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ABSTRACT

An idealized steady state model of a stream of energetic electrons
neutralized by a reverse current in the pre-flare solar plasma is
developed., These calculations ‘indicate that, in some cases, a signifi-
cant fraction of the beam energy may be dissipated by the reverse current,
Joule heating by the reverse current is a more effective mechanism for
heating the plasma than collisional losses from the energetic electrons
because the Ohmic losses are caused by thermal electrons in the reverse
current which have much shorter mean free paths than the energetic
electrons.

Analysis of the steady state model indicates that it can not
adequately describe the interaction of the beam with the solar plasma
because the atmosphere is rapidly heated. If the time scalelfor this
heating is short enough, the density of the atmosphere can be taken
constant in time, The charge separation required to drive the reverse
current is expected to respond to changes on a time scale very short
compared to the time for the ambient plasma temperature to change signi-
ficantly, so it is a reasonable approximation to use the steady state
results for the electric field, With these simplifications, the heating
due to reverse currents is calculated for two injected energetic electmm
fluxes., For the smaller injected flux, the temperature of the coronal
plasma is raised by about a factor of two, The larger flux causes the
reverse current drift velocity to exceed the critical velocity for the
onset of ion=cyclotron turbulence, producing anomalous resistivity and

an order of magnitude increase in the temperature. The heating is so
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rapid that the lack of ionization equilibrium may produce a soft x-ray

and EUV pulse frém the corona,
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1. INTRODUCTION

This dissertation examines the consequences of reverse currents that
may be expected to develop in the solar atmosphere in response to the
imposition of a directed stream of energetic (non-thermal) electrons,

The phenomena which indicate the presence of streams of electrons mani-
fest themselves primarily in the "flash phase" of solar flares (Svestka
1973). Not all flares exhibit a "flash phase'" (Svestka 1975, Sweet 1959,
Sturrock and Coppi 1906) and the existence of directed streams of non-
thermal electrons is not universally accepted (Svestka 1974, Brown 1974,
Brown and Meirose 1977). A short historical review is presented (cf. 1.1)
as an attempt to place the phenomena in perspective, Observations that
indicate the presence of energetic electrons in the solar atmosphere are
reviewedkand the introduction concludes with a short summary of our
present theoretical undexstanding of the Tlare process.’

In Chapter 2 the objections to unueufralized'electrou beams and
previous work on reverse currents are sumarized and a steady state model
~of a stream of energetic electrons neutralized by a reverse current is
developed. In Chapter 3 the model is modified to include time dependence
foi a réstricted case. The results of Chapters 2 and 3 are summarized
iﬁ Chapter I and possible extensions of the present work are suggested,
Details of the numerical caleculations of Chapters 2 and 3 are discussed
in the appendices.

1.1 Historical Overview

The sun is the closest star to the earth and the only star which we
can presently observe in great. detail, ~“Aside from the intrinsic interest

of solar phenomena, we can hope that by understanding solar phenomena we
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will gain insight into what is likely to happen on other stars like the
sun. The sun is a normal G type main sequence star, but by virtue of its
position it is the brightest object in the sky.. The importaﬁce of the
sun to life on earth cannot be overstated. In the introduction to his
book, The Sun, C. A. Young {1902a) emphasizes this point.

"It is true from the highest point of view the sun is

only one of a multitude - a single star among millions -

thousands of which, most likely, exceed him in brightness,

magnitude and power, He is only a private in the host of heaven,

"But he alone, among the countless myriads, is near

enough to affect terrestrial affairs in any sensible degree;

and his influence upon them is such that i1t is hard to fiund

the word to name it; it is more than mere control and dominance.

He does not, like the moon, simply modify and determine certain

more or less important activities upon the surface of the

earth, but he is almost absolutely, in a material sense, the

prime mover of the whole. To him we can trace directly nearly

all the energy involved in all phenomena, mechanical, chemical

or vital, Cut off his rays for even a single month, and the

earth would die; all life upon its surface would cease."

The great preponderance of the energy flux from the sun is, to the
best of our knowledge, very nearly constant (Smith and Gottlieb 1974).
It is only in those portions of the electromagnetic spectrum where the
solar output is small (radio XUV, X-ray), in individual spectral lines
(e.s. H ,Ca H and K), and in particle emission (the solar wind, energetic
electrons and nuclei), that the sun's output varies significantly due to
solar- activity.

The most obvious manifestations of solar activity are sunspots.
Sunspots have been observed telescopically since 1611, shortly after the
invention of the telescope, and with the unaided eye on infrequent‘occa—
sions since ancient times (Bray and Loughhead 1964). It is not clear

which of four men, Galileo Galilei, Johann Goldsmid, Thomas Harriot or

Christopher Scheiher, actually made the first telescopic observation of



sunspots (Bray and Loughhead 1954). That another manifestation of solar
activity, faculae, were observed at about the same time is demonstrated

by the title of Christopher Scheiner's (1630) book, Rosa Ursina Sive Sol

ex Admirando Facularum and Macularum Fuarum Pheonomeno Varius (see Eddy

et al. 1977, Meadows 1970). In the first half of the 19th century Schwabe
(184L) announced the possible existence of the sunspot cycle with a per-
iod of about 10 years ("von ungefahr 10 Jahren'). Wwolf (1852) later
deduced a more accurate perviod of 11.111% * .038 years or “de sorte que
neuf periodes equivalent justement a un siecle"., Wolf (18§2) also deduced
from earlier records the years of sunspot minima back to 1700, but the
earlier portion of this historical reconstruction has been questioned
recently (Eddy 1976).

The first recorded observation of a solar flare occurred on September
lst, 1849. A relatively rare "white light flare", visible against the
photosphere, was simultaneously observed by Carrington (18%9) and
Hodgson (1859). In 1&8 Janssen (1869) and Lockyer (1839) independently
discovered that prominences could be seen outside eclipse with a spectro-
scope with a wide entrance slit. Thereafter various observers, espe-
cially Secchi (1877) made exteusive visual observations of the forms of
the chromosphere and prominences using this technique. Flares in
individual lines were observed quite often from the lBTQ's onward (see
Young 1871, 1902b,c for early examples). Thé first photographs of flares
wvere obtained by Hale (1892) with a spectroheliégraph of his own inven-
tiou (Hale 189l). Deslandres (1893) independently developed a similar
instrument, and the basic principle of the‘spectroheliograph was known to

Janssen (1859) who actually constructed an instrument similar to the




spectrohelioscope (Millochau and Stefanik, 1905) for observing promi-
nences but abandbned it in favor of a widened spectroscope slit., The
basic principle was independently discovered by Braun, and Lohse attemp-
ted the construction of a spectroheliograph (Hale 1906). The matter of
who actually used a "spectroheliograph” first was the subject of some
debate between Deslandres and Hale (Hale 1905, Deslandres, 1905) but
this distinction is generally given to Hale. In 1908 Hale (1908) made
the first observation of magnetic fields on the sun, and realized soon
thereafter that magnetic fields, sunspots and flares were intimately
connected (Hale 1929). Because the spectroheliograph took a relatively
long time to form an image of the whole sun, the systematic investigation
of flares did not begin until the spectrohelioscope, constructed by Hale
in 1926 (Hale 1929), was fully developed (Smith and Smith 1963). The
development of the polarizing monochromatic filter (Lyot filter) by
ohman in 1938 (Ohman 1938), independently of Lyot's original proposal
(Loyt 1933, Evans 1949), allowed photographs of the entire solar disk in
one spectral line to be made rapidly. This type of filter is still
widely used in flare patrol telescopes and solar observatories.

Jansky (1933),made the first observation of radio emission from an
extra-terrestrial source. It was not until 1942 that Hey (1946) dis-
covered meter wavelength radiation from the sun. At about the same time
Southworth (1945) discovered centimeter wavelength radiation from the
sun. Reber (19hL) made the first published report of radio emission
from the sun; the earlier work was not published due to its association
with the war effort. Appleton (1945) published evidence for radio

emission from the sun in the 7-30 meter wavelength band. Appleton's




results were based on amateur radio operators' reports (dating from
1938) of "hiss" heard only during the daylight hours and frequently
before sudden fade outs. Appleton and Hey (19:) noted that some radio
bursts were associated with flares. Covington (1948) first reported
microwave bursts from the sun near the maximum of solar cycle 18.
Burnight (l9h9) reported the first observation of X-ray emission

from the sun, Burnight's observation was made using photographic film
with aluminum and beryllium filters flown in a captured V2 rocket.
Peterson and Winkler (19°8) made the first observation of a flare asso-

ciated impulsive X-ray burst using a balloon borne proportional counter

.

1.2 Review of Observations

=5

The presence of energetic electrouns in the solar atmosphere is
inferred from impulsive hard X-ray bursts, dmpulsive microwave bursts
and observations of energetic electrouns by satellites in earth orbit.
Impulsive microwave bursts are rapid enhancements of radio flux at
frequencies greater than ~ 1 GHz. These impulsive enhancements occur
simultaneously with impulsive X-ray and EUV bursts and often show very
similar time structure, even down to the fline details of the time profiles
(Peterson and Winkler 1959, Kundu 1901, Anderson and Winkler 122, Kane
and Dounelly 1971, deFeiter 1974, Svestka 197%), The impulsive micro-
wave bursts are generally attributed to gyro-synchrotron radiation from
electrons with energies greater than ~ 100 keV (Holt and Ramaty 1909,
Svestka 197%). The gradual post-burst increases can be interpreted as
thermai brémsstrahlung from the flarve-associated soft X-ray plasma and
are usually accompanied by radio emissicu at lower frequencies (Svestka

1974). The apparent discrepancy hetween the number of electrons required
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to pfbduce the impulsive X-ray bursts and the number of electrons required
to produce the impulsive microwave emission (Peterson and Winkler 1959)
can be resolved if the details of the microwave emission in the solar _
atmosphere are considered (Holt and Ramaty 1969, Takakura 1972). The
generation and propagation of microwaves in the solar atmosphere during
a solar flave are complicated processes involving the magnetic field
configuration, ambient plasma density and temperature and density and
energy spectrum of the non-thermal electrons (Holt and Ramaty 1969,
Kruger 1972, Takakura 1972, Svestka 1975). Therefore, it is difficult to
unambiguously infer the number and energy spectrum of the non-thermal
electrons from the observed microwave emission,

In some flares,; non-thermal electrons escape into the interplane-
tary medium and are observed by satellites in earth orbit (Svestka 1975,
Lin 1974). Since the electrons apparently propagate primarily along
magnetic field lines in the interplanetary medium, electrons‘are observed
primarily from flares in the western half of the visible hemisphere of
the sun or from flares beuind the west limb of the sun (Svestka 1975,
Lin 1974). Lin (1974) concludes that there are two distinct types of
non-relativistic electron bursts (E < 500 keV) observed at 1 AU, "pure
electron events', that is those not accompanied by energetic (> 10 mev)
protons, and "mixed events' during which both energetic electrons and
protons are observed. The energy spectra of the '"pure electron" events
can be well fitted between 5 keV and 100 keV by a power-law in energy,

aN/dE = B

s, with Y ~ 2.5-5.5 but exhibit a rapid steepening at ener-
gies above 100 keV (Lin 1974). On the other hand the typical spectra of

energetic electrons for "mixed events' extend smoothly in a power-law



out to and beyond 10 mev and tend to be somewhat havder (Y ~« D.h-b,%)
(Lin 1974).  When impulsive X-ray bursts are associated with electrons
abserved at L AU, 109~103 nore electrons are required to produce the
impulsive hard X-ray bursts than escape 10 the iunterplanetary medium
(Lin and Mudson 1971, Lin 1O¢h).

It is now generally believed that the wmechandlswm for the production
of dimpulsive hard X-ray bursts is bremsstrahlung from electrons scattering
on protons and heavier ilons (Kane 1o, Swvestka Lofs, Brown Lojs).
Smaller impulsive events gencrally consist of onoe or a few spikes with
comparable e-folding rise and fall times of ~ L0 s (Kane 19, Kane and
Anderson 1O7Q, Cranncll ot al. 1977) . Lavger events, with total durations
of minutes ox tens of minutes, usually have o complex spiky tiwe structure
(Svestka 197, Hoyng et al. 19fu). Frost and Demnis (L07L) aud Frost
(197&) have also repoxted an apparently distinet non-impulsive non-
thermal hard Xe-ray compouent in some largey eovents; after the impulsive
phase of the Ilare and possibly associnted with a sccond phase of particle
acceleration, In this work, we restrict our attention to the dwmpulsive

hard X-ray bursts, and assume that both the later "sccond phase' havd

4 it

X=rays and the “gradual components” iu the low ecnergy chanunels (< 9“0 keV)
of some instruments are distinct phenomens,

The spectral information on iwpulsive hard X-ray bursts is liwmited,
but most ovents can be roasonably mittod to o decredsing power-law in
photon cnergy between 1000 keV and LO0=140 keV (Kane 1ofh, Brown Loy,
Hoyug lﬂv?). The power-law index is typieally between 9.5 and = (Kane
Lah, Svestka 1) although some buvsts have vory soft spectra and

pover=~law indices ns Large ns 8 have been reported (Peterson ot al., Lagh),

Ql
T

')




Most events show a softening of the spectrum at higher energies (Kane
1974, Svestka 1975). This bend or "knee' in the power-law spectrum
usually occurs between 60 and 100 keV (Brown 1975, Svestka 1975) but in
some events can occur as high as 500 keV (Brown 1975). Since the high
energy cut-off of many instruments is below 500 keV [e.g. 0SO-7
(Peterson et al. 197h), 0S0-5 (Frost et al. 1970) or 0GO-5 (Kane and
Anderson 1970)] such a break in the spectrum may be present in many
events for which no break is reported., It is obvious that the power-
law must flatten at low energies, othefwise the total X-ray flux would
diverge. However, the determination of the low energy cut-off is diffi-
cult because the X-ray emission at low energies (< 10 keV) is dominated
by the gradual quasi-thermal component in most events (Brown 1975,
Svestka 1975).

Although the interpretation of the X-ray spectrum as bremsstrahlung
from a non-thermal (i.e. non-Maxwellian in energy) distribution of
electrons is widely accepted, some workers advocate a thermal inter-
pretatiOn for many impulsive X-ray bursts (for example Chubb-1970,

Elcan 1976, Crannell et al, 1977) and some events seem to fit an
exponential rather than a single power-law spectrum (Elcan 1976,

Crannell et al. 1977). However, the spectral data are poor, particularly
at higher energies (primarily due to counting statistics), and it is not
cléar that ankexponéntial spectrum is to be preferred over two power-
1AWS or some other form forrthe spectra, Brown (197&) has demonstrated
that any observed hard X-ray spectrum can be pfoduced by a thermal

plasma with a suitablé temperature distribution in' the sourde; Brown

<l975) has also pointed out that the emitted X-ray spectrum is rather



jusensitive to the source electroun energy spoctrum and concludes that a
power-law elactrbn spectrum 15 not strougly mandated by the presently
available data.

There are theoretical objections to multi-thermal models of
impulsive hard X-ray bursts (Kahlex 1991) and wedels that produce power
law spectra by superposing different exponential spectra seem somewhat
contrived to this author despite assoxrtions to ﬁhe contrary by sono
workevs (e.g. Brown LOfh). ‘In more recent "thormal' models of impul-
sive havd X-ray bursts (e.g. Smith and Lilliequist 1971), the electron
distributicn is not oxpected to be Maxwellion, Neithex the theovetical
objections (Kahler, Lufh) or the limited observational support for thermal
olectron digtributions (Eleau 190, Crannell ot al, 1977) are velevant
to this type ol model.

There is some support, from observvations of impulaive EUV bursts,
for the view that the dmpulsive hord X-ray bursts are produced by non-
thermal, enewvgetie electrons stresamdng from the covona to the chromo-
sphere, Impulsive EUV bursts have bheen observed directly by satellites
’(mar example Kelley aud Rense 107, Mall LO7L) and inddvectly from the
lonospherie olfects hnoy prcduco (Dounelly Lo¢h), ‘These bursts show
close time coincidence with the impulsive X-ray and microwave bursts nﬁd
the time profiles closely wxesemble the X-ray and wicrowave bursts
{Noyes 197h, Dommelly L97h, Kane and Dounelly 1o7l, Kane LOFh). fThe
engrgy »adiated in the L0O-1L030 A band is = J.Oh’»-.’,L\fi times the energy
radiated in the associated impulsive hord X-ray burst (Donmelly 1o,
Kanoe aud D@nneily 197L) . 'this ratdo of encrgy radisted in the EUV and

hapd X-ray bands corresponds qualitatively with the oxpected vatio of
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Coulomb collisional losses to bremsstrahlung emission from a thick-
target hard X-ray source (Koch and Motz 1999, Petrosian 1973, Donnelly
1974, Brown 1975). There are indications that the EUV radiation origi-
nates low in the chromosphere. The density of the EUV emitting region
can be estimated to be = 1019 cm—3 (Donnelly 1974, Kane and Donnelly
1971), corresponding to the solar chromosphere, and the EUV bﬁrsts
exhibit (statistical) limb darkening which would be expected if the
radiation originates in the chromosphere (Kane and Donnelly 197L).
Although the observations presently available do not exclude othexr
interpretations, the preponderance of evidence seems to favor bremsstrah-
lung from a non-thermal distribution of energetic electrons as the
source of impulsive hard X-ray bursts (Svestka 1975).

If the emergent X-ray spectrum were known exactly, the spectrum of
the energetic electrons that produce the radiation, averaged over the
source, could in principle, be recovered (Brown 1975). The two extreme
approximations that are usually considered are "thick-target" and “thin-
target" {Brown 197, Svestka 1975, Hudson 197h). In the thin-target
approximation the electrons lose a negligible amount of energy in the
hard X-ray source (Brown 1975, Svestka 1975, Hudson 197h). 1In this
approximation, the nean electron source spectrum [i.e. the instantaneous
average of the electron energy spectrum over the emitting volume
weightedkby the bdckground density, see Brown (197%)] is just the spect-
rum of accelérated electrons. In the thick-target approximation, this
is not the case.

In the thick-target approximation, fhe electr§ns lose all their

energy (primarily by Coulomb collisions) in the source region. Since
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the mean free path of the more energetic electrons is longer, the energy
spectrum of the électrous averaged over the emitting volume is harder,

If we assume the density is uniform in the source, that the electrons

are all streaming doquard and that the accelerated electron energy
spectrum is a fairly steep power~law, then the approximate difference
between the inferred mean electron source spectrum in the thin and
thick-target approximations can be estimated. In this case, since the
mean free path of an electron against Coulomb collisions is approxi-
mately proportional to E? , the effective source volume for electrons

of energy E in the accelerated spectrum is also approximately propor-
tional to E2 . Since the injected spectrum is very steep (by assumption),
once an electron has lost an appreciable fraction of its enexrgy, it no
longer contributes significantly to the emergent X-ray flux. = Therefore,
to produce the same power-law index of emergent X-rays thé index of the
injeéted electron beam must be ~ 2 greater (a softer injected spectrum)
iun the thick-target case than in the thin-target approximation.  The
pieceeding simple analysis neglects beaming effects in the case the
energetic electron velocity distribution is anisotropic (Petrosian 1973,
Brown 1978) and the exact behavior of the Coulomb cross section. However,
the conclusion is found to be qualitatively correct in thick-target
models of impulsive hard X-ray bursts for X-ray energiles below ~ 100 keV
even when a more detailed analysis is performed (Brown 1975, Petrosian
1973, Hudson 1972, Brown 197L). The more’detailed calculations indicate
that, depending on the assumptions and model chavacteristics, thick-
target models require injected electron power-law indices ~ 1.2-2 greater

than thin—target models for the same emergent X-ray spectra,
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Some early models of impulsive X-ray bursts considered impulsive
injection of the energetic electrons and the subsequent decay of the
impulsively injected electrons in the source region (e.g. Takakura and
Kai 1966). In its simplest form this model does not agree with observa-
tions since it predicts a systematic hardening of the burst spectra
during the decay of the hard X-ray burst (Brown 1975, Petrosian 1973)
for the same reason that the source averaged energetic electron spectrum
is harder in the thick-target models, i.e. the iow energy electrons lose
their energy more rapidly than the high energy electrons. Brown (1972)
has introduced a modification of the usual coronal impulsive hard X-ray
source that removes this particular objection, but it requires the
assumption of an average source density that is energy dependent
(n = B ,'a > 3/2) . Brown (1972) motivates this assumption by invoking

an- energy dependent pitch angle distribution for the accelerated elec-

"coronal trap' model is lost.

trons, but the simplicity of the original
This type of model can explain the observation of impulsive X-ray bursts
from "behind-the-limb" flares since portions of the X-ray source are
high in the corona. However, since behind-the-limb flares also produce
higu cnergy X-rays, this model requires densities =2 lOll cm~3 high

(2 109 cm) in the solar atmosphere. If this were the case, impulsive
X-ray bursts from behind-the-limb flares could be explained by thick—
target models as well.  Since the product of the instantaneous number of
energetic electrons in the source and background density determines the
emergent X-ray £lux, Brown's (1972) modél requires a much larger number
of energetic (> 20 keV) electrons than equivalent thick-target models.

Additionally, since most of the energy resides in the low energy electrons

12



which encounter only low densities (~,109) , these electrons cannot be
invoked to accouht for the impulsive EUV bursts which are emitted from

12

regions where the density is 2 10 em™> (Donnelly 1974) and which are
observed simultaneously with impulsive X-ray bursts (this is also true
of more recent 'thermal" models, e.g. Smith and Lilliequist 1978).

Aside from some difficulty in accounting for impulsive X-ray bursts
from behind-the-limb flares, thick-target models for the hard X-ray
bursts are at least not excluded by present observations. Since they
have the advantage of also providing the energy required for the impul-
sive EUV bursts (Donnelly 1974k), it seems reasonable to accept the thick
target approximation for the production of the hard X-ray bursts. InV
this case, since the time fof the electrons to lose all their energy is
short compared to the time scale of the impulsive X-ray burst (Brown
1975, Petrosian 1973), variations in the X-ray flux and spectrum are
attributed to changes in the (unspecified, c.f. 1.3) acceleration process.

In the thick-target model the enexrgy flux of the electron stream
required to pfoduce a specified X-ray flux at 1 AU depends on (a) the
anisotropy of the electron velocity distribution, (b) the power-law
index of the X-ray flux and (c) the lowest energy to which the power-law
in energy is assumed to extend for the energetic electromns (Brown 1975,
Petrosian 1973). Neglecting possible beaming of the bremsstréhlung
radiation (Petrosian 1973, Brown 1972) and backscatter from atmosphere
(Langer and Petrosian 1977), we can obtain an order of magnitude esti-
mate for the flux of non—fhermal electrons at the sun for an observ;dk
flux of X-rays at 1 AU,  If the flux of X-rays at some energy E at

0
-2 - -1
earth is ¥ - (photons cm e s * keV ), then the total X-ray photon flux
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is 10‘27'LL5

-1 -1
¥ photons keV s . Since the observed power-law spectra
are typically fairly steep (Brown 1975, Svestka 1975), most of the X-rays

at EO are produced by electrons with only slightly higher energies, The

total efficiency (the ratio of bremsstrahlung losses to Coulomb collisional

%

1osses) is approximately 10 "E for a thick-target hydrogen plasma

(Koeh and Motz 1959, Petrosian 1973). Therefore, the total non-thermal

electron flux in the source above E must be m11033'u53*E61 kev—l .

0

1.3 Review of Flare Theories

In the preceeding sections we have discussed some of the observed
properties of solar flares as they relate to the inferred presence of
non-thermal electrons in the solar atmosphere during a flare. We have
not dealt with most of fhe diverse phenomena associated with solar
flares. Svestka (197%) lists thirty-seven "basic properties of flares'.
When all the subtopics are counted, Svestka's list contains more than
eighty observational aspects of flares. With such a .large number of
properties to be considered, it is not surprising that a wide variety
of flare theories and models have been proposed. ' Since reviews of flare
theories exist in the literature (Svestka 1975, Sweet 1969), the selec-
tion of theoretical ideas discussed here is only representétive and not
exhaustive. ~This discussion of flare‘theories is included only to show
how the production of’non—thermal electron streams fits in the present
theoretical picture of solar flares and therefore no pérticular model
will‘be‘treated in detail, |

It:is now widely believed that fhe energy released in solar flares
is stored in the magnetic fields iu the upper solar atmosphere (Rust

1977, Svestka 1975, Sweet 1969). The energy which is available for
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release is the excess energy of the non-potential magnetic field con-

~ figuration above the energy in the potential (current-free) field (Rust

1977, Svestka 1975, Sweet 1969). Because the magnetic field energy
density is generally believed to be greater than the thermal energy
density of the plasma in the upper solar atmosphere, the non-potential
field configurations must be nearly force-free (Gold and Hoyle 1960,
Sturrock 197&). Although many non-potential field configurations have
been proposed these configurations can be divided intoftWO broad cate-
gories oependlng on the dlstrlbutlon of currents in the solar atmosphere
(svestka 1975, Sturrock l97h). One' possiblllty is a force-free configu-
ration in the form of tw1sted flux tubes (Gold and Hoyle 19650, Alfven
and Carlqvist l§o7, Spicer 1977) or eheared field lines (Tanaka and
Nakagawa 1973). In this case the currents are distributed over a 1arge»
volume in the'atﬁosphere. The ofoefepossibility is that the field is
largely curreot—free with the current concentrated in current sheets
(sweet lQbB Syrovatsky 1966, Sturrock 1968 Priest and Heyvaerts l97h)
A IQrge qqmbel of flare‘models have been developed under the assumption

that current sheets develop in the solar atmosphere as a result of

motions in'the photosphere or the emergence of new flux (Svestka 1975,

Sweet 1969). Barnes and Sturrock (1972) have studied the development of

non-potential force-free fields due to photospheric motions and found

“that the stored energy in the force-free configuration can exceed that
of ‘a configuration with a current sheet.- TheY"concluded that one possible- .=
sequence of events that would produce a current sheet in the solar atmo-

sphere was the conversion of a more energetic force-free configuration

to a configuration with a sheet. Priest and Heyvaerts (lg?h)‘examined
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the prodﬁciion of a current sheet when new flux eméxges iﬁtofgjpre-
existing mqgnet1c field, configuration.

| The earliest electromagunetic models of flares invoked the production
kof non-themmal electrons and realized the importance of electric fields
at "neutral pdiﬁ%s" in the magnetic field (Giovanelli 1945, 1947, 1948,

|

' Hoyle 1948). Dungey (1938) pointed out that, when reconnection of :
nagnetic field lines occurs, a DC electric field will be developed in
et

the reconnection region which could lead to acceleration of charged

parficles. In "current intgrrupticu"”models (Alfven and Carlqvist 1987)
éleéhrons are accelerated by the DC electric field that develops when
,thé'?inductive»circuit" is opened. In médéls in whichzféCOnuection
occdrs in a current sﬂeet {sturrcck 1968; Frngméﬁfgﬁd Hamberger i?@?’,J”H
Copﬁiuandﬂfiiehland”1971), some acceleration by‘a DC electric field ét
”fhe?neutral point may occur, but thé bulk of the acceleration is usuallyh
attributed\}o stochastic acceleratign of electrons by high frequency
; elecﬁric fields that develop ggpigg the recomnection process due to
plas%a instabilities (Sturrock 1974, Smith 1974). It has proved diffﬁ;
cuit;to develop a self cousistent theoretical model of the rapid
_kaqceieratiou of the numbexr of electrous/required:to prod§CE‘the observed
,lxéraykfluxf(Smith’lQ??an,;BrOWn and Melvose 1977). At present, the
'ﬁech;nism by which electrons are accelerated iun the impulsive phasé of
75613% flares is not well understood theoretically (Svestka 1973).

~HﬁWéver: simple considerations indicafe that if the energy stored in the

mhgnétic field is released iufthe low density corona, particles can be
R )
- expected to acquive energies of 10-100 keV (Sturrock 19T7h).  Furthermore,

~the 1ngréd1entquf mauny possible accelerat10n~mechauisms (DC electric
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fiélds, plasma turbulence) are natural by-products of most processes
which release tﬁe energy stored in the magnetic field. Therefore,
si%ce there is observational evidence for the acceleration of electrous
1n€the impulsive phase of flares, we will assume that this acceleration

does occur even though the exact mechanism has yet to be elucidated.

&
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2. STEADY STATE MODEL OF BEAM AND REVERSE CURRENT

2,1 -Objections to Unneutralized Beams

[ The simplest thick-target model for the production of impulsive
x;ray bursts is that considered by Petrosian (1973). 1In this model a T
bégm of energetic electrons is assumed to propagate from the corona to |

the‘chromosphere. All the electrons are assumed to have their velocities
in £he same direction until they lose all their energy, approximating a
sburce in which the energetic electrons stream down a nearly vertical
N
} h ) mégnetic field line with small pitch angles into an atmosphere with a
small density scale height (Petrosian 1973). Several authors (Brown
1976, Brown and Melrose 1977, Colgate et al. 1977, Hoyng 1977,‘Hoyng et
gi;ﬁl976) have pointed out difficulties if this electron stream is not
; : - neutraiized by a reverse current.
»‘-f Brown (1976) pointed out that the number of electrons required to
| étréam from the corona to the denser portions of the solar atmosphere
! : during some impulsive hard X-ray bursts was quite large, Indeed in some
 é§é$ts as large as 1039 (Hoyng et al, 1976), or all the electrons in the
-3

__solar atmosphere above the level where the electron density is ~ 107" cm

éﬁrbwn 1976). Another objection to the existence of an unneutralized

beam is that the magnetic energy that would be stored in this beam is

i many orders of magnitude larger than the total flare energy (Colgate et
al.:l977). If N is the total number of electrons streaming downward
over the duration T(s) of the impulsive phase, the magnitude (emu) of

i ) . |
the current may be estimated from
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- If the transverse and longitudinal dimensions of the stream are of

order R (cm), an estimate of the strength B (gauss) of the magnetic

field produced by the stream is given by AN

5
3

B~oR™" ; (2.2)

[ S

and the total energy U (ergS)fof this magnetic field may be estimated

from

1 321 2 |
U~p=REB ~>IR, (2.3)
which becomes ’ o o
vel PR a1 02y T oy

21

typical small flare to be ~:1029 ergs, the time scale to be a,loe s , and

the characteristic length scale to be &é108'5 cm and infer from théxX—ray

35

data that the total number of energetic electrons is ~ 10”. For these
S ' o 13.2 5
values the above formulae lead to estimates of I ~ 10 , B~ 107 ,
i .
34

and ﬁ'&élO . For a large event the total flare energy could be
T3;032 ergs, the length scale &4109'5, the characté?istic time ~;103
%;éithe total number of -energetic electrons &11039 (Hoyng et al. 1976).

' In‘fhis case I --vll_Ol(S'2 ; B ~;107 and U ﬁsloul . Clearly a model which R
* involves an unneutralized beam leads to unacceptably high values of the
;maépetic,field and magnetic energy associated with the beam.

| Problems associated with the propagation of high current beams of
cha:géd particles not neutralizéd by a reverse current have been considered
in other contexts. Alfven (1939) examined the limitations on the propé— 

gation of electrostatica11y neutra1ized high current: beams- of relativistic.
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charged particles, motivated by an apparent sidereal day variation in
the cosmic ray flux (Alfven 1938, Compton and Getting 1935), which

later proved to be spurious (Dorman 1974). Consider a cylindrically
symmetric, mono-energetic, uniform beam’of charged particles moving
through a background of opposite charge so distributed that the charge
density (esu) is everywhere zero. If the beam is infinite in extent
along the symmetry axis and has a radius of R , then the magnetic field

as a function of distance from the axis for r < R is

21(r)

r

B(r) = = 2njr , (2.5)

where I(r) is the current inside r and j 1is the current density
(assumed uniform). The gyro radius of a charged particle in a magnetic

field is

C
ry, = gg (2.6)

where p is the particle momentum and q is the particle charge,
Consider a test particle of the same charge and mass as the beam particles
m>ving in the magnetic field of the beam. Suppose the test particle is
initially ét the outer edge of the beam (r=R) and has the same momentum
as the beam particles., We denote by RA the beam radius for which the
gyroradius of this particle in the average field it sees in its trajectory
is equal to the beam radius. For a beam of this radius (RA) , the _
particle will cross the axis of symmetry with its momentum perpendicular
to that ofkthe beam particles. If the radius of the beam is increased,

the particle will cross the symmetry axis with the component of its

momentum opposite in sign from that of the beam particles and its average
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velocity over the trajectory will also be negative. Clearly increasing
the beam radius beyond RA will not increase the current, If we esti-
mate the average magnetic field as ~ 1/2 the field at the edge of the

beam, we find that there is a maximum current which can be carried by a

beam which satisfies our original assumptions:

-
[

I
EQ‘-R—A'= -‘—;éa‘ 2 . (2-7)
A s B
aB
Therefore
pc mc2y
= — =
I, ™3 5 s (2.8)
2\1/2 : " T
here f=v/c and Y=(1-87) . I, is called the "Alfven current limit

A

or the "Alfven-Lawson current limit" and for electrons we find
I, = 1700 BY , - (2.9)

in agreement with Alfven's (1939) more rigorous derivation. This restric-
tion ‘is much more stringent'than the objections to the stored magnetic
energy. For an electron energy of 100 keV, the currents estimated for

10 3

‘ 1
the hypothetical small and large events are ~ 10 I and ~ 10 I

A A

respeétively. The value of the current limit derived by Alfven depends
on all the original assumptions being satisfied. ' Arbitrarily large
currents can in principle be propagated by relaxing the assumption of
exact electrostatic neutralization (Lawson 1957, 1958, 1959), the
assumption that the beam is mono-energetic (Bennett 1934), the assumption
‘that the current density (particle flux) is uniform (Hammer and Rostoker

1970) or adding a very strong magnetic field along the symmetry axis
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(Hammer and Rostoker 1970). However, none of these mechanisms seem
particularly likély to be applicable in solar flare impuisive hard

X-ray bursts, although some are relevant to particular laboratory experi-
ments. The simplest resolution to these objections is the existence of

a reverse current (cf., 2.2).

2.2 Previous Work on Reverse Currents

It is well known that a plasma tends to preserve charge neutrality.
A process which tends to give an excess positive or negative charge in
some region will lead to electric fields which act upon the plasma,
Movement of electrons in response té this electric field will then
restore charge neutrality. One expects that analogous process will also
tend. to maintain current neutrality. If an electron beam is suddenly
introduced into a plasma, a sudden change occurs in the magnetic field
structure which will develop induced electric fields opposing the primary
'current.

Although interest in beams of relativistic electrons is not recent
(see for example Bennett 1934, Alfven 1939), theoretical and experimental
work on- high current relativistic electron beams was stimulated by the
developmeht of devices capable of producing relativistic electron beams
with currents on the order of or greater than the Alfven-Lawson current
limit (See for example Graybill and Nablo 1966, Roberts and Bennett 1968,
Yonas and Spence 1969). Roberts and Bennett (1968) injected a beam of
3.5 mev electrons (B=.992, Y=7.85) with a beam current of 3000 emu

18.5cm—3

(1= .23IA) into a linear pinch with n_= 10 . They found that
the beam current was nearly completely neutralized by a reverse current

in the ambient plasma and that the change in the total current (measured)
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was a very small fraction of the beam current, Similar results have
been obtained with other experimental apparatus (Prono et al. 1975,
Ekdahl et al. 1974, Goldenbaum et al. 1974, Klok et al. 1974, Miller and
Kuswa 1973, Levine et al. 1971) when the ambient plasma dénsity was
sufficiently high,

Several theoretical models of energetic electron beams neutr#lized
or partially neutralized by reverse currents in the ambient plasma have
been developed (for example Cox and Bennett 1970, Hammer and Rostoker
1970, Lee and Sudan 1971, Lovelace and Sudan 1971, Chu and Rostoker 1973).
Since these theoretical treatments are primarily concerned with the high
current energetic electron beams that are typically produced in labora-
tory studies and not in the electron beams thought to be responsible for
impulsive hard X-ray bursts, some of the results are not relevant to the
solar flare case (cf. 2.3). The models cited treat cylindrically symmet-
ric mono-energetic beams of the type considered by Alfven (Cf. 2.1) with
the possible addition of a uniform magnetic field along the symmetry

axis. When the beam current is small compared to I then the induced

A 2

reverse current flows primarily outside the beam cylinder (r > R) while

for I >> IA the reverse current is confined to r = R and the current

neutralization is local in the sense that the ambient electrons drift
with the‘velocity

n
b

V, = - —V
n

b (2.10)
e

where Vd is the reverse current drift velocity, Vb is the velocity of

the beam electrons and nb and ne are the beam and plasma electron

.number densities (Cox and Bennett 1970). Depending upon the sharpness
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of the leading edge of the beam, large amplitude coherent plasma oscilla-
tions may be generated by the passage of the beam head (Hammer and
Rostoker 1970; Cox and Bennett 1970, lLee and Sudan 1971, Chu and Rostoker
1973). The amplitude of these plasma oscillations is ~(mpT)_l , where
wp is the plasma frequency an=(4neﬂ e2/me)l/2) and T 1is the rise
time of the beam (Lee and Sudan 1971). These oscillations decay with a
scale length of Vb Tee 5 Where Tee is a phenomenological momentum
relaxation time for the plasma electrons. If the lateral dimension (R)

. of the beam is large compared to the electromagnetic skin depth

(xE=c[mp) , after the plasma oscillations decay the net current will be
~:XE/R times the beam current., The current of the beam will be neutral-
ized for a length of ~aVbTee(R/KE)2 . The theoretical models for mono-
energetic beams are not appropriate for the streams of energetic electrons
that are responsible for impulsive X-ray bursts, We argue in'Section 2.3
that the beams in solér flares will be current neutralized in steady

state.

2.3 Steady State Model

We now examine a simple model for an impulsive X-ray burst, We
consider a vertical flux tube ektending from the corona to the chromo-
sphere and assume that electrons are accelerated at the top of the flux
tube by the development of stochastic electric fields (Sturrock 1966,
Hall and Sturrock 1967, Newman 1973) or by some other mechanism (cf.
Section 1.3). -The injection of these electrons down the field toward the
chromosphere then leads to the development of a reverse current both by
the mechanisms considered for mono-energetic beams in laboratory plasmas

(Cox and Bennett 1970, Hammer and Rostoker 1970, Chu and Rostoker 1973)
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and due to an electrostatic field due to charge imbalances. The strong
tendency of a plasma to remain charge neutral implies that, if a current
is generated in the plasma that would systematically violate ap/3t=0
on time scales much greater than a plasma period (i.e. a non-MHD current),
then this current will generate a neutralizing secondary reverse current.
In contrast to the mono-energetic beams typical of laboratory experi-
ments, the streams of energetic electrons that produce impulsive X-ray
bursts probably have smooth distributions in energy. This is inferred
from observations (cf. 1.2) and theoretical considerations indicate it
is 1likely that the number of electrons does not increase with energy
(Brown and Melrose 1977, Smith 1975). We consider below an energetic
electron stream with a distribution of this type, that has electrons of
all energies present. - The low enefgy electrons are‘constantly merging
with the background plasma and can build up charge imbalances.. In the
case of a mono-energetic beam considered by other workers (for example
Cox and Bennett 1970, Chu and Rostoker 1973), charge imbalance would only
build up at the ends of the plasma device since the energetic electrons
do not interact with the plasma significantly except through the reverse
current, Charge built up at the ends of an experimental plasma column
would either be conducted away by external réturn paths or be shielded
from the bulk of the plasma within a few Debye lengths of the ends and
not drive reverse currents in most of the’volume of the plasma column,
Lovelace and Sudan (1971) pointed out that the microscopic process
involved in heating the plasma with reverse currents are equivalent to
heating with currents induced by external fields, Howevér, the reverse

currents avoid the skin effect limitations of currents induced by
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external fields. Similarly, since charge can be supplied by the beam in
the case of solar'fiares, charge imbalances can build up within the plasma
and drive reverse currents. Although these charge imbalances,ariée
throughout the plasma, wve can estimate the time (Tc) required to accumu-
late sufficient charge separation from the time required to accumulate
enough charge per unit area on a parallel plate capacitor to produce an
electric field sufficient to drive the required reverse current. This
required charge separation is related to the current density by

M =E=>4g & = uﬂjuunc L (2.11)

where ¥ is a surface charge density, i is the resistivity, and junn

is the unneutralized portion of the beam current density. Then the time

to accumulate the required charge is

- 3 ' o
o= - (2.12)
unn

The ratio of unneutralized current density to the beam current density is

KE/R (cf. 2.2) so that

M ;L\pR (
T, = 2.13)
© hye® ’
o 1/0
T = 107701 ) (nao?) | (r207) . (2.1h)

This assumes that the resistivity is the usual Spitzer value. If the
resistivity is "anomalous" the effective collision frequency can be of
order the electron plasma frequency (mp) . Actually this is an upper

limit, ' for the Buneman instability the effective collision frequency is
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~a.lmb (Buneman 1958). The resistivity is proportional to the collision
frequency so we éan write

Nanom 7.38 6:3/2,4 -9, \1/2
= = 10" 2Y(1/107) 7" =(107/n) , (2.15)
nSpitzer lél'BYnT—B/2

so that Tc becomes

T~ 10“1‘78(R/1o9) . (2.16)

We see that the time to accumulate charge imbalances sufficient to drive
a neutralizing reverse current is short compared to time scales of
interest.

I1f the resistivity is written

e 1
M=—% 7 > (2.17)
n e ee ‘
e
then Tc becomes
R -1
Te = E'(»p Tee) ’ ; (2.18)

and the ratio of the charge accumulation time to the time the current
remains neutralized (Tn) by the mechanisms considered for a mono-

energetic beam (cf. 2.2) becomes

Te % an ee ~ -2 k
S v SR WO RPN CED
BT\ Tee
E
e
= - 10’7'77@,p T )7F (107/R) (109/m) 2 (2.20)
n ; : :
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so that the charge accumulation time is much shorter that the time the
current would reﬁain neutralized if no charge imbalance arose in the
plasma., For time scales and length scales of interest in solar impulsive
X-ray bursts, the reverse currents will be caused primarily by charge
separation (Hoyng and Melrose 1977). Also, since beams of interest for
solar impulsive X-ray bursts are not expected to have sharp fronts, the
plasma oscillations excited by passage of the '"beam head" will be of
extremely small amplitude and consequently of no great significance
(Melrose 1974). Therefore, we are justified in considering a steady
state in which the beam curreﬁt is exactly balanced by a reverse current
in the background plasma, For the present (cf. Chapter 3), we assume
that the background plasma can be adegquately described by a Maxwellian
velocity distribution and use transport coefficients based on this
assumption (Sptizer 1962).

We are inferested in the case in wgich;the primary electron stream
is composed of high-energy electrons with coﬁsequently long mean free
paths in the tenuous solar corona. However, we shall find that the
electric field that develops to drive the reverse current also decelerates
the electron stream (cf. Lovelace and Sudan 1971). But when the electron
energy‘becomes comparable with the thermal energy, the mean free path
will be sufficiently short that the primary electrons will merge with
thé background plasma, As a simple’representation of this process, we
ignore collisions in discussing. the primary beam but we assume that an
electron of the primary beam is absorbéd into the,bﬁckground plasma
whén it is decelerated to zero energy. This approximation is justified;

if the temperature of the ambient plasma is sufficiently low.
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If, as a further simplification, we consider a flux tube of uniform
cross section, we may use the following simple one-dimensional form of

the Vlasov equation:
oo (2.21)

where s measures length along the tube, v is velocity (along the tube),
f(s,v) is the velocity distribution function of the piimary electron
stream, and ¢ . is the electrostatic potential.

At the top of the flux tube (s:O) , the primary electron stream is
moving with positive velocity and electrons that are decelerated to zero
velocity are assumed to be removed from the beam. Hence we may without

ambiguity, express f in terms of ¥ , which is defined by

y =2, (2.22)
The initial distribution function may therefore be expressed 'as

£(0,v) = F(Y) . (2.23)

With this initial condition, we find that the solution of the Vlasov

equation (2.21) is

£(s,v) = F(¥-d) . (2.24)

The current density js in thé primary electron stream is given by

js = = % £(s,v)v dv (2.25)
0]

which may be expressed as
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2
i = - %/ F(Y-4)ay . (2.26)
0

Since ¢ will prove to be negative in the region of interest, it is

convenient to write

e = “¢ B (2-27)
so that Equation (2.26) may be reexpressed as
e

Jg = = = F(x)dx . (2.28)
]

We have seen that the beam current will be nearly completely meutralized

by currents in the background plasma, so we may write
o+ 3. =0, (2.29)

where jp is the secondary current induced in the background plasma. We
here assume‘that the density and temperature are such that jp may be
represented by Ohm's law,

i o= 'ﬂ—lE = n-—l %2_ . (2.30)

It is conveniént to introduce a new independent variable "B - to
replace s by the relationship

Then, on substituting Equations (2.28) and (2.30) into Equation (2.29)

and differentiating with respect to £ , we obtain
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F(Q) — =0 . (2-32)

It is convenient to solve this equation for € in terms‘of e,
g =x(8) , (2.33)

rather than vice versa. Equation (2.32) becomes

T _2 2 r
me(aX) 42X _pe) , (2.34)
2\ do 2
e a0
which may be integrated ounce to give
o)

F(e’)ae’ (2.35)

2 (8], ="
62 dg €=0 8

if we assume that © = 0 (p=0) and X = 0O (=0) at s =0 . We find

from Equations (2.28), (2.29) and (2.30) that

[oo]

2
e” {dO _ (o’ ’ n 9
xTE(dg;) _/r(e Yyde’ . (2.38)
£=0 0
Hence Equation (2.35) becomes
=1 v
SN o]
dX. mc ’ ’
ey /r(e )de (2.37)
R

It is now convenient to introduce a specific form for F(¥):

F(¥) = K(‘i‘o+‘¥)_Y . (2.38)
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This is a power-law distribution at high energy which flattens at low
energy, with the "knee" characterized by Yo -
We introduce the symbol H(¥,s) for the flux of electrons

(cm-2 s—l) of energy exceeding e¥ at the position s

0

H(Y,s) =%/F(Y' + Q(S))d‘i" . (2.39)
¥

If the initial flux is written as HO(Y) , we find that

ek =Y+1
Hy(Y) = (A (Yo +¥) , ; (2.40)
so that the total particle flux is given by
ek ~Y+1
HO(O) = "D Yy . | (2.41)

With the form of Equation (2.38) for F(Y¥) , Equation (2.37)

integrates to give
y-1 me Y ~- YY
x(e) = (\ifo + 08) of. (2.h2)

We easily obtain from Equation (2.42) an expression for the (negative)
electric potential @ in terms of the resistivity weighted distance

measure E .

2

. |
o(e) = (\y‘é+ o :—cﬁg) Sy (2.43)

Hence from Equation (2.39), we find that
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y
m%s)=vf%; w+(ﬁ§+?3 %}) . (2.4%)

On noting that the electric current carried by the stream is related

to H{Y¥,s) by

js(s) = = 'S H(O;S) ’ (2.45)

we see that

s 5 L (v-1)/v]
3 (s) = - (§§i§ﬁz‘(¥g + ?gi'sE“ g) ) (2.46)

-

il

In order to specify the current, particle flux, and electric field
as functions of s , we must adopt a specific form for n(s) . A con-
venient approximation to the density and temperature structure of the
solar atmosphere, which is expressible in analytic form, is provided by
the constant heat flux model.  If we mow assume that s measures distance
vertically downward from the corona, and that n = Ny and T = TO at

s = 0, this model (Adams and Sturrock 1975) yields the following

expressions:

©(s) = (1% —wr 2T, (2.47)

n(s) = nfT/(s)] exp {-[<Tg/2 -brs)”/ T - 1/ E]} (2.48)

-l.p1 6.58

. - -1
where a == 10 , b==10 , and F (ergs em™® s ) is the downward

heat flux,
The resistivity, in modified Gaussian units, may be derived from the

expression given by Spitzer {1962):



M = gT-3/2 (2.49)

where g == 103.64 . Hence we find from Equation (2.31) that g is

related to s by
4/7]
{g _fa1/2 _
€= i ['rg (TO bFs) ‘ (2.50)

Our model is then completely specified by the choice of the coronal
temperature, the coronal density, the coronal heat flux, VY , the energy
corresponding to YO , and the injected energetic electron flux. For the
coronal parameters, we adopt values typical of the corona above an

active region (Noyes 1971l):

T = 3y 106 K ,
ﬁ >=109 cm"3 s
F=5y 106 erg cm"2 s_:L
We choose YO to correspond to 25 keV; and we choose Y = 2.5 . The

fraction of the beam energy deposited and the total energy deposited by
Joule heating between T = 3 g lO6 K and T = 3 ¥ lOu K as a function
of the energetic electron flux are displayed in Figure 2.1l. For a flare

19.5 cme

area of 10 s the energetic electron flux inferred from a large

impulsive X-ray burst corresponds to ~»1017 cm e s_l (Hoyng et al. 1976).
Figure 2.2 illustrates the energy deposition rate'due to Joule heating

as a function of temperature of the atmosphere for this injected energetic
electron flux. 1The ordinate of Figure 2.2 is the time required to raise:

the ambient plasma temperature by 107 K, if the plasma were heated at the

steady state rate. As we will see (cf. Chapter 3), the heating rate
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decreases as the temperature of the plasma increases, so the ordinate of
Figure 2.2 is only representative of the heating rate immediately after
the beam is turned on.

We can check the assumption that Coulomb collisions are not impor-
tant for the energetic electrons in the beam. Since the reverse current
losses are proportional to the resistivity for a constant current density,
these losses are proportional to T—3/2. The Coulomb collisional losses
for energetic electrons of the same kinetic energy are proportional to
n . Therefore, we expect the ratio of reverse current losses to col-
lisional losses to be proportional to (T1T3/2)—:L . Reverse current

losses will be more important than Coulomb collisional losses for an

energetic electron in the beam if

.
-. 35

a =107 (v )E(vv) > 1, O (2.51)

where V 1is the velocity of the energetic electron, V is the electrom

t

thermal velocity, and Vd (cf. Equation 2.10) is the reverse current

drift velocity (Hoyng et al. 1978). As we expected, for the same kinetic

energy and current density, « is proportional to (nT since

1 -1
Vt &< /2 and Vd < n . If we define the injected energetic electron
flux as the flux of electrons with kinetic energies greater than eYO
then from Equation (2.&0) we find
=Y+1
o= — ()T (2.52)
(Y—l)m2

Since the reverse current drift velocity is related to the current

density by
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v, = —2 | (2.53)

we may write the drift velocity in terms of the injected energy flux as

v-1 vl A1) /Y]

2 Ya e
Vd = HE (l + —-é-\-%—— HE E . (2'5)4‘)

For the adopted values Y=2.5 and eYO=25 keV, we find that the ratio
of reverse current losses to Coulomb collisional losses (q) for a
beam: electron with kinetic energy 25 keV in the adopted constant heat

flux model atmosphere is

T (v-1) /Y]

2.8 g 23.56 g

In Figure 2.3, the energy at which @@=l 1is plotted as a function of
temperaturé for several values of HE . We see that for any energetic
electron flux we have considered, the energy at which Coulomb collisions
are as important as the reverse current losses for the energetic electrons
is reasoﬁably low, indicating that our assumption that Coulomb collisions

may be neglected is an adequate approximation.
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3. REVERSE CURRENT HEATING

"3,1 Generalization of Steady Model to Time Dependent Case

As we have indicated, for the energetic electron fluxes required to
account for the observed X-ray flux by thick-target bremsstrahlung, the
ambient plasma is rapidly heated by the reverse current. The rate at
which the background plasma is heated by the reverse current depends on

the beam current density and the ambient plasma density and temperature.

)

If the ratio of V, to the electron thermal velocity (Vt o= (2KT_/m
J

is large enough, the background plasma may be unstable to the growth of
electrostatic plasma turbulence which can dramatically enhance the plasma
resisti&ity and therefore, the reverse current heating rate. TFor example,
the reverse current will be unstable against the excitation of ion-
acoustic or electrostatic ion-cyclotron turbulence unless for Te and
Ti the electron and ion temperatures, respectively, (Kindel aﬁd Kennel
1971)
2.5 for T_ ==,1l T, (ion-acoustic turbulence)

.9 for T = .3 Ti (ion—cyclotron-turbulence)
V. /V s 3 for T_= T, (ion-cyclotron turbulence)

1 for T =3 Ti (ion-cyclotron turbulence)

.05 for T_ =10 T, (ion-acoustic turbulence)

Reverse current heating is a self quenching process. If the reverse
current is stable against the growth of electrostatic turbulence, then,
as the plasma is heated by the reverse‘currenﬁ, thé resistivity decreases
and the reverse current losses are reduced. If the reverse current is

unstable to the growth of electrostatic turbulence, the plasma will be
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heated until the instability criterion is no longer satisfied. The
heating of the plasma will also cause a pressure imbalance. The time
T (s) for the plasma to .respond to changes of pressure by bulk motions

can be estimated from

T == L/Vt s (3.1)

s 1

where L is a characteristic length and Vt i is the ion thermal velo-
2

city.  Even for a tenperature as large as lO7 K, this time is long
(102 s) compared with the heating time for a length scale of 1071 cm,
so that the plasma density will not change appreciably during the
heating. Since we expect reverse currents to be established locally on
time scales on the order of a plasma period’(S 10—9‘5) which is much

= s), it

shorter than the time scale for heating of the plasma (2 10
should be a reasonable approximation fo use the results of Chapter 2
for the insfantaneous velocity distributioﬁ of the energetic electrons
as a function of distance from the injection point.

We havé calculated the heating due to reverse currents for two
injected energetic electron fluxes (HE) .. The heating rate was taken

to be just that which results from the Ohmic losses suffered by the

reverse current and is given by

5 = 0K njp . - (3.2)

The electron and ion temperatures were assumed to be equal, We shall
say more about this assumption later., At each time step the current at
each spatial grid point was calculated using Equation (2.46). The time

step was regulated so that the largest change in temperature at any grid
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point was l% in one time step. Since we have not found an analytic
solution to the time dependent problem considered here, the constant
heat flux model of the atmosphere was abandoned in favor of a more
accurate numerical model which is discussed in Appendix B, The spatial
grid spacing was chosen so that for the initial temperature profile
(t=0) the temperature change between spatial grid points was less than
14. The atmosphere was assumed static; that is, the number density (n)
was held constant in time, = The details of the numerical methods used
are discussed in Appendix A,

We have used the same Y and YO as in Chapter 2. The’results
for an injected energetic electron flux of 1.4l X 1017 are displayed
in Figure 3.1 while similar curves for an injected enérgetic electron
flux of 5.656 1017 are displayed in Figure 3.2. Figure 3.3 depicts
the density structure of the model atmosphere. The abscissa, I , of
the figures is integrated number density from the injection point,

defined by

1(s) = | u(s)as’ (3.3)
0

where n‘ is the total number density (sum of neutral hydrogen and
proton density). Because ‘we have used a numerical model rather than
the simple analytichOnstant heat flﬁx model, we were mot free to choose
the density at the injection point (see Appendix B). The initial density
in the adopted model is approximately twice the density in the comnstant
heat flux model used in Chaptér 2, Since the reverse current heating

rate is proportional to ji and inversely proportional to density, the
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Figure 3.1 Temperature (T) as a function of integrated
number density (I) from the injection point, for an
-1

energetic electron number flux of 1,41k X lO17 cm—e s

The temperature is dispiayed before the beam is injected
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0 s) and for two times after the beam is injected
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number density (I) from the injection point, for an
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lower energetic electron flux corresponds roughly to the initial heating
rate shown in Figure 2.2.

Figure 3.1 shows the temperature as a function of I for two times,
1ls and 4s after the injection of the beam. The energetic electron flux
used in the calculation of the results displayed in Figure 3.2 is four
times that used for Figure 3.1. Figure 3.2 displays the temperature
after .25s and 1ls corresponding to the same total energy input as the
curves for 1s and M#s in Figure 3.1. Thermal conductivity was neglected
"in these calculations, but computer runs with thermal conductivity
included indicated that thermal conductivity did not have significant

effects for the short time scales (S 4s) involved in here (see Appendix A).

3.2 Anomalous Resistivity and Reverse Current Heating Rate

The electrical resistivity used im the calculations depended on the

reverse current drift velocity as indicated below:

il < 1
s Vd 13 Vt,i

n= 3 (3-k)
Mg T My Va T3V,

2

1/0
where V,_ . = (2KT, /m_) /2 for T. the ion temperature, m, is the
t, 1 iti i i
proton mass, Mg is the resistivity due to Coulomb collisions derived
by Spitzer (1962), and N, s an anomalous resistivity due to the
presence of electrostatic ion-cyclotron turbulence calculated by Ionson
- (1976). TFor the purposes of calculating the value of the anomalous
resistivity we have adopted B=1Q0 gauss, a reasonable value for the

pre~-flare corona. Since we are considering a f£lux tube of constant

cross section, the field is the same for all values of s , the distance
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from the injection point. TFor the smaller energetic electron flux, the
reverse current‘drift velocity did not exceed the critical velocity for
the onset of electrostatic ion-cyclotron turbulence, In this case the
temperature of the tenuous coronal plasma was raised by a factor of ~ 2,
but most of the beam energy was deposited in the dense portion of the
model atmosphere,

The larger energetic electron flux, however, caused the reverse
current drift velocity to exceed the critical velocity for the onset of
electrostatic ion-cyclotron turbulence in the low density portion of the
atmosphere, resulting in an anomalous resistivity and an order of magni-
tude increase in the temperature in these regions in a relatively short
time. Since Coulomb collisions were neglected in this calculation, the
heating of the denser portion of the atmosphere is not calculated accu-
rately after the first few tenths of a second (also see Appendix B). 1f
collisions were taken into account for the primary electrons in the
beam, the heating of the denser regions below the corona would be more
localized and higher temperatures would be reached. However, these
results indicate that an energetic electron beam may significantly heat
the low density coronal plasma much more rapidly than would be calculated
from considering only the effects of Coulomb collisions on the beam
electrons.,

The time for electron and ion temperatures to equilibrate by
Coulomb collisions assuming only one species rather than both species

are heated as we have assumed may be estimated (Spitzer 1962) from

1 m 3/2
t . ~12.6n (T +-—T_)
el \ e mi 1

s . (3.5)

)‘7

s ok, :




For the temperatures, densities, and the time scales considered here,
Coulomb c¢ollisions alone will not establish equal electron and ion
temperatures. We have taken the electron and ion temperatures to be
equal for computational convenience; however, and must, therefore,
address the question of whether one species is preferentially heated.

For the case depicted in Figure 3.1, for which the resistivity is
just classical Spitzer resistivity, only the electrons are heated at
first. According to Equation (3.5), the ions are not likely to be
heated significantly in turn by energy exchange with the electrons. . The
heat capacity of the plasma is therefore reduced by a factor of 2, and
the times given in Figure 3.1 should simply be reduced by a factor of 2.

The situation in which plasma turbulence develops, as for the case
depicted in Figure 3.2, is considerably more complicated. As we have
indicated, the critical drift velocity for the onset of elecfrostatic
ion acoustic or ion-cyclotron turbulence depends on the ratio of the
electron and ion temperatiures, - Just what happens when this drift velo-
city is exceeded is not well understood, however.

The anomalous resistivity which we have assumed to result from the
presence of electrostatic ion-cyclotron turbulence was calculated by
Ionson (1976) under the assumption that the turbulence saturates by ion
resonance broadening (Dum and Dupree 1970) and that the electron and ion
temperatures were equal. Palmadesso et al. (197h), on the other hand,
made the first of these assumptions and calculated heating rates of
electrons and ions. They found that the ions are heated much more

rapidly than the electrons, and Papadopoulos (1977) has subsequently

concluded that the instability turns off when the ion heating has
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proceeded to the point at which the instability criterion is no longer
satisfied. If only the ions are heated, the situation will differ firom
that depicted in Figure 3.2. Thé temperature plotted should be inter-
preted as the ion temperature (note that this affects the calculation of
the expected excitation and ionization rates) and the times given reduced
by a factor of 2 for the same reason those in Figure 3.l should be
reduced if only the electrons are heated.

It has also been suggested that the ion-cyclotron turbulence satu-
rates, not by ion resonance broadening, but by the formation of a plafeau
on the electron velocity distribution, instead, in which case no signi-
ficant anomalous resistivity results (Papadopoulos 1977). If this
happens, then as in the case without plasma turbulence, only the electrons
are'heated at first, at a rate given approximately by classical resisti-
vity. In this case, however, larger electron beam current densities
must have been involved to begin with in order for the reverse current
drift velocity to have’exceeded the critical velocity for the onset of
ion-cyclotron turbulence, Since j 1is larger than in the case- -without
turbulence, the classical heating rate is higher for this case. If the
electrons are heated sufficiently in this manner, the critical drift
velocity for the onset of ion-acoustic turbulénce will be exceeded. 1In
that case, the electrons will be heated until the criterion for insta-

bility is no longer satisfied, or until

v :x Cs = (kTe/m:'L)l/L2 ] (36)

d

where ‘Cs is the ion sound speed.,
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This latter scenario for rapid electron heating would apply, for
instance, to an electron beam strength equal to that assumed in Figure
3.2. More precisely, assuming the ion-cyclotron turbulence does satu-
rate by electron plateau formation, a beam of this strength would result
first in electron heating given approximately by the results in Figure
3.1 with a time scale reduced by a factor of about 32. After roughly
.5 s, ion-acoustic turbulence would develop, resulting in rapid heating

of the electrons to a final temperature which may be estimated from

~ - 10
A Te mivi/k 1077 x . (3.7)

In short, the exact behavior of the ratio of the electron and ion
temperatures is not well understood and cannot be determined without a
much more detailed analysis than is appropriate for the present work,
We have assumed that the electron and ion temperatures are about equal
as a useful and reasonable approximation with which to estimate the
magnitude of the reverse current heating. As discussed above, however,
temperature enhancements much larger than those depicted in Figures 3.1

and 3.2 are possible.




k., CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH

We have examined a simple model for the production of impulsive hard
X-ray bursts during solar flares. The model involves a beam of energetic
electrons propagating from the corona to the chromosphere. We have
found that if this beam is to exist, the current carried by the beam
electrons must be neutralized by a reverse current’in the background
plasma. The requirement that the reverse current exist has two conse-
quences that have not been previously recognized in the context of this
type of simple model of impulsive hard X-ray bursts. The reverse
current heats the ambient plasma and the electric field that is developed
to drive the reverse current decelerates the primary electrons. Joule
heating by the reverse current is a more effective mechanism for heating
kthe tenuous coronal plasma than Coulomb collisional losses from the
- energetic¢ electrons, because the ohmic losses are caused by thermal
electrons in the reverse current which have much shorter mean free paths
than do the energetic electrons.

We have found that the time scale for heating the ambient plasma
by reverse currents can be comparable with the time scales characteristic
of impulsive X-ray bursts (Hoyng et al. 1976). It is possible that
thermal bremsstrahlung from the rapidly heated plasma can account for a
significant portion of the observed impulsive X-ray flux. Hence this
mechanism can offer an explanation of the fact that some flares first
produce high-energy X-ray emission near the top.of a loop rather than at
the footpoints of thé lgop (Brueckner 1976). Anothes important conse-
quence of this process is thaf, if thermal emission can account for a

substantial fraction of the impulsive flux up to ~ 50 keV, then the
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number of electrons required to produce the nonthermal X-ray flux is
greatly reduced (Brown 1975).

The time scale for heating can also be short compared to the
jonization times of the plasma ions and may therefore produce non-
equilibrium line-emission strength enhancements of lines present in the
plasma spectrum just prior to the rapid heating (Shapiro and Knight
1978). These non-equilibrium effects are likely to be observable only
if plasma turbulénce develops causing a large enhancement in the plasma
resistivity (Shapiro and Knight 1978).

We have made several simplifying assumptions in order to facilitate
the calculations presented in Chapters 2 and 3. In a more realistic
model, some or perhaps all of these restrictions could be relaxed. We
now briefly discuss how the relaxation of some of these assumptions is
1ike1y to change the conclusions we have dfawu and suggest possible
extensions of the work we have presented in Chapter 3. We have assumed
that all the electrons in the beam are moving in the same direction, or
equivalently that they have zero pitch angle., The reverse current
arises to balance the flux of electrons in a given direction due to any
anisotropy in the energetic electron velocity distribution. If the
energetic electron velocity distribution is nearly isotropic, no signi-
ficant reverse current will arise (sée fof example Smith and Lilliequist
1978). Even if the distribution is strongly anisotropic, but the |
electrons streaming down from the corona to the chromosphere have non-
~zero pitch angles, the Coulomb collisional losses will be enhanced
krelative fo reverse current losses since the collisional losses are

proportional. to the total path length of the energetic electrons in the
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atmosphere, while the reverse current losses are proportional to the
average componenf of the energetic electron velocity along the field.
Since the emergent X-ray spectrum is relatively insensitive to the angular
distribution of the energetic electron velocities (Langer and Petrosian
1977), it is extremely difficult to infer the reverse current drift
velocity from measurements of the X-ray flux, A more detailed discussion
of this and other difficulties in inferring the reverse current drift
velocity from X-ray observations can be found elsewhere (Hoyng et al,
1978).

We ha&e neglected the effects of Coulomb collisions on the primary
electrons. As Figure 2.3 demonstrates, this is an adequate approxima-
tion immediately after the flux of energetic electrons is initiated;
however, Coulomb collisions become relatively more important as the
plasma is heated since the reverse current losses. are reduced, ’Until a
significant increase in the density of the coronal plasma is effected
by the evaporation‘of material from the chromosphere, Coulomb collisions
are unlikely to be important in the upper portions of the atmosphere.

In the lower lying dense regions, Coulomb collisions will rapidly domi-
nate over reverse current losses, and, as we have indicated, affect

the heating of this portion of the atmosphere, One extension of the
work presented in Chapter 3 that should provide additional insight into
the behavior of energetic electrons in the solar atmosphere during flares
would be to perform a calculation similar to that we have presented, but
include the effects of Coulomb collisions and a distribution of pitch

angles for the energetic electromns.
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We have neglected the dynamics of the background plasma, As we
have indicated; fhe rapid heating of the plasma can cause a large p?es—
sure imbalance. For the results presented in Figures 3.1 and 3.2, the
pressure is a factor of ~ 20 higher in the high density portion of the
atmosphere than in the low density regions indicating that evaporation
of high density material would occur if the dynamics of the ambient
plasma were accounted for. This would not have a large effect on the
calculations presented in Chapter 3 because the time scales considered
are so short. However, on longer time scales mass motions in the atmo-
sphere could have important effects. ' Previous work‘with fluid dynamic
models of solar flares (for example see Kostyuk and Pikel'ner 1975,
Kostyuk 1975, Craig and McClymont 1976) has not included reverse cﬁrrent
losses. The development of a numerical fluid dynamic model of the
solar atmosphere heated by a beam of energetic electrons, including
reverse current losses could provide valuable information about the
- formation of the quasi-thermal soft X-ray plasma that is produced during
solar flares.

We have not calculated either the radiation from the heated plasma
or the bremmstrahlung from the euergetic electrons., Since almost all
the information we now have and are likely to accumulate in the fore-
seeable future about solar flares comes from the observation of the
emitted radiation, it would be useful to calculate the emitted radiation
from any realistic model to ascertain to what degree it resembles the
solar atmosphere during a flare.

’ Mdre realistic models than those we have considered that inclﬁde

the effects of Coulomb colliéions, the dynamics of the background plasma,
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a reasonable magnetic field configuration, radiation and thermal conduc-
tion are necessﬁry to account for the complicated phenomena that are
observed in solar flares. However, our study of the reverse current

and the heating it can cause indicates that reverse currents can play

an important role, at least in the initial heating of the solar plasma

during a flare,



Appendix A

NUMERICAL AND COMPUTATIONAL METHODS

As we have indicated in Chapter 3, the results for the time depen-
dent case are calculated by using the steady state results for the
current as a function of distance from the injection point and calcula-
ting the change in temperature from a suitably discretized form of
equation (3.2). In reality, the calculation is done for the more
general case of partially ionized hydrogen. Since the reverée current
heating calculation is only accurate in the tenuous high temperature
portion of the atmosphefe, this generalization did not have a substan-
tial effect on the results of the calculation. However, the manner in
which the partial ionization is included could in principle be accurate
in any astrophysical plasma that is sufficiently tenuous that the gas
is optically thin to its own radiation, photo-excitation and.ionization
are unimportant and collisional de-excitation can be ignored. The
ionization state of the plasma is thén a function of temperature only
provided non-equilibrium effects can be ignored. The only elements in
astrophysical plasmas that are sﬁfficiently abundant for their ioniza-
tion potential to affect the heat capacity of the gas are hydrogen and
helium. Only hydrogen is included in the present calculation, but since
the effects of partial ionization on the'heét capacity -are included via
a pretabulatéd interpolation téble (diSCUSéed below) the effects of
helium could be included with only minor modification. The modified

version of equation (3.2) actually solved numerically is
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aT

E 2c .2
8t ~ 3nk Il Jp ) (A.1)
where TE is defined by
2E
ION
TE=(1+X)T+X_3—1::_— » (A.2)

where X(T) is the fraction of the hydrogen nuclei that are ionized and

EION is the ionization potential of hydrogen. That is, the thermal

~energy content of the plasma per cubic centimeter is

Erg =

oo
=

T, - (A.3)

The temperature is obtained from T via the interpolation tables men-—
tioned above, and it is obvious that the inclusion of helium only in-
volves calculating a different interpolation table. In fact we have
included only hydrogen and used the expression given by Moore aand Fung

(1972) for x(T) :

: -1
X(T) = (1 + 10'5'695@5[.1;288 + % 1In B + .u6985'l/3D ,  (A.4)

where p=15800/t. Then T is implicitly defined as a function of g
by Equations (A.3) and (A.4).

Spitzer gives the resistivity of a hydrogen plasma as:

M, = 108+ 3Mym372 1 Ay, (A.5)

where A" is defined by
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th' 09 T3/2n~‘l/2

. T <h,2 g 107k

A= » (A.6)

5
Lot-09 1372 L/ (u.a x 10 )

A T T2 Loy 100k

so that we may write ﬂs as
103'3l T_S/E[E/Q in T - }-ln X - %~1n n} T < k.o g lO5k

2

103.54 T—3/2 [111 T - é]: ny - ieL' 1n n} T =42 X 105k .

(4.7)
Therefore, ﬂs can be written as a sum of a function of T only and a

function of T only times 1n(n) :

Mg = TL(T) + ™(T) 1n(n) , (A.8)
where
103:3% 7372 [3/2 In T - %’- in x] T < k.2 x 107k
TL(T) =
103.5& 372 [111 T - %- In x] ‘ T2 ko 107
(4.9)
and
; 105 0L o372 T < k2 oy 107k
™(T) = (A.10)

103.24 7372 T2 h.p X 107k

The calculation of the current as a finction of distance depends
only on the resistivity weighted distance measure € . Iu Chapter 2 we

were able to write an analytic expression for g as a function of. s ,:
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but in the present case the resistivity varies with time. The valiue of

€ at the ith grid point is approximated by

g =g+ (M) (s

i | -8 9)/2 , (a.11)

i
where superscripts refer to time steps and subscripts refer to spatial
grid poiuts, and gi = 0 . 8o long as the reverse current drift velocity
is less than the critical velocity for the onset of ion cyclotron turbu-
lence, the calculation of §i in this manner is straightforward. How-
ever, when the background plasma is uustable to the growth of ion cyclé-
tron turbulence, the situation is somewhat more complicated. In this
case the value of ng depends on the current, and a transcendental
equation must be solved to find ﬂz from Equations (2.46), (2.49) and
the result for anomalous resistivity due to ion cyclotron turbulence

(Tonson 1976)

Ny = 0.06 {c Qiﬂnpe mpi)(l - 13Vt,i/vd) s (A.12)
where ., = (eB/m.c) and xu_ = (4mn_e/m )1/2 we find that J9 is
i i “pa oo 2 i
defined implicitly by
3 &x Yo, vefK ed 4 ( Iy nj Y (s, - s, J)/2
I = W-D)me ¢O (y-D)mc |>i-l M Sy i i-1
; | [(Y-1)/v]
m\2 5 (s37s;) 3 d 1
EN .06 .__g )+ < (l "Vc /Vd ) 2
Y e onx] i %

(A.13)
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where V3 = cd/enx? and V' = 13 vd . If we define G(J?) by
d i i C. t i

i i »1

2 ’ 2 . . )

3 3 &K Y YK |3 3 J _
6(3) =95+ vDme Yo * WDme |Fi-1 T (Mo * nsi) (s; - 85.1)72

. [ (y-L)svl

1/2 (s, - s. 4) Vi € nixi )

+ % e B i Ni—l .-.L _ i
’ m, Liye 3 3 ’
i 2n_ X" cdy
1 i (A.1k)

then when G(Ji):O B Ji satisfies Equation (A.13). When the current

calculated neglecting anomalous resistivity corresponds to a drift velo-

city that is greater than Vi , we take an initial estimate for Ji s

3 i

4
T3

v
g G j
= — X A,
J i c e ni i 2 ( 15)

and refine this estimate by application of Newton's method to Equation
(A.1k). Examination of Equation (A.13) shows that Newton's method will
always converge for this initial estimate and the cornvergence is usually
reasonably rapid, i.e. usually 6 or fewer iterations are required.

The functions needed for the calculation [TL, TM, X and the impli-
citly defined T(TE)] are evaluated by cubic interpolation on pretabula-
ted tables. The method used is dependent on the architecture of the
IBM 360-370 series computers and the internal representation of double
precision floating point numbers used on these machines., The use of
pretabulated functions is conéiderably faster than calls to the FORTRAN
library routines that would»otherwise be necessary. This is particularly

true in the case of the implicitly defined function T(TE) which would
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have to be solved iteratively at each spatial grid point for each time
step. The internal representation of double precision floating numbers

on IBM 360-370 computers is presented diagramatically below.

hexadecimal exponent (excess 6U4)

0L ¥ 78 63

14 digit hexadecimal fraction

sign bit
FIG. A.l. 1Internal representation of double

precision floating point numbers on IBM 360

and 370 series computers.
In the interpolation procedure, the first 16 bits (bits O—lﬁ) are
extracted, an offset substracted and the result treated as a double
word displacement from the base address of an interpolation table. The
remaining 48 bits (16-63) are used to form a floating point fractiomal
displacement (frac) from the largest value of the temperature for which
the function is tabulated which is smaller than the value of the tempera-
ture for which the value of the function is desired. The value of this
displacement is such that O = frac < 1 ; frac is used to calculate
weights for the four nearest tabulated values of the function in a cubic
polynomial interpolation. Once the weights for the cubic interpolation
are calculated only 4 double precision floating point multiplies (»:.61 us
each on IBM 370-168 with high speed multiply) and 3 adds (~ .30 us each)
are required to produce an interpolated value from a table. “Since the
weights are to be calculated for TL, TM and. X they are also used to
calculate the critical velocity for the onset of ion-cyclotron turbulence.

This would require a -call to the FORTRAN library subroutine "DSQRT' which
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is sufficiently fast that interpolation would be slower for the calcula-
tion of the squafe root alone. However, since the weights must be cal-
culated for TL, X , TM and TE, interpolation is faster than a call to
"DSQRT" because’the weights are effectively 'free" for this calculation,
The semi-logarithmic tabulation scheme allows interpolation from

T=4.096 x 10° K to 6.71L0 y 107 K with a maximum relative displacement
from a value of T for which the function is tabulated of ~a3% with
only 820 table entries. In fact some of the 820 entries are néver used
due tq the nature of the signed magnitude normalized representation of
floating point numbers on these machines, but the reason for using this
sort of tabulation scheme is that a reasonably large range can be
covered with relatively few table entries, and the correct tabulated
values can be aCﬂﬁssedkextremely répidly.

Listings of two main programs and severél subroutines are provided
for the. sake of completeness. - All of the time consuming routines have
been hand coded in assembly language. Routines that perform initial-
ization and diagnostic functions as well as the main program are coded
in FORTRAN. The first main program pfoduces the tables that are regquired
for the cubic interpolation. - The second: main programkreads in the inter-
polation tables, model parameters and starting’values. The starting
values uSed‘initially are from the steady state model atmosphere described
briefly in Appendix B.

| The assembly language programs calculate the current at eachkspatial
grid point (CURCAL), calculate the change in temperature at each point
and determine the tihe step (TESTP) and write out the arrays at the

‘designated intervals (TOUT). In addition the calculation of the current
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(CURCAL) requires taking the —(Y-l)/Y power of a number, which if done
with FORTRAN libfary routines would require taking the natural logarithm‘
and exponentiating. Both the library routines "DLOG" and "DEXP'" are
slower than ""DSQRT" so an assembly language routine was written that
calculates the 3/5 power of a number (F35), the routine is called by
CURCAL. The subroutine DIAG is used primarily for monitoring the per-
formance of the model during program changes and subsequent debugging.

In production runs it could be replaced with a subroutine that does
nothing (i.e. returns as soon as it is called) without affecting the
model calculations; therefore it is not reproduced here. The FORTRAN
subprograms initialize the array containing T (EINIT) and read in the
starting values (INIT and RDR). The calculation that includes thermal
conductivity which is réferred to in Chapter 3 is not discussed in detail
here. In order to avoid undue restriction on the time step [to satisfy
the Courant-Friedrichs-Lewy condition - see Richtmyer and Morton (1967)],
the method employed is implicit and requires the inversion of a tridia-
gonal matrix (dimension 846) and is rather slow. Runs with this program
indicated. thermal conduction did not change the results substantially

s6. these routines are not reproduced here,
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" PRICINAT PAGE 18
OF. POOR QUALITY
TABULATION ROUTINE

IMPLICIT REAL*8 (A-H,0~2)

THIS PROGRAM CALCULATES SEMI=LOGARITHMIC TABLES NEEDED FOR
CALCULATION OF REVERSE CURRENT HEATING WITH RESISTIVITY THAT
IS A FUNCTION OF THE DRIFT VELOCITY.

THE TABLES ARE WRITTEN OUT TO LOGICAL UNIT 9

REAL*8 TL(820),TM(820),VITH(820),CHIN(820),CINV(564)
REAL*8 DTO,/24310000000000000/,78B0,24410000000000800/,
.KAY/1.38054D-16/,EC/4.80298D-10/,MH/1.67530890-24/,
PI/Z2413243F6A8885A31/,MP/1.67252D~-24/,ME/S.109D0-28/,
.HBAR/1.054500-27/,MU,EION,ONE3/2C055555555555555/,
.6s2.997925D010/,C816,LS16,K32,CKAP,LNS1,LNS2,DCON,BETA, PSI
INTEGER*®4 LIM(4)/242,242,242,51/

9001 FORMAT(10AS8)

CALCULATE CONSTANTS

MU= (ME*MP)/ (ME+MP)
EION=(MUXEC¥*4) /(2. DOKHBAR¥®2)
TION=(2.D0*EION) /(3. DO¥KAY)

CSIG=0.5D0%P1

K32=KAY*DSQRT (KAY)
CSIG=(0.5D0*CSIG*DSQRT(CSIG*ME)KECKEC*C) /K32
LSIG=(3.D0*K32) /(2. DOKEC¥ECKECKDSQRT(PI))
CVITH=2.D0%169.D0¥KAY/MP

CCHIN=1,5%KAY

LNS1=DLOG(LSIG)

LNS2=DLOG(LSIG*4.2D5)
DCON=1.D00/(4.5D5%1.58D5)

CALC TABLES: ELECTRICAL CONDUCTIVITY (TL,TM), CRITICAL
VELOCITY (VITH¥*13.) AND INVERSE IONIZATION FRACTION (CHINJ.

DT=DTO

T0=TBO

0o 20 I1I
K=(25
L=K+LI

OGO

OO0

QOO0
Gyl

e
w
—

LA HZ T L DA

1))+1

L Xan
—t D
Hl—d N

—
1)
—
{an]
I
o

BET 3D5/7

5/(BETA¥DEXP(BETA)*(.4288D0+.5D0*DLOG(BETA)

O¥BETA¥¥ONEJ))

DSQRT(CVITH¥T)

CCHIN¥(1.,D0O+PSI)/PSI

(1.00+PSI)

.4.205)6070 5

) IG/(T*DSQRT(T))

TL(J)1EN(J)*(LNS1+1 5D0%DLOG(T)-.500*%DLOG(CHI))
GOTO

5 TM(J)=CSIG/{T*DSQRT(T)) :
TLCI)=TM(J)X(LNS2+DLOG(T)-.500%DLOG(CHI))

10 T=THOT

TO=TO0¥16.D0
20 DT=DT*16.0D0

CALCULATE TABLES FOR CHI INVERSE ((1+CHID¥T+CHI*TION AS FUNC OF T)

TNEW=TBO-DTO
DT=DTO
T0= TBO
Do 40 II=1,
K= ( 6 (

OO < +
oy \unoomr

QOO

3
II-1)+1
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(eXely]

L=K+LIM(II+1)

T=10-DT
00 30 J=K,L
TCH=4.D-16*TNEN
25 TOLD=TNEMW

BETA=1.58D5/T0LD
EBETA=DEXP(BETA)
B13=BETAX¥QNE3
TEMP1=0.4288D0+0.5D0*DLOG(BETA)+.4698D0U%B13
PSI=4.5D05/(BETAXEBETAXTEMP1)
C=PSI/(1.D0+PSI)
DC=DCONXCXCHBETAXBETAXEBETAX( (1, DO+BETA)¥
TEMP1 + (.5D0-.1566D0%B13))
TNEW=TOLD-((1.D0+C)*TOLD+C*TION-T)/(1.D0#C+
(TOLD+TION)*DC)
IF(DABS(TNEW-TOLD).GT.TCH)GOTO -25
: CINV(J)=TNEW
30 T=T+DT
T0=70%16.D0
40 DT=DT*16.00

WRITE OUT TABLES

WRITE(9,9001)TL
WRITE(9,900
WRITE(S,900
WRITE(9,900
WRITE(9,800
STOP

END

1)
D)
B!
D)
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REVERSE CURRENT HEATING MAIN ROUTINE

IMPLICIT REAL*8 (A-H,0-2)

THIS PROGRAM CALCULATES REVERSE CURRENT HEATING OF A MODEL
ATMOSPHERE READ IN AS UP TO 1024 VALUES OF TEMPERATURE (T) NUMBER
DENSITY (N) AND DISTANCE (S) FROM.THE INJECTION POINT (TOP OF
MODEL. THE PROGRAM DOES NOT HAVE TO START AT TIME O (INJECTION
TIME) AS THE CURRENT- TIME, TIME STEP AND ITERATIONS TO THIS POINT
ARE READ IN ALSO. THE PROGRAM READS IN THE MAXIMUM NUMBER OF
ITERATIONS 70 BE PERFORMED (NITER), THE ENERGETIC ELECTRON NUMBER
FLUX (EFLUX), PSIO WHICH CORRESPONDS TO AN ENERGY CHARACTERISTIC
OF A LOW ENERGY KNEE IN THE ENERGETIC ELECTRON DISTRIBUTION

(SEE KNIGHT AND STURROCK 1977) , FRAC, THE MAXIMUM PERCENTAGE
CHANGE IN THE THERMAL ENERGY CONTENT OF THE PLASMA PER HYDROGEN
NUCLEUS ALLOWED AT ANY GRID POINT IN ONE TIME STEP, TIMMAX

THE MAXIMUM TIME FOR THIS RUN (REAL TIME NOT COMPUTER TIME) AND
DTOUT, THE INTERVAL AT WHICH THE ARRAYS CONTAINING THE TEMPERATURE
AND CURRENT DENSITY AS WELL AS THE CURRENT TIME AND TIME STEP.

CALLED SUBROUTINES:

INIT - READS IN STARTING VALUES OF DENSITY, TEMPERATURE AND
DISTANCE AS WELL AS TIME, TIME STEP AND NUMBER OR PREVIOUS
ITERATIONS.

EINIT -~ CALCULATES INITIAL TE DEFINED AS (1+CHI)DT+2¥EION/3¥K FOR
EACH SPATIAL GRID POINT. ENERGY INPUT INCREASES TE
AND T IS CALCULATED FROM CHINV.

NOUT - WRITES OUT DENSITY AND DISTANCE ARRAYS AS WELL AS INPUT
PARAMETERS (70 FORTRAN LOGICAL UNIT 9)

CURINT - INITIALIZATION FOR CURCAL (SEE CURCAL}
TESTPI - INITIALIZATION FOR TESTP (SEE TESTP)

CURCAL =~ CALCULATES CURRENT AS A FUNCTION OF DISTANCE USING
STEADY STATE RESULTS OF KNIGHT AND STURROCK AND A
RESISTIgITY THAT DEPENDS ON THE REVERSE CURRENT DRIFT
VELOCITY.

TESTP - UPDATES TEMPERATURE AND ADJUSTS TIME INCREMENT SO THAT
NéXINUM CHANGE IN TE AT ONE GRID POINT IS FRACX*TE AT THE
GRID POINT

DIAG - OUTPUTS A SMALL SUBSET OF THE CALCULATED CURRENT DENSITY
AT INTERVALS DETERMINED BY VALUES IT READS FROM LOGICAL
UNIT 5 = CAN BE RECOMPILED WITHOUT RECOMPILING THE REST
OF THE PROGRAMS AS IT DOES NOT AFFECT CALCULATIONS.

TOUT - WRITES OUT TEMPERATURE AND CURRENT ARRAYS AND CURRENT
TIME, TIME STEP AND ITERATIONS TO LOGICAL UNIT 9

CTOUT - CLOSES LOGICAL UNIf 9 (L.E. END FILE 9)

DECLARE VARIABLES:
REAL*8 KAY,ME,C,GAM;NORM, SFST,EFLUX,PSIO,DTOUT,
.EL,EFACT, NENDT
024) $(1024),0816(1024), LN(1024),

REAL*8 T(1024
LTE(1024),TUR(
STL(820),TM(S TH(SZU) CINV(564)

INTEGER¥4 IN
Z 0

~.~.|\)z

Ly

10
Q)
3(2

~r TN

5001 FORMAT(SF
5002 FORMAT(I7

66



9001 FORMAT(10A8)

INITIALIZE CONSTANTS: BOLTZMANN'S CONSTANT, ELECTRON REST MASS,
ELECTRON CHARGE (ESU), # ERG/KEV, SPEED OF LIGHT

OO0

OO

QOO0

RN e

(9 NeXe)

Yo Ne Nl

OO0 [N aRe)

KAY=1.38054D-16
ME=9.1091D-27
EL=4.80298D-10
EFACT=1.602100-9
€=2.997925D10

READ IN MODEL PARAMETERS

READ(5,5002)NITER
READ(5,5001)EFLUX,PSIO,FRAC, TIMMAX,DTOUT

READ(8,3001)TL

READ(8,8001)TH

READ(8,9001)VITH

READ(8,9001)CNV

READ(&,9001)CINYV

UNITS OF INPUT PARAMETERS ARE:

EFLUX 1.D017 (CM¥*2 SEC)¥¥-71, PSIO IN KEV, FRAC IN PERCENT,

TIMMAX IN SEC (MAXIMUM TIME),DTOUT IN SEC (OUTPUT INTERVALS)

SCALE INPUT VARIABLES

EFLUX=EFLUX*1.D17
PSI0=(FSIOXEFACT)/EL
FRAC=FRAC*0.01D0

CALCULATE CONSTANTS FOR CALCULATION OF CURRENT

TEMP1=PSIO+PSIO

GAM=2.5D0

GAMM1=1.5D0

TEMP1=TEMP 1*DSQRT(TEMP1)
TEMP2=PSI0¥DSQRT(PSIO)
NORM=(EFLUX*GAMMIMMEXTEMP 1) /EL
TEMP 1=- (ELXEL¥NORM) / (GAMMI*MEXC)
JO1Y=TEMP1/TEMP2
TEMP2=TEMP2*PSIQ
TEMP3=-GAMXTEMP 1

INITIALIZE TIME AND ITERATIONS

NELDT=0.D0
IITER=0
TIM=0.D0

INITIALIZE TEMPERATURE AND DENSITY

NTAB=1024
CALL INIT(T
OUTIME=DTOU

/N,S,DELT, TIM,NIT,NTAB)
T+HT
NITER=NITHNITE
=T(NT

S,
M
R
IITER=NIT
T(NTAB+1) AB)

S(NTAB+1)=S{NTAB)+(S(NTAB)-S(NTAB-1))
CALL EINIT(T,TE,NTAB)

QUTPUT. INPUT PARAMETERS AND INITIAL DENSITY AND DISTANCES

CALL NOUTCEFLUX,PSIO,FRAC,TIMMAX,NTAB,N,S)

NEED 1/N IN LOOP SO WE CHANGE N TO 1/N AND CALCULATE

DIFFERENCES OF DISTANCES USED IN TIME STEP.
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10

40

10

SFST=-S(2)

DO 10 I=1,NTAB
SD(I)=(S(I)-SFST)*0.5D0
SFST=S(I)
LN(1)=0.5D00*%DLOG(N(I))
N(1)=2,00/(3.D0¥KAY*N(I))

LN(NTAB+1) LN(NTAB)

PASS ADDRESSES OF INTERPOLATION TABLES AND OTHER
CONSTANTS TO CURCAL AND TESTP

CALL CURINT(TEMPY,TEMP2,TEMP3,GAM, TL,TM,VITH,CNV,

.N,LN,S8D,0816,J,T, NTAB)

CALL TESTPI(T TE,J,08IG,N,TUP,DELT,FRAC,NTAB, CINV)
START TIME STEPPING LOOP
CONTINUE
CALCULATE CURRENT AND RESISTIVITY AT EACH GRID POINT
CALL CURCAL(OSIG,J,T,N,LN,NTAB)

CALCULATE ONE TIME STEP WORTH OF HEATING, UPDATE TEMPERATURE
" AND ADJUST TIME STEP.ACCORDING TO FRAC

CALL TESTP(T,TE,J,0SIG,N,TUP,DELT,FRAC,NTAB,CINV)

WRITE OUT SOME STUFF TO MAKE SURE THINGS ARE WORKING RIGHT
CALL DIAG(S,T,TE,J,08IG,N,TUP,DELT,TIM,NTAB,IITER)

STEP TIME

IITERSIITER+1
IF(IITER.GT.NITER)GOTO 40
TIM=TIM+DELT
IF(TIM.LT.OUTIME)GOTO 1
OUTIME=0QUTIME+DTOUT

OUTPUT CURRENT VALUES OF TIM,TEMP AND J

CALL TOUT (TIM,7,J,DELT,IITER,NTAB)
IFCTIM.LT.TIMNMAX)GOTO 1
CALL CTOUT
WRITE(6,*)IITER,DELT
STOP
END
SUBROUTINE EINIT(
IMPLICIT REAL*8 (
REAL*8 T(NTAB),TE
REAL*8 KAY/1.3805

E
4
A
1

+NTAB)
0-23
B)

T
H
T
-16/,EC74.802980-10/,MP/1.67252D-24/,

T,
A_.
(N
4D

.ME/9.1091D-28/,
.HBAR/1.05450D0~27/,0NE3/2C0555555555555557,
.BETA,CHI

TION=(MEXMP)/ (ME+MP)
TION=(TIONYEC*%4)/ (2, DO¥HRAR**2)

TION=(2.DO¥TION) /(3. DOFKAY)
DO 10 I=1,NTAB
BETA=1.5805/T(1)
CHI=4.5D5/(BETA*DEXP (BETA)*(.4288D0+.500%DLOG(BETA)
+. 4698 +BETAXYONER))
CHI=CHI/(1.DO+CHI)
TECI)=T (I +(CHI¥(T(II+TION))
RETURN
END
SUBROUTINE INIT(T,N,S,BELT,TIM,NIT,NTAB)
IMPLICIT REAL*3 (A-H,0-2) ~
REAL¥S T(1024),N(1024),5(1024)
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1001

1001

FORMAT(10A8)

READCIO0, 1001)NTAB,NIT,DELT,TIM
CALL RDR(T,;N,S,NTAB)

RETURN

END

SUBROUTINE RDR(T,N,S,NTAB)
REAL*8 T(NTAB),S(NTAB),N(NTAB)
FORMAT
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oF PAGE 1
CURCAL
CURCAL CSECT

ROUGHLY EQUIVALENY TO THE FORTRAN CODE BELOW, EXCEFT

THE FUNCTIONS PASSED IN THE ARGUMENT LIST OF THE

FORTRAN ENTRY POINT CURINT (TL,TM,VTH,CNV) ARE IMPLEMENTED
IN LINE IN THE ASSEMBLY LANGUAGE VERSION AND A CALL 70

THE ASSEMBLY LANGUAGE VERSION SHOULD PASS THE ADDRESSES

OF SEMI-LOGARITHMIC TABLES (TL(820),TM(820),VTH(820),CNV(820))
VIA THE ENTRY POINT CURINT RATHER THAN FUNCTION NAMES.
CURCAL DOES THE EQUIVALENT OF A FORTRAN RETURN 1 WHEN A
VALUE OF T IS OUTSIDE THE TABULATED RANGE. THERE IS NO
0BVIOUS WAY TO MAKE THIS APPARENT IN THE FORTRAN VERSION.
THE ARGUMENTS PASSED TO CURCAL ARE IGNORED AND

OBTAINED FROM LOCAL STORAGE WHERE CURINT PUT THEM.

NOTE THAT THIS MEANS CURINT MUST BE CALLED BEFORE THE
FIRST TIME CURCAL IS CALLED OR A REAL MESS WILL RESULT.

SUBROUTINE CURINT(TEMPI,TEMP2,TEMP3,GAM, TL,TM,VTH,CNV,
.N,LN,SD,0SIG,J,T,NTAB)

DECLARE VARIABLES

IMPLICIT REAL*8 (A-H,0-Z)

REAL*3 N(NTAB), LN(NTAB) SOD(NTAB), T(NTAB), J(NTAB),0SIG(NTAB),
JTL,TM,VTH, CNV

REAL*S TEMP1,TEMP2, TEMP3, CONAN, ESU, C, CONANT, B, CHT,

.VC,VITH, TSI, JA NCON, NCON1 ME,MI,PI,JCON,JCI

DATA C/Z.997925D10/,ESU/4.80298D-10/,NE/9.1090-28/,
MI/1.67252D-24/,P1/2413243F6A8885A30/,ERR/1.D-6/

INITIALIZE CONSTANTS FOR CURCAL

INEEG%R*4 COUNT/30/

B=1.D
CONAN=6.D~2*DSQRT (ME/MI)*B/ (4, DOKPI¥ESU)
TCON=((GAM-1.D00)/GAM)
CONANT=-TCON¥TEMP3XCONANYESU/C
TCON=TCON®TEMP1

CE=~-C/ESU

RETURN

ENTRY CURCAL(OSIG,J,T,N,LN,NTAB,¥)

CALCULATE CURRENT AND RESISTIVITY (0SIG) FOR FIRST POINT

OSIG(1I=TL(TCIN)+TMCTCI)IXLNCT)
CHT=CNV(T(1)) ‘
VITH=VTH(T (1))
VD=J{1)¥N(1)¥CHT¥CE
IF(VD.LT.VITH)GOTO 10

THE NEXT STATEMENT CALCULATES THE ANOMALOUS PART OF THE
RESISTIVITY IF THE DRIFT VELOCITY IS GREATER THAN THE
CRITICAL VELOCITY FOR THE ONSET OF TURBULENCE
O0SIG(13=0STG(1)+CONANKN(I1I¥CHT*(1.D0-VITH/VD)

INITIALIZE TSI TO ZERO

I I R R R R R EEEEEEEEEE RS EEEEEEEE . EEEEE LR E R EFEEREREEFEREENRXSEE]

10 7SI1=0.00
DO 20 1=2,NTAB
0SIGCI)I=TLATCI))+TMUTCIIDRLNC(I)
TSISTSI+(0SIG(I=-1)+0SIG6(1))*SD(1)
JCON=(TEMP2+TE )

MP3WTSI
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F35C1=1.D0/JCON
F35C2=F35(F35¢C1)
CHT=CNV(T(I))
VITH=VTH(T(I))
J(I)=TEMPI*F35C2
NCONO=N(I)*CHT

CJA=NCONO*SD(I)*CONAN
NCON=NCONO*CE
VD=JT*NCON
IFC(VD.LT.VITH)GOTU 20

THIS SECTIOM CALCULATES ANOMALOUS PART OF RESISTIVITY USING
NEWTON'S METHOD FOR INTERIOR GRID POINTS - SKIP IF
DRIFT VELOCITY IS LESS THAN CRITICAL VELOCITY

JA=(12.D00/13.00)*VITH/NCON
JCON=JCON+CJIAXTEMP3
CJA=CJIA*JA
NCON 1=NCON¥CONAN]
JOIY=JA¥(1. 00+ (J(I)=JA) /(NCONT*SD(I)*F3IECI*J(I)+JA))
DO 15 K=1,COUNT
CJAT=CJA/J(1)
TC1=TCON-CJAT
JC1=JCON-CJAT
JT=JCIIH((TCI+TEMPI¥JC 1)/ (J(I)XJCI¥FIE(JCT1I+TCT))
IF(DABS((JT-J(1))/JT).LE.ERRIGOTO 16

15 J(1)=J7

16 TSIG=NCONO¥CONAN¥(1.00-JA/J(1})
TSI=TSI+TSIG*SD(I)
0SIG(I1)=0SIG(I}+TSIG-

20 CONTINUE

R EERESEEEREEEEEEEEEEEEEREE SR ERENEEEERS]

RETURN
END
USING ¥,15 .
B crIRsT BRANCH AROUND NAME, OTHER ENTRY ETC.
i
DC CL7'CURCAL °
ENTRY CURINT
USING *,15 .
CURINT B LFIRST BRANCH AROUND NAME, SAVE AREA ETC.
if X
DC CL7'CURINT !
AREA DS 18F
REG1 DC AL4(ARGA) R1 (ADDR ARG LIST)
REG2 DC Fro! R2 BASE T
REG3 DC Fig! R3 (BASE OSIG - 8 — BASE T)
REG4 De Fro R4 (BASE J - BASE T)
REGS De F'o R5 (BASE N - BASE T)
REG6 DC Fro! R6 (BASE LN ~ BASE T)
REG7 De F'o R7 (BASE SD - BASE T)
EIGHT DC Flg! R8 (INCREMENT - 8)
REGY DC Fro RO (BASE T+ 8%(NTAB-1) COMPARAND)
TLA De F1o’ R10 (BASE TL TABLE CHANGES IN LOOP)
THA DC Fro R11 (BASE TM TABLE CHANGES IN LOOP)
VTHA DC F'o! BASE VTH TABLE
CHVA DC Fio! BASE CNV TABLE
COUNT DC F'30! MAX # OF NEWTON'S METHOD ITERATIONS
ARGA DC X180 ARGUMENT LIST (ONE LONG)
g AL3(F35A) ADDR ARGUMENT
TBND DC X'00000330" ‘
TDISP DC X'00004410"
CNOP 0,8 FORCE DOUBLE WORD ALIGNMENT
WM DC D'O. "
WP1 DC D'o. !
MM3 DC D'o.*
WP3 oc D'O. !
FLOAT DC X'4000000000000000°
CONAN DC p'o.'
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CONAN1
TEMP
TEMP2
TEMP3
GAM
NCON
NCONO
TCON
JCON
CJA
TC1
JA
TSI
ERR

C

ESU
ME

MI

B8

Pl

CE

i Bt B |
MWW W
(TN
ALLCIO

B =t

BO. ! AllTy

D1O. "

D10,

'O

DO,

Do,

DO

D10,

D'O. !

BIG. "

D10

00,

D10,

pD'1.E-6" ERROR TOLERANCE FOR NEWTUN'S METHOCD
D'2.997925€1

D'4.80283E-10"

D'9.1091E-28"

D'1.67253E-24"

p'1.g2¢

X'413243F6AS385A30"

I

D10

00"

14,12,12(13) SAVE CALLING ROUTINE'S GPR'S
2,13 R2 <= ADDR OLD SAVE AREA
13,AREA R13 (= ADDR NEN SAVE AREA
15 R15 NO LONGER BASE REG
AREA,; 13 R13 NEW BASE REG

2,40313) LINK SAVE AREAS

13, 8(2)

2,9,0(1) R2-R9 (= ADDR'! S 1ST 8 ARG'S
G, 0¢5) FO <= GAM

6, TLA TLA (= BASE TL TABLE

2,0 F2 <= GAM

7,TMA TMA (= BASE TM TABLE
4,0(4) F4 <= TENP3

8,VTHA VTHA (= BASE VTH TABLE

4, TEMP3 TEMP3 (LOCAL) <= TEMP3

9, CNVA CNVYA <= BASE CNV TABLE

6. 003) F6 <= TENP2

4,10,32(1)  R4-R10 ADDR'S REST OF ARG'S
4,0(2) F4 ¢= TEMP1

10,0(10) R10 <= NTAB

6, TEMP2 TEMP2 (LOCAL) <= TEMP2
10,3 R10 <= NTAB¥3

4, TEMP1 TENMPI (LOCAL) <= TEMPI
10, EIGHT R10 <= 8¥(NTAB-1)
2,=0'1.? F2 <= GAM-1.D0

4,9 R4 ¢(= BASE N — BASE T

2,0 F2 <= (GAM-1.D0J/GAM

5,9 RS <= BASE LN - BASE. T
2,0AM GAM <(= (GAM-1.D0)/GAM

6,9 R6 (= BASE SB - BASE T

0. ME FO <= ME

1,REG] R1 (= ADDR ARG LIST

0,MI ' FO {= ME/MI

15,=V(DSQRT) R15 <= ENTRY ADDR DSQRT
0,F35A F35A = ME/MI

14,18 FO <= DSQRT(ME/MID

8,9 R8 (= BASE J - BASE T

0,8 FO <= DSQRT(ME/MI)*B

7:9 R7 ¢= BASE 0SIG - BASE T
0,=D'6.E-2" FO <= 6.D0-2%DSQRT(ME/MI)*B
10,9 RJ0 (= BASE T + BK(NTABS1)
2,504, " F2 <= 4.

2Pl £2$2 3 B0ep1

7,E1GHT R7 = BASE 0SIG - 8 -~ BASE T
2,ESU F2 <= 4.DO¥PIXESU
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ST 9,REG2 REG2 <= BASE T

DOR 0,2 F2 (= 6.D-2¥DSQRT(ME/MI)*B/(4.DO*PIXESU)
ST 7,REG3 REG3 <= BASE 0SIG - 8 — BASE T
STD 0, CONAN CONAN (= 6.D-2%*DSQRT (ME/MI)*B/(4.D0XPIXESU)
ST 8,REG4Y REG4 <= BASE J - BASE T
LD 4,GAM F4 <= ((GAM-1.D0)/GAM)
MD 0,TEMP3 FO <= TEMP3*CONAN
ST 4,REGS REG5 <= BASE N - BASE T
MOR 0,4 FO <= ((GAM-1.D0)/GAM)*TEMP3XCONAN
ST 5,REG6 REG6 <= BASE LN - BASE T
LD 2,0 F2 <= C
ST 6,REG7 REG7 <= BASE SD - BASE T
LCDR 2,2 F2 <= -C
DOR 0,2 FO <= -{(GAM-1.D0)/GAM)XTEMP3¥CONAN/C
ST 10,REGY REGS <= BASE T + 8X(NTAB-1) COMPARAND
MD 4, TEMP1 F4 <= TEMP1®((GAM-1)/GAM) = TCON
DD 2,ESU F2 <= -C/ESU
STD 4, TCON TCON <= TEMPI¥((GAM-1)/GAM)
L 10,4(13) R10 <= ADDR OLD SAVE AREA
MD 0,ESU FO <= -({(GAM-1.D0)/GAM)*TEMP3¥CONANXESU/C
STD  2,CE CE <= -C/ESU
LM 14,10,12(10) GPR'S RESTORED
STD 0, CONANT CONAN1 <= ((GAM-1.00)/GAM)XTEMP3*CONAN
L 13,4(13) R13 <= ADDR OLD SAVE AREA
SR 15,15 R15 (= 0 (RETURN CODE)
MVI  12(13),X'FF' INDICATE CONTROL RETURNED
BR 14 RETURN
DROP 13
USING CURCAL, 15
CFIRST  STM  14,12,12(13) SAVE CALLING ROUTINE'S GPR'S
LR 2,13 R2 (= ADDR OLD SAVE AREA
LA 13, AREA R13 <= ADDR NEW SAVE AREA
DROP 15 R15 NO LONGER BASE REG
USING AREA, 13 R13 NEW BASE REG
ST 2,4013) LINK SAVE AREAS
ST 13,8(2)
LM 1,11,REG1 SET UP GPR'S
LH 12,0(2) R12 <= HIGH ORDER 2 BYTES OF T(1)
MVC  FLOAT+1(6),2(2) FLOAT <= FRACTIONAL DISPLACEMENT
S 12,7D1SP REDUCE R12 BY TDISP. NOW # DOUBLE WORDS
x ' FROM BASE OF INTERPOLATION TABLES
LD 4, FLOAT F4 <= FRACTION O LE FRAC LT 1
BM BADT IF RESULT NEGATIVE - OUT OF RANGE
* GOTO BADT
c 12, TBND IF R12 GREATER THAN TBND
BH BADT GOTO BADT
SD 4,2=0'.5"
SLA 12,3 R12 <= R2%3 NOW BYTE DISPLACEMENT
X FROM BASE OF INTERPOLATION TABLES
* NOM COMPUTE WEIGHTS FOR.CUBIC INTERPOALTIGN OF
X FUNCTIONS OF T
LOR 2,4 F2 (= X
MDR 4,4 Fq (= X¥*2 = X2
HOR 4.4 Fq <= X2/2
) 4,=0'1.125'  F4 <= X2/2 - 9/8
LDR 6,4 F6 (= X272 - 9/8
HOR 4,4 F4 <= X274 - 9/16
MOR 6,2 F6 <= X372 - 0X/8
LCOR 0,4 FO (= -X2/4 + 9/16
ADR 0,6 FO <= X3/2 - X274 - 9%/8 + 9/16
STD  0,HMI NM1 (= WEIGHT FOR TABLE ENTRY CORRESPOND-
* ING TO CLOSEST SMALLER VALUE OF T.
LCDR 0,4 FO <= -X2/4 + 9/16
SOR 0,6 FO <= -X3/2 - X2/4 + 9%/8 + 9/16
STD  0,WP1 WP1 (= WEIGHT FOR TABLE ENTRY CORRESPOND-
* ING TO CLOSEST LARGER VALUE OF T.
ADR 6,2 F6 <= X3/2 - X/8
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N
(

* N
(

AD

MD

LDR
SOR
ABR
STD
STD

OW CALCULATE INTERPOLATED VALUES

HAVE WEIGHTS FOR TABLES ENTRIES 1 & 4

LDR

LD
LDR
™MD
MD
ADR
ADR
LD
LOR
MD
MD
ADR
ADR
Mo
ADR
L
STG
L
LD
LD

OW CALCULATE INTERPOLATED VALUES OF CH AND VT

4,0

2,6
6,0{10,12)
2,24(10,12)
4,0011,12)
6,24(11,12)
0,2

4,6

2,uMm

6,2
2,8(010,12)
6,8(11,12)
0,2

4,6

2,WP1

6,2
2,16(10,12)
6,16(11,12)
0,2

4,6
4,0(06,2)
4,0

10, CNVA
4,8(3,2)
11, VTHA
0,NM3
6,WP3

Fd4 <= WEIGHT
F2 (= WEIGHT
FO <= HEIGHT
F2 (= WEIGHT
F4 <= WEIGHT
F6 <= WEIGHT
FO (= WI¥TLY
Fd <= WI¥TMY
F2 (= WEIGHT
F6 <= WEIGHT
F2 <= W2*TL2
F6 <= W2¥TM2
FO <= NI¥TL]
Fd (= HIFTMY
F2 <= WEIGHT
F6 <= WNEIGHT
F2 <= W3*TL3
F6 <= W3I*TM3
FQ (=

F4 <=

Fd (= TM¥LN(
Fq <=

R10 (=

0SIG(

RI1 (=

FO <

" BRICTNAT Fxay Yy

OF TL AND TM

IN FPR'S 0 & 6)

[T T S NP NG N

+
+
3
3

1)

TL + THMELN(YD)

= BASE ADDR CHINV TABLE
13 (= TL + TM¥LN(1)

= BASE VTH TABLE

= WEIGHT FOR SMALLEST VALUE OF T

TL 1
TL 4
TH 1
™ 4
MA¥TL 4
H4XTM4

W4XTLE + W2XTL2
H4¥TM4 + W2*TM2

INTERPOLATED VALUE OF TL
INTERPOLATED VALUE OF TM

QB ROQR QUALLTY
4,=p*.5! F4 (= X274 - 1716
6,=X'4055555555555555‘ Fe <= X376 - X/24
0.4 FO <= X274 - 1/16
0,6 FO (= -X3/6 + X2/4 + X/24 - 1716
6,4 F6 <= X3/6 + X2/4 - X/24 - 1/16
0,UM3 WM3 <= WEIGHT FOR SMALLEST VALUE UF T
6,WP3 WP3 (= WEIGHT FOR LARGEST VALUE OF T

F6 <= WEIGHT FOR LARGEST VALUE OF T

HAVE WEIGHTS FOR TABLES ENTRIES 1 & 4 IN FPR'S 0 & 6)

LDR
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F4 (= WEIGHT 1

F2 (= WEIGHT 4

FO (= WEIGHT .1 * i

F2 <= WEIGHT 4 * CH 4

Fd <= WEIGHT 1 * VT 1

F6 <= WEIGHT 4 * VT 4

FO (= WI¥CH1 + W4*CHY

Fd (= WI¥WTT1 + W4¥VT4

F2 (= WEIGHT 2

F6 <= WEIGHT 2

F2 (= W2¥%CH2

FO <= W2*VT2

FO <= WI®CH1 + W4¥CH4 + W2XCH2
Fad (= WIFVT T + WARWT4 + W2%VT2
F2 <= WEIGHT 3

F6 <= WEIGHT 3

F2 (= W3I¥CH3I

F6 (= W3*YT3

FO <= INTERPOLATED VALUE OF CH
F4 <(= INTERPOLATED VALUE OF VT
F2 (= CHT

F6 <= 0.00

F2 <= CHT*CE

R10 <= BASE ‘TL TABLE

F2 <= NCI)¥CHT*CE

R17 <= BASE TM TABLE

TSI <= 0.00
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RIRRE RTI

MD 2,0(4,2) F2 (= JC1)*N(1)¥CHT*CE = VD

CDR 2,4 IF(VD.LT.VITH)

BL ARND GOTG ARND

LD 6, CONAN F6 (= CONAN

MDR 6,0 F6 (= CONANXCHT

MD 6,0(5,2) FG (= CONANXN(T)XCHT

LD 0,=p'1." FO ¢(= 1.D00

DDR 4,2 F4 (= VITH/VD

SDR 0,4 FO (= 1.DO0-VITH/VD

MDR 6,0 F6 (= CONAN¥N(CI1)¥CHT*(1.D0-VITH/VD)

AD 6,8(3,2) F6 <= OSIG(I1I+CONANH¥NCI1I*CHT*(1.D0-VITH/VD)

STD 6,8(3,2) OSIGC1)C=0SIG(1)+CONANKNCIIRCHT*(1.D0~-VITH/VD)
ARND AR 2,8 R2 (= ADDR T(2)
Loop LH 12,0(2) R12 (= HIGH ORDER 2 BYTES O} T(I)

MVCe FLOAT+1(6),2(2) FLOAT <= FRACTIONAL DISPLACEMENT

S 12,7RISP REDUCE R12 BY TDISP. NOM # DOUBLE WORDS
* FROM BASE OF INTERPOLATION TABLES

LD 4,FLOAT F4 (= FRACTION 0 LE ¥RAC LT 1

8M BADT IF RESULT NEGATIVE - OUT OF RANGE
* GOTQ BADT

(D 12.TBND IF R12 GREATER THAN TBND

BH BADT GOTO BADT

SD 4,=p'.5" F4 <= FRAC -.5 LE FRAC LT .5

: . SLA 12,3 R12 ¢(= R2%8 NOW BYTE DISPLACEMENT

z FRO!S BASE OF INTERPOLATION TABLES
* NOW COMPUTE MEIGHTS FOR CUBIC INTERPOALTION OF
t FUNCTIONS OF T

LDR 2,4 F2 ¢(= X

MDR 4,4 Fq = X¥¥2 = X2

HDR 4,4 F4 (= X272

SD 4,=p’1.12%! F4 (= X272 - 9/8

LDR 6,4 F6 (= X272 - 9,8

HOR 4,4 Fqd (= X274 - 9716

MIR 6,2 F6 (= X372 - 9X/8

LCDR 0,4 FO (= -X2/4 + 9716

ADR 0,6 FO <= X372 - X2/4 - 9X/8 + 9/16

STDh 0, 4dM1 WM1 (= WEIGHT FOR TABLE ENTRY CORRESPOND-
x ING TO CLOSEST SMALLER VALUE OF 7.

LCDR 0,4 FO (= -X2/4 + 9/16

SDR 0,6 FO (= -X3/2 = X274 + 9X/8 + 97106

STD 0, HP1 WPY1 <= WEIGHT FOR TABLE ENTRY CORRESPOND-
Xx ~ ING TO CLOSEST LARGER VALUE OF T.

ADR 6,2 F6 <= X372 - X/8

AD 4,=p'. 5! F4 X2s4 - 1716

MD 6,:X'4055555555555555' F6 (= X376 - Xr/24

LDR 0,4 FO <= X274 - 1/16

SDR 0,6 FO (= ~X3/6 + X2/4 + X/24 - 1716

ADR 6,4 F6 (= X3/6 + X274 - X724 - 1716

STD 0, M3 WM3 <= WEIGHT FOR SMALLEST VALUE OF T
* STD 6,HP3 WP3 <= WEIGHT FOR LARGEST VALUE OF T
* NOW CALCULATE - INTERPOLATED VALUES OF TL AND TM
: (HAVE WEIGHTS FOR TABLES ENTRIES V' & 4 IN FPR'S 0O & 6)

LDR 4,0 F4 (= WEIGHT 1

LDOR 2,6 F2 (= WEIGHT 4

MD 0,0010,12) FO ¢(= WNEIGHT 1 X TL 1

MD 2,24010,12) F2 <= WEIGHT 4 * TL 4

MD 4,0011,12) F4 (= WEIGHT 1 * TM 1

MD 6,24(11,12) F6 <= WEIGHT 4 ¥ TM 4

ADR 0,2 FO <= HIFTLY + W4AXTLA4

ADR 4,6 F4 (= NI1¥TMY + W4KTM4

LD 2, WM F2 (= WEIGHT 2

LDR 6,2 F6 <= WEIGHT 2

MD 2,8(10,12) F2 <= W2¥%TL2

MD 6,8(11,12) FO <= W2¥TM2

ADR 8,2 FO (= WIFTL1 + W4XTL4 + W2*TL2
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DB OOR QuaLyyy
WUKTMY + W4XTM4 + W2¥TM2
WEIGHT 3
WEIGHT 3
W3IKTL3
W3¥TM3

INTERPOLATED VALUE OF TL
INTERPOLATED VALUE OF THM
THMELNCT)

TLU + TMRLNCD)

BASE ADDR CHINV TABLE
Y (= TL + TM¥ELN(ID)

BASE YTH TABLE
ODSIG(I)+0SIG(I-1)
(0SIG(I)+0SIG(I-1)I)*S
TSI + (DSIG(II+NSIG(I

TSI + (BS5I5{I)+0SI6¢(
TSI*TEMA3
T
1.
1.

Hne

P )

(1
13)%*s
-13)%

1l

—

HAUANB I HAAA g

EMP2 + TEMPIXTSI
TENP2+TEMP3*TSI

DD/(TEMP2+TEMP3*TSI)
ENTRY ADOR F35
(= 1.00/(TEMP2+TEMP3I¥TSI)
RGUMENT <= 1.DO/(TEMNP2+TEMPI*TSI)
F35(1.00/(TEMP2+TEMPI¥TSI))
2 (= F35(1.D00/(TEMP2+TEMPIH¥TSI))
¢= HEIGHT FOR SMALLEST VALUE OF T
(= WEIGHT FOR LARGEST VALUE OF T
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OW CALCULATE INTERPOLATED VALUES OF CH AND VT
HAVE WEIGHTS FOR TABLES ENTRIES 1 & 4 IN FPR'S 0 £ 6)

F 4
F2
FO
F2
F4
F6

HEIGHT
WETGHT
WETGHT
HEIGHT
WEIGHT
WEIGHT
W1HFCHA
WIRVT Y
WEIGHT
HEIGHT
W2*CH2
H2%VT2
WH1%eH
KItVTY
WEIGHT
WEIGHT
W3¥CH3
W3HVT3
INTERPOLATED VALUE OF CH
INTERPGLATED VALUE OF VT

¥ ECCOO

W4
W4

ST I S S N N A S
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W4¥CHY + 2%
+

2%CH2
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NENWT

ouUT

THE FOLLOWING CALCULATES THE CURRENT AND RESISTIVITY IN THE
CASE THE DRIFT VELOCITY EXCEEDS 13 TIMES THE ION THERMAL
VELOCITY - - IN THIS CASE AT LEAST PART OF THE SLAB

1S CHARACTERIZED BY ANOMALOUS RESISTIVITY

LD
MD
LDR
STD
AD
STD
DDR
LD
MD
MDR
STO0
STD
LD
MD
MD
MDR
ADR
SOR
DDR
AD

2,CJA
2, TEMP3
6,4

2. CJA
2. JCON
2. JCON

o
—

. e e e v e e
o,

[SY RN

C~

zn

—_f

N~
=3 H U= O0OU O< POnN
=z

(F35)

— oG~
N WO O3 W Ol
~ p-4 »  Zz
N

Nt

m
Bl

DR N R T e T R PSR

. W N % e oW

QO DLTTORN. COLHHK/—ANODN T

(4,2)

O N OHO0OLBOL NOOGOOCONOGOL—GOOQOQO=C-wPN RNNOOOoOONN

ut

11, NENT
4,JA

4,2

11, TMA
2,201,
2,4

2 NCONO
2. CONAN

4,2

F6

F2 <= CJA
F2 (= TEMP3I*CJA
F6 <= VITH

CJA (= TEMP3I¥CJA

F2 (= JCON + TEMP3¥CJA

JCON <= JCON + TEMP3I*CJA

F6 <= (12./13.)%VITH/NCON = JA
F2 <= CJA

FO <= NCON‘CONAN1 = NCONI

H

A*NULCON
COUNT(NAX # NEWTON'S METHOD STEPS)
CJA
CJA/J(I) = CJAT
5 (= ENTRY ADDRESS F35
JCON
= Jc1

{= JC1

TCON¥CJAT = TC1

= TCON¥CJAT

F35(JCc1)

TCH

Je1

F35(JC1)*Jc1

J(1)

JOL)XJCI¥F35(JCT)

TEMP1¥JC1

TC1 + TEMP1¥JC1
TCI1+J(II¥JCI¥F3IB(JICT)
C1+TEMP1*JC1)/(TC1+J(I)*JC1*F3:\JC1))
JOII¥R(TCI+HTEMPI*JIC 1)/
JCI)HRJCI¥F35(JC1))
EEH ESTIMATE OF J(I)
N
£
D

o
AN
tr it i Il’\
i
o
(@]
=z
1
(g}
<,
b=
-

vy

o

ABS(NEW ESTIMATE OF J(I))

EW ESTIMATE - OLD ESTIMATE

RR¥DABS (NEW ESTIMATE)

ABS(NEW ESTIMATE - OLD ESTIMATE)
S(NEW ESTIMATE = 0OLD ESTIMATE)
NEW ESTIMATE).LE.ERR)
= JOIYK(TCI+TEMPIRJC)/
(IY¥JCT1¥F35(JCc1))

O ey =i ll/\ll

+
C)c,/\nm

H OO
A AAAN AN Qo v TWCOAAAAACAANAAAAAAAAAAN AT A AN

uTt
JA
JAsJ(1)

1BASE ADDR TM ARRAY

D

1.00 - VITH/VD

NCOND*(1 DO-VITH/CJ(II*NCON))

CONA N*NCONO*(1 DO-VITH/CJ(I)*NCONI)
G

T

SIG

1
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DHHNROPONN LN OAA0TTLRODLOLAN I OC\C\ONDC\&DOG\L/JOD-—‘O\O\—"\N'\N/\NDODCD
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AD 2,8(3,2) F2 <= 0SIG(I) + TSIG
MD 4,0(7,2) F4 (= TSIG*3D(I)
AD 4,TSI F4 <= TSI + TSIG*SD(I)
STD 2,8(3,2) 0SIG(I) <= O0SIG(I) &« TSIG
STD 4,781 TST <= TSI + TSIG*SD(I)
ARND1 BXLE 2,8,L00P I (= I+1 AND GOTO LOuP IF NOT DONE
L 13,4(13) R13 <= ADDR OLD SAVE AREA
LM 14,12,12(13) GPR'S RESTORED
SR 15,15 R15 <= 0 (RETURN CODE)
MvI 12(13),X'FF' INDICATE CONTROL RETURNED
BR 14 RETURN
BADT L 13,4(13) R13 <= ADDR 0OLD SAVE AREA
LM 14,12,12(13) GPR'S RESTORED
LA 15,4 R15 <= 4 (RETURN CODE)
MVI 12(13),X'FF" INDICATE CONTROL RETURNED
BR 14 RETURN
END
DRIGINAL PAGE 13

DE POOR QUALITY,
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nm

LRI X A R RN RS R

AREA
FIRST

NONNEG

NOEXTD
*

F35

CSECT

REAL FUNCTION F35%8(X)

F35 RETURNS THE 3.,/5. POWER OF THE ARGUMENT IF

THE ARGUMENT IS POSITIVE AND THE NEGATIVE OF THE 3./5.
POMER OF THE ABSOLUTE VALUE OF THE ARGUMENT IF THE ARGUMENT
IS NEGATIVE. THE COMMENTS REFER TO THE POSITIVE CASE.

THE ALGORITHM IS:

CUBE X AND CALL THE RESULT Y, THEN WRITE Y AS
Y = (16X¥(5XN)Y) * (1p%kM) X (Z)
WHERE M IS BETWEEN -4 AND +4 AND Z IS BETWEEN 1/16 AND 1.

THEN Z¥%¥{1/5) IS APPROXIMATED BY A MINI-MAX LINEAR FIT
FROM TRO TABLES WITH A MAXIMUM RELATIVE ERROR IN THE
APPROXIMATION OF 5.1E-4. THEN THE INITIAL ESTIMATE OF

= (16%¥(M/5)) ¥ (Z¥X1,s5)

IS REFINED BY TWO APPLICATIONS COF NEWTON'S METHOD.
X*%¥3/5 IS THEN CALCULATED FROM ., (16%XN) * (T**{/5),

T*X1/5

USING *,15 TELL ASSEMBLER NEXT INST ADDR IN R15S

) FIRST BRANCH -ARDUND NAME AND SAVE AREA

oc X'03! LENGTH OF NAME

De CL3'F35! NAME

DS 18F SAVE AREA

STM 14,12,12(13) SAVE CALLING ROUTINE'S GPR'S

L 1,001) R1 (= ADDR ARGUMENT (X)

LD 4,0(1) F4 (= X ,

LR g,13 RY9 (= ADDR OLD SAVE AREA

STD 4, ARG ARG <= ¥

LA 13,AREA R13 ¢(= ADDR NEW SAVE AREA

ORGP 15 R15 NO LONGER BASE REGS

USING AREA, 13 R13 NEK BASE REG

LTDR 4,4 CHEECK SIGN OF X

ST 9,4013) LINK SAVE AREAS

BNM  NONNES IF SIGN POSITIVE - NO FIXES OR FLAGS

NI ARG, X'V7F! TURN OFF SIGN BIT OF ARG <= [XI

) 9, =%X'8000 SIGN BIT R9 ON - FLAG

ST 13,8(9) LINK SAVE AREAS

SR 3,3 R3 <=0

IcC 3, ARG R3 <= EXCESS 64 EXPONENET OF ARG

MVl ARG, X '40" ARG (= FRACTION OF ARG

LD 4, ARG F4 <= FRACTION OF ARG

L 4,=7f 64" R4 <= HEX 40

SR 3,4 R3 <= EXPONENT OF ARG

MOR 4,4 F4 <= FRACTION OF ARG *¥%2

| 2,=F'3! R3 (= EXPONENT QF ARG¥¥3

LA 6,TAB1-16 R6 <= ADDR TABLE V¥ - 16

™MD 4, ARG F4 <= FRACTION OF ARG X¥3

SR 5,5 R5 <= 0

LA 7,TAB2-16 R7 <= ADDR TABLE 2 - 16

STD 4, ARG ARG <= FRACTION ARG XX3

1¢ 5, ARG R5 (= EXCESS 64 EXPONENT OF
FRACTION OF ARG *¥3 ,

AR 3:5 R3 <= EXCESS 64 EXPONENT OF |X]¥%3

SR 2,2 R2 <=0

SR 3,4 R3 (= EXPONENT OF IXI%x3

LA 8, TAB3+16 R§ (= ADDR TABLE 3 + 16

BNM - "NOEXTD IF R3 > 0 NO SIGN EXTEND

L 2,=F' =1 SIGN EXTEND FOR DIVIDE

) 2,=F'5 R2 (= EXPONENT OF T
R3 ¢(= N (SEE COMMENTS)
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A 3,=F'6h' R3 (= EXCESS 64 EXPONENT OF 1G6%*N
AR 4,2 R4 (= EXCESS 64 EXPONENT OF T
STC 4, ARG ARG (=T
LD 4,ARG F4 (=T
SLL 2,2 R2 <= BISPLACEMENT FOR TABLE 3
SDR 0,0 FO (= 0.
L 5, ARG RS ¢(= I1ST 4 BYTES OF T
1C 4, ARG+1 LOW ORDER BYTE R4 <= FIRST BYTE OF
* : FRACTION OF T
Sttt 5,8 HIGH ORDER 3 BYTES OF R5 (= BYTES
* 1-3 OF FRACTION OF T
N 4,=X'000000FC" R4 <= DISPLACE FOR TABLES 1 & 2
IC 5,ARG+4 R5 (= BYTES 1-4 OF FRACTION OF T
LE 0,0(4,7) FO <= TABLE 2 ENTRY - SLOPE
SRL 5,2 LOW 3 BYTES OF R3 (= FRACTION OF
X FRACTIONAL DISPLACEMENT FOR MINI-MAX LINE
ST 5.,FRAC FRAC (= FRACTIONAL DISPLACEMENT FRACTION
MVI FRAC,X'40' FRAC <= FRACTIONAL DISPLACEMENT
£ 0,FRAC FO <= FRAC*SLOPE
AE 0,0¢4,6) FO (= MINI-MAX ESTIMATE OF Z¥%¥1/5
LTIR 9,9 CHECK IF X NEGATIVE
ME 0,0(2,8) FO ¢(= MINI-MAX EST OF T*¥{/5
BNM NOSIGN IF X POSITIVE, NO FIXES
0 3,=F'128' SIGN OF EXPONENT OF 16¥¥N MADE MINUS
OSIGN LOR 2,0 F2 <= MINI-MAX EST OF T**1,/5 = EST 1

WITH SOME GPR FIX-UPS INTERLEAVED.
F2 (= ESTY *¥ 2

N
k3
: BEGIN TWO APPLICATIONS OF NEWTON'S METHOD
*

MOR

r
-
~

STC 3. UL MUL <= SIGN(X) ¥ 1G¥¥N
MOR 2,2 F2 <= EST. 1 %% .4
L 1,24(9) R1 RESTORED
LDR 6,2 F6 <= EST 1 ¥x 4
MOR 2,0 F2 (= EST 1 *¥ 5§
L 2,28(9) R2 RESTORED
SDR 2,4 F2 (= EST t ¥* § T
DER 2,6 F2 (= (EST 1 ** 5 - TIEST 1 XX 4
L 2,32(9) R3 RESTORED
ME 2,0NES F2 (= (EST 1 *® § - T)/5¥EST 1 XX 4
L 4,36(9) R4 RESTGORED
SDR 0,2 , FO <= EST 2
LDR 2,0 F2 (= EST 2 ,
MOR 2,2 F2 <= EST 2 %% 2
L 5,40(9) RS5 RESTORED
MOR 2,2 F2 <= EST 2 %X 4
L 6,44(9) R6 RESTORED
LOR 6,2 F6 <= EST 2 ** 4
MDR 2,0 F2 <= EST 2 ¥* §
L 7,48(9) R7 RESTORED
SDR 2,4 F2 (= EST 2 *¥X 5 - T
L 8,52(9) R& RESTORED
DDR 2,6 F2 <= (EST 2 ** § - T)/EST 2 *X 4
SR 15,15 R15 <(=.0 (RETURN CODE)
M0 2,0NES F2 <= (EST 2 *¥ 5 - T)/H¥EST 2 #¥% 4
MVl 12(9),X"FF! INDICATE CONTROL RETURNED
SOR 0,2 FO <= EST .3 (FINAL ESTIMATE OF T*X1/5)
L 9,56(M R9 RESTORED
MD 0,MUL FO <= ESTIMATE OF [X|¥¥3/5
L 12,4013) R13 RESTORED
BR 14 RETURN
CNoP- 4,38 FORCE CORRECT ALIGNMENT
FRAC DC FLo! '
ARG pe.. 0'o.!
HMuL D¢ X'0010000000Q00000"
OKES oe X'4033333333333333"
LTORG
TAB1 DC . X'40931BB3!
oc X'4099cBC3"
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TAB2

De
0¢
0C

DC
ocC
DC
DC
DC

D¢
DC
DC

e
DC

bC
DC
bC
DC
0C
DC

DC
DC
DC
DC
oc
DC

DC
DC
bcC
bce
DC
be
bC
BC
DC
DC
DC
bc
DC
bce
be
bC
DC
bC
Dce
DC
DC
bc
DC
bC
DC
DC
DC
DC

0C
DC
bDC
DC
bC
bcC
DC
1
DC

X'409F 70F 5"
X140A479CE"
X' 40ASEBB
X '40ACF 139"
X'40B09F20"
X'40840494"
X'40572005"
X' 40BA2 14
X'40BCE8T
X'40BFS81
X'140C204D
X'40C4628
X'40C6A45E "
X140C8C017"
X140CADF 05"
X140ccoc2c’
X'40CECH4A"
X'40D0SEET"
%14002675C"
X'40D42004"
X'4005CC70"
%'40D76B12"
%'40DSFD98
X'40DAS4CS"
X'40DC0153"
X140DD73DA"
X'40DEDCF "
% '40E03D1D"
% '40E 194DA"
X140E2E499"
X'40E42CC] "
X'40E560B3"
X1 40EBATCS!
X'40E70B51"
X' 40E9089C"
X '40EA2FF O’
X'40EB518F

4

1

6

Fl
3!
6!
6|
6!

X'40EC6DB
X' 40EDB4A
X' 40EES6S
X' 40EFA397"
X '40FDACO4"
X '4CF 1AFFB"
X' 40F 2AFAG
X'40F 3AB2D"
X' 40F 4A2B6"
X '40F59664"
X' 40F6365B"
X'40F77289"
X '40F 85890 "
X140F94124"
X' 40FA236A"
X'40FB0288"
X '40FBDESS "
X'40FCB7B1"
X' 40FDSDEA"
X' 40FE615
X' 40FF 32

L}
i
[}
1

TICOUTTICN — O T~ ] T = O
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TAB3

X'3F27CF79!
X'3F2500FD!
Xt3F242004"
X'3F228D8B5'
X'3F212002"
X'3F1FD408"
X'3F1EA350!
X'3F1D8817!
X'3F1C8870"
X'3F1B898DF’
X'3F1ABA4B'
X '3F19EAEG!
X'3r192921"
X'3F1873A6"

EFFA
3EFBSS
X'3EF788B1
X' 3EF3BOAD'
X'3EEFFS82D!
X'3EECSFCY!
X'3EESESDA
X'3EE588D6"
X'3E£24740"
X' 3EDF1FES!
X'3EDC1167!
X'3ED2IAQC!
X' 3EDG3AGE!
X'3ED36FDG!
X'3EDUBQDg:

I XK KX )(

TR OQTOCW
D= OO OO

[}
!
!
v
'
'
§
1
1

7
B
0
2
8
0
B&
0
2
8
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rm
(%)
—t
)

—
o

n
o

R R R R R R R R S R R R R O R e
N
o

TESTPI

AREA
TDISP
TBND
REGS

c
TION
FRAC

FRACT -

DELT
WM1
WP 1
FLOAT
3

®
*
IFIRST

~TESTP

CSECT

ROUGHLY EQUIVALENT TO THE FORTRAN CODE BELOW EXCEPT THE
THE FUNCTION CHINV PASSED IN THE ARGUMENT LIST ‘

IS IMPLEMENTED IN LINE IN THE ASSEMBLY  LANGUAGE VERSION.

A CALL TO THE ASSEMBLY LANGUAGE VERSION SHOULD

PASS A SEMI-LOGARITHMIC INTERPOLATION TABLE (CHINV(884))
RATHER THAN A FUNCTION NAME. ALSO THE PARAMETER ADDRESSES
ARE OBTAINED FROM LOCAL STORAGE IN THE CALL TO TESTP

NOT FROM THE PARAMETER LIST. THE PARAMETER ADDRESSES

ARE INITIALIZED BY THE ENTRY POINT TESTPI IN THE ASSEMBLY
LANGUAGE VERSION.

NOTE THAT THIS MEANS TESTPI MUST BE CALLED BEFORE
THE FIRST CALL TO TESTP OR UNPREDICTABLE ABENDS
WILL RESULT.

TESTP(T,TE,J,0SIG,N, TUP,DELT,FRAC,NTAB, CHINV)

IMPLICIT REAL*8 (A-H,0-2)

REAL*8 T(NTAB),TE(NTAB),J(NTAB),0SIG(NTAB),N(NTAB),TUP(NTAB)
REAL*?OC/Z.997925D10/FRAC,FRACI,DELT,DELTS

GOTO

ENTRY TESTPI(T,TE,J,O0SIG,N,TUP,DELT,FRAC,NTAB,CHINV)
FRACI=2.DO/FRAC

RETURN

DELTS=DELT*FRACI

D020 '1=1,NTAB

TUP(I)=C*¥JCII*JCI)IROSIG(II¥N(I)
1F(DELTS¥TUP(I).LE.TE(1))GOTO 20
DELTS=TECI)/TUP(I)
CONTINUE
DELT=FRAC¥DELTS
DO 20 I=1,NTAB
TECI)=TECI)+TUPCI)*DELT
TCI)=CHINV(TE(I))
RETURN
END
USING *,15
B TFIRST BRANCH AROUND NAME, SAVE AREA ETC.
DC X'05"
DC CL5'TESTP!
ENTRY TESTPI
USING ¥*,15 ‘
B IFIRST BRANCH AROUND NAME,SAVE AREA ETC.
DC X106
DC CL7'TESTPI *
DS 18F SAVE AREA
DC X'00004410"
e %'00000230"
DS 10F REGISTER STORAGE
CNOP 0,8 FORCE DOUBLE WORD ALIGNMENT
DC D'2.997925€10" ,
DC X'4519AEF8FFOF9C62"
DeC D'0."
DC D'Q. ¢
DC D'0."
DC D'D. "
i D'D."
DeC X '4000000000000000"

FIRST ENTRY POINT

STH 14,12,12(13).- SAVE CALLING ROUTINE'S GPR'S
LR » 13 R2 <= ADDR OLD SAVE AREA
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TFIRST

LoOP1

ARND

LgopP2

NLIN FA NTTMHOOQOOLO LCADPOCOQCC QO ONC (1o PO T s i Bt s 't it ea D it oot 00 ST GYNI LTI (W) €I A TN —2 CF () =4 PO T3 o =4

el
m
b

DO O~NRAT D

»
o

AUw

PO = O ON Ly —
. _.nwr-\u—\.aw
—
~

P T L N NP
-

o RT TN

LafM o~ —aw
P>
m
p-3

DA Dy
—

DO~ s
DI 2 R - B Y PR pary
oY
~

PGS N
"t ot N

R - - e T 7 o

o~ M e R
ZM ~0000COoO00M—wOO0ZOooOOoOaOMO -
omea ol and [ B~ B N e P T o B o Ren PPN o I O - T
=z o
o ped
—

. e e
(8]

W~

D DMODOTVNVBOOVTMOMONOMOND OO0

DA MO NN~ AN AN NN 7T

PRDMOOOQMALE OO CooQOOaeem

1(6) 204)

3 <= ADDR NEW SAVE AREA
5 NO LONGER BASE REG

3 NEW BASE REGISTER

NK SAVE AREAS

-R12 <(= ABDR'S ARGS

(= FRAC

1 (= NTAB

(= 2.00

1 (= NTABX8

AC(LOCAL) <= FRAC

BASE T - BASE TE

2.D0/FRAC

BASE J - BASE TE

{= 2.D0/FRAC

BASE 0SIG -~ BASE TE
BASE N - BASE TE
BASE TUP - BASE TE
8 (INCREMENT)
S¥(NTAB-1)

[ R pavy

ANANOAAA
TOOAUNAN AANALN I 1l

=z

I I I 1]

= R3-R12

ADDR QLD SAVE AREA
RESTORED

= 0 (RETURN CODE)
ATE CONTROL RETURNED

%]

3-
0
1
2
1
R
3
2
5
RA
)
7
3
10
1
11
EG
13
PR
15
NDI
ETU

SAVE CALLING ROUTINE'S GPR'S
R2 <= ADDR OLD SAVE AREA

R13 (= ABDR NEW SAVE AREA

15 NO LONGER BASE REG

13 NEW BASE REGISTER

INK SAVE AREAS

T UP GPR'S
DELT

DELT*FRACI = DELTS

N T T T T TR =
<
—
—
~r

—d o~
HoH

—t

m

™~

)

Y/TURP(L) = DELTS

GOTO LOOPY IF NOT DONE
S*FRAC = DELT

TE
TS*FRAC

)

JRDELTY ,

+ TUP(I)XDBELT

(1) + TUP(IJI¥DELT
ORDER BYTES OF TE(I)

”~~
ANt AANAANA AN PYANAANOQCIANAAANAAANINAAN
>
P>
=
=]

—

o

o~
-~
I/\—(—i'—( oo +—

~

[ERR i Y TN

- TN bt bt

FROM BASE OF INTERPOLATION TABLES

_F4 (= FRACTION O LE FRAC LT 1

IF RESULT NEGATIVE - QUT OF RANGE
GOTO LOWT

COMPARE RZ TO TBND IF GREATER

QUT OF RANGE - GOTO HITE

F4 (= ¥ = FRAC - .5 -.5 LE X LE
R2 <= R2%8 NON BYTE DISPLACEMENT

&4

BASE TE + 8¥(NTAB-1) COMPARAND

LOAT <= FRACTIONAL DISPLACEMENT
REDUCE RZ BY TDISP NOW_ # DOUBLE WORDS



¥ ¥ ¥ X K

LONWT

HITE

ARND1

NOW COMPUTE WEIGHTS

FUNCTIONS(OFrT

LDR
MOR
HOR
sh
LDR
HDR
MDR
LCOR
ADR
STD

LCDR
SOR
STD

ADR
AD
M0
LDR
SDR
ADR
™MD
MD
LD
ADR
LD
MD
MD
ADR
ADR
STD
BXLE
B

STD
BXLE
B

SD
HDR
STD
BXLE
L

LM
SR
MVI
BR
END

FROM BASE OF INTERPOLATION TABLE.
FOR CUBIC INTERPOALTION OF

X f '

2,4 F2 <=

4,4 F4 (= X*¥*2 = X2

4,4 F4 (= X2/2

4,- D'T. 125' F4 (= X272 - 9/8

6,4 F6 (= X272 - 9/8

4,4 F4 (= X274 - 9/16

6,2 F6 (= X372 - 9%/8

G, 4 FO (= -X274 + S/16

0,6 FO (= X3/2 - X274 - 9%/8 + 9/16

0, KWM1 MM1 <= WEIGHT FOR TABLE ENTRY CORRESPOND-
ING6 TO CLOSEST SMALLER VALUE OF T.

0,4 FO (= =%2/4 + 9/16

0.6 FO (= -X3/2 - X2/4 %+ 9X/8 + 9/16

0, NP1 WP <= WEIGHT FOR TABLE ENTRY CORRESPOND-
ING TO CLOSEST LARGER VALUE OF-T.

6,2 F6 (= X372 - X/8

4,=D"'.5! F4 (= X2/4 - 1716

6,=X'4055555555555555' F6 <= X3/6 - X/24 ;

0,4 FO (= X274 - 1716 {

0,6 FO (= -X3/6 + X274 + X/24 - 1716

6,4 F6 = X3I/6 + X2/4 ~ X724 - 1716

0,0012,2) FO (= WEIGHT 1 ¥ CHNV1

6,24(12,2) F6 (= WEIGHT4 * CHNV4

2, M1 F2 ¢(= WWIGHT2

0,6 FO (= WI¥CHNVI+W4*XCHNV4

4,UP1 F4 (= WEIGHT3

2,8(12,2) F2 <= W2¥CHNV2

4,16012,2) F4 (= W3I¥CHNV3

0,2 . FO <= 1*CHNV1+N2*CHNV2+N4*CHNV4

0,4 FO (= INTERPOLATED VALUE OF CHINV(TE(I))

0,0(3,4) TCI) ¢= CHINV(TEC(I))

4,1UiLO0P2 I<=I+1 & GOTO LOOP2 IF. NOT DONE

ARND ‘

0,0(3,4) TCI) (= TE(I)Y (FOR T ¢ 4096 K) ‘

4,10,L00P2 I <= I+1 AND GOTO LOOP2 IF NOT DONE

“ARND1 GOTO ARND1 :

0,TION FO <= TE(I) - TION

0,0 FG <= (TE(I)-=TION)~/2.DO

0,0(3,4) TCI) ¢= (TE(I)-TION}r/2.DO

4,10,L00P2 I <= 1+1 AND GOTO LOOPZ IF NOT DONE

13,4(13) R13 <= ADDR OLD SAVE AREA

14,12,12(13)  GPR'S RESTORED

15,15 R15 ¢= 0 (RETURN CODE)

12C13),X'FF' INDICATE CONTROL RETURNED

14 RETURN
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T0UT

i

ouT CSECT

ROUGHLY EQUIVALENT TO THE THREE FORTRAN SUBROUTINES BELOMW.
NOUT OPENS LOGICAL UNIT 9 (FTO9FQO01) AND DOES THE QUTPUT
OF THE SUBROUTINE NOUT. THE PARAMETER NTAB IS PASSED

BY ENTRY POINT NOUT AND THE NTAB IN THE CALLING SEQUENCE
TO TOUT 1S IGNORED BY THE ASSEMBLY LANGUAGE VERSION OF
THESE ROUTINES. FORTRAN CLOSES BATA SETS 1T KNOWS ABOUT
BUT FORTRAN WON'T KNOW ABOUT THIS DATA SET SO CTOUT MUST
BE CALLED BEFORE THE STOP STATEMENT IN THE MAIN ROUTINE.
THE FORTRAN CTOUT DOES THE SAME THING - I.E. IT CAUSES A
CLOSE TO BE ISSUED FOR THE DATA SET REFERENCED BY THE
DDNAME FTO9FQO1. USES QSAM UNDER 0S/VS2.

=

R T B RS R

KR KRR KO R AT KOR R K OICHURR ORI NR R ONRROROK SORORNR AR RN RGO RO

AXKXK ; : RXKN
AERK NOUT MUST BE CALLED BEFORE TOUT IF TOUT IS TO KAERX
REAX WORK SINCE NOUT SETS UP AN AREA WITH THE AKAOK
Rk REGISTERS THAT TOUT USES - THIS MAKES SENSE ok RN
FhKK IN THIS APPLICATION (NOUT IS ALWAYS CALLED HARCK
AN FIRST) BUT MUST BE CHANGED IF NOUT IS NOT TO BE k¥
i:i: CALLED BEFORE TOUT f*tt

3K KRR SR KO KKK RN KK S NI SR RN KRN KR OO O NCR IO ACICKRASIOR RO
SRR R R KON RN R SRR NORE SRR NEN R KR ROIORR 0 ORGSO SRR

¥* 3%

SUBROUTINE NOUT(EFLUX,PSIO,FRAC, TIMMAX,NTAB,N,S)
IMPLICIT REAL¥8 (A-H,0-2)

REAL¥8 N(NTAB),S(NTAB)

:9001 FORMAT (10A8)
WRITE(9,9001)EFLUX, PSIO, FRAC, TIMMAX,NTAB
MRITE(C9, 9001)N

MRITE(9,9001)S

RETURN

END

SUBROUTINE TOUT(TIM,T,J,DELT,IITER,NTAB)
IMPLICIT REAL¥& (A-H,0-2)
REAL¥*8 T(NTAB),J(NTAB)

9001 FORMAT(10AS)

IR EEEEEEEEEESEEEEEEREEET TR

WRITE(9,9001)TIM,BELT, IITER
WRITE(9,9001)T ;
WRITE(9,9001)J
RETURN
END
SUBROUTINE CTOUT
END FILE 9
RETURN
END
USING *,15
B WFIRST - BRANCH ARUUND NAME, VARIABLES, SAVE AREA
* ‘ AND OTHER ENTRY POINTS
DC X104 LENGTH OF NAME
ne CL5!'TOUT NAME
ENTRY NOUT
USING *,15 ;
NOUT B OFIRST BRANCH AROUND NAME, VARIABLES, SAVE AREA
* AND OTHER ENTRY POINT
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CTOUT

AREA
BUF
BLNCRD
TEN
LMOV3
LMovV4
SREG

'

O ¥ K% ¥

FIRST

* % %

X
X
X

OFIRST

DC X104

DC CL5'NOUT !
USING *,15

ENTRY CTOUT

B CFIRST

DC X5

oe cLS'cToUT!
propP 15

USING AREA, 13

DS 18F

DS 20F

bC 20CcL4" !
DeC F'10!

MVCe BUF(1),0(3)
MyC BUF(1),0(4)
0s SF

DROP 13

USING CTOUT, 15
cTouT

STM 14,12,12013)
LR 2,13

LA 13,AREA
DROP 15 .
USING AREA,13

ST 2,4013)

ST 13,8(2)
CLOSE LU9DCB
RETURN SEQUENCE

L 13,4013)

LM 14,2,12013)
SR 15,15

MVI 12C13),X'FF’
BR 14

DROP 13

LENGTH OF NAME
NAME

BRANCH AROUND NAME, VARIABLES AND AREA

LENGTH OF NAME

SAVE AREA
QUTPUT BUFFER (ONE CARD - WE USE QSAM)
A BLANK CARD -~ I'M LAZY

T0 BE EXECUTED BY AN EX

E CALLING ROUTINE'S GPR'S
{= ADDR OLD SAVE AREA

<= ADDR NEW SAVE AREA

NO LONGER BASE REG

NEW BASE REG
K SAVE AREAS

ZWwUrw <

= ADDR OLD SAVE AREA
RESTORED

0, RETURN CODE

TE CONTROL RETURNED

NOUT(EFLUX,PSI0,FRAC, TIMMAX,NTAB,N,S)

USING
STM
LR

LA
DROP
USING
ST

ST

LM
OFEN
Mve
MvC
MVC
MVC
MvC
MVC

PUT
LR
LR
L
SR
0

LR
M

SLL

NOUT, 15
14,12,12(13)
2,13

13, AREA

MW AN NI —
cCCcrs W AU
MM MC o~ nm
+ ~AAO 00>

s s N

SAVE CALLING ROUTINE'S GPR'S

R2 {(= ADDR OLD SAVE AREA

R13 <= ADDR NEW SAVE AREA

R15 NO LONGER BASE REG

R13 NEW BASE REG

LINK SAVE AREAS

R2-R8 (= ADDR'S ARGS
FILL BUFFER WITH BLANKS

FIRST 8 BYTES OF BUFFER (= EFLUX

). 2ND 8 BYTES OF BUFFER <= PISC

3RD 8 BYTES OF BUFFER (= FRAC
4TH 1 BYTES OF BUFFER (= TIMMAX
2ND HALF OF 5TH 8 BYTES OF

BUFFER (= NTAB

WRITE OUT 1ST RECORD

R3 (= BASE ADDR N

R4 <= BASE ADDR §

R7 <= NTASB

R6 (=0

R6 <= REMAINDER OF NTAB/10

R7 <= INTEGER PART OF NTAB8/10
R5 <= REMAINDER. GF NTAB/10

R7 <= (NTAB/10)%10 INTEGER MODE
# CARDS =~ 1 (UNLESS NTAB ENDS. IN O)
F5 (= REMAINDER NTAB/10 * 8
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StLL 7.3 R7 <= (NTAB/10)*10 % 8
X # BYTES IN # CARDS - 1
LA 6,80 R6 <= 80 (INCREMENT FOR LOOP)
LR 2,3 R2 <= BASE ADDR N ,
LA 4,004 HIGH BYTE OF BASE ADDR S ZEROED
SR 7,6 R7 <= (NTAB/10 - 1) * 20
STM 5,7,SREG SAVE INCREMENTS AND OFFSET FOR COMPARAND
STM 6,7,SREG+12 TWO COPIES OF INCREMENTS AND OFFSET
AR 7,3 , R7 <= BASE ABDR N + ((NTAB/10)-1)%80
BUF(80),0(3) PUT NEXT 80 BYTES IN BUFFER

k00P1 MVC
PUT LU9DCB, BUF

AND WRITE THEM QOUT

BXLE 3,6,L00P1 KEEP GOING TILL WE'RE DONE
LTR 5,8 CHECK IF NO MORE THINGS 7O WRITE
BZ ARND1 IF NOT DON'T WRITE OUT ANOTHER CARD
*x BECAUSE FORTRAN HOULDN'T
MVC BUF (80), BLNCRD FILL BUFFER WITH BLANKS
EX §,LMOV3 MOVE IN LAST FEW (<10) VALUES
* AND WRITE OUT LAST CARD FOR N
PUT LU9DCB, BUF
ARND1 SR 72 R7 (= (NTAB/10 - 1) * 80
AR 7,4 R7 (= BASE S + ((NTAB/10)-1)%80

LogP2 Mve BUF(80),0(4) PUT NEXT 80 BYTES IN BUFFER
X AND WRITE THEM 0OUT
PUT Lugpce, BUF

BXLE 4,6,L00P2 KEEP GOING TILL WE'RE DONE
LTR 5,5 CHECK IF NO MORE THINGS TO WRITE
BZ ARND2 IF NOT DON'T WRITE QUT ANOTHER CARD
X , BECAUSE FORTRAN HOULDN'T
Mve © SUF(80),BLNCRD FILL BUFFER WITH BLANKS
EX 5,LMOv4 MOVE IN LAST FEW (<10) VALUES
X AND WRITE QUT LAST CARD FOR S
" PUT Lusncs, BUF
t RETURN SEQUENCE
ARND2 L 13,4(13) R13 (= ADDR OLD SAVE AREA
LM 14,8,12(13) GPR'S RESTORED
SR 15,15 R15 <= 0, RETURN CODE
MVI 12(13),X'FF!'  INDICATE CONTROL RETURNED
BR 14 RETURN
« DROP 13
ﬁ TOUT(TIM,T,J,DELT,TITER,NTAB) - WE IGNORE LAST PARAMETER

USING TOUT, 15

NFYRST sTh 14,12,12013)  SAVE CALLING ROUTINE'S GPR'S

LR 2,13 R2 <= ADDR 0OLD SAVE AREA

LA 13, AREA R13 <= ADDR NEW SAVE AREA

DROP 15 R15 NO LONGER BASE REG

USING AREA,13 R13 NEW BASE REG

ST 2,4013) LINK SAVE AREAS

ST 13,8(2)

LM 2.6,0(1) R2-R6 <= ADDR'S ARG'S WE USE

tve BUF (80),BLNCRD FILL BUFFER WITH BLANKS

MV C BUF(8),0(2) FIRST & BYTES OF BUFFER <= TIM

MVC BUF+8(8),0(5) 2ND 8 BYTES (= DELT

MVC BUF+20(4),0(6) 2ND HALF 3 & BYTES <= LITER

PUT Lugocs, BUF

LM ‘5,9, SREG R5-R9 <="NUMBER OF VALUES ON LAST CARD FOR
X T AND J AND INCREMENTS AHD COMPARANDS

AR 7,3 R7 <= COMPARAND FOR LOQP3

AR 9,4 R9 <= COMPARAND FOR LOOPH

LOOP3 HVC BUF(80),0(3) . PUT NEXT 80 BYTES IN BUFFER
* AND WRITE THEM 0UT
PUT LUSDCB,BUF

BXLE 3,6,L00P3 KEEP GOING TILL WE'RE DONE
LTR 5,5 CHECK IF NO MORE THIHGS TO WRITE

BZ LooP4 IF NOT BON'T WRITE OUT ANOTHER CARD
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X BECAUSE FORTRAN WOULDN'T

MV BUF (80),BLNCRD FILL BUFFER WITH BLANKS
EX 5,LMOV3 MOVE IN LAST FEW (<10) VALUES
* AND WRITE OUT LAST CARD FOR T

PUT Lugpcs, BUF
LOOP4 Mve BUF(80),0(4) PUT NEXT 80 BYTES IN BUFFER
* AND WRITE THEM OUT

PUT LugpcB, BUF

BXLE 4,8,L00pP4 KEEP GOING TILL WE'RE DONE
MVC BUF (80), BLNCRD FILL BUFFER WITH BLANKS
LTR 5,5 CHECK IF NO MORE THINGS TO WRITE
BZ ARND3 IF NOT DON'T WRITE QUT ANOTHER CARD
x BECAUSE FORTRAN WOULDN'T
EX 5,LM0V4 MOVE IN LAST FEM (<10) VALUES
* AND WRITE OUT LAST CARD FOR J
« PUT Luspcs, BUF
i RETURN SEQUENCE
ARND3 L 13,4013) R13 (= ADDR OLD SAVE AREA
LM 14,9,12(13) GPR'S RESTORED
SR 15,15 R15 <= 0, RETURN CODE
MVl 12013),X'FF' INDICATE CONTROL RETURNED
BR 14 RETURN
Lugpcs 0CB DEVD=DA,MACRF=PM,DSORG=PS,RECFM=FB,LRECL=80,DBNAME=FTOSFO001
END
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Appendix B

STEADY STATE MODEL OF THE SOLAR ATMOSPHERE

We have constructed a steady state numerical model of the solar
atmosphere. The model was developed to investigate the effects of upward
velocities and diverging magnetic field patterns on the temperature and
density structure of the solar atmosphere; however, for this work the
model is used only to provide reasonable temperature and density profiles
for the estimation of the effect of reverse current heating on the atmo-
sphere. The computer program calculates the run of temperature and
density in an individual flux tube.

The equations governing the behavior of an inviscid compressible

-fluid in the presence of gravity are

3 . - ‘
E%-+ Ve (pu) =0 , (B.1)
[} - . —s
5p (pw) + @ ¢ (puw) = - VP + pg , (B.2)
a : Lo N . -
= (pe) + v * (peu) = -9V * q -PY * u-~-&+ 5, (B.3)

where ¢ is the total internal energy per unit mass, q is the heat

flux, g is the gravitational acceleration, & is the energy lost via
radiation, and S is the sum of all other non-thermal energy sources or
sinks, For flow along a magnetic flux tube, considering variation only
élongkthe,field lines and assuming the radius of curvature of the field
‘ines to be lafge compared to the dimensions 6f the flux tube, we see
that the equations become one-dimensional., If we add the definition of‘

the heat flux and an equation of state to Equations (B.l)~(B.3), we may
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write . complete sot of equations for the steady state (9/3t=0) case

du up
dp ] s dA .

1 e g —_— = 2L LD 3.1
Ysa TPt ws CY (5.4)
N Mo _dr (B.3)

sPa 7 T as " PEs ¢ e

dq du (Pu_+ q)
ou .. _f _ p. S __ 8 8 LR (B.0)
s ds ds ds A ds ’

art n v
qS = K --g- I C.b. {)
P - TpKT (B.8)

~where A is the avea of the flux tube u is the mean particle mass,

X . is the heat conductivity, Xk 1s Boltzmann's coustant, T d4is the
fluid tewperature, s wmeasures distance along the flux tube and the
subscript s denotes the component of a vector aloung the flux tube. We
have neglected transport of energy and momentum across field lines in
writing cquations (B.A)=(B.7). We wish to apply Bquations (B.4)-(15.8)
to the solaxr atmosphere. For thig ¢ase we shall assume the plasma to
be puré hydrogen oxcept for computing the radiative losses. 'To account
fox radiative logses, we have assumed thot it is wreasonable to treat the
solax nfmosphere as optically thiﬁ (wve discuss thiS assumption latex).
We have adopted the radiative loss function caleuviated by Raymound Eﬁ.ﬁi‘
(L97) ns wodified b& rRaymond (1070) to include radintive losses from
Ar and neutral hydrogén exeitation, but excluding radiative losses due
to Lorbidden lines fox temperatures bolow T=L0"K . We have used the
values of u and K dorived by Moore and ¥Fung (lQTQ) for a pure hydro-
gen plasma.  With these ind the cquation of stite; we may eliminate the
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pressure. ~We choose as our dependent variables qs » T, uS and n ,

the number density of hydrogen nuclei and rewrite (B.4)-(B.7) in a form

more convenient for numerical solution:

q
dT s
as t TR (8.9)
m _l Uall
dn _ H 2 s dA _dr | (L+x)nk L DRT X |
ds  \(LHXKT s A ds ds my m daT gss ’
(B.10)
dag 3 aT ax dn 1 da
———— 2 - SRR | —— AU — J- =T — - =
P £+ 8 5 bk s ‘:(l+x) + (7 1i) dT]a- (:ux)ums =" % 7 a3
(B.11)
nu A = constant (B.12)

wvhere mH is the mass of & hydrogen atom, X 1is the fraction of hydrogen

nuclei that are ionized, and Ti is the hydrogen ionization energy
expressed as a temperaﬁure, ~ L.O% ¢ lOHK. Equation (B.le) is the inte-
gral of Equation (B.4), we need only solve three first order ordinary
differential equations to calculate the run of temperature and density
in a flux tube.

We have written an assembly-language subroutine, to execute on IBM

360 or 370 series ccmputérs, to evaluate the quantities %% y gg

dq
s , da o , ; oLt
T ,‘given A, 35 ° B2 S, n, T and q . This subroutine may

and

be used with a standard library ordinary differential solver, or as we

have done with one coded specially for this problem. The quantities
dX dA

o, X, 5§ £, A, B, s 3g and 8§ are tabulated as a function of T

2
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and s , and the values for a particular T or s are computed by a
cubic interpolatién scheme similar to the one described in Appendix A.
The subroutine we have written to solve the coupled set of ordinary
differential equations (B.9)-(B.12) uses an Adams-Bashforth-Moulton
fourth order linear multistep integration scheme (see Isaacson and Keller
1966) with a fourth order Runge-Kutta scheme (with a smaller step size)
to "start up" the linear multistep method and provide intermediate values
when halving the step size, The routine returns the values of T , u,
g and n at intervals from the starting point specified by the calling
program and reduces the step size or increases it according to the
requested accuracy, The pretabulated quantities are read in by the main
progran which also reads in starting values, calls the differential
equation solver and writes out the results of the integration.
The downward heat flux in the corona above an active region is
~ 5 X lO6 (Noyes 1971). Since the thermal conductivity of the solar plasma

/2

is a strong function of temperature (oc ) » this heat flux must be
largely radiated away above the low chromosphere. - We have the choice of
starting with our initial values where the heat flux is large (in the
corona) and calculating the solutions to a region where the heat flux is
small (the chromosphere), or proceeding in the reverse direction from
thekregion where the heat flux is small, It is well known that the
ylatterrchoicefis preferable numerically (Acton 1970, Isaacson and Keller
1966). This is basically because the numerical calculation proceeding
from the region of large heat flux to the regionkof small heat flux is

not a "well posed" problem (Isaacson and Keller 1956) since a small

relative change in the initial value of the heat flux can cause a large
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relative change in the final value. We therefore shall choose our
starting point near the temperature minimum,

There are three major difficulties with starting the calculation
below 3 X lOuK. The first is that the atmosphere becomes optically thick
and therefore the radiative losses cannot be calculated simply. Second,
the radiative loss function calculated by Raymond is not tabulated below
thK. Third, the approximation that the atmosphere is purely hydrogen
breaks down as the fraction of ionized hydrogen becomes very small
because the electron density (which appears in the expression for the
radiative losses) is grossly underestimated by (A.L), since the major
contribution to the electron density is from trace elements with low
ionization potentials (e.g. Na). However, for the purposes of this work,
we only need a model that represents the overall structure of the atmo-
sphere reasonably well. This is particularly true since (cf.‘Chapter 3)
the calculation of the heating of the cool dense portions of the atmo-
sphere by the reverse current is not accurate after the first few tenths
of a second due to the neglect of Coulomb collisions. We do not attempt
a solution of the radiative transfer problem. We use a power law extra-
polation of Raymond's (1976) radiative loss coefficient. We also use
Equation (A.h) to find the electron density. The fact that the atmosphere
is not optically thin is compensated for by the underestimate of the
electron density. We have extrapolated Raymond's (1976) radiative loss
function with a power law above and below the_tabulated range
(T:lou-T lO8K). ¥or the high temperatures above T=108K , this should be>

a reasonable approximation since the losses for these temperatures are

almost completely due to thermal bremsstrahlung and therefore should vary
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as ~ T ; however, these temperatures are not of importance in the
present calculation. The power law extrapolation below thK is purely
ad hoc, but the range over which extrapolated values are used is small
(Nza factor of 2) and the calculation of radiative losses for these
temperatures is at best approximate in any event. The resulting tempera-
ture and density profiles resemble the solar atmosphere in overall
structure., Since the atmosphere varies from active region to active
region, this should provide an adequate representation for the purposes
of the calculations of Chapter 3.

To produce the model used (see Chaptex 3), wve integrate up from
near the temperature minimum (T=4R00K, n=l.lOR% X 1016). The heat flux
and velocity are taken to be zero at this point. No non-thermal energy
input was included in the calculation. The resulting temperature, den-
sity and heat flux at the top of the model (corresponding to the injection
“point for the beam in Chapter 3) were T=3 X 106, n=1 X 109 cm_3 and
F=0.30 X ZLO"i erg cm—g s—l, in reasonable agreement with -the values given
by Noyes (1971).

Listings of two main programs and several subroutines are provided
for the sake of completeness. The first main program and associated
subroutines produce the tables that are reguired for the cubic interpola-
tion. The second main program reads in starting values for the solution
of the coupled set of differential equations and writes out the results
both as tables suitable for people to look at and (if desired) for
machines to read. The subroutine ABMINT is the differential equation
solvex desciibed above, - The presént version is in FORTRAN and is cer-

tainly adequate for the purpose of this work. An adaptation of the
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present main program to solve a boundary value problem rather than an

initial wvalue pfoblem would (absent the wealth of Croesus) require this

routine to be hand coded. The assembly language subroutine DIVF calcu-

lates the quantities needed by ABMINT to integrate the differential

equations.
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LA(820),LUM(820),TST/24410000000000000/,07/243
.SST/24710000000000000/,0S/24610000000800000/

TABULATION ROUTINES

IMPLICIT REAL*8 (A-H,0-2)

REAL*8 6(820),DADS(820),S0R(820),0NEK(820),CHI(820),DCHI(820),
100000000000007,

COMMON /PARAM/ FRAC,AMP,SCALE

FORMAT(10A8)

FORMAT(13.6)

THIS PROGRAM CALCULATES SEMI-LOGARITHMIC INTERPOLATION
TABLES FOR A STEADY STATE MODEL OF THE PLASMA IN A MAGNETIC
FLUX TUBE UNDER THE INFLUENCE OF GRAVITY. FOUR FUNCTIONS
OF TEMPERATURE AND FOUR FUNCTIONS OF S (DISTANCE ALONG THE

FLUX TUBE FROM THE SUN'S SURFACE) ARE TABULATED. THE
FUNCTIONS OF TEMPERATURE (T) ARE:
THE INVERSE OF THE THERMAL CONDUCTIVITY (ONEK)
THE RADIATIVE LOSS COEFFICIENT (LUM)
THE IONIZATION FRACTION. (CHI)
THE DERIVATIVE OF THE IONIZATION FRACTION (DCHI)

THE FUNCTIONS OF S ARE:

THE FORCE OF GRAVITY ALONG THE TUBE (G)

THE AREA OF THE TUBE (A)

THE LOGARITHMIC DERIVATIVE OF THE AREA (DADS)
THE NON-THERMAL ENERGY INPUT (SOR)

THE TABULATION RANGE IN TEMPERATURE IS 4.096E3 - 6.71E7 (K).
THE TABULATION RANGE IN S IS 1.67787 - 2.75E11 (CM).

THE TABLES ARE WRITTEN OUT TO FORTRAN LOGICAL UNIT 9 AND THE
PROGRAM READS IN 641 VALUES OF TEMPERATURE AND RADIATIVE
LOSS COFFICIENT (RAYMOND, PRIVATE COMMUNICATION) USED TO
TABULATE THE RADIATIVE LOSS COFFICIENT.

THE PROGRAM ALSD READS IN SEVERAL PARAMETERS THAT CHARACTERIZE
THE FLUX TUBE AND THE NON-THERMAL ENERGY INPUT:

FRAC: THE AREA OF THE FLUX TUBE IS ((D+S)/D)**2 WHERE
D IS FRAC TIMES A SOLAR RADIUS.

AMP: - THE INTEGRAL OF THE NON-THERMAL ENERGY DEPOSITED IN
A FLUX TUBE OF CONSTANT AREA IS AMP (ERG PER CM¥¥2 PER SEC).

SCALE:  THE FORM OF THE NON-THERMAL ENERGY INPUT IS
(COSC(S¥PI)/(2*SCALE)))**2 FOR S LESS THAN SCALE

AND ZERO FOR S GREATER THAN SCALE. SCALE IS INPUT

IN SOLAR RADII (INPUT OF 1. MEANS SCALE IS ABOUT 7.£10 CM).

INITIALIZE TABLES:

Do 1 1=1,820
6(13=0.00
DADS(I)=0,00
SOR(1)=0.D00
AC1)=1.00
ONEK(11=0.D00
CHI(1)=0.00
DCHI(1)=0.D0
LUM(1)=0.0D0

READ IN 'PARAMETERS

READ(5, 5001)FRAC
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READ(S, 5001)AMP
READ(5,5001)SCALE

CALCULATE FUNCTIONS OF TEMPERATURE:

Do 20 1=1,3
T=TST-0T
S PRI AGE IS
SHEGOSEERITY DRIGINAL PASE
CRI(K) = 2OQ '
ONEK(K)=FKAP(T) m
LUMIK)=FLUMCT
T=T+0T
K=K+
TST=16.D0*TST
DT=16.D0%DT
T=TST=DT
DO 30 K=769,820
CHI(R)I=FCHILT
DCHI(K)=FDCH{
T

)
(
T
)

T
ONEK(KI=FKAP(T)
LUMCK) =FLUM(
T=T+0T

CALCULATE FUNCTIONS OF S:

Do 80 1=1, 23

§=SS7-DS

K=(I1-1)¥%256+]

DO 40 J=1,243
GIK)=FG(S)
A(KY=FA(S)
DADS(K)=FDADS(S)
SOR(K)=FSQOR(S)
S$=5+08
K=K+1

S8T=16.D00%*SST

DS=16,D0%0S

8=8ST-DS
40 60 k=769, 820

G(K)=FG(S)

AIKI=FAC(S)

DADS{K)=FDADS(S)

SOR{KI=FSOR(S)

§=8+08

WRITE QUT TABLES:
WRITE(S,9001)6

)
(
1
)

WRITE(9,9001)0ADS
KRITE(9,9001)SOR
NRITE(9,9001)A
NRITE(9, 900 1)QNEK
NRITE(9,9001)LUN
NRITE(9,9001)CHI
NRITE(9,9801)DLHI
STOP

END

REAL FUNCTION FCHI®RS(T)

THIS FUNCTION CALGULATES THE IONIZATIQN FRACTION AS A FUNCTION
OF THE TEMPERATURE (T). THE IONIZATION FRAGCTION (FCHI) IS
DEFINED AS NE/(NHNP) WHERE-NE IS THE MUMBER DENSITY OF
ELECTRONS: AND NH AND NP ARE THE NUMBER DENSITIES OF HYDROGEN
CTIVELY., SEE MOGORE AND FUNG, SOLAR
PHYSICS 23 (1972).78~40% FOR FORMULAE,

IMPLICIT REAL*S (A=H.,0-2)
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8001
110
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DATA ONE3/ZC055555555555555/

COMMON BETA,EBETA,B13,TEMP1,TEMP2,TCHI, D
BETA=1.58D5/T7

EBETA=DEXP(BETA)

B13=BETA¥¥ONE3
TEMP1=0.4288D0+0.500*DLOG(BETA)+. 4698D0%B13
TEMP2=2.22D-6*BETAXTEMP I’REBETA
TCHI=1.00-(1.DO+TENMP2)

FCHI=TCHI

RETURN

END

REAL FUNCTION FDCHI*8(T)

THIS FUNCTION CALCULATES THE DERIVATIVE OF THE IONIZATION FRACTION
(D DHI ~ DT) AS A FUNCTION OF TEMPERATURE (T). SEE FUNCTION FCHI.

- IMPLICIT REAL¥§ (A-H,0-2)

COMMON BETA,EBETA,B13,TEMPI,TEMPC,TCHI,D °
FOCHI=1,406D-11*TCHI*TCHI¥XBETAXBETAXEBETA*( (1. DO+BETA)XTEMPI

.+ (.500-.1566D0%B13))

RETURN
END
REAL FUNCTION FKAPX8(T)

THIS FUNCTION CALCULATES THE INVERSE OF THE TOTAL THERMAL
CONDUCTIVITY AS A FUNCTION OF TEMPERATURE. THE DEPEMBENCE OF THE
CONDUCTIVITY ON THE "COULOMB LOGARITHMY IS APPROXIMATED IN A
MANNER SIMILAR TO MOORE AND FUNG, SOLAR PHYSICS 23 (1972), 78-102.

IMPLICIT REAL*S (A-H,0-2)
COMMON BETA,EBETA,B13,TEMPI, TEMPC,TCHI,D
REAL*S PO/0.D0/,CL/0.D0O/,CK1/0.D0/,RKAY/1.38062D0-16/,

.MEROT-1,67352D-24/,ES8Us4.803250-10/,P1/2413243F6A8885A30/

IF(PO.NE.D.D0)GOTO 10
PO=1.D05%1,D10%(2.DO*RKAY)
CL=(3.DOFRKAY¥¥*2)/(DSQRT(2.DO¥PI¥PQ)¥ESU¥HT)
CK1=(9.D0*RKAY*DSQRT (RKAY)) 7 (4.00%DSART (MPROT))
CLAM=(TRTHCL)¥DSQRT((1.D0+TCHI) /(2. DO¥TCHI))
T12=DSQRT(T)
IF(T.G6T.4.205)CLAM=CLAMY6.48074102/712
TEMPK={CK1¥TJ/(9.12D-14+7.95D0-11/(TEMRPC*T12))
FKAP=1.D0/(TEMPK+ (1. 890-5¥T*THT12)/DLOG(CLAM))
RETURN

END

REAL FUNCTION FLUM¥S(T)

THIS FUNCTION CALCULATES THE RADIATIVE LOSS COEFFICIENT
SUCH THAT THE RADIATIVE LOSSES FROM AN OPTICALLY THIN
PLASMA OF SOLAR ABUNDANCESARE -FLUMY(NE¥¥2) WHERE NE IS
THE ELECTRON NUMBER DENSITY. THE CALCULATION QF THE
RADIATIVE LOSS COEFFICIENT IS RAYMOND'S (PRIVATE COMM.)
IMPROVEMENT OF THE CALCULATIONS OF RAYMOND, COX AND SMITH
AP, J. 204 (1976), 290-292.

IMPLICIT REAL¥*S (A-H,0-2) '
REAL*8 7,L,T0(641),L0(641),L0GT,ERR,FINT(10),XDIF(10),WRK(10)
REAL¥4 RTD(641),RLD(641) .

LOGICAL SORT/.FALSE./,EXTRAP/.FALSE./,FIRST/.TRUE./
EQUIVALENCE (TDL321),RTD(1)), (LD(321),RLD(1))

FORMAT(20A4)

IF(FIRST)GOTO 100

LOGT=DLOG10(T)

IF(LOGT.LT.TD(1))GOTO 200

IFCLOGT.GT.TD(NRADPT))GOTO 300

ERR=-1.D0

CALL AITKEN(L,LOGT, 10, ERR, TD, LD, NRADPT, SORT, EXTRAP, FINT,XDIF,WRK,

.&10, 8400, &400)

FLUM=10.DO* ¥
RETURN
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GO0

IO

CICICICICOD

100 NRADPT=61

15

20

30

10 R=

CALCULATING LEAST SQUARE FITS FGR PQWER LANW EXTENSION
Of CALCULATED RADIATIVE LOSS COEFFICIENY BEYONDB TABULATED
RANGE. ONLY DO ON FIRST GALL.

READ(S8,8001)RTD
READCE,8001)RLD
B0 15 I=1,NRADPT

TOCI)=DBLEC(RTD(I))
LDCII=0BLE(RLDCI)

D
BI=81+T0
e

A2=A2+

o¥TD(641)))/

Zo

FIRST~ FALSE
G0TO 110

) FLUM=10. DD**(A1+BI*LOGT)

RETURN

FLUM=10.00%¥(AZ+B2YLOGT)

RETURN

WRITE(G,G6001)

FORMAT(1H ,'00PFS ~ WE SHOULD NOGT BE HERE')
STOP

END

REAL FUNCTION FG¥8(S)

THIS FUNCTION CALCULATES THE FORCE QF GRAVITY ALONG THE
FLUX TUBE AS A FUNCTION OF S, THE DISTANCE ABQVE THE
SOLAR SURFACE.

IMPLICIT REAL*8 (A-H,0-2)
REAL*8 RSUN/G.95990107/,6/6.670-8/,MSUN/1.989D33/
LOGICAL NOTIST/.FALSE.Z
IF(NGTISTIGQTO 10
GM=MSUN®G

NOT1ST=.TRUE.

(RSUN+S)

FG=6M/ (R¥¥2)

RETURN

END ;
REAL FUNCTION FAX§(S)

THIS FUNCTION CALCULATES THE AREA OF THE FLUX TUBE
AS A FUNCTION OF. S, THE DISTANCE ABQVE THE SURFACE OF
THE SUN.

IMPLICIT REAL¥S (A-H,0-2)

COMMON BETA,EBETA,B13, TEMPY, TEMPC,TCHI,D
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REAL¥8 RSUN/6.9599010/,A0/1.D0/
LOGICAL NOT1ST/.FALSE./
COMMON /PARAM/ FRAC,AMP,SCALE
IF(NOT1ST)GOTO 10

D=FRAC*RSUN

R=S+D

AR=R®¥2

AR=AD/AR

FASARY (R¥¥2)

NOT1ST=.TRUE.

RETURN

R=D+S

FASAR®(R¥¥2)

RETURN

END

REAL FUNCTION FDADS*8(S)

THIS FUNCTION CALCULATES THE LOGARITHMIC DERIVATIVE
OF THE AREA AS A FUNCITON OF S, THE DISTANCE ABOVE THE
SURFACE OF THE SUN,

IMPLICIT REAL¥*8 (A-H,0-Z)

COMMON BETA,EBETA,BY3, TEMP],TEMPC, TCHI, D
FDADS=2.D0/(D+8)

RETURN

END

REAL FUNCTION FSOR¥*8(S)

THIS FUNCTION CALCULATES THE (AD HOC) NON-THERMAL
ENERGY INPUT INTO THE SOLAR PLASMA AS A FUNCTION OF S,
THE DISTANCE ABOVE THE SUN'S SURFACE.

IMPLICIT REAL¥*3 (A-H.0-Z)
REAL*8 RSUN/6.9599D18/,

LPIBY2/2411921FB54442018/

LOGICAL NOTIST/.FALSE./
COMMON /PARAM/ FRAC,AMP,SCALE
IF(NOTISTIGOTO 10
SCALE=SCALE*RSUN
ARG=1,00/SCALE

AMP=AMP*ARG

AMP=AMPHANP

ARG=ARG*PIBY2

sQ0=S

NOT1ST=.TRUE.

SR=S-50

IF(SR.GT.SCALE)GOTO 20

C=DCOS (ARG ¥SR)

FSOR=ANMP¥C*C

RETURN

FSOR=0.D0

RETURN

END

SUBROUTINE AITKENCF,X,M,ERR,XTAB,FTAB,N,SORT,EXTRAP,FINT,

XOTF,WRK, ¥, X, %)

SUBROUTINE AITKEN INTERPOLATES TO FIND THE VALUE OF THE FUNCTION
(F) AT THE POINT X. IF THE ROUTINE DOES NOT ACHIEVE THE DESIRED
RELATIVE ERROR (ERR) USING M POINTS OR IFf ROQUND OFF ERROR APPEARS
T0 BE FRESENT, THE ROUTINE RETURNS THE CURRENT: ERRQOR: ESTIMATE 1IN
ERR, RETURNING TO THE MAIN PROORAM AT THE FIRST STATEMEWNT NUMBER
IN THE ARGUMENT LIST. THE ROUTINE REQUIRES THE TABULATED VALUES
IN FTAB TO BE IN ORDER OF INCREASING VALUE OF X C(IN XTAB). 'IF
SORT IS TRUE ON ENTRY, BOTH TABLES ARE SORTED (SEE NOTE). IF THE
VALUE OF X IS OUTSIOE.THE RANGE OF THE TABLES SUPPLIED, THE
ROUTINE RETURNS TO THE SECOND STATEMENT NUMBER IN THE ARGUMENT
LIST - UNLESS EXTRAP IS TRUE. IF THE ROUTINE DISCOVERS TNO
IDENTICAL VALUES OF X IN XTAB, THE RDUTINE RETURNS TO THE THIRD
STATEMENT NUMBER IN THE ARGUMENT LIST.
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I¥f M 1S GREATER THAN N OR LESS THAN 2, 1T IS SET TO 10.
IF ERR IS LESS THAN 16%¥-5, IT IS SET TO 16¥¥-5,
ARGUMENTS (OTHER THAN STATEMENT NUMBERS):
F INTERPOLATED VALUE OF FUNCTION AT X (REAL - OUTPUT)
X VALUE OF INDEPENT VARIABLE (REAL - INPUT)
M LARGEST NUMBER OF DATA POINTS TO BE USED (INTEGER - INPUT)
ERR REQUESTED RELATIVE ERROR (REAL - INPUT)

XTAB TABLE QF X VALUES AT WHICH F(X) IS TABULATED
(REAL ARRAY - INPUT)

FTAB TABLE OF F(X) AT THE CORRESPONDING POINTS IN XTAB
(REAL ARRAY = INPUT)

N THE LENGTH OF TABLES XTAB AND FTAB (INTEGER - INPUT)

SORT DETERMINES MHETHER OR NOT THE INTERNAL SORING ROUTINE
IS 7o BE USEU (LOGICAL - INPUT/CUTPUT)

EXTRAP DETERMINES WHETHER OR NOT EXTRAPOLATION OUTISDE THE
RANGE OF THE TABLES IS ALLOMED(LOGICAL -INPUT)

FINT ARRAY OF SUCESSIVE INTERPOLANTS = WORKING ARRAY
(REAL ARRAY OIMENSION > OR = M)

XDIF ARRAY QF DIFFERENCES BETWEEN THE POINTS AT WHICH F(X)
IS TABULATED AND X - WORKING ARRAY (REAL ARRAY
DIMENSION > OR = M)

WRK WORKING ARRAY FOR CURRENT LEVEL OF INTERPOLATION
(REAL ARRAY DIMENSION > OR = M)

INTERNAL VARIABLES:

TEMP TEMPORARY STARAGE LOCATION FOR INTERMEOIATE RESULTS

FDIFF1 PREVIQUS ABSOLUTE RELATIVE DIFFERENCE BETWEEN
INTERPOLANTS - COMPARED WITH FOIFF2 TO CHECK FOR
CONVERGENCE (ROUND-OFF ERROR INDICATOR)

FDIFF2 FRESENT ABSOLUTE RELATIVE DIFFERENCE BETWEEN
INTERPGLANTS - USED TO CHECK FOR CONVERGENCE AT
CURRENT LEVEL (ALSQO SEE FDIFF1 ABOVE)

DIFFMAX  LARGEST REPRESENTABLE FLOATING POINT NUMBER (IBM 360)

IUP USED AS POINTER IN SORT AND INTERPOLATION

IMID USED AS POINTER IN SORT

IDN  USED AS POINTER IN SORT AND INTERPOLATION

XUPDIF DIF§$RENCE BETWEEN X AND CLOSEST UNUSED LARGER VALUE
IN AB

XBNDIF DéFgERENCE BETWEEN X AND CLOSEST UNUSED SMALLER VALUE
I TAB

'LEVEL CURRENT LEVEL OF AITKEN TRIANGULAR SCHEME
ISTEP . COUNTER. FOR INTERMEDIATE INTERPQLANT LQGP
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DONE LOGICAL FLAG TO INDICATE CURRENT LEVEL OF SHELL SORT
IS COMPLETE

IDISP CURRENT EXCHANGE INTERVAL IN SHELL SORT
ILAST N MINUS IDISP - UPPER LINIT FOR SORT DO LOGP
I  COUNTER IN SORT DO LOQOP

REMARKS:

THE ROUTINE AS PRESENTLY WRITTEN WILL NOT WORK IN WATFIV., 7O
MAKE THE ROUTINE COMPATABLE WITH WATFIV, THREE CHANGES MUST BE
MADE. FIRST, THE ARRAYS FINT, XDIF AND WRK SHOULD HAVE
DIMENSION M AND THE ARRAYS XTAB AND FTAB SHOULD HAVE THE
DIMENSION N. SECOND, THE VARIABLES ‘M AND N SHOULD BE REMOVED
FROM THE INTEGER DECLARATION STATEMENT. THIRD; THE STATEMENT
WHICH CHANGES M TO 10 IF CERTAIN CONDITIONS ARE MET SHOULD BE
DELETED.

NOTE:

SORT METHOD USED IS SHELL SORT - THIS METHOD MAY BE VERY
INEFFICIENT WHEN XTAB IS PARTIALLY SORTED.

DECLARE VARIABLES
REAL F,X,ERR,XTAB(1),FTABC1),FINT(1),XDBIF(1),WNRK(1),EPS,XUPDIF,

.XONDIF,FDIFF,FUIFF2,DFIMAX, TEMP

INTEGER M,N,ISTEP,ILAST,LEVEL,IDISP, IUP,IDN,IMI},I
LOGICAL SORT,EXTRAP,DORE

INITIALIZE VARIABLES

DATA EPS/Z3C100000/,DIFMAX/Z7FFFFFFF/

CHECK 7O SEE IF M > N OR IF M < 2, IF SO SET M T0 10
(THIS CARD MUST BE REMOVED FOR WATFIV EXECUTION AND THE
WORKING ARRAYS DIMENSIGNED TO M)
IF(M.LT.2.5R.M.6T.NIM=10

CHECK TO SEE IF ERR ¢ 16%¥-5 IF SO SET IT TO 16%%-5%
I"(ERR.LT.EPS)ERR=EPS

CHECK TO SEE IF TABLES ARE TO BE SORTED - IF NOT GO AROUND SORT
SECTION.

IF(.NOT.SORT)GOTO 200
KKHK - SQRTING SECTION BEGIN

1DISP=N
1DISP=(IDISP+1)/2

ILAST=N-IDISP

DONE=. TRUE.

D3 103 I=1,ILAST -
IF(XTAB(I).LT.XTAB(I+IDISP))GOTO 103
TF(XTAB(I).EQ.XTAB(I+IDISP))RETURN 3
TEMP=XTAB(I)

XTAB(1)=XTAB(I+1DISP)
XTABCI+I1DISPY=TEMP

TEMP=FTAB(I)

FTAB(I)=FTAB(I+IDISP)
FTAB(I+IDISP)=TEMP

DONE=.FALSE. ‘

CONTINUE
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300

301

IF(.NOT.DONE)GQTO 102
IFCIDISR.GT.1)GATO 101

XXX SOQRTING SECTION END
CONTINUE

CHECK TO SEE IF X IS WITHIN RANGE QF TABLE = IF NOT AND IF EXTRAPR
IS FALSE RETURN TO SECOND STATEMENT IN ARGUMENT LIST

IF(X.GE.XTAB(1))GOTO 201 ‘

¥ IS BELOK LOWEST X VALUE IN XTAB - EXIT UNLESS EXTRAP IS TRUE
IFC.NOT,EXTRAPIRETURN 2

EXTRAP IS TRUE = SET UP RQINTERS AND GO TO AITKEN
INTERPOLATION SECTION

IUp
IDN
GQTO 400
CONTINUE

CHEOK TO SEE IF X IS LARGER THAN LARGEST X VALUE IN XTAB - IF NOT
BRANCH TO SEARTH SECTION

IF(X.LE.XTAB(N)IGQTO 300
X 1S ABUVE HIGHEST ¥ VALUE IN XTAB - EXIT UNLESS EXTRAP IS TRUE
IFC.NOT.ENTRAP)RETURN. 2

EXTRAP 1S TRUE - SET UP POINTERS AND 6Q TQ AITKEN
INTERPQLATION SEGTION

TUR=N

JON®N=1

gaTL 400

SEARGH SECTION = FIND NTAB VALUES THAT BRACKET X -~ USE BISECTION
CONTINUE

SET UP POINTERS FQR BISECTION

[UP=N

M= Nf2

IDN=

CRECK -TQ SEE WHICH SIOE QF CXTAB(INID) XIS ON AND UPDATE IUP,
[MIO AND ION = WHEN NEW IMID EQUALS 10N WKE ARE DONE

IFCX.GT.XTABCIMIDY))GQTO 302
X LE XTABCIMIDY SO IUPK=IMID & IMIDS®CIURHION)/2

TUR=IMID
INI0=CIUPHION) 42

IF IMID > JDON WE AREN'T DONE YET ~ GO BACK AND CHECK AGAIN
OTHERNISE GO TO AITKEN INTERPOLATION SECTION

IFC{IMID.GT.IDNJGOTD 301
60T0 00
GONTINUE

X > XTABCIMID) $O IONCETMID & IMIDCSCIUP+IDN)/2
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400

403

402

IDN=IMID
IMID=(IUP+IDNI/2

IF IMID > IDN WE AREN'T DONE YET - GO BACK AND CHECK AGAIN
OTHERWISE ENTER AITKEN INTERPOLATION SECTION

IF(IMIB.GT.IDN)GOTO 301

END OF SEARCH SECTION

AITKEN INTERPOLATION ‘SECTION
CONTINUE

IUP AND IDN POINT TO FIRST TWO FUNCTION VALUES USED IN
INTERPOLATION - INITIALIZE VARIABLES

FOIFF2=DIFMAX
XONDIF=XTAB(IUP)-X
XUPDIF=XTAB(IDN)-X

START AITKEN INTERPOLATION
DO 401 LEVEL=1,M

DECIDE WHICH OF THE TWO TABLE VALUES POINTED TO BY IUP AND IDN
IS 7O BE USED NEXT - THE ONE WITH XTAB CLOSER TO X

IF(ABS(XUPDIF).GT.ABS(XDNDIF))GOTO 402
WE WILL USE IUP - PUT INFORMATION IN WORKING ARRAYS

KWRK (1) =FTAB(IUP)
XDIF(LEVEL)=XUPDIF

CHECK TO SEE 1F WE JUST USED THE LARGEST VALUE OF X IN XTAB
IF SO GO 70 403 AND DO FIX UP = IF NOT UPDATE IUP AND XUPDIF

IF(IUP.GE.NJGOTO. 403

IUP=1UP+]

XUPDIF=XTAB(IUP)-X

BRANCH AROUND CODE TO INTERPOLATION LOOP FOR THIS LEVEL
GOTO 404

FIX UP FOR USE OF LARGEST X IS TO SET XUPDIF TO LARGEST
REPRESENTABLE FLOATING POINT NUMBER

XUPDIF=DIFMAX

BRANCH ARGUND CODE TO INTERPOLATIGN LOOP FOR THIS LEVEL
GOTO 404

WE WILL USE IDN - PUT INFORMATION IN WORKING ARRAYS

WRKC1)=FTAB(IDN)
XDIF(LEVEL)Y=XDNDIF

CHECK TO SEE IF WE USED THE SMALLEST VALUE OF X IN X IN XTAB
IF S0 GO TO 405 AND DO:FIX .UP ~ IF NOT UPDATE IDN AND XDNDIF

IFCIDN.EQ.1)G0TO 405
IDN=IDN-1
XDNDIF=XTABC(IDN)-X

BRANCH AROUND CODE TO INTERPOLATION LOOP FOR THIS LEVEL
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405

404

407

406

401

408

801

GOTO 404

FIX

UP FOR USE OF SMALLEST X IS TO SET XDNODIF TO LARGEST

REPRESENTABLE FLOATING POINT NUMBER

- XDN
SK1
IF(

ENT
FIN
SKY
IF ¢
CHE
Fol
IF¢
SKI
IFC
IF
IF¢

UpD
For

IF INT
60TO &
SET F

RETURN

QIF=DIFMAN

P INTERPOLATION CALCULATION IF LEVEL 1§ 1
LEVEL.LE.1)GQTO 406

AITKEN INTERPQLATION LOQOP

p0 407 ISTEP=2,LEVEL
TEMP=XDIF(LEVELI=XDIFCISTEP-1)

CHECK YO SEE IF WE ARE GOING TO DIVIDE BY QO IF SO RETURN
TO THIRD STATEMENT NUMBER IN ARGUMENT LIST

IFCTEMPVEQL OLIRETURN 3
CALCULATE INTERMEDIATE INTERPOLANTS

WRKCISTEPIS(FINTCISTERP= 1) ¥XDIF(LEVEL) ~
WRKCYSTEP=1)WKDIF(ISTER-1))ATEMP

ER INTERPOLANT IN FINT

TCLEVEL) SNRKCLEVEL)

P CHEGK FOR CONVERGENGE FOR LEVEL LESS THAN 4
LEVEL.LT.4)G0TQ 01

OK FOR CONVERGENGE AT THIS LEVEL -~ IF SO BRANCH QUT
PF2=2, ¥ABSCCFINTCLEVEL) =FINTCLEVEL=-1))/
ForFra. LT ERRDEaTa o8 o

P ROUND OFF ERROR CHEDK FOR LEVEL LESS THAN &
LEVEL.LT.G)G0T0 401

INTERPOLANTS ARE NOT CONVERGING = EXIT
FRIFF2.G6T.FIDFF1260TQ §0!

ATE FDIFF! AND CONTINUE
FF1sFODIFF2

ERPOLATED TO LEVEL®M WITHOUT CONVERGENGENCE - EXIT
0 : , :
EQUAL TO FINTCLEVEL) AND RETURN

(LEVEL)

TERMINATIONS DUE TO LACK OF CONVERGENCE QR ROUND QFF ERROR

LEVEL=
ERR=F]
FR2FINT
RETURN
END

LEVEL=1
DFE
(%EVEL)
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STEADY STATE ATMOSPHERE MODEL MAIN ROUTINE

IMPLICIT REAL¥8 (A-H,0-2)

THIS PRQGRAM CALCULATES THE RUN OF TEMPERATURE, DENSITY

HEAT FLUX AND VELOCITY IN AN INDIVIDUAL FLUX TUBE.

THE PROGRAM READS IN PARAMETERS THAT CONTROL THE NUMBER OF

SETS OF TABLES READ IN (NTAB), AND THE INDEPENDENT VARIABLE
THAT CONTROLS THE FREQUENCY OF TABULATION (ITEST). FOR EACH
SET OF TABLES THE PROGRAM READS IN THE NUMBER OF DIFFERENT INITIAL
CONDITIONS FOR WHICH THE INTEGRATION IS TO BE PERFORMED (NRUN)
AND A VARIABLE THAT CONTROLS WHETHER OR NOT THE RESULTS OF

THE INTEGRATION ARE ONLY PRINTED OUT OR BOTH PRINTED OUT

AND WHRITTEN OUT. IN A FORMAT SUITABLE FOR REREADING

BY ANGTHER PROGRAM (NOUT). IF NOUT IS LESS THAN 1, THEN THE
RESULTS ARE ONLY PRINTED. IF NOUT IS GREATER THAN OR EQUAL TO
1, THEN THE RESULTS OF THE INTEGRATION ARE BOTH PRINTED OUT AND
MRITTEN OUT TO LOGICAL UNIT 10.

THE PROGRAM READS IN 4 TABULATED FUNCTIONS OF DISTANCE AND
4 TABULATED FUNCTIONS OF TEMPERATURE:

FUNCTIONS OF S:
G THE FORCE OF GRAVITY ALONG THE TUBE

DA THE LOGARITHMIC DERIVATIVE OF THE AREA OF THE TUBE
WITH RESPECT TO DISTANCE ALONG THE TUBE (1/A DA/DS)

SO A PHENOMENOLOGICAL NON-THERMAL HEAT SOURCE

A THE AREA OF THE FLUX TUBE
FUNCTIONS OF T:

OK ~ INVERSE OF THE THERMAL CONDUCTIVITY

Lu THE'RADIATIVE LOSS FUNCTION

CH THE FRACTION OF HYDROGEN NUCLEI THAT ARE IONIZED

DC OERIVATIVE OF THE FRACITIONAL IONIZATION (CH)
FOR EACH RUN WITH A SET OF TABLES; THE PROGRAM READS IN SO, THE
STARTING DISTANCE, DSO THE INITIAL STEP SIZE, PRCT, THE

MULTIPLICATIVE FACTOR BY WHICH THE INDEPENDENT VARIABLE SELECTED
BY ITEST IS ALLOWED TGO CHANGE BETWEEN TABULATION POINTS, THE

INITIAL TEMPERATURE TO, INITIAL DENSITY NO, INITIAL HEAT FLUX QO,
INITIAL VELOCITY UQ, TSTOP, THE TEMFERATURE AT WHICH THE
INTEGRATION WILL STOP, SSTOP, THE DISTANCE -AT WHICH THE
INTEGRATION WILL STGP, EPS, THE MAXIMUM RELATIVE ERROR IN AN
INDEPENDENT VARIABLE ALLOMED PER DSO, AND MSTOP, THE MACH NUMBER
AT WHICH THE INTEGRATION MILL STOP. IF THE INITIAL HEAT FLUX READ
IN IS GRFATER THAN 10 TO THE 50TH (A VERY UNPHYSICAL VALUE) THE
INITIAL HEAT FLUX IS DETERMINED BY THE CONDITION THAT THE NET
ENERGY FLUX. IS ZERG AT THE STARTING POINT.

THE CURRENT VERSION INTERPOLATES THE RESULTS OF THE

INTEGRATION TO PRINT OUT VALUES OF DISTANCE TEMPERATURE,
DENSITY, HEAT FLUX, VELOCITY, PRESSURE AND A QUANTITY WHICH

CAN BE INFERRED FROM EUV OBSERVATIONS (P**2 KAPPA/Q WHERE KAPPA
IS THE THERMAL CONDUEGTIVITY) AT VALUES OF THE TEMPERATURE
INITIALIZED IN THE ARRAY TMPOUT. IN ADDITION THE INITIAL AND
FINAL POINTS OF THE INTEGRATION ARE PRINTED OUT. - IF THE
RESULTS ARE TO BE WRITTEN TO LOGICAL UNIT 10 ALL THE TABULATED
RESULTS ARE. PRINTED AS CALCULATED BY ABMINT.
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DEGLARE AND INITIALIZE ARRAYS AND VARIABLES

REAL¥S EPS,TSTUR, SSTOP, AU, U0, ND, TU Q0,s0,5,080,08,PRCT,
PS¥SSSS(4) KAY:ZSS“FZCBGDOUOUUUO
MSTOF
REAL¥S G{819),DA(819),80(819),AC(815),0K(819),LU(819),CH(819),
DC(SlQ).YT§5(5;2U48)»TAB(S).GRAV DADS, SOR, AR, QKAP, LAN,CHI DCHI
INTEGERY NRUM,NTAB, IRUN, ITAB,T,J _
EQUIVALENCE (TAB(1) GRAV), (TAB(2),DADS), (TAB(3),S0R), (TAB(4),AR),
LCTAB(5) , QKAPR), (TAB(G) LAM) » (YAB(?) . CHI), (TAB{S),DCHID
EXTERNAL DIVF _
REALYS SPRIN,SBOTTZZ2474143E000000000/, TNPOUT(4U)/
.1.D3,1.503,2.03,3.03,4,03,5.03,6.03,7.D03,8.03.,9.03,
—-1.D‘1;‘\SU;:2 0433-04:4\1.]4,\5»04)6 D%?.DL& 0413 D“:
.1.D5;1‘505;2.05:3.B{S:'LUS;S-U@}().DS.?‘DS:S 0519 DS:
.1,.06,1.506,2.06,3.06,4.06,5.06,6,06,7.06,8,06,9.067

5001 FORMAT(215)

5002 FGRNAT(32163

5003 FORMAT(4013.6) ,

6001 FORMATCUH , T+, 'SCOM) ', T19, 'TEMP', T34, IN', T49, 'QECES) ',

COLT6, 'UCEES) Y TEY, TPLCES) T TOYL TLUMY, )
6002 FORMAT(ZL1PDIS.0))
6004 FGRP ATCIHL, T4, 'SECMY Y, T19, 'TEMP ', T34, "N, T49, 'RICESY Y,
64»‘UfCGSJ‘»T79,‘P(CGSJ',T94*‘LUN‘,X)

RIGEY FORN\T(‘UAS)

CALL DIVINT - PASS BASE ADDRESSES OF INTERPOLATION TABLES

TO DIVF
CALL DIVINT(G,DA,SO0,A,0K,LU,CH,DC)

READ IN NUMBER OF SETS OF TABLES AND INDEX OF INDEPENDENT
VARTABLE THAT CONTROLS TABULATION FREQUENCY

READCS, 5001)NTAB, ITEST
PRGT=1,05%D0

READ IN INTERPOLATION TABLES

DO 999 ITAB=1,.NTAB
RCAU(S SOU RUN, NOUT

e
=
P22
=
—~
ke

ODF’"JS?U)DC)'ZA

1
R
4
204
o
4
R
Rt
q

«3(.5&{9.5'3&3‘

)
)
)
)]
b
)
)
)
)
T

TAL CONDITIONS FOR RUNS
IRUN ‘
, 080, PROT

,NOL QDL U
TOF. SSTQP, EPS, NSTOP

AND QU IF NECESSARY

ooz » ozer ob

o e

INITIALIZE A
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S=S0

DS=DS0

NMAX=2048

CALL ABMINT TO INTEGRATE EQUATIONS

CALL ABMINT(S,YPASS,DIVF,DS,EPS,TSTOP,SSTOP,MSTOP, YTAB(1,11),

.AQ, ITEST,PRCT,NMAX)

I1=I1+NMAX-1
CONTINUE

PRINT OUT RESULTS

WE LOOK FOR VALUES OF TEMPERATURE THAT BRACKET VALUES
OF TEMPERATURE IN TMPOUT AND INTERPOLATE. ~WE ALSO
DO OUR OWN PAGINATION.

WRITE(6,6004)
ITEMP=0
ILINE=
1=2
SFRIN=YTAB(5,1)
CALL DIVF( RIN AB(1,1),TAB)
» 1)* (1. DO+CHID*YTABC(1, 1)
D

£Q.0.00)G0T0 30
)7 (OKAP¥YTAB(3, 1))

P=YTAB(2
RADOUT=Y.
IF(YTAB(Z,
RADOUT=-(P
P=KAY¥*P
SPRIN=SPRIN-SBOTT

WRITE(H, 6002)SPRIN,YTAB(1, 1), YTAB(2, 1), YTAB(3,1),

(5
SP
Y
50
1.
*p

.YTAB(4,1),P,RADOUT

FIND NEXT OUTPUT TEMPERATURE

ITEMP=ITEMP+]
IF(ITEMP.GT.40)G0TO 130
IF(YTAB(1,1).6T.TMPOUT(ITEMP))GOTO 105

FIND PRINT TEMPERATURE AND PRINT

IF(Y}AB(1,I+1).GT.TNPOUT(ITEMP))GOTD 115

I=1+

IF(I.GE.11)G0TO 130

GOTO 110
FRAC=(TMPOUT(ITEMP)-YTAB(1,13)/(YTAB(1,I+1)-YTAB(1,1))
YPASS(1)=TMPOUT(ITEMP)

YPASS(2)=YTAB(2, I)+FRACK(YTAB(2,1+1)-YTAB(2,1))

YPASS(3)=YTAB(3, 13+FRACK(YTAB(3, I+1)-YTAB(3,1))
YPASS(3)=YTAB(4, 1)+FRACH(YTAB(4, I+1)-YTAB(4,1))

SPRIN=YTAB(5, 1)+FRACKX(YTAB(5, +1)=YTAB(5,1))

CALL DIVF(YTAB(5,1),YTAB(1,1),TAB)

P1=YTAB(2, 1)¥(1.DO+CHT)*YTABCT, )

CALL DIVE(YTAB(E, T+ 1), ¥TABCT, [+1), TAB)

P2=YTAB(2, 1+ DO+CHIIXYTAB(1, I+ |
P=p1+FRACK(P2-P1) é v;GEB
RADOUT=1,D50 ﬂgﬁm LY
TF(YPASS(2).EQ.0.D0)GOTO 125 0 OR QUA
RADOUT== (P¥P)/ (OKAP¥YPASS(3)) | | oF O
P=KAYYP |
SPRINSSPRIN-SBOTT
NRITE(G, 5002)SPRIN, TNPOUT (ITEMP) , YPASS(2), YPASS(3),

PASS(4),P,RADOUT

S1+1

FUIGE.11)60T0 130

LINESILINE+]

FCILINE.LT.58)60TG 105

LINE=D

RITE(6,6004)

0To 105
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B =2

IF(I.GT.I1)60TO 99
SPRIN=YTAB(5,1)

CALL DIVF(SPRIN,YTAB(1,1),TAB)
P=YTAB(2,1)%(1.D0+ CHI)*YTAB(I 1)
RADOUT=1.D50

IF(YTAB(3;1).EQ.0.D0)GOTO 135
RADOUT=-(P*P)/(OKAP¥YTAB(3,1))

P=KAY*P

SFRIN=SPRIN~SBOTT
MRITE(6,6002)SPRIN,YTAB(1,I),YTAB(2,1),YTAB(3,1),
.YTAB(4,1),P,RADOUT

CONTINUE

WRITE OUT TABULATED RESULTS OF INTEGRATION IF REQUESTED

IF(NOUT.GE.1)CALL WRTR(YTAB,NMAX)
CONTINUE

STOP

END ,

SUBROUTINE WRTRCY,N)

IMPLICIT REAL*3 (A-H,0-2)

REAL*8 Y(5,N)

FORMAT ( 10A8)

FORMAT (A4)
NRITE(10,1002)N
WRITE(10,1001)Y
RETURN

END

1
A
0
0

- DRIGINAT PAGE 14
BE POGR QUALITY,
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ABMINT ‘ ;

SUBROUTINE ABMINT(S,YINT,F,DS,EPS,TSTOP,SSTOP,MSTOP,YTAB,AOD,

.1TS,PRCT,NMAX)

ABMINT SOLVES A SET OF THREE COUPLED ORDINARY DIFFERENTIAL
EQUATIONS PLUS A CONSERVATION RELATION THAT DESCRIBE THE
(STEADY STATE) BEHAVIOR OF A COMPRESSIBLE FLUID IN A FLUX TUBE.
THE ROUTINE TAKE THE FOLLOWING INPUT PARAMETERS:

S  THE INITIAL DISTANCE (ARBITRARY)

YINT THE INITIAL VALUES OF Y(1)-Y(4), THE INDEPENDENT
VARIABLES (TEMPERATURE, DENSITY, HEAT FLUX AND
VELOCITY)

F THE NAME OF THE SUBROUTINE THAT CALCULATES THE
DERIVATIVES OF THE INDEPENDENT VARIABLE AND THE VELOCITY
(MUST BE DECLARED IN AN EXTERNAL STATEMENT IN THE
CALLING ROUTINE)

DS THE INITIAL STEP SIZE

EPS THE DESIRED ACCURACY (RELATIVE) FOR A DISTANCE DS

TSTOP THE MAXIMUM (OR MINIMUM) TEMPERATURE TO WHICH THE
ROUTINE WILL INTEGRATE

SSTGP»‘THE MAXIMUM (MINIMUM) DISTANCE TO WHICH THE ROUTINE
WILL INTEGRATE

MSTOP  THE MAXIMUM MACH NUMBER TO WHICH THE ROUTINE WILL INTEGRATE
YTAB AN ARRAY IN WHICH THE RESULTS OF THE INTEGRATION ARE
RETURNED TO THE CALLING PROGRAM - SHOULD BE DEMINISIONED AT
LEAST S5*NMAX. VARIABLES STORED IN THE FOLLOWING ORDER:
TEMPERATURE, DENSITY,HEAT FLUX,VELOCITY AND DIS1ANCE
A0 THE AREA AT THE STARTING POINT TIMES THE DENSITY AT THE .
STARTING POINT TIMES THE VELOCITY AT THE STARTING POINT
(A CONSERVED QUANTITY)

ITS INBEX OF THE VARIABLE THAT CONTROLS THE FREQUENCY
AT WHICH RESULTS ARE PUT IN YTAB

PRCT. - THE MULTIPLICATIVE FACTOR BY WHICH THE ITS ELEMENT OF Y
~IS ALLOWED TO CHANGE BETWEEN THE TABULATION OF THE RESULTS

NMAX “THE MAXIMUM NUMBER OF TABULATION POINTS

THE ROUTINE USES SEVERAL LOCAL WORKING ARRAYS
RUNGE-KUTTA:

Y(4),Y1(4),F0(4),F1(4),F2(4) USED TO STORE INTERMEDIATE
VALUES OF THE INDEPENDENT VARIABLE AND THEIR DERIVATIVES

ADAMS-BASHFORTH-MOULTON PREDICTOR CORRECTOR:
YW(32),FH(32) USED TO STORE LAST 8 STEPS OF INTEGRATION.
THE PRESENT INTEGRATION USES 4 PREVIOUS VALUES TO ESTIMATE
THE NEXT VALUE_SO DOUBLING THE STEP SIZE CAN BE DONE IF j
AT LEAST 4 INTEGRATION STEPS HAVE OCCURRED SINCE THE LAST e
OOUBLING OF THE STEP SIZE

YP(4),YC(4) USED TO STORE THE PREDICTED AND CORRECTED

m



1 b
| VALUES OF THE INDEPENDENT VARIABLES

kBMINT USES AN ADAMS-BASHFORTH-MOULTON PREDICTOR-CORRECTOR
INTEGRATION SCHEME. START UP IS ACCOMPLISHED BY BACKWARD
INTEGRATION WITHA RUNGE-KUTTA SCHEME AND MISSING VALUES
NEEDED WHEN HALVING THE STEP SIZE ARE PROVIDED USING THE
SATE RUNGE-KUTTA SCHEME ' T
DECLARE VARIABLES
IMPLICIT REAL*3 (A-H,0-2)
REAL*8 S,EPS,ERR,DS,DT,TSTOP, TDIF1,TDIF2,H2,H3,H6,H8,H,T,ERRT,
JYP(4),YC(4),YINT(4),YTAB(5,1),F0C4),F1(4),F2(4),Y1(4),Y(4),FP(4),
' .ON24/Z3FAAARAAAAAAAAAB/, ERST,FU(32)/32%0.D0/, YW(32)/32%0.D0/,

: .MSTOP,MACH, SSTOP,SDIF1,SDIF2,H924,CCC1/,24161C71C71C71C727,

z .CCC2/24168E38E38E38E39/,C0C3/24141C71C71071C727, FRAC ‘

; INTEGER*4 I,J,K,IND,IN1,IN2,IN3,IN4,IT,DOUBLE

. LOGICAL*4 DONE

¢ START UP USING INTEGRATION BY 4TH ORDER R-K & 1/32 DS

VCH1 PRCTXYINT(ITS) i
VCH2=PRCT*VCH1 ‘

“‘FRAC=1.D0 : ;
“MACH=1. 64995908*NSTOP*MSTOP e
MMAX=NMAX R

15 DTE.0312500%BS*FRAL
HZ DTX. 500 .
H3 DT/3.D0
‘HB6=H3*,5D0

¥ H2%,2500 ; m PAGE 1S
: ~ OF POOR QUALITY
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1,F1,A0,8999)

F
+F 1K) )¥HG+Y (K)
»F1,A0,8999)
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5%“3.DO+FU(K))*H8+Y(K)
K
F

~
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C<NWY MWITMWIMWIOW
wo w"
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— N

F2,A0,£999)
YX4.D0-F 1(K)*3. DO+FOCK) IXH2+Y (K)
1,A0,£999) |

K)*4, DO+F1(K)+F0(K))*H6+Y(K)
F0,A0,8£999)

; )=Y(J)
8 FRCIND+J)=F0(J)
2] IND=IND+4
CIFCYH(12+1TS). LT vcu1)coro 16
FRAC=FRAC*0. 5D
. 60TO 15
16 gn%Ft =§-SSTOP

st s | =a—f || —
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QMO -

50
55

201

30

rnxrr YW(1)-TSTOP
H=DS*FRAC¥0.062500%0N24.
DTEDSXFRACY. 062500
H924=DTX_ 37500
ERR=EPS*FRACX. 01562500
ERR 1ZERR*0.0312500
IN1= 0 .
IN2=4

IN3=§

IN4=12

DOUBLE=4

DONE=. FALSE.

‘END INITIALIZATION o o e

I=2. ‘
DOUBLE=DOUBLE-1
CONTINUE
=po 20 J=1,3
YR(J)= YM(IN4+J)+H924*(CCC1*FN(IN4+J) CCC2¥FW(IN3+J)
-~ #+CCC3¥FUIN2+J)-FUCINI+J)) ‘
CALL F(S+DT,YP,FP,A0,8£999) ﬁ
DO 30 J=1,3 g
FYCCIISYNCING+JI)+H¥ (9, ¥FP(JI+19. KFNCIN4+J)-5. XFMCIN3+J)

. CRFHCINZHD))

TDIF2=YC(1)~-TSTOP

7 IF(DSIGN(TDIF2,TDIF1).NE.TDIF2)DONE=.TRUE.

35

220

215

205

60

(=]

OO Bl s

—
wo

SDIF2=S-SSTOP
IFCDSIGN(SDIF2,SDIF1).NE.SDIF2)DONE=, TRUE.
CALL F(S+DT,YC,FP,AQ,&959)

STFCYC(4IXYC(4) . GT.MACHYY JDONE=,TRUE.
ERST=DABS(YP(1)-YC(1))v/ YP(1))+DABS(YC(1)))
ERST=DMAX 1 (DABS(YP(2

IF(DABS(YCE3))+DABS

D

)

(Y 1.E-30)6070 220
. ERST=DMAX1(DABS(YP(3)

)

(

/

T.

/(DABS(YP(3))+DABS(YC(3))) ERST)
1F(DABS(YC(4))+DABS T.¥.E£-30)60T0 215
ERST=DMAX 1(DABS(YP(4 7/
(YC(ITS).6T.VCH2)GOT
ERST.GT.ERRIGOTO 100
RST LT.ERR1)GOTO 200

)
( S
c )
3 L
c )
4 L
C )

c(
DA
(2
1.
(3
3.
(4)
90

FP(

,IF(I GT. NNAX)GOTO 10

VCH1=VCH2
VCH2=PRCT¥VCHT = = |
IF(DONE)GOTO 10 .~ ... .
60T0 50 S
IACC=1
60TO 103
- IACC=0
CONTINUE

'SECTION THAT HALVES INTEGRATION STEP

TE(BT.LT.1.D-1)G0T0 205

IF(DT.GT. DS)GOTO 109
_"ERR=ERR¥. 500

ERR1=ERR 1%, 500

13

(DABS(YP(2))+DABS(YC(2))),ERST)

(DABS(YP(4))+DABS(YC(4))) ERST)
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101

102
c
c
¢

110

130

”40;

150

160

180

1';20‘;.
1?0k

115

145

-~ 155

135

DT=DT*.5D0
H=DT*ON24
H924=DT*.375D0

REARRANGE WORKING ARRAYS

IT=MOD(IN4+12,32) | oﬂm@mﬂ

J=INA ’ 1 POOR
Do 101 K=1,4 | 0k

F“(IT+K) FRCIN4+K)

YRCIT+K)=YW(IN4+K)

ING=IT %

1T=MOD (IN3+8, 32)

00 102 k=1,4
FUCIT+K)=FN(IN3+K)
YWCIT+K)=YW(IN3+K)
FUCIN3FK)=FUCIN2+K)
YUCINI+KI =YW CIN2+K)

IN2=IT

IT=IN3

IN1=J

IN3=MOD (IN2+4, 32)
|

GENERATE MISSING INFORMATION WITH 4TH ORDER R-K

H2:DT*.2500 .
H3=0T/6.00

T H6SH3*.5D0

H8=H2¥_ 25D0
T=S- (DT+DT)

4 N
AW N+

o 13
¥H3+Y (K)
1,F1,A0,&999)

J+F1(K)I*H6+Y (K)
1,F1,A0,8999)

)X3.DO+FO(K)I*H8+Y (K)
1,F2,A0,8&999)

Y ¥4, D0-F1(K)X3.D0+FO(K) I *HZ2+Y (K)
1,A0, 8999)

*4. DU+F1(K)+F0(K))*H6+Y(K)
0,A0, 899 9)

o
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+Y (K)
1,A0,8899)

H3
F
F1(K))*¥HG+Y (K)
F1,A0,8999)
3.
JF

DO+F0(K))*H8+Y(K)
2,A0, 89 9)

T
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Q

209

Y1(K) (F2(K)X*X4 . DO-F1(K)*3. DU+F0(K))*H2+Y(K)
T=T+H2+H2
CALL F(T,Y!,F1,AD0,£999)
DO 185 K-1 3
Y(K)= (F2(K)*4 DO+FTCK)+FOCK) Y XHE+Y (K)
CALL F(T,Y,F0,AD,£999)
CONTINUE
DO 175 J=1,4
FN(IN1+J) FD(J)
YUCINT+I) =Y (J)
G60TO 55

RETURN TO ABM P-C INfEGRA%ION WITH NEW STEP SIZE
~ CONTINUE
SECTION THAT DOUBLES INTEGRAT!ON STEP SIZE

IF(IACC.EQ. 1)60TO 205
1F(DOUBLE.GE.0)GOTO 205
DOUBLE=A
S#S-DT
AT=DT+0T
“H=DTHON24 o i
H924=0T¥, 37500 . S
IF(DT.GT.DS)GOTO 209 i
- ERR=ERR+ERR
ERR 1=ERR 1+ERR 1 ,
K=MOD (IN4+d, 32) w
IT=MODC(IN4+12,32) ;
po 210 J=1.4 z
FREING+J) =FICIN3+J)
YWCING+J) SYRCIN3+J)
FROIN3+I)=FNCINT+J)
YNCIN3+J)=YRCIN1+J)
FUCINT+J) =FLIK+T)
YRCINT+J) SYR(K+J)
FNCIN2+J)SFRIT+)
YHCIN2+J) SYR(IT+J)
60TO 205

0-NMAX=I-1

RETURN

CONTINUE

FORMATC1H , 'FATAL ERROR T OR S 0UT OF TABULATED RANGE')
NRITE(6,6001)

§=-§

NMAX=1

RETURN

- END

o

ons
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PACE 18

S DIVF " OF POOR QUALITY
.
| CSECT

DIVF(S,Y,DY,AQ,*) OR  DIVF(S,Y,TAB)

REAL*8 S,Y(4),DY(4),A0 REAL*8 S,Y(4),TAB(S8)

i
THE FIRST FORM OF THE CALL CALCUALTES THE DERIVATIVES
DT/DS = DY(1)/DS , DN/DS = DY(2)/DS & DQ/DS = DY(3)/DS

AND STORES THEN IN ARRAY DY. THE VALUE OF v=Y(4) 1S COMPUTED
FROM THE CONSERVATION LAW NVA = CONSTANT AND STORED IN Y(4).
THE ROUTINE INTERPOLATES THE VALUES OF PRARMETERS NEEDED FOR
THE CALCULATIONS FROM TABULATIONS OF 4 FUNCTIONS OF S ONLY AND
4 FUNCTIONS OF T ONLY. IF S OR T IS OUT OF THE TABULATED
RANGE, THE OFFENDING QUANTITY IS NEGATED AND THE ROUTINE DOES
THE EQUIVALENT OF A FORTRAN RETURNY.

THE SECOND FORM OF THE CALL STATEMENT (DISTINGUISHED FROM THE
FIRST BY THE NUMBER OF ARGUMENTS) CALCULATES THE INTERPOLATED"
VALUES OF G(S),DA/DS(S),SOURCE(S), AREA(S) AND 1/KAPPA(T),
{LAMBDA(T), CHI(T) AND DCHI/DT(T) AND STORES THEM IN TAB.

:THtRE 1S A SECOND ENTRY POINT (DIVINT) WHICH PICKS UP
JAND STORES LOCALLY THE ADDRESSES OF THE TABULATIONS OF
fTHF FUNCTIONS NEEDED FOR THE CALCULATIONS.

'NOTE THAT THIS MEANS THAT MEANINGLESS RESULTS

WILL BE PRODUCED IF DIVINT IS NOT CALLED BEFORE

THE FIRST TIME DIVF IS CALLED. IT IS EVEN POSSIBLE
THAT SOME SORT OF ABEND WILL RESULT.

THE FOLLOWING TWO FORTRAN SUBROUTINES ARE ROUGHLY EQUIVALENT
TO THE TWO CALLS TO DIVF (DIVINT IS NOT REPRODUCED)

SUBROUTINE DIVF(S,Y,DY,AQ,¥)
IMPLICIT REAL¥8 (A-H,0-2)
DIMENSION Y(43,0Y(4)

REAL¥S KOMH/8.2989776D07/,TION/1.0464606D05/, KAY/1 38062Dh-16/
Y(1)=-Y (3)®OKAP(T)
Y(4)FA0/ (Y (2)*A(S))
DY(2)=(Y (2I¥(Y(4)¥Y (4)%DADS(S)-DY (1) ¥KOMH
LCCTL DO+CHI(T) ) H(T¥DCHI(TII-G(SI*S)) )/
CCKOME* (1. DO+HCHI(TIRY (1) =Y (4)*Y (4))
DY(3):—(L(T)*CHI(T)*Y(Z)*Y(Z))-(1.SDU Y(4)*Y(2)*KAY*DY(1)
ECCILDO0+CHICT))H(Y (1) -TION)HADCHLCTI) Y+ C (1. DO_CHT(T))*KAY
XY (1)®Y (4)%DY(2))+SOR(S)-Y(3)*DADS
%EEURN
N

SUBROUTINE DIVF(S,Y,TAB)
IMPLICIT REAL*8 (A-H,0-2)
DIMENSIGON Y(4), TAB(S)
TAB(1) G(S)
TAB(2)=DADS(S)

TAB(3)=SOR(S)
TAB(4)=A(S)

TAB(5)=0KAP(T)

TAB(8)=L(T)

TAB(7)=CHI(T) .
TAB(8)=DCHI(T)

RETURN

‘NOTE=‘ IN THE COMMENTS 'R' REFERS TO GENERAL PURPOSE REGISTERS
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* ¥

I I 2 ¥ ¥

DIVINT

TFIRST

* ¥ ¥*

DFIRST

H* M ¥ ¥

AND

USING
B

DC

oc

ENTRY

USING
B

DC

bC
STM
LM
STM

LM

MVI

'F' REFERS TO FLOATING POINT REGISTERS.

*;15 TELL ASSEMBLER NEST INST ADDR IN R15
Dfég?T BRANCH AROUND NAME AND OTHER ENTRY POINT
X
CLS'DIVF !

DIVINT(G,DADS, SOR,AREA,0KAP,LUM,CHI,DBCHI)

REAL*8 G(563),DADS(563),S0R(563),AREA(563),

REAL*8 OKAP(820),LUM(820),CHI(820),DCHI(820)
DIVINT
*,15 TELL ASSEMBLER NEXT INSTR ADDR IN R15
TFIRST BRANCH AROUND NAME
X'06°'
CL7'DIVINT
14,12,12013 SAVE CALLING ROUTINES GPR'S
2,%,0(01) GET BASE ADDR'S OF INTERPOLATIGN TABLES
2,9,GADDR SAV TABLE BASE ADDR'S
2,9,28(13) RESTORE CALLING ROUTINE'S GPR'S
12C13),X'FF"' INDICATE CONTROL RETURNED
14 RETURN FROM INITIALIZATION

BR

STM
L
LM
Mve

LH
S

LD
BM

c
BH
SD
SLA

R
6),2(2) FLOAT

REDUCE R12 BY SDISP -

SAVE CALLING ROUTINES GPR'S

R2 <= ADDR S

R3-R6 <= ADDR'S OF TABLES FOR S

(= FRACTIONAL DISTANCE FROM
NEXT SMALLER VALUE OF S TABULATED.

R12 <= HIGH ORDER BYTES OF §

# WORDS FROM
BASE OF TABLES
F4 <= FRACTION O LE FRAC LE 1
IF RESULT IS NEGATIVE OUT OF RANGE
GOTO BADS
COMPARE R12 TO SBND - IF GREATER
OUT OF RANGE GOTO BADS
F4 ¢(= X = FRAC - ,5 ~-.5 LE X LE .5
R12 <= -R12%8 NOW BYTE DISPLACEMENT
FROM BASE OF INTERPOLATION TABLE.

NOW COMPUTE WEIGHTS FOR CUBIC. INTERPOALTION OF
FUNCTIONS OF S

LDR
MDR
HDR
SO
LDR
HDR
MDR
LCOR
ADR
STD

LCDR
SDR
STD

ADR
AD

MD

LBR
SOR
ADR
STD

QOOOMLe OOQ OQQOLO L

2,4 F2 <= X

» 4 Fq4 ¢= X¥¥2 = X2

>4 Fq4 (= X272

,=011.125" F4 <= X272 = 978

>4 F6 <= X272 ~ 978

' 4 F4 (= X274 - 9716

A F6 <= X372 - 9X/8

+ 4 FO (= =X274 + 9716

6 FO <= X372 - X274 - 9X/8 + 9/16

» WM WMY <= WEIGHT FOR TABLE ENTRY CORRESPOND-

ING TO CLOSEST SMALLER VALUE OF S.

» 4 FO ¢= -X2/4 + 8716

» 6 FO <= -X3/72 - X274 + 9X/8 + 9,16

» WP WPY <= WEIGHT FOR TABLE ENTRY CORRESPOND-

ING TO CLOSEST LARGER VALUE OF S.

»2 F6 (= X372 - X/8

4,=D'.5! Fd4 (= X274 - 1716

,=X'4055555555555555' F6 <= X3/6 - X/24

» 4 FO (= X274 = 1716

) FO ¢= -X3/6 + X274 + X724 - 1716

» 4 F6 <= X376 + X274 = X/24 - /16 )

> WM3 WM3 <= WEIGHT FOR TABLE ENTRY CORRESPOND-

ING TO 2ND CLOSEST SMALLER VALUE OF S.
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LR X K]

¥* ¥ ¢ ¥

¥ ¥ K ¥

36

N
(¢

NGW CALCULATE
HAVE WEIGHTS 1

(

S§TD

LDR
LDR

LDR
LDR
MD
MD
MD
MD
ADR
ADR
LD
LDR
MD
MD
ADR
ADR
LD
LDR
MD
MD
ADR
ADR
STD
STO

L
LM

MVC

LK
S

LD

6,WP3

4,0

2,6
0,0(3,12)
2,243,122
4,0(4,12)
6,24(4,12)
0.2

4,6

6,2
2,8(3,12)
6,8(4,12)
0,2

4,6

2,NP1

6,2
2,16(3,12)
6,16(4,12)
0,2 .
4,6

0,6

4, DADS

0, M3
2,UP3

VALUES OF SOUR A
IN FPR'S O &

& 4

~

NOIN = —=NIZCONRONIZCPRPNDOMNDOND

o
e

Pl Ve
~O
s
. A
) —a N
BN~ N
~ A

[e2¥¢) Nin v} ~r~ T

M~ s AUl s

c\m . e
—

— R

NN Nt Nt

Nt Nt

-~ =

OLOONONLOGONONLOOLNOG L

R T T R R 2 )

La

»AREA

3,6,

12,0(02)
12,7TDISP

4, FLOAT

UpP3 (=
ING TO

OW CALCULATE INTERPOLATED VALUES
HAVE WEIGHTS FOR TABLES ENTRIES 1 & 4

F4 <= WEIGHT 1
F2 <= WEIGHT 4
FO <= WEIGHT 1 ¥ GRAV 1
F2 <= HEIGHT 4 * GRAV 4
F4 <= EIGHT 1 % DA/DS 1
F6 (= WEIGHT DA/DS 4 * fgerramme
rg (= w}fs} + 13:03 PAGE IS
F4 <= WI%D1 + W4*D
F2 ¢= WEIGHT 2 OF. POOR QUALITY,
F6 <= WEIGHT 2
F2 <= W2XG2
F6 <= W2*D2
FO <= WI%G1 + WAXG4 + W2¥G2
F4 <= L1¥D1 + W4*D4 + W2XD2
F2 <= WEIGHT 3
F6 <= WEIGHT 3
F2 (= H3¥63
FG6 <= M3*D3
F2 <= INTERPOLATED VALUE OF 6
F4 <= INTERPOLATED VALUE OF DA/DS
G <= INTERPOLATED VALUE OF GRAVITY
DADS <= INTERPOLATED VALUE OF DA/DS
FO <= WEIGHT 1
F2 <= WEIGHT 4
CE AND AREA
2)
F4 <= WEIGHT 1
F6 <= WEIGHT 4
FO <= WEIGHT 1 ¥ SOURCE 1
F2 <= MEIGHT 4 * SOURCE 4
F4 <= WEIGHT 1 X AREA 1
F6 <= WEIGHT 4 * AREA 4
FO <= WI*S] + W4*¥S4
F4 <= WI¥AT + W4%Ad
F2 <= WEIGHT 2
F6 <= WEIGHT 2
F2 <= W2*S2
F6 <= N2*A2
FO <= WIXST + WA¥S4 + W2¥S2
F4 <= WI*A] + WAXA4 + W2¥A2
F2 <= WEIGHT 3
F6 <= WEIGHT 3
F2 <= W3%S3
F6 <= W3¥A3
F2 <= INTERPOLATED VALUE OF SOURCE
F4 <= INTERPOLATED VALUE OF AREA
SOR <= INTERPOLATED VALUE OF SOURCE
AREA <= INTERPOLATED VALUE OF AREA

WEIGHT FOR TABLE ENTRY CORRESPOND-
2ND CLOSEST LARGER VALUE OF S.

OF GRAVITY AND DA/DS
IN FPR'S B8 & 6)

_CALCULATE INDEX AND FRACTIONAL DISPLACEMENT FOR INTERPOLATION
ON TEMPERATRUE (T) TABLE

2,401 = BASE ADDR Y ARRAY

KADDR
FLOAT+1(6),2(2

-R6 (= BASE ADDR'S TABLES FOR
TERPOLATION OF FUNCTIONS OF T
FLOAT <= FRACTIONAL DISTANCE FROM
NEXT SMALLER VALUE OF T TABULATED.
R12 (= HIGH ORDER BYTES OF. T

REDUCE R12 BY TDISP - # WORDS FROM
BASE OF TABLES

F4 <= FRACTION 0O LE FRAC LE 1

“R2
R3
IN
)
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* 3 3 %k K

¥*

¥ ¥ ¥ ¥ K

¥* 3 ¥ K

BM

c
BH
Sb
SLA

NOW COMPUTE WEIGHTS

BADS
12, TBND
BADS
4,=0'.5"
12,3

FUNCTIONS OF T

LDR
MOR
HOR
SD

LOR

HDR
MOR
LCDR
ADR
ST

LCOR
SOR
STD

ADR
AD

MD

LOR
SOR
ADR
ST0

STO

LDR
LOR
MD
MD

MO

MD
ADR
ADR
LD
LDR
MD -
Mo
ADR
ADR
LD
LDR
MD
MD
ADR
ADR
STD
ST

C
BC
LD

J;O&QG\NG\NAOG\NG\N&OG\LNONA

2,4
4,4

pr1.125!

zZonronbn il b
=
—

N N e W

T
—

. v N

ZLOD U Eov
o

=3
w

M o w e e e e

A QOOOOLOY OO0 OO0 LGV nds
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.
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el

N WL W e e N N e e N e e e % W % e e N e

12, HBYTE
2,HIGHT
0, M3

405555555

IF RESULT IS NEGATIVE 0OUT GF RANGE
GOTO BADS

COMPARE R12 TO TBND - IF GREATER
OUT OF RANGE GOTO BADS

F4 ¢(= % = FRAC - .5 -.5 LE X LE .5
R12 <= R12%8 NOW BYTE DISPLACEMENT
FROM BASE OF INTERPOLATION TABLE.

FOR CUBIC INTERPOALTION OF

F2 (=X

Fd (= X¥X2 = X2

Fd <= X272

F4.(= X272 - 9/8

F6 (= X2/2 - 9/8

F4 (= X2s4 - 9,16

F6 (= X372 - 9%X/8

FO (= -X2/74 + 9/16

FO (= X372 - X2/4 - 9X/8 + 9716

WMT1 <= WEIGHT FOR TABLE ENTRY CORRESPOND-
ING TO CLOSEST SMALLER -VALUE OF T.

FO (= -X274 + 9716

FO (= -%X3/2 - X274 + 9%/8 + 9/16

WP1 <= WEIGHT FOR TABLE ENTRY CORRESPOND-
ING TO CLOSEST LARGER VALUE OF T.

F6 (= X3r2 - X/8

F4 <= X274 - /16

§555555' F6 (=X3/6 - X/24

FO (= X274 - 1716

FO (= -X3/6 + X274 + X/24 - 1716

F6 (= X376 + X2/4 - X/24 - /16

WM3 <= WEIGHT FOQR TABLE ENTRY CORRESPOND-
ING TO 2ND CLOSEST SMALLER VALUE OF T.
WP3 <= WEIGHT FOR TABLE ENTRY CORRESPOND-
ING 70 2ND CLOSEST LARGER VALUE OF T.

NOW CALCULATE INTERPOLATED VALUES OF 17/KAPPA(T) AND L
(HAVE WEIGHTS FOR TABLES ENTRIES 1 & 4 IN FPR'S 0 & 6)

1
L

MEIGHT 3
WEIGHT 3

NN AN
LRI LA e T T OO (R Y I L N O Y E O O I A O IO I A TR}
=
0~
*
-

bt it e Bea e Beas s s St et Sans fn s S Bhat |

[o2 )]
tho1f
=
) )
#*
=
w

(= . INTERPOLATED VALUE OF 1/KAPPA

{= INTERPOLATED VALUE OF L

P (= INTERPOLATED VALUE OF 1/KAPPA
LUM (= INTERPOLATED VALUE OF L

RONTTONLOOMMNONLOGLNON

omm
>

CHECK TO SEE IF GAS FULLY IONIZED (T > 65,536, BYTE DBISP > 3BC(HEX)),
IF SO SKIP INTERPOLATION OF CHI AND DCHI/DT, IF NOT CONTINUE i

FO (= WEIGHT 1
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PAGE BB

———r

b U mﬂ
" LD 2,WP3 F2 (= WEIGHT 4
* NOW CALCULATE VALUES OF CHI AND DCHI/DT
: ( HAVE MEIGHTS 1 & 4 IN FPR'S 0 & 2)
LDR 4,0 F4 <= WEIGHT 1
LDR 6,2 F6 <= WEIGHT 4
MD 0,0(5,12) FO <= WEIGHT 1 * CHI 1
MD 2,24(5,12) F2 (= NEIGHT 4 * CHI 4
MO 4,0(6,12) F4 <= WEIGHT 1 * DCHI/DT 1
MD 6,24(6,12) F6 ¢= WEIGHT 4 ¥ DCHI/DT 4
ADR 0,2 FO (= WI*CT + W4*C1
ADR 4,6 Fq4 <= WI¥XDT1 + H4¥p4
LD 2, WM F2 ¢= WEIGHT 2
LDR 6,2 F6 <= WEIGHT 2
MD 2,8(5,12) F2 (= N2¥Cc2
MD 6,8(6,12) F6 <= W2¥D2 .
ADR 0,2 FO (= WI*C] + W4¥Cq + W2¥C2
ADR 4,6 F4 <= H1¥D1 + W4¥D4 + W2¥Dp2
LD 2,WP1 F2 <= WEIGHT 3
LDR 6,2 F6 <= WEIGHT 3
MD 2,16(5,12) F2 (= W3%C3
MD 6,16(6,12) F6 <= W3¥D3 ,
ADR 0,2 F2 <= INTERPOLATED VALUE OF CHI
ADR 4,6 F4 <= INTERFOLATED VALUE OF DCHI/DT
STD 0,CHI CHI <= INTERPOLATED VALUE OF CHI
STD 4,DCHI DCHI <= INTERPOLATED VALUE OF DCHI/DT
LM 3,4, 8(1) GPR'S 3&4 (= BASE ADDR'S OF DY AND AOQ
LTR 3,3 CHECK IF 3 NEGATIVE IF SO IS LAST
BM TABL PARAMETER - GOTO0 TABL
LD 2,0KAP F2 ¢= 1/KAPPA
LNDR 2,2 F2 <= ~1/KAPPA
MD 2,16(2,0) F2 <= -Q/KAPPA = BT~DS
STO 2,0(3,0) STORE DT/DS
AD - 0,=D'1.° FO (= 1+CHI
LD 2,0(4,0) F2 (= A0 = NO¥UO*AO
LD 6,AREA F6 <= AREA
MD 6,8(2,0) F6 (= AREAXN
DOR 2,6 F2 ¢= (NO¥UD¥AD)/(AREA¥N) = U
STD 2,24(2,0) STORE U (VELOCITY?
MDR 2,2 F2 (= U%*2
LOR 6,0 F6 <= 1+CHI
MD 6, KOMH F6 <= (K*(C1+CHI))/MH
MD 6,0(0,2) F6 (= (KT¥(1+CHIJ))/MH
SDR 6,2 F6 ¢= (KT¥(1+CHI)Y/MH - U¥X2
MD 2,DADS F2 <= DADS*U*¥2
SD 2,06 F2 <= DADSHkU*¥2 ~ 6§
( 4,0(2,0) F4 (= DCHI/DT*T
ADR 4,0 F4 <= (1+CHI) + DCHI/DT¥T
MO 4,KOMH F4 ¢= K/MH¥F4(¢)
MD 4,0(3,0) F4 <= DT/DS¥F4(4)
SDR 2,4 F2 <= F2(¢) - F4($)
MD 2,8(2,0) F2 (= F2(¢)*N:

x .
i F2 <= N¥(UX¥2¥DA/DS = DT/ZDS¥K/MH¥((1+CHID+T*DCHI/DT) - GS)

DOR
STD
MDR

. e e e % e e e w e e
QUOQEOQOUOALOOCN
y )+ .
peod
—

LoD LN

F2 (=
STORE
F2

AN

L1 P T O T O O E N O

|mTTTTTTMTTTTT M ™
AL OD D LS

12

ON/DS
DN/DS
({+CHI)*DN/DS

:
TX(1+CHI ) *DN/DS

T =TI

(T-TI)¥DCHI/DT

(1+CHI) + (T=TI)¥DCHI/DT

N*( 1+CH (T TIJXDCHIZDT)
/2 ¥ F4 ¢)

I +
(¢)
DT/DS * F4(

0



: F4 (= 3/2%DT/DS*¥(1+CHI + (T-TI)*DCHI/DT)

¥ LXK K KR

SOR 2,4 F2 <= (1+CHI)XDN/DS¥T - F4(¢)

MD 7.24(2,0) F2 (= F2(6) * U

MD 2, KAY F2 <= K ¥ F2(¢)

MOR . 0,0 FO <= N¥¥2

MD 0, CHI FO <= N¥¥2 % CHI

MD 0,LUM FO <= RADIATIVE LOSSES

SDR 2,0 F2 <= F2(¢) - FO(¢)

LD 0,16(2,0) FO <= Q

MD 0,DADS FO <= Q/AXDA/DS

SOR 2,0 F2 <= DQ/DS LESS SOURCE TERM

AD 2,SOR F2 <= DQ/DS

STD  2,16(3,0) STORE DQ/DS

LM 14,12,12(13)  GPR'S RETURNED TO ORIGINAL STATE

MVI  12(13),X'FF' TELL CALLING PROGRAM WE'RE RETURNING

BCR 15,14 RETURN
END OF SECTION FOR T , 65,536 NEXT SECTION DOES SAME CALCULATIONS
FOR FULLY IONIZED CASE ~
IGHT LM 3,4,8(1) FPR'S 384 <= BASE ADDR'S OF DY & AO

MVC  OKAP+16(16),=X'41100000000000000000600000000000"

CHI <= 1 & DCHI <= O

LTR 3,3 CHECK IF 3 NEGATIVE IF SO IS LAST

BM  TABL PARAMETER - GOTO TABL

MD . 0,16(2,0) FO <= Q/KAPPA

LCOR 0,0 FO <= -Q/KAPPA = DT/DS

STD  0,0(3,0) STORE DT/DS

LD 2,0(4,0) F2 <= AD = NOX¥UOXAD

LD 4, AREA F4 <= AREA

MD 4,8(2,0) F4 <= AREA*N

ODR 2,4 F2 <= (NO¥UO®AD)/(AREA¥N) = U

STD  2,24(2,0) STORE U (VELOCITY)

MDR 2,2 F2 <= 0¥

LDR 6,0 F6 <= DT/DS

LD 4, KOMH2 F4 <= 2K/MH

MOR 6,4 F6 <= 2K/MH*DT/DS

MD 4,0(2,0) F4 <= 2KT/MH

SR 4,2 Fd (= 2KT/MH - U*x2

MD 2, DADS FS (= U¥K2/A¥DA/DS

SDR 2,6 F2 (= UXX2/A¥DA/DS - 2K/MHXDT/DS

SD 2,6 F2 <= F2(¢) - G

LD 6,8(2,0) F6 <= N

MOR 2,6 F2 <= F2(¢) X N

ODR 2.4 F2 <= DN/DS

STD  2,8(3,0) STORE DN/DS

MR 0,6 FO <=N*DT/DS

LDR 4,0 THIS AND THE NEXT TWO INSTRUCTIONS

ADR 0,0 EFFECTIVELY MULTIPLY FO BY 3.

ADR 0,4 FO <= 3N¥DT/DS :

MD 2,002,0) F2 <= DN/DSHT

ADR 2,2 F2 <= 2T¥DN/DS

SR 2,0 F2 <= 2T*DN/DS - 3N¥DT/DS

1D 2, KAY F2 <= K¥(2T%ON/DS - 3N¥DT/DS)

MD 2,24(2,0) F2 <= KXUX(2T*DN/DS - 3N¥DT/DS)

MDR 6,6 F6 <= N¥¥2

MD 6,LUM F6 <= RADIATIVE LOSSES

SDR 2,6 F2 <= F2($) - F6(¢$)

LD 4,16(2,0) F4 <= Q

MD 4,DADS F4 <= Q/AXDA/DS

SR 2,4 F2 <= DQ/DS LESS SOURCE TERM

AD 2, SOR F2 <= DQ/DS

STD - 2,16(3,0) - STORE DQ/DS

LM 14,12,12(13)  GPR'S RETURNED TO ORIGINAL STATE

MVI  12(13),X'FF'  TELL CALLING PROGRAM WE'RE RETURNING

BR 14 RETURN

RETURN INTERPOLATED FUNCTION VALUES =~ NOT DERIVITIVES

12

1



PUT INTERPOLATED VALUES IN TAB

0(64,3),6

14,12,12(13) RESTORE GPR’S o

12(13),X“FF/ INDICATE CONTROL RETURNED

14 ' RETURN

T OUTSIDE OF THE TABULATED RANGE

0,0(2,0) FO <= OFFENDING QUANTITY (T OR S)
0,0 FO NOW NEGATIVE

0,0(2,0) STORE OFFENDING QUANTITY - FLAG
14,12,12(13)  GPR’S RETURNED TO ORIGINAL STATE
15,4 GPR 14 <= 4 (RETURN 1)
}3(13).x'rr' TELL CALLING PROGRAM WE’RE RETURNING
4,8

: STORAGE FOR ADDR’S, CONSTANTS, AND INTERNAL VARIABLES

TABL Hve
LM
MVI
BR
* ;
: CASE OF S OR
BADS LD
LNDR
STD
LM
LA
MVI
BR
CNOP
*
GADDR .. DC
DADDR ~ DC
SADDR DC
AARDDR DC
KADDR DC
LADDR De
CADDR DC
BCODOR DC
SUISP DeC
TDISP oC
TBND DC
SBND DC
HBYTE DC
WM3 e
WM1 DC
WP1 DC
WpP3 DC
G DC
DADS nC
SOR DC
AREA DC
OKAP DC
LumM U
CHI DC
DCHI DC
TION DC
KAY DC
KOMH DC
KOMH?2 ne
FLOAT DeC
END

X/00000000”
X700000000”
X/00000000”
X700000000”
X/00000000”
X7000000007
X7000000007
X700000000”
X7000047107
X700004410”
X7000003307
X700000330”
X700000778”
X700000000000000007
X-0000000000000000”
X/00000000000000007
X700000000000000007
X70000000000000000~
X70000000000000000”
X700000000000000007
X70000000000000000”
X70000000000000000”
X700000000000000007
X-0000000000000000”
X70000000000000000”
X/45198C6100000000”
X/339F2cB600000000”
X7474EAB1B00000000”
X7479D05A3600000000”
X74000000000000000”
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