General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.
Final Technical Report
to the
National Aeronautics and Space Administration
on
NASA Grant NSG-3048, Supplement No. 2
ALTERNATIVES FOR JET ENGINE CONTROL
(March 1, 1977 – February 28, 1978)

Under the Direction of
Dr. R.J. Leake
Dr. M.K. Sain

Department of Electrical Engineering
University of Notre Dame
Notre Dame, Indiana 46556
This report deals with progress made on the Grant NSG-3048 during the calendar year beginning March 1, 1977 and ending February 28, 1978. This year coincides with Supplement No. 2 of the award, which originated on March 1, 1975. The NASA Technical Officer for this period was Dr. Bruce Lehtinen of Lewis Research Center. The directors of the research at the University of Notre Dame were Dr. R. Jeffrey Leake and Dr. Michael K. Sain.

General goals of the research have been classified into two categories. The first category involves the use of modern multivariable frequency domain methods for control of engine models in the neighborhood of a quiescent point. The second category involves the use of nonlinear modelling and optimization techniques for control of engine models over a more extensive part of the flight envelope.

Substantial progress has been made in both categories.

In the frequency domain category, works have been published in the areas of low-interaction design, polynomial design, the CARDIAD method, and multiple setpoint studies. A number of these ideas have progressed to the point at which they are starting to attract practical interest. Further effort is yet required, however, to carry the ideas to maturity.

*The acronym stands for Complex Acceptability Region for DIAgonal Dom-inance. See report for details.*
and to ensure their adequate dissemination. A highlight of the year was the incorporation of realistic jet engine data as a theme problem into the International Forum on Alternatives for Linear Multivariable Control. Dr. Sain was Program Chairman for this meeting, which attracted nearly two hundred persons from industry, laboratories, and universities to hear thirty papers focused in the general subject area of this grant.

In the nonlinear category, advances have been made both in engine modelling and in the details associated with software for determination of time optimal controls. Nonlinear models for a two spool turbofan engine have been expanded and refined; and a promising new approach to automatic model generation has been placed under study. A two time scale scheme has been developed to do two-dimensional dynamic programming, and an outward spiral sweep technique has greatly speeded convergence times in time optimal calculations.

The details of these and other aspects of the year's investigations may be found in the body of the report, which covers the most active grant period to date.
TABLE OF CONTENTS

ABSTRACT .................................................................

I. INTRODUCTION ......................................................... 1

II. HIGHLIGHTS OF THE RESEARCH ...................................... 7

III. PUBLICATIONS .......................................................... 10

IV. LOCAL MULTIVARIABLE FREQUENCY DOMAIN METHODS ................. 13

V. GLOBAL NONLINEAR OPTIMAL METHODS ................................ 22

VI. SPECIAL INITIATIVES RELATED TO GRANT WORK ....................... 27

VII. REFERENCES ............................................................ 31

APPENDICES

A. GRANT BIBLIOGRAPHY, INCEPTION TO PRESENT

B. HIERARCHY OF SIMULATION MODELS FOR A TURBOFAN GAS ENGINE

C. FREQUENCY DOMAIN COMPENSATION OF A DYNGEN TURBOFAN ENGINE MODEL

D. APPLICATION OF POLYNOMIAL TECHNIQUES TO MULTIVARIABLE CONTROL OF JET ENGINES

E. A COMPARISON OF FREQUENCY DOMAIN TECHNIQUES FOR JET ENGINE CONTROL SYSTEMS DESIGN

F. TIME OPTIMAL CONTROL OF A TWO-SPOOL TURBOFAN JET ENGINE

G. DIRECT METHOD FOR OBTAINING NONLINEAR ANALYTICAL MODELS OF A JET ENGINE

H. SOME FEATURES OF CARDIAD PLOTS FOR SYSTEM DOMINANCE

I. THE THEME PROBLEM

J. INPUT COMPENSATION FOR DOMINANCE OF TURBOFAN MODELS
I. INTRODUCTION

The purpose of this section is to provide some of the broad background which underlies and clarifies the general nature of the Research Highlights, which are stated in the section following.

Initiation of Grant NSG-3048 in March 1975 was timed with developments in the engine industry, which was beginning to experience some limitations in the application of classical hydromechanical control technique as the primary base technology for modern engines with ever increasing sophistication. At the same time, milestone developments in digital hardware began to open realistic possibilities for onboard computation to an extent not heretofore possible. This confluence of events led directly to the concept of increasing the role of electronics in engine control. In turn, the availability of digital electronics itself created a wide variety of opportunity for application of new control design philosophy and technique. Among the earliest of such studies is the F100 Multivariable Control Synthesis Program [1] sponsored by the National Aeronautics and Space Administration, Lewis Research Center and the Air Force Aero-Propulsion Laboratory, Wright-Patterson Air Force Base. This program is currently in the test phase.

The advent of digital technology on the engine scene offers not only the opportunity to control more engine variables but also the possibility of integrating engine and airframe control. Studies of this type have also begun.

Primary tools in the F100 Multivariable Control Synthesis Program
were linear quadratic regulator (LQR) theory in the linear case. For the
global control, nonlinear optimal methods were not directly applied.

The purpose of Grant NSG-3048 is to evaluate alternatives to LQR in
the linear case and to examine nonlinear modelling and optimization ap-
proaches for global control.

Context for the studies is set by the DYNGEN digital simulator [2].
Based upon earlier computer codes GENENG [3] and GENENG II [4], DYNGEN
has the combined capabilities of [3] and [4], for calculating steady-
state performance, together with the further capability for calculating
transient performance. DYNGEN uses a modified Euler method to solve the
differential equations which model the dynamics of the engine. This mod-
ified Euler method permits the user to specify large time steps, for ex-
ample a tenth of a second; and this can result in considerable savings of
execution time. On the other hand, convergence problems are sometimes
encountered with DYNGEN when small time steps are used.

The DYNGEN digital simulation is particularized to a given situation
by a process of loading data for the various maps associated with a given
engine. The maps for the Grant NSG-3048 have been provided by engineer-
ing personnel at Lewis Research Center. These maps correspond to a
paper engine, which is not closely identified with any current engine.
But the data do correspond in a broad, general sense to realistic two
spool turbofan engines. The simulation provides for two essential con-
trols, main burner fuel flow and jet exhaust area. Portions of the en-
velope which can be used for linear or nonlinear experimentation are
limited by the convergence capabilities of the available engine data on
DYNGEN.
With respect to multivariable frequency domain work, the basic approaches may be classified into two groups. These two groups are often called "direct" and "indirect".

The direct approach can usually be recognized by its attention to achieving a completely specified dynamic performance. Such ideas have been discussed from the early days of organized control study. See, for example, [5] and [6]. In fact, some of the earliest attempts to expand the direct approach to the multi-input, multi-output case involved work with jet engines [7,8]. Direct approaches in multivariable applications typically involve matrices of transfer functions. In the 1950's, there were some nontrivial difficulties with such methods in cases of more than one input and output. Among these difficulties may be mentioned

(1) the meaning and extent of cancellations of various types in the transfer functions,

(2) the question of loop stability,

(3) the problem of specification, and

(4) numerical computations.

Advances in the last two decades have resolved (1) and (2); in industry, a reservoir of expertise has built up relative to (3); and progress in the numerical sciences is rapidly achieving an interface with control theory in such a way as to resolve (4). It is believed that work on this grant is continuing to stimulate rapid developments in areas (3) and (4).

Indirect approaches are usually recognizable by their affinities
to the classic works of Nyquist or Evans, involving, respectively, frequency response plots in the complex plane or versions of the root locus. It is a relatively easy matter to describe the focus of generalized Nyquist methods. The key constituent ideas are related to three polynomials:

1. $p_c(s)$ - the closed loop characteristic polynomial (CLCP),
2. $p_o(s)$ - the open loop characteristic polynomial (OLCP), and
3. $|M(s)|$ - the determinant of return difference.

The CLCP is a polynomial whose zeros characterize the exponential impulse response of the closed loop control system; the OLCP serves the same purpose for the open loop system. $M(s)$ is a matrix of transfer functions associated with the following experiment. Break the control loops at a convenient point and inject impulses. The difference between the transform of the signal injected and that which returns at the other end of the loop is established by the columns of $M(s)$. The quantities $p_c(s)$, $p_o(s)$ and $M(s)$ derive their importance from the fact that they are related to each other by the equation

$$p_c(s) = |M(s)| p_o(s).$$

Typically, $p_o(s)$ is known; and $M(s)$ is partly given and partly designed, in such a way that $p_c(s)$ becomes desirable.

Generally speaking, a Nyquist plot of $|M(s)|$ tends to contain the same types of information which proved so successful in classical designs. A great deal of the design effort centers upon the way in which dynamical compensation affects the determinant which acts on $M(s)$. There are three well recognized ways to study this effect. These are
(1) direct construction of \(|M(s)|\) by any of the known methods for determinant calculation,

(2) construction of the eigenvalues of \(|M(s)|\) as a function of \(s\), and use of the idea that the determinant is equal to the product of its eigenvalues [9], and

(3) design of compensation so that \(M(s)\) is approximately diagonal, and establishment of a relation between the plot of \(|M(s)|\) and plots of the diagonal elements of \(M(s)\) [10].

It is believed that work on this grant has advanced the application of all these methods to jet engine design, but particularly method (3), where a special technique has been developed to design compensation so that \(M(s)\) is approximately diagonal. This technique is called the CARDIAD Plot, where the acronym stands for Complex Acceptability Region for Diagonal Dominance, the latter term referring to a specific definition of "approximately diagonal."

With respect to nonlinear modelling and optimization, the emphasis has been twofold: to develop good analytical nonlinear models of the jet engine and to use these models in conjunction with techniques of mathematical programming in order to develop advances in global control over significant reaches of the flight envelope.

In general, there are several aspects to this part of the investigation. First, it is possible to conceive the basic differential equations from fundamental principles. In this case, there are usually about sixteen nonlinear differential equations, as well as a large number of nonlinear static functions which serve as part of the coupling between
the equations. These functions often have more than one argument. If the equations arise in this fashion, then there is a significant need to identify the parameters. This must normally be done from the DYNGEN digital simulation. Second, it is possible to assume a general form for the nonlinear differential equations in such a way that fundamental principles are not ignored but that added emphasis is placed upon general mathematical form. If this general form is chosen according to a scheme designed to make maximum use of the type of data which is directly available from the digital simulation, then a type of "automatic" nonlinear model generation becomes possible. Third, whether the first or second modelling procedure is employed, there is almost always a need to consider the problem of reducing the order of the models. Though order reduction can often be highly mathematical in nature, it is almost always the case that the reduced order model depends upon the scaling of the equations. As a result, the final reduced models often depend in a nontrivial way upon physical insight, as well as mathematical method.

Work on this grant has focused especially upon the first and second aspects of the modelling problem, with a gradual specialization toward automatic model generation.

Insofar as optimization is concerned, the stress has been placed upon time optimal control, and considerable effort has been invested in specialized programming methodology designed to take maximum advantage of the particular features of jet engine models.

In the next section, the highlights of activities carried out during the calendar year corresponding to this report are presented.
II. HIGHLIGHTS OF THE RESEARCH

This section is a brief statement of the main achievements under Grant NSG-3048 during the period from March 1, 1977 to February 28, 1978. There are two major subdivisions, according to the main thrusts of the investigation. The first of these is Local Multivariable Frequency Domain Methods; and the second is Global Nonlinear Optimal Methods.

For the most part, the wording of these paragraphs has been constrained so as to be as nontechnical as possible. Nonetheless, some readers may find it useful to review the basic introduction provided in Section I.

A. Local Multivariable Frequency Domain Methods

During the calendar year ending on February 28, the following results were achieved in the area of modern, frequency domain control of turbofan engine models.

(1) The first formal documentation of the CARDIAD method (Complex Acceptability Region for DIAgonal Dominance) was completed. See (1), Section III. Though supported principally under a theory grant from the National Science Foundation, this technique had its origin in class studies of older methods for approximate decoupling of jet engine models in the frequency domain. Almost all of the examples in this thesis were taken from F100-like engine data.

(2) The first documented studies of direct Nyquist plots of return difference determinants for jet engine models were completed. See (3), Section III. This thesis has been a helpful ancillary tool in general frequency domain design.

(3) The first frequency domain closed loop compensation and simulation of a DYNGEN turbofan engine model was achieved. See (5), Section III. As explained in
Section I, the DYNGEN simulation supplies two control inputs.

(4) The first study of polynomial techniques for exact model matching control of jet engine models in the frequency domain was reported. See (6), Section III. This paper has been pivotal in promoting the numerical advance of such techniques for applications. More will be reported in the subsequent semi-annual status report.

(5) About a given design point, linear models of the standard type are obtained from the DYNGEN simulation by the DYGABCD routine [11]. In order to use DYGABCD at off-design points, however, modifications to DYGABCD necessary to the research had to be accomplished. See (7), Section III.

(6) The CARDIAD plot was applied to a series of DYNGEN off-design point models in order to determine its utility as a method for global classification of interaction characteristics of jet engines. See (14), Section III. The results were positive.

(7) An entire conference was convened from industry, laboratories, and universities to hear speakers from several countries apply their theories to a theme problem developed from jet engine data. See (15), Section III. This meeting resulted in a book publication [12].

(8) The CARDIAD methodology was extended to the three-control-input case and applied successfully to Pratt-Whitney data for the F100 engine. See (16), Section III.

(9) A joint seminar series was established between the Department of Electrical Engineering at Notre Dame and the Energy Controls Division of the Bendix Corporation at South Bend, in areas of mutual interest. This has resulted in published work. See (17), Section III.

B. Global Nonlinear Optimal Methods

The major advances and results achieved during the past year in the area of global nonlinear optimal methods are the following.

(1) The hierarchy of analytical nonlinear models for the two spool turbofan jet engine has been expanded and refined. See (2), Section III. This effort is in
keeping with general interest in the industry concerning improvement of compact general models.

(2) A comparison has been achieved between the use of a linear affine model and a nonlinear model for time optimal control studies of a single spool engine. See (4), Section III. The results again support the search for reasonably simple nonlinear models, in the sense that they argue in favor of models whose nonlinearity is not excessively complicated.

(3) A method using linear quadratic regulator methods to obtain decoupled control has been tested on various engine models. See (8), Section III. This is also an outgrowth of the joint Notre Dame – Bendix seminar series mentioned in (9), Section IIIA, above.

(4) A two time-scale scheme has been developed in order to do two-dimensional dynamic programming on a fifth order model of a jet engine. See (10), Section III. This is part of a continuing study of time-optimal control methods applied to nonlinear engine models.

(5) Convergence times in time-optimal successive approximation dynamic programming have been dramatically improved through development of a scheme for a spiral out sweep from the target. See (10), Section III.

(6) A completely automatic method for obtaining nonlinear analytical models for engine simulations has been developed and tested numerically. See (11), Section III. This approach offers considerable promise for improvement over previous methods.

(7) A discrete maximum principle has been developed for nonlinear systems having the property that the control is constrained by the present state. See (12), Section III.

(8) A family of optimal feedback control laws has been developed and simulated for a variety of models.

Further details concerning these highlights may be found in Sections IV and V. Also, as described in Section III following, a number of the documents have been included as appendices.

The next section contains a list of publications completed during the current year of the grant.
III. PUBLICATIONS

This section provides a list of the nineteen documents completed during the year March 1, 1977 through February 28, 1978. The works are ordered chronologically.

Some of the listings are followed by an alphabetical code consisting of one or more of the letters A, M, and R. The letter A signifies that the document or an abstract thereof appears as one of the appendices to this report; the letter M signifies that the document comprises a thesis for the degree of Master of Science in Electrical Engineering; and the letter R declares that the document summarizes an effort which was closely integrated with, but not directly supported by, the activities of this grant.

Completed publications from earlier years are not included in this list; but a total listing of all the grant documents has been provided as an appendix to the report. See the Table of Contents.


IV. LOCAL MULTIVARIABLE FREQUENCY DOMAIN METHODS

Progress on local multivariable frequency domain methods has been achieved during this grant period in the areas of Low Interaction Design, Polynomial Design, Extension of CARDIAD Method, and Multiple Setpoint studies.

Low Interaction Design

As mentioned in the Final Report for NASA Grant NSG-3048, Supplement No. 1, a promising new technique for designing dynamical compensation began to develop in the fall of 1976. This methodology, built upon what are currently being called CARDIAD plots, was only being tentatively considered in October, 1976 when the continuation proposal for NASA Grant NSG-3048, Supplement No. 2, was being written. Based upon favorable preliminary reaction by personnel from NASA Lewis Research Center, a decision was made to investigate further the use of CARDIAD plots as a design aid for turbofan engine control in the frequency domain. In essence, this study proved to be successful enough that it really dominated the remaining time period of Supplement No. 1 and has continued through Supplement No. 2.

A great deal of the power of the CARDIAD plot arises from its simplicity. For each frequency, a circle is constructed on a planar plot. Data for the center and radius of this circle is obtained from the complex transfer function matrix of the plant. The circle may be solid or dashed. If solid, the inside of the circle defines the acceptable complex region for the value of a frequency dependent compensator element in order to achieve dominance. If dashed, the outside of the circle de-
fines the acceptable region. As the frequency follows a standard Nyquist pattern, these circles result in a CARDIAD plot. (Complex Acceptability Region for Diagonal Dominance). This plot has been shown to speak constructively to the issue of compensator choice to reduce interaction.

As an example of the CARDIAD plot application to the turbofan engine control problem, a linear model obtained using DYGABC on the DYNGEN digital engine simulator was used to illustrate control design at the 1977 Joint Automatic Control Conference. The paper based upon this effort, which may be seen in Appendix C, utilizes a two-input, five-state, two-output engine model in which the inputs are fuel flow and nozzle area, the states are compressor speed, fan speed, burner exit pressure, afterburner exit pressure, and high turbine inlet energy, and the outputs are thrust and high turbine inlet temperature.

Typical examples of CARDIAD plots for such engine models may be seen in Figures 2-5 of Appendix C. The investigators involved in this study have seen the same type of plots arising from a variety of engine data. This has raised the interesting question of whether there may be a meaningful concept of "engine interaction footprint" in the sense of the CARDIAD plot.

Of particular interest is the plot shown in Figure 3 of Appendix C. Students of classical control theory will immediately recognize the near semicircular nature of this plot. Such semicircular behavior has been observed frequently and serves to specify a sort of essential lead-lag classical compensator element which can achieve diagonal dominance.

Using the CARDIAD approach, it has been possible to achieve diagonal
dominance at all frequencies on typical engine models. Moreover, only simple compensators have been required to do this. While it is not possible to apply the same degree of credibility to the model itself at all frequencies, it is nonetheless of considerable theoretical interest to be able to make this accomplishment, especially for (A, B, C, D) type plant models which have the D matrix present to approximate modelling errors at high frequencies. Further insight into the significance of these steps can be obtained by examining Appendix B of the Final Report for Supplement No. 1.

Appendix C of this report also contains evidence of two other facets of the applications researches conducted under this grant. Figures 6-8 are characteristic locus plots for the plant, after it was compensated by the CARDIAD methodology. This combination of ideas, namely, the CARDIAD plot and the characteristic locus, has been quite helpful in studies conducted up to this time. Softwares were developed and experience gained with the characteristic locus on the original grant NSG-3048, as well as on Supplement No. 1.

Of additional interest also are Figures 9-11 of Appendix C. These figures deal with an aspect of frequency domain control research which may be called a "direct" approach. The term "direct" refers to a direct construction of the determinant of return difference as frequencies follow a standard Nyquist pattern. This tool really underlies all the modern frequency domain ideas; but it is usually handled obliquely, as for example by the CARDIAD idea or by the characteristic locus. Studies of the direct approach to determinant of return difference have confirmed
that it is at the very least a revealing analysis method. Figure 11 of Appendix C, for example, reveals a condition of gain limitation which is understandable in a global way not so easily visualized by separate characteristic locus plots. It should be emphasized, moreover, that diagrams of the type of Figure 11 can be drawn without any regard of plant size in terms of inputs, states, and outputs.

Efforts to use the direct approach for design, as well as for analysis, have posed nontrivial algebraic questions. Some insight has been gained, but no breakthroughs have occurred as yet.

Polynomial Design

The principal efforts and results obtained in applying polynomial design techniques to the turbofan engine control problem have been reported in the Final Report on Supplement No. 1.

During the present grant period, a paper on this work was presented at the International Federation of Automatic Control's Fourth Symposium on Multivariable Technological Systems at the University of New Brunswick in Fredericton. See Appendix D.

There is now little doubt that the control area is experiencing a resurgence of interest in transfer function methods. As part of this resurgence, grant work on polynomial design has pointed out the necessity of increased attention to numerical method. The investigators also believe that it has stimulated other workers to begin numerical studies.

The transfer function has a number of key properties which have long made it popular with control practitioners. For example, the transfer function is unique relative to similarity transformations on the state
Much work remains to be done, however, on computational aspects of transfer function design.

A presentation comparing the design experiences of the investigators under this grant, in the frequency domain, was made at the 1977 Midwest Symposium on Circuits and Systems, Lubbock, Texas, in August. A copy of this brief manuscript may be seen in Appendix E.

Extension of CARDIAD Method

All the work so far mentioned in regard to the CARDIAD plot was carried out for plants having two inputs and two outputs. In this situation, it is certainly true that the plots have many interesting properties.

On the basis of this experience, which was in its final stages in May, 1977, it was decided to extend the CARDIAD theory to the three-input, three-output case. Also, the National Engineering Consortium's International Forum on Alternatives for Linear Multivariable Control, which took place in October, 1977, offered a prime opportunity to apply the theoretical extension, inasmuch as the Forum contains a ThemeProblem based on a linearized model of a modern turbofan engine. See Appendix I. Assistance in the theoretical extension of CARDIAD to the three-input, three-output case was provided by support extended to Dr. Sain by the National Science Foundation under Grant ENG 75-22322. NASA support under Supplement No. 2 was focused on the turbofan application.

Appendix J, "Input Compensation for Dominance of Turbofan Models"
provides a complete description of the successful work on this extension and its application.

Technically, the extension of CARDIAD plot methods to the three-input, three-output case involved the use of a bound which provides sufficient conditions for diagonal dominance. Many possibilities exist for the selection of such a bound, and there remains considerable opportunity for further research along these lines. After examination of a number of basic bounding possibilities, an initial selection was made in such a way that the bound will extend to the case of a plant having p inputs and p outputs, where p is any positive integer greater than or equal to two, and that the bound will be tight in the place where it matters the most—where the plant is close to failing the dominance test.

From an engineering point of view, it was necessary to develop software to extend the CARDIAD idea and to establish viewpoints for studying the plots in more complicated cases. The CARDIAD analysis was divided into two phases. The first phase assumed one off-diagonal compensator element to be zero. An advantage of such a phase lies in its conceptual reduction to the situation of Appendix C, where greater design experience is available. The first-phase approach was adequate for about half of the application to the National Engineering Consortium Theme Problem. The second phase assumed both off-diagonal compensator elements to be nonzero, but drew the plot in such a way that the designer could ascertain what would happen when one of those elements was zero. This second phase approach was successful in completing the design for the Theme Problem.
A number of noteworthy points should be brought out concerning this extension research.

(1) These CARDIAD methods have been successful without assuming a fixed form of the compensator. The importance of this fact can scarcely be overemphasized. If a fixed form is assumed, it may happen that the form is inadequate to fit the essential plant characteristics; and, as a result, it can well be the case that essential insight is lost.

(2) The CARDIAD approach, applicable to design localized to just one side of the plant, as for example the input, can be used to affect outputs that are not measurable. Other methods that use compensation both at plant input and plant output often depend upon moving the output compensator around the loop—an operation which is not possible unless those outputs drive the loop. It would seem that this could be quite important in the case of key outputs such as high turbine inlet temperature and thrust.

(3) In cases studied so far, and there have been over a dozen of them, the CARDIAD plot has achieved dominance over all frequencies, even when the plant has (A, B, C, D) form and transmission does not roll off to zero at high frequencies. This design power has been accompanied by a need for only relatively simple dynamical compensation.

(4) In practice, gain selection in compensators has to be done with some care, so as not to invalidate the accuracy of the linearized model. The CARDIAD approach conveys considerable direct insight into the gains available; and does not leave the choice indirectly to an op-
Because of these features, the investigators feel that the CARDIAD plot is helping to push back the research frontier in frequency domain approaches to approximate decoupling.

**Multiple Setpoints**

From the outset, the CARDIAD plot has offered much promise for the general control problem which involves linearization at multiple setpoints, design at each setpoint, and a piecing together of these designs to achieve global effects. Such technique is certainly the norm both in present-day practice and in current research for the turbofan engine.

Basically, the idea is to construct CARDIAD plots to each setpoint and to use these to study the interaction features of the nonlinear engine model over a more global operating regime. The investigators believe that such studies can be helpful in selecting setpoints for design and in constructing compensation which works toward **global dominance**.

Work has been proceeding along these lines, with the aid of setpoints involving two inputs and two outputs from NASA's DYNGEN engine simulator. The first documentation can be found in Appendix H.

In Appendix H, the setpoints are determined by fuel flows of 2.145, 2.31, 2.475, 2.64, and 2.75 LBM/SEC. Figures 1-10 of the appendix contain the corresponding CARDIAD plots. Consider Figures 1, 3, 5, 7 and 9, which focus on the first column. Note their clear similarity. Next consider Figures 2, 4, 5, 8 and 10. Again note their clear similarity. Because of this similarity, it was possible to design one simple compensator to achieve diagonal dominance at all five setpoints. This compensa-
tor is indicated in Section Four of Appendix C.

Research is continuing on putting together a global compensation based upon these analyses on the DYNGEN simulator.

The technique is promising and is receiving maximal attention on the project.
V. GLOBAL NONLINEAR OPTIMAL METHODS

This section is concerned with some of the details of the third year of effort on the global nonlinear optimal part of the research. As in the previous year, this part is primarily concerned with the control of a two-spool engine.

There are three main aspects of the work:

- DYNGEN Simulator Operation
- Turbine Engine Modelling
- Nonlinear Optimal Control

**DYNGEN Simulator Operations**

The DYNGEN simulator, equipped with DYGABCD, has been useful in nearly all studies related to the grant, as it provides a "real world" testing ground for the various control methods under investigation. However, it is costly and has limitations. Two such limitations are the fact that it is difficult to get convergence at low rotor speeds, and that only two controls (WFB and $A_g$) are readily available to the user.

The automatic generation of ABCD matrices enabled by DYGABCD has been invaluable. It is felt that our work has contributed to the overall development of the simulator through feedback provided, as for example, the simple modification suggested in Mr. Gejji's memorandum. See (7), Section III.

In the early stages of the work, DYNGEN was of primary concern, but it is now fairly routine and attention has turned to other areas.
Turbine Engine Modelling

This phase of the work began with analog computer studies of a single spool engine. Then a considerable effort was spent to obtain a good analytical model for a two spool model using fundamental physical considerations. This study resulted in a hierarchy of models as reported in W.E. Longenbaker's M.S. Thesis, Appendix F, and the paper by Longenbaker and Leake presented at the Pittsburgh Conference on Modelling and Simulation, Appendix B. As indicated in the results of Longenbaker's Thesis, the models obtained were disappointing. Even linear affine models appeared to fare better. See (4), Section III.

As a result of this experience, the main emphasis in the work has now turned toward automatic generation of models by computer methods. The first effort in this direction is reported in the Chicago International Forum paper by Leake and Comiskey, Appendix G. The basic approach is to use an approximation of

\[ \dot{x} = f(x,u) \]

which is of the form

\[ \dot{x} = A(x,u) (x - g(u)) \]

This form seems to work very well for jet engine models. In the first place, there is always a unique equilibrium point for a given fixed control \( u \), so

\[ x = g(u) \]

is the equilibrium equation which is all important for steady state analysis. In the second place, jet engine \( A \) matrices rarely have poles (eigenvalues) at the origin and hence they are invertible.
This is a great help in computing such models. Suppose then that
\[ f(x,u) = A(x,u) \cdot (x-g(u)), \]
and let
\[ (x_e, u_e) \]
be an equilibrium pair satisfying
\[ x_e = g(u_e). \]
Then
\[ \frac{\partial f}{\partial x} (x_e, u_e) = A(x_e, u_e), \]
and
\[ \frac{\partial f}{\partial u} (x_e, u_e) = -A(x_e, u_e) \frac{\partial g}{\partial u} (u_e). \]

Now it is well known that \( \frac{\partial f}{\partial x} \) corresponds to the approximate system A matrix in the steady state, so in our model, \( A(x,u) \) is a running approximation of the system A matrix and it can thus be approximated by measuring the A matrix at equilibrium points of interest and interpolating.

A key point is, however, that \( \frac{\partial f}{\partial u} \) corresponds to the system B matrix in the steady state, and hence
\[ B(x_e, u_e) = -A(x_e, u_e) \frac{\partial g}{\partial u} (u_e) \]
or
\[ \frac{\partial g}{\partial u} (u_e) = -A^{-1}(x_e, u_e) B(x_e, u_e). \]
This is where the invertibility of A comes in.

Thus, if there is an automatic method of finding A and B matrices (as we have in DYGABCD) then we have an easy way to get measurements of
A(x,u), g(u), and \( \frac{\partial g}{\partial u} (u) \).

The \( \frac{\partial g}{\partial u} \) term is very important because it is the DC gain of the linear model from control to state. To see this, consider the transfer function relation

\[
X(s) = (sI - A)^{-1} B U(s).
\]

Then the \( s = 0 \) DC gain relation is

\[
- A^{-1} B.
\]

It follows from the above discussion that use of the model form prescribed permits one to key in on

- Authentic Equilibrium Values
- Authentic A Matrix Values
- Authentic DC Gain Values

for a global nonlinear model by measuring only

- Equilibrium Values
- A Matrices
- B Matrices.

These measurements can usually be made by automated methods.

The Chicago paper, Appendix G, was a first attempt to use the approach. J.G. Comiskey's M.S. Thesis is to use Hermite polynomials which are well matched to \( \frac{\partial g}{\partial u} \) derivative requirements.

Nonlinear Optimal Control

It is felt that W.E. Longenbaker did a comprehensive job of refining our basic successive approximation Dynamic Programming scheme and
applying it to the models he studied. Details can be found in Technical Report No. EE-7714, Appendix F, and in our Semi-Annual Status Report for the period March 1, 1977 - August 31, 1977.
VI. SPECIAL INITIATIVES RELATED TO GRANT WORK

Two special initiatives were carried out during this year. The first was a special session at the 1977 Joint Automatic Control Conference, and the second was an entire meeting, the International Forum on Alternatives for Linear Multivariable Control.

Joint Automatic Control Conference

A session "Turbofan Engine Control" was put together for this conference. Co-Chairmen and Organizers were Drs. Michael K. Sain and H. Austin Spang. The papers are listed below.

1. System Identification Principles Applied to Multivariable Control Synthesis of the F100 Turbofan Engine
   R.L. DeHoff and W.E. Hall, Jr.
   Systems Control, Inc. (Vt.)

2. Failure Detection and Correction for Turbofan Engines
   H.A. Spang, III and R.C. Corley
   General Electric Company

3. Frequency Domain Compensation of a DYNGEN Turbofan Engine Model
   University of Notre Dame

   See Appendix C.

4. The Application of the Routh Approximation Method to Turbofan Engine Models
   W. Merrill
   NASA Lewis Research Center

5. Minimum-Time Acceleration of Aircraft Turbofan Engines
   F. Teren
   NASA Lewis Research Center

6. Optimal Controls for an Advanced Turbofan Engine
   G.L. Slater
   University of Cincinnati
International Forum on Alternatives for Linear Multivariable Control

In October, 1977, Dr. Sain was Program Chairman for an entire meeting focused in the general subject area of this grant. Approximately two hundred persons attended from industry, laboratories, and universities. About thirty papers were presented, many by invited authorities of international stature. Nearly two-thirds of these addressed themselves to a Theme Problem, Appendix I, which was derived from researches on this grant. Two publications resulted. The Proceedings contained contributed papers and abstracts of invited papers. The book [12] contained invited papers and those contributed papers which best fit in with the Forum Theme.

The Forum Program appears on the next two pages. More information can be found in [12].
Thursday, October 13

SESSION 1.  Origins of the Theme Problem
Chairman: M. K. Sain, University of Notre Dame

8:00  Engine Criteria and Models for Multivariable Control System Design
R. D. Hackney and R. J. Miller, Pratt-Whitney Aircraft Group, and L. L. Small, Air Force Aero-Propulsion Laboratory

8:30  A Practical Approach to Linear Model Analysis for Multivariable Turbine Engine Control Design
G. A. Skira, Air Force Aero-Propulsion Laboratory, and R. L. DeHoff, Systems Control, Inc. (Vt.)

SESSION 2.  Theme Session A: Inverse Nyquist Array
Chairman: B. Lehtinen, NASA Lewis Research Center

9:00  The Inverse Nyquist Array Method
H. H. Rosenbrock and N. Munro, University of Manchester, England

10:00  Insight into the Application of the Inverse Nyquist Array Method to Turbofan Engine Control
R. A. Spang, III, General Electric Research and Development Center

10:30  BREAK

SESSION 3-1.  Transfer Functions I
Chairman: S. Kahne, Case Western Reserve Univ.

11:00  Multivariable Design Problem Reduction to Scalar Design Problems
B. D. O. Anderson and N. T. Hung, University of Newcastle, Australia

11:30  The Multivariable Nyquist Array: The Concept of Dominance Sharing
G. G. Leininger, University of Toledo

12:00  Input Compensation for Dominance of Turbofan Models
R. M. Schafer and M. K. Sain, University of Notre Dame

12:30  LUNCH

SESSION 3-2.  Alternate Methods
Chairman: J. Gibson, Texas A & M University

11:00  A New Frequency Method for Multivariable Systems
R. DeSantis, Universite de Montreal

11:30  Performance Analysis of Stochastic Linear Control Systems: A New Viewpoint
S. R. Liberty, Texas Tech University

12:00  An Automatic Depth and Pitch Control System for Submarines
V. Nitsche, K. Luessow, and G. J. Thaler, Naval Post-Graduate School

12:30  LUNCH

SESSION 4.  Theme Session B: Complex Variable Methods
Chairman: N. B. Nichols, Aerospace Corporation

2:00  Complex Variable Methods for Multivariable Feedback Systems Analysis and Design
A. G. J. MacFarlane, B. Kouvaritakis, and J. M. Edmunds, Cambridge University, England

3:00  The Characteristic Frequency and Characteristic Gain Design Method for Multivariable Feedback Systems
B. Kouvaritakis and J. M. Edmunds, Cambridge University, England

3:30  BREAK

SESSION 5-1.  Transfer Functions II
Chairman: B. Deolin, NASA Ames Research Center

4:00  Linear Multivariable Control--A Problem of Specifications
Z. V. Rekasius, Northwestern University

4:30  Linear Multivariable Synthesis with Transfer Functions
J. L. Peckowski, Bendix Energy Controls Division and M. K. Sain, University of Notre Dame

5:00  Application of Frequency Domain Multivariable Control Synthesis Techniques to an Illustrative Problem in Jet Engine Control

5:30  NO HOST COCKTAIL PARTY

ORIGINAL PAGE IS OF POOR QUALITY.
SESSION 6.  Theme Session C: Regulator Methods
Chairman: S. Brodsky, Office of Naval Research

8:30 Alternatives for Linear Multivariable Control
N. Munro and S. Hirbod, University of Manchester, England

9:00 The Systematic Design of Linear Multivariable Control Systems for the Servomechanism Problem
E. J. Davison and W. S. Gesing, University of Toronto

10:00 Linear Multivariable Control Design Based on Asymptotic Regulator Properties
G. A. Harvey and G. Stein, Honeywell Systems and Research Center

10:30 BREAK

SESSION 7-1. Modelling
Chairman: H. Wozny
National Science Foundation

11:00 A Direct Method for Obtaining Nonlinear Analytical Models of a Jet Engine
R. J. Leake and J. G. Comiskey, University of Notre Dame

11:30 A Multi-Time-Scale Design Approach for Jet Engine Control Systems
A. J. Calise and B. Sridhar, Dynamics Research Corporation

12:00 BLS as an Alternative to Linear Control Systems
R. R. Mohler and V. R. Kaman, Oregon State University

12:30 LUNCH

SESSION 8-1. Output Feedback Design
Chairman: E. M. Cliff
Virginia Polytechnic Institute

2:00 Output Feedback Regulator Design for Jet Engine Control Systems
M. C. Merrill, NASA Lewis Research Center

2:30 A Classical Root Locus Design Method for Multivariable Systems in State Space Form
G. K. Lee, University of Connecticut, M. Schwerdy, Ruhr-Universitat, and D. Jordan, University of Connecticut

3:00 Output Control via Matrix Generalized Inverse
R. J. Miller, D. L. Powers, and V. Lovass-Nagy, Clarkson College

3:30 SESSION 7-2. Model Following
Chairman: W. R. Perkins
University of Illinois

11:00 Active Maneuver Load Control for a Control Configured Airplane
N. C. Welgarten and E. G. Rynaski, Calgasa Corporation

12:00 Model Algorithmic Control
A. Rault, J. Richalet, and J. Papen, ADENSA/GERTIA, France, and R. Mehr and W. C. Kassell, Scientific Systems

SESSION 8-2. Additional Approaches
Chairman: I. Rhodes, Wash. Univ.

11:00 Optimal Open Loop Compensator Combined with Riccati Feedback Compensator Control
R. Froriep, D. Joas, G. Kreisselmeier, DIWLR, West Germany

12:00 Observing Partial States for Systems with Unmeasurable Disturbances
S. H. Wang and E. J. Davison, University of Colorado and University of Toronto

SESSION 8-3. Design
Chairman: E. C. Tacker
University of Houston

11:00 A Conceptual Design Approach Using Feedforward Plus Forward Compensation
H. R. McClamroch, University of Michigan

12:00 Computer Aided Design of Control System via Optimization
David Q. Hayne, Imperial College, London, England

SESSION 7-3. Comparisons
Chairman: T. E. McDonald
Los Alamos Scientific Laboratory

12:00 Reliability Considerations in Decentrally Controlled Multivariable Systems
F. N. Bailey, E. B. Lee, and M. K. Sundaresan, University of Minnesota

ON Alternative Methodologies for the Design of Robust Linear Multivariable Regulators
R. G. Kastny and K. C. Kallmisky, Drexel University and TASC

SESSION 7-4. System Analysis
Chairman: T. J. McAvoy
University of Illinois

11:00 A New Method for Analysing and Controling Linear Multivariable Systems

12:00 On the Design of Accurate Observers
S. P. Bhattacharya and I. G. Trindade, Universidade Federal de Rio de Janeiro and Universidade Federal Fluminense, Brazil
VII. REFERENCES


APPENDIX A

GRANT BIBLIOGRAPHY, INCEPTION TO PRESENT


(26) P.W. Hoppner, "The Direct Approach to Compensation of Multivariable


Appendix B

"HIERARCHY OF SIMULATION MODELS FOR
A TURBOFAN GAS ENGINE"

W. E. Longenbaker
R. J. Leake
EIGHTH ANNUAL
PITTSBURGH CONFERENCE
ON
MODELING AND SIMULATION

APRIL 21-22, 1977

Benedum Engineering Hall
University of Pittsburgh

More Than 220 Papers On:

- SOCIO-ECONOMIC SYSTEMS
- ENVIRONMENTAL SIMULATION
- SIMULATION IN EDUCATION
- ECONOMIC MODELING
- MODELING AND ESTIMATION
- REGIONAL PLANNING
- BIOMEDICAL SYSTEMS
- ECOSYSTEMS
- URBAN MODELING
- ENERGY RESOURCES
- TRANSPORTATION
- AND MANY OTHER SESSIONS

Sponsored by

Department of Electrical Engineering
School of Engineering
University of Pittsburgh
Pittsburgh, Pennsylvania

In Cooperation With

The Pittsburgh Sections of the
Institute of Electrical and Electronic Engineers
and
The Instrument Society of America
and
The Systems, Man and Cybernetics Society
The Society for Computer Simulation
The International Association for Mathematics and Computers in Simulation (formerly AICA)

Conference Committee

Michael A. Shanblatt  Martin Savol  C. P. Fong
Leone Monticone  Chin Shiek  Jang G. Lee
Chang-Eun Kim  Khe-Tai Ma  Suk H. Lee
Aly Abulfail

Conference Co-Chairmen

William G. Vogt  Marlin H. Mickle
ABSTRACT

This work is a comparison of successively more comprehensive simulation models of an F-100-like Turbofan jet engine. A large and elaborate computer program called DYNENG, developed over a number of years at NASA Lewis Research Center, is employed as the most comprehensive model for analyzing steady-state and transient performance for control studies. This model employs many block data maps and includes about 25 states. In order to perform optimal control studies, low order nonlinear analytical, and linear models have been developed. This paper reports on the details of these models and presents experimental data on their relative performance.

INTRODUCTION

In this paper we consider the determination of a simplified nonlinear analytical model for a two spool turbofan jet engine. A large and elaborate (about 4000 FORTRAN statements) generalized engine simulator called DYNENG [1,2] coded with representative block data maps, design parameters, and two spool operation taken as the principal object to be approximated. First we present the various models and then performance comparisons are made. The models considered have been enumerated as follows:

Model 0. The actual jet engine (hypothetical.)

Model 1. The DYNENG simulator, coded with data presumed to have been taken from experimental measurements on Model 0. This model solves more than 16 nonlinear differential equations and uses data maps and thermodynamic tables which cannot be expressed analytically.

Model 2. This is an analytically expressed set of 5 nonlinear differential equations plus about 20 static equations expressing the relationship between various engine variables. The main task in this project was to determine this model.

Model 1L5. This is a normalized 5th order linear model which is obtained numerically from Model 2, using an experimental version of a program [3] being developed at NASA Lewis Research Center.

Model 1L3. This is a normalized 3rd order linear model obtained by a hand calculated order reduction of Model 1L5.

Model 2.5. This is a normalized 5th order linear model obtained by taking partial derivatives of the analytical Model 2.

Model 2L3. This is a normalized 3rd order linear model obtained by a hand calculated order reduction of Model 2L5.

ANALYTICAL MODEL

In this section we discuss and present Model 2, a simplified nonlinear analytical model of the jet engine. There are several reasons why it is desirable to have such a model. First of all, one likes to see the basic nonlinear relationships between the engine variables in order to gain insight into their dynamical and static behavior. Secondly, such a model is invaluable in the application of control techniques [4] to engine control system design. In the third place, if the model is reasonably accurate, it can be employed as a fast inexpensive nonlinear engine simulator for the evaluation of linear and nonlinear control strategies.

Finally, linear models obtained by partial differentiation of this model tend to have more structure (zero entries in the ABCD matrices) than those obtained numerically, which gives the linear designer more insight. These linearizations then serve as a back up to compare with the numerical linearizations.

In the determination of Model 2, as an approximation of the DYNENG Model 1, theoretical relationships developed in [5],[6], and [7] were employed as a starting point. Certain simplifications suggested in [8] were used; and linear, least squares, exponential, and polynomial fits to the Model 1 data about the chosen design point were made.

A 2 input, 5 state, 2 output model was developed with the following variable designations.

\[ U_1 = \text{fuel flow (MB)} \]
\[ U_2 = \text{nozzle area (A_n)} \]
\[ x_1 = \text{compressor rotor speed (N_c)} \]
\[ T_2 = \text{fan rotor speed (Nf)} \]
\[ T_3 = \text{burner exit pressure (P4)} \]
\[ T_4 = \text{after burner exit pressure (P7)} \]
\[ T_5 = \text{high inlet energy (U4)} \]
\[ T_6 = \text{thrust (FG)} \]
\[ T_7 = \text{high turbine inlet temperature (T4)} \]

The model is completely determined by the following specifications.

**Constants**

- \( J = \frac{1}{2} J = 778.26 \)
- \( B = 2.948255 \)
- \( R = RA = 0.252 \)
- \( a = 1.4 \)
- \( P_2 = 1 \)
- \( T_C = 518.668 \)
- \( T_C = \text{PHIP} = 3.8 \)
- \( T_F = \text{PHFLP} = 4.5 \)
- \( \gamma = 1.65 \)
- \( \gamma = \text{PCBLLP} = 0.66 \)
- \( \gamma = \text{PCBLLP} = 0.66 \)
- \( \text{DESIGN} = XNHP0S = 10070 \)
- \( \text{DESIGN} = XNLPOS = 9651 \)

**Design Values**

- \( A_8 = 2.948255 \)
- \( N_C = 11899.2 \)
- \( F_G = 13431.02 \)
- \( T_4 = 2982.04 \)
- \( T_4 = 2982.04 \)
- \( T_4 = 586.467 \)
- \( T_7 = 2.55007 \)

**State Equations**

1. \( \frac{dN_C}{dt} = \frac{30.73}{T_C N_C} \left[ -C_{PC} W_{AC}(T_2 - T_3) + C_{PH} W_{G50}(T_4 - T_50) \right] \)
2. \( \frac{dN_F}{dt} = \frac{30.73}{T_F N_F} \left[ -C_{PF} W_{AF}(T_2 - T_21) + C_{PLT} W_{G55}(T_50 - T_55) \right] \)
3. \( \frac{dP_4}{dt} = \frac{R y \gamma T_4}{V_{COMB}} \left[ (T_4 W_{AC} + W_{FB} - W_{G4}) \right] \)
4. \( \frac{dU_4}{dt} = \frac{C_{VB} T_4}{V_{AFEN}} \left[ (T_4 W_{AC} - W_{FB} - W_{G4}) + \gamma (T_3 W_{AC} - T_4 W_{AC} + T_4 (1 + n) W_{FB}) \right] \)

**Nonlinear Functions Required for State Equations and Outputs**

1. \( N_F = \frac{N_C}{N_{DESIGN}} = 9651 \)

---

Figure 1 - Two-spool, two-stream turbofan engine
The following linear models were obtained, with thrust, \( F(0) \), as the output if there is only one output:

**Model 11L5**

\[ A = \begin{bmatrix} -3.80 & -1.277 & 2.067 & -1.152 & 1.448 \\ 2.748 & -5.39 & 1.585 & -1.991 & 1.071 \\ 377.9 & 49.51 & -264.9 & 86.807 & 78.91 \\ 31.26 & 139.39 & -6.269 & -88.69 & 27.83 \\ -176.5 & 23.91 & -10.27 & -37.40 & -246.7 \end{bmatrix} \]

\[ B = \begin{bmatrix} -0.0259 & 0.355326 \\ 0.2116 & -0.316176 \\ 12.56 & -13.79 \end{bmatrix} \]

\[ C = \begin{bmatrix} -0.7594 & -1.397 & 0.6672 & 1.167 & 1.1236 \\ 0.05591 & 0.0656034 & -0.0018374 & 0.0135393 & 1.853914 \end{bmatrix} \]

\[ D = \begin{bmatrix} -1.02766 & 0.90038 \\ -0.01389 & -0.020856 \end{bmatrix} \]

Eigenvalues: \(-251 \pm 23j, -96, -5 \pm 0.8j\)

**Model 11L3**

\[ A = \begin{bmatrix} -2.4307 & -0.7897 & -0.81149 \\ 3.8281 & 4.9379 & -1.7233 \\ 2.4466 & 140.5 & -94.982 \end{bmatrix} \]

\[ B = \begin{bmatrix} 1.195 & 0.34875 \\ 1.2585 & 0.27933 \\ 15.434 & -18.289 \end{bmatrix} \]

\[ C = \begin{bmatrix} -0.1543 & 0.813382 & 1.333 \\ -0.2346 & 0.87572 \end{bmatrix} \]

Eigenvalues: \(-92, -5 \pm 5j\)

**Model 215**


\[ B = \begin{bmatrix} 1.40762 \\ -0.758167 \\ 1.28129 & -122.314 \\ 0.0 & -48.9280 \\ 149.219 & -109.196 \end{bmatrix} \]

\[ C = \begin{bmatrix} 0.0 & 0.0 & 0.0 & 1.46969 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 1.0 \end{bmatrix} \]

\[ D = \begin{bmatrix} 1.21383 \\ 0.0 \end{bmatrix} \]

Eigenvalues: \(-343, -154, -73, -7.2 \pm 1.4j\)

**EXPERIMENTAL COMPARISONS**

Figures 2 and 3 represent the nonlinear steady state operating lines of the fan and compressor respectively, as both nozzle area and fuel flow are changed. This is a detailed map in the vicinity of our nominal engine design configuration. The design point for model 2 differs from that of model 1 by less than 1/28.
The time responses of various states due to 5% step inputs in fuel flow and nozzle area are shown in Figures 4 and 5 respectively. Only the nonlinear models are represented. Although the deviations of the states from their design point differ by as much as a factor of two, the actual values (design plus deviation) of model 2 remain within 1% of the model 1 values. For steps in fuel of minus 20%, the states remain within 6% of each other.

In Figures 4 and 5 respectively, only the nonlinear models are represented. Although the deviations of the states from their design point differ by as much as a factor of two, the actual values (design plus deviation) of model 2 remain within 1% of the model 1 values. For steps in fuel of minus 20%, the states remain within 6% of each other.

Figure 4. State Time Responses - Fuel Input

The effects on thrust by a 5% step in fuel flow are shown in Figure 6. Model 2L5 yields results which are quite close to model 2, although, both are significantly different from model 1.

Figure 5. State Time Responses - Nozzle Area Input Step

To the best of the authors' knowledge, no nonlinear analytical dynamic models of a two-spool, two-stream jet engine have ever appeared in literature. Indeed, it is the value of the development of such a model which is the most important consideration in the evaluation of our work, i.e., that a good nonlinear analytical dynamic model will provide a flexibility and usefulness which is non-existent in present non-analytical jet engine simulations. Although, some significant discrepancies exist, our model yields results which are accurate to within 1%
near the design point, and which degrade to an accuracy of approximately 6% with a drop in fuel flow of 20%. The frequency response for fuel inputs of the linearized models is also in close agreement.

In conclusion, we are encouraged by our overall progress towards the development of the analytical model, however, we feel that more work is needed to further improve the accuracy of our model.

ACKNOWLEDGEMENT

This research was supported by NASA grant NCC-3048.

REFERENCES


Appendix C

"FREQUENCY DOMAIN COMPENSATION
OF A
DYGEN TURBOFAN ENGINE MODEL"

R. M. Schafer
R. R. Gejji
P. W. Hoppner
W. E. Longenbaker
M. K. Sain
Abstract

Following Rosenbrock's ideas regarding the advantages of dominance in linear multivariable control systems, a new graphical technique is used for the design of compensators that achieve dominance. The technique is illustrated with an application to the problem of designing compensators for a linear turbofan engine model. The resulting design is put into perspective by examining it in the light of two other multivariable frequency-domain methods. One, MacFarlane's method of characteristic loci, is used to realize a final design for stability and low interaction. The other is a direct technique based upon the algebraic expansion of the determinant of the return difference in terms of its elements. Results from simulations carried out on the NASA DYNGEN software are included.

1. Introduction

Recent years have witnessed a renewal of interest in frequency-domain design methods for linear multivariable control systems. The preponderance of these ideas are closely related to classical Nyquist constructions on the determinant of return difference. In this paper, we use three such methods to design a compensator for a two-input, five-state, two-output linear model of a modern two-spool turbofan jet engine obtained from the DYNGEN digital jet engine simulation.

Rosenbrock [1] has related the classical Nyquist construction on the determinant of return difference to corresponding classical constructions on the diagonal elements of the return difference—provided these diagonal elements "dominate" their rows or columns in an appropriate manner. Focusing the design interest on achieving dominance in this sense, Section 3 presents a new graphical technique to help with this aspect of design. Next, Section 4 utilizes the generalized Nyquist plots to obtain an acceptable compensator design. The ideas of generalized Nyquist plots were introduced by MacFarlane [2], who related the determinant of the return difference to its spectrum when regarded as an appropriate linear operator.

In Section 5, we utilize a direct technique which emphasizes the algebraic relationship between the elements of the return difference and its determinant. Typically, when it achieves user satisfaction, this method does so with greater speed, and fewer concepts, than its competitors. The jet engine model is introduced in Section 2, which also establishes the notation for succeeding sections. Finally, in Section 6, we give results of simulations to evaluate the performance of the system.

2. Jet Engine Model and Return Difference Determinant

The linear model used for the study is based upon: data obtained from a DYNGEN simulation. It is specified by the equations

$$\dot{x} = Ax + Bu$$  \hspace{1cm} (1)
$$y = Cx + Du$$  \hspace{1cm} (2)

where $x$, $u$, $y$ denote the state, input and output vectors respectively. The inputs are fuel flow and nozzle area; the five states are compressor rotor speed, fan rotor speed, burner exit pressure, afterburner exit pressure and high pressure turbine inlet energy; while thrust and high pressure turbine inlet temperature constitute the two outputs.

We next consider the problem of designing controllers for the plant. The underlying feedback control scheme is shown in Fig. 1. $G(s)$, the plant,

![Feedback Control Scheme](image)

represents the jet engine model, that is,

$$G(s) = C(sI - A)^{-1}B + D$$  \hspace{1cm} (3)

$K(s)$ represents the rational compensator to be designed. $G(s)$ can be computed as:

$$G(s) = \frac{-5.02s^5 - 3.64s^4 + 4.04s^5 + 1.93s^4}{-1.78s^7 + 6.15s^6 - 1.44s^7 + 1.69s^8 - 1.44s^8 + 1.69s^8}$$

$$+ \frac{1.26s^5 + 6.25s^4 - 6.77s^5 + 6.95s^5}{-14.55s^4 + 1.32s^5 + 20.46s^4 + 1.69s^4}$$

$$+ \frac{4.96s^5 + 3.78s^4 + 7.03s^5 + 1.12s^8}{-2.87s^5 + 5.55s^4 - 5.63s^5 + 5.41s^4}$$

$$+ \frac{5.63s^5 + 4.11s^4 + 1.16s^5 + 0.71s^4}{-46.09s^5 + 1.57s^4 - 0.52s^5 + 1.62s^4}$$

This work was supported in part by the National Science Foundation under Grant ENG 75-22322 and in part by the National Aeronautics and Space Administration under Grant NGR 3048.
Central to the application of Nyquist type ideas to multivariable systems is the return difference matrix, which in this case becomes \((1G(s)K(s))\). Its principal use arises from the relation of the closed loop characteristic polynomial (CLCP) to the open loop characteristic polynomial (OLCP) which can be stated, in the manner of [1], as

\[
\text{CLCP} = \det(1+G(s)K(s)),
\]

\[
\text{OLCP} = \det(G(s)K(s)),
\]

where equality is understood up to a real constant. Of primary concern here is the behavior of \(\det(1+GK)\) for values of \(s\) on the standard Nyquist contour (SNC), which encircles the open right half plane clockwise with indentations into the left half plane around poles and zeros on the imaginary axis. In practice, plots are made for values of \(s\) on the positive imaginary axis. Stability can then be determined from plots of \(\det(1+GK)\) in conjunction with knowledge of the open loop characteristic polynomial. Also interesting, of course, is the use of such plots to aid in the choice of a suitable \(K(s)\).

3. CARDIAD Plots and Dominance \([3,4]\)

The CARDIAD (Compensator Acceptability Region for Diagonal Dominance) plot is a graphical approach to the problem of choosing a compensator that will achieve system dominance. A system is said to be row (column) dominant [1] if the magnitude of each diagonal element of the open loop transfer function matrix is greater than the sum of the magnitudes of the off diagonal elements of the row (column) at all frequencies. In the 2x2 case being considered in this paper, the dominance condition reduces to the magnitude of the diagonal element being greater than the magnitude of the off diagonal element of the row (column). Consonant with the Rosenbrock approach, the CARDIAD plot analysis is applied to the inverse of the plant \(G(s)\). As a notational point, the inverse plant transfer function matrix will be denoted by \(G(s)\) and the inverse pre-compensator by \(K(s)\).

The specific application to the jet engine design problem involves trying to find a compensator \(K(s)\) such that \(K(s)G(s)\) is row dominant. Without loss of generality, the form of \(K(s)\) will be restricted to

\[
K(s) = \begin{bmatrix} f_1(s) & 0 \\ f_2(s) & 1 \end{bmatrix}
\]

where

\[
f_1(s) = \Re(s) + j\Im(s), \quad f_2(s) = \Re(s) - j\Im(s),
\]

If \(G(s)\) and \(\hat{K}(s)\) are each evaluated at a frequency \(j\omega\), the equation for dominance of the \(i^{th}\) row of \(K(s)G(s)\) becomes a function \(f_i(x, y)\), which describes a paraboloid in three-space. The intersection of this paraboloid and the complex plane is a circle which is the locus of the values of \(x_i\) and \(y_i\), such that the magnitude of the diagonal element of the \(i^{th}\) row of \(K(s)G(s)\) is equal to the magnitude of the off diagonal element of the row. Minima and maxima analysis of the function \(f_i\) reveals that values of \(x_i\) and \(y_i\) on one side of the circle will make the system dominant, whereas values which lie on the other side of the circle will not. In the CARDIAD plots, this differentiation is made by drawing a solid circle if the acceptable values of \(x_i\) and \(y_i\) lie inside and dashed circles if the acceptable region is outside.

If the above procedure is repeated over a range of frequencies for each row of the system, and the circles of intersection drawn, a plot describing the acceptable values of the complex number \(x_i + jy_i\) for each frequency results. In this way, the acceptable range of the function \(\beta_i(s)\) such that the \(i^{th}\) row of \(K(s)G(s)\) is dominant is described.

The analysis of the CARDIAD plot for a given row of \(G(s)\) proceeds as follows. If the origin of the plot is contained inside all solid circles and is excluded by all dashed circles, the row of \(G(s)\) is dominant uncompensated. If the row of \(G(s)\) is not dominant uncompensated, the CARDIAD plot is next checked to see if there is a constant entry \(\beta_i\), such that \(K(s)G(s)\) is dominant at all frequencies. For this to be the case, there must be a point on the real axis that is included in all solid circles and excluded by all dashed circles.

If there exists no constant \(\beta_i\), such that the \(i^{th}\) row of \(K(s)G(s)\) is dominant at all frequencies, the CARDIAD plot is used as a guide to design a frequency dependent \(\beta_i(s)\) that will achieve dominance. This is accomplished by realizing a function \(\beta_i(s)\) whose value at \(j\omega\) lies inside the circle associated with the same frequency in the CARDIAD plot if that circle is solid, or outside if that circle is dashed. This approach is illustrated by considering the DYNGEN problem.

![Fig. 2 CARDIAD Plot Row 1 Uncompensated](image)

The initial CARDIAD plots of \(G(s)\) indicate that row 2 of \(G(s)\) is dominant uncompensated since the plot consists only of dashed circles, which all exclude the origin. The plot for row 1, however, shows that this row is not dominant uncompensated and also that there is no constant entry in the off diagonal element of row 1 of \(K(s)\) that will make the row dominant at all frequencies. This is easily seen since all the circles in this plot are solid and there is no point on the \(x\) axis that is included in all the circles. Moreover, the plot hints that there will be difficulty finding a \(\beta_1(s)\)
that will make this row of \( K(s)G(s) \) dominant because of the complexity of the plot and the small radii of the low frequency circles which necessitate a very close fit.

To facilitate the process of finding a compensator that will make \( K(s)G(s) \) dominant, the system was first precumensated with

\[
\hat{K}_1 = [1 \ 1] \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}
\]

Space limitations do not allow the CARDIAD plots of \( K_1G(s) \) to be included, but the new plots are the same shape as the CARDIAD plots of \( G(s) \) with two major changes. The row 1 plot of \( K_1G(s) \) is the same shape as the row 2 plot of \( G(s) \) with dashed circles changed to solid circles. Similarly, the row 2 plot of \( K_1G(s) \) is the same shape as the row 1 plot of \( G(s) \) with the solid circles changed to dashed circles.

The problem of finding a \( K_n(s) \) such that \( K_n(s)K_1G(s) \) is dominant is now simplified. Since row 2 of \( K_1G(s) \) is now dominant uncompensated, the off diagonal term in the second row of \( K_1(s) \) is left a zero, with the provision that if it later proves helpful in compensation, the entry may be chosen to be any constant that lies outside all of the circles. To make row 1 of \( K_1G(s) \) dominant, the off diagonal entry in row 1 of \( K_1(s) \) must follow the semicircular path through the complex plane described by the CARDIAD plot for this row. A fit was made to this shape and the resulting \( K_2(s) \) was

\[
\hat{K}_2(s) = \begin{bmatrix} 1 & 9.4798 + 0.2648s \\ 1 - 1.2359s \end{bmatrix}
\]

The CARDIAD plots of \( K_1(s)K_2G(s) \) are considerably more complex than the previous plots. The plot for row 2 shows that the row is dominant at all frequencies since the origin is included by all solid circles and excluded by all dashed circles. The CARDIAD plot for row 1 shows that the row is clearly not dominant at all frequencies. Dominance is lost at \( \omega=10 \), is regained as \( \omega=90 \), and is lost again at \( \omega=700 \). It is perhaps possible to find a better choice of \( K_n(s) \) that will make row 1 dominant at all frequencies, but the dominance achieved by the above \( K_2(s) \) proved to be sufficient.

An interesting feature of the CARDIAD plot is illustrated in the final plot for row 2. Close analysis of this plot shows that there are three occurrences of solid circles changing to dashed circles or dashed circles changing to solid. When these transitions occur, the paraboloid is inverting and the circle of intersection degenerates to a line. These lines occur when the other row changes from being dominant to not dominant or vice versa. Thus, each change in dominance of row 1 causes a change in the type of circle being drawn in the plot of row 2.
4. Design Using Characteristic Loci

Another approach to design, due to A.C.J. MacFarlane, uses the locus of the eigenvalues of \( G(s)K(s) \), called the characteristic loci (C.L.), for values of \( s \) on the SNC. This method is based on the relation of the determinant of the return difference to eigenvalues of \( G(s)K(s) \). In order to assess stability from the C.L. plots, for \( s=jw \), \( w \) positive, one must count the clockwise encirclements of the critical point \((-1,0)\) made by the C.L. plots and sum all these up. The closed loop system is stable if this sum equals \(-p\), where \( p \) is the number of zeros of GLCF enclosed by the SNC. An approximate measure of interaction, we compare the eigenvalue plots with plots of the diagonal elements of \( Q(s)=G(s)K(s) \). For a noninteracting system with \( Q(s) \) a diagonal matrix, these would be identical.

In our design example, \( Q(s) \) is a 2x2 matrix, and therefore we will be looking at plots of two eigenvalues \( \lambda_1(s) \) and \( \lambda_2(s) \) and the two diagonal elements \( q_{11}(s) \) and \( q_{22}(s) \).

First, an examination of the C.L. plots of the uncompensated model reveals that, without compensation, the closed loop system is unstable. The plots are not included due to lack of space, but conclusions drawn from them are given.

Control problems for the uncompensated model were complicated by the existence of considerable interaction, and large gains at high frequencies. An additional difficulty was that one of the eigenvalues was negative at zero frequency. This tended to limit the response speed of the closed loop system. It appeared on the C.L. plots that, from a stability viewpoint, the frequency range of interest is in the vicinity of 10 rps. This gives justification for the use of the compensator given in the previous section.

As a practical matter, our goal is to achieve as rapid a response as possible to a step input, without suffering any overshoot. Heavy emphasis is placed also on steady state accuracy.

To remove the right half plane pole in \( K_3 \), we choose \( K_3 \) arbitrarily as diag \((-141, 2359) / 7s^2\). The resulting \( K(s)=K_1K_2K_3 \) becomes

\[
K(s) = \begin{bmatrix} 0 & -141.2359 \\ 9.479840 & 0.2494 \end{bmatrix}
\]

(9)

The diagonal nature of \( K_2(s) \) does not affect dominance. Moreover, an examination of the \((1,1)\) and \((1,2)\) elements of \( G(s) \) reveals that if the 0 in \( K(s) \) is changed to 9, we can significantly reduce the high frequency magnitude of \( q_{22}(s) \) while simultaneously boosting the low frequency magnitude. This is in accordance with the freedom specified for \( K_2 \).

Since dominance is not affected by diagonal compensators, the problem becomes that of independently shaping \( q_{11} \) and \( q_{22} \) by means of simple loop techniques. In order to reduce high frequency gain in \( q_{22} \) without appreciably affecting low frequency behavior, we use lag compensation. A little bit of cut and try led finally to \( K_3(s)=\text{diag}(-0.44e^{-4}, (-s-0.1)/(2000s+10)) \). The plots corresponding to \( K_3K_2K_1K_3' \) are not shown. The \( \lambda_1 \) and \( q_{11} \) plot is essentially that of \( \lambda_1 \) in Fig. 6 scaled by a factor of 0.44e-4.

Similarly, the \( q_{22} \) plot inverted and scaled by 0.0005. (By inversion we mean reflection through both axes.) The plot for \( \lambda_2 \) is shown in Fig. 8.

5. The Direct Method of Analysis

Direct methods of multivariable Nyquist analysis concern themselves with the algebraic relationship between the elements of return difference and its determinant. For an \( N \times N \) return difference, the most basic of these relationships is

\[
\det(I+GK) = 1 + \sum_{p=0}^{N-1} \text{tr}(GK)^p \]

(10)

For the example of this paper, \( (10) \) takes the form

\[
1 + (G_{11} + G_{12} + 2G_{21}) + (2G_{21}G_{22} + G_{22}) + \det(GK).
\]

(11)

In \( (10) \) and \( (11) \) we note the advantage of minute detail and the disadvantage of nonrecursive construction. Considerable interest attaches to the removal of this disadvantage, which can be accomplished by methods drawn from the results of exterior algebra [5]. Consider the recursion (where \( tr \) denotes trace)

\[
a_0 = 1
\]

\[
a_1 = -\frac{1}{2} tr(GK)^{r-1}
\]

\[
a_p = 0 \quad p \neq 0
\]

(12a)

(12b)

for \( 1 \leq r \leq N \). It can be shown that
Si-

Closed-loop time responses were obtained both by using the linear model simulation and by implementing the compensator on DYNGE, a jet engine simulation program developed by the NASA Lewis Research Center [7].

DYNGEN is a versatile digital program which analyzes steady-state and transient performance of turbojet and turbofan engines. It uses a sixteenth order system to model this example, and solves the state differential equations by a modified Euler method. The user need only supply appropriate component performance maps and design-point information, and then write the control subroutines. Implementation of the compensator required first order functions to perform integration and lead-lag compensation.

The linear model used in this study was also obtained from DYNGEN. By utilizing a special control subroutine written by NASA, called DYGABCD [8], models can be derived using whatever states the user desires. DYNGEN thus possesses the capability to determine linear models for the engine with any order up to sixteen.

Fig. 12 shows the response of the linear model to a step input in the first channel. Thrust has a rise time (10%-90%) of 1.04 seconds with no overshoot occurring. High pressure turbine inlet temperature increases to a maximum of 9.105 at approximately 0.9 seconds, then gradually decreases.

Similar, and even better, results occur when the compensator is employed in the DYNGEN simulation using a one percent step. Thrust rise time is 0.88 seconds, and the turbine temperature reaches a maximum increase of 0.097.

The linear and nonlinear responses were not in such close agreement for a step input in the second channel. The linear model shows turbine temperature slowly ramping up (Fig. 13) as the change in thrust is held to a minimum. DYNGEN produces similar results for the turbine temperature response; however thrust experiences a strong decrease before rising to zero. At this writing, it is believed that the five states chosen for the DYGABCD model do not adequately describe local engine behavior for the second channel equipped with the present controller.
7. Conclusions
This paper has demonstrated the usefulness of the new CARDIAD plot approach to designing compensators for complex plants. The DYNGEN simulation for a step in channel 1 has shown that acceptable responses can be obtained using linear compensators. An ordered collection of these may make global control feasible. For steps in channel 2, conclusive evidence was not obtained. We suspect that this is due to inadequacy of the linear model in describing the plant. This important factor of selecting an appropriate linear model is often overlooked. But, as we have seen, it turns out to be crucial in practical applications.

The method of CARDIAD plots can be generalized to plants with more than two inputs and outputs by considering a family of compensators with 1's on the diagonal and only one non-zero off-diagonal term. As stated in [1], except for changes in the ordering of inputs or outputs, such a study is exhaustive.

8. References
APPLICATION OF POLYNOMIAL TECHNIQUES TO
MULTIVARIABLE CONTROL OF JET ENGINES

R. R. Gejji
M. K. Sain
APPLICATION OF POLYNOMIAL TECHNIQUES TO MULTIVARIABLE CONTROL OF JET ENGINES

R. R. Gejji and M. K. Sain
Department of Electrical Engineering
University of Notre Dame
Notre Dame, Indiana
U.S.A.
46556

SUMMARY

This paper provides a thorough case study of such a design approach when applied to realistic numerical models associated with an F-100-like turbofan engine. Specifications are accomplished by means of the methods of linear optimal control theory, according to procedures already worked out in the jet engine industry. The remaining tasks are addressed by regarding the design as a problem in free polynomial modules. A special feature of the application lies in its attention to compensators of simple structure, with a view to the use of a graded collection of them for the purpose of global engine control.

Section 2 describes the basic design problem, once specifications are made. Section 3 provides the discussion of the jet engine application, with particular attention paid to the manner of making the specifications and to the formulation of the main design problem for the jet engine application. Section 4 explains how to cast the design problem in terms of free polynomial modules, and Section 5 describes floating point computational experience gained in applying extended precision PL/I software to solve the jet engine problem in the free module context. Section 6 outlines the corresponding experience associated with an exact rational calculation made with FORMAC-PL/I software.

The results of Section 6 show that considerably greater compensator design freedom is available than had been apparent from early industry studies. Using these results, a new pole placement design procedure based on alternating multilinear algebra achieves in Section 7 a minimal pole placement solution not possible by those earlier industry methods.

Section 8 closes with remarks designed to place the work in historical perspective, to reference the literature, and to assess the merits of polynomial methods for control system design in the near term.

1. INTRODUCTION

One way to approach the design of linear multivariable control systems is to express system specifications in terms of a desired closed loop transfer function matrix. A question which is often raised about such an approach is the practicality of making such a specification. Another, related, question concerns the possibility of determining the existence of realizable compensators to achieve the specification. When such compensators do exist, there are the very practical issues of giving a finite enumeration of them, of determining whether they have fixed poles, and of assigning one or more of the non-fixed poles. Of special interest, as it turns out, for the issue of pole assignment is the idea of minimality, in the state-space sense, of a proposed solution in the context of all possible solutions.

This paper provides a thorough case study of such a design approach when applied to realistic numerical models associated with an F-100-like turbofan engine. Specifications are accomplished by means of the methods of linear optimal control theory, according to procedures already worked out in the jet engine industry. The remaining tasks are addressed by regarding the design as a problem in free polynomial modules. A special feature of the application lies in its attention to compensators of simple structure, with a view to the use of a graded collection of them for the purpose of global engine control.

Section 2 describes the basic design problem, once specifications are made. Section 3 provides the discussion of the jet engine application, with particular attention paid to the manner of making the specifications and to the formulation of the main design problem for the jet engine application. Section 4 explains how to cast the design problem in terms of free polynomial modules, and Section 5 describes floating point computational experience gained in applying extended precision PL/I software to solve the jet engine problem in the free module context. Section 6 outlines the corresponding experience associated with an exact rational calculation made with FORMAC-PL/I software.

The results of Section 6 show that considerably greater compensator design freedom is available than had been apparent from early industry studies. Using these results, a new pole placement design procedure based on alternating multilinear algebra achieves in Section 7 a minimal pole placement solution not possible by those earlier industry methods.

Section 8 closes with remarks designed to place the work in historical perspective, to reference the literature, and to assess the merits of polynomial methods for control system design in the near term.

2. THE MINIMAL DESIGN PROBLEM

Suppose that F is a given field. For the jet engine control problem, F is taken to be R, the field of real numbers; however, a great deal of the algorithmic nature of the discussion is more general than that, and is so stated. The set of polynomials which are of interest is F[s], namely those polynomials in the variable s with coefficients in the field F. The fact that F[s] is a principal ideal domain ring is well known, as is the equally pertinent fact that F[s] has a quotient field F(s). More intuitively, F(s) is often described as the field of rational functions in the variable s.

The design problems of interest in the sequel are conventionally stated in terms of F(s); however, Section 4 explains how such problems may be re-converted back to a corresponding F[s] form.

Principal interest centers upon the minimal design problem (MDP), which can be described as follows. Let G: V - V be a linear operator for finite-dimensional F(s)-vector spaces V and V'. G is regarded as realizable if its matrix is proper. Now let G; V - V and G: V - V be given linear operators, where V is also a finite-dimensional F(s)-vector space. MDP consists in determining whether there are realizable linear operators G which make the diagram in Fig. 1 commute and, if so, to find one whose minimal realization is of least dimension among all such realizable operators.

Intuitively,

\[ v_1 \quad G \quad v_2 \]

\[ v_3 \]

Fig. 1. Minimal Design Problem

the operators G, and G, derive from the given plant and from the specifications, while G represents the compensators to be designed.

Beyond the basic MDP, several additional issues are of practical importance. Among these should be included...
(1) a finite enumeration of all possible solutions, (ii) determination of any fixed poles in the matrix of \( G \), and (iii) methods for assigning the poles of \( G \) which are not fixed. The answers to these questions resolve such issues as the availability of solutions with varying degrees of integration. From a conceptual viewpoint, these ideas are developed further in Sections 4 and 7, whereas the computational issues are discussed in Sections 5 and 6.

Next in order of presentation, however, is the statement of a minimal design problem for jet engine control.

3. JET ENGINE APPLICATION

In this section, we demonstrate the practicality of the minimal design approach in the context of jet engine control. The basic plant is a version of the F-100 turbofan engine. Inputs are jet exhaust area and main burner fuel flow; states are fan inlet temperature, main burner pressure, fan speed, high compressor speed, and afterburner pressure; and outputs are thrust and high-turbine inlet temperature. The linearized model approximates the small signal behavior of these engine variables in a neighborhood of 47° Power Lever Angle (PLA). This corresponds to a point approximately midway between engine idle and maximum nonafterburning power. The plant is specified by the four matrices \( A, B, C, D \) in (1) and (2).

\[
\begin{align*}
\dot{x} &= A_p x + B_p u_p & (1) \\
\dot{y} &= C_p x + D_p u_p & (2)
\end{align*}
\]

Table 1 lists these matrices for our example. The attempt to design simple compensators for linear control over a specified region is part of a strategy for global control of the engine using a graded collection of these.

### Table 1

<table>
<thead>
<tr>
<th>Matrix Elements</th>
<th>State Description Matrices for Jet Engine (PLA=47°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>( A_p )</td>
<td>(-57.096 \quad 3.613 \quad -10.211 \quad -5.481 \quad -2.715 )</td>
</tr>
<tr>
<td>( B_p )</td>
<td>(1.932 \quad -72.34 \quad 30.295 \quad 40.972 \quad 19.327 )</td>
</tr>
<tr>
<td>( C_p )</td>
<td>(0.66 \quad 4.496 \quad -3.601 \quad 0.011 \quad -2.808 )</td>
</tr>
<tr>
<td>( D_p )</td>
<td>(1.326 \quad 2.313 \quad -0.809 \quad 1.032 \quad 0.821 )</td>
</tr>
</tbody>
</table>

We next examine how engine control specifications can be obtained from linear optimal control theory. In fig. 2, the compensators.

![Fig. 2. Linear Optimal Control](image)

Specified by gain matrices \( G_1 \) and \( G_2 \) are chosen with the objective of minimizing the performance index of (3).

\[
J = \frac{1}{2} \int (y^T Q \dot{y} + u^T R u + \dot{y}^T S \dot{y}) dt
\]

where superscript T denotes matrix transposition. The weighting matrices \( Q, R, S \) are listed in Table 2.

### Table 2

<table>
<thead>
<tr>
<th>Matrix Elements</th>
<th>Weighting Matrices with Optimal Integral Control Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>( Q )</td>
<td>50,000</td>
</tr>
<tr>
<td>( R )</td>
<td>550</td>
</tr>
<tr>
<td>( S )</td>
<td>0</td>
</tr>
<tr>
<td>( L )</td>
<td>0.509 0.268 1.979 2.171 2.098</td>
</tr>
<tr>
<td>( H )</td>
<td>3.329 -1.126 -0.377 -0.227</td>
</tr>
</tbody>
</table>

At this point, a minimal design problem can be brought into play. The control scheme of fig. 3 is seen to be more desirable because it incorporates output feedback and enjoys the concomitant advantages of engine idle and maximum nonafterburning power. The plant zero steady state error, even in the presence of plant parameter variation.

![Fig. 3. Optimal Integral Control](image)

One relates the performance of the two control schemes by equating, in both, the Laplace transform of the variable \( \dot{u} \), as written in terms of the respective state variables. This leads to the following equations, which may be solved for \( L \) and \( H \), the values of which have been listed in Table 2.

\[
M = -H
\]

\[
[L; H] = \begin{bmatrix} A_p & B_p \\ C_p & D_p \end{bmatrix} = \begin{bmatrix} G_1 & G_2 \end{bmatrix} \quad (5)
\]

That this is nothing but a form of the minimal design problem can be seen by evaluating the 2x2 closed loop transfer function matrices \( T(s) \) and \( T'(s) \) for the two systems in figs. 2 and 3. In fig. 2,

\[
T(s) = P_1(s) [sI - D_p]^{-1} M
\]

where

\[
P_1(s) = C_p (sI - A_p)^{-1} B_p + D_p
\]

\[
P_2(s) = C_1 (sI - A_p)^{-1} B_p + C_2
\]

In fig. 3, on the other hand,

\[
T'(s) = P_1(s) [sI - P_3(s)]^{-1} H
\]

where

\[
P_3(s) = \Delta P_1(s) + sL(sI - A_p)^{-1} B_p
\]

Now, rewrite (6) using (4) as

\[
T(s) = -P_1(s) [sI - P_2(s)]^{-1} H
\]

The relationship between (9) and (11) now depends upon that between (8) and (10).
Comparison of \( P_4(s) \) and \( P_5(s) \), with the aid of (5) and (7), establishes the equality of the two transfer functions \( T(s) = T'(s) \).

We can then pose questions regarding the existence of compensators other than \( H \) and \( L \) to achieve the same performance as attained in fig. 3, and what, if any, advantages such compensators would have over that scheme. To do this, we consider fig. 4, which is a more general scheme of control based on fig. 3.

![Fig. 4. Generalized Compensation Scheme](image)

**Fig. 4. Generalized Compensation Scheme**

Our objective is to design compensators \( G(s) \) and \( K(s) \) to achieve exactly the transfer function \( T(s) = T'(s) \) between \( \delta z \) and \( \delta y \). This means that we must have

\[
(I + P_4(s))^{-1} P_4(s) = T(s) \tag{12}
\]

where we have introduced

\[
P_4(s) = P_1(s)(I+K(s)P_5(s))^{-1}G(s) \tag{13}
\]

and

\[
P_5(s) = (sI-A)^{-1}B_p \tag{14}
\]

From (12), we obtain the equivalent condition

\[
P_4(s) = (I+P_4(s))T(s), \tag{15}
\]

which can be restated in the manner

\[
P_4(I+K(s)P_5(s))^{-1}G = (I+P_4(I+K(s)P_5(s))^{-1})T. \tag{16}
\]

From table 1, \( D \) is clearly invertible, and so the linear dynamical system \( P \) has a unique linear dynamical inverse system \( P^{-1} \), which we designate \( \hat{P}_1 \). Thus (16) is equivalent to

\[
G(I-T) - K P_4 \hat{P}_1 T = \hat{P}_1 T \tag{17}
\]

In matrix form, the minimal design problem of fig. 1 reduces to solving an equation

\[
G_1(s)C(s) = G_2(s) \tag{25}
\]

for the various realizable \( G(s) \), where \( G_1(s) \) and \( G_2(s) \) are given. Section 3 provided a nontrivial illustration of (25) in (19), where

\[
G_1(s) = (P_1(I+K(s)P_5(s))^{-1})' \tag{26}
\]

and where the field \( F \) was \( R \), the real numbers.

The free modular approach to MDP is based upon the recognition that, as a set,

\[
F(s) \times F[s], \tag{27}
\]

which, in turn, suggests that it may be possible to express (25) in terms of \( F[s] \). A convenient way to bring this about, as illustrated in (20), is to write

\[
G(s) = N(s)D(s)^{-1}A(s) \tag{28}
\]

where \( N(s) \) and \( D(s) \) have their elements in \( F[s] \). It is easy to see that every \( G(s) \) has representation in the form (28). Similar representations could be adopted for \( G_i(s), i = 1, 2 \), but the presentation can be simplified if the choice

\[
G_i(s) = \frac{M_i(s)}{d_i(s)} \tag{29}
\]

is made, with \( d_i(s) \in F[s], i = 1, 2 \) and \( M_i(s) \) having elements in \( F[s], i = 1, 2 \). Equation (25) is then clearly the same as

\[
\frac{M_1(s)}{d_1(s)}N(s)D(s)^{-1}A(s) = \frac{M_2(s)}{d_2(s)} \tag{30}
\]

which, in turn, is equivalent to

\[
[d_2(s)M_1(s) - d_1(s)M_2(s)]N(s) = 0 \tag{31}
\]

an equation written over \( F[s] \). For the jet engine.

Finally, we make the observation that (22) can be completely solved, and a minimal solution computed by algorithms given in the Appendix. The next section deals with the theoretical foundation of these algorithms; and subsequent sections describe their application to (22).
problem, (22) corresponds to (31). Let
\[ t_i(s) = \frac{n_i(s)}{d_i(s)} \]  
(32)

denote the \( i \)th column of
\[
\begin{bmatrix}
N(s) \\
D(s)
\end{bmatrix}
\]

Then
\[
\begin{bmatrix}
d_2(s)M_1(s) \\
-d_1(s)M_2(s)
\end{bmatrix} t_i(s) = 0,
\]  
(33)

and every candidate to construct a solution (28) can be traced to such \( t_i(s) \).

Thus MDP is quite closely related to the homogeneous equation
\[
\begin{bmatrix}
d_2(s)M_1(s) \\
-d_1(s)M_2(s)
\end{bmatrix} t(s) = 0.
\]  
(34)

The purpose of this section is to explain briefly an appropriate algebraic interpretation of (34). This interpretation is based upon generalizing the notion of the \( n \)-dimensional \( F(s) \)-vector space \( F(s)^n \) to that of a rank-\( n \) \( F(s) \)-module \( F(s)^n \). As a vector space, \( F(s)^n \) satisfies the usual axioms, with scalars taken from the field \( F(s) \). As a module, \( F(s)^n \) satisfies exactly the same set of axioms, but with scalars taken from the principal ideal domain \( F(s) \). Despite this close similarity, \( F(s)^n \) modules do not behave in exactly the same way as vector spaces. But there is a class of them, known as finite-rank free modules, which have a great similarity to finite-dimensional vector spaces in that they have a basis, which can be defined in the usual way using concepts of span and independence. \( F(s)^n \), for example, is said to be free on the basis
\[
\{ 0, \ldots, 0, 1, 0, \ldots, 0 \}; \ i = 1, 2, \ldots, n.
\]  
(35)

1th position

Morphisms of \( F(s)^n \)-modules are defined analogously to linear operators on vector spaces; and, when domain and codomain are finite-rank free modules, the basis concept is used in the usual way to define a matrix for the morphism. This, then, is the interpretation to be given to the \( p \times q \) matrix
\[
\begin{bmatrix}
d_2(s)M_1(s) \\
-d_1(s)M_2(s)
\end{bmatrix}
\]

in (34), namely the interpretation of a morphism
\[
M: F(s)^q \rightarrow F(s)^p
\]  
(37)

of finite-rank free \( F(s)^n \)-modules. As a submodule of the finite-rank free module \( F(s)^q \) over the principal ideal domain \( F(s) \), the kernel of \( M \) is also free, and thus the solution to (34) is tantamount to finding a basis for this kernel. The process for calculating such a basis is provided by Algorithm 1 in the Appendix.

If a basis
\[ t_1(s), t_2(s), \ldots, t_k(s) \]  
(38)

for \( \text{Ker } M \) has been computed, MDP solution then depends upon a determination of whether these basis elements can be used, through (32) and (28), to construct realizable \( G(s) \) matrices—and if they can, to find \( G(s) \) whose minimal realizations are smallest and to assign poles wherever possible. It turns out to be convenient to answer these questions in terms of a reduced basis, whose definition is as follows. Let
\[
t_{i,j}(s) = \sum_{j=0}^{k} t_{i,j} s^j
\]  
(39)

where \( t_{i,j} \in F(s), t_{i,0} = 0, \) and \( i = 1, 2, \ldots, n \). Then the \( k \)-basis (39) is said to be reduced if the matrix
\[
[t_1,k_1; t_2,k_2; \ldots; t_k,k_k]
\]  
(40)

has rank \( k \). Algorithm 2 in the Appendix reduces a basis.

With these notions, the MDP Algorithm in the Appendix solves MDP. The issue of pole assignment is taken up in Section 7.

5. Floating Point Experiment

In view of the material presented in the previous section, we are ready to take a closer look at (22). The matrix \( [N(s); -d(s)I] \) turns out to be a \( 2 \times 9 \) matrix of polynomials in \( R[s] \). Lack of space prevents us from reproducing all the numbers here, but fig. 6 shows that the typical element is a thirteenth degree polynomial. We also note the large variation in the magnitudes of the coefficients of the polynomials.

![Fig. 6. Polynomial Matrix](image)

In this section, we report on FORTRAN and PL/I softwares developed to implement the MDP Algorithm on a digital computer, and our experience in the application of the software to the jet engine control problem described earlier in the paper. Both the programs use floating point arithmetic to implement the MDP Algorithm, considered over the field of real numbers. The FORTRAN version, using double precision arithmetic, affords 15 digits of precision (decimal) on an IBM 370/158 computer. The PL/I version, using extended precision arithmetic, carries 33 significant digits. Our jet engine minimal design problem comes down to the question of determining the rank-seven kernel of a module morphism whose domain has rank nine, and whose matrix representation in the usual basis contains thirteenth degree polynomials. In our experience, the principal difficulties arise from roundoff error occurring in the result of finite representation of real numbers in the computer.

There are two noteworthy features of the floating point KERPO (KERnel of a Polynomial Operator) software. First, it provides the user some control over the number of digits considered significant during internal computer arithmetic. In actual problems, this appeared as the critical factor in obtaining acceptable solutions from the computer. Second, it performs a verification of the computed results up to four significant digits. Any discrepancy so pointed up, one attempts to rectify by varying the number of digits considered significant. In the case of the jet engine problem, after making several runs, we obtained an (apparently) acceptable solution from the PL/I version by setting the threshold for loss of significance near eleven digits. We can compare this solution with the known solution to the problem, represented by fig. 3. To do this, we proceed as follows.

The complete solution to the kernel problem appears in the form of seven elements in a rank nine module, which are the required reduced basis for the kernel. Represented in the usual manner, five of these contained polynomials of degree \( k \), one or less. It is interesting to note that the existence of such elements can be predicted by the following argument. We interpret fig. 3
to yield a solution to the kernel problem, of the form (41).

\[
\frac{N}{D} = \begin{bmatrix}
-4.4968 & 0.6481 \\
-0.13348 & -0.17305 \\
2631.6 & 1348 \\
20693 & 10890
\end{bmatrix}
\tag{41}
\]

On the assumption that all solutions can be generated from the kernel basis, the logical conclusion is that the two columns of (41) can be represented as a linear combination of the five first degree elements in the reduced kernel basis. Interestingly enough, the question of determining this transformation can itself be represented as another kernel problem in polynomial modules. However, attempts to generate such a transformation turned out to be unsatisfactory.

As an alternative approach to verifying the KERPO solution, we used two of the five first degree basis elements to realize a second order dynamical control scheme for the jet engine, along the lines of fig. 5. From fig. 5, we could obtain a state description for the overall closed loop system, which we then compared with the corresponding optimal integral control scheme system of fig. 3. This comparison was based on the first few Markov parameters. Table 3 shows this comparison for two of these parameters.

### Table 3
Comparison of KERPO Results with Optimal Integral Control

<table>
<thead>
<tr>
<th>Markov Parameter</th>
<th>KERPO Solution</th>
<th>Optimal Integral Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>CB</td>
<td>-4.4968 0.64815</td>
<td>-4.4969 0.64814</td>
</tr>
<tr>
<td></td>
<td>-0.13348 -0.17305</td>
<td>-0.13348 -0.17305</td>
</tr>
<tr>
<td>CAB</td>
<td>2631.6 1348</td>
<td>70.451 3.544</td>
</tr>
<tr>
<td></td>
<td>20693 10890</td>
<td>122.15 95.573</td>
</tr>
</tbody>
</table>

We note that our solution appears to have identified the \( P \) and \( C \) matrices correctly, while it is in error so far as the \( A \) matrix is concerned. On the basis of this evidence, we conjecture that roundoff error incurred in implementing the Euclidean division algorithm has had the most serious impact on the correctness of the solution. This is because, intuitively, the effect of the \( A \) matrix in the state space corresponds to multiplication by \( s \)' in the module. Since, in our case, the factors by which the matrix columns are multiplied are computed via the division algorithm, we hypothesize this to be the source of the error.

In order to solve the jet engine minimal design problem, one has the option of developing floating-point software which has increased sophistication or of switching to softwares which permit exact rational calculations. The next section reports on the latter method.

### 6. Exact Rational Solution

One way to avoid the difficulties of finite machine representation of real numbers is to consider the numbers of table 1 as being rational instead of real numbers. It is then possible to get an exact solution to the jet engine problem, using softwares such as FORMAC or ALTRAN. These have the capability of rational and symbolic manipulation with an essentially unlimited degree of precision. Naturally, as the calculation proceeds, one would expect the integer size to increase quite a bit. As a consequence, the storage requirements and computer time needed to manipulate would also be substantial. In this section we give evidence as to the magnitude of these, especially in contrast to the requirements for the floating point calculations. This yields valuable insight into the tradeoffs involved in terms of computer usage needed to solve typical realistic jet engine control problems from the polynomial approach. The results reported here are based upon FORMAC software written to implement, in rational arithmetic, the procedure of the

---

### Table 5
Comparison of Floating Point and Exact Solutions

<table>
<thead>
<tr>
<th>Resource</th>
<th>Floating Point</th>
<th>Exact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algorithms 1 and 2</td>
<td>400K bytes</td>
<td>300K bytes</td>
</tr>
<tr>
<td>Algorithms 1</td>
<td>2 300K bytes</td>
<td></td>
</tr>
<tr>
<td>CPU</td>
<td>14 minutes(average)</td>
<td>18 minutes 117 minutes</td>
</tr>
</tbody>
</table>

that, on average, the difference between floating point and exact softwares was about an order of magnitude in computing time.

For the exact solution, it is of interest also to examine integer sizes at various stages in the calculation. Such a summary has been made in table 6.

### Table 6
Integer Size During Exact Solution

<table>
<thead>
<tr>
<th>Stage of Computation</th>
<th>No. of Decimal Digits in Typical Integer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. State Matrices For Plant</td>
<td>4</td>
</tr>
<tr>
<td>2. Plant Transfer Function</td>
<td>14</td>
</tr>
<tr>
<td>3. Inverse of Closed Loop System (T)</td>
<td>33</td>
</tr>
<tr>
<td>4. Kernel Problem (2 x 9 matrix)</td>
<td>45</td>
</tr>
<tr>
<td>5. After Algorithm 1</td>
<td>150</td>
</tr>
<tr>
<td>6. 20% through Algorithm 2</td>
<td>270</td>
</tr>
<tr>
<td>7. 60% through Algorithm 2</td>
<td>250</td>
</tr>
<tr>
<td>8. Final Reduced Basis</td>
<td>160</td>
</tr>
</tbody>
</table>
that integer size before and after Algorithm 2 is about
the same, while it nearly doubles during Algorithm 2.
This also suggests that improvements in the efficiency
of Algorithm 2 may be possible.

Finally, we summarize by commenting that the float-
ing point software used on the order of 4 x 10^6 byte
seconds of computing power, but evidently did not yield
an acceptable solution. On the other hand, the exact
rational software required on the order of 2.4 x 10^7
byte seconds of computing resources and led to an exact
solution.

7. COMPENSATOR POLE ASSIGNMENT

The exact rational software discussed in Section 6
obtained the reduced basis, \( t_i(s), 1 \leq i \leq 7 \), with

\[
\mathbf{t}_i(s) = \left[ \begin{array}{c}
\mathbf{r}_i(s) \\
\mathbf{d}_i(s)
\end{array} \right]
\]

(42)
of table 4. From (20), where \( G^T(s) \) is 2 x 2 and \( K^T(s) \)
is 5 x 2, we see that the matrix \( N(s) \) must be 7 x 2 while
\( D(s) \) is 2 x 2. Accordingly,

\[
N(s) = \begin{bmatrix}
\mathbf{n}_1(s) \\
\mathbf{n}_2(s) \\
\vdots \\
\mathbf{n}_7(s)
\end{bmatrix}, \quad \text{and} \quad
D(s) = \begin{bmatrix}
\mathbf{d}_1(s) \\
\mathbf{d}_2(s) \\
\vdots \\
\mathbf{d}_7(s)
\end{bmatrix}
\]

is a 9 x 2 matrix, which means from (32) that two kernel

\[
\mathbf{t}_i(s) = \begin{bmatrix}
\mathbf{u}_i(s) \\
\mathbf{r}_i(s)
\end{bmatrix}, \quad i = 1, 2
\]

(43)
must be chosen to effect a design. These elements (43)
will be linear combinations of the reduced basis elements
(42). If

\[
\mathbf{t}_1(s) : \begin{bmatrix}
\mathbf{r}_1(s) \\
\mathbf{r}_2(s)
\end{bmatrix}
\]

has a linear dynamical interpretation as described in
the Appendix, then \( N(s)D^{-1}(s) \) has a minimal realiza-
tion whose state matrix has a characteristic polynomial

\[
|D(s)| = |d_1(s) : d_2(s)|.
\]

Now let

\[
d_1(s) = \sum_{k=1}^{7} f_{1k} d_k(s), f_{1k} \in \mathbb{R}, 1 = 1, 2.
\]

Then

\[
|D(s)| = |\sum_{k=1}^{7} f_{1k} d_k(s) : \sum_{j=1}^{7} f_{2j} d_j(s)|
\]

\[
= \sum_{k=1}^{7} \sum_{j=1}^{7} f_{1k} f_{2j} \left| d_k(s) : d_j(s) \right|,
\]

by elementary properties of determinants. This shows
that the characteristic polynomial of the state matrix
in a minimal realization of \( N(s)D^{-1}(s) \) can be viewed as
a linear combination of the determinants \( |d_k(s) : d_j(s)| \).

Table 4 makes it clear that \(|D|\) must have degree at
least two; and so, since

\[
|d_1(s) : d_6| = -1.4092974E-8s -4.7599915E-7
\]

(47a)

\[
|d_1(s) : d_7| = -8.6656773E-8s -2.9268875E-6
\]

(47b)

\[
|d_6(s) : d_7| = 2.9060023E-8s.
\]

(47c)

with the polynomials in (47) serving as a basis for
\( R[s] \), the \( R \)-subspace of \( k[s] \) consisting of polynomials
of degree two or less, it is possible to construct an
arbitrary polynomial

\[
|D(s)| = b_1 s^2 + b_2 s + b_3,
\]

(48)

for \( b_i \in \mathbb{R}, i = 1, 2, 3 \) by forming an appropriate linear
combination

\[
\beta_1 |d_1(s) : d_6| + \beta_2 |d_1(s) : d_7| + \beta_3 |d_6(s) : d_7|;
\]

(49)

\( \beta_i \in \mathbb{R}, i = 1, 2, 3 \). The \( \beta_i \)'s are uniquely determined by
the \( b_i \)'s. To complete a minimal design (48), it is
only necessary to calculate \( f_{1k} \) and \( f_{2j} \), for \( k \) and
\( j = 1, 6, 7 \). But certain results from the exterior
algebra, referenced in Section 8, permit the calcula-
tion of \( f_{11}, f_{16}, f_{17} \) and \( f_{21}, f_{26}, f_{27} \) as the basis
of the kernel of the matrix \( [\beta_1, \beta_2, \beta_3] \). Space
precludes a complete treatment of the theory, so we turn
to the jet engine example.

We make the selection

\[
|D(s)| = s^2 + 2s + 2,
\]

(50)

not so much because these dynamics are most desirable,
but rather because the industry methods described in
Section 3 could not be used to achieve (50) in a
minimal design. Thus, by solving this case, we estab-
lish potential superiority for MDP over existing indus-
try techniques.

Starting then, with (50) and working backwards, we
can calculate \( \beta_i, i = 1, 2, 3 \) and thence \( f_{11}, f_{16}, f_{17} \)
as well as \( f_{21}, f_{26}, f_{27} \). These calculations were
performed using exact arithmetic again. The results are
presented here after rounding. First we obtain,

\[
\beta_1 = -4.202E6
\]

(51a)

\[
\beta_2 = -1.154E7
\]

(51b)

\[
\beta_3 = -1.095E9.
\]

(51c)
Next, the needed $f_{ij}$'s are obtained from the basis for the kernel of $\langle \delta_1, \delta_2, \delta_3 \rangle$. A workable set of $f_{ij}$'s in,

$$f_{11} = \frac{6}{\delta_3}$$

$$f_{21} = \frac{1}{\delta_3}$$

$$f_{16} = f_{27} = 0$$

$$f_{16} = f_{17} = 1$$

The $f_{ij}$'s in our application, further scaled by a factor of $10^5$ to obtain the compensator gains as reasonable numbers. This can be done without upsetting the compensator pole placement to be achieved. Eqs. (45) and (42) can then be solved for $t_1$ and $t_2$ of (43). The $9 \times 2$ matrix $[t_1, t_2]$, which represents our solution, is seen to be,

$$\begin{bmatrix}
2.573 & -0.937 \\
1.687 & 65.039 \\
1.769 & 57.634 + 1.665 \\
0.0202 & -8.32 \\
-1.158 & -1.607 \\
-3.076 & 1.279 \\
0.744 & -14.214 \\
1.622 & 9.972 \\
0.915 & 46.582
\end{bmatrix}$$

A number of procedures exist which lead directly from the matrix $[t_1, t_2]$ to a state-space realization for the compensators $G(s)$ and $H(s)$. Referring then to fig. 5 and eqs. (23) and (24), we find the matrices $A$, $B$, $C$, $D$, $E$, and $F$ for the desired solution of the problem. These are listed in Table 7, after rounding.

Table 7: Compensator Realizations

<table>
<thead>
<tr>
<th>Matrix</th>
<th>Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_G$</td>
<td>-2.0</td>
</tr>
<tr>
<td></td>
<td>12.298</td>
</tr>
<tr>
<td>$B_G$</td>
<td>2.5732</td>
</tr>
<tr>
<td></td>
<td>-0.9369</td>
</tr>
<tr>
<td>$C_G$</td>
<td>-3.2</td>
</tr>
<tr>
<td></td>
<td>1.092</td>
</tr>
<tr>
<td>$B_k$</td>
<td>-11.727</td>
</tr>
<tr>
<td></td>
<td>2.888</td>
</tr>
<tr>
<td>$D_k$</td>
<td>0.119</td>
</tr>
<tr>
<td></td>
<td>9.973</td>
</tr>
<tr>
<td>$E_k$</td>
<td>1.932</td>
</tr>
<tr>
<td></td>
<td>-1.265</td>
</tr>
<tr>
<td>$F_k$</td>
<td>0.813</td>
</tr>
</tbody>
</table>

The solution given in table 7 was verified by comparing the corresponding Markov parameters for the closed loop systems of figs. 5 and 3. An exact calculation comparing the first two Markov parameters, showed these to be identical for both systems. Another, non-exact calculation, which verified the first six Markov parameters, showed agreement to four digits. The first two of these were listed in the second column of table 3.

Step responses obtained from the closed loop system of fig. 5, using the numbers of table 7, are shown in fig. 7.

A visual comparison of fig. 7 with similar plots obtained for the optimal integral control system of fig. 3 showed them to be identical. Hence the latter set is not included here. It might be interesting to examine the distribution of closed loop poles, which is given below,

-138.43   -4.47 + 0.986 i
-78.38    -1.678 + 0.238 i
-0.136

Fig. 7 Unit Step Responses. (a) Step on Input 1 (b) Step on Input 2.

As a final note in this section, we can point out that the fixed poles in a compensator solution are identical to the zeros of the greatest common divisor of the polynomials $\langle d_i, d_j \rangle$, $i, j = 1, 2, \ldots, 7$. It is clear from the pairings $(1,6), (1,7), (6,7)$ of our example that this GCD is 1, and thus that there are no fixed poles in the jet engine application.

8.1 Conclusions

Considerable work has been done in the control system area on polynomial design methods. Regardless of which viewpoint one takes toward the definition of such problems, their solution is usually assumed to proceed according to algorithms of the type described in the Appendix. Conceptually, this theory has achieved considerable maturity, and so it seems appropriate to conduct an extensive case study of its application to a realistic problem. This is the reason for the jet engine control analyses carried out in this paper.

The conclusions are generally positive in nature, though with some temporary limitations. On the positive side, Sections 3 and 7 show that MDP is a problem relevant to the jet engine control industry and that the MDP Algorithm offers a significant improvement in flexibility of design over existing algorithms in that industry. The application problem detailed herein provides a realistic and non-trivial test case for workers in the area of computer solution of polynomial problems. A first limitation clearly occurs in Algorithm 2, which is a popular and well known theoretical algorithm. Both in terms of integer growth and relative CPU time, this reduction algorithm points to a need for further research. Following such an improvement, it would appear that the second limitation is overall CPU time for an exact solution. Though the cost of such time would be a small part of overall design cost, it appears desirable to reduce this time by an order of magnitude. Since such a reduction seems to be a near-term possibility by hardware or software advances, it would seem that polynomial methods may soon be ready to play a greater role in everyday practical design.

8.2 Historical Remarks

The original stimulus for this work was the paper of Wang and Davison [1] in 1973, in which a minimal inverse system problem was solved. That work subsequently led to the algorithm of Forney [2] phrased in rational vector spaces. Together, these works then led to the free-modular MDP Algorithm [3] which has been applied here. The jet engine application has been motivated by Michael and Farrar [4], whence arose our numerical data. A report on KERPO in double-precision FORTRAN has been presented [5], as has a more complete treatment of the pole assignment approach [6] in Section 7. Background reading on the algebraic aspects of the paper is available in [7]; and the exact proposition needed in Section 7 can be found in Chapter XV, Section B, Proposition 15 of [8]. Further references to related
polynomial works have been cited in [3].

REFERENCES

APPENDIX

Let

\[
H : F[s]_q + F[s]_p
\]

be a morphism of free modules. In the appendix, we describe how a reduced basis for the kernel of the matrix representing the morphism. The technique is to choose a q x q unimodular F[s]-matrices to post-multiply the kernel. A matrix is unimodular if it has a non-zero determinant that is an element of F. Mathematically,

\[
U : F[s]_q + F[s]_q
\]

is unimodular if \( U \) \( \neq 0 \), \( c \in F \). Such an operation is equivalent to a change of basis in F[s]_q and leads to a representation of H in the new basis. The following elementary column operations are examples of such transformations. The column operations are (1) interchanging any two columns of \( H \); (2) adding an F[s]-multiple of one column of \( H \) to another; (3) multiplication of a column of \( H \) by a non-zero element of F.

We change notation slightly by letting \( M \) be the \( p \times q \) representing the morphism \( H \). The technique is to choose a \( q \times q \) unimodular \( F[s] \)-matrices to post-multiply \( M \). A matrix is unimodular if it has a non-zero determinant that is an element of F. Mathematically,

\[
M : F[s]_p + F[s]_p
\]

is unimodular if \( M \) \( \neq 0 \), \( c \in F \). Such an operation is equivalent to a change of basis in F[s]_p and leads to a representation of \( M \) in the new basis. The following elementary column operations are examples of such transformations. The column operations are (1) interchanging any two columns of \( M \); (2) adding an F[s]-multiple of one column of \( M \) to another; (3) multiplication of a column of \( M \) by a non-zero element of F.

Given the \( p \times q \) matrix \( M \), the following algorithm leads to a basis for Ker \( M \). The basis elements are represented in the usual manner.

Algorithm 1

Step 1. To the \( p \times q \) matrix \( M \), adjoin a \( q \times q \) identity matrix to form

\[
\begin{bmatrix}
M \\
I
\end{bmatrix}
\]

(A.4)

Step 2. By elementary column operations, reduce (A.4) to the form

\[
\begin{bmatrix}
E_{11} & 0 \\
E_{21} & E_{22}
\end{bmatrix}
\]

(A.5)

where \( E_{11} \) has \( p \) rows, has no zero columns and is in echelon form.

Step 3. Then the columns of \( E_{11} \) are a basis for the image of \( M \), and the columns of \( E_{22} \) are a basis for the kernel of \( M \) (Ker \( M \)).

Now, let \( b_i, i = 1, 2, \ldots, T \) be the columns of \( E_{22} \) obtained from Algorithm 1 as a basis for Ker \( M \). Then by application of further unimodular transformations, we can get an equivalent basis for Ker \( M \) which is reduced in the sense of Section 4. Notice that we have introduced the notation \( b_i \) for elements of the basis before reduction, to avoid confusion with \( t_i, i = 1, 2, \ldots, T \), which was assumed to be a reduced basis in Section 4. The algorithm below is used to reduce the kernel basis. However, the procedure is more general in nature and can be used to reduce \( T \) linearly independent elements in \( F[s]_q \) regardless of their origin. This one is typical of procedures described in the literature for doing these kinds of calculations. However, as has been pointed out in the paper, it is this part of the computation that consumes the major portion of computer time. Any research aimed at achieving efficiency in the reduction process is, therefore, the most likely to have a significant payoff in terms of making the MDP method of control system design tractable in the near term.

Algorithm 2

Write each \( b_i, i = 1, 2, \ldots, T \) in the manner

\[
b_i = \sum_{j=0}^{T} b_j f_j \quad (A.6)
\]

where \( b_j \in F_q \) and \( b_i \neq 0 \). We shall say the list

\[
\{ b_1, b_2, \ldots, b_T \}
\]

is reduced if the matrix

\[
[b_1, f_1, b_2, f_2, \ldots, b_T, f_T]
\]

(A.7)

has rank \( T \). Then, perform:

Step 1. If the list \( b_1, b_2, \ldots, b_T \) of linearly independent elements is reduced, stop; otherwise, continue.

Step 2. Determine field elements \( f_i \) in \( F, 1 \leq i \leq T \) which are not all zero and which satisfy

\[
f_i b_i f_i = 0 \quad (A.8)
\]

Step 3. For the set of integers \( 1 \) having \( f_i \) non-zero, determine an \( i \), denoted by \( i_{\text{max}} \), for which \( f_i \) is a maximum, denoted by \( f_{\text{max}} \).

Step 4. Perform the elementary column operation by

\[
\sum_{i=1}^{T} f_i b_i
\]

(A.9)

Now, in any solution

\[
0
\]

47.8

Page
of (A.9), each of the \( \ell \) columns will be contained in the kernel of \( M \). All solutions pairs \((N, D)\) can, thus, be built up as linear combinations of elements in a basis for \( \text{Ker} M \). Under what conditions will a solution pair \((N, D)\) yield a minimal solution?

Without loss of generality, we may assume that for any candidate pair \((N, D)\) the \( \ell \) columns of

\[
\begin{bmatrix}
N \\
D
\end{bmatrix}
\]

are reduced, because if they are not, a unimodular transformation \( V \) on \( F[s]^{\ell} \), chosen according to Algorithm 2, will produce an equivalent pair \((\tilde{N}, \tilde{D})\) such that the columns of

\[
\begin{bmatrix}
\tilde{N} \\
\tilde{D}
\end{bmatrix}
\]

are reduced and

\[
ND^{-1} = NV(DV)^{-1} = \tilde{N}\tilde{D}^{-1}.
\]  

(A.10)

Then, we make the following comments, offered without proof.

(1) \( N(s)D^{-1}(s) \) can be realized by a linear dynamical system if \( ND^{-1} \) is a matrix of proper rational functions. In such a situation, there exists a realization \( A, B, C, E \), all matrices over \( F \), such that

\[
G(s) = N(s)D^{-1}(s)
\]  

(A.11)

Equivalently, we also say that a pair \((N, D)\) has a linear dynamical interpretation if the \( \ell \) columns of

\[
\begin{bmatrix}
N \\
D
\end{bmatrix}
\]

are reduced and furthermore, letting the \( i \)th column be

\[
\hat{e}_i = \begin{bmatrix} e_i \\ d_i \end{bmatrix}, \quad i = 1, 2, \ldots, \ell,
\]

(A.12)

these \( \ell \) columns, when expressed as

\[
\hat{e}_i = \sum_{j=0}^{m_i-1} \hat{e}_{i,m_i} s^j, \quad \hat{e}_{i,m_i} \neq 0
\]  

(A.13)

are such that the last \( \ell \) rows of the matrix

\[
[\hat{e}_{1,m_1}, \hat{e}_{2,m_2}, \ldots, \hat{e}_{\ell,m_\ell}]
\]

(A.14)

have full rank.

Being concerned with finding a realization with the least order of dynamics, we state two more properties.

(2) If the property in (1) is satisfied, then the determinant \( |D(s)| \) is related to the minimal realization, being an \( F \)-multiple of the corresponding characteristic polynomial \( |sI-A| \). Also,

(3) The columns of

\[
\begin{bmatrix}
N \\
D
\end{bmatrix}
\]

when expressed as in (A.13), yield the number of dynamical elements in the minimal realization as

\[
\sum_{i=1}^{\ell} m_i.
\]  

With these notions, let \( t_1, t_2, \ldots, t_\ell \) be the reduced basis obtained from Algorithm 2. Then, MDP reduces to generating \( \ell \) elements in \( \text{Ker} M \) which have a linear dynamical interpretation, with minimum order dynamics. For this, we can use the MDP Algorithm.

**MDP Algorithm**

**Step 1.** Apply Algorithm 1 to obtain a basis

\[
\begin{bmatrix}
b_1 \\
\vdots \\
b_\ell
\end{bmatrix}
\]

for \( \text{Ker} M \).

**Step 2.** Apply Algorithm 2 to the elements of (A.15), to form a reduced basis,

\[
t_1, t_2, \ldots, t_\ell
\]

(A.16)

**Step 3.** Express the reduced basis (A.16) in this manner

\[
t_1 = \sum_{j=0}^{k_{1,j}} t_{1,j}, \quad t_{1,k_1} \neq 0
\]  

(A.17)

for \( i = 1, 2, \ldots, \ell \). Form the matrix

\[
[1, t_{1,1}, t_{1,2}, \ldots, t_{1,\ell}]
\]  

(A.18)

If the rank of the matrix formed from the last \( \ell \) rows of (A.18) is not equal to \( \ell \), stop; MDP has no solution; otherwise, continue.

**Step 4.** From the elements of (A.16) in the reduced basis select \( \ell \) elements

\[
t_1, t_2, \ldots, t_\ell
\]

with the properties

(i) the rank of the matrix formed from the last \( \ell \) rows of

\[
[1, t_{1,1}, t_{1,2}, \ldots, t_{1,\ell}]
\]

is equal to \( \ell \); and

(ii) \( \sum_{j=0}^{k_{1,j}} t_{j} \) is a minimum.

As a matter of fact, more solutions to MDP may be possible. Any elements \( t_1, t_2, \ldots, t_\ell \) in \( \text{Ker} M \), which admit a linear dynamical interpretation and achieve the minimum order dynamics predicted in (ii) above, are a solution to MDP through the equations

\[
\begin{bmatrix}
N \\
D
\end{bmatrix} = [1, t_2, \ldots, t_\ell]
\]

(A.19)

and

\[
G(s) = N(s)D^{-1}(s).
\]  

(A.20)

Now, in the jet engine problem, \( \alpha \) is 7 and \( \ell \) is 2. The two needed columns of

\[
\begin{bmatrix}
N \\
D
\end{bmatrix}
\]

were generated in Section 7 to satisfy the pole placement requirement.

**ORIGINAL PAGE IS OF POOR QUALITY**
Appendix E

"A COMPARISON OF FREQUENCY DOMAIN TECHNIQUES FOR JET ENGINE CONTROL SYSTEMS DESIGN"

M. K. Sain
R. M. Schafer
R. R. Gejji
P. W. Hoppner
A COMPARISON OF FREQUENCY DOMAIN TECHNIQUES
FOR JET ENGINE CONTROL SYSTEM DESIGN

R. Gejji, R. M. Schafer, M. K. Sain, & P. Hoppner
Department of Electrical Engineering
University of Notre Dame
Notre Dame, Indiana 46556

Abstract

Present research efforts in the area of linear multivariable control systems include activities which will probably reestablish frequency domain methods as frequently used tools for design. Two notable branches of this activity are polynomial methods and return-difference-determinant methods. This paper sketches some features of these approaches, in the context of a numerical example from turbofan engine control.

1. INTRODUCTION

State variable methods for the design of linear multivariable control systems are well established as a major tool in the applications. Variants of the linear quadratic regulator theory are probably the most successful, with a variety of other techniques such as pole placement, decoupling, and geometric regulator theory also available. Even today, however, linear quadratic regulator theory still requires a somewhat indirect thought process, a feature it shares with many optimization methods; and much of the remaining technique is synthesis oriented instead of design oriented.

Accordingly, some modern re-emergence of frequency domain thought has occurred—especially for design. Broadly depicted, this work involves polynomial methods and return-difference-determinant methods. This paper records certain studies of these ideas, on a common illustration from turbofan engine control. Brevity precludes in-depth treatment; we rely instead on the illustrations and the references.

2. ILLUSTRATIVE PROBLEM

The turbofan engine model chosen for the illustration has two control inputs—fuel flow and exhaust area, five states—fan turbine inlet temperature, main burner pressure, fan speed, high compressor speed, and augmentor pressure, and two outputs—thrust and high turbine inlet temperature. In traditional \((A,B,C,D)\) form, the state description [1] is given by the matrices at the top of the following column, at a power lever angle of 47°. For the sequel the corresponding matrix \(G(s)\), namely \(C(sI-A)^{-1}B+D\), is recorded.

The design problem is to select compensators for \(G(s)\), in a loop under unity negative feedback of the plant outputs. Fast step responses with small overshoot are of interest.

3. POLYNOMIAL METHODS [2]

Polynomial methods take advantage of the fact that action of the \(A\)-matrix and the \(s\)-variable are closely related in a module theoretic sense [3]. Not yet well advanced computationally, polynomial methods nonetheless offer considerable insight into system structure. As is to be expected, they resemble the geometric methods in this regard.
As an example, consider the selection of $K_1(s)$ and $K_2(s)$ in Figure 1 in order to achieve a specified closed loop performance $T(s)$. Such a specification is, of course, a nontrivial issue in its own right. A complete treatment of such a specification can be found in [2]. Relying upon the algebraic interpretation of a transfer function as a pair of polynomials, such a design problem can be converted to a kernel calculation in $\mathbb{R}(s)$-modules, where $\mathbb{R}(s)$ denotes polynomials in $s$ with coefficients in the real number field $\mathbb{R}$. Considerable manipulation must be carried out to set up this kernel problem, which turns out to involve a $2 \times 9$ matrix of polynomials up to the thirteenth degree, as shown below.

\[
\begin{bmatrix}
1.17 \times 10^3 & -1.37 \times 10^2 \\
44.40 \times 10^5 & -4.99 \times 10^3 \\
44.06 \times 10^5 & -4.21 \times 10^4 \\
41.18 \times 10^5 & -1.07 \times 10^5 \\
-1.24 \times 10^5 & +1.49 \times 10^6 \\
-1.26 \times 10^5 & +1.99 \times 10^7 \\
-2.07 \times 10^8 & +1.99 \times 10^8 \\
-5.55 \times 10^9 & +6.93 \times 10^9 \\
-4.80 \times 10^9 & +8.33 \times 10^9 \\
-7.09 \times 10^9 & +2.38 \times 10^9 \\
44.5 \times 10^{-1} & -1.00 \times 10^2 \\
\end{bmatrix}
\]

Responses to unit steps in the two reference channels are shown in Figures 2 and 3.

Solution of a problem by polynomial methods involves at this time nontrivial computational overhead, which is discussed in greater detail in [2]. It is likely, however, that advances in software and hardware will soon reduce this overhead. Advantages of the method include a finite enumeration of all solutions for a given $T(s)$, and perhaps eventually a finite description of all possible performances.

As an example, consider the selection of $K_1(s)$ and $K_2(s)$ in Figure 1 in order to achieve a specified closed loop performance $T(s)$. Such a specification is, of course, a nontrivial issue in its own right. A complete treatment of such a specification can be found in [2]. Relying upon the algebraic interpretation of a transfer function as a pair of polynomials, such a design problem can be converted to a kernel calculation in $\mathbb{R}(s)$-modules, where $\mathbb{R}(s)$ denotes polynomials in $s$ with coefficients in the real number field $\mathbb{R}$. Considerable manipulation must be carried out to set up this kernel problem, which turns out to involve a $2 \times 9$ matrix of polynomials up to the thirteenth degree, as shown below.

\[
\begin{bmatrix}
1.17 \times 10^3 & -1.37 \times 10^2 \\
44.40 \times 10^5 & -4.99 \times 10^3 \\
44.06 \times 10^5 & -4.21 \times 10^4 \\
41.18 \times 10^5 & -1.07 \times 10^5 \\
-1.24 \times 10^5 & +1.49 \times 10^6 \\
-1.26 \times 10^5 & +1.99 \times 10^7 \\
-2.07 \times 10^8 & +1.99 \times 10^8 \\
-5.55 \times 10^9 & +6.93 \times 10^9 \\
-4.80 \times 10^9 & +8.33 \times 10^9 \\
-7.09 \times 10^9 & +2.38 \times 10^9 \\
44.5 \times 10^{-1} & -1.00 \times 10^2 \\
\end{bmatrix}
\]

Responses to unit steps in the two reference channels are shown in Figures 2 and 3.

Solution of a problem by polynomial methods involves at this time nontrivial computational overhead, which is discussed in greater detail in [2]. It is likely, however, that advances in software and hardware will soon reduce this overhead. Advantages of the method include a finite enumeration of all solutions for a given $T(s)$, and perhaps eventually a finite description of all possible performances.

\[
\begin{bmatrix}
-2.0 & -0.1626 \\
12.298 & 0 \\
2.5732 & 1.686 \\
-0.9369 & 65.039 \\
-3.2 & 0.1 \\
1.092 & 0 \\
-11.727 & -9.725 & 2.888 & 5.944 & 0.824 \\
0.119 & 0.777 & 2.363 & 9.973 & -3.806 \\
1.932 & 0.022 & -1.265 & -3.36 & 0.813 \\
\end{bmatrix}
\]

The present computational situation for polynomial methods involves at this time nontrivial computational overhead, which is discussed in greater detail in [2]. It is likely, however, that advances in software and hardware will soon reduce this overhead. Advantages of the method include a finite enumeration of all solutions for a given $T(s)$, and perhaps eventually a finite description of all possible performances.
Fig. 1
Compensation Scheme for Polynomial Design

Fig. 2
Closed Loop Response to Unit Step in Commanded Thrust; Polynomial Design
\[ \begin{align*}
\frac{.256}{.371} - \frac{.185}{.185} - \frac{.371}{.371}
\end{align*} \]

Fig. 3
Closed Loop Response to Unit Step in Commanded Temperature; Polynomial Design

Fig. 4
Nyquist Plots for Compensated System; Direct Expansion

Fig. 5
Nyquist Plots for Compensated System; Alpha Expansion

Fig. 6
Nyquist Plot for \( \det(I+GK) \)
the loop can be obtained by an isomorphism on the product of the state spaces $X$ and $X_c$ associated with the plant and compensator, respectively, provided that the gain matrix $P_K$ has no negative unit eigenvalues. For this situation, one has the important relationship that

$$|1+D_{K_1}| |sI-A_c| = |1+G_K| |sI-A| |sI-A_K|,$$

upon which a Nyquist study can be based. We refer
Design based upon Nyquist plots of $\text{I+GK}$ is made challenging by the intricate way in which the compensator $K$ relates to the determinant. At present, only introductory design studies based upon the expansions above have been made [4]. An illustration is the compensator

$$K(s) = \begin{bmatrix} 1 & 0 \\ 0 & 1000(s+10) \\ 0 & s(s+200) \end{bmatrix},$$

which was chosen by a cut-and-try method to increase the speed of response of the second output. Figures 4 and 5 show the terms in the "obvious" and "a" expansions for the compensated system, with Figure 6 indicating the sum, exclusive of the unit term in each expansion. Closed loop responses to reference steps in each channel are shown in Figures 7 and 8. Though the temperature response in Figure 8 is acceptable, the thrust response in Figure 7 exhibits overshoot; and considerable interaction is evident.

In current practice, plots such as Figure 6 tend to be the most useful. Design technique tends to focus upon reducing the interaction evident in these results, which brings us to the next topic.

5. CARDIAD--A DOMINANCE APPROACH [5]

In making a Nyquist plot of the determinant of return difference, H. H. Rosenbrock, [7] has established that $\text{I+GK}$ encirclements can be counted as the algebraic sum of the encirclements of the diagonal elements of return difference $(\text{I+GK})$—provided that a condition of "dominance" holds on $(\text{I+GK})$. This means, in our case, that the off-diagonal element in a column is smaller in magnitude than the diagonal element, as a function of frequency $(s=j\omega)$. Related to this stability oriented usage of the dominance idea is a corresponding requirement on the loop transmission $G(s)$, which is used to help with decoupling closed loop performance.

Selection of $K(s)$ for this latter purpose, so that $G(j\omega)K(j\omega)$ is dominant on its columns, has been widely studied for the case in which $K(s)$ is restricted to be a constant matrix. Much less has been accomplished relative to the choice of a dynamic $K(s)$.

A new technique for this purpose is the CARDIAD.
plot, acronymed for Compensator Acceptability region for Diagonal Dominance. Compensators

\[ K(j\omega) = \begin{bmatrix} 1 & x_2(j\omega) + jy_2(j\omega) \\ x_1(j\omega) + jy_1(j\omega) & 1 \end{bmatrix} \]

are assumed, without loss of generality for pre-compensation. A CARDIAD plot for column one of the uncompensated system is shown in Figure 9. Each circle corresponds to a particular frequency \( \omega \), and acceptable \((x, y)\) pairs must be outside dashed circles at the frequency in question. Note that \( y = 0 \) and \( x \), suitably negative will be acceptable for all frequencies. Figure 10 shows a CARDIAD plot for column two. Acceptable \((x, y)\) pairs must be inside solid circles at the frequency in question.

The simple compensator

\[ K(s) = \begin{bmatrix} 1 & 0.7s + 0.6a \\ -10 & 0.05s + 1 \end{bmatrix} \]

achieves dominance at all frequencies in both columns, as can be seen in Figures 11 and 12, which consist only of solid circles each of which includes the origin.

More detailed information about an application of this method to design and simulation of a turbofan engine control can be found in [6].

6. DISCUSSION

Recent activities in frequency domain analysis and design of linear multivariable control systems suggest a certain resurgence of this viewpoint in useful new ways. Though somewhat limited by space constraints, we have tried to give a glimpse of some of these methods in the context of a numerical model from the turbofan engine area. Focus has been on polynomial methods, which bear close resemblance to geometric control methods in an abstract algebraic sense, and upon methods related to the determinant of return difference. The CARDIAD plot, a new dynamical approach to dominance, has been illustrated.

ACKNOWLEDGMENTS

This work was supported in part by the National Science Foundation under Grant ENG 75-22322 and in part by the National Aeronautics and Space Administration under Grant NSG 3048.

REFERENCES


Appendix F

"TIME OPTIMAL CONTROL
OF A TWO-SPool TURBOFAN JET ENGINE"

W. E. Longenbaker
R. J. Leake
TIME OPTIMAL CONTROL
OF A TWO-SPOOL TURBOFAN JET ENGINE

by

W. E. Longenbaker and R. J. Leake

Department of Electrical Engineering
University of Notre Dame

Technical Report No. EE-7714

September 1977

* This research was supported by the National Aeronautics and Space Administration under Grant NSG-3048.
This work explores an alternative to existing methods which are commonly used to design controls for jet engines. Whereas most modern designs implement piecewise-linear quadratic regulators, this represents an attempt to obtain a global nonlinear optimal control for a two-spool turbofan jet engine.

A necessary starting point, therefore, is to have a good nonlinear model on which to perform the control studies. Unfortunately, the only accurate existing models of jet engines are (1) linear analytical models valid only for small regions, or (2) massive nonlinear, non-analytical computer programs which attempt to match experimental data. What is needed for this study is something which lies between these two extremes, i.e., a nonlinear, analytical model.

A fifth order nonlinear model was developed in this study which correctly models most of the qualitative behavior of the jet engine, but which fails to achieve strong numerical agreement with DYNGEN, a reliable non-analytical simulator. Several linear models were derived, both from the nonlinear analytical model, and also from DYNGEN. A time optimal control problem was formulated, subject to various constraints. Dynamic Programming theory and the Successive Approximations technique were explored, and applied to the problem of interest, while several improvements in the numerical programming were introduced. Analytical and numerical results were obtained for several models, both constrained and unconstrained. Finally, these results were tested on the two principal simulators, DYNGEN and the analytical nonlinear model.

The study successfully achieved time optimal feedback control laws for various models of the two-spool turbofan jet engine. Furthermore, valuable insight into the nature of the problem was obtained, and much
useful computer software was developed. However, an optimal control law obtained from any model can only be as good as the model itself. For this reason, more work is needed to develop a better nonlinear analytical model of the two-spool turbofan jet engine.
# TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ii</td>
</tr>
<tr>
<td>CHAPTER I: INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>CHAPTER II: TWO-SPPOOL TURBOFAN JET ENGINE MODELS.</td>
<td>2</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>2</td>
</tr>
<tr>
<td>2.2 Model 2 Development</td>
<td>3</td>
</tr>
<tr>
<td>2.3 Linearizations and Order Reductions of Model 2</td>
<td>11</td>
</tr>
<tr>
<td>2.4 Linearizations and Order Reductions of Model 1</td>
<td>13</td>
</tr>
<tr>
<td>2.5 Comparison of Model Responses</td>
<td>17</td>
</tr>
<tr>
<td>CHAPTER III: THE TIME OPTIMAL CONTROL PROBLEM</td>
<td>23</td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>23</td>
</tr>
<tr>
<td>3.2 Statement of the Problem</td>
<td>24</td>
</tr>
<tr>
<td>CHAPTER IV: THE DYNAMIC PROGRAMMING METHOD</td>
<td>26</td>
</tr>
<tr>
<td>4.1 Introduction</td>
<td>26</td>
</tr>
<tr>
<td>4.2 Dynamic Programming Theory</td>
<td>26</td>
</tr>
<tr>
<td>4.3 Successive Approximations Technique</td>
<td>27</td>
</tr>
<tr>
<td>4.4 Technique Refinements</td>
<td>29</td>
</tr>
<tr>
<td>4.5 General Program Structure</td>
<td>33</td>
</tr>
<tr>
<td>CHAPTER V: OPTIMAL CONTROL LAWS</td>
<td>36</td>
</tr>
<tr>
<td>5.1 Basic Problem Considerations</td>
<td>36</td>
</tr>
<tr>
<td>5.2 Model 2L3 Unconstrained</td>
<td>37</td>
</tr>
<tr>
<td>5.3 Optimal Control Theory</td>
<td>42</td>
</tr>
<tr>
<td>5.4 Model 2L2 Unconstrained</td>
<td>47</td>
</tr>
<tr>
<td>5.5 Model 1L2 Unconstrained</td>
<td>57</td>
</tr>
<tr>
<td>5.6 Model 1L2 Constrained</td>
<td>65</td>
</tr>
<tr>
<td>5.7 Model 2 Unconstrained</td>
<td>69</td>
</tr>
<tr>
<td>5.8 Model 2 Constrained</td>
<td>73</td>
</tr>
<tr>
<td>CHAPTER VI: CONTROLLER SIMULATIONS</td>
<td>78</td>
</tr>
<tr>
<td>6.1 Introduction</td>
<td>78</td>
</tr>
<tr>
<td>6.2 Model 2 Simulation Utilizing Model 2L2 (Unconstrained) Control Law.</td>
<td>81</td>
</tr>
<tr>
<td>6.3 Model 2 Simulation Utilizing Model 2 (Unconstrained) Control Law.</td>
<td>81</td>
</tr>
<tr>
<td>6.4 Model 2 Simulation, Utilizing Model 2 (Constrained) Control Law.</td>
<td>90</td>
</tr>
<tr>
<td>6.5 Model 1 Simulation Utilizing Model 2 (Constrained) Control Law.</td>
<td>95</td>
</tr>
<tr>
<td>6.6 Model 1 Simulation Utilizing Model 1L2 (Constrained) Control Law.</td>
<td>95</td>
</tr>
<tr>
<td>CHAPTER VII: SUMMARY</td>
<td>105</td>
</tr>
</tbody>
</table>
CHAPTER I

INTRODUCTION

This work explores an alternative to existing methods which are commonly used to design controls for jet engines. Whereas most modern designs implement piecewise-linear quadratic regulators, this represents an attempt to obtain a global nonlinear optimal control for a two-spool turbofan jet engine.

A necessary starting point, therefore, is to have a good nonlinear model on which to perform the control studies. Unfortunately, the only accurate existing models of jet engines are (1) linear analytical models valid only for small regions, or (2) massive nonlinear, non-analytical computer programs which attempt to match experimental data. What is needed for this study is something which lies between these two extremes, i.e., a nonlinear, analytical model.

Finally, after a suitable model(s) of the F-100-like jet engine is obtained, a time-optimal control can be calculated. This control will be determined subject to various constraints. It will be derived using Dynamic Programming and the Successive Approximations technique.
CHAPTER II
TWO SPOOL TURBOFAN JET ENGINE MODELS

2.1 Introduction

In this chapter, a hierarchy of models for a two spool turbofan jet engine is discussed. The configuration for this engine has been specified by NASA Lewis Research Center personnel. A preliminary version of this work is given in reference [1] and has also been reported in [2].

The models have been classified as follows:

Model 0. The actual jet engine (hypothetical).

Model 1. The DYNGEN [3] simulation program, coded with data presumed to have been taken from experimental measurements on Model 0. This model solves 16 nonlinear differential equations and uses data maps and thermodynamic tables which cannot be expressed analytically.

Model 2. This model involves the primary thrust of this chapter, and is a 5th order nonlinear analytical model. It includes the 5 state differential equations which govern the dynamic behavior of the system, along with 20 algebraic equations which express the relationship between various engine variables.

In addition to these nonlinear models, several linear models have been developed. Their original purpose was to provide an indirect method to compare Models 1 and 2. Subsequently, they also became important in the determination of a time-optimal control for the jet engine, when comparisons showed marked differences between Models 1 and 2.

Model 1L5. This is a normalized 5th order linear model which is obtained numerically from Model 1, using the experimental DYGABCD [4] program of L. Geyser.
Model 1L3. This is a normalized 3rd order linear model obtained by means of an order reduction performed on Model 1L5.

Model 1L2. This is the corresponding 2nd order reduction of Model 1L3.

Model 2L5. This is a normalized 5th order linear model obtained by taking partial derivatives of the analytical Model 2.

Model 2L3. This is a normalized 3rd order linear model obtained by means of an order reduction performed on Model 2L5.

Model 2L2. This is the corresponding 2nd order reduction of Model 2L3.

2.2 Model 2 Development

There are several purposes for the development of Model 2. First, it enables one to readily see the basic nonlinear relationships between the engine variables. This allows one to gain insight into their static and dynamic behavior. Second, it is fundamental that an analytical model be available for the application of optimal control techniques. Finally, linear models obtained by partial differentiation of this model tend to have more structure (zero entries in the ABCD matrices) than those obtained numerically. This in turn gives the linear control designer more insight.

Model 2 was intended to be an approximation of Model 1, based on the specified engine configuration. Theoretical relationships developed in references [5], [6], and [7] were employed as a starting point and certain simplifications suggested in [8] were used. In various situations, least squares and exact fits were made to theoretical forms, and if a theoretical form was unavailable, polynomial, linear, and exponential forms were used, whatever seemed to best fit the situation.
In most cases, the variables used in Model 2 correspond to those of Model 1. A letter key provides consistency among the variable names in the following manner:

- \( P \) a pressure
- \( T \) a temperature
- \( U \) a specific energy
- \( V \) a volume
- \( W \) a flow

Similarly, numbers in the variable names identify engine locations as per figure 2.1. Table 2.1 is a list of all variables used.

FIGURE 2.1. Jet Engine Diagram
Before delving into the details of the model, certain decisions had to be made regarding the choice of state variables and the order of the system. There is no general agreement as to what the order of a jet engine system is. It is a physical, not mathematical, entity and thus, every mathematical model is an approximation to the reality. Naturally, the higher the order of the model, the more accurate the approximation should be. The order that was selected (5th) was a function of the accuracy required by the control study to follow. This contrasts with the DYNGEN 16th order model, but is not an excessively low choice, for even first order models could yield reasonable results.

The most obvious states to choose are the rotor speeds, (1) \( N_C \) and (2) \( N_F \). The other selections were (3) the burner pressure, \( P_4 \), a variable which is strongly affected by changes in fuel, \( WFB \); (4) the burner internal energy, \( U_4 \), a variable which is related by a constant to the burner temperature; and (5) the afterburner pressure, \( P_7 \), a variable which is strongly affected by changes in the nozzle area, \( A_8 \).

Table 2.2 gives a listing of the inputs, states and outputs. In actual existing control systems, inputs (1) and (2) are used, along with movable guide vanes mounted throughout the compressor and fan stages. These vanes cause changes in the air flow in a manner similar to the bleeds used in the model.

Tables 2.3, 2.4, and 2.5 respectively are listings of the constants used in the model, the design values corresponding to the specified engine configuration, and the nonlinear state equations. Note that the state equations are formulated in terms of intermediate variables which have a very real physical interpretation.

Table 2.6 is a listing of these nonlinear relationships existing between the state variables and the intermediate variables. Some of
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Variable Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_8$</td>
<td>nozzle area</td>
</tr>
<tr>
<td>CNC</td>
<td>corrected compressor rotor speed</td>
</tr>
<tr>
<td>CNF</td>
<td>corrected fan rotor speed</td>
</tr>
<tr>
<td>FG</td>
<td>thrust</td>
</tr>
<tr>
<td>$N_C$</td>
<td>compressor rotor speed</td>
</tr>
<tr>
<td>$N_F$</td>
<td>fan rotor speed</td>
</tr>
<tr>
<td>$P_{CMA}$</td>
<td>compressor pressure ratio at surge</td>
</tr>
<tr>
<td>$P_{FMA}$</td>
<td>fan pressure ratio at surge</td>
</tr>
<tr>
<td>$P_{21}$</td>
<td>fan exit (compressor inlet) pressure</td>
</tr>
<tr>
<td>$P_3$</td>
<td>compressor exit pressure</td>
</tr>
<tr>
<td>$P_4$</td>
<td>combustor exit pressure</td>
</tr>
<tr>
<td>$P_7$</td>
<td>afterburner exit pressure</td>
</tr>
<tr>
<td>$T_{21}$</td>
<td>fan exit (compressor inlet) temperature</td>
</tr>
<tr>
<td>$T_3$</td>
<td>compressor exit temperature</td>
</tr>
<tr>
<td>$T_4$</td>
<td>combustor exit temperature</td>
</tr>
<tr>
<td>$T_{50}$</td>
<td>high pressure turbine exit temperature</td>
</tr>
<tr>
<td>$T_{55}$</td>
<td>low pressure turbine exit temperature</td>
</tr>
<tr>
<td>$T_7$</td>
<td>afterburner exit temperature</td>
</tr>
<tr>
<td>$U_4$</td>
<td>combustor internal energy</td>
</tr>
<tr>
<td>$W_{AC}$</td>
<td>compressor airflow rate</td>
</tr>
<tr>
<td>$W_{AF}$</td>
<td>fan airflow rate</td>
</tr>
<tr>
<td>$W_{A3}$</td>
<td>airflow rate into combustor</td>
</tr>
<tr>
<td>$W_{CMA}$</td>
<td>maximum compressor airflow rate</td>
</tr>
<tr>
<td>$\Delta W_{CMA}$</td>
<td>correction term for maximum compressor airflow rate</td>
</tr>
<tr>
<td>$W_{FB}$</td>
<td>fuel flow rate into combustor</td>
</tr>
<tr>
<td>$W_{FMA}$</td>
<td>maximum fan airflow rate</td>
</tr>
<tr>
<td>$W_{G4}$</td>
<td>gaseous flow rate out of combustor</td>
</tr>
<tr>
<td>$W_{G50}$</td>
<td>gaseous flow rate out of high pressure turbine</td>
</tr>
<tr>
<td>$W_{G55}$</td>
<td>gaseous flow rate out of low pressure turbine</td>
</tr>
<tr>
<td>$W_{G7}$</td>
<td>gaseous flow rate out of afterburner</td>
</tr>
<tr>
<td>$Z_C$</td>
<td>compressor surge margin</td>
</tr>
<tr>
<td>$Z_F$</td>
<td>fan surge margin</td>
</tr>
</tbody>
</table>
### TABLE 2.2
INPUT, STATE, AND OUTPUT VARIABLES

<table>
<thead>
<tr>
<th>Variable Description</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>fuel flow</td>
<td>$W_{FB}$</td>
</tr>
<tr>
<td>nozzle area</td>
<td>$A_{8}$</td>
</tr>
<tr>
<td>compressor rotor speed</td>
<td>$N_{C}$</td>
</tr>
<tr>
<td>fan rotor speed</td>
<td>$N_{F}$</td>
</tr>
<tr>
<td>burner exit pressure</td>
<td>$P_{4}$</td>
</tr>
<tr>
<td>afterburner exit pressure</td>
<td>$P_{7}$</td>
</tr>
<tr>
<td>high pressure turbine inlet energy</td>
<td>$U_{4}$</td>
</tr>
<tr>
<td>thrust</td>
<td>$F_{G}$</td>
</tr>
<tr>
<td>high pressure turbine inlet temperature</td>
<td>$T_{4}$</td>
</tr>
</tbody>
</table>

### TABLE 2.3
CONSTANTS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$J(\text{kJ})$</td>
<td>mechanical equivalent of heat</td>
<td>778.26</td>
</tr>
<tr>
<td>$G$</td>
<td>force of gravity</td>
<td>32.174049</td>
</tr>
<tr>
<td>$R(\text{RA})$</td>
<td>gas constant</td>
<td>.0252</td>
</tr>
<tr>
<td>$Y^*$</td>
<td>ratio of specific heats</td>
<td>1.4</td>
</tr>
<tr>
<td>$P_{2}$</td>
<td>fan inlet pressure</td>
<td>518.6668</td>
</tr>
<tr>
<td>$I_{C}(\text{PMILP})$</td>
<td>high pressure rotor polar moment of inertia</td>
<td>3.8</td>
</tr>
<tr>
<td>$I_{F}(\text{PMILP})$</td>
<td>low pressure rotor polar moment of inertia</td>
<td>4.5</td>
</tr>
<tr>
<td>$V_{\text{COMB}}$</td>
<td>combustor volume</td>
<td>1.65</td>
</tr>
<tr>
<td>$V_{\text{AFBN}}$</td>
<td>afterburner volume</td>
<td>49.77</td>
</tr>
<tr>
<td>$C_{\text{CMNOZ}}$</td>
<td>nozzle thrust coefficient</td>
<td>.9494</td>
</tr>
<tr>
<td>$N_{\text{DESIGN}}(\text{XNHPDSD})$</td>
<td>high pressure rotor design speed</td>
<td>10070</td>
</tr>
<tr>
<td>$N_{\text{DESIGN}}(\text{XNILPSD})$</td>
<td>low pressure rotor design speed</td>
<td>9651</td>
</tr>
<tr>
<td>$N$</td>
<td>combustor efficiency</td>
<td>20.71175</td>
</tr>
<tr>
<td>$C_{\text{PC}}$</td>
<td>compressor specific pressure</td>
<td>.24</td>
</tr>
<tr>
<td>$C_{\text{PF}}$</td>
<td>fan specific pressure</td>
<td>.24</td>
</tr>
<tr>
<td>$C_{\text{VB}}$</td>
<td>combustor specific volume</td>
<td>.20279</td>
</tr>
<tr>
<td>$C_{\text{PHT}}$</td>
<td>high pressure turbine specific pressure</td>
<td>.22589</td>
</tr>
<tr>
<td>$C_{\text{PLT}}$</td>
<td>low pressure turbine specific pressure</td>
<td>.27938</td>
</tr>
<tr>
<td>$\phi(\text{PCBLC})$</td>
<td>percent of compressor exit air bled for cooling</td>
<td>.16</td>
</tr>
<tr>
<td>$\alpha(\text{PCBLLU})$</td>
<td>percent of bleed air which leaks into fanduct</td>
<td>.208</td>
</tr>
<tr>
<td>$\beta(\text{PCBLLHP})$</td>
<td>percent of bleed air put into high pressure turbine</td>
<td>.726</td>
</tr>
<tr>
<td>$\gamma(\text{PCBLLHP})$</td>
<td>percent of bleed air put into low pressure turbine</td>
<td>.066</td>
</tr>
</tbody>
</table>
### TABLE 2.4
**DESIGN EQUILIBRIUM VALUES**

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>WFB</td>
<td>2.75</td>
<td>PFM</td>
<td>3.3624</td>
</tr>
<tr>
<td>A8</td>
<td>2.948255</td>
<td>WAF</td>
<td>221.573</td>
</tr>
<tr>
<td>N_C</td>
<td>11899.1</td>
<td>WCMAX</td>
<td>54.4151</td>
</tr>
<tr>
<td>N_F</td>
<td>9873.95</td>
<td>ΔW_CMAX</td>
<td>1.5805</td>
</tr>
<tr>
<td>P_4</td>
<td>23.9299</td>
<td>P_CMAX</td>
<td>10.270</td>
</tr>
<tr>
<td>U_4</td>
<td>586.467</td>
<td>WAC</td>
<td>137.649</td>
</tr>
<tr>
<td>P_7</td>
<td>2.55142</td>
<td>WA3</td>
<td>115.625</td>
</tr>
<tr>
<td>CNF</td>
<td>1.02310</td>
<td>WG50</td>
<td>134.364</td>
</tr>
<tr>
<td>T_21</td>
<td>742.957</td>
<td>WG4</td>
<td>118.375</td>
</tr>
<tr>
<td>CNC</td>
<td>.98730</td>
<td>WG55</td>
<td>135.818</td>
</tr>
<tr>
<td>T_3</td>
<td>1467.47</td>
<td>T55</td>
<td>1789.15</td>
</tr>
<tr>
<td>T_4</td>
<td>2892.04</td>
<td>T_7</td>
<td>1413.81</td>
</tr>
<tr>
<td>T_50</td>
<td>2103.47</td>
<td>WG7</td>
<td>224.323</td>
</tr>
<tr>
<td>P_3</td>
<td>25.3522</td>
<td>FG</td>
<td>13431.02</td>
</tr>
<tr>
<td>P_21</td>
<td>2.9960</td>
<td>ZC</td>
<td>.8143</td>
</tr>
<tr>
<td>WFM</td>
<td>203.123</td>
<td>ZF</td>
<td>.8333</td>
</tr>
</tbody>
</table>

### TABLE 2.5
**STATE EQUATIONS**

<table>
<thead>
<tr>
<th>State #</th>
<th>State Equation</th>
</tr>
</thead>
</table>
| (1)     | \[
\frac{dN_C}{dt} = \left(\frac{30}{\pi}\right)^2 \frac{J}{I_C N_C} \left[ C_{PC} WAC(T_{21} - T_3) + C_{PHT} WG50(T_4 - T_{50}) \right]
\]
| (2)     | \[
\frac{dN_F}{dt} = \left(\frac{30}{\pi}\right)^2 \frac{J}{I_F N_F} \left[ C_{PFWAF}(T_2 - T_{21}) + C_{PLT} WG55(T_{50} - T_{55}) \right]
\]
| (3)     | \[
\frac{dP}{dt} = \frac{Ry^*}{V_{COMB}} \left[ T_4 WA3 + WFB - WG4 \right]
\]
| (4)     | \[
\frac{dP}{dt} = \frac{Ry^* T_7}{V_{AFBN}} \left[ WG4 - WFB - WA3 \right]
\]
| (5)     | \[
\frac{dU}{dt} = \frac{C_{VBT}}{V_{COMB}} \left[ T_4 (WG4 - WFB - WA3) + \gamma^* T_3 WA3 - T_4 WG4 + T_4(1+n)WFB \right]
\]
<table>
<thead>
<tr>
<th>Eq. #</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>( \text{CNF} = \frac{N_F}{N_F^{\text{DESIGN}}} = \frac{N_F}{9651} )</td>
</tr>
<tr>
<td>(2)</td>
<td>( T_{21} = T_2 + 214.2732 \text{CNF}^2 - 48(A_8 - 2.948255) )</td>
</tr>
<tr>
<td>(3)</td>
<td>( \text{CNC} = \frac{N_C}{\sqrt{T_{21}/T_2} \cdot N_C^{\text{DESIGN}}} = \frac{N_C}{10070 \sqrt{T_{21}/518.668}} )</td>
</tr>
<tr>
<td>(4)</td>
<td>( T_3 = T_{21} + 743.2722 \text{CNC}^2 - 68(A_8 - 2.948255) )</td>
</tr>
<tr>
<td>(5)</td>
<td>( T_4 = U_4/C_{\text{VB}} )</td>
</tr>
<tr>
<td>(6)</td>
<td>( T_{50} = 0.727 \cdot T_4 )</td>
</tr>
<tr>
<td>(7)</td>
<td>( P_3 = 1.05944 \cdot P_4 )</td>
</tr>
<tr>
<td>(8)</td>
<td>( P_{21} = -6.20568 + 0.0129774 \cdot T_{21} - 0.0185376 \cdot P_3 )</td>
</tr>
<tr>
<td>(9)</td>
<td>( W_{\text{FMAX}} = 261.01 \cdot \text{CNF} - 63.196 )</td>
</tr>
<tr>
<td>(10)</td>
<td>( P_{\text{FMAX}} = 3.516739 \cdot \text{CNF} - .23561 )</td>
</tr>
<tr>
<td>(11)</td>
<td>( W_{\text{AF}} = W_{\text{FMAX}} + 28.502 \cdot (1 - e^{-2.313268(P_{\text{FMAX}} - P_{21})}) )</td>
</tr>
<tr>
<td>(12)</td>
<td>( W_{\text{CMAX}} = 137.54 - 457.987 \text{CNC} + 564.325 \text{CNC}^2 - 188.113 \text{CNC}^3 )</td>
</tr>
<tr>
<td>(13)</td>
<td>( \Delta W_{\text{CMAX}} = 6.492 - 4.9749 \text{CNC} )</td>
</tr>
<tr>
<td>(14)</td>
<td>( P_{\text{CMAX}} = 26.43184 - 89.0484 \text{CNC} + 109.7243 \text{CNC}^2 - 36.5756 \text{CNC}^3 )</td>
</tr>
<tr>
<td>(15)</td>
<td>( W_{\text{AC}} = \frac{P_{21}}{\sqrt{T_{21}/518.668}} \cdot W_{\text{CMAX}} + \Delta W_{\text{CMAX}} \cdot (1 - \frac{P_3}{P_{21}}) )</td>
</tr>
</tbody>
</table>
TABLE 2.6b
FUNCTIONAL RELATIONSHIPS BETWEEN VARIABLES

<table>
<thead>
<tr>
<th>Eq. #</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(16)</td>
<td>WA3 = (1 - ( \phi )) WAC = .84 WAC</td>
</tr>
<tr>
<td>(17)</td>
<td>WG50 = 301.957 ( P_4/ \sqrt{T_4} )</td>
</tr>
<tr>
<td>(18)</td>
<td>WG4 = WG50 - 8.4 WAC = WG50 - .11616 WAC</td>
</tr>
<tr>
<td>(19)</td>
<td>WG55 = WG50 + 4.4 WAC = WG50 + .01056 WAC</td>
</tr>
<tr>
<td>(20)</td>
<td>( T_{55}^{50} = 106.002 - .86154 T_{50}^{50} - .10458 \sqrt{T_2^{111} T_{50}^{50}} )</td>
</tr>
<tr>
<td>(21)</td>
<td>( T_7 = .49661 T_{55}^{50} + 205.886 P_7 )</td>
</tr>
<tr>
<td>(22)</td>
<td>( WG_7 = \frac{1121.786 P_7 A_8}{\sqrt{T_7}} )</td>
</tr>
<tr>
<td>(23)</td>
<td>( FG = .02951 WG_7 \sqrt{1934.415 T_7} + 68558.365 + 2116.217 A_8 (0.53978 P_7 - 1) )</td>
</tr>
<tr>
<td>(24)</td>
<td>( ZC = \frac{(P_3/P_{21}) - 1}{P_{CMAX} - 1} )</td>
</tr>
<tr>
<td>(25)</td>
<td>( ZF = \frac{P_{21} - 1}{P_{FMAX} - 1} )</td>
</tr>
</tbody>
</table>
these can be readily observed in a DYNGEN listing, while others are far more obscure. Equations (9) through (15) are approximations to the fan and compressor block data maps.

2.3 Linearization and Order Reductions of Model 2

Model 2L5 was obtained through a very tedious and time-consuming hand-calculated linearization. The partial derivative of each state equation and nonlinear function was calculated, and then combined together to form a linear model. This linear model was then normalized as follows.

Let A be n x n and let B be n x m. Then each state derivative may be written

\[ \dot{x}_i = \sum_{j=1}^{n} a_{ij} \hat{x}_j + \sum_{j=1}^{m} b_{ij} \hat{u}_j \]  

(2.3-1)

Let the values of x at the design point be denoted \( \hat{x} \), and denote the normalized state variable as \( \bar{x} \):

\[ \bar{x}_i = \frac{x_i}{\hat{x}_i} \]  

(2.3-2)

Similarly for the controls:

\[ \bar{u}_i = \frac{u_i}{u_i} \]  

(2.3-3)

Combine (2.3-2) and (2.3-3) with (2.3-1),

\[ (\hat{x}_i x_i) = \sum_{j=1}^{n} a_{ij} \hat{x}_j x_j + \sum_{j=1}^{m} b_{ij} \bar{u}_j \hat{u}_j \]  

(2.3-4)

and simplify, resulting in
Thus, elements of the normalized matrices are obtained by

$$\bar{a}_{ij} = a_{ij} \frac{x_i}{x_1}$$  \hspace{1cm} (2.3-6)$$

and

$$\bar{b}_{ij} = b_{ij} \frac{u_j}{x_1}$$  \hspace{1cm} (2.3-7)$$

The normalized linear Model 2L5 is given in Table 2.7. The eigenvalues of Model 2L5 are (1)(2) -7.2264 ± 1.3913j, (4) -73.554, (5) -153.27, and (3) -343.11. The numbered eigenvalues can be associated with the state of like number, as they bear a loose resemblance with the diagonal terms. Note that all eigenvalues are negative, and the model is clearly stable.

It seems quite reasonable that lower order models would be almost as accurate, suggested by the clear difference in the magnitudes of the eigenvalues. They will also be much easier to use to perform Dynamic Programming studies, saving much storage space and c.p.u. time. As mentioned above, the eigenvalues show that the states which will be eliminated as the order is decreased, are $P_4(3)$, then $U_4(5)$, then $P_7(4)$.

The method used to perform the order reduction is to first rearrange the states into partitions of "states to keep", $X_1$, and "states to eliminate", $X_2$.

$$\begin{bmatrix} \dot{X}_1 \\ \dot{X}_2 \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} + \begin{bmatrix} B_1 \\ B_2 \end{bmatrix} u$$  \hspace{1cm} (2.3-8)$$

Now set the derivative of $X_2$ equal to zero, since their dynamic behavior is to be eliminated. Thus,
\[ A_{21} X_1 + A_{22} X_2 + B_2 u = 0 \]  

(2.3-9)

Solving for \( X_2 \),

\[ X_2 = -A_{22}^{-1} \left( A_{21} X_1 - B_2 u \right) \]  

(2.3-10)

\( X_2 \) is now replaced in equation (2.3-8) by its expression in (2.3-10), yielding

\[ X_1 = (A_{11} - A_{12} A_{22}^{-1} A_{21}) X_1 + (B_1 - A_{12} A_{22}^{-1} B_2) u \]  

(2.3-11)

Application of this method yields Models 2L3 and 2L2 per Tables 2.8 and 2.9 respectively. Note that the most important eigenvalues have not changed significantly in the model reductions.

2.4 **Linearizations and Order Reductions of Model 1**

As previously mentioned, linear models obtained from Model 1 will be useful in comparing with those obtained from Model 2. In addition, it should yield a good model of the DYNCEN simulator in the area of the design point.

The general method for obtaining numerical linearizations of Model 1 is outlined in reference [10], including all the necessary program inputs. Additional insight into the selection of states for low order models is provided by DYGABCD. This stems from the identification technique used in DYGABCD, which is to perturb the inputs and states one at a time, and then measure the changes in each state derivative. A loose hierarchy of states in terms of their importance in the model is obtained by measuring how much each state perturbation affects the fan speed (which is certainly one of the most important states). A close resemblance with the choice of states for Model 2 occurs.
### TABLE 2.7
#### MODEL 2L5

<table>
<thead>
<tr>
<th>Matrix</th>
<th>Matrix Elements</th>
<th>Eigenvalues</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-12.549 -1.6928 3.584 .23786 1.7011</td>
<td>-343.11</td>
</tr>
<tr>
<td>A</td>
<td>.83305 -5.6135 1.645 .14381 1.304</td>
<td>-153.27</td>
</tr>
<tr>
<td></td>
<td>671.66 387.71 -392.67 -26.16 160.53</td>
<td>-73.554</td>
</tr>
<tr>
<td></td>
<td>-104.15 21.135 64.925 -67.803 2.6314</td>
<td>-7.2264 ± 1.3913j</td>
</tr>
<tr>
<td></td>
<td>50.953 -55.855 -81.205 -7.4745 -105.74</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 1.4078</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 .75817</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>1.2813 -122.31</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 -48.928</td>
<td></td>
</tr>
<tr>
<td></td>
<td>149.21 -3.092</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0 0 0 1.461 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 0 0 0 1</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>0 1.2138</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

### TABLE 2.8
#### MODEL 2L3

<table>
<thead>
<tr>
<th>Matrix</th>
<th>Matrix Elements</th>
<th>Eigenvalues</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-8.4226 -1.2541 -.047955</td>
<td>-72.576</td>
</tr>
<tr>
<td></td>
<td>2.3957 -5.9244 .0048531</td>
<td>-7.1663 ± 1.2441j</td>
</tr>
<tr>
<td></td>
<td>-11.566 56.677 -72.562</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>3.406 .79722</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.1241 .56161</td>
<td></td>
</tr>
<tr>
<td></td>
<td>31.486 -64.49</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0 0 1.461</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-.63298 -.97907 -.01486</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>0 1.2138</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.072 .1598</td>
<td></td>
</tr>
</tbody>
</table>
### TABLE 2.9

**MODEL 2L2**

<table>
<thead>
<tr>
<th>Matrix</th>
<th>Matrix Elements</th>
<th>Eigenvalues</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-8.415</td>
<td>-1.2916</td>
</tr>
<tr>
<td></td>
<td>2.3949</td>
<td>-5.9206</td>
</tr>
<tr>
<td></td>
<td>3.3852</td>
<td>.83984</td>
</tr>
<tr>
<td></td>
<td>2.1262</td>
<td>.5573</td>
</tr>
<tr>
<td>B</td>
<td>-23288</td>
<td>1.1412</td>
</tr>
<tr>
<td></td>
<td>-63061</td>
<td>-.99068</td>
</tr>
<tr>
<td>C</td>
<td>.63396</td>
<td>-.084644</td>
</tr>
<tr>
<td></td>
<td>1.0656</td>
<td>.17301</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### TABLE 2.10

**MODEL 1L5**

<table>
<thead>
<tr>
<th>Matrix</th>
<th>Matrix Elements</th>
<th>Eigenvalues</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-3.8</td>
<td>-1.277</td>
</tr>
<tr>
<td></td>
<td>2.067</td>
<td>-1.152</td>
</tr>
<tr>
<td></td>
<td>1.448</td>
<td>-5.99068</td>
</tr>
<tr>
<td></td>
<td>1.071</td>
<td>1.0656</td>
</tr>
<tr>
<td>B</td>
<td>.9017</td>
<td>1.31618</td>
</tr>
<tr>
<td></td>
<td>12.54</td>
<td>-13.774</td>
</tr>
<tr>
<td></td>
<td>-.6201</td>
<td>-99.3</td>
</tr>
<tr>
<td></td>
<td>157.78</td>
<td>6.84</td>
</tr>
<tr>
<td>C</td>
<td>-.8594</td>
<td>-.1397</td>
</tr>
<tr>
<td></td>
<td>.6672</td>
<td>1.167</td>
</tr>
<tr>
<td></td>
<td>-.1236</td>
<td>-.85391</td>
</tr>
<tr>
<td></td>
<td>.055591</td>
<td>.00656</td>
</tr>
<tr>
<td></td>
<td>-.001837</td>
<td>.01354</td>
</tr>
<tr>
<td>D</td>
<td>-.10277</td>
<td>.90094</td>
</tr>
<tr>
<td></td>
<td>-.013839</td>
<td>.020856</td>
</tr>
</tbody>
</table>
### TABLE 2.11
**MODEL 1L3**

<table>
<thead>
<tr>
<th>Matrix</th>
<th>Matrix Elements</th>
<th>Eigenvalues</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-2.4307 - .70897 - .81149</td>
<td>-92.242</td>
</tr>
<tr>
<td></td>
<td>3.8281 - .9579 - 1.7235</td>
<td>-5.0644 + .86196j</td>
</tr>
<tr>
<td></td>
<td>2.4466 140.5 - 94.982</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>1.395 .30875</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.2585 -.35303</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15.434 -98.208</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>.034897 -.0083832 1.3734</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-.60014 .081353 -1.2635</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>-.023854 .86846</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.52351 .046147</td>
<td></td>
</tr>
</tbody>
</table>

### TABLE 2.12
**MODEL 1L2**

<table>
<thead>
<tr>
<th>Matrix</th>
<th>Matrix Elements</th>
<th>Eigenvalues</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-2.4516 - 1.91</td>
<td>-4.9795 + .91478j</td>
</tr>
<tr>
<td></td>
<td>3.7857 -7.5073</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>1.2631 1.1483</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.97844 1.429</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>.070274 2.0232</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-.60339 -.10555</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>.19932 -.55158</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.50298 .17879</td>
<td></td>
</tr>
</tbody>
</table>
Table 2.10 details the results for Model 1L5 after normalization. Inspection shows that Models 1L5 and 2L5 do not closely match on an element-by-element basis, although there is not great disparity between the eigenvalues of the two models.

Order reductions of Model 1L5 were performed by the same method detailed in section 2.3, rather than direct use of DYGABCD. It was felt that Model 1L5 was a reasonable approximation to the DYNGEN simulator at the design point, and it was desired not to rely heavily on an experimental program. Tables 2.11 and 2.12 list Models 1L3 and 1L2 respectively. Again, the eigenvalues do not change appreciably after the order reduction.

2.5 Comparison of Model Responses

Concurrent with the development of Model 2 was the development of a computer program describing Model 2 (see Appendix). It employs an Euler integration and was used with a time step (DT) of .001, very suitable in light of the values of the eigenvalues of the linear models. DYNGEN was run with time steps of .01 and higher, for it employs a modified Euler technique [3] which allows larger increments to be used. In addition, the linear models were tested on program ABCD (see Appendix), with a Runga-Kutta integration. Figures 2.2, 2.3, and 2.4 show various time responses of Models 1 and 2. Unfortunately, the responses shown are the closest Models 1 and 2 came towards agreement. The linear responses are evidence that the linearization and order reductions were correctly calculated.

Comparisons of the various linear models are given in figures 2.5, 2.6, 2.7, and 2.8. There seems to be better agreement between models for the frequency responses involving the high pressure turbine inlet temperature ($T_h$).
FIGURE 2.2. State Time Responses
- Fuel Input

FIGURE 2.3. State Time Responses
- Nozzle Input

FIGURE 2.4. Thrust Time Response
- Fuel Input
FIGURE 2.5. Magnitude Frequency Response - WFB to FG

FIGURE 2.6. Magnitude Frequency Response - Ag to FG
FIGURE 2.7. Magnitude Frequency Response - WPB to $T_4$

FIGURE 2.8. Magnitude Frequency Response - $A_8$ to $T_4$
FIGURE 2.9. State Space Trajectories - Model 1 vs. Model 2
Figure 2.9 is yet another comparison of Models 1 and 2. It shows the steady state equilibriums of both models as fuel is varied. It is not surprising that a change in fuel in Model 2 produces a corresponding change in steady state which is greater than Model 1 would produce. This follows since Model 2L2 is known to have higher eigenvalues than Model 1L2. Also shown are transients for step inputs between a low thrust point and a high thrust point (the design point).
CHAPTER III

THE TIME OPTIMAL CONTROL PROBLEM

3.1 Introduction

In light of the disagreements between models found in Chapter II, no single model will be relied upon to determine a time optimal control law for the jet engine. The control problem is to determine a controller which will drive a model from a low thrust equilibrium to the design point, in minimum time, and subject to certain constraints, as yet undetermined. In addition, it is desired that the controller be determined by feedback control law, for the usual reasons: reduced sensitivity to plant variations; control over system stability; and regarding programming aspects, the ease at which a global solution can be obtained.

3.2 Statement of the Problem

The necessary first step is to reformulate the models as discrete time systems. Let

\[ x(t + \Delta t) = x(t) + \Delta t \cdot f(x(t), u(t)) \]  

represent the system with starting time \( k \) and terminal time \( N \). It is understood that

\[ f(x(t), u(t)) = Ax(t) + Bu(t) \]  

for linear models. Let \( x(k) \) be the starting state and let the terminal time \( N \) be defined as the first instant at which the system state reaches the designated target set \( S \). All \( x(t) \) are \( \mathbb{X} \), the state set. The performance index

\[ J(x, u) = \sum_{t=k}^{N-\Delta t} \Delta t \]  

where

\[ t = k, k + \Delta t, \ldots, N-\Delta t \]  

23
is to be minimized with $u(t) \in U$, the control set, and $\underline{u}$ defined as the control sequence.

$$u = u(k), u(k + \Delta t), \ldots, u(N\Delta t) \quad (3.2-4)$$

Furthermore, the minimization is subject to hard constraints of the form

$$g_i(x(t), u(t)) \leq c_i \quad (3.2-5)$$

### 3.3 Constraint Determination

The final step in a complete formulation of the control problem lies in the determination of the $g_i$ and $c_i$ of equation (3.2-5). There is a strong intuitive need for such constraints, for the physical jet engine has very real performance limitations. Brennan and Leake [8] have chosen turbine inlet temperature and surge margin as constraint variables in their studies of the drone engine, and similar constraints have been chosen for this study: (1) high pressure turbine inlet temperature ($T_4$); (2) compressor surge margin ($Z_c$); and (3) fan surge margin ($Z_F$). The surge margin of a compressor or fan is defined as

$$Z = \frac{P_{out}/P_{in} - 1}{P_{max} - 1} \quad (3.3-1)$$

If either the surge margin or the turbine temperature is too high, the constraints will be violated. By definition, let

$$T_4 = g_1(x(t), u(t)) \quad (3.3-2)$$

$$Z_c = g_2(x(t), u(t)) \quad (3.3-3)$$

$$Z_F = g_3(x(t), u(t)) \quad (3.3-4)$$

The next step is to determine $g_i$ for each model.

Model 2 presents no difficulty whatsoever since all three constraint variables are defined in the Chapter II development. It will be an easy matter to incorporate these equations into subsequent control tests.
The constraints are harder to determine for the linear models, and a starting point is needed. Control studies by Basso and Leake [12] have used constraints which were strictly functions of the states. However, such is not the case here. Simulations of both Models 1 and 2 show $T_4$ and $Z_c$ to have very little steady state change over a wide range of state space, yet step inputs elicit strong overshoots from both variables. Clearly the constraints must be functions of both the states and the inputs.

Once again, DYGABCD was used to obtain linear expressions for the constraint variables. An order reduction was performed (per Chapter II) yielding the $g_i$ for Model 1L2:

$$T_4 = -0.61059x_1 - 0.10759x_2 + 0.50292u_1 + 0.17689u_2 \quad (3.3-5)$$

$$Z_c = -0.20154x_1 - 0.45813x_2 + 0.20423u_1 + 0.14724u_2 \quad (3.3-6)$$

$$Z_f = -0.58229x_1 + 0.46872x_2 + 0.18877u_1 - 0.92545u_2 \quad (3.3-7)$$

Constraint functions were not determined for the other linear models, since Dynamic Programming solutions (see Chapter V) subject to constraints were only obtained using Model 1L2 and Model 2.

The final task remaining is to determine reasonable values for $c_i$ of the constraint equations. These $c_i$ will play a fundamental role in the optimal control solutions of Chapter V, for they are hard constraints which will often affect the control chosen. After studying results of DYNGEN simulations, it was decided to use the following values:

$$c_1 = 0.150 \quad (3.3-8)$$

$$c_2 = 0.105 \quad (3.3-9)$$

$$c_3 = 0.080 \quad (3.3-10)$$
CHAPTER IV
THE DYNAMIC PROGRAMMING METHOD

4.1 Introduction

It has been pointed out in Chapter III that a feedback control law is desired, rather than an open loop control. Furthermore, the Dynamic Programming method has been extensively used in such situations to obtain numerical solutions. One of the more recent examples of its application is found in reference [12], where Basso and Leake have successfully obtained a feedback control law for a single spool turbojet engine. Use of Dynamic Programming methods to solve time optimal problems was shown to involve a successive approximations technique.

4.2 Dynamic Programming Theory

The basic applications of the Dynamic Programming method are fixed time, free right end problems. Let

\[ x(t + \Delta t) = x(t) + f(x(t), u(t)) \]

with \( u(t) \in U \)

The starting time \( k \) is known, and the terminal time \( N \) is known. The target set is any \( x(N) \in X \). The object is to find

\[ V_k(x) = \min_{J_k(x,u)} \]

for a given initial state \( x \), where

\[ J_k(x,u) = K(x(N)) + \sum_{t=k}^{N-\Delta t} L(x(t), u(t), t) \]

Rewriting:

\[ J_k(x,u) = K(x(N)) + L(x,u(k), k) + \sum_{t=k + \Delta t}^{N-\Delta t} L(x(t), u(t), t) \]

\[ J_k(x,u) = L(x,u(k), k) + J_k + \Delta t(x(k + \Delta t), u) \]
The Principle of Optimality states that in order for the entire state trajectory to be optimal from $k$ to $N$, it has to be optimal from $k + \Delta t$ to $N$. Thus, equation (4.2-4) can be reformulated as

$$J_k(x,u) = L(x,u(k),k) + V_k + \Delta t(x(k + \Delta t)) \quad (4.2-6)$$

which leads to

$$V_k(x) = \min_{u(k)} \{L(x,u(k),k) + V_k + \Delta t(x(k + \Delta t))\} \quad (4.2-7)$$

Since the minimization really only concerns $u(k), u(k + \Delta t), \ldots, u(N - \Delta t)$ are previously determined), $u(k)$ can be defined as $u$, and Bellman's Equation results:

$$V_k(x) = \min_{u} \{L(x,u,k) + V_k + \Delta t(x + f(x,u))\} \quad (4.2-8)$$

The boundary condition is

$$V_N(x) = K(x(N)) \quad (4.2-9)$$

These equations are necessary and sufficient for optimality.

4.3 Successive Approximations Technique

The task is to fit the time optimal problem (i.e., free time, fixed right end), into a form which can utilize the basic Dynamic Programming method. This was developed by Leake, Liu, and Richardson in references [13] and [14], and later applied by Basso and Leake in [12].

As per [12], let $V^n_k(x)$ be any function such that $V^n_k(x) \geq V_k(x)$ and let $v^n(x,k)$ be a control law which results when performing the minimization.

$$\min_{u \in U} [L(x,u,k) + V^n_k + \Delta t(x + f(x,u))] (x,k) \notin S \quad (4.3-1)$$
It is shown in [14] that if $V_{k}^{n+1}(x)$ is the performance index resulting from $V_{n}(x,k)$, then

$$V_{k}(x) \leq V_{k}^{n+1}(x) \leq V_{k}^{n}(x)$$ (4.3-2)

and further that $V_{k}^{n}(x)$ converges monotonically to $V_{k}(x)$ in a finite number of steps, although each $(x,k)$ may require a different number of steps. Thus, it is concluded in [12] that

$$V_{k}^{n+1}(x) = \min_{u \in U} \left[ L(x,u,k) + V_{k}^{n}(x + f(x,u)) \right]$$ (4.3-3)

which very closely parallels Bellman's Equation. The only difference is that in the solution of the fixed time, free right end problem, equation (4.2-8) is relating two performance indices for the same state, but separated by $\Delta t$ in time; whereas, equation (4.3-3) is relating two performance indices for the same state, and the same time $k$, one being a better approximation than the other.

It now appears that the time optimal free time free right end problem can be successfully solved, using the existing Dynamic Programming method. Indeed this is true for all practical purposes; however, there is a slight discrepancy between the successive approximation theory and its application to Dynamic Programming. To be specific, it is a fallacy to conclude that equation (4.3-3) guarantees that (4.3-2) be true. By definition, $V_{k}^{n+1}$ is the cost which results when applying $V_{n}(x,k)$, until the target set $S$ is reached, which is not equation (4.3-3). For example, let

$$V_{k}^{0}(x) = \max_{(x,k) \notin S} (x,k)$$ (4.3-4)

and
Then, if $x$ is sufficiently far away from $S$, it is quite possible that there exists no $v(x,k) \in U$ which will enable the equation

$$V_k(x + f(x,u)) = 0$$

(4.3-6)

to be true, i.e., the control could not cause the system to reach the target set in a time of $\Delta t$. Since equation (4.3-4) is true for all $(x,k) \in S$, then

$$V_k(x) = \min_{u \in U} [L(x,u,k) + V_k^0(x)]$$

(4.3.7)

and equation (4.3-2) is no longer valid. In practical situations, however, the method used in [12] and also used in Chapter V of this study, using equation (4.3-3), will still converge.

A further simplification can be made when the control problem is time-independent, which is the case in this study (see section 3.2). Equation (4.3-3) simplifies to

$$V_{n+1}(x) = \min_{u \in U} [L(x,u) + V_n(x + f(x,u))]$$

(4.3-8)

4.4 Technique Refinements

One way of assuring that equation (4.3-2) will always be true is to replace (4.3-8) with

$$V_{n+1}(x) = \min \begin{bmatrix} V_n(x) \\ \min_{u \in U} [L(x,u) + V_n(x + f(x,u))] \end{bmatrix}$$

(4.3-9)

Rewriting this in terms of the problem as described in Chapter III,

$$V_{n+1}(x) = \min \begin{bmatrix} V_n(x) \\ \min_{u \in U} [\Delta t + V_n(x + f(x,u))] \end{bmatrix}$$

(4.3-10)
A successive approximation problem allows still another departure from the basic Dynamic Programming problem (fixed time, free right end). Let us examine how equation (4.2-8), describing a fixed time problem, would be implemented on a computer. \( V_{N-\Delta t}(x) \) would be calculated for all \( x \in X \), and stored; \( V_{N-2\Delta t}(x) \) would be calculated and stored, and so forth. Therefore, each iteration has a specific time associated with it. However, in the successive approximations technique, either all approximations are concerned with the same time, or the problem is time independent. In Basso and Leake [12], \( V^1(x) \) was calculated for all \( x \in X \) and stored in an array. Then \( V^2(x) \) was calculated, and after that had been completed for all \( x \in X \), \( V^2(x) \) replaced \( V^1(x) \) in the array, and so forth. It would be more efficient to immediately change each \( V^1(x) \) to the just-calculated \( V^2(x) \) in a state-by-state manner. In reality then, the approximations for \( V \) changes much more rapidly, for one does not wait until the completion of the sweep through state space before using information derived during that sweep. In this manner, new information becomes available at a faster rate, speeding up the convergence to \( V(x) \).

Furthermore, if one starts the state space sweep at the target, and slowly moves away from the target, convergence will occur still faster. By starting near the target, one is testing controls for states which can probably reach the target in a time of the order of \( \Delta t \). Since \( V^0(x) \) for the target is equal to zero, while guesses for \( V^0(x) \) at other states must be made safely higher than the unknown solution, it is a benefit to start at a point where the information is the best, letting the information propagate outward to other states. Figure 4.1 shows the logic for this state search. This logic requires the target to lie at the center of the state space.
Begin at target: \( x = j \) = number of point representing target (NTP); number of points per state = NPX

Make the necessary calculations at this point in State space

Is \( i = 1 \) and \( j = NPX \)?

Yes \( \rightarrow \) Stop - entire state space has been searched

No

Is \( i + j > 2 \times NTP \)?

Yes \( \rightarrow \)  

No

Is \( i > j \)?

Yes \( \rightarrow j + j + 1 \)

No \( \rightarrow i + 1 \)

Is \( i < j \)?

Yes \( \rightarrow j + j - 1 \)

No \( \rightarrow i + i + 1 \)

FIGURE 4.1. State Searching Algorithm
<table>
<thead>
<tr>
<th>Iteration #6</th>
<th>( x_2 )</th>
<th>( V(x)_{\text{slow}} )</th>
<th>( V(x)_{\text{fast}} )</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.15</td>
<td>0.5463</td>
<td>0.3825</td>
<td>0.2733</td>
</tr>
<tr>
<td></td>
<td>0.4680</td>
<td>0.3530</td>
<td>0.2513</td>
</tr>
<tr>
<td>1.05</td>
<td>0.4024</td>
<td>0.2222</td>
<td>0.1373</td>
</tr>
<tr>
<td></td>
<td>0.3658</td>
<td>0.2156</td>
<td>0.1354</td>
</tr>
<tr>
<td>0.95</td>
<td>0.3101</td>
<td>0.1578</td>
<td>0.2190</td>
</tr>
<tr>
<td></td>
<td>0.2890</td>
<td>0.1519</td>
<td>0.2126</td>
</tr>
<tr>
<td>0.85</td>
<td>0.3477</td>
<td>0.2968</td>
<td>0.3202</td>
</tr>
<tr>
<td></td>
<td>0.3102</td>
<td>0.2643</td>
<td>0.3498</td>
</tr>
</tbody>
</table>

Table 4.1
A Comparison of Costs for "Fast Update" Successive Approximations vs. The "Slow Update" Method

(\( V(x)_{\text{slow}} \) is listed first for each state)
As proof of the numerical superiority of this "fast update" method, Table 4.1 compares Dynamic Programming results for $V^6(x)$, one obtained through regular "do loop" sweeps through state space, the other by the "fast update" method. Both started with the same $V^0(x)$. Note that the superscript on the cost function no longer refers to the approximation number, but serves as a record of how many sweeps through state space have been made. In the fast update of Table 4.1, there will have been $6p^2$ approximations made, where $p$ is the number of discrete points for each state in this second order system. Of course, c.p.u. time is virtually identical for both programs.

Since the number of actual approximations in the fast update method is equal to the number of the sweep through state space times the number of points in state space, the finer the quantization, the more benefit is derived through use of the fast update method. An alternative explanation is that the old method (do loops) makes you wait even longer before obtaining new information, when you increase the quantization of the state space.

4.5 General Program Structure

One of the first considerations is c.p.u. time. This is a function of the number of points in control space and state space, as well as the time increment $At$ which is used. (It should also be mentioned that this refers to c.p.u. time on an IBM 370/158 computer). In this study, individual programs were limited to 14 minutes, 59 seconds, to avoid additional job control language complications which occur for higher times. Thus, single Dynamic Programming solutions may be the result of several program runs. Near the end of the time limit, each job stores cost information on disk to be used by a subsequent job as a starting point,
Input quantization information and time step

Define the allowable points in X and U

Define initial guess for V(x); read V(x) from disk if program is a continuation

Loop for each successive approximation

Decide which state to test per Figure 4.1 algorithm

Loop for each u ∈ U

Test are constraints satisfied?

Determine x(t+Δt)

Test 2 is x(t+Δt) ∈ X?

Interpolate to determine cost

For this state Smallest cost yet?

Save the cost and control

Did any control satisfy tests?

Assign arbitrary cost for this state

No

Uncontrollable - assign arbitrary cost

Yes

No

for this state & approx Smallest Cost yet?

Save cost & control

Yes

No

Write results on disk

Have all states been tested?

No

to store results?

Yes

Stop

FIGURE 4.2. Flow Chart of Dynamic Programming
V^0(x). In addition, control information is stored, so that the optimal feedback control law will be easily accessed by the simulators in Chapter VI.

Dynamic Programming is generally best-written in a somewhat ad hoc fashion. The number of subscripts in an array is dependent on the order of the system, and interpolation schemes will differ according to the dimension of state space. However, there still remains a basic structure to the program. Figure 4.2 shows a flow chart, while the actual program is contained in the Appendix. Note the absence of a "do loop" for searching the state space. Also, the target cost is set to zero and left there, never allowing interpolation errors due to quantization to occur. When controls are tested for possible violation of constraints, the values of the "present state" x(t) are used. However, the "future state" x(t + At) is used when testing whether or not a particular control takes the state outside of the state set X. The interpolation scheme is a standard method as used in reference (12) for two dimensions, and is analogously extended for third order models (Model 2L3 in particular).
CHAPTER V

OPTIMAL CONTROL LAWS

5.1 Basic Problem Considerations

In order to compare control studies of the linear models of Chapter II with studies of the nonlinear Model 2, linear affine models must be formulated. If the linear description of the system is

\[ \dot{x} = Ax + Bu \]  \hspace{1cm} (5.1-1)

and the equilibrium values at the target are designated as \( \hat{x} \) and \( \hat{u} \), then the linear affine system is

\[ \dot{x} = (\dot{x} - \hat{x}) = A(x - \hat{x}) + B(u - \hat{u}) \]  \hspace{1cm} (5.1-2)

Similarly the constraint variables become

\[ (y - \hat{y}) = C(x - \hat{x}) + D(u - \hat{u}) \]  \hspace{1cm} (5.1-3)

where \( \hat{y} \) is the equilibrium of the constraint variable. Since all the linear models found in Chapter II were normalized, \( \hat{x} = \hat{u} = \hat{y} = 1 \).

The time increment \( \Delta t \) (henceforth known as \( DT \)) for the linear models was selected based on the eigenvalues of each system. In all cases, \( DT = 0.01 \) seemed to be an acceptable choice, and convergence of the approximations did occur with this value.

Quantization of the control and state spaces must be considered next. In general, one would like as fine a quantization as possible, but practical limitations on the cpu time will dictate a compromise. It is desirable that the quantization of the state space be small enough such that the program does not rely too heavily on interpolation. However, if the state quantization becomes too small, \( DT \) must also be decreased. In other words, the amount by which a state can change in a time step \( DT \) will also have a bearing on the state quantization. For
example, at a point in state space near the target, it is possible that
the true optimal cost $V(x)$ could be less than $DT$, if the state quantiza-
tion is too fine.

The presence of constraints is important, for one desires small
enough quantization to ascertain when the constraints are affecting the
choice of control. If quantization is coarse, it may be much harder to
recognize that a control is riding a constraint.

A big factor in an optimal control solution is the definition of
the control set $U$, not only as regards the quantization, but also the
maximum and minimum values. These, of course, are chosen to reflect a
true physical situation, and as such, it is expected that they influence
the resultant control law. In these studies, the controls were limited
such that

$$0.5 \leq WFB \leq 1.4 \quad (5.1-4)$$
$$0.7 \leq A8 \leq 1.2 \quad (5.1-5).$$

Again, these are normalized values. The state set, $X$, does not affect
the solution for the states of interest, as long as these states are
sufficiently far from the boundaries of $X$.

5.2 Model 2L3 Unconstrained

The basic choice of $V^0(x)$ for all models was

$$V^0(x) = \min \left[ V_{\text{max}} = .70, \right.$$
$$c_1(x_1 - 1)^2 + c_2(x_2 - 1)^2 + c_3$$

with the $c_i$ chosen such that $V^0(x) \geq V(x)$. Whether or not this condi-
tion was satisfied was easily recognized by the success or failure of
the $V^1(x)$ to converge to a solution.
<table>
<thead>
<tr>
<th>$N_C$</th>
<th>0.90</th>
<th>0.92</th>
<th>0.94</th>
<th>0.96</th>
<th>0.98</th>
<th>1.00</th>
<th>1.02</th>
<th>1.04</th>
<th>1.06</th>
<th>1.08</th>
<th>1.10</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N_F$</td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>*</td>
<td>0.50</td>
</tr>
<tr>
<td>1.08</td>
<td>*</td>
<td>0.50</td>
</tr>
<tr>
<td>1.06</td>
<td>*</td>
<td>0.50</td>
</tr>
<tr>
<td>1.04</td>
<td>*</td>
<td>0.50</td>
</tr>
<tr>
<td>1.02</td>
<td>*</td>
<td>0.50</td>
</tr>
<tr>
<td>1.00</td>
<td>*</td>
<td>0.50</td>
</tr>
<tr>
<td>0.98</td>
<td>*</td>
<td>1.40</td>
</tr>
<tr>
<td>0.96</td>
<td>*</td>
<td>1.40</td>
</tr>
<tr>
<td>0.94</td>
<td>*</td>
<td>1.40</td>
</tr>
<tr>
<td>0.92</td>
<td>*</td>
<td>1.40</td>
</tr>
<tr>
<td>0.90</td>
<td>*</td>
<td>1.40</td>
</tr>
<tr>
<td>0.98</td>
<td>*</td>
<td>0.50</td>
</tr>
</tbody>
</table>

**FIGURE 5.1-A.** Model 2L3 - Optimal Control Law (1 Control)
<table>
<thead>
<tr>
<th>N_C</th>
<th>0.90</th>
<th>0.92</th>
<th>0.94</th>
<th>0.96</th>
<th>0.98</th>
<th>1.00</th>
<th>1.02</th>
<th>1.04</th>
<th>1.06</th>
<th>1.08</th>
<th>1.10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.10</td>
<td>*</td>
<td>0.2425</td>
<td>0.2374</td>
<td>0.2325</td>
<td>0.2275</td>
<td>0.2220</td>
<td>0.2159</td>
<td>0.2091</td>
<td>0.2015</td>
<td>0.1926</td>
<td>0.1831</td>
</tr>
<tr>
<td>1.08</td>
<td>*</td>
<td>0.2288</td>
<td>0.2231</td>
<td>0.2172</td>
<td>0.2107</td>
<td>0.2034</td>
<td>0.1951</td>
<td>0.1856</td>
<td>0.1746</td>
<td>0.1619</td>
<td>0.1483</td>
</tr>
<tr>
<td>1.06</td>
<td>*</td>
<td>0.2149</td>
<td>0.2072</td>
<td>0.1997</td>
<td>0.1911</td>
<td>0.1811</td>
<td>0.1693</td>
<td>0.1553</td>
<td>0.1389</td>
<td>0.1215</td>
<td>0.1139</td>
</tr>
<tr>
<td>1.04</td>
<td>*</td>
<td>0.1977</td>
<td>0.1893</td>
<td>0.1793</td>
<td>0.1674</td>
<td>0.1530</td>
<td>0.1352</td>
<td>0.1139</td>
<td>0.0915</td>
<td>0.0900</td>
<td>0.0990</td>
</tr>
<tr>
<td>1.02</td>
<td>*</td>
<td>0.1795</td>
<td>0.1684</td>
<td>0.1545</td>
<td>0.1374</td>
<td>0.1153</td>
<td>0.0872</td>
<td>0.0574</td>
<td>0.0709</td>
<td>0.0922</td>
<td>0.1129</td>
</tr>
<tr>
<td>NF</td>
<td>1.00</td>
<td>*</td>
<td>0.1587</td>
<td>0.1430</td>
<td>0.1231</td>
<td>0.0976</td>
<td>0.0621</td>
<td>0.0</td>
<td>0.0621</td>
<td>0.0975</td>
<td>0.1229</td>
</tr>
<tr>
<td></td>
<td>0.98</td>
<td>*</td>
<td>0.1544</td>
<td>0.1170</td>
<td>0.0977</td>
<td>0.0765</td>
<td>0.0664</td>
<td>0.0672</td>
<td>0.1152</td>
<td>0.1371</td>
<td>0.1540</td>
</tr>
<tr>
<td></td>
<td>0.96</td>
<td>*</td>
<td>0.1210</td>
<td>0.1093</td>
<td>0.1011</td>
<td>0.1015</td>
<td>0.1162</td>
<td>0.1355</td>
<td>0.1530</td>
<td>0.1673</td>
<td>0.1787</td>
</tr>
<tr>
<td></td>
<td>0.94</td>
<td>*</td>
<td>0.1277</td>
<td>0.1260</td>
<td>0.1306</td>
<td>0.1425</td>
<td>0.1566</td>
<td>0.1700</td>
<td>0.1816</td>
<td>0.1913</td>
<td>0.1994</td>
</tr>
<tr>
<td></td>
<td>0.92</td>
<td>*</td>
<td>0.1512</td>
<td>0.1569</td>
<td>0.1665</td>
<td>0.1724</td>
<td>0.1874</td>
<td>0.1965</td>
<td>0.2044</td>
<td>0.2113</td>
<td>0.2172</td>
</tr>
<tr>
<td></td>
<td>0.90</td>
<td>*</td>
<td>0.1819</td>
<td>0.1885</td>
<td>0.1967</td>
<td>0.2044</td>
<td>0.2115</td>
<td>0.2178</td>
<td>0.2234</td>
<td>0.2285</td>
<td>0.2330</td>
</tr>
</tbody>
</table>

FIGURE 5.1-B. Model 2L3 - Cost (1 Control)
<table>
<thead>
<tr>
<th>$N_C$</th>
<th>0.90</th>
<th>0.92</th>
<th>0.94</th>
<th>0.96</th>
<th>0.98</th>
<th>1.00</th>
<th>1.02</th>
<th>1.04</th>
<th>1.06</th>
<th>1.08</th>
<th>1.10</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>0.50</td>
<td>1.10</td>
</tr>
<tr>
<td>1.00</td>
<td>*</td>
<td>0.70</td>
<td>0.70</td>
<td>0.70</td>
<td>0.70</td>
<td>0.70</td>
<td>0.70</td>
<td>0.70</td>
<td>0.70</td>
<td>0.70</td>
<td>1.08</td>
</tr>
<tr>
<td>1.06</td>
<td>*</td>
<td>0.70</td>
<td>0.70</td>
<td>0.70</td>
<td>0.70</td>
<td>0.70</td>
<td>0.70</td>
<td>0.70</td>
<td>0.70</td>
<td>0.70</td>
<td>1.06</td>
</tr>
<tr>
<td>1.04</td>
<td>*</td>
<td>0.70</td>
<td>0.70</td>
<td>0.70</td>
<td>0.70</td>
<td>0.70</td>
<td>0.70</td>
<td>0.70</td>
<td>0.70</td>
<td>0.70</td>
<td>1.04</td>
</tr>
<tr>
<td>1.02</td>
<td>*</td>
<td>0.70</td>
<td>0.70</td>
<td>0.70</td>
<td>0.70</td>
<td>0.70</td>
<td>0.70</td>
<td>0.70</td>
<td>0.70</td>
<td>0.70</td>
<td>1.02</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$N_F$</th>
<th>1.00</th>
<th>1.02</th>
<th>1.04</th>
<th>1.06</th>
<th>1.08</th>
<th>1.10</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>0.98</td>
<td>*</td>
<td>1.20</td>
<td>1.20</td>
<td>1.20</td>
<td>1.20</td>
<td>1.20</td>
</tr>
<tr>
<td>0.96</td>
<td>*</td>
<td>1.20</td>
<td>1.20</td>
<td>1.20</td>
<td>1.20</td>
<td>1.20</td>
</tr>
<tr>
<td>0.94</td>
<td>*</td>
<td>1.20</td>
<td>1.20</td>
<td>1.20</td>
<td>1.20</td>
<td>1.20</td>
</tr>
<tr>
<td>0.92</td>
<td>*</td>
<td>1.20</td>
<td>1.20</td>
<td>1.20</td>
<td>1.20</td>
<td>1.20</td>
</tr>
<tr>
<td>0.90</td>
<td>*</td>
<td>1.20</td>
<td>1.20</td>
<td>1.20</td>
<td>1.20</td>
<td>1.20</td>
</tr>
</tbody>
</table>

FIGURE 5.2-A. Model 2L3 - Optimal Control Law (2 Controls)
<table>
<thead>
<tr>
<th>( N_C )</th>
<th>( 0.90 )</th>
<th>( 0.92 )</th>
<th>( 0.94 )</th>
<th>( 0.96 )</th>
<th>( 0.98 )</th>
<th>( 1.00 )</th>
<th>( 1.02 )</th>
<th>( 1.04 )</th>
<th>( 1.06 )</th>
<th>( 1.08 )</th>
<th>( 1.10 )</th>
</tr>
</thead>
<tbody>
<tr>
<td>( N_F )</td>
<td>( 1.10 )</td>
<td>*</td>
</tr>
<tr>
<td>( 1.08 )</td>
<td>*</td>
<td>0.2207</td>
<td>0.2163</td>
<td>0.2112</td>
<td>0.2059</td>
<td>0.2002</td>
<td>0.1937</td>
<td>0.1861</td>
<td>0.1775</td>
<td>0.1676</td>
<td>0.1562</td>
</tr>
<tr>
<td>( 1.06 )</td>
<td>*</td>
<td>0.2134</td>
<td>0.2074</td>
<td>0.2014</td>
<td>0.1952</td>
<td>0.1884</td>
<td>0.1805</td>
<td>0.1712</td>
<td>0.1604</td>
<td>0.1475</td>
<td>0.1324</td>
</tr>
<tr>
<td>( 1.04 )</td>
<td>*</td>
<td>0.1987</td>
<td>0.1918</td>
<td>0.1846</td>
<td>0.1766</td>
<td>0.1671</td>
<td>0.1558</td>
<td>0.1422</td>
<td>0.1257</td>
<td>0.1056</td>
<td>0.0951</td>
</tr>
<tr>
<td>( 1.02 )</td>
<td>*</td>
<td>0.1648</td>
<td>0.1544</td>
<td>0.1414</td>
<td>0.1246</td>
<td>0.1035</td>
<td>0.0764</td>
<td>0.0416</td>
<td>0.0550</td>
<td>0.0769</td>
<td>0.0984</td>
</tr>
<tr>
<td>( 1.00 )</td>
<td>*</td>
<td>0.1463</td>
<td>0.1302</td>
<td>0.1105</td>
<td>0.0852</td>
<td>0.0512</td>
<td>0.00</td>
<td>0.0511</td>
<td>0.0849</td>
<td>0.1100</td>
<td>0.1410</td>
</tr>
<tr>
<td>( 0.98 )</td>
<td>*</td>
<td>0.1201</td>
<td>0.1022</td>
<td>0.0821</td>
<td>0.0617</td>
<td>0.0495</td>
<td>0.0762</td>
<td>0.1031</td>
<td>0.1238</td>
<td>0.1395</td>
<td>0.1517</td>
</tr>
<tr>
<td>( 0.96 )</td>
<td>*</td>
<td>0.1034</td>
<td>0.0919</td>
<td>0.0822</td>
<td>0.0836</td>
<td>0.1029</td>
<td>0.1228</td>
<td>0.1393</td>
<td>0.1526</td>
<td>0.1633</td>
<td>0.1722</td>
</tr>
<tr>
<td>( 0.94 )</td>
<td>*</td>
<td>0.1078</td>
<td>0.1066</td>
<td>0.1129</td>
<td>0.1279</td>
<td>0.1423</td>
<td>0.1557</td>
<td>0.1665</td>
<td>0.1755</td>
<td>0.1832</td>
<td>0.1900</td>
</tr>
<tr>
<td>( 0.92 )</td>
<td>*</td>
<td>0.1317</td>
<td>0.1393</td>
<td>0.1509</td>
<td>0.1622</td>
<td>0.1722</td>
<td>0.1808</td>
<td>0.1882</td>
<td>0.1947</td>
<td>0.2009</td>
<td>0.2058</td>
</tr>
<tr>
<td>( 0.90 )</td>
<td>*</td>
<td>0.1631</td>
<td>0.1720</td>
<td>0.1806</td>
<td>0.1883</td>
<td>0.1951</td>
<td>0.2010</td>
<td>0.2064</td>
<td>0.2112</td>
<td>0.2158</td>
<td>0.2202</td>
</tr>
</tbody>
</table>

* 0.90 * 0.92 * 0.94 * 0.96 * 0.98 * 1.00 * 1.02 * 1.04 * 1.06 * 1.08 * 1.10

**FIGURE 5.2-B. Model 2L3 - Cost (2 Controls)**
The program was originally developed using only one control, WFB. Subsequently, the A8 control was added but constraints were not yet considered. Figures 5.1 and 5.2 present the results, showing a single cross section of the three-dimensional state space, as defined by the plane $x_3(P_7) = 1$.

It is interesting that the control law $WFB(x)$ remains basically unchanged with the addition of the second input. However, the benefit derived by its addition is clearly evident, since the two-input system reaches the target roughly 10% faster than the one-input system, for any given state.

Another significant result is that the optimal control solution for Model 2L3 is virtually the same for a given $x_1$ and $x_2$, regardless of the choice of $x_3$. The largest difference occurs at $(x_1 = 1, x_2 = 1, x_3 = 1)$ where $V(x) = 0.0161$ seconds, as opposed to $V(x) = 0$ at the target $(x_1 = 1, x_2 = 1, x_3 = 1)$. The farther that $x_1$ and $x_2$ are from the target, the smaller the difference becomes. This suggests that a second order model would be satisfactory to use, and, indeed, it comes as no surprise considering the eigenvalue information garnered in Chapter II. $P_7$ (afterburner pressure) reacts so quickly that it only slightly alters the cost when $x_3$ is far from the target.

5.3 Optimal Control Theory

Henceforth, it is assumed that second order models of the jet engine are entirely suitable for this study. Considering the low order of the system, it was decided that analytical optimal control theory might provide good insight into the ultimate feedback controller solution, at the same time providing a means to check the accuracy of the numerical program. The analytical approach is examined here.
Let us first restate the general problem in continuous time:

Minimize

\[ J(x_0, u_{[t_0, t]}, t) = K(x(t_1)) + \int_{t_0}^{t_1} L(x(t), u(t), t) dt \]  \hspace{1cm} (5.3-1) \]

such that

\[ \dot{x} = f(x, u, t) \] \hspace{1cm} (5.3-2) \]

where \( t_0 \) = the starting time

\( t_1 \) = the time at which the target set \( S \) is reached

\( x_0 = x(t_0) \)

\( u(t) \in U \), the control set

\( (x(t_1), t,) \in S \)

\( u_{[t_0, t]} \) = the continuous control over the interval from \( t_0 \) to \( t \)

Note that the constraints \( g_1(x(t), u(t)) \) are excluded from the problem in this analytical study.
For the problem of interest, equations (5.3-1) and (5.3-2) can be restated as:

Minimize

\[
J(x_0, u[t_0, t], t) = \int_{t_0}^{t_1} dt
\]

Such that

\[
\dot{x} = A(x - \bar{1}) + B(u - \bar{1})
\]

\[
U = \{u(t): u_{\min} \leq u(t) \leq u_{\max}\}
\]

\[
S = \{(x(t_1), t_1): x = \bar{1}\}
\]

There are two principal analytical approaches to solve this problem, and both employ the Hamiltonian H defined as:

\[
H(x, p, u, t) = \langle p, f(x, u, t) \rangle + p_0 L(x, u, t)
\]

where p is known as the adjoint variable, and p_0 equals 1 in this case.

The first approach [14] states that if an infimum J^* exists for equation (5.3-3),

\[
J^*(x_0, t_0) = \inf_{u[t_0, t_1]} J(x_0, t_0)
\]

then it solves the Hamilton-Jacobi equation

\[
\frac{\partial J^*}{\partial t}(x_0, t_0) + H^*(x, \frac{\partial J^*}{\partial x}(x_0, t_0), t) = 0
\]

\[
(x_0, t_0) \notin S
\]
\[ J^*(x_0,t_0) = K(x_0,t_0) \text{ for } (x_0,t_0) \in S \]  \hfill (5.3-8)

Solution of equation (5.3-7) will yield a control \( v^*(x, \frac{\partial J^T(x_0,t_0)}{\partial x}, t) \).

If this control does carry \((x(t_0),t_0)\) to \(S\), the target set, then the control is optimal. Often the control law reduces to \(v^*(x)\), i.e., a pure state feedback control law. This is similar to Dynamic Programming, and, in fact, Bellman's equation (4.2-8) is actually a discretization of the Hamilton-Jacobi equation (5.3-7).

In this case, an easier analytical approach is through application of the Minimum Principle \([9]\) and the Hamilton Canonical Equations. Pontryagin's Minimum Principle states the Hamiltonian must be a minimum as a necessary condition for optimality, i.e.,

\[ H(x^*,p^*,u^*,t) \leq H(x,p,u,t) \quad \forall u \in U \]  \hfill (5.3-9)

where \(u^*\) is the optimal control. The Canonical Equations state that

\[ \dot{p} = - \frac{\partial H}{\partial x} \]  \hfill (5.3-10)

\[ \dot{x} = \frac{\partial H}{\partial p} \]  \hfill (5.3-11)

such that

\[ <p, dx > - H dt - p_0 \frac{dK}{dK} t_1 = 0 \]  \hfill (5.3-12)

where the differentials of equation (5.3-12) are consistent with the problem constraints. Equation (5.3-12) is known as the Transversality Condition \([14]\).

For the problem of interest,
\[ H = \langle p, Ax + Bu \rangle + 1 = \langle A^T p, x \rangle + \langle B^T p, u \rangle + 1 \quad (5.3-13) \]

where \( p, x, \) and \( u \) are vectors. To minimize (5.3-13), \( u \) must lie at an extreme point of its control set, depending on the signs of \((B^T p)_1\) and \((B^T p)_2\) i.e.,

\[
 u^* = \begin{cases} 
 (1) \quad u_1 \max u_2 \max & \text{if } (B^T p)_1 = -\quad (B^T p)_2 = - \\
 (2) \quad u_1 \min u_2 \max & \text{if } (B^T p)_1 = +\quad (B^T p)_2 = - \\
 (3) \quad u_1 \min u_2 \min & \text{if } (B^T p)_1 = +\quad (B^T p)_2 = + \\
 (4) \quad u_1 \max u_2 \min & \text{if } (B^T p)_1 = -\quad (B^T p)_2 = +
\end{cases} \quad (5.3-14)
\]

Thus we obtain the usual "bang-bang" solution, so characteristic of many time optimal control problems. It is now certain that the controls will ride the boundaries of the control set \( U \). The problem lies in determining what control is applied when, and for how long. This leads one to a switching point analysis.

In reference [11], Pontryagin shows a method for such an analysis. Equation (5.3-14) shows that if the trajectory of \( p \) (the adjoint system) is known, then the switchings are known. Thus Pontryagin delves into an analysis of the adjoint system, employing various transformations and translations to obtain

\[
 \dot{p}_1 = -\lambda p_1 - \mu p_2 \quad (5.3-15)
\]

\[
 \dot{p}_2 = \mu p_1 - \lambda p_2 \quad (5.3-16)
\]

where \( \lambda \) and \( \mu \) describe the complex eigenvalues \( \lambda + \mu j \) as per Chapter II. Further analysis of equations (5.3-15) and (5.3-16) yields the time intervals for which each control will be applied.
5.4 Model 2L2 Unconstrained

For Model 2L2, unconstrained, controls (1) and (3) as per equation (5.3-14) have time intervals of approximately 1.27 seconds, while controls (2) and (4) have time intervals of 0.00149 seconds. From this information, state space trajectories can be constructed. Since the solutions of (5.3-15) and (5.3-16) are basically sinusoids, the sequence of controls will begin at a particular control, depending on its location in state space, and follow the control sequence in numerical order (and repeating) for the specified time intervals, until the target is reached. This, naturally means that the first and last intervals may be shorter than the others.

Let us first construct trajectories for a number of initial points in state space, given that only a single control is applied. As shown in Figures 5.3 through 5.6, each set of trajectories has a point of singularity, which is the equilibrium point of the system with the given control applied. Each "x" mark shows a time interval of 0.1 second. As the figures show, there exists a single trajectory for each control which will pass through the target. Let us start at the target, and reconstruct the trajectory for each control, going backwards in time (Figure 5.7). Considering the optimal control knowledge embodied in equation (5.3-14), it is clear that the final stage of any optimal trajectory must necessarily follow part or all of one of these arcs, in order to reach the target. Furthermore, if the last stage of an optimal trajectory follows the trajectory due to control i to the target, then it necessarily was moving in accordance with control law i-1 prior to the switching. In this way, figure 5.8 can be constructed. There will occur at most two switchings in the optimal control law for the area of state space which is of interest in this problem.
FIGURE 5.3. Model 2L2 - Control (1) Trajectories
FIGURE 5.4. Model 2L2 - Control (2) Trajectories
FIGURE 5.5. Model 2L2 - Control (3) Trajectories
FIGURE 5.6. Model 2L2 - Control (4) Trajectories
**FIGURE 5.7. Model 2L2 - Optimal Control Synthesis**

**FIGURE 5.8. Model 2L2 - Optimal Control Synthesis**
FIGURE 5.9. Model 2L2 - Optimal Control Synthesis
By plotting the four trajectory systems on one graph, a composite picture is obtained, showing the optimal trajectories for the entire state space. This is shown in Figure 5.9. Due to the relatively short time interval for which controls (2) and (4) are applied, they have a negligible effect on the solution. In fact, for the scales used in Figure 5.9, these control regions do not appear.

As an example, suppose the initial state is (1.05, 0.75). Control (1) would be applied for approximately 0.2 seconds, then control (2) for 0.00149 seconds, and finally control (3) for approximately 0.06 seconds. Control (2) could have been eliminated for all practical purposes. In fact, that is precisely what occurs in the Dynamic Programming for the problem.

The Dynamic Programming results for Model 2L2, unconstrained, are shown in Figure 5.10. In general, there seems to be good agreement between the analytical study and the numerical results when considering the amount of time necessary to reach the target, \( V(x) \). The control laws, however, are not exactly the same. While the Dynamic Programming results show controls (1) and (3) to be optimum in the same areas (for the most part) as the analytical results, the boundary areas between the control regions do not agree as well as desired.

This is accounted for by a simple explanation. For some states, there exist control laws (in the Dynamic Programming results) which are not theoretically optimal. But when these control laws are applied, they yield costs which are so close to the optimal cost that, in a numerical study subject to interpolation error, a non-optimal cost with a corresponding non-optimal control law may be chosen over an optimal cost with a corresponding optimal control law. Thus, although the
<table>
<thead>
<tr>
<th>$N_F$</th>
<th>0.90</th>
<th>0.92</th>
<th>0.94</th>
<th>0.96</th>
<th>0.98</th>
<th>1.00</th>
<th>1.02</th>
<th>1.04</th>
<th>1.06</th>
<th>1.08</th>
<th>1.10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.10</td>
<td>*</td>
<td>1.10</td>
</tr>
<tr>
<td>1.08</td>
<td>*</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>1.08</td>
</tr>
<tr>
<td>1.06</td>
<td>*</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>1.06</td>
</tr>
<tr>
<td>1.04</td>
<td>*</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>1.04</td>
</tr>
<tr>
<td>1.02</td>
<td>*</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>1.02</td>
</tr>
</tbody>
</table>

**FIGURE 5.10-A.** Model 2L2 (Unconstrained) - Optimal Control Law
### FIGURE 5.10-B. Model 2L2 (Unconstrained) - Cost

<table>
<thead>
<tr>
<th>( N_C )</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.90</td>
</tr>
<tr>
<td>*</td>
</tr>
<tr>
<td>1.10</td>
</tr>
<tr>
<td>1.08</td>
</tr>
<tr>
<td>1.06</td>
</tr>
<tr>
<td>1.04</td>
</tr>
<tr>
<td>1.02</td>
</tr>
<tr>
<td>1.00</td>
</tr>
<tr>
<td>0.98</td>
</tr>
<tr>
<td>0.96</td>
</tr>
<tr>
<td>0.94</td>
</tr>
<tr>
<td>0.92</td>
</tr>
<tr>
<td>0.90</td>
</tr>
</tbody>
</table>

*Denotes points where the cost function is not defined or is undefined due to constraints or other factors.
difference between controls (1) and (3) is large, (where one would be optimal and the other non-optimal), application of each at the particular state (in the vicinity of a boundary) will yield costs which are nearly equal.

5.5 Model 1L2 Unconstrained

Switching point analysis (per Section 5.3) for Model 1L2 shows that controls (1) and (3) have maximum time intervals of 1.22 seconds, while controls (2) and (4) have maximum intervals of 0.49 seconds. In this case, a maximum of one switching may occur for the state space areas of interest. Figures 5.11 through 5.14 show the various trajectories for each control. In this case, the singularity points are not as close together as they were for Model 2L2, and thus the different controls cause much different trajectories to occur. Recall that in Section 5.4, the close proximity of two singularities revealed that two controls both had the same general effect on the state trajectory, but one control was always slightly better for a much larger area of the state space.

The composite effect is shown in Figure 5.15. These results are dramatically different from those of Model 1L2, which is not surprising since the relative magnitudes of elements in the B matrices of the two models is very different.

Although the results are not included in this work, it is a relatively easy job to devise a controller based strictly on these analytical results. Simple knowledge of several points along each of the four main trajectories (which completely define the control regions) will allow one to fit a curve to each boundary. In this way, the control is applied according to the region of state space, continuously testing as the trajectory moves throughout state space. This would be
FIGURE 5.11. Model 1L2 - Control (1) Trajectories
FIGURE 5.12. Model 1L2 - Control (2) Trajectories
FIGURE 5.13. Model 1L2 - Control (3) Trajectories
FIGURE 5.14. Model 1L2 - Control (k) Trajectories
FIGURE 5.15. Model 1L2 - Optimal Control Synthesis
FIGURE 5.16-B. Model L1L2 (Unconstrained) - Cost
the method utilized in a controller simulation, if constraints did not need to be considered.

The Dynamic Programming results for Model 1L2, unconstrained, are shown in Figure 5.16. Again, while there is excellent agreement on $V(x)$ between the analytical and the numerical results, the optimal control laws do not precisely agree, for the same reasons as mentioned in Section 5.4.

5.6 Model 1L2 Constrained

Analytical results are not possible when the constraints, as developed in Chapter III, are considered. Basically, these state-control constraints may be interpreted as control constraints which vary as a function of the state. Furthermore, it is not clear which constraints affect the control law at a given state merely by studying the trajectory of an optimal solution. If the constraints were functions of the state only (as was the case in reference [12]), the optimal trajectory would easily reveal when the control was riding a state constraint.

The Dynamic Programming results for Model 1L2, constrained, are presented in Figure 5.17, and the effects of the constraints are seen in Figure 5.18. Note that each of the constraints has an effect on the optimal feedback control law for some area of state space. In fact, there is only a small region of state space where the constraints do not affect the solution. The main impact of these constraints is that the control law no longer even resembles a bang-bang controller, but instead is a continuously changing function. The more finely quantized that the control set $U$ becomes, the smoother the control law will be.
**FIGURE 5.17-A. Model 1L2 (Constrained) - Optimal Control Law**

<table>
<thead>
<tr>
<th>( N_F )</th>
<th>0.90</th>
<th>0.92</th>
<th>0.94</th>
<th>0.96</th>
<th>0.98</th>
<th>1.00</th>
<th>1.02</th>
<th>1.04</th>
<th>1.06</th>
<th>1.08</th>
<th>1.10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.10 *</td>
<td>0.68</td>
<td>0.65</td>
<td>0.60</td>
<td>0.55</td>
<td>0.50</td>
<td>0.45</td>
<td>0.40</td>
<td>0.35</td>
<td>0.30</td>
<td>0.25</td>
<td>0.20</td>
</tr>
<tr>
<td>1.08 *</td>
<td>0.65</td>
<td>0.70</td>
<td>0.65</td>
<td>0.60</td>
<td>0.55</td>
<td>0.50</td>
<td>0.45</td>
<td>0.40</td>
<td>0.35</td>
<td>0.30</td>
<td>0.25</td>
</tr>
<tr>
<td>1.06 *</td>
<td>1.15</td>
<td>1.10</td>
<td>1.05</td>
<td>1.00</td>
<td>0.95</td>
<td>0.90</td>
<td>0.85</td>
<td>0.80</td>
<td>0.75</td>
<td>0.70</td>
<td>0.65</td>
</tr>
<tr>
<td>1.04 *</td>
<td>1.15</td>
<td>1.10</td>
<td>1.05</td>
<td>1.00</td>
<td>0.95</td>
<td>0.90</td>
<td>0.85</td>
<td>0.80</td>
<td>0.75</td>
<td>0.70</td>
<td>0.65</td>
</tr>
<tr>
<td>1.02 *</td>
<td>1.15</td>
<td>1.10</td>
<td>1.05</td>
<td>1.00</td>
<td>0.95</td>
<td>0.90</td>
<td>0.85</td>
<td>0.80</td>
<td>0.75</td>
<td>0.70</td>
<td>0.65</td>
</tr>
<tr>
<td>1.00 *</td>
<td>1.15</td>
<td>1.10</td>
<td>1.05</td>
<td>1.00</td>
<td>0.95</td>
<td>0.90</td>
<td>0.85</td>
<td>0.80</td>
<td>0.75</td>
<td>0.70</td>
<td>0.65</td>
</tr>
<tr>
<td>0.98 *</td>
<td>1.15</td>
<td>1.10</td>
<td>1.05</td>
<td>1.00</td>
<td>0.95</td>
<td>0.90</td>
<td>0.85</td>
<td>0.80</td>
<td>0.75</td>
<td>0.70</td>
<td>0.65</td>
</tr>
<tr>
<td>0.96 *</td>
<td>1.15</td>
<td>1.10</td>
<td>1.05</td>
<td>1.00</td>
<td>0.95</td>
<td>0.90</td>
<td>0.85</td>
<td>0.80</td>
<td>0.75</td>
<td>0.70</td>
<td>0.65</td>
</tr>
<tr>
<td>0.94 *</td>
<td>1.15</td>
<td>1.10</td>
<td>1.05</td>
<td>1.00</td>
<td>0.95</td>
<td>0.90</td>
<td>0.85</td>
<td>0.80</td>
<td>0.75</td>
<td>0.70</td>
<td>0.65</td>
</tr>
<tr>
<td>0.92 *</td>
<td>1.15</td>
<td>1.10</td>
<td>1.05</td>
<td>1.00</td>
<td>0.95</td>
<td>0.90</td>
<td>0.85</td>
<td>0.80</td>
<td>0.75</td>
<td>0.70</td>
<td>0.65</td>
</tr>
<tr>
<td>0.90 *</td>
<td>1.15</td>
<td>1.10</td>
<td>1.05</td>
<td>1.00</td>
<td>0.95</td>
<td>0.90</td>
<td>0.85</td>
<td>0.80</td>
<td>0.75</td>
<td>0.70</td>
<td>0.65</td>
</tr>
</tbody>
</table>
\[ \begin{array}{cccccccccc} 0.90 & 0.92 & 0.94 & 0.96 & 0.98 & 1.00 & 1.02 & 1.04 & 1.06 & 1.10 \\
\hline
N_F & & & & & & & & & \\
1.00 & * & 0.3133 & 0.2799 & 0.2402 & 0.1697 & 0.1160 & 0.0 & 0.0735 & 0.1232 & 0.1603 & 0.1904 & 0.2159 & * & 1.00 \\
0.96 & * & 0.2548 & 0.2225 & 0.1740 & 0.1399 & 0.1192 & 0.1461 & 0.1796 & 0.2053 & 0.2268 & 0.2454 & 0.2621 & 0.2966 & * & 0.96 \\
0.94 & * & 0.2453 & 0.2050 & 0.1681 & 0.1508 & 0.1641 & 0.1905 & 0.2142 & 0.2341 & 0.2516 & 0.2673 & 0.2816 & 0.294 & * & 0.94 \\
0.92 & * & 0.2328 & 0.2004 & 0.1808 & 0.1633 & 0.2029 & 0.2377 & 0.2420 & 0.2582 & 0.2729 & 0.2864 & 0.2989 & 0.2989 & 0.92 \\
0.90 & * & 0.2315 & 0.2099 & 0.2054 & 0.2163 & 0.2330 & 0.2605 & 0.2654 & 0.2790 & 0.2916 & 0.3034 & 0.3144 & 0.30 & 0.90 \\
\end{array} \]

**FIGURE 5.17-B. Model LL2 (Constrained) - Cost**
FIGURE 5.18. Effects of Constraints on Model 1L2 Optimal Control Law
5.7 Model 2 Unconstrained

After sufficiently analyzing the linear models, it now remains to study the nonlinear Model 2. No attempt will be made here at a nonlinear system analysis, which would be more complicated than the linear analysis outlined in Section 5.3. Furthermore, while the Dynamic Programming theory remains unchanged, the actual programming gets much more complicated.

If Model 2 could be embodied in 5 state equations, each a function of state variables and inputs, there still would be no significant difference in programming difficulty from the linear models. Unfortunately, Model 2 consists of many equations involving many intermediate variables, and the number of operations required for each point in state space is dramatically increased. In fact, a fifth order solution would require a prohibitive amount of c.p.u. time, and is automatically ruled out. A method must now be found to reduce the order of the system, preferably to second order. Ideally, one desires to set the derivatives of the unwanted state variables to zero, just as was done in Sections 2.3 and 2.4 with the linear models. However, it is impossible to obtain a closed form solution for all the intermediate variables, with state variables 3, 4, and 5 eliminated. This leads us to consider iterative solutions.

If equations 1 through 25 of Table 2.6 are to be solved (which is necessary to evaluate the state derivatives), then values for $P_4$, $U_4$, and $P_7$ must somehow be determined. Recall that Dynamic Programming involves a determination of $x(t + At)$ for a given $x$ and a given $u$. The first attempt, then, was to supply an initial guess for the eliminated states ($P_4$, $U_4$, and $P_7$), holding $N_0$, $N_F$, and the controls fixed, and iterate
until a steady-state solution was reached.

This method failed for several reasons. If one undergoes this iteration process for each state and each control on every successive approximation, c.p.u. time is extremely high. Alternatively, if one stores all the steady state values for $P_7$, $P_4$, and $U_4$ for each state and each control after the first approximation (eliminating the need to iterate on subsequent approximations) a prohibitively high amount of memory is required. Furthermore, if an initial guess for the eliminated states is not close to the actual steady-state solution, instabilities will occur and the system blows up. All of which requires us to look for another solution.

As a compromise to the problems encountered in determining values for the eliminated states, linear approximations are obtained from Model 2L5 and an order reduction is performed. This eliminates any instability problems and also drastically reduces c.p.u. time. The resulting equations are

\[
P_4 = 1.4663 x_1 + .53032 x_2 + .40998 u_1 - .18155 u_2 \quad (5.7-1)
\]
\[
P_7 = -.15936 x_1 + .78107 x_2 + .43393 u_1 - .88875 u_2 \quad (5.7-2)
\]
\[
U_4 = -.63063 x_1 -.99071 x_2 + 1.0656 u_1 + .17300 u_2 \quad (5.7-3)
\]

These equations are then converted to linear affine for utilization by the program.

The Dynamic Programming computer program for Model 2 is found in the Appendix. It is divided into four subroutines: (1) the main program, which is basically the Dynamic Programming method as outlined in Figure 4.2, along with the constants used in Model 2 per Table 2,3; (2) the static relations of Model 2 per Table 2,6; (3) the dynamic relations of
\begin{table}
\centering
\begin{tabular}{cccccccccccc}
\hline
\(N_G\) & 0.90 & 0.92 & 0.94 & 0.96 & 0.98 & 1.00 & 1.02 & 1.04 & 1.06 & 1.08 & 1.10 \\
\hline
1.08 & * & 1.10 & 1.10 & 0.90 & 0.90 & 0.90 & 0.90 & 0.90 & 0.90 & 0.90 & 0.90 \\
1.06 & * & 1.10 & 1.10 & 0.90 & 0.90 & 0.90 & 0.90 & 0.90 & 0.90 & 0.90 & 0.90 \\
1.04 & * & 1.10 & 1.10 & 0.90 & 0.90 & 0.90 & 0.90 & 0.90 & 0.90 & 0.90 & 0.90 \\
1.02 & * & 1.10 & 1.10 & 0.90 & 0.90 & 0.90 & 0.90 & 0.90 & 0.90 & 0.90 & 0.90 \\
\hline
\(N_F\) & 1.00 & * & 1.10 & 1.10 & 0.90 & 0.90 & 0.90 & 0.90 & 0.90 & 0.90 & 0.90 \\
0.98 & * & 1.10 & 1.10 & 0.90 & 0.90 & 0.90 & 0.90 & 0.90 & 0.90 & 0.90 & 0.90 \\
0.96 & * & 1.10 & 1.10 & 0.90 & 0.90 & 0.90 & 0.90 & 0.90 & 0.90 & 0.90 & 0.90 \\
0.94 & * & 1.10 & 1.10 & 0.90 & 0.90 & 0.90 & 0.90 & 0.90 & 0.90 & 0.90 & 0.90 \\
0.92 & * & 1.10 & 1.10 & 0.90 & 0.90 & 0.90 & 0.90 & 0.90 & 0.90 & 0.90 & 0.90 \\
0.90 & * & 1.10 & 1.10 & 0.90 & 0.90 & 0.90 & 0.90 & 0.90 & 0.90 & 0.90 & 0.90 \\
\hline
\end{tabular}
\caption{FIGURE 5.19-A. Model 2 (Unconstrained) - Optimal Control Law}
\end{table}
<table>
<thead>
<tr>
<th>NC</th>
<th>0.90</th>
<th>0.92</th>
<th>0.94</th>
<th>0.96</th>
<th>0.98</th>
<th>1.00</th>
<th>1.02</th>
<th>1.04</th>
<th>1.06</th>
<th>1.08</th>
<th>1.10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.10</td>
<td>*</td>
<td>0.2429</td>
<td>0.2332</td>
<td>0.2246</td>
<td>0.2160</td>
<td>0.2074</td>
<td>0.1986</td>
<td>0.1895</td>
<td>0.1795</td>
<td>0.1685</td>
<td>0.1559</td>
</tr>
<tr>
<td>1.08</td>
<td>*</td>
<td>0.2245</td>
<td>0.2148</td>
<td>0.2052</td>
<td>0.1956</td>
<td>0.1859</td>
<td>0.1755</td>
<td>0.1642</td>
<td>0.1515</td>
<td>0.1366</td>
<td>0.1193</td>
</tr>
<tr>
<td>1.06</td>
<td>*</td>
<td>0.2054</td>
<td>0.1946</td>
<td>0.1839</td>
<td>0.1730</td>
<td>0.1613</td>
<td>0.1483</td>
<td>0.1334</td>
<td>0.1156</td>
<td>0.0945</td>
<td>0.0832</td>
</tr>
<tr>
<td>1.04</td>
<td>*</td>
<td>0.1844</td>
<td>0.1723</td>
<td>0.1602</td>
<td>0.1471</td>
<td>0.1322</td>
<td>0.1144</td>
<td>0.0929</td>
<td>0.0670</td>
<td>0.0620</td>
<td>0.0668</td>
</tr>
<tr>
<td>1.02</td>
<td>*</td>
<td>0.1611</td>
<td>0.1475</td>
<td>0.1351</td>
<td>0.1162</td>
<td>0.0954</td>
<td>0.0689</td>
<td>0.0363</td>
<td>0.0444</td>
<td>0.0601</td>
<td>0.0772</td>
</tr>
<tr>
<td>1.00</td>
<td>*</td>
<td>0.1359</td>
<td>0.1196</td>
<td>0.1008</td>
<td>0.0769</td>
<td>0.0453</td>
<td>0.0</td>
<td>0.0353</td>
<td>0.0629</td>
<td>0.0833</td>
<td>0.0997</td>
</tr>
<tr>
<td>0.98</td>
<td>*</td>
<td>0.1089</td>
<td>0.0923</td>
<td>0.0734</td>
<td>0.0553</td>
<td>0.0392</td>
<td>0.0572</td>
<td>0.0782</td>
<td>0.0950</td>
<td>0.1069</td>
<td>0.1205</td>
</tr>
<tr>
<td>0.96</td>
<td>*</td>
<td>0.0935</td>
<td>0.0807</td>
<td>0.0703</td>
<td>0.0679</td>
<td>0.0812</td>
<td>0.0660</td>
<td>0.1092</td>
<td>0.1205</td>
<td>0.1205</td>
<td>0.1303</td>
</tr>
<tr>
<td>0.94</td>
<td>*</td>
<td>0.0951</td>
<td>0.0912</td>
<td>0.0934</td>
<td>0.1037</td>
<td>0.1146</td>
<td>0.1247</td>
<td>0.1336</td>
<td>0.1415</td>
<td>0.1487</td>
<td>0.1553</td>
</tr>
<tr>
<td>0.92</td>
<td>*</td>
<td>0.1331</td>
<td>0.1168</td>
<td>0.1246</td>
<td>0.1327</td>
<td>0.1403</td>
<td>0.1473</td>
<td>0.1536</td>
<td>0.1594</td>
<td>0.1646</td>
<td>0.1702</td>
</tr>
<tr>
<td>0.90</td>
<td>*</td>
<td>0.1383</td>
<td>0.1440</td>
<td>0.1500</td>
<td>0.1556</td>
<td>0.1607</td>
<td>0.1658</td>
<td>0.1704</td>
<td>0.1748</td>
<td>0.1792</td>
<td>0.1839</td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>0.90</td>
<td>0.92</td>
<td>0.94</td>
<td>0.96</td>
<td>0.98</td>
<td>1.00</td>
<td>1.02</td>
<td>1.04</td>
<td>1.06</td>
<td>1.08</td>
</tr>
</tbody>
</table>

FIGURE 5.19-B. Model 2 (Unconstrained) - Cost
Model 2 per Table 2.5, minus the eliminated state variables; and (4) equations for determination of $P_4$, $P_7$ and $U_4$, per equations (5.7-1), (5.7-2) and (5.7-3). Note that subroutines XSLOW and MODEL2 utilize the unnormalized system, while the main program and XFAST utilize the normalized system. Thus conversions from one system to the other are made at several points in the program.

It is also important to note that, even though c.p.u. time has been cut as much as possible, it still takes up to five times longer to obtain a Dynamic Programming Solution for Model 2 than for the linear models. For this reason, it is important to use as much c.p.u. time as possible per job run, but still leaving enough time to insure that the results are stored on disk before the allotted program time limit is exceeded. The program itself insures that the results are safely stored, by measuring how much c.p.u. time is required for the first successive approximation, and then using that information to decide when to write the results on disk.

The first results presented in Figure 5.19 are for Model 2, unconstrained, and are normalized values. The control law is similar to the solution for Model 2L2, unconstrained, but the cost is less than the Model 2L2 cost for most points in state space. It is somewhat surprising that nozzle area does not ride the limits of $U$ at several states.

5.8 Model 2 Constrained

Figure 5.20 shows the Dynamic Programming results for Model 2 with the constraint limits as specified in equations (3.3-8), (3.3-9), and (3.3-10), and using equations 23, 24, and 25 of Table 2.6. While the control can actually only ride one constraint at a time, there is a large area of state space where both $T_4$ and $Z_6$ are very near their
<table>
<thead>
<tr>
<th>N_C</th>
<th>0.90</th>
<th>0.92</th>
<th>0.94</th>
<th>0.96</th>
<th>0.98</th>
<th>1.00</th>
<th>1.02</th>
<th>1.04</th>
<th>1.06</th>
<th>1.08</th>
<th>1.10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>*</td>
</tr>
<tr>
<td>1.10</td>
<td>0.50</td>
</tr>
<tr>
<td>1.08</td>
<td>0.50</td>
</tr>
<tr>
<td>1.06</td>
<td>0.50</td>
</tr>
<tr>
<td>1.04</td>
<td>0.50</td>
</tr>
<tr>
<td>1.02</td>
<td>0.50</td>
</tr>
</tbody>
</table>

**FIGURE 5.20-A.** Model 2 (Constrained) - Optimal Control Law
\[
\begin{array}{cccccccccccc}
N_c & 0.90 & 0.92 & 0.94 & 0.96 & 1.00 & 1.02 & 1.04 & 1.06 & 1.08 & 1.10 \\
\hline
1.10 & 0.2677 & 0.2605 & 0.2526 & 0.2444 & 0.2356 & 0.2261 & 0.2157 & 0.2045 & 0.1915 & 0.1769 & 0.1605 & 1.10 \\
1.08 & 0.2509 & 0.2423 & 0.2335 & 0.2238 & 0.2129 & 0.2012 & 0.1881 & 0.1753 & 0.1559 & 0.1361 & 0.1223 & 1.08 \\
1.06 & 0.2325 & 0.2227 & 0.2120 & 0.2000 & 0.1866 & 0.1715 & 0.1539 & 0.1330 & 0.1088 & 0.0993 & 0.1012 & 1.06 \\
1.04 & 0.2123 & 0.2006 & 0.1873 & 0.1722 & 0.1548 & 0.1341 & 0.1084 & 0.0789 & 0.0478 & 0.0099 & 0.1064 & 1.04 \\
1.02 & 0.1895 & 0.1753 & 0.1583 & 0.1385 & 0.1146 & 0.0826 & 0.0453 & 0.0609 & 0.0864 & 0.1093 & 0.1275 & 1.02 \\
1.00 & 0.1660 & 0.1455 & 0.1227 & 0.0960 & 0.0686 & 0.00 & 0.0050 & 0.0921 & 0.1183 & 0.1378 & 0.1509 & 1.00 \\
0.98 & 0.1819 & 0.1611 & 0.1395 & 0.1172 & 0.0947 & 0.0689 & 0.1146 & 0.1353 & 0.1509 & 0.1636 & 0.1724 & 0.98 \\
0.96 & 0.2133 & 0.1936 & 0.1748 & 0.1580 & 0.1470 & 0.1452 & 0.1566 & 0.1795 & 0.1792 & 0.1874 & 0.1933 & 0.96 \\
0.94 & 0.2462 & 0.2286 & 0.2121 & 0.1976 & 0.1904 & 0.1667 & 0.1942 & 0.2090 & 0.2040 & 0.2090 & 0.2126 & 0.94 \\
0.92 & 0.2785 & 0.2617 & 0.2470 & 0.2349 & 0.2262 & 0.2236 & 0.2240 & 0.2261 & 0.2271 & 0.2298 & 0.2310 & 0.92 \\
0.90 & 0.3086 & 0.2929 & 0.2769 & 0.2675 & 0.2571 & 0.2525 & 0.2508 & 0.2494 & 0.2485 & 0.2490 & 0.2491 & 0.90 \\
\hline
\end{array}
\]

**FIGURE 5.20-B.** Model 2 (Constrained) - Cost
FIGURE 5.21. Effects of Constraints on Model 2 Optimal Control Law
respective limits, and thus they both are shown as affecting the solution in Figure 5.21. If only the constraint closest to its limit is shown, it would result in at least 10 smaller regions. In fact, it is unrealistic to show these smaller regions, since the somewhat coarse quantization of $U$ used in this study will have a strong effect on which constraint the controls are rising. The result is an almost random choice as to which constraint ($Z_c$ or $T_4$) that the controls ride (in the $T_4-Z_c$ region). Note also that the constraints affect the solution much differently than they did for Model 112 in Figure 5.18.

This Dynamic Programming solution requires approximately 90 minutes of c.p.u. time, using a 225-point state space search, and a 209-point control space search.
CHAPTER VI
CONTROLLER SIMULATIONS

6.1 Introduction

Now that feedback control laws have been obtained for several models, both constrained and unconstrained, any state \((N_c, N_F)\) can be driven to the specified target in (approximately) minimum time. Thus, initial starting states can be chosen which reflect low-thrust conditions for both Model 1 and Model 2. The simulators read the feedback control law from its disk storage and change the fuel flow and the nozzle area accordingly. This will necessarily involve an interpolation scheme to decide where the trajectory lies in state space, and is accomplished using the same scheme as employed in the Dynamic Programming. It is desirable that the quantization of the control law be as fine as possible for these purposes, but limits on c.p.u. time once again lead to a compromise.

Interpolation will often lead to error when you are interpolating in a region of state space where the control laws change abruptly. Obviously, the optimal control which is desired is either one extreme or the other, and not something in-between. In this case, the interpolation scheme could be overridden by an analytical test, similar to that which was mentioned in Section 5.5. Such considerations have not been implemented in this study.

The addition of constraints, and their resultant "smoothing" effect on the original "bang-bang" control law, will reduce the number of abrupt changes in the control law. Hence, the interpolation scheme is expected to be more reliable when applying a control law which was derived subject to constraints.
There is another very fundamental consideration for the controller simulations. While the optimal control law at some arbitrary state \((x_1, x_2)\) is quite possibly the same, or nearly the same as that for state \((x_1 + \varepsilon, x_2 + \delta)\), \((\varepsilon, \delta \text{ small})\), this is not at all true near the target. The optimal control law at the target is simply \((u_1 = 1, u_2 = 1)\) for the normalized system. However, this law is only valid for that single point in state space which defines the target. The state \((x_1 = 1 + \varepsilon, x_2 = 1 + \delta)\) will have an entirely different law.

In reality, we will consider the target to be some small region, not an infinitesimally small point. As far as the simulations are concerned, this small target region has already been determined by the quantization used in the Dynamic Programming. Whenever both states are within \(\Delta x\) (the quantization size) of the target, the simulator will begin to interpolate on the control law \((u_1 = 1, u_2 = 1)\) for the target. This will cause the states to be slowly eased towards the target, which might be considered unacceptable, depending on how large a region of state space is involved. For this reason, these simulations determine approximate times at which the target \textit{point} is reached, and exact times at which the target \textit{area} is reached.

Since all the Dynamic Programming solutions involve normalized values, both simulators must convert to the unnormalized system. All plotted figures in this chapter are normalized, for purposes of comparison.

Although the specified goal is to take a low-thrust starting state to the high-thrust target state in minimum time, the nature of an optimal control study (and in particular, the Dynamic Programming method) is that it is more concerned with state space and the time domain. As such,
no plots of thrust are presented, although thrust plots would be very necessary in frequency domain transfer function studies of linear systems. It is assumed here that satisfactory output responses are obtained when the system constraints are not violated.

The choice of the initial state for the following simulations is somewhat affected by the peculiarities of the DYNGEN (Model 1) computer program. Specification of the initial conditions is determined by an "off-design point" (see reference [10]), which is generally determined by specification of WFB and A8. Ideally, it would be desirable to choose a starting state as far from the target as possible, in order to demonstrate the usefulness of the global feedback control law. This often would involve specification of an extremely low WFB, and is easily accomplished. However, the control law at this point will be a much higher WFB, and results in convergence problems once the transient simulation has begun. The success or failure of the simulation to converge is strongly controlled by the TOLALL and DT variables (see reference [10] and the program inputs given in the Appendix) and amounts to much trial-and-error technique. Even these variables cannot totally control the convergence difficulties, and further changes in the DYNGEN program itself are sometimes required, as explained in [3].

Due to the above considerations, a somewhat high initial condition is used in the simulations, the feeling being that lower initial conditions would require an unacceptable amount of tampering with the tapes on which DYNGEN is stored. For similar reasons, no control laws which were obtained from unconstrained models are tested on DYNGEN.
6.2 Model 2 Simulation Utilizing Model 2L2 (Unconstrained) Control Law

The Model 2 controllers are implemented using the program shown in the Appendix. Figures 6.1 through 6.4 show the results of a simulation utilizing the Model 2L2 (unconstrained) control law, which was presented in Section 5.4. The starting state chosen corresponds to a thrust of approximately 80% of design thrust. The effects of interpolation on the control law are readily seen in Figure 6.1, showing the inputs versus time. After 0.08 seconds, the controls are slowly eased towards their normalized design values (\( W_{FB} = 1, \ A8 = 1 \)). Figure 6.2 reveals an overshoot of approximately 100% for compressor speed (\( N_{C} \)) and 30% for fan speed (\( N_{F} \)), certainly not a desirable response for a jet engine. Unfortunately, elimination of the constraints in the determination of the control law has resulted in these undesirable consequences, as shown in Figure 6.3. Turbine inlet temperature (\( T_{4} \)) has skyrocketed to 550% of its design value in only 0.02 seconds, and the surge margins have also reached intolerable levels. The state space trajectory, as shown in Figure 6.4, agrees remarkably well with the optimal trajectories which were analytically determined and presented in Figure 5.9 of the previous chapter. The time it takes to reach the target is also in agreement with the cost results as presented in Figure 5.10, approximately 0.12 seconds.

6.3 Model 2 Simulation, Utilizing Model 2 (Unconstrained) Control Law

Figures 6.5 through 6.8 represent the results when utilizing the Model 2 (unconstrained) control law, as determined in Section 5.7. The same initial state is used here as for the linear controller of Section 6.2, and with remarkably close results. The control laws are slightly different, but the resulting state and constraint variable
FIGURE 6.1. Model 2 Simulation Utilizing Model 2L2 (Unconstrained) Control Law; 
$\Delta x$ (Quantization) = .02
FIGURE 6.2. Model 2 Simulation Utilizing Model 2L2 (Unconstrained) Control Law;
$Ax$ (Quantization) = .02
FIGURE 6.3. Model 2 Simulation Utilizing Model 2L2 (Unconstrained) Control Law;
Ax (Quantization) = .02
FIGURE 6.4. Model 2 Simulation Utilizing Model 2L2 (Unconstrained) Control Law; $\Delta x$ (Quantization) $= .02$; marks indicate .01 second intervals.
FIGURE 6.5. Model 2 Simulation Utilizing Model 2 (Unconstrained) Control Law; \( \Delta x \) (Quantization) = .02
FIGURE 6.6. Model 2 Simulation Utilizing Model 2 (Unconstrained) Control Law; \( \Delta x \) (Quantization) = .02
FIGURE 6.7. Model 2 Simulation Utilizing Model 2 (Unconstrained) Control Law; 
$\Delta x$ (Quantization) = .02
FIGURE 6.8. Model 2 Simulation Utilizing Model 2 (Unconstrained) Control Law; Δx (Quantization) = .02; marks indicate .01 second intervals
trajectories are quite similar to the trajectories produced with the Model 2L2 control law. This is certainly striking evidence that Model 2 is a nearly linear system.

6.4 Model 2 Simulation, Utilizing Model 2 (Constrained) Control Law

The effects of constraints on the control law can be quite clearly demonstrated. Figures 6.9 through 6.12 represent the results of the Model 2 simulation, utilizing the Model 2 (constrained) control law, as developed in Section 5.8. The starting state corresponds to a thrust of approximately 74% of the design value. The controls are considerably smoothed out, and Figure 6.10 shows that the state-time trajectories proceed to the target much slower and less abruptly, than was the case in the previous two sections. However, the constraints are now at acceptable levels, as evidenced by Figure 6.11. Furthermore, the control is riding both the turbine temperature and compressor surge margin constraints from the time = 0.02 seconds to time = 0.16 seconds. This agrees with the constraint analysis as shown in Figure 5.21 of the previous chapter. Unfortunately, the constraint limits, as given in equations (3.3-8), (3.3-9), and (3.3-10) are slightly exceeded, even in this simulation. This is not entirely unexpected, when considering the rather important fact that the effects of three state variables are not seen in these results. Recall that the optimal control law was derived (see Section 5.7), out of necessity, by employing linear approximations for states (3), (4), and (5) of Model 2 (see Table 2.5). The simulation of the controller as presented in this section uses no such approximation, and hence, some variation is expected. Furthermore, the choice of initial conditions for states (3), (4), and (5) introduces yet another consideration, and in fact, the particular choices for this simulation were somewhat arbitrary. Regardless of these slight
FIGURE 6.9. Model 2 Simulation Utilizing Model 2 (Constrained) Control Law; Ax (Quantization) = .02
FIGURE 6.10. Model 2 Simulation Utilizing Model 2 (Constrained) Control Law; 
$\Delta x$ (Quantization) = .02
FIGURE 6.11. Model 2 Simulation Utilizing Model 2 (Constrained) Control Law; 
$Ax$ (Quantization) = .02
FIGURE 6.12. Model 2 Simulation Utilizing Model 2 (Constrained)
Control Law; Δx (Quantization) = .02; marks indicate
.01 second intervals
deficiencies, the cost is in good agreement with the Dynamic Programming results.

6.5 Model 1 Simulation Utilizing Model 2 (Constrained) Control Law

In view of all the evidence accumulated in Chapters 2 and 5 which show the differences between Model 1 and Model 2, non-optimal results are expected when applying on Model 1 a control law which was derived from Model 2. Indeed, this is clearly the case, as demonstrated by Figures 6.13 through 6.16. The starting state corresponds to an off-design point of \((WFB = 2.2, A8 = 2.95)\) on the DYNGEN simulator, and is the same starting point as was used in Section 6.4. While the constraint variables are within acceptable limits, the state-time trajectories resemble very slow ramp functions. It takes 0.34 seconds to reach the target area and, while Model 1 is known to react more slowly than Model 2, it is not expected that the cost be that high. Clearly the control law is not satisfactory for use on Model 1.

6.6 Model 1 Simulation Utilizing Model 1L2 (Constrained) Control Law

Application of the Model 1L2 (constrained) control law produces the best results for Model 1. This is established by Figures 6.17 through 6.20, using the same starting state as the previous two simulations (approximately 74% of design thrust). After 0.23 seconds, both rotor speeds are within 1.0% of their respective design values, a significantly better performance than is provided by the Model 2 control law. It is somewhat slower, however, than the cost predicted by the Dynamic Programming results of Section 5.5 (.205 seconds). This is not disturbing, and perhaps quite satisfactory, when considering that Model 1 is a 16th order nonlinear simulation. It must be expected that the use of a second order linear approximation in obtaining a control law cannot
FIGURE 6.13. Model 1 Simulation Utilizing Model 2 (Constrained) Control Law; Ax (Quantization) = .02
FIGURE 6.14. Model 1 Simulation Utilizing Model 2 (Constrained) Control Law; \( \Delta x \) (Quantization) = .02
FIGURE 6.15. Model 1 Simulation Utilizing Model 2 (Constrained) Control Law; $\Delta x$ (Quantization) = .02
FIGURE 6.16. Model 1 Simulation Utilizing Model 2 (Constrained) Control Law; $\Delta x$ (Quantization) = .02; marks indicate .02 second intervals
FIGURE 6.17. Model 1 Simulation Utilizing Model 1L2 (Constrained) Control Law; $\Delta x$ (Quantization) = .01
FIGURE 6.18. Model 1 Simulation Utilizing Model IL2 (Constrained) Control Law; 
$\Delta x$ (Quantization) = .01
FIGURE 6.19. Model 1 Simulation Utilizing Model LL2 (Constrained) Control Law; Ax (Quantization) = .01
FIGURE 6.20. Model 1 Simulation Utilizing Model 1L2 (Constrained) Control Law; Ax (Quantization) = .01; marks indicate .01 second intervals
possibly result in the exact prediction of the minimum time it takes the
trajectory to reach the target. The control quite clearly rides the
turbine inlet temperature and compressor surge margin constraints over
most of the trajectory, in agreement with the constraint analysis of
Figure 5.18.
CHAPTER VII
SUMMARY

The goal of this work was to obtain a global nonlinear optimal control for a two spool turbofan jet engine. Various models were developed, pursuant to this goal. Most important of these models was the nonlinear analytically-expressed Model 2, which correctly models most of the qualitative behavior of the jet engine, but which fails to achieve strong numerical agreement with the non-analytical Model 1 simulator. The time optimal control program was then expressed in detail, and various constraints were added to the problem. Dynamic Programming theory and the Successive Approximations technique were explored, and applied to the problem of interest, while several improvements in the numerical programming were introduced. Analytical and numerical results were obtained for several models, both constrained and unconstrained. Finally, these results were tested on the two principal simulators, Model 1 and Model 2.

Indeed, this study has successfully achieved time optimal feedback control laws for various models of the two-spool turbofan jet engine. Furthermore, valuable insight into the nature of the problem has been obtained, and much useful computer software has been developed. Unfortunately, all enthusiasm for the results achieved in this study must be tempered by the realization that an optimal control law obtained from any model can only be as good as the model itself. For this reason, more work is needed to develop a better nonlinear analytical model, similar to Model 2 as presented in this study.

As the accuracy of these models is further improved, more consideration should also be given to the details which so greatly influence the time optimal feedback control law: the determination of the
allowable controls, \( U \); and the limits placed on the selected constraint variables. As the entire analytical problem formulation (model, constraints, etc.) becomes closer and closer to the actual physical problem, more detailed solutions can then be obtained in the numerical analysis.

In conclusion, this study should be viewed as one more step in the efforts to achieve global optimal control laws for two-spool turbofan jet engines. It has accomplished much of its original goal, but leaves much more work remaining.
Appendix G

"DIRECT METHOD FOR OBTAINING NONLINEAR
ANALYTICAL MODELS OF A JET ENGINE"

R. J. Leake
J. G. Comiskey
INTERNATIONAL FORUM
ON
ALTERNATIVES FOR LINEAR MULTIVARIABLE CONTROL

Hyatt Regency O'Hare Hotel
Chicago, Illinois, USA
October 13-14, 1977

SPONSORS OF NATIONAL ELECTRONICS CONFERENCE • NATIONAL COMMUNICATIONS FORUM • PROFESSIONAL GROWTH IN ENGINEERING INSTITUTES

MEMBERS

- ILLINOIS INSTITUTE OF TECHNOLOGY
- IOWA STATE UNIVERSITY
- MARQUETTE UNIVERSITY
- MICHIGAN STATE UNIVERSITY
- NORTHWESTERN UNIVERSITY
- THE OHIO STATE UNIVERSITY
- PURDUE UNIVERSITY
- UNIVERSITY OF MICHIGAN
- THE UNIVERSITY OF MINNESOTA
- THE UNIVERSITY OF MISSOURI AT ROLLA
- UNIVERSITY OF NOTRE DAME
- UNIVERSITY OF WISCONSIN
A DIRECT METHOD FOR OBTAINING NONLINEAR

ANALYTICAL MODELS OF A JET ENGINE

R. J. Leake and J. G. Comiskey

Department of Electrical Engineering
University of Notre Dame
Notre Dame, Indiana 46556

ABSTRACT

This paper describes an algorithm for obtaining a nonlinear analytical model of a jet engine from measurements of two equilibrium point values and the linearized A and B matrices at those points. The method is compared with more conventional procedures of interconnecting individual component approximations.
A DIRECT METHOD FOR OBTAINING NONLINEAR
ANALYTICAL MODELS OF A JET ENGINE

R. J. Leake and J. G. Comiskey
Department of Electrical Engineering
University of Notre Dame
Notre Dame, Indiana 46556

ABSTRACT

This paper describes an algorithm for obtaining a nonlinear analytical model of a jet engine from measurements of two equilibrium point values and the linearized A and B matrices at those points. The method is compared with more conventional procedures of interconnecting individual component approximations.

1. INTRODUCTION

In this work we continue the study of nonlinear analytical models for a two spool turbofan jet engine first reported in [1]. The model given in [1] is refined here and compared with an entirely new model which is the main subject of this paper. In order to distinguish the various models, we make the following designations.

Model 1. A large, flexible generalized engine simulator called DYNGEN which has been developed at NASA Lewis Research Center [2,3] and coded for a particular hypothetical two spool turbofan engine.

Model 2. An analytically expressed set of 5 nonlinear differential equations plus about 20 nonlinear static equations approximating the relationship between various engine variables.

Model 3. A relatively simple two-input, five-state model which can be generated automatically for any engine from data of two equilibrium points plus A and B matrices by the algorithm to be presented below.

2. DESCRIPTION OF MODEL 2

A refined and updated version of the two-input, five-state, two-output nonlinear analytical model presented in [1] is given in this section. The variable designations are:

$U_1 =$ fuel flow (WFB)
$U_2 =$ nozzle area ($A_g$)
$X_1 =$ compressor rotor speed ($N_C$)
$X_2 =$ fan rotor speed ($N_F$)
$X_3 =$ burner exit pressure ($P_4$)
$X_4 =$ after burner exit pressure ($P_7$)
$X_5 =$ high inlet energy ($U_4$)
$Y_1 =$ thrust (FG)
$Y_2 =$ high turbine inlet temperature ($T_4$)

The system is completely specified as follows.
Constants
\[ J = AJ = 778.26 \]
\[ C = 32.174049 \]
\[ R = RA = 0.0252 \]
\[ \gamma = 1.4 \]
\[ P_2 = 518.668 \]
\[ I_C = PMIH = 3.8 \]
\[ I_F = PMILP = 4.5 \]
\[ V_{\text{COMB}} = 1.65 \]
\[ V_{\text{AFBN}} = 49.77 \]
\[ C_{\text{VMNOZ}} = 0.9494 \]
\[ \text{CAPSF} = 2116.217 \]
\[ N_C \text{ DESIGN} = \text{XNHPDS} = 10070 \]
\[ N_F \text{ DESIGN} = \text{XNLPS} = 9651 \]

Design Equilibrium Point (Sea Level Static)
\[ \text{WFB} = 2.75 \]
\[ A_8 = 2.9482558 \]
\[ C_{\text{NF}} = 1.02310 \]
\[ T_{21} = 742.957 \]
\[ T_{4} = 2103.47 \]
\[ T_{50} = 1467.47 \]
\[ T_{55} = 1789.15 \]
\[ ZC = 0.81430 \]
\[ \text{SFC} = 0.737071 \]
\[ \eta = 20.71175 \]
\[ C_{PC} = 0.24 \]
\[ C_{PF} = 0.24 \]
\[ C_{VB} = 0.20279 \]
\[ C_{\text{PHI}} = 0.22589 \]
\[ C_{\text{PLT}} = 0.27938 \]
\[ \phi = BLC \]
\[ \text{WAC} = PCBL = 0.16 \]
\[ \alpha = PC\text{BLDU} = 0.208 \]
\[ \beta = PC\text{BLHP} = 0.726 \]
\[ \gamma = PC\text{BLLP} = 0.066 \]
\[ FG = 13431.02 \]
\[ T_4 = 2892.04 \]
\[ \text{WG50} = 134.364 \]
\[ \text{WG4} = 118.375 \]
\[ \text{WG55} = 135.818 \]
\[ \text{PPMAX} = 3.3624 \]
\[ \text{WAF} = 221.573 \]
\[ \text{WCMAX} = 54.4151 \]
\[ \text{AWMAX} = 1.5805 \]
\[ \text{WG24} = 88.5047 \]

State Equations
\[ \frac{\text{d}N_C}{\text{d}t} = \left(\frac{30}{\pi}\right)^2 \frac{J}{i_{CN}} \left[C_{PC}\text{WAC}(T_{21} - T_3) + C_{PHI}\text{WGB}(T_4 - T_{50})\right] \]
\[ \frac{\text{d}N_F}{\text{d}t} = \left(\frac{30}{\pi}\right)^2 \frac{J}{i_{FN}} \left[C_{PF}\text{WAF}(T_2 - T_{21}) + C_{\text{PLT}}\text{WGB}(T_{50} - T_{55})\right] \]
\[ \frac{\text{d}P_4}{\text{d}t} = \frac{\text{Ry} \times T_4}{V_{\text{COMB}}} \left[\text{T}_{4, \text{WA3}} + \text{WFB} - \text{WG4}\right] \]
\[ \frac{\text{d}P_7}{\text{d}t} = \frac{\text{Ry} \times T_7}{V_{\text{AFBN}}} \left[\text{WG4} - \text{WFB} - \text{WA3}\right] \]
(5) \[ \frac{dU_4}{dt} = \frac{C_{VB,RT_4}}{V_{CONH}^{1/4}} [T_4 (W_G4 - W_{PII} - W_{A3}) + \gamma (T_3 W_{A3} - T_4 W_G4 + T_4 (1+n) W_{FB})] \]

Nonlinear Functions Required for State Equations

(1) \[ CNF = \frac{N_F}{N^\text{DESIGN}} = \frac{N_F}{9651} \]

(2) \[ T_{21} = T_2 + 214.2732 \text{ CNF}^2 - 48(A_8 - 2.948255) \]

(3) \[ CNC = \frac{N_C}{N^\text{DESIGN} / T_{21} / T_2} = \frac{N_C}{10070 / T_{21} / 518.668} \]

(4) \[ T_3 = T_{21} + 743.2722 \text{ CNC}^2 - 68(A_8 - 2.948255) \]

(5) \[ T_4 = U_4 / C_{VB} \]

(6) \[ T_{50} = 0.727 T_4 \]

(7) \[ P_3 = 1.05944 P_4 \]

(8) \[ P_{21} = -6.20568 + 0.0129774 T_{21} - 0.0185376 P_3 \]

(9) \[ W_{\text{FMAX}} + 261.01 \text{ CNF} - 63.196 \]

(10) \[ P_{\text{FMAX}} = 3.516739 \text{ CNF} - 0.23561 \]

(11) \[ W_{\text{AF}} = W_{\text{FMAX}} + 28.502 \left[ -2.313268 (P_{\text{FMAX}} - P_{21}) \left[ 1 - e^{\frac{-2.313268 (P_{\text{FMAX}} - P_{21})}{1 - e^{\frac{-2.313268 (P_{\text{FMAX}} - P_{21})}{1}}} \right] \right] \]

(12) \[ W_{\text{CHMAX}} = 137.54 - 457.987 \text{ CNC} + 564.325 \text{ CNC}^2 - 188.113 \text{ CNC}^3 \]

(13) \[ \Delta W_{\text{CHMAX}} = 6.492 - 4.9749 \text{ CNC} \]

(14) \[ P_{\text{CHMAX}} = 26.43184 - 89.0484 \text{ CNC} + 109.7243 \text{ CNC}^2 - 36.5756 \text{ CNC}^3 \]

(15) \[ W_{\text{AC}} = \frac{P_{21}}{\sqrt{T_{21} / 518.668}} \left\{ W_{\text{CHMAX}} + \Delta W_{\text{CHMAX}} (1 - e^{\frac{-0.3662 (P_{\text{CHMAX}} - P_3)}{P_{21}}} \right\} \]

(16) \[ W_{A3} = (1 - \phi) W_{\text{AC}} = .84 W_{\text{AC}} \]

(17) \[ W_{G50} = 301.957 P_4 / T_4 \]

(18) \[ W_{G4} = W_{G50} - 84 W_{\text{AC}} = W_{G50} - .11616 W_{\text{AC}} \]

(19) \[ W_{G55} = W_{G50} + 84 W_{\text{AC}} = W_{G50} + .01056 W_{\text{AC}} \]

(20) \[ T_{55} = 106.002 - .86154 T_{50} - .10458 \text{ CNC} / T_{21} T_{50} \]

(21) \[ T_7 = .49661 T_{55} + 205.886 P_7 \]

(22) \[ W_{G7} = \frac{1121.786 P_7 A_8}{\sqrt{T_7}} \]
3. DIRECT METHOD

We now consider a direct computer method for obtaining nonlinear models. Let
\[ \dot{x} = f(x, u) \]  
with \( x \) an \( n \) vector and \( u \) an \( m \) vector denoting a dynamical system such as a jet engine, in which the state variables and parameters \( u \) remain positive throughout the system operation and there is a function \( g(u) \) such that for each equilibrium point
\[ f(x, u) = 0 \quad \Rightarrow \quad x = g(u) \]  
The steady state system analysis involves the study of the function \( g(u) \).

We propose to approximate the system (1) by
\[ \dot{x} = A(x)[x - g(u)] \]  
where \( A(x) \) is a square matrix which varies as a function of \( x \). Notice that if \( x_D \) is an equilibrium point of (1), \( x_D = g(u_D) \), then a linearization about this equilibrium point results in the linear system
\[ \delta \dot{x} = A_D \delta x + B_D \delta u \]  
and a linearization of the approximating system (2) at \( x_D = g(u_D) \) results in
\[ \delta \dot{x} = A(x_D) \delta x + [-A(x_D) \frac{\partial g}{\partial u}(u_D)] \delta u \]  
Hence, the linearization of (2) will match the linearization of (1) if and only if
\[ A(x_D) = A_D, \quad -A_D \frac{\partial g}{\partial u}(u_D) = B_D \]  
Also, if \( A_D \) is invertible, as is often the case for jet engine models, equation (6) yields
\[ \frac{\partial g}{\partial u}(u_D) = -A_D^{-1} B_D \]  
The basic idea of the proposed direct method is to use the above developments together with function approximations for \( A(x) \) and \( g(u) \) to arrive at a nonlinear model. Since equilibrium points and linearized models at those points can be obtained by known algorithms, we shall use this fact. Our initial approach is to use just two equilibrium points, say \( x_D \) and \( x_W \). The input information is thus
\[ x_D, x_W, u_D, u_W, A_D, A_W, B_D, B_W \]  
where \( x_D \) and \( x_W \) are design and off-design equilibrium points. \( A_D \) and \( A_W \) are the system \( A \)-matrices at these points and \( u_D, u_W, B_D, B_W \) are the associated parameter and input matrices. Mathematically,
\[ A_D = \frac{\partial f(x_D, u_D)}{\partial x}, \quad B_D = \frac{\partial f(x_D, u_D)}{\partial u} \]
We shall employ a linear approximation for $A(x)$, given by

$$A(x) = A_W \ diag \left( \frac{x_D - x_j}{x_D - x_{W_j}} \right) + A_D \ diag \left( \frac{x_j - x_{W_j}}{x_D - x_{W_j}} \right)$$  \hspace{1cm} (10)$$

in which diag $(\cdot)$ is a diagonal matrix which causes the $j$th column of $A(x)$ to be interpolated linearly between the $j$th columns of $A_W$ and $A_D$ with $x_j$ as the interpolation variable.

The parameter vector $u$ is presumed to be made up of physical control variables, and parameters such as altitude and Mach number. The equilibrium function is to be approximated in a manner such that both the equilibrium values and the linearizations of the approximating system (3) match those of system (1) at both $x_D$ and $x_W$. This requires then that

$$g(u_D) = x_D \quad g(u_W) = x_W$$  \hspace{1cm} (11)$$

and also

$$\frac{\partial g}{\partial u} (u_D) = -A_D^{-1} B_D, \quad \frac{\partial g}{\partial u} (u_W) = -A_W^{-1} B_W.$$  \hspace{1cm} (12)$$

The method we propose here is to approximate each scalar component $g_i(u)$ of $g(u)$ by a linear affine power law form

$$g_i(u) = c_{1i} u + \cdots + c_{mi} u + c_{m+1} u_1 + c_{m+2} u_2 + \cdots + c_{m+m} u_m + c_{2m+2}$$  \hspace{1cm} (13)$$

for which the $j$th partial derivative is

$$\frac{\partial g_i}{\partial u^j} = c_j + c_{2m+1} c_{m+j} u_j$$  \hspace{1cm} (14)$$

Now, if the variables are normalized and scaled such that

$$u_D = (l, l, \ldots, l) = l \quad u_W = (a, a, \ldots, a) = a$$  \hspace{1cm} (15)$$

then, the conditions of (11) and (12) can be put in the form

$$k_j = \frac{\partial g_i}{\partial u^j} (l) = c_j + c_{2m+1} c_{m+j}$$

$$k_{m+j} = \frac{\partial g_i}{\partial u^j} (a) = c_j + c_{2m+1} c_{m+j} a$$

$$k_{2m+1} = g_i(l) = \Sigma c_j + c_{2m+1} + c_{2m+2}$$

$$k_{2m+2} = g_i(a) = a \Sigma c_j + c_{2m+1} a$$

and summing the first two of these over $j$ yields

$$\Sigma k_j = \Sigma c_j + c_{2m+1} \Sigma c_{m+j}$$

$$\Sigma k_{m+j} = \Sigma c_j + c_{2m+1} a \Sigma c_{m+j}^{-1}$$

$$k_{2m+1} = \Sigma c_j + c_{2m+1} + c_{2m+2}$$
\[ k_{2m+2} = a_1 c_j + c_{2m+1} a_m + c_{2m+2} \]

which is of the form

\[ \begin{align*}
    s_1 &= r_1 + r_3 r_2 \\
    s_2 &= r_1 + r_3 r_2 \\
    s_3 &= r_1 + r_3 + r_4 \\
    s_4 &= ar_1 + r_3 r_2 + r_4
\end{align*} \]  

which, incidentally, is the \( m=1 \) condition also. This set of transcendental equations is solved numerically for \( r_1, r_2, r_3, r_4 \) and (16) is then used to solve for each \( c_j \). In the event that (18) has no solution, a best fit is made on the second equation by varying \( r_2 \) while the other conditions are satisfied exactly.

### 4. ALGORITHM OF THE DIRECT METHOD

In this section, we present an algorithm which serves to automate the process of finding a nonlinear model for a system

\[ \dot{x} = f(x,u) \]  

(1)

to be approximated from \( x_D, u_D, x_W, u_W, A_D, B_D, A_W, B_W \), by a normalized system. The algorithm will automatically perform the normalization and, hence, actually approximate the system

\[ \dot{x} = \tilde{f}(\tilde{x}, \tilde{u}) \]  

(2)

where \( \tilde{x}_i = x_i / x_{D_i} \), \( \tilde{u}_j = u_j / u_{D_j} \). The approximating system is of the form

\[ \dot{x} = \hat{A}(\tilde{x}) [\tilde{x} - \hat{B}(\tilde{u})] \]  

(3)

where

\[ \hat{A}(\tilde{x}) = \hat{A}_W \text{diag} \left( \frac{\tilde{x}_D - \tilde{x}_W}{x_{D_i} - x_{W_i}} \right) + \hat{A}_D \text{diag} \left( \frac{\tilde{x}_D - \tilde{x}_W}{x_{D_i} - x_{W_i}} \right) \]  

(4)

and

\[ \hat{B}_j = E c_j u_j + c_{m+1}^{j+1} u_m^{j+1} + c_{m+2}^{j+1} \]  

(5)

where \( u_j = \alpha \tilde{u}_j + \beta_j \).

**Algorithm 1.**

1. Input: \( x_D, u_D, A_D, B_D, m, n, a, e, x_W, u_W, A_W, B_W \)
2. Calculate:
   \[ \hat{A}_D = \text{diag}(1/x_{D_i}) A_D \text{diag}(x_{D_i}) \]
   \[ \hat{A}_W = \text{diag}(1/x_{D_i}) A_W \text{diag}(x_{D_i}) \]
   \[ \hat{B}_D = \text{diag}(1/x_{D_i}) B_D \text{diag}(u_{D_i}) \]
\[ \hat{b}_W = \text{diag}(1/x_{D_1}) \quad \hat{b}_W \text{diag}(u_{D_1}) \]

3. Calculate
\[ \alpha_j = (1-a)u_{D_1}(u_{D_1} - u_{W_1})_j \quad j = 1, \ldots, m \]
\[ \beta_j = \left(u_{D_1} - u_{W_1}ight)(u_{D_1} - u_{W_1})_j \]

4. Calculate:
\[ k_{ij}^i = (-\hat{a}_D^i)^{u_{D_1}} \quad j = 1, \ldots, m \]
\[ k_{i+1}^i = (-\hat{a}_D^i)^{u_{D_1}} \quad i = 1, \ldots, n \]

5. Calculate
\[ s_1 = \sum_{j=1}^{m} k_{ij}^i \]
\[ s_2 = \sum_{j=1}^{m} k_{i+1}^j \]
\[ s_3 = k_{2m+1} \]
\[ s_4 = k_{2m+2} \]

6. Go to Algorithm II.
Send: \( s_1, s_2, s_3, s_4, a, \epsilon \)
Receive: \( r_1, r_2, r_3, r_4, \gamma \)

7. Calculate:
\[ c_{2m+1}^i = r_3^i \]
\[ c_{2m+2}^i = r_4^i \]
\[ c_{i+1}^i = r_3^i - r_4^i \]
\[ c_{i+1}^i = \frac{i-1}{r_j(a^2 - 1)} \]

8. Output
\[ c_1^i, \ldots, c_{2m+2}^i \]
\[ \alpha_j, \beta_j \quad j = 1, \ldots, m \]
\[ \hat{x}_{D_1}, \hat{x}_{W_1} \]
\[ \hat{a}_D, \hat{a}_W \]

Algorithm II

1. Input: \( s_1, s_2, s_3, s_4, \epsilon, a \)
2. Calculate:
\[ p_1 = \frac{s_3 - s_4}{1-a} \]
\[ p_2 = \frac{s_2 - s_3}{1-a} \]
3. Minimize by line search:

\[
p_2 - p_1 = \frac{a^x - a^{x-1}}{a-1}
\]

for \(-10 \leq x \leq 10, \ x \neq 0, \ x \neq 1\)

4. Calculate:

\[
r_2 = x
\]

\[
r_3 = \frac{p_1}{r_2 - \frac{a^{x-1}}{a-1}}
\]

\[
s_3 - s_4 + r_3(a - a^{x-1})
\]

\[
r_1 = \frac{1}{1-a}
\]

\[
\gamma = \frac{1}{m} (s_1 - s_2 + r_2 r_3 (a^{x-1} - 1))
\]

\[
s_4 - a s_3 + r_3(a - a^{x-1})
\]

\[
r_2 = \frac{1}{1-a}
\]

5. Return to Algorithm 1.6

5. NUMERICAL RESULTS

The algorithm of the previous section was applied to data obtained using DYNGEN with \(x_D\) and \(u_D\) specified as in Section 2. An off-design point was obtained using \(u_W = (0.72727, 0.72727)\), with the resulting normalized state \(\hat{x}_W = (0.9000, 0.7897, 0.7381, 0.7040, 0.9454)\). The normalized \(A\) and \(B\) matrices are

\[
\hat{A}_D = \begin{bmatrix}
-3.8 & -1.277 & 2.067 & -1.152 & 1.448 \\
2.748 & -5.39 & 1.585 & -1.991 & 1.071 \\
377.9 & 49.51 & -264.9 & 86.807 & 78.91 \\
31.26 & 139.39 & -6.269 & -88.69 & 27.83 \\
-176.5 & 23.91 & -10.27 & -37.4 & -246.7
\end{bmatrix}
\]

\[
\hat{B}_W = \begin{bmatrix}
-0.00259 & 0.3553 \\
0.2116 & -0.31618 \\
12.54 & -13.774 \\
-6.201 & -99.3 \\
157.78 & 6.84
\end{bmatrix}
\]

\[
\hat{A}_W = \begin{bmatrix}
-4.744 & -1.388 & 3.2468 & -1.4591 & 1.1969 \\
821.86 & -26.726 & 2.5358 & -1.8609 & 4.5548 \\
475.73 & 137.55 & -38.91 & 27.791 & 91.495 \\
50.103 & 110.91 & 63.188 & -116.69 & 8.2883 \\
\end{bmatrix}
\]

\[
\hat{B}_W = \begin{bmatrix}
-0.04546 & 0.0013 \\
0.0086 & -0.0121 \\
2.434 & -0.613 \\
678.65 & -97.467 \\
203.44 & 64.755
\end{bmatrix}
\]

Using the parameter value \(a = 0.7\), the \(c\) coefficient which specify the equilibrium function \(\hat{g}(\hat{u})\) as in Section 4 are given by the matrix

\[
\hat{C} = \begin{bmatrix}
.24267 & -0.0021 & 1.90082 & 8.09916 & 0.0264 & 7.3088 \\
1.01593 & 0.95407 & 0.99872 & 0.66919 & -0.81879 & -0.05121 \\
-7.3445 & 0.10133 & 6.90586 & 3.09409 & 0.01495 & 0.15272 \\
-7.7234 & -3.5905 & 2.43867 & 2.87415 & -0.75198 & 0.66191 \\
-3.9503 & -0.2762 & -3.44682 & 13.4468 & 0.01838 & 0.85921
\end{bmatrix}
\]

This matrix together with the values \(a = 1.1\) and \(\beta = 0.1\) and the matrices \(\hat{A}_D\) and \(\hat{A}_W\) completely specify Model 3A.

Another model which we will call Model 3B is easily obtained by using a linear affine approximation to \(\hat{g}(\hat{u})\) such that \(\hat{g}(\hat{u}_D) = \hat{x}_D, \hat{g}(\hat{u}_W) = \hat{x}_W\). Model 3B is specified.
by \( a = 1^{-1}, \alpha = 2.31778, \beta = -1.31778 \) and the coefficient matrix

\[
C = \begin{bmatrix}
.1553 & .0028 & 1.0 & 1.0 & 0. & .8418 \\
.1619 & .1707 & 1.0 & 1.0 & 0. & .6674 \\
.5551 & -.1208 & 1.0 & 1.0 & 0. & .5857 \\
.5878 & -.49313 & 1.0 & 1.0 & 0. & .9053 \\
.2962 & -.2099 & 1.0 & 1.0 & 0. & .9137 \\
\end{bmatrix}
\] (4)

In order to compare the four models, a test point \( x_T \) far removed from \( x_F \) was chosen by setting \( u_T = (0.8,1) \), and calculating the equilibrium \( \dot{x}_T \). A step change to \( u = (1,1) \) then causes an acceleration transient back to \( \dot{x}_T \). The results of this comparison for the rotor speeds are shown in Table 1. More detailed information is shown for Models 1 and 2 in Figure 1.

<table>
<thead>
<tr>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3A</th>
<th>Model 3B</th>
</tr>
</thead>
<tbody>
<tr>
<td>( t )</td>
<td>( N_x )</td>
<td>( N_F )</td>
<td>( N_x )</td>
</tr>
<tr>
<td>0</td>
<td>.948</td>
<td>.929</td>
<td>.934</td>
</tr>
<tr>
<td>1</td>
<td>.968</td>
<td>.946</td>
<td>.985</td>
</tr>
<tr>
<td>3</td>
<td>.990</td>
<td>.977</td>
<td>1.004</td>
</tr>
<tr>
<td>5</td>
<td>.998</td>
<td>.993</td>
<td>1.004</td>
</tr>
<tr>
<td>7</td>
<td>1.000</td>
<td>.998</td>
<td>1.003</td>
</tr>
</tbody>
</table>

Table 1. Comparison of \( \hat{e}_T \) Equilibrium and Acceleration Transients

6. DISCUSSION

A numerical algorithm for obtaining nonlinear analytical models for jet engines is presented. The method is to separate the transient \( A(x) \) and equilibrium \( g(u) \) parts of the system dynamics and approximate these using easily accessible data. The components of \( g(u) \) are approximated by a linear affine power law form. The principal numerical difficulty is that all boundary conditions may be impossible to meet. The algorithm then satisfies all but the second of the equations (18) in Section 3 and fits the second as closely as possible. The variable \( \gamma \) is zero when an exact fit occurs; but, otherwise, it causes a least squares fit on the derivative conditions at \( x_w \) of equations (16), Section 3, while matching the other conditions exactly. The free parameter \( \lambda \) in the linear affine approximation of Model 3B are handled similarly.

7. ACKNOWLEDGMENT

This research was supported by the National Aeronautics and Space Administration under Grant NASA NSG-3048.

8. REFERENCES


**FIGURE 1.** State Space Trajectories - Model 1 vs. Model 2

100% $N_c = 11879$ RPM
100% $N_F = 9874$ RPM

---

**MODELS**

- **MODEL 1**
- **MODEL 2**

**ARROWS**

- Signify Transients
- Number of arrows signify operating lines

---

**ORIGINAL PAGE IS 20 OF 20**
Appendix H

"SOME FEATURES OF CARDIAD PLOTS
FOR SYSTEM DOMINANCE"

R. M. Schafer
H. K. Sain
Some Features of CARDIAD Plots for System Dominance

R. Michael Schafer  
Department of Electrical Engineering  
University of Notre Dame  
Notre Dame, Indiana 46556

Michael K. Sain  
Department of Electrical Engineering  
University of Notre Dame  
Notre Dame, Indiana 46556

Abstract

Recently, the CARDIAD (Complex Acceptability Region for Diagonal Dominance) plot has been introduced and applied to the problem of designing dynamical precompensator to achieve column dominance. This paper illustrates several basic features of the method while using it to design a single, low-order dynamical compensator which achieves dominance at five operating points of a realistic two-spool turbofan digital simulation.

2. Specific Assumptions

Plant models used to construct the plots in the sequel have been generated from the general purpose digital jet engine simulator DYNGEN [6] under a load which provides behavior similar to that of the F-100 two-spool turbofan engine at sea level static conditions. The models have two inputs, five states, and two outputs. They are linearizations of DYNGEN obtained with the aid of the DYGAECCH package [7] under development at NASA Lewis Research Center. Physical description of the states can be found in the references [3]. The inputs are fuel flow and exhaust area; the outputs are thrust and high turbine inlet temperature. Parameterization is accomplished through the nominal value of the fuel flow WFB, which takes the five values 2.145, 2.31, 2.475, 2.64, and 2.75 LBM/SEC, ranging from a low thrust condition to high thrust without augmentation. All the models have been normalized.

Thus the plant transfer function matrix has two rows and two columns, and exhibits transfer functions of degree five in both numerator and denominator. Space limitations preclude their presence in this manuscript.

Denote the plant by G(s). Then the issue is to select a precompensator K(s) in such a way that G(s)K(s) is column dominant [1]. In particular, it is desired to select one K(s) so that column dominance is maintained over all five nominal fuel flow conditions.

3. General CARDIAD Features

If the origin of the CARDIAD plot for a given column is included by all solid circles and excluded by all dashed circles, that column of the system is dominant without further compensation, in as much as the origin represents unity compensation. Thus, the eventual goal of compensation using the CARDIAD plot method is to arrive at a system where all the CARDIAD plots have this feature. If there exists a point on the real axis such that the point is included by all solid circles and excluded by all dashed circles in the CARDIAD plot for a given column, then the choice of the value of this point in the off-diagonal...
entry which the CARDIAD plot represents will make 
the column dominant at all frequencies. If there 
is no such point the CARDIAD plot describes the 
range of a frequency dependent off-diagonal entry 
which will make the column dominant.

CARDIAD plots for two input, two output sys-
tems have some interesting features. A circle at 
a specific frequency in the CARDIAD plot for one 
column will be solid if and only if the other 
column is dominant at that frequency. Thus, when 
a system is dominant at all frequencies, all the 
circles in the CARDIAD plots will be solid and all 
will contain the origin. Another interesting fea-
ture is the effect of a column switch, that is, 
multiplication by a matrix with the only non zero 
elements being ones on the off-diagonal. The 
effects of such a switching of the inputs are that 
all the solid circles become dashed, all the dashed 
circles become solid, and the shapes of the column 
on and two plots are switched. This fact will be 
used in the next section to achieve dominance in 
the various set point models.

4. Design Example

The CARDIAD plots of the five uncompensated 
models are all very similar in shape. This great 
similarity suggests that one compensator might be 
found that will make all of the models column dom-
ninant. The uncompensated plots also show that 
a column switch would make the first column of each 
of the models dominant at all frequencies without 
further compensation. Thus, \( K_1 \) was chosen to be 

\[
\begin{bmatrix}
0 & 1 \\ 1 & 0 \\
\end{bmatrix}
\]

Figures 1 - 10 are the CARDIAD plots of \( G(s)K_1 \) for 
the five models. The repetition of the general 
shapes of the plots, which is unaffected by the 
column switch, is very apparent. The plots also 
show that the first column of each of the models 
is now dominant. This can be ascertained either 
by the fact that the origins of the column one 
plots are included by all solid circles and ex-
cluded by all dashed circles or by noting that all 
of the circles in the column two plots are solid.

To achieve dominance in the second columns of 
the models, it is clear that some sort of frequency 
dependent compensation will be necessary because 
there exist no points on the real axes of the plots 
which lie inside all of the solid circles. A first 
choice of a function to fit the paths of the circles 
could be a simple first order function which 
traces a semicircle through the complex plane as 
the frequency varies. However, it is desired that 
one such function be found that will work on all 
five of the models; so, a second order compensator 
will be used to fit better the shape of the circles 
at the higher frequencies. Two things that should 
be noted about the shapes of the circles in the 
column two plots are that the circles tend to be 
larger for the lower values of fuel flow and that 
in general, the center of the lowest frequency 
(largest) circles moves toward the origin as the 
nominal value of the fuel flow increases. Since 
there is more error for the lower nominal 
value of fuel flow models, a compensator 
which is fit to a rough average of the five plots 
and which tends to be closer to the higher nominal 
value of fuel flow models, might achieve dominance 
in all five models.

The average value of the center of the lowest 
frequency circle of the five plots is \(-9.81\). This 
suggests that designing a compensator to fit the 
nominal fuel flow of 2.75 model which has as the 
center of the lowest frequency circle the value of 
\(-9.59\) might achieve dominance in all of the mod-
els. The second order function that was chosen is 

\[
\begin{align*}
K(s) &= \frac{-742s - 9.59}{0.014s - 9.98s + 1} \\
\end{align*}
\]

and the next compensator, \( K_2(s) \), is 

\[
\begin{align*}
K(s) &= \frac{-742s - 9.59}{0.014s - 9.98s + 1} \\
K(s) &= 1 \quad 1 \\
\end{align*}
\]

Thus, the overall compensation is \( K(s) \) given by 

\[
\begin{align*}
K(s) &= \frac{-742s - 9.59}{0.014s - 9.98s + 1} \\
\end{align*}
\]

Figures 11 - 20 are the CARDIAD plots of 
\( G(s)K(s) \) for the five models. It is clear that 
they are all dominant at all frequencies since 
all of the circles are solid and all include the 
origin. Thus, one compensator has been found 
which will make all five of the models considered 
in this paper dominant.

5. Conclusions

Through the use of CARDIAD plots, it has been 
possible to achieve dominance over a range of 
operating points of a jet engine simulation. The 
compensator given above also achieves dominance at 
all but a very narrow range of frequencies in the 
model of another operating point. The results 
suggest two things. First, using the CARDIAD 
plots as a guide, it could be possible to design 
a compensator which varies with the nominal value 
of the fuel flow and achieves global dominance 
over a wide range of operating points. This is 
currently being studied. Second, the repetitive 
shape of the CARDIAD plots over the range of 
operating points suggests that the CARDIAD plot 
might be a useful tool in the classification of 
operating points with regard to interaction. Such 
a feature could be quite helpful in analysis of 
which models to use over flight envelopes varying 
from sea level to high altitude and from low 
through high thrust.
entry which the CARIDAD plot represents will make the column dominant at all frequencies. If there is no such point the CARIDAD plot describes the range of a frequency dependent off-diagonal entry which will make the column dominant.

CARIDAD plots for two input, two output systems have some interesting features. A circle at a specific frequency in the CARIDAD plot for one column will be solid if and only if the other column is dominant at that frequency. Thus, when a system is dominant at all frequencies, all the circles in the CARIDAD plots will be solid and all will contain the origin. Another interesting feature is the effect of a column switch, that is, multiplication by a matrix with the only non-zero elements being ones on the off-diagonal. The effects of such a switching of the inputs are that all the solid circles become dashed, all the dashed circles become solid, and the shapes of the column one and two plots are switched. This fact will be used in the next section to achieve dominance in the various set point models.

4. Design Example

The CARIDAD plots of the five uncompensated models are all very similar in shape. This great similarity suggests that one compensator might be found that will make all of the models column dominant. The uncompensated plots also show that a column switch would make the first column of each of the models dominant at all frequencies without further compensation. Thus, \( K_1 \) was chosen to be

\[
K_1 = 0.14s^2 - 9.59
\]

The average value of the center of the lowest frequency circle of the five plots is \(-9.61\). This suggests that designing a compensator to fit the nominal fuel flow of 2.75 model which has as the center of the lowest frequency circle the value of \(-9.59\) might achieve dominance in all of the models. The second order function that was chosen is

\[
K_2(s) = \frac{-742s - 9.59}{0.014s^2 - 998s + 1}
\]

and the next compensator, \( K_3(s) \), is

\[
K_3(s) = \frac{-742s - 9.59}{0.014s^2 - 998s + 1}
\]

Thus, the overall compensation is \( K(s) \) given by

\[
K(s) = \frac{-742s - 9.59}{0.014s^2 - 998s + 1}
\]

Figures 1-10 are the CARIDAD plots of \( \frac{G(s)K(s)}{a} \) for the five models. The repetition of the general shapes of the plots, which is unaffected by the column switch, is very apparent. The plots also show that the first column of each of the models is now dominant. This can be ascertained either by the fact that the origins of the column one plots are included by all solid circles and excluded by all dashed circles or by noting that all of the circles in the column two plots are solid.

To achieve dominance in the second columns of the models, it is clear that some sort of frequency dependent compensation will be necessary because there exist no points on the real axes of the plots which lie inside all of the solid circles. A first choice of a function to fit the paths of the circles could be a simple first order function which traces a semicircle through the complex plane as the frequency varies. However, it is desired that one such function be found that will work on all of the models; so, a second order compensator will be used to fit better the shape of the circles at the higher frequencies. Two things that should be noted about the shapes of the circles in the column two plots are that the circles tend to be larger for the lower values of fuel flow and that in general, the center of the lowest frequency (largest) circles moves toward the origin as the nominal value of the fuel flow increases. Since there is more margin for error in the lower nominal value of fuel flow models, a compensator which is fit to a rough average of the five plots and which tends to be closer to the higher nominal value of fuel flow models, might achieve dominance in all five models.

The average value of the center of the lowest frequency circle of the five plots is \(-9.61\). This suggests that designing a compensator to fit the nominal fuel flow of 2.75 model which has as the center of the lowest frequency circle the value of \(-9.59\) might achieve dominance in all of the models. The second order function that was chosen is

\[
K_2(s) = \frac{-742s - 9.59}{0.014s^2 - 998s + 1}
\]

and the next compensator, \( K_3(s) \), is

\[
K_3(s) = \frac{-742s - 9.59}{0.014s^2 - 998s + 1}
\]

Thus, the overall compensation is \( K(s) \) given by

\[
K(s) = \frac{-742s - 9.59}{0.014s^2 - 998s + 1}
\]

Figures 11-20 are the CARIDAD plots of \( \frac{G(s)K(s)}{a} \) for the five models. It is clear that they are all dominant at all frequencies since all the circles are solid and all include the origin. Thus, one compensator has been found which will make all five of the models considered in this paper dominant.

5. Conclusions

Through the use of CARIDAD plots, it has been possible to achieve dominance over a range of operating points of a jet engine simulation. The compensator given above also achieves dominance at all but a very narrow range of frequencies in the model of another operating point. The results suggest two things. First, using the CARIDAD plots as a guide, it could be possible to design a compensator which varies with the nominal value of the fuel flow and achieves global dominance over a wide range of operating points. This is currently being studied. Second, the repetitive shape of the CARIDAD plots over the range of operating points suggests that the CARIDAD plot might be a useful tool in the classification of operating points with regard to interaction. Such a feature could be quite helpful in analysis of which models to use over flight envelopes varying from sea level to high altitude and from low through high thrust.
Acknowledgment

The authors thank R. R. Gejji for his assistance in obtaining the linear models used for these plots.

References


Fig. 5. WFB=2.475, G(s)K_1, Column 1.

Fig. 6. WFB=2.475, G(s)K_1, Column 2.

Fig. 7. WFB=2.64, G(s)K_1, Column 1.

Fig. 8. WFB=2.64, G(s)K_1, Column 2.

Fig. 9. WFB=2.75, G(s)K_1, Column 1.

Fig. 10. WFB=2.75, G(s)K_1, Column 2.
Fig. 17. $WFB = 2.64$, $G(s)K(s)$, Column 1.

Fig. 18. $WFB = 2.64$, $G(s)K(s)$, Column 2.

Fig. 19. $WFB = 2.75$, $G(s)K(s)$, Column 1.

Fig. 20. $WFB = 2.75$, $G(s)K(s)$, Column 2.
Appendix I

THE THEME PROBLEM

M. K. Sain
THE THEME PROBLEM
From the outset, the use of a Theme Problem has posed certain challenges. Authors from academic backgrounds tend to be in need of highly detailed information about plant and specifications, while workers in industry and laboratories must often be satisfied with indirect information and sometimes with none at all. We have tried to arrange a reasonable compromise somewhere on middle ground. Our decision to select a problem related to a realistic modern turbofan engine had special ramifications of its own, not the least of which was the fact that certain types of additional data were precluded for proprietary or other reasons. We believed all along that the advantages of data realism outweigh the disadvantages of incomplete information.

The chronology of the Theme Problem begins in late summer, 1976, during discussions with J. L. Melsa. Subsequent contacts with several potential Forum participants led to the drafting of a Tentative Theme Problem Description, which was sent out to various workers for critique in early 1977. When evaluations were in hand, a Theme Problem Description was prepared on March 1, 1977 and became the working document for authors preparing papers for the meeting. Communications with several additional researchers established the need for minor modifications and clarifications, which were decided at a committee meeting held during the Joint Automatic Control Conference at San Francisco in June, 1977. These decisions formed the basis for an addition Theme Problem Memorandum mailed to all participants on July 18, 1977. All these adjustments are included in the Final Theme Problem Description, which is included here.

Any clarity which may be present in this final problem description is due in large part to the valued advice of many colleagues, among whom I must especially mention R. L. DeHoff, R. D. Hackney, B. Lehtinen, W. C. Merrill, J. L. Peczkowski, C. A. Skira, and H. A. Spang, III. Credit for any and all obscurities must, of necessity, accrue to the author.

M. K. Sain
Notre Dame, Indiana
September, 1977
The theme design problem should serve the Forum goals in at least three ways. First, it should help to unify the presentations and, thus, make them more useful for group study after publication. Second, it should help to make the Forum relevant to the present-day design world by focusing upon a real system of considerable current interest. Third, it should help to delineate the state of computational readiness of the various design viewpoints, and so help to point out where additional numerical researches would be useful.

Caveat: It is important to recognize the generally positive intent involved with the use of this problem. It is not intended that the theme problem usage degenerate into a computational contest.

1. INTRODUCTION

A very important developing area for linear multivariable control has arisen because of recent increases in the complexity of aircraft turbine engines. Engines in use today have, essentially, the one control variable of fuel flow, though some make use of a variable nozzle area which is not unlike the iris diaphragm that controls aperture settings in a camera. Engines in the not-so-distant future can be expected to permit control of vanes in the stator portions of the various compressor stages. Further down the development line are engines with enough variable geometry to receive the informal designation of "rubber engines" by research engineers in the industry.

It is widely accepted that the older, workhorse, hydromechanical control methods are not equal to these new tasks and that they will, therefore, give way to electronic digital control. The entrance of the digital computer opens up vast numbers of new design possibilities, which are now beginning to receive increased attention in the industry. The central role played by the aircraft turbine engines in civil and military aviation makes clear the economic import of these trends. It would be hard to select a more timely theme design example for comparison of linear control alternatives than the jet engine.

In the United States, a joint study is now underway on the Pratt & Whitney F100-PW-100 afterburning turbofan, a low-bypass-ratio, twin-spool, axial-flow engine. Sponsored by the Air Force and by the National Aeronautics and Space Administration, this study focuses on the linear quadratic regulator theory, applied at multiple operating points in the control regime.

One effect of the theme usage of such a plant in the NEC Forum should be a broadening of the design discussion to include other design viewpoints as well.

2. PLANT

The numerical model of the jet engine is supplied in (A,B,C,D) form on Attachment 1. For the A and C matrices, note that columns 9-16 are listed below columns 1-8. This model is for zero altitude and for a power lever angle (PLA) of 83 degrees, which is near maximum non-afterburning power. The motivation for choosing this operating point comes from the fact that every engine has to pass through this condition, as, for example, on takeoff. Also supplied is a list of the input, state, and output variables associated with this model. These two pages are taken from the report.
Because a number of the techniques which will be discussed at the Forum have graphical aspects, it is planned to facilitate the inclusion of curves in the publication by limiting the plant to three control inputs. In consultation with numbers of our Theme Problem Advisory Committee, we have selected \( U_1 \), \( U_2 \), and \( U_3 \) as these inputs. Workers who feel an absolute necessity to use all five inputs are welcome to do so; however, we would ask that in such a case they provide a comparison of the effect of using five inputs over and above that of using only three. This request is designed to increase the comparability of the various design results.

Actuator information for the three control inputs is given in Attachment 2. Also provided is information associated with the actuation of \( U_4 \) if that input is used in addition to \( U_1 \), \( U_2 \), and \( U_3 \). Finally, should \( U_5 \) be used in addition to \( U_1 \), \( U_2 \), \( U_3 \), a servo time constant of 0.02 sec. can be assumed for actuation. Various rate limits on the actuators can be noted, as in Table A.

| Table A  |
|----------|-----------------|-----------------|-----------------|-----------------|
| Actuator Rate Limits | \( U_1 \) | 15,800 (lb/hr)/sec. | \( U_2 \) | 3.6 Ft^2/sec. | \( U_3 \) | 48 Deg/sec. | \( U_4 \) | 40 Deg/sec. |

The actuators have some limits, also, which will be mentioned here. On \( U_3 \), it may be assumed that the limit is \( \pm 6^\circ \). On \( U_5 \), a limit arises because the nozzle area is pretty well down to its minimum at this operating point; the limit is assumed to be about 1 square feet in that direction.

The Theme Problem models are in absolute, unnormalized form, without any mention of the set point values. This makes it difficult to size inputs. The committee worked out a proposal to supply "ballpark" set point values so that the model could be normalized. Unfortunately, it was not possible to obtain even such approximate information.

A consequence of this fact is that the absolute rate limits of Table A have meaning only in relationship to the size of reference commands assumed. Because we are unable to supply the suggested reference command, the effect of actuator rate limits can be treated only hypothetically; and we have to leave the issue of whether to do this, and how to do this, in the hands of the authors.

Turning now to the sensed variables, we have available \( X_1 \), \( X_2 \), \( X_3 \), \( X_5 \), and \( (X_{12} + X_{13}) \), the last of which is denoted FTIT for "fan turbine inlet temperature." Sensor time constants in seconds are listed in Table B.
Sensing of FTIT is a bit more elaborate and is indicated on Attachment 3.

3. ENVIRONMENT

Measurement noise is on the order of 1%; and state noise is negligible. Therefore it is not planned to supply any noise data. Authors wishing to make noise studies must make their own assumptions. This is not unrealistic for the present stage of discussion. Though some techniques may well make use of observers or dynamical output feedback, no formal stress on filters is anticipated. The Forum, then, is visualized primarily as a control meeting, although contributed papers in the stochastic area will be accepted if they contribute to the Forum theme.

Practice in the industry involves the use of multiple linear models at various operating points from sea level to high altitude and from low to high thrust. As operation transitions from the neighborhood of one operating point to the neighborhood of another, these models change in consonance with some physical variable. Parameter variation is, therefore, an aspect of design.

But publicly available neighboring linear models are not near enough to the Theme Problem model to provide meaningful data on parametric variation. This fact, combined with lack of set point information, led the committee to suggest a 5% change in eigenvalues as one, hopefully useful, measure of such variation. Because normalization of the model is a similarity transformation, this characterization is independent of set point.

4. REDUCED ORDER MODELS

Approximate eigenvalues of the Theme Problem plant are -577, -176, -59.2, -50.7, -47.1, -33.7, -21.3 + i.822, -17.3 + i4.78, -19.0, -6.71 + i1.31, -2.62, -1.91, -1.648. It is the nature of the jet engine control problem that these can usually be well identified with physical variables. For example, -1.91 associates with $X_1$, -2.62 associates with $X_2$, and so forth. $X_1$ is related to the eigenvalue pair $13' -6.71 + i1.31$. This type of information can be deduced from a study of the eigenvectors corresponding to a particular eigenvalue. It can be expected that actuator modes, such as that involved with fuel flow, will enter into this list. Some discussion on this point can be found in R. L. Dehoff and W. E. Hall, Jr., "Design of a Multivariable Controller for an Advanced Turbofan Engine," Proceedings 1976 IEEE Conference on Decision and Control, page 1002.

In the interest of offering some assistance to authors who might be having computational difficulty with the full size problem, the following reduced model has been made available by Dr. Dehoff of Systems Control, Inc. (Vt.). It is a model which neglects sensor dynamics, augments the plant by the dominant actuator dynamics, and then reduces to fifth order. The resulting five states are

$$X_1 = \text{Fan Speed (rpm)}$$
\( x_2 \) = Compressor Speed (rpm)

\( x_3 \) = "Augmentor" Pressure (psia)

\( x_4 \) = Fuel Flow (lb./hr.)

\( x_5 \) = Burner Pressure (psia)

Note that the "Augmentor" Pressure \( x_3 \) is not to be identified with \( x_5 \); the quantities are not defined at the same physical location. Note also that \( x_5 \) was not one of the original states.

**Remark:** The U. Actuator diagram shows a Servo System gain of 2.4. It has come to our attention that a more realistic number for this gain would be about 12.0. The effect of this gain change is to take the dominant CIVV position actuator eigenvalue from a location of high dominance in the overall plant-actuator system to a location of considerably less dominance. It is not necessary for authors to make this change if they have already completed their calculations, inasmuch as the 2.4 gain apparently is one of those "glitches" which crept in an uninvited manner. Some authors may choose to compare the effect of the gain 12.0 with the gain 2.4, if time and space permits. We have included this remark here so that the reduced order model, which has the same controls and outputs as the full size system, may be more understandable.

<table>
<thead>
<tr>
<th>A (5 x 5)</th>
<th>B (5 x 5)</th>
<th>C (5 x 5)</th>
<th>D (5 x 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.3265E+01</td>
<td>-0.2158E+01</td>
<td>-0.8955E+03</td>
<td>0.5731E+00</td>
</tr>
<tr>
<td>0.1142E+01</td>
<td>-0.5941E+01</td>
<td>-0.8955E+03</td>
<td>0.1897E+00</td>
</tr>
<tr>
<td>0.1685E-01</td>
<td>-0.2554E-01</td>
<td>-0.1003E+02</td>
<td>0.7994E-02</td>
</tr>
<tr>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>-1.000E+02</td>
</tr>
<tr>
<td>-0.2163E+01</td>
<td>0.6862E+01</td>
<td>-0.7405E+03</td>
<td>0.1195E+01</td>
</tr>
<tr>
<td>0.1432E-01</td>
<td>-0.3553E+03</td>
<td>-0.9906E+02</td>
<td>-0.1549E+02</td>
</tr>
<tr>
<td>0.2871E+00</td>
<td>0.7286E+03</td>
<td>-0.2514E+02</td>
<td>-0.6487E+02</td>
</tr>
<tr>
<td>-0.2469E-02</td>
<td>-0.1030E+03</td>
<td>0.6333E+00</td>
<td>-0.3213E+00</td>
</tr>
<tr>
<td>-0.1000E+02</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>-0.1311E+00</td>
<td>0.3295E+03</td>
<td>-0.2500E+02</td>
<td>0.6257E+02</td>
</tr>
<tr>
<td>0.1662E+01</td>
<td>-0.1768E+01</td>
<td>-0.7999E+02</td>
<td>-0.1890E+00</td>
</tr>
<tr>
<td>0.1383E-01</td>
<td>0.3142E-05</td>
<td>-0.1060E+01</td>
<td>0.1289E-03</td>
</tr>
<tr>
<td>0.1694E+00</td>
<td>0.1329E+00</td>
<td>-0.4959E+01</td>
<td>0.7386E-01</td>
</tr>
<tr>
<td>0.7590E-04</td>
<td>0.3269E-05</td>
<td>-0.1477E-01</td>
<td>0.2284E-05</td>
</tr>
<tr>
<td>-0.4859E-04</td>
<td>0.1381E-03</td>
<td>0.1140E-01</td>
<td>0.1951E-04</td>
</tr>
<tr>
<td>0.1302E+00</td>
<td>0.1992E+03</td>
<td>0.4802E+02</td>
<td>-0.1503E+02</td>
</tr>
<tr>
<td>0.1449E-06</td>
<td>0.3395E+00</td>
<td>0.6806E+00</td>
<td>0.2812E-03</td>
</tr>
<tr>
<td>0.2967E-01</td>
<td>0.7927E+02</td>
<td>0.2567E+01</td>
<td>-0.7631E+00</td>
</tr>
<tr>
<td>0.1046E-05</td>
<td>0.7720E-02</td>
<td>-0.5814E-02</td>
<td>0.1157E-03</td>
</tr>
<tr>
<td>-0.8395E-05</td>
<td>0.7897E-02</td>
<td>-0.6841E-03</td>
<td>-0.9643E-03</td>
</tr>
</tbody>
</table>
5. SPECIFICATIONS

The overall viewpoint of the controller is quite simple. The pilot has one lever, which we might intuitively call the throttle and which sets what is called in the industry the "power lever angle." Basically, the pilot increases the lever angle to obtain more thrust. All the other variables must be controlled so as to achieve the new thrust quickly, but without overshoot and without violating some important physical considerations. An example of one of these is the temperature at the inlet to the "high" turbine just aft of the burner. This temperature is ordinarily scheduled very near its maximum safe value, and temperature increases are not welcome because the turbine elements are thin, respond very fast, and can be permanently damaged or create a need for more frequent engine overhauls. Another example of a constraint is the various undesirable stall conditions in the compressor.

This problem comes down to us in the following form. Assuming a step change in power lever angle, we want to move the engine to a slightly different operating point in the above described acceptable dynamic fashion. The power lever angle change is converted by a master engine scheduler into a reference input for our linearized feedback model. The nature of this reference input is not highly specific. Step inputs are commonly studied. It is not likely that highly detailed information about these references will be available, but we can try to firm up any particular issues which may be crucial to one paper or another. The exact nature of these references gets one into the exact nature of the schedulers. It does not seem too productive in a linear meeting to go very far into such "global" issues. If greater reference variety is needed, it can probably be safely assumed. It would be good, however, if each paper tried to discuss at least the reference step.

For purposes of design, we can group the variables into two families. \( Y_1, Y_2, X_1, \) and \( X_2 \) are desired to respond fast without overshoot. \( Y_4 \) should not decrease more than .05; \( Y_5 \) should not decrease more than .15.

Remark: The decrease limits on \( Y_4 \) and \( Y_5 \) are to be regarded in the same spirit as the \( U_3 \) actuator gain change in the preceding section. If calculations are complete, there is no requirement to incorporate it. Some authors may wish to study its effect, however.

6. VIEWPOINT

We believe that the theme problem should appear in each presentation as the major, and probably the only, illustration of the particular design methodology being described. We visualize each paper as an exposition of design viewpoint, with jet engine illustration. We do not visualize the paper as an exposition of jet engine design. In other words, the theme problem will be an apparent thread through the fabric of the Forum, but the pattern of the fabric will be set by the various linear control alternatives as entities in themselves. Put in yet another way, the Forum is on "Alternatives for Linear Multivariable Control" and is not upon "Various Approaches to Jet Engine Control."
### F100 Model
**Alt=0.0**  **PLA=83**

#### The A Matrix

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-4.328</td>
<td>0.1714</td>
<td>5.376</td>
<td>401.6</td>
<td>-724.6</td>
<td>-1.933</td>
<td>1.020</td>
<td>-0.9820</td>
<td></td>
</tr>
<tr>
<td>-0.4402</td>
<td>-5.643</td>
<td>127.5</td>
<td>-233.5</td>
<td>-434.3</td>
<td>20.59</td>
<td>2.040</td>
<td>-2.592</td>
<td></td>
</tr>
<tr>
<td>1.038</td>
<td>6.073</td>
<td>-165.0</td>
<td>-4.483</td>
<td>1049.0</td>
<td>-82.45</td>
<td>-5.314</td>
<td>5.097</td>
<td></td>
</tr>
<tr>
<td>0.5304</td>
<td>-1.086</td>
<td>131.3</td>
<td>-578.3</td>
<td>102.0</td>
<td>-9.240</td>
<td>-1.146</td>
<td>-2.408</td>
<td></td>
</tr>
<tr>
<td>0.8476E-02</td>
<td>-1.156E-01</td>
<td>0.5602E-01</td>
<td>1.573</td>
<td>-10.05</td>
<td>0.1952</td>
<td>-0.8804E-02</td>
<td>-2.110E-01</td>
<td></td>
</tr>
<tr>
<td>0.8350</td>
<td>-1.249E-01</td>
<td>-0.3567E-01</td>
<td>-0.6074</td>
<td>37.65</td>
<td>-19.79</td>
<td>-0.1813</td>
<td>-2.962E-01</td>
<td></td>
</tr>
<tr>
<td>0.6768</td>
<td>-1.264E-01</td>
<td>-0.9683E-01</td>
<td>-0.3567</td>
<td>80.24</td>
<td>-0.8239E-01</td>
<td>-0.20.47</td>
<td>-3.928E-01</td>
<td></td>
</tr>
<tr>
<td>-0.9696E-01</td>
<td>0.8666</td>
<td>16.87</td>
<td>1.051</td>
<td>-102.3</td>
<td>29.66</td>
<td>0.5943</td>
<td>-19.97</td>
<td></td>
</tr>
<tr>
<td>-0.8785E-02</td>
<td>-0.1636E-01</td>
<td>0.1847</td>
<td>0.2169</td>
<td>-8.420</td>
<td>0.7003</td>
<td>0.5666E-01</td>
<td>6.623</td>
<td></td>
</tr>
<tr>
<td>-0.1298E-03</td>
<td>-0.2430E-03</td>
<td>0.2718E-02</td>
<td>0.3214E-02</td>
<td>-0.1246</td>
<td>0.1039E-01</td>
<td>0.8395E-03</td>
<td>0.9812E-01</td>
<td></td>
</tr>
<tr>
<td>-1.207</td>
<td>-0.6717</td>
<td>26.26</td>
<td>12.49</td>
<td>-1269.0</td>
<td>103.0</td>
<td>7.480</td>
<td>36.84</td>
<td></td>
</tr>
<tr>
<td>-0.2730E-01</td>
<td>-0.4539</td>
<td>-0.5272</td>
<td>198.8</td>
<td>-28.09</td>
<td>2.243</td>
<td>1.794</td>
<td>9.750</td>
<td></td>
</tr>
<tr>
<td>-0.1206E-02</td>
<td>-0.2017E-01</td>
<td>-0.2343</td>
<td>8.835</td>
<td>-1.248</td>
<td>0.9975E-01</td>
<td>0.8059E-02</td>
<td>0.433</td>
<td></td>
</tr>
<tr>
<td>-0.1613</td>
<td>-0.2469</td>
<td>-0.2405</td>
<td>23.38</td>
<td>146.3</td>
<td>1.638</td>
<td>1.385</td>
<td>4.486</td>
<td></td>
</tr>
<tr>
<td>-0.1244E-01</td>
<td>0.3020E-01</td>
<td>-0.1198</td>
<td>-0.4821E-01</td>
<td>5.675</td>
<td>-0.4525</td>
<td>19.81</td>
<td>0.1249</td>
<td></td>
</tr>
<tr>
<td>-1.653</td>
<td>1.831</td>
<td>-3.822</td>
<td>113.4</td>
<td>341.4</td>
<td>-27.34</td>
<td>-2.040</td>
<td>-6.166</td>
<td></td>
</tr>
</tbody>
</table>

---

**8**

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9990</td>
<td>1.521</td>
<td>-4.062</td>
<td>9.567</td>
<td>10.08</td>
<td>-0.6017</td>
<td>-0.1312</td>
<td>0.9602E-01</td>
<td></td>
</tr>
<tr>
<td>11.32</td>
<td>10.90</td>
<td>-4.071</td>
<td>-0.5739E-01</td>
<td>-0.6063</td>
<td>-0.7488E-01</td>
<td>-0.5936</td>
<td>-0.9602E-01</td>
<td></td>
</tr>
<tr>
<td>-0.9389E-02</td>
<td>0.1352</td>
<td>5.638</td>
<td>0.2246E-01</td>
<td>0.1797</td>
<td>0.2407E-01</td>
<td>1.100</td>
<td>0.2743E-01</td>
<td></td>
</tr>
<tr>
<td>-3.081</td>
<td>-4.529</td>
<td>5.707</td>
<td>-2.236</td>
<td>-2.111</td>
<td>-2.260</td>
<td>-0.4686</td>
<td>-0.3223</td>
<td></td>
</tr>
<tr>
<td>-0.2090E-02</td>
<td>-0.5256E-01</td>
<td>-0.4077E-01</td>
<td>-0.9182E-02</td>
<td>-0.8178E-01</td>
<td>0.3428E-01</td>
<td>0.4995E-02</td>
<td>-0.1256E-01</td>
<td></td>
</tr>
<tr>
<td>-0.1953E-01</td>
<td>-0.1622</td>
<td>-0.6439E-02</td>
<td>-0.2346E-01</td>
<td>-0.2201</td>
<td>-0.2514E-01</td>
<td>-0.3749E-02</td>
<td>-0.3361E-01</td>
<td></td>
</tr>
<tr>
<td>-0.1878E-01</td>
<td>-0.2129</td>
<td>-0.9337E-02</td>
<td>-0.3144E-01</td>
<td>-0.2919</td>
<td>-0.3370E-01</td>
<td>-0.8873E-01</td>
<td>-0.4458E-01</td>
<td></td>
</tr>
<tr>
<td>-0.2253E-01</td>
<td>0.1791</td>
<td>0.8371E-02</td>
<td>0.2645E-01</td>
<td>0.2560</td>
<td>0.2835E-01</td>
<td>-0.3749E-01</td>
<td>0.3635E-01</td>
<td></td>
</tr>
<tr>
<td>-49.99</td>
<td>0.6760E-01</td>
<td>39.46</td>
<td>0.4991E-02</td>
<td>0.8983E-01</td>
<td>0.5349E-02</td>
<td>0.0</td>
<td>0.1372E-01</td>
<td></td>
</tr>
<tr>
<td>-0.6666</td>
<td>-0.6657</td>
<td>0.5847</td>
<td>0.6654E-04</td>
<td>0.1347E-02</td>
<td>0.7131E-04</td>
<td>0.0</td>
<td>0.2057E-03</td>
<td></td>
</tr>
<tr>
<td>0.2854</td>
<td>2.332</td>
<td>-47.65</td>
<td>3.406</td>
<td>3.065</td>
<td>0.3624</td>
<td>-0.4343</td>
<td>0.4681</td>
<td></td>
</tr>
<tr>
<td>-0.9.627</td>
<td>-0.9.557</td>
<td>38.48</td>
<td>50.01</td>
<td>0.1011</td>
<td>-0.1203E-01</td>
<td>-0.4686E-01</td>
<td>0.1715E-01</td>
<td></td>
</tr>
<tr>
<td>-0.4278</td>
<td>-0.4245</td>
<td>1.710</td>
<td>-2.000</td>
<td>-1.996</td>
<td>0.5349E-03</td>
<td>-0.1999E-02</td>
<td>0.7544E-03</td>
<td></td>
</tr>
<tr>
<td>-0.4.414</td>
<td>-0.4.354</td>
<td>17.66</td>
<td>-3.113</td>
<td>-3.018</td>
<td>-0.19.77</td>
<td>-0.4999E-01</td>
<td>-0.1509E-01</td>
<td></td>
</tr>
<tr>
<td>-0.1127E-02</td>
<td>-0.6760E-02</td>
<td>0.1835E-01</td>
<td>-0.9981E-03</td>
<td>-0.1347E-01</td>
<td>-0.1070E-02</td>
<td>-0.20.00</td>
<td>-0.2057E-02</td>
<td></td>
</tr>
<tr>
<td>0.5004</td>
<td>-0.1437</td>
<td>-2.416</td>
<td>0.1073</td>
<td>0.1078</td>
<td>30.63</td>
<td>19.89</td>
<td>-50.16</td>
<td></td>
</tr>
</tbody>
</table>
### The B Matrix

<table>
<thead>
<tr>
<th></th>
<th>-45.70E-01</th>
<th>-451.6</th>
<th>-105.8</th>
<th>-1.506</th>
<th>851.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>2153</td>
<td>1362.</td>
<td>13.46</td>
<td>20.14</td>
<td>-6777E+05</td>
<td></td>
</tr>
<tr>
<td>3.262</td>
<td>208.0</td>
<td>-2.888</td>
<td>-1.653</td>
<td>-269.1</td>
<td></td>
</tr>
<tr>
<td>9948E-02</td>
<td>-98.39</td>
<td>.5069</td>
<td>-.1940</td>
<td>-94.70</td>
<td></td>
</tr>
<tr>
<td>2728E-01</td>
<td>71.62</td>
<td>9.608</td>
<td>-3160</td>
<td>-184.1</td>
<td></td>
</tr>
<tr>
<td>1716E-01</td>
<td>71.71</td>
<td>8.571</td>
<td>.7989</td>
<td>-515.2</td>
<td></td>
</tr>
<tr>
<td>-7741E-01</td>
<td>-141.2</td>
<td>-.8215</td>
<td>39.74</td>
<td>1376.</td>
<td></td>
</tr>
<tr>
<td>3855E-01</td>
<td>-7.710</td>
<td>-.4371E-01</td>
<td>-1024</td>
<td>-6684.</td>
<td></td>
</tr>
<tr>
<td>5707E-03</td>
<td>-1.144</td>
<td>-.6359E-03</td>
<td>-1432E-02</td>
<td>-99.02</td>
<td></td>
</tr>
<tr>
<td>5.727</td>
<td>-1745.</td>
<td>-8.940</td>
<td>-17.96</td>
<td>.8898E+05</td>
<td></td>
</tr>
<tr>
<td>6172E-02</td>
<td>-1.082</td>
<td>-.1183E-01</td>
<td>-1452E-01</td>
<td>-307.7</td>
<td></td>
</tr>
<tr>
<td>6777E-01</td>
<td>16.60</td>
<td>.3980</td>
<td>.2311E-01</td>
<td>-2588.</td>
<td></td>
</tr>
<tr>
<td>1880E-02</td>
<td>9.147</td>
<td>-.8241</td>
<td>.8984E-01</td>
<td>-32.31</td>
<td></td>
</tr>
<tr>
<td>1.677</td>
<td>435.8</td>
<td>-89.94</td>
<td>4.900</td>
<td>-295.5</td>
<td></td>
</tr>
</tbody>
</table>

### The C Matrix

<table>
<thead>
<tr>
<th></th>
<th>.4866</th>
<th>-.6741</th>
<th>5.392</th>
<th>95.42</th>
<th>24.03</th>
<th>10.52</th>
<th>.8190</th>
<th>-.4492</th>
</tr>
</thead>
<tbody>
<tr>
<td>1383E-01</td>
<td>.2789E-05</td>
<td>.0</td>
<td>.0</td>
<td>-.1081E-01</td>
<td>-.5545E-04</td>
<td>.4722E-04</td>
<td>.0</td>
<td></td>
</tr>
<tr>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
</tr>
<tr>
<td>7418E-04</td>
<td>.5496E-05</td>
<td>.4790E-05</td>
<td>.1478E-03</td>
<td>-.1504E-01</td>
<td>-.6503E-04</td>
<td>.8820E-04</td>
<td>.4999E-05</td>
<td></td>
</tr>
<tr>
<td>1538E-04</td>
<td>.1201E-03</td>
<td>-.2579E-02</td>
<td>-.1609E-03</td>
<td>.1618E-01</td>
<td>-.1071E-02</td>
<td>-.9561E-04</td>
<td>-.5503E-05</td>
<td></td>
</tr>
<tr>
<td>.5195</td>
<td>.8437</td>
<td>-.1.863</td>
<td>.5709E-01</td>
<td>.4815</td>
<td>3.428</td>
<td>2.161</td>
<td>.7681E-01</td>
<td></td>
</tr>
<tr>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
</tr>
<tr>
<td>.0</td>
<td>.0</td>
<td>1.000</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
</tr>
<tr>
<td>3434E-05</td>
<td>.2727E-04</td>
<td>.1128E-05</td>
<td>.4002E-05</td>
<td>.3673E-04</td>
<td>.4290E-05</td>
<td>-.4958E-05</td>
<td>.5609E-05</td>
<td></td>
</tr>
<tr>
<td>-.3732E-05</td>
<td>-.2996E-04</td>
<td>-.1234E-05</td>
<td>-.4380E-05</td>
<td>-.4024E-04</td>
<td>-.4721E-05</td>
<td>.5324E-05</td>
<td>-.6103E-05</td>
<td></td>
</tr>
</tbody>
</table>

### The D Matrix

<table>
<thead>
<tr>
<th></th>
<th>-6777E-01</th>
<th>-420.5</th>
<th>32.97</th>
<th>-1.824</th>
<th>1245.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1282E-03</td>
<td>.3353</td>
<td>.6804</td>
<td>-.5605E-04</td>
<td>-.1199E-01</td>
<td></td>
</tr>
<tr>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
</tr>
<tr>
<td>1030E-05</td>
<td>-.1193E-01</td>
<td>-.5806E-02</td>
<td>.6015E-04</td>
<td>.4463E-01</td>
<td></td>
</tr>
<tr>
<td>8109E-05</td>
<td>.2328E-01</td>
<td>.1178E-03</td>
<td>-.5538E-02</td>
<td>-.1039</td>
<td></td>
</tr>
</tbody>
</table>
1. Engine State Variables

\[ X_1 = \text{Fan Speed, SNFAN (N_1) - rpm} \]
\[ X_2 = \text{Compressor Speed, SNCOM (N_2) - rpm} \]
\[ X_3 = \text{Compressor Discharge Pressure, } P_{t3} \text{ - psia} \]
\[ X_4 = \text{Interturbine Volume Pressure, } P_{t4.5} \text{ - psia} \]
\[ X_5 = \text{Augmentor Pressure, } P_{t7m} \text{ - psia} \]
\[ X_6 = \text{Fan Inside Diameter Discharge Temperature, } T_{t2.5h} \text{ - °R} \]
\[ X_7 = \text{Duct Temperature, } T_{t2.5c} \text{ - °R} \]
\[ X_8 = \text{Compressor Discharge Temperature, } T_{t3} \text{ - °R} \]
\[ X_9 = \text{Burner Exit Fast Response Temperature, } T_{t4hi} \text{ - °R} \]
\[ X_{10} = \text{Burner Exit Slow Response Temperature, } T_{t4lo} \text{ - °R} \]
\[ X_{11} = \text{Burner Exit Total Temperature, } T_{t4} \text{ - °R} \]
\[ X_{12} = \text{Fan Turbine Inlet Fast Response Temperature, } T_{t4.5hi} \text{ - °R} \]
\[ X_{13} = \text{Fan Turbine Inlet Slow Response Temperature, } T_{t4.5lo} \text{ - °R} \]
\[ X_{14} = \text{Fan Turbine Exit Temperature, } T_{t5} \text{ - °R} \]
\[ X_{15} = \text{Duct Exit Temperature, } T_{t6c} \text{ - °R} \]
\[ X_{16} = \text{Duct Exit Temperature, } T_{t7m} \text{ - °R} \]

2. Engine Inputs

\[ U_1 = \text{Main Burner Fuel Flow, WFMB - lb/hr} \]
\[ U_2 = \text{Nozzle Jet Area, } A_j \text{ - ft}^2 \]
\[ U_3 = \text{Inlet Guide Vane Position, CIVV - deg} \]
\[ U_4 = \text{High Variable Stator Position, RCVV - deg} \]
\[ U_5 = \text{Customer Compressor Bleed Flow, BLC - } % \]

3. Engine Outputs

\[ Y_1 = \text{Engine Net Thrust Level, FN - lb} \]
\[ Y_2 = \text{Total Engine Airflow, WFAN - lb/sec} \]
\[ Y_3 = \text{Turbine Inlet Temperature, } T_{t4} \text{ - °R} \]
\[ Y_4 = \text{Fan Stall Margin, SMAF} \]
\[ Y_5 = \text{Compressor Stall Margin, SMHC} \]
ATTACHMENT 2

**U₁ Actuator**

Fuel Flow

\[ \frac{1}{0.02S + 1} \]

Request

Pump Controller

\[ \frac{1}{0.1S + 1} \]

Fuel Flow

To Engine

\[ \frac{1}{0.01S + 1} \]

**U₂ Actuator**

Servo System

\[ \frac{1}{0.02S + 1} \]

Request

Air Motor Dynamics

\[ \frac{1}{s^2 + 2z \omega_n s + \omega_n^2} \]

\[ \omega_n = 6\text{Hz} \]

\[ \zeta = 0.56 \]

**U₃ Actuator**

Position Request

\[ \frac{1}{0.02S + 1} \]

Stepper Motor System

Servo System

\[ \frac{2.4}{0.01S + 1} \]

Power Cylinder

\[ \frac{1}{S} \]

CIVV Position

**U₄ Actuator**

Position Request

\[ \frac{40}{0.01S + 1} \]

Servo System

\[ \frac{1}{S} \]

RCVV Position

11
ATTACHMENT 3

FTIT Sensor

\[
\frac{0.309}{0.595s + 1} + \frac{0.691}{5.49s + 1}
\]

FTIT

FTIT Sensed
Appendix J

"INPUT COMPENSATION
FOR DOMINANCE OF TURBOFAN MODELS"

R. M. Schafer
M. K. Sain
INPUT COMPENSATION FOR DOMINANCE OF TURBOFAN MODELS

R. M. Schafer and M. K. Sain

Department of Electrical Engineering
University of Notre Dame
Notre Dame, Indiana 46556
U.S.A.

ABSTRACT

The determinant of return difference establishes a crucial link between open and closed loop characteristic polynomials in multivariable feedback control systems. As a result, Nyquist constructions on this determinant carry important design information. One way to extract this information is by achieving diagonal dominance. This paper presents a method which uses dynamical input compensation to achieve column dominance. Application to the Theme Problem is included.
INPUT COMPENSATION FOR DOMINANCE OF TURBOFAN MODELS

R. M. Schafer and M. K. Sain

Department of Electrical Engineering
University of Notre Dame
Notre Dame, Indiana 46556
U.S.A.

ABSTRACT

The determinant of return difference establishes a crucial link between open and closed loop characteristic polynomials in multivariable feedback control systems. As a result, Nyquist constructions on this determinant carry important design information. One way to extract this information is by achieving diagonal dominance. This paper presents a method which uses dynamical input compensation to achieve column dominance. Application to the Theme Problem is included.

1. INTRODUCTION

Recent advances in the generalized Nyquist theory for linear multivariable feedback control systems have brought about very substantial new opportunities for research in the area of frequency domain control design. Most of these advances are predicated upon the relationship between closed loop and open loop characteristic polynomials—as embodied in the determinant of return difference. Features of the Nyquist diagram of this determinant are important aids to control system design.

It is apparent that a diagonal return difference will decompose the return difference determinant into a product of its diagonal elements, thus reducing a multivariable problem to classical single-input, single-output form. Less apparent, but of much greater practical significance is the fact that an approximately diagonal return difference can have essentially the same reducing effect on a multivariable problem, when regarded from a generalized Nyquist viewpoint. The best known of these approximately diagonal conditions has come to be described as diagonal dominance. A productive design strategy can be mounted, therefore, in two steps. First, achieve diagonal dominance; second, apply classical single-input, single-output techniques [1].

Unfortunately, methods to attain diagonal dominance have been rather slow to advance. For the most part, they have been restricted to the selection of constant real compensators, the entries of which are typically obtained by procedures of optimization that do little to preserve some of the classical advantages, such as insight, afforded by the frequency domain approach. Much work needs yet to be done on the theory of attaining diagonal dominance by use of frequency dependent, dynamical compensation.

This paper considers the application to the Theme Problem of a useful new design aid called the CARDIAD Plot. In its present form, this method deals with the design of a dynamic precompensator for the plant, in such a way that column dominance is achieved. An important feature of the approach is the enhancement of designer insight toward the coupling present in a plant.

Section 2 introduces the CARDIAD method for two-input, two-output plants, and Section 3 provides an illustration of certain basic features of the method, in the context of a jet engine plant related to the Theme Problem. Section 4 gives a generalization of the idea to three inputs and three outputs, and Section 5 applies these results to the Theme Problem. Conclusions appear in Section 6.
The $i^{th}$ column of a matrix $Z(s)$ is said to be dominant if
\[ |z_{i1}(s)| - \sum_{j=1, j \neq i}^{n} |z_{ij}(s)| > 0 \] (1)
for all $s$ on a Nyquist contour $D$. A similar definition can be made for row dominance.

For a two-input, two-output system, Eq. (1) can be equivalently written
\[ |z_{i1}(s)|^2 - |z_{ij}(s)|^2 > 0 \quad i \neq j \] (2)
for all $s$ on $D$.

Consider a two-input, two-output system having only precompensation. The open loop transfer function of the system is
\[ Q(s) = G(s)K(s). \] (3)

Let $K(s)$ be restricted to the form
\[ K(s) = \begin{bmatrix} 1 & a_2(s) \\ a_1(s) & 1 \end{bmatrix}. \] (4)

Since any matrix having nonzero entries on its main diagonal may be put into this form by multiplication with a diagonal matrix, and since multiplication by a diagonal matrix does not affect dominance, this can be done without essential loss of generality.

Let $G(s)$ be evaluated at a specific frequency $\omega$. Then
\[ Q(j\omega) = \begin{bmatrix} r_{11} + i_{11}j & r_{12} + i_{12}j \\ r_{21} + i_{21}j & r_{22} + i_{22}j \end{bmatrix} \begin{bmatrix} 1 & x_2 + y_2j \\ x_1 + y_1j & 1 \end{bmatrix}. \] (5)

Performing the indicated matrix multiplication, the four entries in the matrix $Q(s)$ are
\[ q_{11} = r_{11} + i_{11}j + (r_{12} + i_{12}j)(x_1 + y_1j), \] (6)
\[ q_{12} = r_{12} + i_{12}j + (r_{11} + i_{11}j)(x_2 + y_2j), \] (7)
\[ q_{21} = r_{21} + i_{21}j + (r_{22} + i_{22}j)(x_1 + y_1j), \] (8)
\[ q_{22} = r_{22} + i_{22}j + (r_{21} + i_{21}j)(x_2 + y_2j). \] (9)

From Eq. (2), the first column of $Q(s)$ will be dominant if
\[ |q_{11}|^2 - |q_{21}|^2 > 0. \] (10)

Performing the indicated subtraction results in what will be referred to as the dominance inequality for column 1. The form of this inequality is
\[ f_1(x_1, y_1) = ax_1^2 + ay_1^2 + 2bx_1 + 2cy_1 + d \leq 0, \]
where the constants are defined as
\[ a = r_{12}^2 + i_{12}^2 - r_{22}^2 - i_{22}^2 \] (11)
Note that each constant is composed of complex field elements which come from evaluation of \( G(s) \) at a specific frequency \( \omega \).

The function \( f_1(x_1,y_1) \) is a paraboloid in three-space and is normal to the \( x_1-y_1 \) plane. If this paraboloid intersects the \( x_1-y_1 \) plane, the intersection will be a circle. Standard maximum-minimum analysis gives that the maximum or minimum of the dominance function occurs at

\[
x_1 = -\frac{b}{a} \quad y_1 = -\frac{c}{a}
\]

To determine if the point that was found is a minimum or a maximum, the hessian is formed. If the hessian is negative definite, the point found is a maximum. If the hessian is positive definite, the point found is a minimum. The hessian of the dominance equation for column one is

\[
\begin{bmatrix}
2a & 0 \\
0 & 2a
\end{bmatrix}
\]

so that the second derivative test reduces to a test on the sign of \( a \).

Proceeding from this analysis, there are four possible cases. The point that was found was a positive maximum, positive minimum, negative maximum, or negative minimum. The two cases that are of interest are the positive maximum and the negative minimum since it has been shown [2] that the other two cases cannot occur. In each of the cases of interest, the positive maximum and the negative minimum, there is an intersection of the \( x_1-y_1 \) plane. Recalling that the column will be dominant if \( f_1(x_1,y_1) \) is positive, the analysis of the two cases is as follows. In the positive maximum case, the values of \( x_1 \) and \( y_1 \) which will result in solution of the dominance inequality are those points which lie inside the intersection of \( f_1(x_1,y_1) \) and the \( x_1-y_1 \) plane, that is the circle which is the solution of \( f_1(x_1,y_1) = 0 \). In the negative minimum case, the choices of \( x_1 \) and \( y_1 \) which result in solution of the dominance inequality are those points which lie outside the circle of intersection.

Thus, the intersection of the dominance function \( f_1(x_1,y_1) \) for column one and the \( x_1-y_1 \) plane defines the acceptable range of \( x_1 \) and \( y_1 \) such that the system will be dominant in the first column at the specific frequency at which the analysis was performed. In like fashion, the second column of the system may be analyzed, and the acceptable choices of \( x_2 \) and \( y_2 \) may be determined.

If this dominance analysis is repeated over a range of frequencies, and the resulting circles of intersection plotted, a CARDIAD (Complex Acceptability Region for Diagonal Dominance) Plot is produced. A solid circle is drawn if the acceptable choice of \( x \) and \( y \) lie inside the circle, and a dashed circle is drawn if the acceptable region is outside the circle of intersection. Associated with each CARDIAD plot is a locus of centers plot, which indicates the centers and labels the frequency of each. Space limitations do not allow the locus of centers plots to be included with the CARDIAD plots in this paper, but they will be mentioned and referenced as necessary.

3. ILLUSTRATION

Figs. 1 and 2 are CARDIAD Plots of a two-input, five-state, two-output model of a jet engine. The model is derived from a jet engine simulator called DYNGEN [3,4] and represents an F-100 turbofan jet engine with a fuel flow of 2.75 Lbm/sec. (full
throttle without afterburners). The inputs are fuel flow and exhaust area and the outputs are thrust and high turbine inlet temperature. This model is one of a series of such models presently being used in a set point study of an F-100 like jet engine.

The analysis of CARDIAD plots proceeds as follows. Recall that, at any given frequency, the acceptable region is outside the circle if the circle is dashed or inside if the circle is solid. The first question of interest is whether the columns of the system are dominant uncompensated. For this to be the case, the origin of the CARDIAD plot must be included in all solid circles and excluded by all dashed circles, since the origin represents identity compensation of the column. This is not the case for either of the two CARDIAD plots of this system. The next question is whether the system can be made dominant by constant real precompensation. If this is the case, there will exist a point on the real axis which lies inside all solid circles and outside all dashed circles. Fig. 1 shows that the first column of the system can be made dominant at all frequencies by the choice of any constant $\alpha$ which lies outside all the dashed circles of the CARDIAD plot. Fig. 2 shows that there exists no constant value that will make the second column of the system dominant at all frequencies. Thus, some form of frequency dependent precompensation will be necessary.

Before proceeding with dominating this system, some of the features of CARDIAD plots should be mentioned. One property is that a circle at a specific frequency in the plot for one column will be solid if the other column is dominant at that frequency and will be dashed if the other column is not dominant. From this fact it follows that the transition from one type of circle to the other in the CARDIAD plot for one column occurs when there is a change in dominance in the other column. Once again considering Figs. 1 and 2, these facts indicate that the second column is not dominant at any frequency since all of the circles in the CARDIAD plot for the first column are dashed and that the first column is dominant at low frequencies (until $\omega=7$) because the circles in the CARDIAD plot for the second column are solid for this and all lower frequencies.

A second feature of the CARDIAD Plot is the effects of a column switch on the plots,
that is, premultiplication by a matrix with the only nonzero entries being off-diagonal 1's. The effects of such a switching of the inputs are that all solid circles become dashed circles, all dashed circles become solid, and the shapes of the column one and two plots are switched. The CARDIAD plots of the system with this type of compensation are given in Figs. 3 and 4. Note that the first column is now dominant at all frequencies without further compensation. This fact can be ascertained

Fig. 3. Column 1, G(s)K_1

Fig. 4. Column 2, G(s)K_1

either from the fact that the origin in the CARDIAD plot for column one is included by all solid circles and excluded by all dashed circles, or from the fact that all of the circles in the CARDIAD plot for the second column are solid.

Since switching the inputs makes one column dominant uncompensated, it seems a logical first step in compensating for dominance at all frequencies. Thus, K_1 is chosen to be

\[ K_1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \]  \hspace{1cm} (17)

It is still necessary to make the second column of the system dominant. From the CARDIAD plot for this column (Fig. 4), it is apparent that frequency dependent compensation will be necessary since there exists no point in the real axis which is included in all the solid circles of this plot. To design such a compensator, a function of s is fitted to the shape of the CARDIAD plot so that, at any given frequency, the compensator lies inside the solid circle associated with the same frequency in the CARDIAD plot. While it is possible to find a first order compensator that will make this column dominant, a second order compensator has been used because this same compensator could also achieve dominance at four other set points of the model. K_2(s) is the compensator that achieves dominance in the second column of G(s)K_1.

\[ K_2(s) = \begin{bmatrix} 1 & -0.742s - 9.59 \\ 0.014s^2 - 0.998s + 1. \end{bmatrix} \]  \hspace{1cm} (18)

ORIGINAL PAGE IS OF POOR QUALITY.
The overall compensation is \( K_1 K_2(s) = K(s) \) given below.

\[
K(s) = \begin{bmatrix}
0 & 1 \\
1 & \frac{-0.742s - 9.59}{0.014s^2 - 0.998s + 1}
\end{bmatrix}
\]

The CARIAD plots of the system with this compensator are given in Figs. 5 and 6. It is obvious either from the fact that only solid circles appear in the plots or from the fact that all the solid circles include the origin that each column of the system is now dominant at all frequencies.

4. GENERALIZATION

The CARIAD Plot approach to system dominance in the three-input, three-output case is similar to the approach in the two-input, two-output case. The actual condition for dominance in the \( 3 \times 3 \) case is the \( i \)th column of a matrix \( Z(s) \) will be dominant if

\[
|z_{i1}(s)| > \sum_{j=1}^{3} |z_{j1}(s)|
\]

for all \( s \) on \( D \). If both sides of this inequality are squared as in the \( 2 \times 2 \) case, then an equivalent condition is

\[
|z_{i1}(s)|^2 > \left( \sum_{j=1}^{3} |z_{j1}(s)| \right)^2.
\]

Using inequality (21), the condition for dominance in, say, the first column is

\[
|z_{11}(s)|^2 > |z_{21}(s)|^2 + |z_{31}(s)|^2 + 2|z_{21}(s)||z_{31}(s)|.
\]

The cross term produced by squaring adds non-integral power terms to the dominance.
inequality for the 3 x 3 system. To circumvent this problem, the last term of inequality (22) is replaced by an upper bound. Since

\[ |z_{21}(s)|^2 + |z_{31}(s)|^2 \geq 2|z_{21}(s)||z_{31}(s)| \]  

(23)

with equality when \( |z_{21}(s)| = |z_{31}(s)| \), it is convenient to replace the last term of inequality (22) with the left member of inequality (23). This yields a sufficient condition for dominance. For column 1, the condition is

\[ |z_{11}(s)|^2 - 2|z_{21}(s)|^2 - 2|z_{31}(s)|^2 > 0; \]  

(24)

and the general form is

\[ |z_{11}(s)|^2 - 2 \sum_{j=1}^{3} |z_{j1}(s)|^2 > 0, \quad i = 1, 2, 3. \]  

(25)

From inequality (24), the derivation of the dominance equation for the 3 x 3 case proceeds analogously to the 2 x 2 derivation. The general form of the compensator used in the analysis is

\[ K(s) = \begin{bmatrix} 1 & a_{12}(s) & a_{13}(s) \\ a_{21}(s) & 1 & a_{23}(s) \\ a_{31}(s) & a_{32}(s) & 1 \end{bmatrix} \]  

(26)

where \( a_{ij} = x_{ij} + y_{ij} \).

Once again, the open loop transfer function matrix \( G(s) \) and the general form (26) of the compensator are evaluated at a specific frequency and multiplied to form \( Q(j\omega) \). Then, using inequality (25), a dominance inequality for each of the three columns of \( Q(j\omega) \) can be formed. For example, the first column of \( Q(j\omega) \) will be dominant at the frequency \( \omega \) if

\[ |q_{11}|^2 - 2|q_{21}|^2 - 2|q_{31}|^2 > 0 \]  

(27)

and the dominance function for column 1 is

\[ f_1(x_{21}, y_{21}, x_{31}, y_{31}) = c_1 + x_{21}^2 c_2 + y_{21}^2 c_2 + x_{31}^2 c_3 + y_{31}^2 c_3 + 2x_{21} y_{21} c_4 + 2x_{21} y_{31} c_5 + 2x_{31} y_{21} c_6 + 2x_{31} y_{31} c_7 + 2x_{21} x_{31} c_8 + 2x_{21} y_{31} c_9 - 2x_{31} y_{21} c_9 > 0 \]  

(28)

where the constants \( c_1 - c_9 \) are functions of \( G(s) \) evaluated at the frequency \( \omega \). Similar dominance functions can be derived for the other two columns.

The maximum-minimum analysis is performed in two different ways. In the first approach, which will be referred to as the standard analysis, the variables of the dominance inequality are first paired by the entry in the compensator which they represent; and the maximum-minimum analysis is performed on each pair assuming that the other pair is zero. The resulting maximums or minimums are

\[ x_{21} = -c_4/c_2; \quad y_{21} = -c_5/c_2, \]

\[ x_{31} = -c_6/c_3; \quad y_{31} = -c_7/c_3. \]
The hessian for each pair of variables is diagonal and the second derivative test once again reduces to a sign test.

The dominance analysis is repeated over a range of frequencies and CARDIAD plots result. There is one plot for each off-diagonal entry in the compensator and each entry is plotted assuming that the other off-diagonal entry in the column is zero. Using CARDIAD plots generated by the standard analysis, dominance is achieved by setting one of the off-diagonal entries to zero while the other is chosen as was the case in the $2 \times 2$ design.

There does not always exist a value in one off-diagonal entry of a column of the compensator that will make the column of the system dominant when the other off-diagonal entry in that column of the compensator is zero. When this occurs, the maximum-minimum analysis is performed by finding the full gradient of the dominance function. The hessian is no longer diagonal but the eigenvalues of the hessian are all negative in Section 5, so the point that is found is a maximum. Design which is performed on plots generated by the full gradient analysis involves both of the off-diagonal entries of a column of the compensator, and functions must be fit to each to achieve dominance.

A new symbol appears in the plots. At any given frequency, unless dominance can be achieved at that frequency with the other entry zero, a small triangle is drawn which shows the best that can be done towards achieving dominance. It should be noted that the triangle can appear in plots generated by either analysis. In the standard analysis CARDIAD plots, if triangles appear in one plot for a column but not the other, dominance can be achieved by keeping the entry in which the triangles appeared zero and using the other entry to achieve dominance. In the full gradient analysis plots, triangles appearing in both plots do not mean that dominance cannot be achieved. Given that one entry in the compensator is chosen exactly on the triangle at a certain frequency, there is a radius of points around the triangle in the other plot that will achieve dominance; but since the size of the circle is a function of how well the other entry is fit to the triangles, such a circle could easily be misleading. Both of these points will be illustrated in the next section.

5. THEME PROBLEM ANALYSIS

The following design is performed on the reduced order model of the theme problem with state feedback. The states being fed back are the two turbine speeds and the pressure $P_b$. Dominance will be achieved using only precompensation.

The plots for the uncompensated system using the standard dominance analysis showed that the first two columns of the system could be made dominant with one off-diagonal entry in each of the first two columns of the compensator zero. The third column, however, could not be made dominant at any frequency with either one of the off-diagonal entries in the third column zero. Physically, this indicates that the principal effects of all three inputs (fuel flow, exhaust area, and guide vanes) are on the two speed states. To facilitate achieving dominance, a column switch was done by choosing the first compensator to be

$$K_1 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

Figs. 7-12 are the CARDIAD plots of the system with this compensator and use the standard dominance analysis. The plots for the entries in the first column, Figs. 7 and 8, show that the first column is dominant without further compensation, since the origin of each plot is included inside all solid circles and excluded by all dashed circles. Figs. 9 and 10 are the CARDIAD plots for the second column. Fig. 10, the plot for the 3,2 entry, has several triangles in it, indicating that, at
the frequencies where they occur, there is no value in the 3,2 entry that will make the column dominant with the 1,2 element zero. However, Fig. 9 shows that there are no such triangles in the 1,2 entry; so, if a function is fit to the shape of the solid circles of this plot and if the 3,2 entry is kept at zero, dominance can be achieved. Figs. 11 and 12 are the CARDIAD plots for the third column. The 1,3 entry is all triangles and the 2,3 entry has triangles at lower frequencies. Thus, there is no way to make this column of the system dominant with one of the off-
diagonal entries in the compensator zero.

Figs. 13 and 14 are the plots for the third column using the full gradient rather than the standard analysis. The solid circles which appear at high frequencies in Fig. 14 are very important. Recall that the circle will only be drawn if dominance can be achieved while the other entry is zero. This means that by staying inside these solid circles, dominance can be achieved at the frequencies at which they occur while the 1,3 entry in the compensator is zero. Thus, in designing the 2,3
entry, the strategy that is employed is to follow the triangles at low frequencies and stay inside the solid circles at the higher frequencies. If this is done, the design of the 1, entry will be simplified because it will only be necessary to fit the entry to the low frequency triangles and have the function go to zero at higher frequencies.

By this strategy, a lag compensator was designed to fit the 2,3 entry as previously. The compensator entry that was chosen is

$$K_{23}(s) = \frac{-129.4s - 1940.2}{.0365s + 1}.$$

At the same time, another lag compensator is fit to the solid circles in Fig. 9, the CARDIAD plot for the 1,2 entry. This was chosen to be

$$K_{12}(s) = \frac{.0127}{.1162s + 1}.$$

Defining this compensator as $K_2(s)$ with all the other off-diagonal entries zero, the overall compensation thus far is $K_3(s) = K_{12}(s)$.

$$K_3(s) = \begin{bmatrix} 0 & 1 & -129.4s - 1940.2 \\ 0 & .0365s + 1 \\ 1 & .0127 \\ .1162s + 1. \end{bmatrix}$$

Figs. 15-20 are the CARDIAD plots of $G(s)K_3(s)$ using the standard dominance analysis. The plots show that the first two columns of the system are dominant at all frequencies since in Figs. 15-18 the origin of each plot is contained by all solid circles and excluded by all dashed circles. Fig. 19 shows that the strategy applied in the design for the 2,3 entry was successful. To make the third column dominant, it is now only necessary to fit a compensator to the shape of the solid circles in Fig. 19.

---

Fig. 15. $G(s)*K_3(s)$, 2,1 Entry

Fig. 16. $G(s)*K_3(s)$, 3,1 Entry
and have it go to zero at higher frequencies. The function that was chosen is

\[ k_{13}(s) = \frac{0.532s + 16.817}{0.0127s^2 + 0.1986s + 1}. \]

The only change this has on the overall compensator is that the zero in the 3,3 entry is replaced by this function. When the third column is replotted using this compensator and standard dominance analysis, Figs. 21 and 22, the CARDIAD plots show that the third column is now dominant at all frequencies. Thus, the system is now dominant at all frequencies.

Fig. 17. \( G(s)K_3(s) \), 1,2 Entry

Fig. 18. \( G(s)K_3(s) \), 3,2 Entry

Fig. 19. \( G(s)K_3(s) \), 1,3 Entry

Fig. 20. \( G(s)K_3(s) \), 2,3 Entry
The graphical CARDIAD method described in this paper has been effective on the Theme Problem. The authors' experience indicates that it is an easily learned design aid which can be quite helpful in achieving dominance for realistic plants. A special advantage of the CARDIAD approach lies in the way in which it provides insight to the designer. The plots indicate whether or not it will be possible to achieve dominance with simple, lead-lag compensators. Examples up to this time suggest that, over the useful bandwidth, simple compensators are often successful in this regard.

It should be noted that this paper illustrates only compensator selection for dominance. Completion of the design is by classical means. For an example, see [5].

A particular note is the fact that compensator denominators having right half plane zeros do not necessarily lead to unstable controllers. This may also be seen in [5].

Continued research on this class of graphical, interactive methods is in progress.

7. ACKNOWLEDGMENT

This work was supported in part by the National Science Foundation under Grant ENG 73-22322 and in part by the National Aeronautics and Space Administration under Grant NSG 3048.

8. REFERENCES


