQUAL TO FINTCLEVEL) AND RETURN 
C 

C 

408 F=rrNTCLEVEl) 
RF;iURN 

C TERMINATIONS DUE TO LACK OF CONVERGENCE OR ROUND OFF ERROR 
C 

501 LEVEL=LEVEL-l 
ERR=FTDFf 1 
f=FlNTCLEVEU 
RtTURN 1 
END 
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STEADY STATE ATMOSPHERE MODEL MAIN ROUTINE 

IMPLICIT REAL*8 (A-H.O-Z) 
C 
C THIS PROGRAM CALCULATES THE RUN OF TEMPERATURE, DENSITY 
C HEAT FLUX AND VELOCITY IN AN INDIVIDUAL FLUX TUBE. 
C THE PROGRAM READS IN PARAMETERS THAT CONTROL THE NUMBER OF 
C SETS OF TABLES READ IN (NTAB), AND THE INDEPENDENT VARIABLE 
C THAT CONTROLS THE FREQUENCY OF TABULATION (ITEST). FOR EACH 
C SET OF TABLES THE PROGRAM READS IN THE NUMBER OF DIFFERENT INITIAL 
C CONDITIONS FOR WHICH THE INTEGRATION IS TO BE PERFORrlED (NRUN) 
C AND A VARIABLE THAT CONTROLS IJHETHER OR NOT THE RESULTS OF 
C THE INTEGRATION ARE ONLY PRINTED OUT OR BOTH PRINTED OUT 
C AND WRITTEN OUT IN A FORMAT SUITABLE FOR REREADING 
C BY ANOTHER PROGRAM CNOUT). IF NOUT IS LESS THAN 1, THEN THE 
C RESULTS ARE ONLY PRINTED. IF NOUT IS GREATER THAN OR EQUAL TO 
C '/ THEN THE RESULTS OF THE INTEGRATION ARE BOTH PRINTED OUT AND 
C WRITTEN OUT TO LOGICAL UNIT 10. 
C 
C THE PROGRAM READS IN 4 TABULATED FUNCTIONS OF DISTANCE AND 
C 4 TABULATED FUNCTIONS OF TEMPERATURE: 
C 
C FUNCTIONS Of S: 
C 
C G THE FORCE OF GRAVITY ALONG THE TUBE 
C 
C DA THE LOGARITHMIC DERIVATIVE OF THE AREA OF THE TUBE 
C I~ITH RESPECT TO DISTANCE ALONG THE TUBE (l/A DA/DS) 
C 
C SO A PHENOMENOLOGICAL NON-THERMAL HEAT SOURCE 
C 
C A THE AREA OF THE fLUX TUBE 
C 
C FUNCTIONS OF T: 
C 
C OK INVERSE OF THE THERMAL CONDUCTIVITY 
C 
C LU THE RADIATIVE LOSS FUNCTION 
C 
C CH THE FRACTION OF HYDROGEN NUCLEI THAT ARE IONIZED 
C 
C DC DERIVATIVE OF THE fRACITIONAL IONIZATION (CH) 
C 
C FOR EACH RUN WITH A SET Of TABLES, THE PROGRAM READS IN SO, THE 
C STARTING DISTANCE, DSO THE INITIAL STEP SIZE, PRCT, THE 
C MULTIPLICATIVE FACTOR BY WHICH THE INDEPENDENT VARIABLE SELECTED 
C BY ITEST IS ALLOWED TO CHANGE BETWEEN TABULATION POINTS, THE 
C INITIAL TEMPERATURE TO, INITIAL DENSITY NO, INITIAL HEAT FLUX QO, 
C INITIAL VELOCITY UO, TSTOP, THE TEMPERATURE AT WHICH THE 
C INTEGRATION WILL STOP, SSTOP, THE DISTANCE AT WHICH THE 
C INTEGRATION WILL STOP, EPS, THE MAXIMUM RELATIVE ERROR IN AN 
C INDEPENDENT VARIABLE ALLOWED PER DSO, AND MSTOP, THE MACH NUMBER 
C AT WHICH THE INTEGRATION WILL STOP. If THE INITIAL HEAT FLUX READ 
C IN IS GREATER THAN 10 TO THE 50TH (A VERY UNPHYSICAL VALUE) THE 
C INITIAL HEAT FLUX IS DETERMINED BY THE CONDITIUN THAT THE NET 
C ENERGY FLUX IS ZERO AT THE STARTING POINT. 
C 
C THE CURRENT VERSION INTERPOLATES THE RESULTS Of THE 
C INTEGRATION TO PRINT OUT VALUES OF DISTANCE TEMPERATURE, 
C DENSITY, HEAT FLUX. VELOCITY. PRESSURE AND A QUANTITY WHICH 
C CAN BE INFERRED FROM EUV OBSERVATIONS (P**2 KAPPA/Q WHERE KAPPA 
C IS THE THERMAL CONDUCTIVITY) AT VALUES OF THE TEMPERATURE 
C INITIALIZED IN THE ARRAY TMPOUT. IN ADDITION THE INITIAL AND 
C FINAL POINTS OF THE INTEGRATION ARE PRINTED OUT. IF THE 
C RESULTS ARE TO BE WRITTEN TO LOGICAL UNIT 10 ALL THE TABULATED 
C RESULTS ARE PRINTED AS CALCULATED BY ABMINT. 
C 
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C 
C DECLARE AND INITIALIZE ARRAYS ANO VARIABLES 
C 

REAL~8 EPS,TSTOP,SSTOP,AO.UO.NO,TO.Q01SO.S,OSO,oS,PRCT, 
.P,YPASS(4),KAY/Z339F2CBGOOOOOOOOt, 
· ~lSTOP 
REAL~8 GC31S),OACS1S),SO(S19),ACS1S),OK(S19).LUCS19).CHCS19) • 

. oC(819),YTAB(S.2048l,TABC8).ORAV.OAOS,SOR,AR,OKAP,LAM,cltr,oCH1 
INTEGER~4 NRUM,NTAB,IRUNIITAB,I,J 
EQU I \fAUN CE CT AB ( 1 ), GRAV) , C TAIl< 2) , OAOS) , CT AD (3) , SOR) , (TAB (4) ,AR) , 

· (TAB (5), OKAP), CTAB( G)' LMI), (TAll( 7), CN n, (TABe s), OCHI) 
EXTERNAL olVf" 
REAL~8 SPRIH,SBOTTtZ474143EOOOOQOOOO/,TMPOUT(40)1 

.1.03,1.503,2.03.3.03.4.03.5.03.6.03.7.03,8.03,9.03, 
• 1 . n 4, 1 • 5[1·1, 2.. 04, 3.04 I 4. tH .' 5. 04, 6. D 4. 7. o·t, S. D 4, 9. D -4, 
.1.o5,1.5D5,2.05,3.05.4.05,5.D5.6.D5.7.05.8.05,9.05, 
.1.06,1.506,2.D6,3.06,4.06.5.06.6.06.7.06,8.06,9.061 

5001 FClRtlAT<2!S) 
5002 fORMAT(321Gl 
5003 fORMATC4013.G) 
GOa 1 fOR WI, T( 1 H ,T 4 tIS ( C t1) , , i I 9 ~ 'H ~l ~ I • T:3 4, I N I J T 4 9 J 'Q C C G S) I i 

· i 6 -1, I U ( G G S) I • 17 9. I P t C G s) I } T 9 4, I L ml ' • I) 
6002 FORMATC7C1P01S.6» 
GOO4 FOR tp. TC 1 H 1 , T 4. I S ( C m I J 11 9 J 'T nIP I ; T 3·1, I N I j T4 9, I Q ( C G S) I t 

.164, lU(CGS)', T79, 'peCGS) I, T9·1, 'LUN',t) 
90Q4 fORMATC10AS) 

C 
C CALL OlVINT - PASS BASE AOORESSES OF INTERPOLATION TABLES 
C TO OIVf 
C 

CALL DIVtNTCG,OA,SQ,A,OK.LU.CH,OC) 
c 
C REAO IN NUMBER OF SETS OF TABLES AND INDEX OF INDEPENDENT 
C VARIABLE THAT CONTROLS TABULATION FREQUENCY 
c 

c 
REAOCS,S001lNTAB,ITEST 
PRCT=1.0S00 

C READ IN INTERPOLATION TABLES 
C 

C 

00 999 ITAB=1,NTAB 
READ(S,SOOI)NRUN,NOUT 
REA1)(9,90t14)(l 
R £;\0 (9.900·1) [lA 
READ (9.900 .. 1) SO 
REA1H9.9QQ··DA 
REAtH9,9004)0K 
REAtJ(9.90Q4HU 
RtAO(9,9004)cH 
REAOC9,9004lDC 

C READ IN INITIAL CONDITIONS FOR RUNS 
C 

C 

DO 99 IRUN=1,NRUN 
REAOCS,S002)SO.DSO,PRCT 
REAOC8.5003lTO.ND.QO.UQ 
READCB.S003lTSTor.SSTOP.EPS.MSTOP 

D INITIALIZE AO AND QO IF NEctSSARY 
G 

YPASS ( l) =T 0 
Y PASS c:n::N 0 
CALL OrVF(SO,YPASS.TABl 
A O':::AR'l·NO"'U0 
11:: I 
HCt"{O.LE.1.ESQ)GOTO 5 
QD=-.5DO'UOi.NO'CUOi.UOtl.G73520-2-4+5.00~KAY*TO~(1.+CHI)) 

5 YPASS(3)::QO 
'1'PASS( 4) ::l\0 
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C 

S=SO 
DS=DSO 
N~'AX=2048 

C CALL A8MINT TO INTEGRATE EQUATIONS 
C 

C 

CALL ABMINTCS,YPASS,DIVF,DS,EPS,TSTOP,SSTOP.MSTOP.YTABC1,I1), 
.AO,ITEST,PRCT.NMAX) 

11 =1 1+NMAX-1 
20 CONTINUE 

C PRINT OUT RESULTS 
C 
C WE LOOK FOR VALUES Of TEMPERATURE THAT BRACKET VALUES 
C OF TEMPERATURE IN TMPOUT AND INTERPOLATE. WE ALSO 
C DO OUR OWN PAGINATION. 
C 

C 

WRI TE C 6,6004) 
I TEMP=O 
ILINE=1 
1=2 
SPRIN=YTABC5,1) 
CALL DIVFCSPRIN,YTAB(1,1),TAB) 
P=YTABC2, 1 )*( 1. DO+CHI )*YTABC 1,1) 
RADOUT=1.D50 . 
If(YTABC3,1LEQ.0.DO)GOTO 30 
RADOUT=-CP*P)/(OKAP*YTABC3,1» 

30 P=KAY*P 
SPRIN=SPRIN-SBOTT 
l.!RITEC6,6002)SPRIN,YTABC1, 1),YTABC2.1)'YTAB(3, 1), 

. YTABC4, 1), P,RADOUT 

C FIND NEXT OUTPUT TEMPERATURE 
C 

C 

lOS ITEMP=ITEMP+1 
IFCITEMP.GT.40)GOTO 130 
IFCYTABC1,I).GT.TMPOUTCITEMP»GOTO lOS 

C FIND PRINT TEMPERATURE AND PRINT 
C 

110 IFCYTAB(1,I+1).GT.TMPOUTCITEMP»GOTO 115 
I = 1+1 
IFCI.GE.I1)GOTO 130 
GOTO 110 

115 FRAC=CTMPOUTCITEMP)-YTABC1,I»/CYTABC1,I+1)-YTAB(1,I» 
YPASS(1)=TMPOUTCITEMP) 
YPASSCZ)=YTABCZ,I)+FRAC*CYTABCZ,I+1)-YTABC2,I» 
YPASS(3)=YTABC3,I)+FRAC*CYTABC3,I+1)-YTAB(3,I» 
YPASS(4)=YTABC4,I)+FRAC*CYTABC4,I+1)-YTABC4,I» 
SPRIN=YTABC5,I)+FRAC*CYTABC5,I+1)-YTABC5,I» 
CALL DIVFCYTABC5,I),YTABC1,I),TAB) 
P1=YTABC2, I )*C 1. DO+CHI ):I:YTABC 1,1) 
CALL DIVFCYTAB{5,I+1),YTABC1,I+1),TAB) 
P2=YTABC2,I+1)*C1.DO+CHI)*YTABC1,I+l) 
P=P1+FRAC*CP2-P1) 
RADOUT=1.D50 
IFCYPASSCZ).EQ.O.DO)GOTO 125 
RADOUT=-CP*P)/(OKAP*YPASSC3» 

125 P=KAPP 
SPRIN=SPRIN-SBOTT 
WRITEC6,6002)SPRIN,TMPOUTCITEMP),YPASS(2),YPASSC3), 

.YPASS(4),P,RADOUT 
1=1+1 
IFCI.GE.I1)GOTO 130 
ILINE=ILINE+1 
IFCILINE.LT.58)GOTO 105 
ILIt~E=O 
l~R I TE C 6.6004) 
GOTO 105 
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C 
C 
C 

130 IfCI.GT.Il)GOTO 99 
SPRIN=YTABC5,1) 
CALL DIVfCSPRIN,YTABC1,I),TAB) 
P:YTAB(2,I)*(I.DO+CHI)*YTABC1,I) 
R,iDOUT=1.D50 
IFCYTAS(3II).EQ.0.DO)GOTO 135 
RADOUT=-(P~P)/(OKAP*YTABC3,I» 

135 P=KAYj,P 
SPRIN=SPRIN-SBOTT 
WRITEC6,6002)SPRIN,YTAB(1,I),YTABC2,I),YTABC3,I), 

.YTABC4,I),P,RADOUT 
99 CONqNUE 

WRITE OUT TABULATED RESULTS OF INTEGRATION IF REQUESTED 

IfCNOUT.GE.I)CALL WRTRCYTAB,NMAX) 
999 CONTINUE 

STOP 
END 
SUBROUTINE WRTRCY,N) 
IMPLICIT REAL*8 CA-H,O-Z) 
REAL*8 YC5,N) 

1001 fORMAT(IOA8) 
1 002 f O.R tliH ( A ·D 

I~RlTEC10, I002)N 
WRITE(tO,I001)y 
RETURN 
END 
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ABMINT 

SUBROUTINE ABMINT(S.YINT,F,DS,EPS.TSTOP,SSTOP,MSTOP,YTAB,AO, 
.ITS.PRCT,NMAX) 

ABMINT SOLVES A SET OF THREE COUPLED ORDINARY DIFFERENTIAL 
EQUATIONS PLUS A CONSERVATION RELATION THAT DESCRIBE THE 
(STEADY STATE) BEHAVIOR OF A COMPRESSIBLE FLUID IN A FLUX TUBE. 
THE ROUTINE TAKE THE FOLLOWING INPUT PARAMETERS: 

S THE INITIAL DISTANCE (ARBITRARY) 

YINT THE INITIAL VALUES OF Y(1)-Y(4), THE INDEPENDENT 
VARIABLES (TEMPERATURE, DENSITY, HEAT FLUX AND 
VELOCITY) 

F THE NAME OF THE SUBROUTINE THAT CALCULATES THE 
DERIVATIVES OF THE INDEPENDENT VARIABLE AND THE VELOCITY 
(MUST BE DECLARED IN AN EXTERNAL STATEMENT IN THE 
CALLING ROUTINE) 

OS THE INITIAL STEP SIZE 

EPS THE DESIRED ~CCURACY (RELATIVE) FOR A DISTANCE OS 

TSTOP THE MAXIMUM (OR MINIMUM) TEMPERATURE TO WHICH THE 
ROUTINE WILL INTEGRATE 

SSTOPTHE MAXIMUM (MINIMUM) DISTANCE TO WHICH THE ROUTINE 
lHLL INTEGRATE 

MSTOP THE MAXIMUM MACH NUMBER TO WHICH THE ROUTINE WILL INTEGRATE 

YTAB AN ARRAY IN WHICH THE RESULTS OF THE INTEGRATION ARE 
RETURNED TO THE CALLING PROGRAM - SHOULD BE DEMINISIONED AT ' 
LEAST 5*NMAX. VARIABLES STORED IN THE FOLLOWING ORDER: 
TEMPERATURE, DENSITY,HEAT FLUX,VELOCITY AND DIS1ANCE 

AD THE AREA AT THE STARTING POINT TIMES THE DENSITY AT THE 
STARTING POINT TIMES THE VELOCITY AT THE STARTING POINT 
(A CONSERVED QUANTITY) 

ITS INDEX OF THE VARIABLE THAT CONTROLS THE FREQUENCY 
AT WHICH RESULTS ARE PUT IN YTAB 

PRCY . THE MULTIPLICATIVE FACTOR BY WHICH THE ITS ELEMENT OF Y 
IS ALLOWED TO CHANGE BETWEEN THE TABULATION OF THE RESULTS 

NMAX THE MAXIMUM NUMBER OF TABULATION POINTS 

THE ROUTINE USES SEVERAL LOCAL WORKING ARRAYS 

RUNGE-KUTTA: 

Y(4),Yl(4),FO(4),Fl(4),F2(4) USED TO STORE INTERMEDIATE 
VALUES OF THE INDEPENDENT VARIABLE AND THEIR DERIVATIVES 

ADAMS-B,ASl:lFORTH-MOUL TON PRED I CTOR CORRECTOR: 

YW(32),FW(32) USED TO STORE LAST 8 STEPS OF INTEGRATION. 
THE PRESENT INTEGRATION USES 4 PREVIOUS VALUES TO ESTIMATE 
T~E NEXT VALUE SO DOUBLING THE STEP SIZE CAN BE DONE IF 
AT LEAST.4 INTEGRATION STEPS HAVE OCCURRED SINCE THE LAST 
DOUBLING OF THE STEP SIZE 

, 
YP(4),YC(4) USED TO STORE THE PREDICTED AND CORRECTED 

, , , 
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d I' VALUES Of THE"INDEPENDENT VARIABLES d ,I 

d ~B~INT USES AN ADAMS-BASH fORTH-MOULTON PREDICTOR-CORRECTOR 
d iINlEGRATION SCHEME. START UP IS ACCOMPLISHED BY BACKWARD 
¢ ~NlEGRATION WITHA RUNGE-KUTTA SCHEME AND MISSING VALUES 
C NEEDED WHEN HALVING THE STEP SIZE ARE PROVIDEDUSING THE 
C :SArl1E RUNGE-KUTTA SCHEME-------------·· ... 
C I C 
C DE~LARE VARIABLES 
C 

c­
c 
c 

IMPLICIT REAL*8 (A-H,O-Z) 
IREAL*8 S,EPS,ERR,OS,OT,TSTOP,TOIF1,TOlf2,H2,H3,H6,H8,H,T,ERR1, 

.YP(4),YC(4),YINT(4),YTAB(S,1),fOC4),fl(4),f2C4),Yl(4),Y(4),FP(4), 
, .iON24/z3FAAAAAAAAAAAAAB/, ERST, FW C 32) /32*0.00/, YW (32) /32*0.00/, 

.MSTOP,MACH,SSTOP,SOIf1,SOlf2,H924,CCC1/Z4161C71C71C71C72/, 

.CCC2/Z4168E38E38E38E39/,CCC3/Z4141C71C71071C72/,FRAC 
IHTEGER*4 I,J,K,IND,IN1,IN2,IH3,IN4,IT,DOUBLE 
LOGICAL*4 DONE 

START UP USING INTEGRATION BY 4TH 'ORDER R-K & 1/32 OS 
, 

'VCH1=PRCT*YINT(ITS) 
VCH2=PRCT*VCHl 
FRAC=l.DO . 

IMACH=1.649959D8*MSTOP*MSTOP 
MMAX=N~lAX 

15 DTf.03125DO*OS*fRAC 
H2foT*.5DO 
H3;:01/3.00 

.H6=H3*.5DO 
[H8=H2*.25DO 
.T=S 
'IND=4 
DO I 1 1 1=1, 4 

11 ,nAB(1, 1)=YINT(I) 
YTABC5,1)=S 
CALL fCT,YINT,fO,AO,&999) 
OOi 1 1=1,4 

Y (I) =YI NT( I) 
YW(I) =YINT( I) 

1 FWCI)=FO(I) 
DO 2 1=1,3 

DO 3 J= 1,2 
DO 4 K=1,3 

Y1CK)=FOCK)*H3+YCK) 
CALL F(T+H3,Y1,Fl,AO,&999) 
DO \"i) K=1,3 

, mtmtN'xc PAGE IS 
tW POOR QUALITY 

5' Yl(K)=(FO(K)+F1CK))*H6+Y(K) 
CALL FCT+H3,Yl,F1,AO,&999) 
006 K=1,3 

Yl(K)=(F1CK)*3.DO+FOCK»*H8+Y(K) 
CALL FCT+H2,Yl,f2,AO,&999) 
DO 7 K=1,3 

7 Y1(K)=(F2CK'*4.00-F1CK'*3.00+FO(K)'~H2+Y(K) 
T=T+OT 
CALL F(T,Yl,F1,AO,&999) 

9' 
3 

DO 9 K=1,3 
Y(K)=CF2CK)*4.00+F1(K)+fOCK»*H6+Y(K) 

CALL fCT,Y,FO,AO,&999) 
DO 8 J=1,4 

YWCINO+J)=YCJ) 
81 FWCIND+J'=FOCJ) 
2j INO=IND+4 

:IfCYIlC12+ITS).LT.VCH1)GOTO 16 
,fRAC=FRAC*0.500 

GOTO 15 
16 SDIF1=S-SSTOP 

S=T 
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I 
, , 

c 

TD~F'=YWel)-TSTOP 
H=DS~fRAC~0.062500*ON24 
DT~OS*fRAC~.0625DO 
H9;l4=OT*.37500 
ER~=EPS*fRAC*.015625DO 
ERR1=ERR*0.03125DO 
IN1=0 
IN2=4 
IN3=8' 
IN4=12 
DOUBLE=4 
DONE=.fALSE. 

C END INITIALIZATION 
C 

50 
55 

20 I 

30 . ~ 

35 

220 
" ' 

212 

205 

40 

60 

1=2, 
DOUBlE=OOUBLE-l 
CONTINUE 
00 20 J=1,3 

ypeJ)=YWCIN4+J)+H924*CCCC1*FWCIN4+J)-CCC2*FweIN3+J) 
+CCC 3*flH I N2+J) -f~H 1 N l+J)) 

CALL fCS+OT,YP,fP,AO,&999) 
DO, _30 J= 1, 3 
: YceJ)=YWCIN4+J)+H*(9.*fPeJ)+19.*fweIN4+J)-5.*fWCIH3+J) 
. +flHIN2+J)) 

TDlf2=YC(1)-TSTOP 
IfCOSIGNCTDIf2,TuIFl).NE.TOlf2)OONE=.TRUE. 
SDH2=S-SSTOP 
1 no S I G N C SOl f 2 , S D I F1 ) • N E • S D I f 2) 0 ON E = . T RUE. 
CAll F(S+OT,YC,fP,AO,&999) 
If(YCC4)*YCC4).GT.MACH*YCC1))OONE=.TRUE. 
ERST=OABSCYP(1)-YCC1))/COABSCYPC1))+OABSeYCC1))) 
ERST=OMAX1COABSCYP(2)-YCC2))/COABSCYPC2))+OABSCYCC2))),ERST) 
IfCDABSCYC(3»)+OABSCYPC3).LT. 1.E-30)GOTO 220 
ERST=OMAX1CDABSCYP(3)-YCC3))/COABSCYP(3))+OABSeYCe3J)),ERST) 
IfCOABSCYC(4»)+OABSCYPC4»'LT.'l.E-30)GOTO 215 "., 
ERsr=OMAX1COABSeYP(4)-yce4)/CDABSeYP(4»)+DABSCYCC4»)),ERST) 
I FCYC C ITS). GT. VCH2) GOTO 90 
If(ERST.GT.ERR)GOTO 100 
If(ERST.LT.ERR1)GOTO 200 
5=S+OT 
IN1=IN2 
IN2=lN3 

-IN3=! N4 
IN4=MOO(IN4+4,32) 
DO 40 J=1,4 
Y~HIN4+J)=YC(J) 
flHIN4+J)=fPeJ) 

lfCYCCITS).LT.VCH1)GOTO 50 
00 60 J=1,4 ' 
i YTAB(J,I)=YCeJ) 

YTAB(5,I)=S 
1=11+1 
IFCI.GT.NMAX)GOTO 10 
VCH1=VCH2 
VCH2=PRCT*VCHl 
IF (DONE) GOTDl 0 
GOTO 50 

90 IACC=l 

100 
I 103 

GOTO 103 
I,ACC=O 
C:ONTI HUE 

C i 
C SEaTlON THAT HALVES lNTEGRATlpN STEP 
C 

I,F.('OT . LT. 1 .0-1) GOTO 205 
IrtDT.GT.OS)GOTO 109 
ERR=ERR*.5DO 
ERR1=ERR1*.5DO 

113 



C 
C 
C 

C 
-, C 

C 

109 

101 

102 

1i 1 0 

li40 

150 

1'60 
i , 
I 

180 

120 I 

HO 

115 . 

q5 

155 

OT=OT*.500 
H=OT*ON24 
H924=OT*~37500 

REARRANGE WORKING ARRAYS ~._ ~tS 
bid~ QuAlJ't:i IT=MOOCIN4+12,32) 

J=I~A pii! 
DO! 'j 0 1 K = 1, 4 

fWCIT+K)=FWCIN4+K) 
YW(IT+K)=YW(IN4+K) 

-IN4=IT 
IT=MOOCIN3+8,32) 
DO 102 K=1,4 

FWCIT+K)=FWCIN3+K) 
YWCIT+K)=YWCIN3+K) 
FWCIN3+K)=FWCIN2+K) 
YWCIN3+K)=YWCIN2+K) 

IN2=IT 
IT=I N3 
IN1=J 
IN3=MOOCIN2+4,32) 

I 

GENERATE MISSING 

H2:;:OT*.2500 
H3=OT/6.00 

·H.6.=H 3*.500 
H8=H2*.2500 
T=5- C OHon 
DO 110 J= 1,4 

INFORMATION 

YCJ)=YWCIN2+J) 
FOCJ)=FW(IN2+J) 

DO 120 J= 1,2 
DO 130 K=1.3 

Y1CK)=FOCK)*H3+Y(K) 

WITH 4TH 

CAll F(T+H3,Y1,F1,AO,&999) 
DO 140 K=1,3 

Y1CK)=CFOCK)+F1CK»*H6+YCK) 
CALL F(T+H3,Yl,Fl,AO,&999) 
DO 150 K=1,3 

Y1CK)=CF1CK)*3.00+FOCK»*H8+YCK) 
CALL FCT+H2,Yl,F2,AO,&999) 
DO 160 K=1,3 

ORDER R-K 

Y1CK)=CF2CK)*4.00-F1CK)*3.00+FOCK»*H2+YCK) 
T=T+H2+H2 
CALL FCT,Yl,Fl,AO,&999) 
DO 180 K=1,3 

YCK)=(F2CK)*4.00+F1CK)+FOCK»*H6+YCK) 
CALL FCT,Y,FO,AO,&999) 
CONTINUE ' 

DO 170 J=1,4 
FWCIN3+J)=FOCJ) 
YWCIN3+J)=YCJ) 

DO 115 J= 1,4 
Y(J)=YW<IHJ) 
FOCJ)=FWCIT+J) 

T=S-4.00:+:0T 
DO 125 J=1,2 

DO 1:35 K= 1,3 
YfCK)=FOCK)*H3+YCK) 

CALL FCT+H3,Yl,Fl,AO,&999) 
DO 145 K=1,3 

Y1CK)=(FOCK)+F1CK»*H6+YCK) 
CALL FCT+H3,Y1,Fl,AO,&999) 
DO 155 K=1.3 

'YTCK)=CF1CK)*3.DO+FOCK»*H8+YCK) 
CALL FCT+H2,Yl,f2,AO,&999) . 
DO 165 K=1,3 
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c 
c 
c 

____ ~ ____ ~~ ___ i~~'· fll ? "., Ii ,,"V,.)"' 

165 YtCK)=Cf2(K)*4.DO-flCK)*3.DO+FOCK»*H2+YCK) 
T=T+H2+H2 
CALL fCT,Yl,fl,AO,&999) 

j DO 185 K=L3 
185 YCK)=(f2CK)*4.DO+FrrK)+FOCK»*H6+Y(K) 

! CALL fCT,Y,fO,AO.&999) 
125 CONTINUE 

DO 175 J=l,4 
FI.J(INHJ)=FOeJ) 

175 YWCIN1+J)=YeJ) 
GOTO 55 

, -, 
RETURN TO ABM P-C INTEGR~TION WITH NEW STEP SIZE 

CONTI NUE 

SECTION THAT DOUBLES INTEGRATION STEP SIZE 

209 

210 

I~~lACC.EQ.l)GOTO 205 
If~DOUBLE.GE.O)GOTO 205 
OQUBLE=4 
~i.iS-DT 

.";irT=O T+OT 
{' H=OPON24 
H92~=DT*. 37500 
IFeDT.GT.DS)GOTO 209 
ERR=ERRHRR 
ERR l'=ERR HERR 1 
K=~100 e IN4+4, 32) 
IT=MODCIN4+12,32) 
00 2,0 J=1.4 

fW[IN4+J)=FW(IN3+J) 
YWtIH4+J)=YW(IN3+J) 
HI( I N3+J) =fl~ erN 1+J) 
YWCIN3+J)=YW(IN1+J) 
FWCIN1+J)=fW(K+J) 
YW(IN1+J)=YWCK+J) 
FWCIN2+J)=fweIT+J) 
YW(IN2+J)=YW(IT+J) 

GO TO 205 
10NMAX=I-l 

RETURN 
CONTINUE 999 

6001 FtiRMAT(lH ,'FATAL ERROR T OR S OUT OF TABULATED RANGE') 
WRIHC6,6001) 
S=-S 
NMAX=I 
RETURN 
E.ND ) 
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I 
DIVF 
*1 
*1 
*1 
*: 
*! 

*1 
*1 

~ 
~ 

~ 
~ 
~ 
~ 
~ 
* 1 
* ~ 
* * 
* * 

DIVF 

tSE.CT 

DI~F(S,Y,DY,AO,*) OR DIVFCS,Y,TAB) 
REAL*S S,Y(4),DY(4),AO REAL*8 S,Y(4),TABCS) 

i 
TH~ FIRST FORM OF THE CALL CALCUALTES THE DERIVATIVES 

OTiDS = DY(1)/DS , ON/OS = DYCZ)/DS & DQ/DS = DY(3)/DS 

ANti STORES THEN IN ARRAY DY. THE VALUE Of V=Y(4) IS COMPUTED 
FROM THE CONSERVATION LAW NVA = CONSTANT AND STORED IN Y(4). 
THE ROUTINE INTERPOLATES THE VALUES Of PRAR~lETERS NEEDED fOR 
THE CALCULATIONS fROM TABULATIONS OF 4 FUNCTIONS OF S ONLY AND 
4 fUNCTIONS OF T ONLY. IF S OR T IS OUT OF THE TABULATED 
RANGE, THE OFFENDING QUANTITY IS NEGATED AND THE ROUTINE DOES 
THE EQUIVALENT OF A FORTRAN RETURN1. 

THE SECOND FORM OF THE CALL STATEMENT (DISTINGUISHED FROM THE 
FIRST BY THE NUMBER OF ARGUMENTS) CALCULATES THE INTERPOLATED 
VALUES OF GCS),DA/DS(S),SOURCECS), AREACS) AND 1/KAPPACT), 

,LAMBDACT), CHICT) AND DCHI/DTCT) AND STORES THEM IN TAB. -
i 

THtRE IS A SECOND ENTRY POINT CDIVINT) WHICH PICKS UP 
,AND STORES LOCALLY THE ADDRESSES OF THE TABULATIONS OF 
ITHE FUNCTIONS NEEDED FOR THE CALCULATIONS. 

NOTE THAT THIS MEANS THAT MEANINGLESS RESU~TS 
WILL BE PRODUCED IF DIVINT IS NOT CALLED BEfORE 
THE fIRST TIME DIVF IS CALLED. IT IS EVEN POSSIBLE 
THAT SOME SORT OF ABEND WILL RESULT. . 

* !THE FOLLOIHNG Tl~O fORTRAN SUBROUTINES ARE ROUGHLY EQUIVALENT * ~O THE TWO CALLS TO DIVf CDIVINT IS NOT REPRODUCED) 
* * SUBROUTINE DIVfCS,Y,DY,AO,*) 
* * * * * 
* 
* 
* '* * 
* * * * 
* 
* i 

* * '* * 
* * * 
* * * * 
* '* 

IMPLICIT REAL~8 CA-H.O-Z) 
DIMENSION Y(4),DY(4) . . 
REALt8 KOMH/8.2989776D7/,TION/1.0464606DS/,KAY/1.380620-16/ 
DY(1)=-YC3)*OKAPCT) 
Y(4)=AO/CY(2)*ACS)) 
DY(Z)=CY(2)*CYC4)*YC4)*DADSCS)-DYC1)*KOMH 
.CC1.DO+CHI(T))+CT~DCHI(T))-G(S)*S)))/ 
.CKOMH~('.DO+CHICT))~Y(')-YC4)*Y(4)) . 
DY(3)=-CL(T)*CHI(T)*YC2)*Y(2))-(1.SDO*Y(4)*Y(2)~KAY*DY(1) 
.~C(1~DO+CHICT))+CY(1)-TION)*DCHI(T)))+((1.DO CHICT))~KAY 
.*Y(1)~YC4)*DYC2))+SORCS)-YC3)*DADS -
RETURN 
END 

SUBRDUTINE DIVFCS.YiTAB) 
!MPLICIT REAL*8 CA-~,O-Z) 
DIMENSION Y(4),TABCS) 
TABU) GCS) I 
TABC:2)=DADSCS) 
TAB(3)=SORCS) 
TAB(·n=ACS) 
TAB(:S)=OKAPCT) 
TAB(6)=UT) 
TAB(7)=CHI (T) 
TAB~8)=DCHl(T) 
RETURN 
END 

NOTE: IN THE COMMENTS tRt REFERS TO GENERAL PURPOSE REGISTERS 
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* AND 'f' REfERS TO fLOATING POINT REGISTERS. 
* USING *,15 

B DfIRST 
DC X'04' 
DC CL5'DIVf' 

TELL ASSEMBLER NEST INST AD DR IN R15 
BRANCH AROUND NAME AND OTHER ENTRY POINT 

* DIVINTCG,DADS,SOR,AREA,OKAP,LUM,CHI,DCHI) 
* REAL*8 G(563),DADS(563),SOR(563),AREA(563), * REAL*8 OKAP(820),LUM(820),CHI(820),DCHI(820) 

* 
DIVINT 

HIRST 

ENTRY 
USING 
B 
DC 
DC 
STM 
LM 
STM 
LM 
MVI 
BR 

DIVINT 
*,15 
Tf I RST 
X'06' 
CL7'DIVINT ' 
14,12, 12( 13) 
2,9,0(1) 
2,9,GADDR 
2,9,28(13) 
12(13),X'ff' 
14 

TELL ASSEMBLER NEXT INSTR ADDR IN R15 
BRANCH AROUND NAME 

SAVE CALLING ROUTINES GPR'S 
GET BASE ADDR'S Of INTERPOLATION TABLES 
SAY TABLE BASE ADDR'S 
RESTORE CALLING ROUTINE'S GPR'S 
INDICATE CONTROL RETURNED 
RETURN fROM INITIALIZATION 

* . MAIN ROUTINE RESUMES 

DfIRST 

* 

USING 
STM 
L 
LM 
MVC 

LH 
S 

LD 
BM 

C 
BH 
SO 
SLA 

DIVf,15 
14,12,12(13) SAVE CALLING ROUTINES GPR'S 
2,0(1) R2 (= AODR S 
3,6,GADDR R3-R6 (= ADDR'S Of TABLES fOR S 
fLOAT+1(6),2(2) fLOAT (= fRACTIONAL DISTANCE fROM 

12,0(2) 
12,SDISP 

4,fLOAT 
BADS 

12,SBND 
BADS 
4, =0' .5' 
12,3 

NEXT SMALLER VALUE Of S TABULATED. 
R12 {= HIGH ORDER BYTES Of S 
.REDUCE R12 BY SDISP - # WORDS fROM 
BASE Of TABLES 
F4 (= fRACTION 0 LE fRAC LE 1 
If RESULT IS NEGATIVE OUT Of RANGE 
GOTO BADS 
COMPARE R12 TO SBND - If GREATER 
OUT Of RANGE GOTO BADS 
f4 (= X = FRAC - .5 -.5 LE X LE .5 
R12 (= R12*8 NOW BYTE DISPLACEMENT 
fROM BASE Of INTERPOLATION TABLE. 

* NOW COMPUTE WEIGHTS fOR CUBIC INTERPOALTION Of 
* fUNCTIONS Of S 

* 

LOR 
MDR 
HDR 
SO 
LOR 
HDR 
t'lDR 
LCDR 
ADR 
STD 

LCOR 
SDR 
STD 

ADR 
AD 
tlD 
LOR 
SOR 
ADR 
STD 

2,4 
4,4 
4,4 
4,=0'1.125' 
6,4 
4,4 
6,2 
0,4 
0,6 
0,lm1 

0,4 
0,6 
0, 14P 1 

f2 {= X 
f4 (= X*1:2 = X2 
f4 (= X2/2 
f4 (= X2/2 - 9/8 
f6 (= X2/2 - 9/8 
f4 {= X2/4 - 9/16 
f6 (= X3/2 - 9X/8 
FO (= -X2/4 + 9/16 
FO (= X3/2 - X2/4 - 9X/8 + 9/16 
WM1 {= WEIGHT fOR TABLE ENTRY CORRESPOND­
ING TO CLOSEST SMALLER VALUE OF S. 
FO {= -X2/4 + 9/16 
FO {= -X3/2 - X2/4 + 9X/8 + 9/16 
WP1 {= WEIGHT FOR TABLE ENTRY CORRESPOND­
ING TO CLOSEST LARGER VALUE Of S. 

6,2 F6 {= X3/2 - X/8 
4,=0'.5' F4 (= X2/4 - 1/16 
6, =X' 4055555555555555' F6 (= X3/6 - X/24 
0,4 fO (= X2/4 - 1/16 
0,6 fa {= -X3/6 + X2/4 + X/24 - 1/16 
6,4 F6 (= X3/6 + X2/4 - X/24 - 1/16 
0,WM3 WM3 (= WEIGHT fOR TABLE ENTRY CORRESPOND­

ING TO 2ND CLOSEST St'IALLER VALUE OF S. 
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* * 
STD 6,WP3 WP3 <= WEIGHT FOR TABLE ENTRY CORRESPOND­

ING TO 2ND CLOSEST LARGER VALUE OF S. 

* NOW CALCULATE INTERPOLATED VALUES OF GRAVITY AND DA/DS * (HAVE WEIGHTS FOR TABLES ENTRIES 1 ~ 4 IN FPR'S 0 ~ 6) 
* 

* 

LOR 4,0 
LOR 2,6 
MD 0, 0 (3. 12) 
MD 2, 24 (3. 12) 
MD 4,0(4,12) 
~1D 6,24(4,12) 
ADR 0,2 
AOR 4,6 
LD 2,WM1 
LOR 6.2 
MO 2,8(3,12) 
MD 6,8(4,12) 
AOR 0,2 
AOR 4,6 
L 0 2, 14P 1 
LOR 6,2 
MO 2,16(3,12) 
MO 6,16(4,12) 
AOR 0,2 
AOR 4.6 
STD O,G 
STD 4,OADS 
LD O.W~13 
LO 2,14P3 

F4 <= WEIGHT I 
F2 <= WEIGHT 4 
FO <= WEIGHT 1 * GRAV 1 
F2 <= WEIGHT 4 * GRAV 4 
F4 <= WEIGHT 1 * OA/OS I 
F6 <= WEIGHT 4 * OA/OS 4 .~ 
FO < = 14 I *G 1 + 1~4:t:G4 E1iduINAU nGE IS 
~~ g ~i:;~~T + 2 W4:t:04 OF. POOR QUALITY. 
F6 <= WEIGHT 2 
F2 <= W2*G2 
F6 < = W2:t:02 
FO <= W1*G1 + W4:t:G4 + W2*G2 
F4 <= 1011*01 + W4:t:04 + 142*02 
F2 <= 14EIGHT 3 
F6 <= WEIGHT 3 

F2 <= H3*G3 
F6 <= 1013*03 

F2 <= INTERPOLATED VALUE OF G 
F4 <= INTERPOLATED VALUE OF DA/DS 
G <= INTERPOLATED VALUE OF GRAVITY 
DADS <= INTERPOLATED VALUE OF DA/DS 
FO <= WEIGHT 1 
F2 <= 14EIGHT 4 

:+: NOW CALCULATE VALUES OF SOURCE AND AREA 
:+: ( HAVE WEIGHTS 1 ~ 4 IN FPR'S 0 ~ 2) 
:+: 

* 

LDR 4,0 
LOR 6.2 
~lD 0,0(5,12) 
MD 2.24(5.12) 
MD 4,0(6,12) 
MD 6,24(6,12) 
ADR 0.2 
ADR 4.6 
LD 2,lml 
LOR 6.2 
MD 2,8(5,12) 
MD 6,8(6,12) 
ADR 0,2 
ADR 4,6 
LD 2,WPI 
LDR 6,2 
MD 2,16(5,12) 
MO 6,16(6,12) 
AOR 0,2 
ADR 4,6 
STD O,SOR 
STD 4,AREA 

F4 <= WEIGHT 1 
F6 <= WEIGHT 4 
FO <= WEIGHT 1 * SOURCE 1 
F2 <= WEIGHT 4 * SOURCE 4 
F4 <= WEIGHT 1 :t: AREA 1 
F6 <= WEIGHT 4 * AREA 4 
FO <= Wl*Sl + W4*S4 
F4 <= Wl*Al + W4*A4 
F2 <= 14EIGHT 2 
F6 <= WEIGHT 2 
F2 < = ~J2*S2 
F6 <= 1~2a-A2 
FO <= Wl*SI + W4:t:S4 + W2*S2 
F4 <= Wl*Al + W4*A4 + W2*A2 
F2 <= I~EIGIlT 3 
F6 <= 14EI GHT 3 

F2 < = 143*S3 
F6 < = 1.J31:A3 

F2 <= INTERPOLATED VALUE OF SOURCE 
F4 <= INTERPOLATED VALUE OF AREA 
SOR <= INTERPOLATED VALUE OF SOURCE 
AREA <= INTERPOLATED VALUE OF AREA 

* CALCULATE INDEX AND FRACTIONAL DISPLACEMENT FOR INTERPOLATION 
* ON TEMPERATRUE (T) TABLE 
:+: 

* 
:+: 

L 
LM 

MVC 

LH 
S 

LD 

2,4(1) R2 <= BASE ADDR Y ARRAY 
3,6,KADDR R3-R6 <= BASE ADDR'S TABLES FOR 

INTERPOLATION OF FUNCTIONS OF T 
FLOAT+1(6),2(2) FLOAT (= FRACTIONAL DISTANcE FROM 

NEXT SMALLER VALUE OF T TABULATED. 
12,0(2) R12 <= HIGH ORDER BYTES OF T 
12,TDISP REDUCE R12 BY TDISP - # WORDS FROM 

BASE OF TABLES 
4,FLOAT F4 <= FRACTION 0 LE FRAC LE 1 

118 



BM BAOS 
* C 12.,TBNO 

BH BADS 
SO 4,=0'.5' 
SLA 12,3 

* * 

IF RESULT IS NEGATIVE OUT OF RANGE 
GOTO BADS 
COMPARE R12 TO TBND - IF GREATER 
OUT OF RANGE GOTO BACS 
F4 <= X = FRAC -.5 -.5 LE X LE .5 
R12 <= R12*8 NOW BYTE DISPLACEMENT 
FROM BASE Of INTERPOLATION TABLE. 

* NOW COMPUTE WEIGHTS FOR CUBIC INTERPOALTION OF 
* fUNCTIONS Of T 
* 

* 

* 
* * 

LOR 
MOR 
HDR 
SO 
LOR 
HOR 
~1DR 
LCDR 
ADR 
STD 

LCDR 
SDR 
STD 

ADR 
AD 
~1D 
LOR 
SOR 
AOR 
STD 

STD 

2,4 
4,4 
4,4 
4,=0 '1.125' 
6,4 
4,4 
6,2 
0,4 
0,6 
O,lm, 

0,4 
0,6 
0,WP1 

F2 <= X 
f4 <= X**Z = Xl 
f4 <= Xl/2 
F4 <= X2/2 - 9/8 
F6 <= X2/2 - 918 
F4 <= X2/4 - 9/16 
f6 <= X3/2 - 9X/8 
Fa <= -X2/4 + 9/16 
fa <= X3/2 - Xl/4 - 9X/8 + 9/16 
WM1 <= WEIGHT fOR TABLE ENTRY CORRESPOND­
ING TO CLOSEST SMALLER VALUE OF T. 
Fa <= -X2/4 + 9/16 
fa <= -X3/2 - X2/4 + 9X/8 + 9/16 
WP1 <= WEIGHT FOR TABLE ENTRY CORRESPOND­
ING TO CLOSEST LARGER VALUE OF T. 

6,2 f6 <= X3/2 - X/8 
4,=0'.5' F4 <= X2/4 - 1/16 
6,=X'4055555555555555 1 F6 <= X3/6 - X/24 
0,4 FO <= Xl/4 - 1/16 
0,6 FO <= -X3/6 + X2/4 + X/24 - '1'6 
6,4 F6 <= X3/6 + X2/4 - X/24 - '/16 
0,NM3 WM3 <= WEIGHT FOR TABLE ENTRY CORRESPOND­

G,WP3 
ING TO 2ND CLOSEST SMALLER VALUE OF T. 
WP3 <= WEIGHT FOR TABLE ENTRY CORRESPOND­
ING TO 2ND CLOSEST LARGER VALUE OF T. 

* NOW CALCULATE INTERPOLATED VALUES OF l/KAPPA(T) AND L * (HAVE WEIGHTS FOR TABLES ENTRIES 1 & 4 IN FPR'S a & 6) 
* LOR 4,0 

LOR 2,6 
~1D 0,0(3,12) 
MO 2, l4 ( 3, 12) 
MO 4, 0 ( 4, 1 2 ) 
MO 6,24(4,12) 
AOR 0,2 
ADR 4,6 
LO l,WM' 
LOR 6,2 
MO 2,8(3,12) 
~1D 6,8(4,12) 
AOR 0,2 
AOR 4,6 
LO 2,!JPl 
LOR 6,2 
MO 2, 16( 3,12.> 
MO 6,16(4,12) 
ADR 0,2 
AOR 4,6 
STD O,OKAP 
STD '4, LUM 

* 

F4 <= WEIGHT 1 
F2 <= I~EIGHT 4 
Fa <= WEIGHT 1 * K 1 
F2 <= WEIGHT 4 * K 4 
F4 <= WEIGHT 1 * L 1 
F6 <= WEIGHT 4 * L 4 
FO <= Wl*Kl + N4*K4 
F4 <= Wl*L1 + W4*L4 
F2 <= I,JEIGHT l 
F6 <= I~EI GHT 2 
F2 <= 1~2:j,K2 
F6 < = 1~2:;'L2 
FO <= w1*k1 + W4*K4 + W2*K2 
F4 <= W1*L1 + W4*L4 + W2*L2 
F2 <= I~EIGHT 3 
F6 (= WEIGHT 3 

F2 <= W3*K3 
F6 <= W3*L3 

F2 <= INTERPOLATED VALUE OF '/KAPPA 
F4 <= INTERPOLATED VALUE OF L 
OkAP <= INTERPOLATED VALUE OF 1/KAPPA 
LUM <= INTERPOLATED VALUE OF L 

* CHECK TO SEE If GAS FULLY IONIZED (T > 65,536, BYTE DISP > 3BC(HEX)), 
* IF SO SKIP INTERPOLATION OF CHI AHO DCHI/DT, IF NOT CONTINUE 

C 
BC 
LO 

12,HBYTE 
2,HIGHT 
0,lm3 FO <= 14EIGHT 
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LD 2,WP3 f2 <=WOGHT 4 
:t: 

:t: NOW CALCULATE VALUES Of CHI AND DCHI/DT 
:t: ( HAVE WEIGHTS 1 & 4 IN fPR'S ° & 2) 

* 

LDR 
LDR 
Mo 
Mo 
Mo 
Mo 
AoR 
ADR 
LO 
LDR 
MD 
tlD 
ADR 
ADR 
LO 
LDR 
MO 
tlD 
ADR 
ADR 
STo 
STo 
LM 
LTR 
BM 
LD 
LNDR 
Mo 
STo 
AD 
Lo 
LO 
Mo 
oDR 
STO 
tlDR 
LOR 
~lD 
NO 
SDR 
Mo 
SO 
~iD 
ADR 
NO 
~1D 
SDR 
MD 

4,0 
6,2 
0,0(5,12) 
2,24(5,12) 
4,0(6.12) 
6,24(6,12) 
0,2 
4,6 
2,WMI 
6.2 
2,8(5,12) 
6,8(6,12) 
0,2 
4,6 
2, t.)P 1 
6.2 
2,16(5,12) 
6,16(6,12) 
0,2 
4,6 
O,CHI 
4,DCHI 
3,4,8(1) 
3,3 
TABL 
2,OKAP 
2,2 
2,16(2,0) 
2.0(3,0) 
0, =D' 1. ' 
2,0(4,0) 
6,AREA 
6,8(2,0) 
2,6 
2,24(2,0) 
2,2 
6,0 
6,KOMH 
6,0(0,2) 
6,2 
2,DADS 
2,G 
4,0(2,0) 
4,0 
4,KOMH 
4,0(3,0) 
2,4 
2,8(2,0) 

f4 <= l')EIGHT 1 
f6 <= t4EIGHT 4 
fa <= tJEIGHT 1 :t: CHI 1 
f2 <= WEIGHT 4 :t: CHI 4 
f4 <= WEIGHT 1 :t: DCHI/DT 1 
f6 <= WEIGHT 4 :t: DCHI/oT 4 
fO <= Wl*Cl + W4*Cl 
f4 <= Wl*Dl + W4*D4 
f2 <= t')EIGHT 2 
f 6 < = t~ E I G H T 2 
f2 < = t42*C2 
f6 <= 1.)2*02 
fa <= Wl*Cl + W4*C4 + W2*C2 
f4 <= 141*01 + 144*04 + 142*02 
f2 <= tJEIGHT 3 
F6 <= IJEIGHT 3 

f2 < = 143*C3 
f6 <= t43~:D3 

f2 <= INTERPOLATED VALUE OF CHI 
F4 <= INTERPOLATED VALUE OF DCHI/DT 
CHI <= INTERPOLATED VALUE Of CHI 
DCHI <= INTERPOLATED VALUE OF DCHI/OT 

GPR'S 3&4 <= BASE ADDR'S OF OY AND AO 
CHECK If 3 NEGATIVE If SO IS LAST 
PARAMETER GOTO TABL 

F2 <= I/KAPPA 
f2 <= -l/KAPPA 

F2 <= -Q/KAPPA = DT/DS 
STORE OT/OS 
FO <= l+CHI 
F2 <= AO = NO*UO*AO 
F6 <= AREA 
f6 <= AREA*N 
F2 <= (NO*UO*AO)/(AREA*N) = U 
STORE U (VELOCITY) 
F2 <= U:l::+:2 
F6 <= 1+CHI 
F6 <= (K*(I+CHI»/MH 
F6 (= (KT*(I+CHI»/MH 
F6 <= (KT*(l+CHI»/MH - U**2 
F2 (= DADS*U**2 
F2 <= DADS~U**2 - GS 
F4 <= DCHI/DT*T 
F4 <= (l+CHI) + DCHI/DT*T 
F4 <= K/tlH*H(¢) 
F4 <= DT/DS*f4(¢) 
F2 <= F2(¢) - F4(¢) 
F2 <= F2(¢):+:N: 

* F2 <= N*(U**2*DA/DS - DT/DS*K/MH*«I+CHI)+T*DCHI/DT) - GS) 

* 

DOR 2,6 
STO 2,8(3,0) 
tlDR 2,0 
LD 4,0(2,0) 
~lDR 2,4 
SD 4,TION 
~lD 4,OCtH 
ADR 4,0 
LD 0,8(2,0) 
MOR 4,0 
ND 4,=0".5' 
MO 4,0(3,0) 

f2 <= ON/OS 
STORE DN/OS 
F2 <= (I+CHI)*ON/OS 
F4 <= T 
f2 <= T*(l+CHI)*ON/OS 
f4 <= T - TI 
F4 <= (T-TI)*DCHI/DT 
F4 (= (I+CHI) + (T-TI)*OCHI/DT 
FO (= N 
F4 <= N*( l+CHI +(T-TI)*OCHI/DT) 
F4 <= 3/2 * F4(¢) 
F4 <= OT/DS * f4(¢): 
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* F4 {= 3/2*OT/OS*(1+CHI + (T-TI)*OCHI/OT) 
* SOR 

MD 
MD 
~IDR 
MD 
MD 
sop. 
LD 
MD 
SDR 
AD 
STD 
LM 
MV I 
BCR 

2.,4 
2,24(2,0) 
2,KAY 
0,0 
O,CHI 
O,LUM 
2,0 
0,16(2,0) 
O,DADS 
2,0 
2,SOR 
2,16(3,0) 
14,12,12(13) 
12(13),X'FF' 
, 5, 14 

F2 <= (1+CHI)*ON/OS*T - F4(¢) 
F2 <= F2(6) * U 
F2 <= K :+: F2(¢) 
FO <= N**2 
FO <= 1'1*:+:2 * CHI 
FO <= RADIATIVE LOSSES 
F2 <= F2(¢) - FO(¢) 

FO <= Q 
FO <= Q/A*OA/DS 
F2 <= DQ/DS LESS SOURCE TERM 
F2 <= DQ/DS 

STORE DQ/DS 
GPR'S RETURNED TO ORIGINAL STATE 
TELL CALLING PROGRAM WE'RE RETURNING 
RETURN 

* END OF SECTION FOR T , 65,536 NEXT SECTION DOES SAME CALCULATIONS 
* FOR FULLY IONIZED CASE 
* HIGHT LM 

MVC 

LTR 
BM 
~1D 
LCDR 
STD 
LD 
LD 
MD 
DDR 
STD 
MDR 
LDR 
LD 
MDR 
MD 
SDR 
MD 
SDR 
SO 
LD 
~1DR 
DOR 
STD 
MDR 
LOR 
ADR 
ADR 
MO 
ADR 
SOR 
~1D 

~'O MDR 
~1D 
SDR 
LD 
~1D 
SDR 
AD 
STD 
LM 
MVI 
BR 

3,4,8(1) FPR'S 3&4 <= BASE ADDR'S OF DY & AO 
OKAP+16(16),=X I 4110QOOOOOOOOOOOOOOOOOOOOOOOOOOO' 

3,3 
TABL 
0,16(2,0) 
0,0 
0,0(3,0) 
2,0(4,0) 
4,AREA 
4,8(2,0) 
2,4 
2,24(2,0) 
2,2 
6,0 
4,KO~'H2 
6,4 
4,0(2,0) 
4,2 
2,DADS 
2,6 
2.G 
6,8(2,0) 
2,6 
2,4 
2,8(3,0) 
0,6 
4,0 
0,0 
0,4 
2,0(2,0) 
2,2 
2,0 
2,KAY 
2,24(2,0) 
6,6 
6,LUM 
2,6 
4,16(2,0) 
4,DADS 
2,4 
2,SOR 
2,16(3.0) 
14,12,12(13) 
12(13),X'FF' 
14 

CHI <= 1 & DCHI <= 0 
CHECK IF 3 NEGATIVE IF SO IS LAST 
PARAMETER GOTO TABL 

FO <= Q/KAPPA 
FO <= -Q/KAPPA = DT/DS 
STORE DT/DS 
F2 <= AO = NO*UO*AO 
F4 <= AREA 
F4 (= AREA:l:N 
F2 <= (NO*UO*AO)/(AREA*N) = U 
STORE U (VELOCITY) 
F2 <= U*:+:2 
F6 <= OT/OS 
F 4 < = 2K/MH 
F6 <= 2K/MH*DT/DS 
F4 (= 2KT/MH 
F4 <= 2KT/MH - U*:+:2 
FS (= U*~2/A*DA/DS 
F2 <= U**2/A*DA/DS - 2K/MH*DT/DS 
F2 (= F2(¢) - G 
F6 <= 1'1 
F2 <= F2(O * 1'1 
F2 <= DtVDS 
STORE DN/OS 
FO <=N*DT IDS 
THIS AND THE NEXT TWO INSTRUCTIONS 
EFFECTIVELY MULTIPLY FO BY 3. 
FO <= 3N*DT/DS 
F2 <= DN/DS=+-T 
F2 (= 2T*ON/DS 
F2 (= 2T*DN/OS - 3N*DT/DS 
F2 <= K*(2T*DN/DS - 3N*DT/DS) 
F2 (= K*U*(2T*DN/DS - 3N*DT/DS) 
F6 (= N**2 
F6 (= RADIATIVE LOSSES 
F2 (= F2(¢) - F6(¢) 

F 4 (= Q 
F4 <= Q/A*DA/DS 
F2 <= DQ/DS LESS SOURCE TERM 
F2 <= DQ/DS 

STORE DQ/DS 
GPR1S RETURNED TO ORIGINAL STATE 
TELL CALLING PROGRAM WE'RE RETURNING 
RETURN 

RETURN INTERPOLATED FUNCTION VALUES NOT DERIVITIVES 
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, 
1,., 

* TABL rwc 
LM 
MVI 
BR 

* * CASE OF S OR 
* BADS LD 

LNDR 
STD 
LM 
LA 
MVI 
BR 
CNOP 

* * STORAGE FOR 
* GAD DR DC 
DADDR DC 
SADDR DC 
MOOR DC 
KADDR DC 
LAD DR DC 
CADDR DC 
l:)r.DDR DC 
SUISP DC 
TDISP DC 
TBND DC 
SBND DC 
HBYTE DC 
14M3 DC 
WM1 DC 
14P1 DC 
WP3 DC 
G DC 
DADS DC 
SOR DC 
AREA DC 
OKAP DC 
LUM DC 
CHI DC 
DCHI DC 
TI ON DC 
KAY DC 
KO~1H DC 
KOMH2 DC 
flOAT DC 

END 

0(64.3),G PUT INTERPOLATED VALUES IN TAB 
14.12.12(13) RESTORE GPR'S 
12( 13).X'H' INDICATE CONTROL RETURNED 
14 RETURN 

T OUTS I D'E OF THE TABULATED RANGE 

0.0(2.0) FO <= OFFENDING QUANTITY (T OR S) 
0,0 FO NOW NEGATIVE 
0.0(2,0) STORE OFFENDING QUANTITY -
14,12. 12( 13) GPR'S RETURNED TO ORIGINAL 
15.4 GPR 14 <= 4 (RETURN 1) 
12(13).X'H' TELL CALLING PROGRAM WE'RE 
14 
4.8 

ADDR'S. CONSTANTS. AND INTERNAL VARIABLES 

X'OOOOOOOO' 
X'OOOOOOOO' 
X'OOOOOOOO' 
X'OOOOOOOO' 
X'OOOOOOOO' 
X'OOOOOOOO' 
X'OOOOOOOO' 

FLAG 
STATE 

RETURNING 

X'OOOOOOOO' 
X'00004710' 
X'00004410' 
X'00000330' 
X'00000330' 
X'00000778' 
X'OOOOOOOOOOOOOOOO' 

OJUGtNAL PACI II 
GI fOORQUAlJT.I 

X'OOOOOOOOOOOOOOOO' 
X'OOOOOOOOOOOOOOOO' 
X'OOOOOOOOOOOOOOOO' 
X'OOOOOOOOOOOOOOOO' 
X'OOOOOOOOOOOOOOOO' 
X'OOOOOOOOOOOOOOOO' 
X'OOOOOOOOOOOOOOOO' 
X'OOOOOOOOOOOOOOOO' 
X'OOOOOOOOOOOOQOOO' 
X'OOOOOOOOOOOOOOOO' 
X'OOOOOOOOOOOOOOOO' 
X'45198C6100000000' 
X'339F2CB600000000' 
X'474EAB1BOOOOOOOO' 
X'479D5A3600000000' 
X'4000000000000000' 
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