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ALTERNATIVES FOR JET ENGINE CONTROL
NASA Grant NSG-3048

Supplement No, 2

ABSTRACT

This report deals with progress made on the Grant NSG-3048 during the
calendar year beginning March 1, 1977 and ending February 28, 1978. This
year coincides with Supplement No. 2 of the award, which originated on
March 1, 1975. The NASA Technical O0fficer for this period was Dr. Bruce
Lehtinen of Lewils Research Center. The directors of the research at the

University of Notre Dame were Dr. R. Jeffrey Leake and Dr. Michael K. Sain.

General goals of the research have been classified into two cate-
gories. The first category involves the use of modern multivariable fre-
quency domain methods for control of engine models in the neighborhood of
a quiescent point. The second category involvés the use of nonlinear mod-
elling and optimization teciniques for control of engine models err a

more extensive part of the flight envelope.

Substantial progress has been made in both categories.

In the frequency domain category, works have been published in the
areas of low-interaction design, polynomial design, the CARDIAD* method,
and multiple setpoiﬁt studies. A nﬁmber of these ideas have progressed
to the point at which they are staﬁting_to attract practical interest.

Purther effort is yet required, however, to carry the ideas to maturity

#The acronym stands for gpmpiex Acceptability Epgidn for ﬁIAgonélvyﬁﬁé
Inance. See report for details.



o o e A T ., 2R g

I

At i e L e 8 o o Ao oty et b e eyt
_“- L : - AT " e . o - - y s

¥
I
Iy

g

-

e

R R e el e, s e S s —_— o omE e T s e m— i —n T st e e s R TR T T e sk eSS TR s T R

a‘mi. to eﬁsure- their adequate dissemination. A highlight of the year was
the :I.ncorporg’tion of realistic jet engine data as a theme problem into
the Iﬁtematiénal Forum on Alternatives for Linear Multivariable Control.
Dr. Sain was Program Chairman for this meeting, which attracted nearly

two hundred persons from industry, laboratories, and universities to

~ hear thirty papers focused in the general subject area of this grant.

In the nonlinear category, advances have been made hoth in engine
modelling and in the details assoclated with software for determiﬁatién.
of'timé. optimal controls. Nonlinear models for a two spool turbofan
éngiﬁe' have been expanded and refined; and a promising new approach fo
automatic model generation has been placed under study. A two time scale
scheme has been -&évélbpéd to do two-dimeﬁs:lonal dynamic programming, and
an ocutward spiral sweap techm que has greatly speeded convergence times

in time optlmal calculat:.ons.

The de.ta:s_.l.s of these and ot‘he.r aspects of the. yeczr s :mvastlgations

‘may be. found in thn body of the report, which covers the most a;;tlve

grant .pg]:io_d__ t__fJ da}te_.
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I. INTRODUCTION

s ]

The purpose of this section is to provide some of the broad back-

=

ground which underlies and clarifies the general nature or the Research

Highlights, which are stated in the section following.

Initiation of Grant NSG-3048 in March 1975 was timed with develop-
ments in the engine industry, which was beginning tec experience some lim-
itations in the application of classical hydromechanical control tech-
nique as the primary base technology for modern engines with ever in-
creasing sophistication. At the same time, milestone developments in
digital hardware began to open realistic possibilities for onbeoard comp-
utation to an extent not heretofore possible. This confliuvence of events
ied directly toc the concept of increasing the role of electronics in
engine control. In turn, the availability of digital electronics itself
created a wide variety of opportunity for appliéation of new control de-
sign philosophy and technique. Among the carliest of such studies is
the F100 Multivarisble Control Synthesis Program [1] sponsored by the
Hational Aeronautics and Space Administration, Lewis Research Center
and the Ajir Force Aero~Propulsion Laboratory, Wright-Patterson Air Force

Base. This program is currently in the test phase.

The advent of digital technology on the engine scene offers not

only the opportunity to control more engine variables but also the pos-

I . sibility of integrating engime and alrframe control. Studies of this

type have also begun.

Piimary tools in the FLOO Mﬁltivariablé Contral Syﬂthésis'Prdgram.
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were linear quadratic regulator (LQR) theory in the linear case. For the

global control, nonlinear optimal methods were not directly applied.

The purpose of Grant NSG-3048 is to evaluate alternatives to LQR in
the linear case and to examine nonlinear modelling and optimization ap-

proaches for global control.

Conitext for the studies is set by the DYNGEN digital simulator [2].
Based upon earlier computer codes GENENG [3] and GENENG II [4], DYNGEN
has the combined capabilities of [3] and [41, for calculating steady-
state performance, together with the further capability for calculating
transient performance. DYNGEN uses a modified Euler method to solve the
differential equations which model the dynamics of the engine, This mod-
ified Euler method permits the user to specify large time steps, for ex-
ample a tenth of a second; and this can result in considerable savings of
execution time.‘ On the other hand, convergence problems are sometimes

encountered with DYNGEN wher small time steps are used.

The DINGEN digital simulaticon is particularized to a given situation
by a process of loading data for the various maps associated with a given
engine. The maps for the Grant NSG-3048 hafé been provided by engineer-
ing personnel at Lewis Research Center. These maps corresponé to. a
paper engine, which is not closely identified with any current engine.
But the data do correspond in a broad, general sense to realistic two
spool turbofan engines. The simulation provides for two essential con—
trols, main burner fuel flow and jet exhaust area. Portions of the en~
velope which can be used for linear or nonlinear expecimentation are

limited by the convergence capabilities of the available engine data on

DYNGEN.
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With respect to multivariable frequeney domain work, the basic ap-

proaches may be classified Into two groups. These two groups are often

g ;

£ called "direct" and "indirect".

==

 The direct approach can usually be recognized by its attention to

achieving a completely specified dynamic performance. Such ideas have

=

w? _ been discussed from the early days of organized control study. See,

for example, [5] and [6]. In fact, some of the earliest attempts to ex—

f@ . pand the direct approach to the multl-input, multi-output case involved

‘E ‘o work with jet engines [7,8]. Direct approaches in multivariable applnr

B3

cations typically involve matrices of transfer fumctions. In the 1950'5,
f there were some nontrivial difficulties with such methods in cases of

more thap one input and output. Among these difficulties may be mentioned

a: (1) the meaning and extent of cancellations of various types
in the transfer functions,
I . (2) the question of loop ?t#bility,,
. I .~ (3) the problem of specification, and

| (4) mumerieal computations.

(il

‘K&véﬁcés in the Iaét‘twa decédésIhé&ECresoived 1) and (2);-in-indu5try,

:!; o ;a.reservoir of expert;se has buil up relatlva to (3), and progrESS dn

t e e gt s g s :
SR T e ety
RPN L e A e A

|  ,the numerical sciences is rapidly achieving an.interface With control
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to the classic works of Nyquist or Evans, involving, respectively, fre-
quency response plots in the complex plane or versions of the root locus.
It is a relatively easy matter to describe the focus of generalized
Ryquist methods. The key constituent ideas are related to three poly-

nomials:
(1), pc(s) - the closed loop characteristic polynomial (CLCP),
(2) po(s) ~ the open loop characteristic polynomial (OLCP), and
(3) [M(s)[— the determinant of return difference.

The CLCP is a polynomial whose zeros characterize the exponential im~
pulse response of the closed loop control system; the OLCP serves the same
purpose for the open loop system. M(s) is a wmatrix of transfer functions
associated with the following experiment. Break the control loops at a
convenient point and inject impulses. The difference between the trans-
form of the signal injected and that which returns at the other end of
the loop is established by the colums of M(s). The quantities pc(s),

po(s) and M(s) derive their importance from the fact that they are re-

~ lated to each other by the equation

-

p (s} = [MG)] p (5.

Typically, po(s) is knownj; and M(s) ig partly given and partly designed,

in such a way that pc(s) becomes desirable.

Generally speaking, a Nyquist plot of |M(s)| tends to contain the
same types of information which proved so successful in classical designs.
A great deal of the design effort centers upon the way in which dynamiecal
compensation affects the determinant which acts on ¥(s). There are three

well recognized ways to study this effect. These are

-
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(1) direct construction of lM(s)I by any of the known methods

for determinant calculation,

{2) construction of the eigenvalues of ]M(s)] as a function of
s, and use of the idea that the determinant is equal to

the product of its eigenvalues [9], and

(3) design of compensation so that M(s) is approxiﬁately dia-
gonal, and establishment of a relation between the plot

of [M(s)| and plots of the diagonal elements of M(s) [10].

It is believed that work on this grant has advanced the application of
all these metheds to jet engine deéign,'but particularly method (3),
where a special technique has been developed to design compensation so
that M(s) is approximately diagonal. This technique is called the CARDIAD
Plot, where the acronym stands for Complex Acceptability Region for DIA-
gonal Dominance, the latter term referring to a specific definition of

"approximately diagonmal.”

With respect to nonlirear modelling and optimization, the emphasis
has been twofold: to develop good analytical nonlinear models of the
jet engine and to use these models in conjunction with techniques of
mathematical programming in order to develop advances in global control

over significant reaches of the flight envelope.

In general, there are several aspects to this pért of the investi-
gation. Figgt, it is possible to conceive the basic differential equa-~
tions from fundamental principles., Im this case, there are usually about
sixteen nonlinear differential equations, as well as a large number of

nonlinear static functions which serve as part of the coupling between

1%, ]
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the equations. These functions often have more than one argument. IEf :
the equations arise in this faghion, then there is a significant need

to identify the parameters. This must normally be done from the DYNGEN
digital simvulation. Second, it.is possible to assume a general form for
tﬁe nonlinear differential equation; in such a way that fundamentai prin-
ciples are not ignored but that added emphasis is placed upon general
mathematical form, If this general form is chosen according to a scheme
designed to maka'maximﬁm use of the type of data which is directly avail-
able from the digital simulation, then a typé of "a#tomatig" nonlinear
model generation becomes pogsible. Third, whether the first or second
modelling procedure is employed, there is almost always a need to con-
sider the problem of reducing the order of the models. Though order
reduction can often be highly mathématical in nature, it is almosi al-
ways the case that the reduced order model depends upon the scaling of
the equations. As a result, the final reduced mﬁdels often depend in a

nontrivial way upon physical insight, as well as mathematical method.

Work on this grant has focused especidally upon the first and second
aspects of the modelling proBleﬁ, with a gradual specialization towazd

gutomaiic model generation.

Insofar as optimization is éoncerned, the stress has been placed
upoh time optimal control, and considerable effort has been invested in
specialized progfamming methodology designed to take maximum advantage
of the particular features of jet_gngigg ﬁpde1s,. |

In the next section, the highlights of activitiés carried out during

the ecalendar year corresponding to thils report are presented.
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I II. HIGHLIGHTS OF THE RESEARCH

This section is a brief statement of the main achievements under

% . Grant NSG~3048 during the period from March 1, 1977 to February 28, 1978. 1
o There are two major subdivisions, according to the main thrusts of the

¥ :
Gl investigation. The first of these is Local Multivariable Frequency Domain ?
%f Methods; and the second is Global Nonlinear Optimal Methods.

i

- For the most part, the wording of these paragraphs has been con-

3

ER

di

strained so as to be as nontechnical as possible. Nometheless, some

readers may find it useful to review the basic introduction provided in

Section I.

e
i; A. TLocal Multivariable Frequency Domain Methods
j During the calendar year ending ov February 28, the following results

were achieved in the area of modern, frequency domain control of turbofan

engine models.

(1) The first formal documentation of the CARDIAD method
(Complex Acceptability Region for DIAgonal Dominance)
was completed. See (1), Section IIT. Though supported
principally under a theory grant from the National
Science Foundation, this technique had its origin in
class studies of older methods for approximate de-
coupling of jet engine models in the frequency domain,
Almost all of the examples in this thesis were taken
from F100-like engine data.

Pf -‘7“‘3'

(2) The first documented studies of direct Nyquist plots
of return difference determinants for jet engine
models were completed. See (3), Section ITI. This
thesis has been a helpful ancillary tool in general
frequency domain design.

(3) The first frequency domain closed loop compensation
and simulation of a DYNGEN turbofan engine model was
achieved. See (5), Section III. As explained in

- R  DATR PR Rl
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Section I, the DYNGEN simulation supplies two control
inputs,

(4) The first study of polynomial techniques for exact
model matching control of jet engine models in the
frequency domain was reported. See (6), Section IIT,

' This paper has been pivotal in promoting the numer—
ical advance of such techmiques for applications.
More will be reported in the subsequent semi-annual
status report.

(5) About a given design point, linerr models of the
standard type are obtained from the DYNGEN simulation
by the DYGABCD routine [11]. In order to use DYGABCD
at off-design points, however, modifications to DYGABCD
necessary to the research had to be accomplished. See
(7), Sectiom III.

(6) The CARDIAD plot was applied to a series of DYNGEN off-

. design point models in order to determine its utility
as a method for global classification of interaction
characteristics of jet engines. See (14}, Section III.
The rvesults were positive.

(7) An entire conference was convened from industry, lab-
oratories, and universities to hear speakers from sev-
‘eral countries apply their theories to a theme problem
developed from jet engine data. See (15), Section III.
This meeting resulted in a book publication [12].

(8) The CARDIAD methodology was extended to the three—con-
' trol-input case and applied successfully to Pratt—
Whitney data for the F100 engine. See (16), Section
III.

(9) A joint seminar series was established between the
Department of Electrical Engineering at Notre Dame and
the Energy Controls Division of the Bendix Corporation
at South Bend, in areas of mutual interest. This has
resulted in published work. See (17), Section III.

e feE e

B. Global Nonlinear Optimal Methods

The major advances and results achieved during the past year in the

o R

area of global nonlinear optimal methods are the following.

(1) ‘'The hierarchy of analytical nonlinear models for the
two spool turbofan jet engine has been expanded and
refined, See (2), Section III. This effort is in

=]
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(2)

(4)

(3)

(6}

(8)

Further details concerning these highlights may be found ia Sectiuns IV

and V.

3y

keeping with general interest in the industry concern—
ing improvement of compact general models.

A comparison has been achieved between the use of a
linear gffine model and a nonlinear model for time
optimal control studies of a single spool engine. See
(4), Section IIT. The results again support the search
for reasonably simple nonlinear models, in the sense
that they argue in favor of models whose nonlinearity
is not excessively complicated.

A method using linear quadratic regulator methods to
obtain decoupled control has been tested on various
engine models. See (8), Section III., This is also
an outgrowth of the joint Notre Dame ~ Bendix seminar
series mentioned in (9), Section ITA, above.

A two time-scale scheme has been developed in order to
do two-dimensional dynamic pregranming on a £ifth
order model of a jet engine. See (10), Section III.
This is part of a continuing study of time-—optimal
control methods applied to nonlinear engine models.

Convergence times in time-optimal successive approx-
imation dynamic programming have been dramatically
improved through development of a scheme for a spiral
out sweep from the target. See (10), Sectiom III.

A completely automatic method for ohtaining nonlinear
analytical models for engine simulations has becn de-
veloped and tested numerically. See (11), Section TII,
Tiis approach offers considersble promise for improve-
m:nt over previous methods.

A discrete maximum principle has been devaloped for
noniinear systems having the property that the con-
trol is constrained by the present state, See (12),
Section III.

A family of optimal feedback control laws has been
developed ard simulated for a variety of models.

Also, ag described in Section III following, a number of the doc~

uments have been included as appendices.

The next section contains a 1ist of publications completed during

the current year of the grant.

e e s S S s A A AP o i e DS gt ar o e [ A b
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III., PUBLICATIONS

=

This section provides a list of the nineteen documents completed

+ during the year March 1, 1977 through February 28, 1978. The works are

E

ordered chronologically.

Some of the listings are followed by an alphabetical code comsisting

of one or more of the letters A, ¥, and R. The letter A signifies that

the document or an abstract thereof appears as one of the appendices to

%j

this report; the letter M signifies that the document comprises a thesis

for the degree of Master of Science in Electrical Engineering; and the

g

letter R declares that the document summarizes an effort which was closely

integrated with, but not directly supported by, the activities of this

o malee
ey

grant.,

Completed publications from earlier years are not included in this
listy but a total listing of all the grant documents has been provided

as an appendix to the report. See the Table of Contents.

:
:
g

(1) R.M. Schafer, "A Graphical Approach to System Dominance",
Technical Report EE 772, University of Notre Dame, April
1, 1977. QL,R)

(2) W.E. Longenbaker and R.J. Leake, "Hierarchy of Simula-
tion Models for a Turbofan Gas Engine", Proceedings
Eighth Annual Pittsburgh Conference on Modeling and
Simulation, April 1977. (4)

{37 P.W. Hoppner, "The Direct Approach to Compensation of
Multivariable Jet Engine Models", Technical Report EE
774, University of Notre Dame, May 1977, (M,R)

R.R. Gejji and R.J. Leake, "Time-Optimal Control of a
Single Spool Turbojet Engine Using a Linear Affine
Model", Technical Report EE 7711, University of Notre
Dame, June 1977.

£
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(3)

(6)

)

(8}

)]

(10

(i

12)

(13)

(14)

(153

R.M. Schafer, R.R. Gejii, P.W. Hoppner, W.E. Longenbake:
and M.X. Sain, "Frequency Domain Compensation of a DYNGEW
Turbofan Engine Model, Proceedings Sixteenth Joint Auto-—
matic Control Conference, pp. 1013-1018, June 1977. (A)

R.R. Gejji and HM.X. Sain, “Application of Polynomial
Techniques to Multivariable Control of Jet Fngines", Pro-
ceedings Fourth IFAC Symposium on Multivariable Tech-
nological Systems, pp. 421-429, July 1977. (&)

R.R. Gejji, "Use of DYGABCD Program at Off-Design Points",
Technical Report EE 7703, University of Notre Dame, July
1977.

E.A. Sheridan and R.J. Leake, "Non-Interactive State Re-
quest Jet Engine Control with Non-Singular B Matrix™,
Proceedings Twentieth Midwest Symposium on Circuits and
Systems, pp. 539-543, Auvgust 1977. (R}

R. Gejji, R.M. Schafer, M.XK. Sain, and P. Hoppner, “A Com-
parison of Frequency Domain Tachniques for Jet Engine Con~
trol System Design', Proceedings Twentieth Midwest Sympo-

sium on Circuirs and Systems, pp. 680-685, August 1977. (A)

W.E, Longenbaker and R.J. Leake, "Time Optimal Control of
a Two-Spool Turbofa. Jet Engine", Technical Report EE 7714,
University of Notre Dame, September 1977. (A,M)

R.J. Leake and J.G. Comiskey, VA Direct Method for Obtain-
ing Nonlinear Analytical Models of a Jet Engine", Proceed-
ings International Forum on Alternatives for Linear Multi-
variable Control, National Electronics Conference, Chicago,
PP. 203~212, October 1977. (A)

J.A. Ortega and R.J. Leake, "Discrete Maximum Principle
with State Constrained Coutrol™, STAM Journal on Control
and Optimization, Vol. 15, No. &, pp. 109-115, November

1977. (R)

Michael K. Sain and V. Seshadri, "Pole Assignment and a
Theoren from Exterior Algebra", Proceedings IELEE Conference
on Decision and Control, pp. 291-295, December 1977. (R)

R. Michael Schafer and Michael K. Sain, "Some Features of
CARDIAD Plots for System Dominance", Proceedings IEEE Con-
ference on Decision and Control, pp. 801-808, December

1977. (&)

M.K. Sain, "The Theme Problem", in Alternatives for Linear
Multivariable Control, M.K. Sain, J.L. Peczkowski and J.L.

Melsa, Editors. Chicago: Wational Engineering Consortium,

11




st i et A R e
R T i ST E¥

T R

She e e

pEprai g

o g P e st i Ty e b Rt oy
PR s M e T St e

=
sk
Y

e

bRy

.’;i_j:

e

g

BAE WY S M S S

{16)

an

(18)

9

R.M. Schafer and M.K. Sain, "Input Compensation for
Lominance of Turbofan Models", in Alternatives for
Linear Multivariable Control, M.K. Sain, J.L.

Peczkowski, and J.L. Melsa, Editors. Chicago: Na-
tional Engineering Consortium, 1978, pp. 156-169. (A)

J.L. Peczkowski and M.K. Sain, "Linear Multivariable
Synthesis with Transfer Functions", in Alternatives
for Linear Multivariable Control, M.X. Sain, J.L.

Peczkowski, and J.L. Melsa, Editors. Chicago: Na-
tional Engineering Consortium, 1978, pp. 71-87. (R)

R.J., Leake and M.K. Sain, "Semi-Annual Status Report,
NASA Grant WSG-3048, "Alternatives for Jet Engine Con-~
trol', Supplement No. 2¥, March 1, 1977-August 31, 1977.

R.J. Leake and M.K. Sain, "Final Technical Report, NASA

Grant NSG-3048, 'Alternatives for Jet Engine Control',
Supplement No. 2", March 1, 1977-February 28, 1978.
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s IV. LOCAL MULTIVARIABLE FREQUENCY DOMAIN METHODS

Progress on local multivariahle frequency domain methods has been
achieved during this grant period in the areas of Low Interaction Design,
Polynomial Design,'Extension of CARDIAD Method, and Multiple Setpoint

studies.

Low Interaction Desigm

As mentioned in the Final Report for NASA Grant NSG-3048, Supplement

No. 1, a promising new technique for designing dynamical compensation be-
gan to develop in the Fall of 1976, This methodology, built upon what

? % are currently being called CARDIAD plots, was only being temtatively con-

wehe

w sidered in October, 1976 when the continuation proposal for NASA Grant

NSG~3048, Supplement No, 2, was being written. Based upon favorable pre-
liminary reaction by personnel from NASA Lewis Research Center, a decision

was made to investigate further the use of CARDIAD plots as a design aid

S g e e
pRE ey

for turbofan engine control in the frequency domain. In essence, this
study proved to be successful enough that it really dominated the re-
waining time period of Supﬁlement No. 1 and has continued through Sup-

plement Mo. 2.

A great deal of the power oif the CARDIAD plot arises from its sim-
plicity. TFor each frequency, a circle is constructed on a plamar plot.

Data for the center and radius of this circle is obtained from the com-

FGRE] R Eeeg el

plex transfer function matrix of the plant. The circle may be solid or
dashed. If'solid, the inside of the circle defines the acceptable com~

plex region for the value of a frequency dependent compensator element

i S

in order to achieve dominance. If dashed, the outside of the circle de-

Gy ey
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fines the acceptable region. As the frequency follows a standard Nyquist
pattern, these circles result in a CARDIAD plot. (Complex Acceptability
Region for DIAgonal Domirnance), This plot has been shown to speak con-

structively to the issue of compensator choice te reduce interaction.

As an example of the CARDIAD plot application to the turbofan engine
control problem, a linear model obtained using DYGABCD on the DYNGEN &ig~
ital engine simulator was used to illustrate controel design at the 1977
Joint Automatiz Contvol Conference. The paper based upon this effort,
which may be seen in Appendix C, utilizes a two-input, five—staté, two-
output engine model in which the Inputs are fuel flow and nozzle area,
the states are compressor speed, fan speed, burner exit pressure, aftex-

burner exit pressure, and high turbine inlet energy, and the outputs are

thrust and high turbinme inlet temperature.

! .
Typical examples of CARDIAD plets for such engine models may be seen

ianigurES 2-5 of Apﬁendix . The investigators iInvolvaed in this study

have seen the same type of plots arising from a variety of engine data.

This has raised the interesting question of whether there may be a mean-
ingful concept of "engine interaction footprint" in the sense of the

CARDIAD plot.

Of particular interest is the plot shown iIn Figure 3 of Appendix C.
Students of classical control theory will immediately recognize the near
semicircular nature of this plot. Such semicircular behavior has been
observed frequently and serves to specify a sort of essential lead—iag

classical compensators element which can achieve diagonal dominance.

Using the CARDIAD approach, it has been possible to achieve diagonal

14
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dominance at all frequencles on typical engine models. Moreover, only

simple compensators have been required to do this. While it is not pos-
sible to apply the same degree of credibility to the model itself at all
frequencies, it is nonetheless of considerable theoretical interest to
be able to make this accomplishment, especially for (4, B, C, D) type
plant quels which have the D matrix present to approximate modelling
errors at high frequencies. TFurther insight into the significance of
these steps can be obtained by examining Appendix B of the Final Report

for Supplement No. 1.

Appendix C of this report also contains evidence of two other
facets of the applications researches conducted under this grant. Fig-
ures 6-8 are characteristic lecus plots for the plant, after it was com-
pensated by the CARDIAD methodology. This combination of ideas, namely,
the CARDIAD plot and the characteristic locus, has been quite helpful
in studies conducted up to this time, Softwares were developed and ex-
perience gained with the characteristic locus on the original grant NSG-

3048, as well as on Supplement No. 1.

0f additional interest also are Figures 9-11 of Appendix C. These
figures deal with an aspect of frequency domain control research yhich
may be called a "direet" approach. The term "direct” refers to a direct
construction of the determinant of return difference as frequencies fol-
ilow a standard Nyquist pattern. This tool really underlies all the mod-
ern frequency domain ideas; but it is usually handled obliquely, as for
example by the CARDIAD idea or by the characteristic locus, Studies of

the direct approach to determinant of veturn difference have confirmed

15
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that it is at the very least a revealing analysis method. Figure 1l of
Appendix €, for example, reveals a condition of gain limitation which is
understandable in a global way not so easily visualized by separate char-
acteristic locus plots. It should be emphasized,'moreover, that diagrams
of the type of Figure 11 can be drawn without any regard of plant size

in terms of inputs, states, and outputs.

Efforts to use the direct approach for design, as well as for anal-
ysis, have posed nontrivial algebraic questions. BSome Insight has been

gained, but no breakthroughs have occurred as yet.

Polynomial Design

The principal efforts and results obtained in applying polynomial
design techniques to the turbofan engine control problem have been re-

ported in the Final Report on Supplement No. 1.

During the present grant period, a paper on this work was presented
at the International Federation of Automatie Control's Fourth Symposium
on Multivariable Technological Systems at the University of New Brunswick

in Fredericton. See Appendix D.

-

There is now little doubt that the control area is exper%encing a
resurgence of interest in transfer function methods. As part of this
resurgence, grant work on polynomial design has pointed out the necessity
of Increased attention to numerical method. The investipators also be-

lieve that it has stimulated other workers tn begin numerical studies.

The transfer fumction has a number of key properties which have long
made it popular with control practiticmers. For example, the transfer

function is unique relative to similarity transformations on the state

16
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Much work remains to be done, however, on computational aspects of

transfer function design.

A presentation comparing the design experienhes of the investigators
under this grant, in the frequency domain, was made at the 1977 Midwest
Symposium on Circuits and Systems, Lubbock, Texas, in August. A copy of

this brief manuscript may be seen in Appendix E.

Extension of CARDIAD Method

All the work so far mentioned in regard to the CARDIAD plot was
carried out for plants having two inputs and two outputs. In this sit-
uation, it is certainly true that the plots have many interesting prop-

erties.

On the basis of this e» rerience, which was in its final stages in
May, 1977, it was decided to exztend the CARDIAD theory to the three-imput,
three-output case. Also, the National Engineering Consortium's Inter-

national Forum on Alternatives for Linear Multivariazble Control, which

took place in October, 1977, offered a prime opporitunity to apply the

theoretical extension, inasmuch as the Forum contains a Theme, Problem
based on a linearized model of a modern turbofan engine. See Apﬁhndix
I. Assistance in the theowetical extension of CARDIAD to the three-in-
put; three~ utput case was provided by support extended to Dr. Sain by
the National Science Foundation under Grant ENG 75-22322. NASA support

under Supplement No. 2 was focused on the turbofan application.

Appendix J, "Input Compensation for Dominance of Turbofan Models",

17
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provides a complete description of the successful work on this extension

and 1ts applicatiom.

Technically, the extension of CARDIAD plot methods to the three-in-
put, three-output case involved the use of a bound which provides suf-
ficient conditions for diagonal dominance. Many possibilities exist for
the selection of such a bound, and there remains considerable opportunity
for further research along these lines. After examination of a number
of basic bounding possibilities, an initial selection was made in such a
way that the bound will extend to the case of a plant having p inputs
and p outputs, where p is any positive integer greater than or equal to
two, and that the bound will be tight in the place where it matters the

most-—where the plant is close to failing the dominance test.

¥rom an engineering point of view, it was necessary to develop soft-
ware to extend the CARDIAD idea and to establish viewpoints for studying
the plots in more complicated cases. The CARDIAD analysis was divided
into two phases. The fi;st phase assumed one off-diagonal compensator
element to b2 zero. An advantage of such a phase lies in its conceptual
reduction to the situation of Appendix C, where greater design experience
is available. The first-phase approach was adequate for about half of
the application to the National Engineering Consortium Theme Problem.
The second phase assumed both off-diagonal compensator elements to be
nonzero, but drew the plot in such a way that the designer could as-
certain what would happen when one of those elements was zero. This sec~
ond phase approach was successful in completing the design for the Theme

Problem. ‘ -

18
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A number of noteworthy points should be brought out concerning this

- extension research. . .

(1) These CARDIAD methods have been successful without assuming a fixed

(2)

(3}

(%)

form of the compensator. The importancé of this fact can scarcely

be overemphasized, If a fixed form is assumed, it may happen that

the form is inadequate to f£it the essential plant characteristicsj
and, as a result, it can well be the case that essential insight

is lost.

The CARDIAD approach, applicable to design localized to just omne
side of the plant, as for exawple the input, can be used to affect

outputs that are not measurable. Other methods that use compensation

both at plant input and plant output often depend upon moving the
output compensator around the loop-—-an operation which is not pos-
sible unless those outputs drive the lcop. It would seem that‘this
could be quite importént in the case of.key outputs such as high

turbine inlet temperaturs and thrust.

In cases studied so far, and there have been over a dozen of them,
the CARDIAD plot has achieved dominance over a2ll frequencies, even
vhen the plant has (4, B, C, D) form and transmission does not roll

off to zero at high frequencies. This design power has been ac-

companied by a need for only relatively simple dynamical compensation.

In practice, gain selection in compensators has to be done with some

care, so as not to invalidate the accuracy of the linearized model.
The CARDTAD approach conveys considerable direct insight into the

gains available; and does not leave the choice indirectly to an op-

19 | -'f'
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timization program.

Because of these features, the investigators feel that the CARDIAD plot
is helping to push back the research frontier in frequency domain ap-

proaches to approximate decoupling.

Multiple Setpoints

From the outset, the CARDIAD plot has offered much promise for the
general control problem which involves linearization at meltiple set-
points, design at each setpoint, and a piecing together of these designs
to achieve global effects. Such technique is certainly the norm both in

present—day practice and in current research for the turbofan engine.

Basically, the idea is to construct CARDIAD plots to each setpoint
and to use these to study the interaction features of the nonlinear en-
gine model over a more global operating regime. The investigators be-
lieve that such studies can be helpful in selecting setpoints for design

and in constructing compensation which works toward global dominance.

Work has been proceeding along these lines, with the aid of sef-

. points involving two inputs and two outputs from NASA's DYNGEN engine

simulator. The first documentation can be found in Appendix H.

In Appendix H,.the setpoints are determined by fuel flows of12.145,
2.3L, 2.475, 2.64, ané 2,75 LBM/SEC, TFigures 1-10 of the appendix con-
tain the corresponding CARDIAD plots. Consider Figures l,'B, 5, 7 and 9,
which focus on the first column, Note their elear similarity. Next con—
sider Figures 2, %4, 5, 8 and 10. Again note their clear similarity. BEe-
cause of this similarity, it was possible to design one simple compensa-—

tor to achieve diagonal dominance at all five setpoints. This compensa-—
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tor is indicated in Section Four of Appendix C.

Research is continuing on putting togathéf a global compensation

based upon these analyses on thg DYNGEN simulator.

k|
i
1

FERYTSE RO £

The technique is promising and is receiving maximal attention on the

project.'

*
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V. GLOBAL NONLINEAR OPTIMAL METHODS

This section is concerned with some of the details of the third year of
effort on the global nonlinear optimal part of the research. As in the
previous year, this part is primarily concerned with the control of a

two-spool engine,
There are three main aspects of the work:

DYNGEN Simulator Operation
Turbine Enpine Modelling

Nonlinear Optimal Control

DYNGEN Simulator Operations

The DYNGEN simulator, equipped with DYGABCD, has been useful in

.nearly all studies related to the grant, as it provides a "real world"

testing ground for the various control methods under investigation. How-
ever, it is costly and has limitations. Two such limitations are the fact
that it is difficult to get convergence at low rotor speeds, and that only

two controls (WFB and AS) are readily available to the user.

The automatic generation of ABCD matrices enabled by DYGABCD has
been invaluable. It is felt that our work has coantributed to the overall
development of the simulator through feedback provided, as for example,
the simple modification suggested in Mr. Gejji's memorandum., See (7),

Section IIT,

In the early stages of the work, DYNGEN was of primary concern, but

it is now fairly routine and attention has turned to other areas.

I
M
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Turbine Enpine Modelling

This phase of the work began with analog computer studies of a single
spool engine. Then a considerable effort was spent to obtain a good ana-
‘lytical model for z two sp~ol model using fundamental physical comsider-
ations. This study resulted in a hierarchy of models as reported in W.E.
Lougenbaker's M.S. Thesis, Appendix F, and the paper by Longenbaker and
Lezke presented at the Pittsburgh Conference on Modelling and Simulationm,
Appendix B. As indicated in the results of Longenbaker's Thrsis, the mod-

els obtained were disappointing. Even linear affine models appeared to

fare better. See (4), Section ITI.

As a result of ilis experience, the main emphasis in the work has
now turned toward automaitic generation of models by compﬁter methods., The
first effort in this direction is reported in the Chicago Taterxnational
Forum paper by Leake and Comiskey, Appendix G. The basic approach is to

use an approximation of
% = E(x,u)

which is of the Ioxrm

”

% = Alz,u) (x - glu)).

This form seems o work very well for jet engine models. 1In the first
place, there is always a unique equilibrium point for a given fixed con-

trol u, so
x = glu)

is the equilibrium equation which is all important for steady state anal-
ysis. In the second place, jet engine A matrices rarely have poles

(eigenvalues) at the origin and hence they are inwvertible,

23
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This is a great help in computing such models, Suppose then that
E(x,u) = A(x,u) (x-g(u)),
and let
(x,, u)
be an equilibrium pair satisfying
x, = g(ue).
Then
of _
e Fes ) = Alx,, u)
and

it ) = - 3g
u (xe’ Je) A(Xe’ ue) du (ue)'

Now it is well known that gﬁ-corresponds to the approximate system A
matrix in the steady state, so in our model, A(x,u) is a running approx-
imation of the system A matrix and it can thus be approxinated by meas-

uring the A matrix at equilibrium points of interest and interpolating.

A key point dis, however, that %§ corresponds to the system B matrix

in the steady state, and hence
B{x , u)=-A(x, ul Eg_(u )
e’ ‘e e’ e” du “e
or
35 = .t
™ (ue) A (xe, ue) B(xe, ue) .
This is where the invertibility of A comes in.

Thus, if there is an gutomatic method of finding A and B matrices

(as we have in DYGABCD) then we have an easy way to get measurements of

24
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A(x,u}, g(u}, and —gﬁ“ (u).

The %% term is very important because it is the DC gain of the linear

model from control to state. To see this, consider the tramsfer func-

tion relation
. -1
X(s) = (sI-A) "B U(s).

Then the s = 0 DC gain relation is

Tt follows from the above discussion that use of the model form pre-

scribed permits one to key in on

Authentic Equilibrium Values
Authentic A Matrix Values

Authentic DC Gain Values

for a global nonlinear model by measuring only

Equilibrium Values
A Matrices

B Matiices.
These measurements can usually be made by automated methods.

~he Chicago paper, Appendix G, was a first attempt to use the ap-
proach. J.G. Comiskey's M.S. Thesis is to use Hermite polynomials which

are well matched to %% derivative requirements.

Nonlinear Optimal Control

It is felt that W.E. Longenbaker did a comprehensive job of refin-

ing ouxr basic successive approximation Dynamic Programming scheme and

25
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applying it to the models he studied. Detalls can be found in Tech-
nical Report No. EE-7714, Appendix ¥, and in our Semi-Amnual Status

Report for the peried March 1, 1977 ~ August 31, 1977.
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VI. SPECIAL INITIATIVES RELATED TO GRANT WORK

Two special initiatives were carried out during this year. The first

was a special session at the 1977 Joint Automatic Control Couference, and

the second was an entire meeting, the International Forum on Alternatives

for Linear Multivariable Control.

Joint Automatic Control Conference

A session "Turbofan Engine Control' was put together for this con-

ference. Co-Chairmen and Organizers were Drs, Michael K. Sain and H.

Austin Spang. The papers are listed below.

1.

3.

4,

System Tdentification Principles Applied to Multivariable Control
Synthesis of the F1l00 Turbofan Engine

R.L. DeHoff and W.E. Hall, Jr.

Systems Control, Inc. (Vt.)

Failure Detection and Cor.ection for Turbofan Engines
H.A. Spang, III and R.C. Corley
General Electric Company

Frequency Donain Compensation of a DYNGEN Turbofan Engine Model
R.M, Schafer, R.R. Gejji, P.W. Hoppner, W.E. Longenbaker, and M.K. Sain
University of Notre Dame

See Appendix C.

The Application of the Routh Approximation Method to Turbofan Engine
Hodels

W. Merrill

NASA Lewis Research Center

Mininmum-Time Acceleration of Aircraft Turbofan Engines
F. Teren
NASA lLewis Research Center

Optimal Comtrols for an Advanced Turbofan Engine

G.L. Slater
University of Cincinnati
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International Forum on Alternatives for Linear Maltivariable Control

In October, 1977, Dr. Sain was Program Chairman for an entire meeting
focused in the general subject area of this grant. Approxiﬁately tﬁo hup-
dred persons attended from industry, laboratorxies, and universities. Atout
thirty papers wers presented, many ﬁy invited authorities of international
stature. Nearly two-thirds of these addressed themselves to a Theme Prob-
lem, Appendix I, which was derived from researches on this grant. Two
publications resulted. The Proceedings contained contributed papers and
abstracts of invited papers. The book [12] containéd invited papers and

those contributed papers which best fit in with the Forum Theme.

The Forum Program appears on the next two pages. More information

can be found in [12].

28
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8:30

9:00

10:00

10:30

11:40

13:30

12:00

12:30

2:60

3:00

3:30

§:00

4:30

5:00

5:30

Thursday, October 13

SESSION 1. Owiging of the Theme Problem
Chairman: M. K. Sain, University of Notre Dame

Engine Criteria and Models for Multivariable Control System Design
R. D. Hackney and R. J. Hiller, Pratt-Whitney Aireraft Group, and L. L. Small, Air Force Aero-Propulsion

Laberatory

A Practical Approach to Linear Model Analysis for Multivariable Turbine Engine Control Design
G. A. Skira, Alr Force Aero-Propulsion Laboratory, and R. L. Defloff, Systems Control, Inc. (Vt.)

SESSION 2. Theme Seostion A:

Chairman:

The Inverse Nyquist Array Method

Inverse Nyquist Array
B. Lehtinen, NASA Lewis Research Center

H. H. Rosenbrock and N, Munro, University of Manchester, England

Insipght into the Application of the Inverse Nyquist Array Method to Turbofan Engine Control
H. A. Spang, III, General Electrilc Research and Development Center :

BREAK

SESSION 3-1.
Chairmans:

Transfer Funcitions T

Multivarizble Desipn Problem Reduction to Secalar
Design Prohlems

B. D. 0, Anderson and N. T. Hung, Uaiversity of
Newcastle, Australia

The Multivariable Nyquist Array: The Concept of
Bominance Sharing

G, G. Leininger, University of Toledo

Input Compensation for Dominance of
Turbofan HModels

R. M. Schafer and M. K. Sain, University of
Kotre Dame

LUNCH

S. Kahne, Case Western Reserve Univ. -

SESSION 3-2. Alternate Msthods
Chairman: J. Gibson, Texas A & M University

A New Frequency Method for Multivariable Systems
R. DeSantis, Universite de Montreal

Performance Analysis of Stochastic Linear Control
Systems: A New Viewpoint
8. R. lLiberty, Texas Tech University

An Automatic Depth and Pitch Control System for
Submarines

V. Mitsche, K. Luessow, and G. J. Thaler, Haval
Post-Graduate Schaool

SESSION 4. Theme Session B: Complex Variable Methods

€hairman: N. B. Hichols, Aerospsce Corporation

Complex Variable Methods for Multivariable Feadback Systems Analysis and Design
A. G. J. MacFarlane, B, Kouvaritakis, and J. ¥. Edmunds, Cambridge University, England

The Characteristic Frequency and Characteristic Gain Design Method for Multivariable Feedback Systems
B. Kouvaritakis and J. M. Edmunds, Cambridge University, England

BREAK

SESSYION 5-1. Transfer Functions IT
Chairman: B. Doolin, NASA Ames Research Center

Linear Multivariable Controil--A Problem of
Specifications
Z%. V. Rekasius, Northwestern Unicarsity

Linear Multivariable Synthesis with Transfer
Functions

J. L. Peczkowski, Bendix Energy ControlsDivision
and H. K. Sain, University of Notre Dame

Application of Frequency Domain Multivariable
Control Synthesis Techniques to an Illustrative
Problem in Jet Engine Control

L. G. #Hofmang, &. L. Teper, and R. F. Whitbeck,
Systems Technology, Inc.

NO HOST COCKTAIL PARTY

29

SESSION 5-2. Spectral Methods
Chairman: R. DeSantis, Universite de Montreal

Stability and Homotopy
R. Sacks, Texas Tech University and R. DeCarlo,
Purdue University

& Compensation Procedure for the Desensitization
¢f Multivariable Regulator Eigenvalues

P. J. M. Martin, R. K. Cavin, III and J. W. Howze,
Texas A M University

Linear Multivariable Synthesis by Eigenvalue/
Eigenvector Assignmont

§. Srinathkumar, NASA Langley Research Center and
R. P. Rhoten, Oklahoma State University

ORIGINAL PAGE IS
OF. POOR. QUALITY,
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9:00

10:00

10230

11:00

11:30

12:00

12:30

2:0D

2:30

3:00

. SESSION 7-1.

SESSION 6.

Friday, October 14

Theme Sasston C: Regulator Methods

Chairman: S. Brodshy, OfLfice of Waval Research

Alzernatives for Linear Multivarizble Control
N. Munro and S. Hirbod, University of Manchester, England

()j{l(}lﬁqfilJ

- POOR Q _MJIT‘[

The Systematic Design of Linear Mulrivariable Control Systems for the Servemechanism Problem
E. J. Davison and W. S. Gesing, University of Toronto

Linear Multivarinble Control Design Based on Asymptotic Regulator Properties
C. A. Harvey and G. Stein, Honeywell Systems and Research Center

BREAK

.

Modelling
Chairman: M. Wozny,
Rational Science Foundation

A Direct Method for Obtaining
Ronlinear Analytical Models of
a Jet Engine

R« J. Leake and J. G. Comiskey,
University of Notre Dame

A Multi-Time-Scale Design
Approach for Jet EnginszControl
Systems

A. J. Calise and B. Sridhar,
Dynamics Research Corporation

BLS as am Alternative to Linear
Contral Systems

R. R. Mohier and V. R. Karanam,
Oregon State University

LUNGH

SESSION 8-1. Ouitput Feedback
Chairman: E. M. Cliff
Virginia Polytechnic Instituta

OQutput Feedback Regulator
Design for Jet Engine Coutrol
Systems

W C. Merrill, NASA Lewis
Research Center

A Classical Root Locus Design
Hethod for Multivariable
Systens in State Space Form
G. K. Lee, University of
Connecticut, M. Sohrwardy,
Ruhr-Universitat, and D.
Jordan, University of
Connecticut

Output Control via Matrix
Generalized Inverse

k. J. Miller, D. L. Powers,
and V. Lovass-Nagy,
Glarkson College
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Appendix B

YHIERARCHY OF SIMULATION MODELS FOR

£ TURBOFAN GAS ENGINE"
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. «JIhig work is-a comvarison of successively more
wscomprehensive sinulacion nodels of an F-100-1ike

Jurbofan jer eagine.

-wgmputer progran called DYXGEN , devaloped over a

-, -oc@unber of years at NASA lewis Research Center,

A large and elaborate com-

i=

- ssempleyad as che most cocprehensivée model for an~

- salyzing steady-state and crens
« - -apontrol studies.

- ddmear analytieal, and linear medels have been
This paper reports on the dezails of
+ . these models and presents experimental data on
. ._,;'.:.(:.!:Le.lx: relative performance.

~==deireloped.

+=<INTRODUCTION

L maereiEn this paper we-consider the determipation of a
" wBfwplified monlinear analytical nedel for a two
-2peol turbofan jet engine.

iont performance for

This model enploys many block

.emdata Daps and includes abour 25 states.
et performnm opiimal control scudies, low oxder mon-

Ia order

A large and elatorzie

.. .;(sbout 4000 TORTRAN sraccments) generalized engine

... -.ssdmulator ealled BYHGEN [1,2] ccdad smizh represent~

“imtive block data maps, design parameress, and two
~~2Epool operation is tzken as the principal ohjeey

*to be approximated,

First we preseat the various

+ew3mpdels aond then performance cotpariscms are made.
. —+Jhe wmodels considered have been esuvmerated as fol-

-

A

s Lous.

\]
iModel 0,

Model 1. ‘

-w-rmints on Nodel 0..

.

Tha gctual jet engine (hypothetical.)

The DINGEN simulator; ecoded with data pre-
sumed to have been taken from experimental measure-
This model solves noxe :hgn 1&

‘nonlinesr differentisl equations and uses daca maps

znd thercodynamie tables which cannet be e};:essed
vanVytically.

Hoalll 2.
*5 ponlinear diffarent

This 1s an analytically expressed set of

.this prujcc: was co decermine this model.

L *Model 1LS.

-

o PO

[a—,

ial equacions plus abouc 20
sstatic equations EXpIess sing the relationship be-

-wEween various engine wvariables. The main task im

'I'hia :Ls a nurmal:_t.:ed 5th order linear
v2apodel-which is chtained nurarically freo Model 1,
- ~wusing an experimenta) versiled of a prograz [3)

..Lc.i.ns dn\'clﬂped ac .\ASA. Leowls Resaarch Center.

[T Ry t e e mmesseme » ww

.

L, e i .t B - EE——CEare-t T 4=

wemiz. Xy~ -compressor roror speed (H.)

. * o ?OOR QU MJI?'{&

=Model JL3, This is a normalized 3zd order liaear
—amadel obtained by a hard calculated order reductien
-0f Model 115.

.-Model 215, This is a normalized 5th order Iinear
smodel obtalned by taking partial derivatives of the
-=anzlytical Hodel 2..

Model 213, This is'sz namalized‘ 3rd order Iinmear
. .model obtained' by a hand caleulaved order rac..x..r.ion
of Model 2L5.

: .,.ANALH:QAL&IQDEL L
Jn this section we discuss and present Model 2., a
wezpimplified nonlinear analytical model of cthe jet

-sble to have such a model. First of all, one likes

{.-to-see thé basic nonlinear relationsiins between
the engine varicbles in crder o gain iasight to
their dynamical and static behavier. Secandly,
such a meodel is invalusble in the application of .

- .optimal conrzol techniques [4] to engine comzrol
system design. In the chird place, if the wodel is

| :e:sonabl}"accurn:a, it can be employed as a fast
Jnexpensive nerlinear eagine simulattr for the
evalvation of limear and nonlinear conzrel stratagies.
Finally, linear models cbhtained by partial differ-
Jentiation of this model tend to have more structure

* (zexo entries in the ABCD matrices) than those ob-
tained nusmerieally, which gives the lineaxr designer
more insight. These lineerizacions then serve as a
back up to compare wich the numerical linearizacions.

..{-,-ang'hie. There are several reasons why it is desir-

Iu the detammipatson of Model 2. as an approximation
of the DYNGEN Madal l., theoretieal relationshins

~sdeveloped in [5),{6], and [7] were eoployed as a
starting point. Certain simplifications suggesced
dan [B} were used; and linear, least squaras, ex-
ponential, and polynomial fits to the Model 1. data
about the chosen design point were made.

A 2 dnput, 5 state, 2 output model was developed
- with the following variable designations.

U, = fuel £low {WFB) .

. Uz = poZzzle area (AB)

r—— . -

. .

.
O b e e e et

FLYTCA—



".Jhe model is completely determined by the Inllo’ding
v-'pecificar.ions.
.~Constants
~3 = Al = 778.26 N ¥ 20.71175
~ihg = 2.948255 Cpo = 26
R = BA = .,0252 Cpp = =26
—yt = 1.4 Oy = 20279
: A
& 3_1'12 - 518.£358 "cPL'l‘ = 27938

- .
i I e i

.12 = fen rotor speed (\I )

“.13 « burner exit pressure (Pé)
.1‘ = gfter burner exit pressure (P7)

,.;!_s = high inlet energy (UA)
!1‘ thrust (FG)

"!2 high turbine inlet temperature (T-'s)

J. = PMIEP = 3.8

= .¢ = BLC =,16 = PCBLC
e W
T, = PMILR = 4.5 .a ="PCELDU = .208
Vomp = 1+65 - 8= PCELE® = .726
Vyppy = 49:77 -~ = PCBLLP =.066
.. ~N_-DESIGN = XNHPOS = 10070
<3y DESIGN = XNLPOS = 9651
-+Design Values ;
- MFB = 2,75 N, = 11899.2 FC = 13431.02
By = 2.948255 N = 9873.94 T, = 2982.04
r‘ = 23.9299
"u“ - 586,467
. ; P, = 2.55007 ‘
- ..State Fquations _
INe
+ CpWGS0(T, - Tgp))
ax
% 23
5 o™ (T, = T3y)
o e %G gWGSS(Te, = Teg)]
) Py pyr
: "'&'E"—L_v [T, (WA3 + WFB = WG,)]
_ 'COMB
. wpgy QB ° RYAT
“’—é'v' T (WG4 - WA3 + WAF - WG7}
AFBN
du RT,
) ’T: Sv'la T [T, (G4 - WFB - uA3)
Veous®4

+ 1*{1'3!:10 - 'r,‘uc!. + r‘(x + n)WFB}]

Ronlinear Fuuctions Reguired for et:ltc fouations

N

= 9651

e .- e

~eonegnd (mtvuts

(1) o - nrnr.slcw

" ——————— -

i % 9 Priat Surface For 8.3, x V:

fe e e seanE e

e .
(2) Ty = T, +214.2732 CNEC

- 4B.0(Ag = 2.98255)
w8 G
_“(3) eNe £ . <
"N DESICN ¢T. 1/: 10070 /1‘ ;513 668
. 2
A8) Ty = T,y + 743.2722 CXC” -~ 68 (A ~ 2.945255)
—e(8) Ty = U, /G
-.‘(5) T 0 - 727 '1" e 8 Taete
.<5€2) By = 1.05344p
-A8) P,, = -6.20568 + 0129774 T,; — 0185376 P,
(9) Wy = 3.516739 CNF ~ 63.916
(10) Py, = 3.516739 CNF - .23561
& _ .=2.313288¢p,, ~P,.)
L Q1) WAF = W, 4 28,502 [1 e nax 217
012) Wy, = 137.54 — 457.987 CNC + 564,325 onc?
= 188.113 CNC>
-(13) Mg,y = 6.492 - 4.9747 CNC
-(14) P . = 26.43184 - B9.0484 CNC + 109.7234
aux = 2 .
exc? - 35.5756 CNC
2 P
L -.3662
“(15) WAC = (1-e
,_-——_-.1211518 €68 C‘!AX Q‘.Ax
oy - F‘ 3N}
5 21
{16) WA3 = (1- §)WAC = .B4 WAC

-~€17) WGS50 = 301.957 PAN T,
~{18) WG4 = WG50 — BJWAC = WG5S0 - .116164 WAC
.z{19) WG55 = WG50 + y#WAC = WG5S0 + .01056 WAC

€20) T T ?.06.002 + .B5154T,., - .10458CNC ’TZIR‘SO

50
(1) T, = (Tss + 414.552%7)
2 TR T,
22 wo7 - 1121.784F7A8
: -

(23) FG = .02951 w7 /T934.1015T7 + 6B558.365
-l>11l6.2].71\8 (.53978?7-1)

By uaine~ .
.ﬂ\-:'fﬂ ‘\
Cumdnkrs Y Y AWK rleepereum unine
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. ~LINEAR MODELS

All variable names correspond fo those

.Jhe following linear models were obtained,

- »pwith thrust, (FG), as the output if there is only

.a0ne output.

.=Model 115 .

i boacint Soefuee For
0 ..-’
T-s.a22s  -1.256 .057955
“Am | 2.3957  -5.9244 .0048499
[-111.51  -97.919  =74.995
[ 3.4958 279723
B | 2.1262 . =56146
| 209.75 s -39.251
o '[’3 8 1.461
L-.6328  —.97998 ~.p1486
A "¢ ..1.2138
= L1en2 <15978

sEigenvalues: =74.976, -7.136%1.171%

-

- EXPERTMENTAL COMPARISONS

s-m'x 1 Pase

-p

%A
{,«
X

. l‘iguxe's 2 and 3 represent the ronlinear steady
-:gtate operating lines of the fan and coumpressor
-3.80 -1,277 2.067 -1.152 1.448 respectively, as both nozzle area and fuel flow are
. 2.748 -5.39 1.585 -1.991 1.071 changed. This is a detailed map in the vicinity of
e 377.9 49.51 -264.9 86.807 78.91 our nominal engine design configuration. The design
31.26 139.39 ~-6.269 -88.69 27.83 point for model 2 differs from that of model 1 by
~af ~=176.5 _23.91  -10.27  -37.40 -246.7 »less than 1/2Z.
; :
N 4 ==%0259 «355326 ~Zap =
. ..22116 -,310176 : ~Hodel 2
- B 12.54 -13.7828 : 2 ke hesite
- f =, 6201 ==99,388 : : SRra
_L157.783 6.84396) § = AF B :
age | —eBS96  -.1397 6672 1167 .1236 o \
A -055591 .00656034 —.CO18374 .0135393 .85391 Ratio’ i ” odel 1
: -.102766 2900938] (P23 /2, 70T nozzle
D= [ . Model 1 :
~—.013839 020856 - = | vary fuel flow 1 ea
sePdgenvelues: =251 + 233, -96, -5 + 0.8] A i b Hodefl i :
““THodel 113 T ety fual fiow
A= . B= ' .
~2.4307 -.7¢837 -.81149 1.395 .34875
3.8281 =4.9579 -1.7235 1.2585 .27933 + . . .
L 2.446€6  14p.5  -94.982 15.434--38.208 214 218 222 326
pel P 5 Fan Alr Flow (WAF) (lbm/sec)
: : : -~ Pigure 2. Steady State F
- fF.ase3 .p3ss2 1.333]  [236 87572 : SO e M P A
1 * Eigenvalues: -92, =5 + 53 £ i-.- AR e e o
: Hodel 215 : e .Y : ot Model 1
-12,5487 -1.%49279 3.58369 .237860 1.70112 '
.7 «B833048 ~5.51346 1.644596 0.143805 1.303%6
A= 671.604 387.711 =392.675 =-26.1602 150.52 et
p ~104,155 21.1351 64.9255 =-67.8031 2.63144 Model 2
’ 50.9527 -55.8546 =-B81.2047 -7.47450-105.743 Fressure vary fuel flow
. - i Rat
& 0.0 1.40762 . P ,,“) !
' 0.0 «758167 ! 377217 8+ £
1.28129 -122.314 R
» 0.0 ~48.9280 : Hodel 2
' 149.210 -3.09196 ; vary nozzle
] T 4 area
‘o [O0 0.0 0.0 1.46096 0.0 ¥odel 1
; 0.0 0.0 0.0 0.0 1.0 vary fuel flow
: . .21283 ] : + ‘ .
» 0:6 o : A m or
» by e ~Lompressor Air Flow (WAC) (1bn/sec)
‘Tigenvalues: -343, =154, =73, -=7.2 + 1.4] | "Fgure 3, Steady State Conp:essor Hap % :
- - . ——c —
- .— [ —— pr . pe - & > ¥
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';he time responses of various states due to 5%

Sy 9 Priat Surface

—&tep {nputs in fuel flow and nczzle area are shown
dn Figures 4 and 5 respectively. Cnly the nonlineca

6.0
r

 Model 2

models are represenced.

Alchough the deviations of

.+the states from their design point differ by as

-much as a factor of two, the actual values (design
--splus deviation) of model 2 remain within 1X of the

zpodel 1 values. For strps in fuel of minus 20X,
:«athe states remain within 8% of each other.

4ob| \ Us Hodez 2 .
A ‘QUALITX :
z
“~Lhange
-0ff S
- asDesign
wdey N & Model 1
-2 R .6 .3 ;
o : “Time (sec)
~=—Figure 4, State Time Responses-Fusl Input
e LA Hodel 2
—Y, Model 1
.z .. —L0% .-..
.. Chenge :
- Off P
~  Design

\- P, Model 1
o2 R .6 .
. - Time (sec)
-. ¥igure 5. State Time Responses-Nozzle °
Azea’ Input Step .

“The effects on thrust by a 5X step in fuel flow
--gre shown in Figure 6. Model 2L5 yields results
~which are quite close to model 2, although, both
-are significancly differenc from model 1.

‘
Hodal 2L5

Madel 118

Hodel 1

8 T
§ %
KRR
\\/
!

v +

: = 2 ¥ .6 -8
: Time (sec)
: --4Figure 6. Thrust Time Response ~

A Fuel Step Input
-A comparison of the linear system frequency
yorespenses of nozzle area to thrust, and fuel flow
~to thrust, is shown in Figure 7. Models 1L5 and
-.2L5 match excremely well for the fuel input, tut
not so well for the nozzle area irput. Even the
dower order model 113 is closer in this case.

-

2L5

- 4
Nozzle Area ———
Fuel Flow =eoee

< 1 1 ' :
! 10° BT VL
-Figure 7. Frequency Responses-Inputs ‘:
* *'to Thrust

SUMMARY

To the best of the authors' knowledge, n> non-
Idnear analytical dyna=ic models of a two-spool,
two-strean jet engine have ever appearad in litera-
ture. “Indeed, it is the value of the development of
such a model which i{s the most izportant cemsidera-
tion in the evaluation of our work, i.e., thar a
.good nonlinear analytical dynamic model will provide
& flexibiliry and vsefulness wnich is non-existent

.4dn present non-analytical jet engine simulatiens.
«Although, some siprificant discrepancies exisz, our
+~model ylelds results walch_sre accurate to within 1X

.
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s-megr the design point, and which degrade to an ac~-
.curacy of approxizately 86X with a drop in fuel flow e —
of 20XZ. 7The frequency response for fuel inputs of

assthe linearized models is also in close agreement.

~in-conclusion, we are encouraged by cur overall
-progress towards the develecpzent of the analytical

T3 . -sxemodel, however, we feel that more work is needed T I e v - PRE A - e e
'+ ato further improve the accuracy of our cwdel. .
i ;
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Abstract

advan~
control

¥ollowing Rosenbrock's ideas regarding the
tapes of dominance in linear multivariable
gystems, a new praphical teclinique is used for the
design of componsators that achicve dominance, The
tochnique is illustrated with an aprlication to the
problen of designing compensators for a linear tur-
bofan-engine model. The resulting design is put in-
to perspective by exawmining it in the light of two
other mulrivariable frequency-domain wmethods. One,
Hac¥arlane's method of characteristie loci, iz used
to realize a final design for stability and low
interaction. Tne octher is a divect technique based
upon the algebraic expansion of the detevminant of
the return difference in terms of it's elemeunts.
Results from simularions carried out on the NASA
DYHGEN software are included.

Introduction

Recent years have witnessed a renewal of interest in
frequency domain design metheds {or linear multi-
variable control systems. The preponderarce of
these Ideas ara closely related te classical Nyquist
constructions on the determinant of return differ-
ence. In this paper, we use three such methods to
design a compensater for a two-input, five-state,

. two—output linear model of a modern two-spool turbo-

fan jet ongine obtained from the DYNGEN digital jet
engine sinulation. .

Rosenbrock [1] hias related the classical Nyquist
construction on the detertinane of return differ-
eace Lo correspending classical constructions on the
diagonal elements of the return difference-—pro~
vided these diagonal clements "dominate® their rows
or columns in an appropriate wanner. Focussing the
deslgn interast on achioving doninance in this
sense, Seatfion J presents a new praphical techinique
to hielp with this aspect of design., HNext, Section
4 utilizes the generalized Nyguist plots to ebtain
an scceptable compensatov dosign. The ideas of
generalized Kyquist plots wore intvoduced by
MacFarlane [2], who related the determinaut of the
return difference to it's spectrum when regarded as
a&n appropriate linear operator. '

In fectfon 5, we utilize a direct technique which
cnphasizes the algebraic relationship between the

"L Tis work was supported in part by the National
Science Foundation under Grant ENG 75-22322 and in
part by the National Acrenautics and Space
Administration under Grant HSG 3048,

elements of the return differcnce and ir's deteor-
winant. Typieally, when it achisves user satis-
faction, this methed does so with greater speed,
and fewer concepts, than it's competirters. The jet
engine model is intraoduced in Section 2, which also
establishes the notation for succeeding sections.
Finally, in Scction 6, we give results of simuia-
tions to evaluate the performance of the system,

2. Jet Enpine Model and Return Difference
Determinant

The linecar model used for the study is basod wpon

data obtainad from a DYNGEN simulation. It is
specified by the equations
% =.Ax + Ju (1)
y = Gx 4+ Du (2

- vhere x, u, y dencte the state, input and output

vectors respectively. The inputs are fuel flow

.and nozzle arez; the five states ave compressow

rotor speed, fzn roter speed, burner exit pressure,
afterburner exit pressure ané high pressure turbing
inlet energy; while thrust and high pressure ter-
bine inlet temperature constitute the %o ocutpucs.

¥We next consider the problem of designing cointrol-
lers for the plant. The underlying feedback con-~
trol scheme is shown in Fig. 1. G{s), the plent,

Plant
K(s} - G(s? T

¥ig, 1 TFoedback Control Scheme
represents the jet eﬁgine rodel, that is,
G(s) = C(sI - A% + 0. {3

X(s)} represents the ratienal compensator to be de-

signed. G{s) can be computed as:
_so2s5-3.64m8s% | 4104s541.03E65% |
Z1.76875746.15E952 | +1.60E85°-1 . 4451057

- am o e =

~14.554s41.33E5s" | 20,465 41.69E4s

i1
A4, 96875 43.7E95> ) +7.03EG8 +1.12E0s
G(s) ~L12:S2E10344, 85510 V5, GIETekS . 41ER
81600, 575041 . LBAESS+T . 31652
. 46.52E7s41 . 62E8

ame B A4 as e

2
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Central to the application of Nyqulst type idcas to
multivarfable systems §s the return difference ma-
trix, which in this case becowes [I1G(s)H(s) ).

It's principal use ariscs from the relation of the
closed Joop characteristic polynomial (CLCP) to the
open Joop characteristic pelynomial (01CP) which
can be stated, in the manner of [1), as

CLCP
oLCr ®)

vhere cquality is understoed up-to a real constant.
Of primary concern here is the behavior of det(I4GK)
for valucs of s on the standard Nyquist contour
(SNC), which encircles the open right half plane
clockwlse with indentations into the left half plane
around polcs and zeros on the imaginary axis. In
practice, plots are made for values of s on the
positive imaginary axis. Stability can then be de-

e det[I4G(s)K(s)],

termined from plots of det(I+GX) in conjunction with

knowledge of the open loop characteristic polynomial.
Also interesting, of course, is the use of such plots
to aid in the choice of a suitable K(s).

CARDIAD Plots znd Dominance [3,4]

The CARDIAD (Compensator Acceptability Region for
DIAgonal Dominance) plot is a graphical approach to
the problem of choosing a compensator that will
achieve system dominance. A system is said to be
row (column) dominant [1] if the magnitude of each
diagonal element of the open loop transfer function
matrix is greater than the sum of the magnitudes of
the off diagonal elements of the row (column) at zll
frequencies. 1In the 2x2 case being considered in
this paper, the dominance condition reduces to the
magnitude of the diagonal element being greater
than the magnitude of the off diagonal element of
the row (column). Consonant with the Rosenbrock
approach, the CARDIAD plot analysis is applied to
the inverse of the plant G(s). As a notational
point, the inverse plant transfer function matrix
will be denoted by G(s) and the Inverse pre-
compensator by K(s).

The specific application to the jet engine design
problem involves trying to find a compensator K(s)
such that K(s)G(s) is row dominant. Without loss
of gencrality, the form of K(s) will be restricted

to

'S 1 B, (s) i
PoK(s) = 1 (6)

| € By(s) 1 - "
vhere .
# By(s) = x,(s) + Iy, (=), 1 = 1,2, &)

If G(s) and R(s) are cach evaluated at a frequency
1u0.“the equation for dominance of the ith row of
K(s)G(s) becomes a function f,(x,,v.)which describes
a paraboloid in three-space. The intersection of
this paraboloid and the complex planc is a circie
vhich is the locus of the values of %, and y, such
that the magnitude of the diagonal eliment of the
ith row of R(s)G(s) is equal to the magnitude of
the off diagonal element of the row. Minima and
maxima analysis of the funciion £, reveals that
values of x, and y, on one side of the circle will
make the. system dominant, whereas values which lie
on the other side of the eircle will not. In the
CARDIAD plots, this differentiation 1s made by
draving a solid circle {f the acceptable values of

x, and y, lde inside and dashed circles if the
acccptnhic vegplon is outside.

1f the above procedure is repecated over a range of
frequencies for cach vow of the system, and the
circles of intersection drawn, a plot describing
the acceptable values of the complex number x, +
3Jy, for each frequency results. In this way, "the
acceptable range of the function 8.(s) such that
the ith row of K(s)C(s) is dominant £s described.

The analysis of the CARDIAD plot for a given row

of G(s) proceeds as follows. If the origin of the
plot is contained inside all solid circles and is
excluded by all dashed circles, the row of G(s) is
dominant uncompensated. If the row of G(s) is not
dominant uncompensated, the CARDIAD plot is neoxt
checked to _sce if there is a constant eatry B8, that
will make K(s)G(s) dominant at all frequencies.

For this to be the case, there must be a point on
the real axis that is included in all solia circles
and excluded by all dashed circles.

If ther¢ exists no constant 3, such that the ith
row of K(s)G(s) is dominant at all frequencies, the
CARDIAD plot is used as a guide to design a fre-
quency dependent 8_(s) that will achieve dominance.
This is accomplishéd by rezlizing a function Bi(s)
whose value at jw_ lies inside the circle associ-
ated with the sam2 frequency in the CARDIAD plot if
that circle is solid, or outside if that circle is

dashed. This appreoach is illustrated by consider-
ing the DYNGEN problem. i
53 z
33

-9 o -4 | il HENS
Fig. 2 CARDIAD Plot Row 1 f
Uncompensated H

The {nitial CARDIAD plots of G(s) indicate that
row 2 of G(s) is dominant uncompensated since the
plot consists only of dashed cireles, which all
exclude the origin. 7The plot for row 1, however,
shows that this row is not dowinant uncompensated
and also that there is no constant entry in the off
diagonal clement of row 1 of K(s) that wiil make
the row dominant at all frequencies. This is
easily seen since all the circles in this plot are
solid and there is no point on the » axis that is
included in all the circles. Moreover, the plot
hints that there will be difficulty finding a 8; (s)
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-

=3.33

-5.54 < 3
<1 0 3.4 6.7 1C.
Fig. 3 CARDIAD Plot Row 2
Uncompensated

that will make this row of R(s)&(s) dominant because
of the complexity of the plot and the small radii
of the low frequency circles which necessitate a
very close fir.

To facilitate the process of finding a compensator
that will wake K(s)G(s) dominant, the system was
first precompensated with

Bl 4. .

Space Iinitations do not allow the CARDIAD plots of
K,G(s) to be included, but the new plots are the
same shape as the CARDIAD plots of G(s) with two
major changes. The row 1 plot of K,G(s) is the
same shape as the row 2 plot of G(s} with dashed
circles changed to solid circles. Similarly, the
row 2 plot of K ,G(s) is the same shape as the row 1
plot of G(s) wilh the solid circles changed to
dashed circles. .

The problem of finding a K, (s) such that ﬁ,(s)ﬁlé(s)
is_dominant is now simplified. Since row 2 of

G(s) is now dominant uncompensated, the off diago-
nal term in the second row of K,(s) is left a zero,
wvith the provision that if it later proves helpful
in'compensation. the entry may be chosen to be any
constant that lies outside all of the circles. To
make row 1 of R ,G(s) dominant, the off diagonal
entry in row 1 of K, (s) nmust follow the semicircular
path through the cotiplex plane described by the
CARDIAD plot for this row. A fit was made to this
shape and the resulting Kz(s) was

9.4798 4 0.2494s
s ﬁz(s) B 1., - 1.2359s

i 0 1

The CARDIAD plots of ﬁ7(s)ﬁl§(s) are considerably
more complex than the previous plots. The plot for
vow 2 shows that the row is dominant at all fre-
quencies since the origin is included by all solid
circles and excluded by all dached circles. The
CARDIAD plot for row 1 shows that the row is clearly
not dominant at all frequencies. Dominance is lost

.
(8)

~.074,}

T L e

gL R

Fig. & CARDIAD Plot Row 1
Compensated

163

''9.63

0]

-9.63

' ~163

Fig. 5 CARDIAD Plot Row 2

Compensated

at w=10, is regained as w=90,  and is lost again at
w=700. It is perhaps possible to,find a better
choice of K_(s) that will make row 1 dominant at
all frequencies, but the deminance achieved by the
above Kz(s) proved to be sufficient.

An interesting feature of the CARDIAD plot 1is
illustrated in the final plot for row 2. Close
analysis ¢~ this plot shows that there are three
occurrences of solid circles changing to dashed
circles or dashed circles changing to solid. WKhen
these transitions occur, the paraboloid is invert-
ing and the circle of Intersection degenerates to
a line. These lines occur when the other row
changes from being dominant to not dominant or vice
versa. Thus, each change in dominance of row 1
causes a change in the type of circle being drawn
in the plot of row 2.

-
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4. Design Using Characteristic loci

Another approach to design, due to A.C.J.MacFarlane,
uses the locus of the efgenvalues of G(s)H(s), call-
ed the characteristic locd (C.L.), for values of s
on the SHC. 7This method is based on the relation
of the determinant of the return difference to
cigenvalues of G(s)N(s). In order to assess sto-
bilicy from the C.L. plots, for s=jw, w positive,
one must count the clockwise encirclemunts of the
critfcal point (-1,0) made by the C.L. plots and
sum all these up. The closed loop system is stable
if this sum equals =-po, here po is the number of
zeros of OLCP enclosed by the SNC. As an approxi-
mate measure of interactien, we compare the eigen-
value plots with plots of the diagonal elements of
Q(s)=G(s)k(s). For a noninreracting system with
Q(s) a diagonal watrix, these would be identical.
In our design example, Q(s) is a 2x2 matrix, and
therefore we will be looking at plots of two eigen—
. values A, (s), Xz(s) and the two diagonal elcments
2,(s8), 9y,(s).

First, an examination of the C.L. plots of the vn-
compensated system revealed that, without compen-
sation, the closed loop system is unstable. The
plots are not included due to lack of space, but
conclusions drawn from them are given. Control pro-
blems for the uncompensated model were complicated
by the existence of considerable interaction, and
large gains at high frequencies. An additional
difficulty was that one of the cigenvalues was nega-
tive at zero frequency. This tended to limit the
response speed of the closed loop system. It ap-
peared on the C.L. plots that, from a stability
viewpoint, the frequency range of interest is in the
vicinity of 10 rps. This gives justification for
use of the compensator given in the previous section.
As a practical matter, our goal is to achieve as
rapid a response as possible to a step input, with-
out suffering any overshoot. Heavy emphasis is
placed also on steady state accuracy.

high frequency magnitude of q, (s) while sinultane-
ously boosting the low frequency mapnitude. 1his
is in accordance with the freedom specified for K
previously. The modiffed K(s) gpives rise to the
plots of Fig. 6 and 7.

Since dominance is not affected by diagonal compen-
sators, the problem becomes that of independently
shaping q,, and q,, by means of sinple locp tech-
niques. }n order to reduce high frequency gain in
Q9 without appreciably affecting low frequency be-
havior, we use lag compensation. A little bit of
cut and try led finally to K, (s)=dlag.(0.44E-4,
(-s-0.1)/(2000s+10)). he péots corvesponding to
K=K, *K_#*K_*K, are not shown. The A and 9 plot
is ess entlali) that of A, in Fig. 6 scaled %j a
factor of 0.44E-4 Slmilarly. the q,, piot in-
verted and scaled by 0.0005. (By inversicn we

mean reflection through both axes.) The plot for
Az is shown in Fig. 8.

S. The Direct Method of Analysis

Direct methods of multivariable Nyquist analysis
concern themselves with the algebraic relation-
ship between the elements of return difference and
its determinant. For an NxN return difference,
the most basic of these reliationships is

det (I+GK) = 1+ {X ixi principzl minors of CK}.
1=1 (10)
For the example of this paper, (10) takes the form

1+{(G K, 46, K,y 1H(Gy K 4G, 5K, 50 + det(CK). (11)

In (10) and (11) we note the advantage of minute
detail and the disadvantag: of nonrecursive con-
struction. Considerable ir terest attaches to the
removal of this disadvantage, which can be accco-
plished by methods drawn from the results of exte-
rior algebra [5]. Consider the recursion (where
tx denotes trace)

-1 Qza)

; a
Yo remove the right half plane pole in g » we choose 0 -1
K, arbitrarily as diag (1/s,(-1+1.2359s)7s). The o =-1 Vo trer)™P 2b)
résulting K(s)=kl*k2*k3 becomes % ¥ p=0 s
: i
0 ~1+1.2359s for 1<r<N. It can be shown that i
Rie) = [1 9.1.795+o.2491..e] it S ? : ol
: & % -.3 -.15 g -
L Vi
The diagonal nature of K,(s) does not affect domi- L %
nance. Morcover, an examination of the (1,1) and .
(1,2) clements of G(s) reveals that if the 0 in K(s) 1 24
}s changed to 9, we can significantly reduce the 1
bR = -3 :
60?0 Egoo ?00 0 ; 2%9 . 6%0 100
- —'.lj
o b [ 3375 / L 100
1 1 i2s0 g St ’
g w=10 :
. 3286 = ¥ L I 5125 p t
11 . 1l 22 1 w=] g -lj I
40 10 . :
e LU 8 \ 1000 i
g 4 1 '
- 100 £, =2
~-3J6E4 | : B i
Fig. 6 First C.L. plot for Fig. 7 icconi E t plot Fig. 8 Second C L. plot for g
or GK 3 i
e 12y . ; Sty i



det (14CK) = { T oy
=0

The dircct approaches differ appreciably from meth-
ods described in preceding sections, in that they
address themselves directly to the Image of
1det(I1CK) on the SNC, without any particular con-
cern for such issues as dominance or interaction.
Alternate insights accrue from such plots, which
we Illustrate here for the engine design cxample.
All plots arc drawn for the final return differ-
ence as developed in the sections preceding.

(13)

Fig. 9 indicates the five constituents of a

det (14CGK) plet as develeped in (11), while Fig. 10
prescnts the corresponding two constituents accord-
ing to (13). Fig. 11 contains the total Nyquist
plot, wvhich is obtalned by adding the individual
curves in either of the two prior figures. Re-
vealed in this plot, Fig. 11 is a feature not so
readily noticeable in the earlier plots, namely con-
ditional stabilicy. It appears, therefore, that the
availability of a variety of graphical tools is in
the multivariable case every bit as valuable as in
the more clissical, one-input, one-output situation.

It is rcadily seen in Fig. 11 that the plot encir-
cles -1+j0 tvice in a counterclockwise direction.
Therefore, the system is shown to be stable because
the open loop characteristic polynomial has a double
zero at the origin.

Further exploratory studies of direct methods as
design aids are available elsewhere [6].

6.

Closed-loop time responscs were obtained both by
using the lincar model simulation and by implement-
dng the compensator on DYNGEN, a jet engine simula-
tion program developed by the NASA Lewis Research
Center [7]).

DYNGEN is a versatile digital program which ana-
lyzes steady-state and transient performance of
turbojet and turbofan engines. It uses a sixteenth
order system to model this example, and solves

the state differential equations by a modified Euler
method. The usev need only supply appropriate com-
ponent performance maps and design-point informa-
tion, and then write the control subroutines. Im=—
plementation of the compensator required first order
functions to perform integration and lead-lag com-
pensation,

Sirulation Results

The lincar model used in this study was also obtain-
ed from DYNGEN. By utilizing a special control sub-
routine written by NASA, called DYGABCD [8], models
can be derived using whatever states the user de-
sires. DYNGEN thus possesses the capability to de-
termine linear models for the engine with any order
up to sixtcen.

Fig. 12 shows the response of the linear model to a
etep input in the first channel. Thrust has a rise
tim~ (10%-90%) of 1.04 seconds with no overshoot
occurring. High pressure turbine inlet temperature
increases te a maximum ol 5,105 at approximately
0.9 sccounds, then gradually decreases.

Similar, and even better, results occur when the
compensator s employed in the DYNGEN sinmulation
using a one percent step. Thrust rise time is 0.88

.63
4

.23

.2
-.2]

S

Fig. 10 The Nyquist
Plot of the Elements
of Det (I4+GK) Accord-
ing to Expansion, Eq.
(13). '

Fig. 9 The Nyquist Plot of
the Elements of Det(I+CK),
According to Expansion Eq.
(11).
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Fig. 11 NKyquist Plot of Det (I4GK).

seconds, and the turbine temperature reaches a
maximum increase of 0.097. '

The linear and nonlincar responses were not in such
close agreement for a step input in the second
channel. The linecar model shows turbine tempera-
ture siowly ramping up (Fig. 13) .as the change in
thrust is held to a minimum. DYNGEN produces simi-
lor results for the turbine temperature response;
however thrust experiences a strong decrease be{pr°
rising to zero. At this writing, it is believed ' \
that the five states chosen for the DYCABCD medel '\

de not adequately describe local engine behavior N
\,

for the sccond channel equipped with the present
controller,

}
e S i e s b S A S ¢ b e s S
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7. Conclusions

This paper has demonstrated the usefulness of the
new CARDIAD plot approach to designing compensators
for complex plants. The DYNGEN simulation for a
step in channel 1 has shown that acceptable re-
sponses can be obtained using linear compensators.
An ordered collection of these may make global con-
trol fcasible. For steps in channel 2, conclusive
evidence was not obtained. We suspect that this is
due to Iinadequacy of the linear model in describing
the plant. This important factor of selecting an
appropriate linear model is often overlooked. But,
as we have scen, it turns out to be crucial in
practical applications. :

The method of CARDIAD plots can be generalized to
plants with more than two inputs and outputs by con-
sidering a family of compensators with 1's on the
diagonal and only one non-zero off-diagonal term.

As stated in [1], except for changes in the order-
dng of inputs or outputs, such a study is exhaus-
tive. 5

[1] M. H. Roscnbrock, Computer-Alded Control Svstem
Desipn.london: Acadenic Press, 1974.

A. G, J. MacFarlane, and J. J. Belletruttd,
"“The Characteristic Locus Dosign Method,"
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sign to multivariable control of jet engines.

is discussed.

1. TINTRODUCTION i

One way to approach the design of linear multivari-
#ble control systems is to express system specifications
in terms of a desired closed loop transfer function ma-
rix. A question which is often raised about such an
approach is the practicality of making such a specifica-
tion. Another, related, question concerns the possibili-
Ey of determining the existence of realizable compensa-
tors to achieve the specification. When such compensa-
tors do exist, there are the very practical issues of
giving a finite enumeration of them, of determining
vhether they have fixed poles, and of assigning one or
more of the non-fixed poles. Of special interest, as it
turns out, for the issue of pole assignment is the idea
of minimality, in the state-space sense, of a proposed
solution in the context of all possible soluticns.

l This paper provides a thorough case study of such a
design approach when applied ro realistic numerical mod-
els associated with an F-100-like turbofan ergine.
pecifications are accomplished by means of the methods
of linear optimal control thesory, according to proce-
dures already worked out in the jet engine industry.
Ehe remaining tasks are addressed by regarding the design
s a problem in free polynomial modules. A special fea-
tute of the application lies in its attention to compen-
sators of simple structure, with a view to the use of a
raded collection of them for the purpose of global
‘engine control.

Section 2 describes the basic design problem, once
pecifications are made. Section 3 provides the dis-
ussion of the jet engine application, with particular

ttention paid to the manner of making the specificaticns

nd to the formulation of the main design problem for

he jet engire application. Section 4 explains how to

ast the design problem in terms of free polynomial wod-
+1es, and Section 5 describes floating point computation-
gl experience gained in applying extended precision PL/I
goftware to solve the jet engine problem in the free mod-
ule context. Section 6 outlines the corresponding
?xperience associated with an exact rational calculation

de with FORMAC-PL/I software.

The results of Section 6 show that considerably
reater compensator design freedom is available than had
been apparent from early industry studies. Using these
esults, a new pole placement design procedure based on .
41ternating multilinear algebra achieves in Section 7 a
ninimal pole placement solution not possible by those

_earlier industry metheds.

Section 8 closes with remarks designed to place the
work in historical perspective, to reference the litera-
ture, and to assess the merits of polynomial methods for

0F JET ENGINES*

R. R. Gejji and M.
Department of Electrical Engineering
University of Notre Dame

U.S5.A.
46556

SUHMARY

This paper describes a complete case study of the application of the theory of minimal de-
The minimal design problem is approuched from the
viewpoint of polynomial modules, and computational experience with PL/I and FORMAC-PL/I software
The complete minimal design solution exhibits flexibilities not apparent in early
industry studies, and a new approach to pole assignment can be used to advantage in this situation.

K. Sain

Indiana

{control system design in tne near term.

2. THE MINIMAL DESTGN PROBLEM

Suppose that F is a given field. For the jet
engine control problem, F is taken to be R, the field
of real numbers; however, a great deal of the algo-
rithmic nature of the discussion is more general than
that, and is so stated. The set of polynomials which
are of interest is F{s], namely those polynomials in
the variable s with coefficients in the field F. The
fact that F[s] is a principal ideal domain ring is well
known, as is the equally pertinent fact that F[s] has a
quotient field F(s). More intuitively, F(s) is often
described as the field of rational functions in s hav-
ing coefficients in F. i

The design problems of interest in the sequel are
conventionally stated in terms of F(s); however,
Section 4 explains how such problems may be re-converted
back to a corresponding F[s] form.

Principal interest centers upon the minimal design
problem (MDP), which can be described as follows.
Let G: V1+V be a linear operator for finite-dimensional
F(s)-vector spaces V, and V,. G is regarded as
realizable if its ma%rix is"proper. Now let G,: Vz-'vv3
and G,: V.,»V_, be given linear operators, where V., iIs
also a finite-dimensional F(s)-vector space. MDP con-
;sists in determining whether there are realizable linear
ioperators G which make the diagram in fig. 1 commute
and, if so, to find one whose minimal reslization is of
least dimension among all such realizable operators.
Intuitively,

G
Vl———-——--p%

Y3

Fig. 1. Minimal Design Problem

the operators G, and G derive from the given plant and
from the specif}cations, while G represents the com-
pensators to be designed. ‘

-Beyond the basic ¥NDP, several additional issues are
of practical importance. Among these should be included

* This work was supported in part by the National Science Foundation under Grants GR-37285 and

ENG 75-22322 and in part by the National Aeronautics

and Space Administration under Grant NSG 3048,
|
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ﬁi) a finite enumeration of all possible solutions, (11)
determination of any fixed poles in the matrix of G, and
!(iil) methods for assigning the poles of G which are not
ifixed. The answers to these questions reselve such
|issues as the availabilitv of solutions with varying
degrees of integration. From a conceptual viewpoint,
[thcse ideas are developed further in Sections 4 and 7,
whereas the computational issues are discussed in ;
Sections 5 and 6. 2 |

Next in order of presentation, however, is the
statement of a minimal design problem for jet engine

control. |

3. JET ENGINE APPLICATION !

In this section, we demonstrate the practicality of
the minimal design appreoach in the context of jer engine
icontrol. The basic plant is a version of the ¥-100
turbofun engine. Inputs are jet exhaust arca and main
burner fuel flow; states are fan inlet temperature, main
burner pressure, fan speed, high compressor speed, and
hftcrburner pressure; and outputs are thrust and high=-
turbine inlet temperature. The linearized anodel approxi-
mates the small signal behavior of these engine variables
This

corresponds to a point approximately midway between
engine idle and maximum nonafterburning power. The plant
;s specified by the four matrices Ap,B +C ,Dp in (1) and

(2). |
)
(2)

§x = A 6x + B_ bu
P P
Sy =C éx +D_&u
P P
able 1 lists these matrices for our example. The
attempt to design simple compensators for linear control

pver a specified region is part of a strategy for global
pcontrol of the engine using a graded collection of these.

Table 1
Ftate Description Matrices for Jet Engine (FLA=47°)

Matrix Matrix Elements
T57,006  3.613 =10:2F1 = S.A81 = 2.715
19.832 -72.34  30.295 40.972  15.327
A 0.66 4.496 - 3.601 - 0.011 - 2.808
P 1.326  2.313 - 0.809 - 3.032 - 0.821
0.882  0.703  2.922  1.471 - 4.596
1.017 39.792
- 0.125 4,181 !
B - 0.077 - 0.382
P - 0.088 - 0.565
- 3.563 - 0.785
c - 0.037  0.031 - 0.016 =~ 0.042  1.368
‘b 1.081  0.149 - 0.057 0.001 - 0.086
5 G.546 0.018 |
- 0.0i3 - 0.086 !

rmn——y

specified by gain matrices G, and G
gobjective of minimizing the periormince index of (3).

We next examine how engine control specifications
ran be obtained from linear optimal control theory. In
fig.” 2, the compensators.

Plant !
6z

Fig. 2. Linear bplimal.cdntrol

are chosen with the

i

71/8 > 915’16 PRINT SURFACE FOR 8 1/2 % 11 PAGE
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[ — s
3= %-I-rtquay + SUTRSG + 6y S6y)dt (3)
0
where superscript T denotes matrix transpositfon. The

weiphting matrices Q,R, and § are listed in table 2.
Table 2

I Weighting Matrices
with Optimal Integral Control Solution

Matrix Matrix Elements
| q | 50,000 0 |
i 0 10,000
: 550 0
s 0 175 '
0 0
8 0 20,000 !
5 0.509 0.268 1.979  2.171  2.098 .
=3 337 ~0:377 .= 0:203: 2:05776 = 0.227
% 8.329 ~1.126 i
-2.811 - 1.842 i

At this print, a minimal design problem can be
broupght into play. The control scheme of fig. 3 is
seen to be more desirable because it incorporates out-
put feedback and enjoys the concomitant adventage of
zero steady state error, even in the presence of plant
parameter variation. |

! 8u Plant ay
l ﬁf H -:— - % (Ap‘ Bp‘ b
4 Cpr D)

DRIGINAL PAGE IS L J“" |
| POOR QUALITY ;

Fig. 3.

One relates the performance of the two control schemes
by equating, in both, the Laplace transform of the
variable €u, as written in terms of the respective state
variables. This leads to the following equations, which
may be solved for L and H, the values of which have been
listed in table 2.

Optimal Integral Control

M= -H (4)
! [LRI[AL B
! x| =19 : 6l (%)
j L P
{ That this is nothing but a form of the minimal ’

design problem can be seen by evaluating the 2x2 closed
loop transier function matrices T(s) and T'(s) for the

two systems in figs. 2 and 3. 1In fig. 2,
| TG = Py(s) (s - y(e)1 7" M )
where -1
? Pl(s) = CP(sI-AP) Bp + Dp (7)
. NOR c:lcsl-l\p)‘1 B, + G, (8)
in fig. 3, cn the other hand,
| T'(e) = =P (s) [sI-P ()11 H )
where : 3 -1
| P (s) = WP, (s) + sL(sI-AP) Bye (10)
Now, rewrite (6) using (4) as

T(s) = ~P,(s) [sI-,(s)} ™" H. (1)

The rclationship between (9) and (11) now depends upon
that between (R) and (10).

L 2
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: trom table 1, D is clearly invertible; and so the linear
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' Comparison of P_(s) and P,(s), with the aid of (5)
and (7), establishes the equality of the twe transfer
functions T(s) and T'(s).

We can then pose questions regarding the existence
f compensators other than H and L to achieve the same
Pcrformanue as attained in fig. 3, and whot, if any,
advantages such compensators would have over that scheme.
o do this, we consider fig. 4, which is a more general
scheme of control based on fig. 3.

6z +

Fig. 4.

r objective is to design compensators G(s) and K(s) to
tichieve exactly the transfer function T(s) = T'(s)

Generalized Compensation Scheme

between 6z and 6y. This means that we must have
@+ 2,07 B, (6) = T(s) a2)
vhere we have introduced I
. B, (8) = Py(s) (I+KR(s)Pg(s) ™ G(s) (13)
i P(s) = (s1-4 )" ao
y i
From (12), we obtain the equivalent condition ;
P, (s) = (142, (s)) T(s), as),
yhich coa be restated in the manner l
| P, (e ) N6 = (2 (phie,) )T ae

ynamical syste

P, has a unique linear dynamical inverse
gystem P '1, which we designate P

Thus (16) is

quivalent to 1
G(I-T) - K PSPIT = PlT Qa7)
hich in turn can be written |
T 5y it T“T
[(1-T ) -T P1P5][ Pl' (18)
|
ome simplification can be achieved at this goint if we
ake advantage of the fact that the matrix T'(s) has an

nverse TL(s). Then (18) can be cleared in its right
ember so that |

(T @1 : -2y [¢7] = 1 (19)
1 b - 5 l

ow compare (19) with fig. 1, from which it becomes clear

hat G, is the identitv map, or that our control system

inimai design problem turns out to be a version cf the
nimal invcrse system problem. Writing

IGTFF? = N(s)D"1(s), (20J
K (s) : '

EHOTHOR I NS (21)

vhere N(s), D(s), and M(s) are matrices over R[s], and
phere d(s) € R[s], we can put (2i) in the polynomial form

M(s) & -d(s)1] [N(s)

- -

and

(22)
D(s) i

. Equatfon (22) is a polynomial "kernel" problem,
Lquivalent to the design problem of fig. 4. By compar-

g figs. 3 and 4, we can trivially establish that a sol-
tion to the problcm does indeed exist. Our goal in the
equel is to pive a finite enumeration of all poussible
olutfons and to study their pole assignment possibili-
ies relative to the structure of fig. 4. ;
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We remark here on a speclal feature of (20), in
that it implies a common set of dvnamics for both com-
pensators. Suppose that a suitable solution of (22
leads us to matrices A , B, C , D and Ak' Bk' Ck, and
D, such that 8- % B8 8

k =F
- Tk 8. +'D
Gla) = C (el Do+ 04

-1
K(s) = Ck(sI-Ak) Bk + nk.

(23) |

(24)

in a typical situation, D8 = 03
- Ak‘ cz - ck,\

Fig. 5 then shows how such a control scheme can be rea-
112Ld X i

and it can be shown that

i Fig. 5.

Finally, we make the observation that (22) can be
completely solved, and a minimal solution computed by
algorithms given in the Appendix. The next section
deals with the theoretical foundaticn of these algori-
thms' and subsequent sections describe their application
to (22). i

1
‘ . &. FREE MODULAR APPROACH TO MDP

| In matrix form, the minimal design problem of fig.1
reduces to solving an equation !
)

|
6, (8)G(s) = G, () @5 |

for the various realizable G(s), where G,(s) and G,(s)
are given. Section 3 provided a nontrivial illustranion
pf (25) in (19), where |

6, (s) = [F](s) (T (s)-1) (26)

‘Realization of Compensation Scheme

. T

: > PS(S)]
G (s) =1,

nnd where the field F was R, the real numbers.

|
(27)i

The free modular approach to MDP is based upon Lhe
recognition that, as a set,

F(s) « F[s] x F[s],

which, in turn, suggests that it may be possible to ex-
press (25) in terms of F[s]. A convenient way to bring
this about, as illustrated in (20), is to write

6(s) = N(s) D7X(s), @28) |

where N(s) and D(s) have their elements in Fl[s]. It is
easy to see that every G(s) has representation in the

form (28). Similar representatrions could be adopted for
(s), 1 = 1,2, but the presentation can be simplified

1* the choice i

M, (s) I

Gi(s) = W i=1,2 (29) '

is made, with d
ments in Fls], i
;he same as

(s) € FIls], 1 = 1,2 and M, (s) having ele-
= 1,2, Equation (25) is then clearly

. i
i Hl(s) H, (s) i
? d (s) N(s)D™ (s) - —2(5—'. (30) !
which, in tutn, is equivalent to
[d,(s)M; (s) =d, ()M, (s)] [V(s)] o a1
D(a)

an cquution uritten over F[s] For the jet engine
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probler. (’2) corrcsponds to (31). Let

n (S) {
t HORK ----] (32)
(s)
idenote the ith column of
ESE)]
D(s)
[d, ()4, (s)% =d, ()M, ()] E,(s) = O, (33}

and every candidatc tc construct a solutiorn (28) can be
|

Thus MDP is quite closely related to the homogeneous
equation t

[dz(s)Ml(s)s —dl(s)Hz(s)] t(s) = 0. (34?

The purpose of this section is to explain briefly an
appropriate algebraic interpretation of (34). This in-
terpretation is based upon generalizing the notion of the

-dimensional F(s)-vector space F(s)" to that of a
ank-n F[s]-module F[s]®. As a vector space, F(s)®
atisfies the usual axioms, with scalars taken from the
ield F(s). As a module, F[s]™ satisfies exactly the
Fame set of axioms, but with scalars taken from the
principal ideal domain ring F[s]. Despite this close
imilarity, F[s]-modules do not behave in exactly the
same way as vector spaces. But there is a class of them,
own as finite-rank free modules, which have a great

imilarity to finite-dimensional vector spaces in that
they have a basis, which can be defined in the usual way
ing concepts of span and independence. F[s]®, for
xample, is said to be free on the basis

0 s 05 )50, . OV AR Y2000 i)

(35)

ith position

rphisms of F{s]-modules are defined analogously to
inear operators on vector spaces; and, when domain and
odomain are finite-rank free modules, the basis concept
ts used in the usual way to define a matrix for the
orphism. This, then, is the interpretation te be given
to the p x ¢ matrix

[d2<s)H1(5)3 -dl(s)Mz(s)] (36),
in (34), namely the interpretation of a morphism i
M: F[si? » F[s)P 37

pf finite-rank free F[s]-modules. As a submodule of the
Finite-rank free module F[s]? over the principal ideal
domain F[s], the kernel of M is also free, and thus the
solution to (34) is tantamount to finding a basis for
this kernel. The process for calculating such a basis
s provided by Algorithm 1 in the Appendix.

If a basis l
tl(s)’ tzcs)n sany tﬂ.(s) (38):

for Ker A has been computed, MDP sclution then depends
ppon a determination of whether these basis elements can
e used, through (32) and (28), to construct realizable
(s) matrices---and, if they can, to find G(s) whose
minimal realizations are swallest and to assign poles
wherever possible. It turns out to be convenient to
answer these questions in terms of a reduced basis, whose
definition is as foélous. Let

1 i

t (s) = ' 1 tg, 48
3=0

where tyy € M, ti.ki %0, and { = 1,2,...,2. Then the

(39)
|

basis (38) is said to be reduced if the matrix
TIPS o TR R (5T (40)'
l'kl' 2,k2. b4 1'k& i
Rfs rank X. Algorithm 2 in thc Appond!x tcduccs a bnsis.
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[ With these notions, the MDP Algorithm in the
Appendix solves MDP, The issue of pole assignment is
,taken up in Section 7.

5. FLOATING POINT EXPERINECE

In view of the material presented in the previous
lsection, we are ready to take a closer look at (22).
The matrix [M(s): -d(s)I] turns out to be = 2 x 9 matrix
f polynomials in R[s]. Lack of space prevents us from
reproducing all the numbers here, but fig. 6 shows that
the typical element is a thirteenth degree polynomial.
We also note the large variation in the magnitudes of

the coefficients of the polynomials.

! [.@3.......]2

| 117 B0 50 -1.37 Ei0 s

' +4.40 E10 s -4.99 E10 s
+4.06 E10 s> =-4.21 E10 s*
+1.18 E10 s®  -1.07 E10 §°
2 E0 40 VL0 E B
-1.26 B9 s°  +1.99 E9 s’
-2.07 E8 s  +1.99 E8 s°
—5.55 86 &0 46.93E6 s
-4.80 B4 o1 4833 m4 0
7.00E &2 423882 st
4.5 B3 0% -1.00 80 a2

i Fig. 6. Polynomial Matrix

In this section, we report on FORTRAN and PL/I

oftwares developed to implement the MDP Algerithm on a
digital computer, and our experience in the application
of the software to the jet engine control problem de-
scribed earlier in the paper. Both the programs use
floating point arithmetic to implement the MDP Algorithm,
considered over the field of real numbers. The FORTRAN
version, using double precision arithmetic, affords 15
digits of precision (decimal) on an IBM 370/158 com-
puter. The PL/I version, using extended precision
arithmetic, carries 33 significant digits. Our jet

engine minimal design problem comes down to the question
of determining the rank-seven kernel of a module morphism
whose domain has rank nine, and whose matrix representa-
tion in the usual basis contains thirteenth degree poly-
nomials. In our expérience, the principal ditficultxcs
arise from roundoff error occurring as a result'of finite
representation of real numbers in the computer. :

There are two noteworthy features of the floating

point KERPO (KERnel of a Polynomial Operator) software.

irst, it provides the user some control over the number

f digits considered significant during internal computer
arithmetic. In actual problems, this appeared as the
critical factor in obtaining acceptable solutions from
the computer. Second, it performs a verification of the
computed results up to four significant digits. Any
discrepancy so pointed up, one attempts to rectify
by varying the number of digits considered significant. !
In the case of the jet engine problem, after making
several runs, we obtained an (appavently) acceptable
solution from the PL/I version by setting the threshold
for loss of significance near eleven digits. We can
compare this solution with the knovwn solution to the
problem, represented by fig. 3. To dv this, we proceed
as follows. !

The complete solution to the kernel problem appears
n the form of seven elements in a rank nine module,
which are the required reduced basis for the kernel.
Represented in the usual manner, five of these contained
polynomials of degree k, one or less. It is interesting
to note that the existence of such elements can be pre-
dicted by the following argument. We interpret fig. 3

67.4
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to yield a sdlutioh“t-o'the kernel problem, of the form i
(41). |
|

e (41) |
-qL Lo
P !
On the assumption that all solutions can be generated
Erom the kernel basis, the logical conclusion is that
the two columns of (41) can be represented as a linear

Fombination of the five first degree elements in the re-
duced kernel basis. Interestingly enough, the question

-of determining this transformation can itself be repre-

ented as another kernel problem in polynomial medules.
However, attempts to generate such a transformation
turned out to be unsatisfactory.

L As an alternative approach to verifying the KERPO
olution, we used two of the five first degree basis
klements to realize a second order dynamical coatrol
pcheme for the jet engine, along the lines of fig. 5.
From fig. 5, we could then obtain a state description

for the overall closed lcon system, which we then com—
pared with the corresponding optimal integral contrcl
scheme system of fig. 3. This comparison was based on
the first few Markov parameters. Table 3 shows this com—
parison for two of these parameters.

Table 3 |

Comparison of KERPO Results with t
Optimal Integral Control !

|

Markov H A7 Optimal Integral
Parameter KERFO Solution Control
CB -4.4968 0.64815 -4.4969 0.64814
~0.13348 -0.17304 -0.13348 -0.17305
l % 2631.6 1348 70.451  3.544
20693 10890 12v.15 95.573

We note that our solution appears to have identified the
and C matrices correctly, waile it is in error so far
as the A matrix is concerned. On the basis of this
evidence, we conjecture that rcundoff error incurred in
1mp1ementing the Euclidean divizion algorithm has the
most serious impact on the correctness of the solution.
This is because, intuitively, the effect of the A matrix
@n the state space corresponds to multiplication by 's'
in the module. Since, in our case, the factors by which
he matrix columns are multiplied are computed via the
ivision algorithm, we hypothesize this to be the source

f the error. | l
]

In order to solve the jet engine minimal design
robiem, then, one has the option of developing floating-
oint software which ha: increased sophistication or of
witching to softwares which permit exact rational cal-
ulations. The next section reports on the latter method.

|
6. EXACT RATIONAL SOLUTION 0

I
One way to avoid the difficulties of finite machine
epresentation of real numbers is to consider the numbers

f table 1 as being rational instead of real numbers.

t is then possible to get an exact solution to the jet
engine problem, using softwares such as FORMAC or ALTRAN.
These have the capability of rational and symbolic manip-
Qlation with an essentially unlimited degree of precision.
Naturally, as the calculation proceeds, one would expect
the integer size to increase quite a bit. As a con-
sequence, the storage requirements and computer time need-

‘ware occupied 300K bytes of memory

T}

CE FOR 8!9"|I PAGE 1 ki

e e

Appendix, on an IBM 370/158 computcr.

Starting with the numbers of table 1, together
with the L and H matrices of table 2, we go through the
calculations outlined in Section 3, and arrive at an
exact rational-coefficient version of the kernel prob-
lem of (22). By applying the MDP Algorithm, conceived
now over the field Q of rational numbers, we are led
finally to an exact reduced basis for the cerrespond-
ing exact 2 x 9 matrix over Q[s]. The seven basis
elements turn out to contain polynomials of degree ki
equal to one and no polvnomials of higher degree. Note
that this means the floating point software missed at
least two elements of first degree in the reduced basis.
Rounded to fit in the available space, thke seven basis

‘elements obtained from exact software are indicated in
{table 4. |

We would now like to compare the computer resources
needed for the floating point calculation with those
required for the exact calculation. {

In the floating point software, a sort of trial
and error process was used to optimize the calculation
by varying the threshold for loss of significance.
Though this software did not reach a satisfactory an-
swer for the jet engine problem, we have allotted from
our experience about seven runs of two CPU minutes each
to this calculation. Each run occupied 400K bytes of

imemory. i
i

Next consider the exact calculation. This soft-
and. executed the
jet engine calculation in 135 minutes CPU time. How-
ever, the great majority of this time turns out to be
consumed in Algorithm 2, which computes a reduced
basis. This suggests strongly that more research on
the reduction process---a common one in the literature
—-could have a considerally greater than average effect
on practical applications of the method. Except for
the reduction, the remaining part of the calculatiocn is
just about an order of magnitude away from being very
reasonable; and improvements of that order can be ex-
pected to occur in the near term, either through hard-
ware or software advances. H
1
Here it is seen
]

A compariscn is made in table 5.
Table 5
Comparison of Floating Point and Exact Solutions

Ricotros Fleoating Point Exact

Algorithms 1 and 2| Algerithm 1{Algorithm 2
Memory 400K bytes "1 300K bytes |300K bytes
CPU 14 minutes{average) |18 minutes |117 minutes

(that, on the average, the difference between floating

poiut and exact softwares was about an order of magni-
tude in computing time. i

For the exact solution, it is of interest also to
examine integer sizes at various stages in the calcula-
tion. Such a summary has been made in table 6. Note

e Table 6 I
\

Integer Size During Exact Solution

Stage of Computation No. of Decimal Digits

in Typical Integer

ed to manipulate these would also be substantial. In 1. 5State Matrices For Plant 4 ;

this section we gpive evidence as to the magnitude of 2. Plant Transfer Function 14 !

these, especially to contrast with the requirements for 3. Inverse of Closed Loop System

the floating point calculations. This yields valuable (1) 33

insight into the tradeoffs involved in terms of computer 4., Kernel Problem (2 x 9 matrix) 45

qsagc needed to solve typical realistic jet engine con- 5. After Algorithm 1 150 ’

trol problems from the polynomial approach. The results 6. 20%Z through Algorithm 2 270 i

reported here are based upon FORMAC software written to 7. 60%Z through Algorithm 2 250

1mp1cment, in ‘rational arithmctic, thc procodure of the 8. Final Reduced Basis 160 :
47.5
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(Rounded) Reduced Basis from Exact Soluction
2.443E-3 0.0 0.0 0.0 i 0.0 0.0 0.0 i
1.601E-3 0.0 0.0 0.0 0.0 0.0 6.565E-4 i
-3, 824E-2 -7.199E-5 4. 494E-4 4.146E-4 4.146E-4 4.146E-4 0.0 :
1.125E-3s -6.649E-6s 1.288E-5s 1.188E-5s 5,151E-6s 5.834E-6s 5.B06E-4s l
_7.898E-3 -6.41 E-4 0.0 0.0 -0 0.0 0.0 0.0 i
1.87 E-4s -1.331E-5s 3.653E-6s 3.322E-65 -2.571E-6s -1.768E-6s 8.467E-5s i
F1.526E-3 9.685E-5 2.893E-6 e 0.0 0.0 0.0 |
6.54 E-4s -6.621E-5s -4,642E-55 -4.,423E-5s -2.416E-5s -1.847E-5s -1.314E-4s I
0.0 5.081E-4 4.794E~4 §.479E-4 0.0 0.0 0.0 ;
1.843E~4s 1.713E-4s -4 .245E-5s -3.076E-5s 1.279E-5s ;
£

0.0 0.0 0.0 -2.217E-6 -3.491E-5 0.0 0.0 :

! +3.131E-6s 7.438E-6s ~1.421E-4s

0.0 0.0 0.0 0.0 0.0 1.622E-5 0.0

9.972E-5s i
!
2.935E-2 2.949E-4 -4.416E-4 -4.,068E-4 -2.25 E-4 -2.434E-4 0.0 !

£.69 E-4s || 2.955E-4s

that integer size before and after Algorithm 2 is about
the same, while it nearly doubles during Algorithm 2.
This also suggests that improvements in the efficiency

f Algorithm 2 may be possible. |

Finally, we summarize by commenting that ghe float-
dng point scftware used on the order of 4 x 10" byte
seconds of computing power, but eventually did not yield
an acceptable solution. On the other hand, the exast
rational software required on the order of 2.4 x 10
byte scconds of computing resources and led to an exact
solution. t
7. COMPENSATOR POLE ASSIGNMENT

The exact rational software discussed in Section 6

obtained the reduced basis, tj(s), 1 <1 <7, with
' BeS0)] 42
ti(S) i di(s) (42)

of table 4. From (20), where G6T(s) 1s 2 x 2 and KT(s)
is 5 x 2, we see that the matrix N(s) must be 7 x 2 while
D(s) is 2 x 2. Accordingly,

N(s)
(5¢s)?

Is a 9 x 2 matrix, which means from (32) that two kernel
plements ~
= ni(s)
ti(s) B pemee y 1=1,2 (43)
d; (s)

st be chosen to effect a design. These elements (43)
will be linear combinations of the reduced basis elements
42). 1f

[£;(s) 1 t,0)]
s a linear dynamical interpretation as described in

#ha Appendix, then N(s)D™*(s) has a minimal realization
vhose state matrix has a characteristic polynomial

|In(s)| = Idl(s) : dz(s)l. (44)
Now let 5

d, (s) -kgl £ 4 (8)y £, € R, 1= 1,2, (45)
T ey | i |

D{s)| = f (s): f,.d, (s)

k=1 1k dk ¢ go1 233
f o |
B £..8 d (s):d,(s) (46)
kel §ml 3 e ecagter s
by elementary properties of determinants. This shows
that the characteristic polynomial of the state matrix
47.6

in a minimal realization of N(s)D_l(s) can be viewed as
a linear combination of the determinants ldk(s):dj(s)‘.

Table 4 makes it clear that |D| must have degree at
‘least two; and so, since

(47a)

|d1:d6| = -1,4092974E-8s —4.7599915E-7
!dl:d7| = -8.6656773E-8s° ~2.9268875E-6s (47b)
ldgid,] = 2.9060023E-8s. (47¢c)

ywith the polynomials in (47) serving as a basis for
iR,is]. the R-subspace of Kkis] consisting of polynomials
of degree two or less, it is possible to construct an
arbitrary polynomial

Ip(s)| = bys” + b

i
25 + ba, (48) ;
for b, € R, 1 = 1,2,3 by forming an appropriate linear
‘combination

Byldyidgl + 8,ld)idy| + 8,]dg2d

aE “9)
B, e R, 1 =1,2,3. The B,'s are uniquely determined by
tﬁe bi's. To complete a minimal design (48), it is
lonly niecessary to calculate f x and f,. for k and

j =1,6,7. But certain resul%s from gﬂe exterior
algebra, referenced in Section 8, permit the calcula-
tion of (fll' flG’ fl7) and (r21’.f26’ f27) as the basis

of the kernel of the matrix [8,, -8,, B,]. Space pre-
cludes a complete treatment of the theoty, so we turn
to the jet engine example.

We make the selection
lD(s)l = 52 + 25 + 2, (50)

not so much because these dynamics are most desirable,
but rather because the industry methods described in
Section 3 could not be used to achieve (50) in a
minimal ‘design. Thus, by solving this case, we estab-
1ish potential superiority for MDP over existing in-
!dustry techniques.

! Starting then, with (50) and working backwards, we
Ean calculate Bi‘ i=1,2,3 and thence (fll' 516' 517)

s well as (fZl' f26' f27). These calculations were

performed using exact arithmetic again. The results are
presented here after rounding. First we obtain,
By = ~4.202E6 (51a)
82 = ~1.154E7 (Slb)'
; 33 = ~1.095E9. (51c),
L

Paae
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'?nd (42) can then_be solved for t
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EE;E:“fBé needed fi—;anarc obtained from the basis for S e N
the kernel of [BJ. 182, 61]. A workable set of fij's is, Output 1

1

fll = 82/83 (52a) ! 1

le - -81/83 (521))i P Output 2

f16 = f27 =0 (52c2 |

£26 = f17 n 1 (SZd) 0 l/ 5 ‘f :
The fi.'s wege, in our application, further scaled by a (a) (b)
factorlof 10 # !

to obtain the compensator gains as reason-
able numbers. This can be done without upsetting the
compensator pole placement to be achieved. Eqs. (45)
and t, of (43). The

X 2 matrix [tl:tzl, which rcpre%ents our solution, is
secen to be, X

|

4 i

( 2.573 -0.937 !
1.687 65.039 i
1.769s +1.183 57.634s +14.665 ;
0.0202s -8.32 8.395s +3.029 '

-1.158s -1.607 -13.396s +0.585 (53)
-3.076s 1.27%s !
0.744s -14.214s g
1.622 9.972s :

| 0.915s +6.582 29.213s -11.258.]

A number of procedures exist which lcad directly
from the matrix [t Etzl to a state-space realization for
the compensators G{s) and K(s). Referring then to fig.
9 and eqs. (23) and (24), we find the matrices A , B,

» B and D, for a final solution of the probleﬁ. &

C
THese are 1isSted in Table 7, after rounding.
Table 7

Compensator Realizations

Matrix Elements
o -2.0 . =0.1626 i
g 12.298 0 |
2.5732 1.686 i
B l
3 -0.9369 65.039
-3.2 0.1
c
g 1.092 0 .
-11.727 -9.725 2.888 5.944 0.824
B 36.416 3.28 -13.66 -37.83 9.147
& 0.119 0.777 2.363 9.973 -3.806
k 1.932  0.022 -1.265 -3.36  0.813

fig. 3 showed them to be identical.

The solution given in table 7 was verified by com-

aring the corresponding Markov parameters for the

losed loop systems of figs. 5 and 3. An exact calcula-
tion comparing the first two Markov parameters, showed
these to be identical for both systems. Another, non-
xact calculation, which verified the first six Markov
arameters, showed agreement to four digits. The first
two of these were listed in the second column of table 3.

Step responses obtained from the closed loop system
f fig. 5, using the numbers of table 7, are shown in
ig. 7.

1

A visual comparison of fig. 7,with similar plots
obtained for the optimal integral control system of
Hence the latter
set 1s not included here. It might be interesting to
¢xam1ne the distribution of closed loop poles, which is
fiven below. |

~138.43 ~4.47 + 0.986 1 !
~1.678 % 0,238 1
-0.136.

I - 78.38

Fig. 7 Unit Step Responses. (a) Step

on Innut 1 (b) Step on Input 2.

i As a final note in this section, it can be pointed
{out that the fixed poles in a compensator solution are
‘the zeros of the greatest common divisor of the poly-
fnomials{ldisdjl, i, 3=1,2,...,7}. It is clear from
the pairings (1,6), (1,7), (6,7) of our example that
‘this GCD is 1, and thus that there are no fixed poles
in the jet engine application. I

8.1 Conclusions

Considerable work has been done in the control

systems area on polynomial design methods. Regardless

which viewpoint one takes toward the definition of
such problems, their solution is usually assumed to
iproceed according to algorithms of the type described
{in the Appendix. Conceptually, this theory has achieved
iconsiderable maturity, and so it seems appropriate to
conduct an extensive case study of its application to a
realistic problem. This is the reason for the jet
;engine control analyses carried out in t.is paper.

! The conclusions are generally positive in nature,
!though with some temporary limitations. On the positive
iside, Sections 3 and 7 show that MDP is a problem rele-
gvant to the jet engine control industry and that the
iMDP Algorithm offers a significant improvement in flex-
'1bility of design over existing algorithms in that in-
'dustry, The application problem detailed herein pro-
vides a realistic and nontrivial test case for workers
Iin the area of computer solution of polyvnomial problems.
'A first limitation clearly occurs in Algorithm 2, which
is a popular and well known theoretical algorithm.

Both in terms of integer growth and relative CPU time,
this reduction aigorithm points to a need for further
research. Following such an improvement, it would
appear that the second limitation is overall CPU time
for an exact solution. Though the cost of such time
would be a small part of overall design cost, it appears
desirable to reduce this time by an order of magnitude.
Since such a reduction seems to be a near-term possibil-
ity by hardware or software advances, it would seem that
polynomial methods may soon be ready to play a greater
role in everyday practical design. |

8.2

Historical Remarks '

The original stimulus for this work was the paper
of Wang and Davison [1] in 1973, in which a minimal
inverse system problem was solved. That work subse-
quently led to the algorithm of Forney [2] phrased in
Tational vector spaces. Together, these works then led
to the free-modular MDP Algorithm [3] which has been
applied here. The jet engine application has been
motivated by Michael and Farrar [4], whence arose our
numerical data. A report on KERPO in double-precision
FORTRAN has been presented [5], as has a mere complete
treatment of the pole assignment approach [6] in Section
7. Background reading on the algebraic aspects of the
paper is available in [7]; and the exact proposition
peeded in Section 7 can be found in Chapter XV, Section
B, Proposition 15 of [8]. Further references to related

TR P SR
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APPENDIX

Let
M : Fs)? + FLs)P (A.1),

be a morphism of free modules. In the appendix, we
describe how a reduced basis for the kernel of M can be
obtained and used to solve MDP. For a more complete
discussion, the reader is referred to [3]. Solutionsare

pbtained in the form of the @ x £ matrix .
[M‘—‘l] ; (A.2)
D(s)
er F[s].

We change notation slightly by letting M be the
x @ matrix representing the morphism M. The technique
s to choose @ x q unimodular F[s]-matrices to post- i
ultiply M. A matrix is unimodular if it has a non-
ero determinant that is an element of F. Mathemati-
ally,

u: ris)? » rs)? a.3)

s unimodular if |U| # 0, € F. Such an operation is
equivalent to a change of basis in F[s]® and leads to a
epresentation of M in the new basis. The following
glcmcntary column operations are examples of such trans-
formations. The column operations are, (1) interchang-
ng two columns of M; (2) adding an F[s]j-multiple of
tne column of M to another; (3) multiplication of a
olumn of M by a non-zero element of F. i

Given the p x @ matrix M, the following algorithﬁ
cads to a basis for Ker M. The basis elements are re-
resented in the usual manner.

ngorithm 1

Step 1. To the p x ¢ matrix M, adjoina q x q
dentity wmatrix to form I

sk -
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" 'Step 2. By elementary column operations, reduce
(A.4) to the form
E ' 0
] .
. i o Nkl (A.5
¢ 1
B i 522

where Ej, has p rows, has no zero columns and is in an
echelon form.

Step 3. Then the columns of E y are a basis for
the image of M, and the columns o% Epp are a basis for
the kernel of M (Ker M). '

Now, let b,, 1 =1,2,...,24 be the columns of E
obtained from Algorithm 1 as a basis for Ker M. Then
by application of further unimedular transformations,
we can get an equivalent basis for Ker M which is re-
duced in the sense of Section 4. Notice that we have
introduced the notation by for elements of the basis
before reduction, to avoid confusion with t3, i = 1,2,
«++/t, which was assumed to be a reduced basis in Sec-
tion 4. The algorithm below is used to reduce the ker-
nel basis. However, the procedure is more general in
nature and can be used to reduce A linearly independent
elements in F[s]q regardless of their origin. This one
is typical of procedures described in the literature
for doing these kinds of calculations. However, as has
been pointed out in the paper, it is this part of the
computation that consumes the major portion oi computer
time. Any research aimed at achieving efficiency in the
reduction process is, therefore, the most likely to have
a significant payoif in terms of making the MDP method
of control system design tractable in the near term.

Algorithm 2 !
| Write each bi' i=1,2,..., £ in the manner

22

]

bnlzib = (AG)I
i 5=0 &, i

: q
yhere b, , ¢ F' and bi,£1 # 0. We shall say the lésc

i:j |
bl, bz..... ba is reduced if the matrix ;

Ihl,ll bz,lz e a,tn] (A.7)
has rank Z. Then, perform: i

Step 1. If the list bl' byseeey by of linearly
independent elements is reduced, Stop; otherwise, con-
tinue. |

Step 2. Determine field elements f, in F, 1 < i
< &, which are not all zero and which satisfy i
A
] £.b w0 (A.8)
! =1 1LY
| Step 3. For the set of integers i having f

pon-zero, determine an i, denoted by ip,4, for which £i

is a maximum, denoted by £ .
: max !

Step 4. Perform the elementary column operation:
Replace b by
i
max
: r @€ L)
} 6 bs
i=1

Return to Step 1.

! The question that remains is how the reduced basis'
may be used to obtain linear dynamical solutions to MDP,
Let MDP take the form (A.9) when stated over F(s].

@y

ﬁou. in any solution

&

(A.9)

LR, R
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e e ace  hodandi oo b s e (o - e o ot el L0 LR e S



!'."

s o kit :
g ITAC MYVITS 7 /8 x 215/16 FPRINT SURFACE FOP B 1/2 » 11 PAGE (R bt

Egmihlés,iéééﬂ-bfrihe £ columns will be contalned in the bi?“i'jfl‘g_n "—-_“'-(A.15%

- kernel of M. All solutions pairs (N,D) can, thus, be e et
| built up as linear combinations of elements in a basis i : |
s for Ker M. Under what conditions will a solution pair , | Step 2. Apply Algorithm 2 to the elements of (A.15),
(N,D) yield a minimal solution? i to form a reduced basis, ‘
t
o L Without loss of generality, we may assume that for | tyo 1sisx, (A.161
ny candidate pair (N,D) the £ columns of
N : Step 3. Express the reduced basis (A.16) in this
---] aner i
: [ D ky 3 |
% Lte reduced, becausi ir they are not, a unimodular trans- ’ ti 5 jzo ki.js s ti.k1 to (A.17
-iformation V on F[s]®, chosen according to Algorithm 2,
will produce an equivalent pair (8,D) such that the col- for i = 1,2,...,A. Form the matrix
3 umns of 1
| t TR (A.18
| ﬁ] l Rk ke 1ok, )
. D > f the rank of the matrix formed from the last £ rows
Fasad sic f (A.18) is not equal to £, stop; MDP has no sclution;
jare reduce asl £ P ‘therwise, contin.e. '
§D © = NV(DV) © = XD ", (A'loz } Step 4. From the elements of (A.16) in the reduced
hen, we make the following comments, offered without basis select £ elements
roof. |
= ¢ ! ti » ti secey ti
(1) N(s)D “(s) ca? be realized by a linear dynamical 1 2 L
system if ND™* is a matrix of proper rational func-
tions. In such a situation, there exists a reali- with the properties !
zation A,B,C,E, 21) matrices over F, such that (i) the rank of the matrix formed from the last £
BGy o N(s)D-l(s) (A.ll} ! rows of
= C(s1-A)"'B + E. | R P e
| 1 il 2 i, ’d ;L
Equivalently, we also say that a pair (N,D) has a
dinear dynamical interpretation if the £ columns of A is equal to £; and
[—g—] (i1) Z k is a minimum.
B j
ere reduced and furthermore, letting the ith column be ] As a matter of fact, more solutions to MDP may be
A . i possible. Any elements €., C.,. "’tZ in Ker M,
t1 = ez |, 4i=1,2,..., &, (A.12) which admit a linear dynamical ifiterpretation and achieve
{ d1 the minimum order dynamics predicted in (ii) above, are
{ p solution to MDP throug: the equations ‘
1 these £ columns, when expressed as e A |
: ;1 2 [-5-] oty (A.19)
[ PR | TSR e !
| i 3=0 i,j im, #0 (A.13) and S
pre such that the last £ rows of the matrix G(s) = N(s)D “(s). (A.20%

- A Now, in the jet engine problem, 4 is 7 and £ is 2. The
i [tl,ml tz,mz s tl,mll (A.14) o needed columns of
have full rank. [;g-]

Being concerned with finding a realization with the

: least order of dynamics, we state two more properties. were geqerated in Section 7-to satisfy the pole place-

: ment requirement.
. (2) If the property in (1) is satisfied, then the deter-

minant TD(s)] is related to the minimal realization,
5 being an F-multiple of the corresponding charac- - 3

teristic polynomial |sI-A)|. Also,

- K3) The columns of
N NAL PAGE 18

) when expressed as in (A.13), yield the number of | ! OF

dynamical elements in the minimal realization as @ |
¥ T
i L W, o
- i=1 1

With these notions, let t,, 1 =1,2,...,4 be the
reduced basis obtained from Algorithm 2. Then, MDP re-
l \ duces to generating ¢ elements in Ker M which have a i
* ldnear dynamical interpretation, with minimum order dyna- |
ics. For this, we can use the MDP Algorithm.

i HDP Algorithm
;, L___,Stcg 1. Apply Algorithm 1 to obtain a basis
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Abstract

Present research efforts in the area of linear multivariable control systems in-
cluds activities which will probably recestablish frequency domain methods as fre-

quently used tools for design.

Two notable branches of this activity are polyno-
mial methods and return-difference~determinant methods.

This paper sketches some

features of these approaches, in the context of a numerical example from turbofan

engine control.
1. INTRODUCTION

State variable methods for the design of lirear
multivariable control systems are well established
as a major toel in the applications. Variants of
the linear quadratic regulator theory are probably
the most successful, with a variety of other tech-
niques such as pole placement, decoupling, and

geoi etric regulator theory also available. Even
today, however, linear quadratic regulator theory
still requires a somewhat indirect thought process,
a feature it shares with many optimization methods;
and much of the remaining technique is synthesis
oriented instead of design oriented.

Accordingly, some modern re-emergence of frequency
domain thought has occurred---especially for design.
Broadly depicted, this work involves polynomial
mechods and return-difference-determinant methods.
This paper records certain studies of these ideas,
on a cormon illustration from turbofan engine con-
trol. Brevity precludes in-depth treatment; we re-
ly instead on the illustrations and the references.
2. ILLUSTRATIVE PROBLEM
The turbofan engine model chosen for the illustra-
tiocns has two control inputa--fuel flow and exhaust
area, five states--fan turbine inlet tenmperature,
main burner pressure, fan speed, high compressor
speed, and augmentor pressure, and two outputs—-—
thrust and high turbine inlet temperature. Inm
tradicional (A,B,C,D) form, the state description
f1] is given by the matrices at the top of the
following column, at a power lever anple of 47°,
For the sequel the corresponding matrix G(s), name-

ly C(sl-A)-IB+D. is recerded.

The design problem is to select compensators for

P i
-57.095 3.613 -10.211 - 5.481 - 2.715
19.832 -72.3%0 30.295 40,972 15.327
A= 660 @496 - 3.601 - 011 - 2.808
103% 2-313 b 1809 e 3.032 - .821
.882 «703 2,922 1.471 - h.59éJ
- =
39.792 1.017
rasr - 125
.018 05"6
B= |- .382 - .077 D=
% 2006 - 019
- 555 - .088
1= s -3.%3]
I-:. ‘.g}? -031-’ - 0016 ' .042 11368
C= |
e 1.061 -1"9 - 0057 .001 » .036

G(s), in a loop under unity negative feedback of the
plant outputs. Fast step responses with small over-
shoot are of interest.

3. POLYNOMIAL METHODS [2)
Polynomial methods take advantage of the fact that
action of the A-mitrix and the s-variable are close-
ly related in a module theoretic sense [3]. Not yet
well advanced computationally, polynomial methods
nonetheless offer considerable insighe into system
&tructure.” As is to be expected, they resemble the
geometric methods in this regard.
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(.018s5 + 455" - 92,0557

396,952 + 29201s + 95491)  ~1343.5°

G(B) e
(-.0%6s% + 31.635" + 321,563 (-.013s% - 437s® + 68,253
+ 25500s% + 760485 + 76277)

(.56555 + 71,95 + 220753

-16E555 ~=12495)

e the domain of the map represented
by this matrix to determine seven
“reduced basis" elements, shown be-
low vhich serve to describe the
kernel. From these, construction
of K,(s) and K,(s) involves two
linecar combinations of these seven
podule elements, and standard reali-
zation methodology. Using first,

+ 1703-352 + 1742.9s ~3532Af] sixth, and seventh elements, and

82 + lbo.'r‘su - 5337.0., + 34915

As an example, consider the selection of K_(s) and
f(b) in Figure 1 in order to achieve a specified
closed loop performance T(s). Such a specification
is, of course, a nontrivial issue in its own right.

+ 1166G0s + 133389 C

the assumptions
= C = A, D, =0,
E°% %R R

realizations can be found in the manner
Compensator Realizations

Sncmtionad

A complete treatment of such a specification can Matrix Elencats
be found in [2]. Relying upon the algebraic inter-
pretation of a transfer function as a pair of poly- AK -2.0 -0.1626
nomials, such a design problem can be converted to 1 12.298 0
a kernel calculation in R{s]-modules, where R(s]
denotes polynomials in s with coefficients in the 2.5732 1.686
real number field R. Considerable manipulation BK -
must be carried out to set up this kernel problem, 1 -0.9369 65.039
wvhich turns out to involve a 2x9 matrix of polyno- =352 0.1
mials up to the thirteenth degree, as shown below. CK
- 3 * s s e @ . 1 1.092 : o
l - o L] - K - - * - l
‘(jb : B -11.722 -9.725 2.888 5.944 0.824
1.17 E10 53 -1.37 E10 52 KZ 36.416 3.28 -~13.66 -37.85 9.147
4 3
=4.9 i
o ans hat S e & 0.119  0.777 2.363  9.973  -3.806.
SHOERE S Thi G = $2 1.93 0.022 -1.265 -3.3% 0.813
41.18 F10 & ~1.07 E10 s :
7 6 Responses to unit steps in the two reference chan-
~1.26 £E9 s +1.49 E9 s nel are shown in Figures 2 and 3.
8 A : 7
3s49 B9 59 Bt 88 Solution of a problem by polynomial methods involves
~2.07 E8 s +1.99 E8 s at this time nontrivial computational overhead,
L 10 9 which is discussed in greater detail in [2]. It is
Fadd O le St > 510 likely, however, that advances in software and hard-
-=§,8B0 E4 s +8.33 E4 s ware will soon reduce this overhead. Advantages of
= 12 11 the method include a finite enumeration of all solu-
1.09 E1 513 +2.38 £2 81, tions for a given T(s), and perhaps eventually a
+4.5 E-1 s -1.00 EO0 s~ finite description of all possible performances.
Solution involves automorphic transformations on 4, RETIRN-DIFFERTNCF-NCTERMINANTS [4]
2.443E-3 0.0 0.0 0.0 0.0 0.0 0.0
2 : i 7 0. 0.0 6. 565£-4 The prescnt computa-
$eQR1E-3 %4 %9 59 9 y tional. situgtion for
-3.824E-2 -7.199E-5 4 . 494E-4 4 .146E-4 4.146F-4 &4.146T-4 0.0 polynomial methods
3.1258-3s -6.649E-6s 1.288E-5s 1.188E-5s 5.151E-6s 5.834E-6s  5.806E-4spakes alternate fre-
-7.898E~3  -6.41 E-4 0.0 " 0.0 0.0 0.0 0.0 quency dorain approach-
1.37 B-is -1.3)1E-5s  3.653-6s  3.322E-6s -2.5715-6s -1.76SE-6s . B.4677-5°S Of interest.
~1.52GE-2] Q,6B85E-5 2.893E-6 0.0 0.0 0.0 0.0 If we set K, to zero
6.54 F-4s ~6.621E-5s =~4.642E-5s ~4,423E-55 =-2.416KE-5s <-1.B47E-5s =~1.314E-4sand denote g by K,
% have the archetypal
0.0 S.081E-4  4.794E-4  4.4794F-4 0.0 0.0 0.0 e b
1.843E-4s  1.713E-4s =-4.245E-5s =3.076E-5s 1.2795-5-:“““)' Regative feedn
back precompensation
0.0 0.0 0.0 =2.2}76-6  =3.491E-5 0.0 0.0 problem. If K is
43.1318-65  7.43BE-6s ~1.421E-4yssumed to have state
0.0 0.0 0.0 0.0 0.0 1.622E-5 0.0 description (JH:‘BK.
9.972E- 5T ,D.), then a com-
K ’
2.935k-2 2.949E-4  -4.4)6F-4 -4.068E-4 -2.25 E~4 -2.434E-4 6.0 bXDcd state descrip-
B.69 E-is 2.955F-4xson (AL.Bo\C.iD.) for
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Same as Fig. 2 for Direct Approach Design

Seconds
: 1 2 3 4
L
1
; Temperatu
0
Thrust
-1 f
— T 3 T T
e b =8 oo 1 3 *
Same as Fig. 2 for Direct Approach Design CARDIAD Piot, Column 2, Uncompensated
the loop can be obtaincd by an isomorphism on the important relationship that
roduct of the state spaces X and X. associated
P BaSs I140D, | [s1-Ag|=[14cK] [sI-A| [s1-A.],

with the plant and compensator, respectively, pro-
vided that the gain mairix %D, has no nepative unit g L
efgenvalues. For this a‘tuat&on, S6i Lok tha upon which a Nyquist study can be based. We refer
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Fig. 12
CAKDIAD Plot, Column 2, Compensated System

to such studies as return-difference-determinant
metheds, because of the presence of |I+CK| in a key
role.

; Construction of a Nyquist plot is related to the

604

expansion chosen for the return-difference-deter-
minant. The obvious expansion, shown for the pre-
sent illustrative case, is
+ o 4 -
1+ Gy Ky + Gpokyy + GpyKyy + Gpokpy + 10K]5
and a less obvious, more recursive expansioa in an
WxN case is

N :
! ¢y,
1=0
vhere
a. =1
and 0 .
i-1 i
o, = (-1/4) J o trace(ck)*P,
P
p=0
for 1 > 1.

Design based upon Nyquist plots of |I+CK| is wade
challenging by the intricate way in which the com-
pensater K relates to the determinant. At present,
only introductory design studies based upon the
expansions above have been made [4)]. An illustra-
tion is the compensator

L 0
ey > 1000(s+1) |’
s(s+200)

which was chosen by a cut-and-try method to increase
the speed of response of the second output. Figures
4 and 5 show the terms in the "obvious'" and "a" ex-
pansions for the compensated system, with Figure 6
indicating the sum, exclusive of the unit term in
each expansion. Closed loop responses to reference
steps in each channel are shown in Figures 7 aad 8.
Though the temperature response in Figure 8 is ac~
ceptable, the thrust response in Figure 7 exhitits
overshoot; and considerable interaction is evident.

In current practice, plots such as Figure 6 tend to
be the most useful. Design technique tends to focus
upon reducing_the interaction evident in these re-
sults, which brings us to the next topic.

5. CARDIAD--A DOMINANCE APPROACH [5]

In making a Nyquist plot of the determinant of re-
turn difference, H. H. Rosenbrock, [7] has estab-
lished that |I4+CK| encirclements can be counted as
the algebraic sum of the encirclements of the diago-
nal eclements of return difference (I+GK)--provided
that a conditien of "dominance" holds on (I+GX).
This means, in our case, that the off-diagozal ele-
ment in a column is smaller in magnitude than the
diagonal element, as a function of frequency (s=juw).
Related to this stability oriented usage of the dom—
inance idea is a corresponding requirement on the
loop transmission CK, which is used to help with de-
coupling closed loop performance.

Selection of K(s) for this latter purpose, so that
G(jw)K(jw) is dominant on its columns, has been
widely studied for the case in which K(s) is re-
stricted to be a constant matrix. Much less has
been accomplished relative te the choice of a
dynamic K(=).

A new technique for this purpose is the CARDIAD
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*. - eplon for Diaponal Dominance.

.
-

-.vlot, acronymed for Compensator Acceptability
Compensators

1 xz(ju)+jy2(ju)
xl(Ju)+JY1(Sw) 1

CRQjw) =

arz assumed, without loss of generality for pre-
sompensation. A CARDIAD plot for column one of
the uncompensated system is shown in Figure 9.
Each circle corresponds to a particular frequency
w, and acceptable (xl.y ) pairs rmust be outside
dashed circles at the frequency in question. Note
that y, = 0 and x, suitably negative will be ac-
ceptable for all }rcquencics. Figure 10 shows a
CARDIAD plot for column two. Acceptable (x,,y,)
pairs must be inside solid circles at the fieqiien-
cy in question.

The simple compensator

1 Is + .44
.05s + 1

-10 1 ST

achieves dominance at all frequencies in both col-
umns, as can be seen in Figures 11 and 12, which
consist enly of solid circles each of which inclu-
des the origin.

K(s) =

Hore detailed information about an application of
this method to design and simulation of a turbofan
engiive control can be found in [6].

6. DISCUSSION

Recent activities in frequency domain analysis and
design of lincar multivariable control systems sug-
gest a certain resurgence of this viewpoint in use-
ful new ways. Though somewhat limited by space
constraints, we have tried to give a glimpse of
some of these methods in the context of a numeri-
cal model from the turbofan engine area. Focus

has been on polynomial methods, which bear close
resemblance to geometric control methods in an
abstract algebraic sense, and upon methods re-
lated to the determinant of return difference.

The CARDIAD plot, a new dynamical ap roach to
dominance, has been illustrated.
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ABSTRACT

This work explores an alternative to existing methods which are
commonly used to design controls for jot engines. Whereas most modern
designs implement piecewise-linear quadratic regulators, this represents
an attempt to obtain a global nonlinear optimal control for a two-spool
turbofan jet engine.

A necessary starting point; therefore, is to have a good nonlinear
model on which to perform the control studies. Unfortunately, the only
accurate existing quels of jet engines are (1) linear analytical models
valid only for small regions, or (2) massive nonlinear, non-analytical
computer programs which attempt to match experimental data. What is
needed for this study is something which lies between these two extremes,
i.e., a nonlinear, analytical model.

A fifth order nonlinear model was developed in this study which cor-
rectly models most of the qualitative behavior of the jet engine, but which
fails to achieve strong numerical agreement with DYNGEN, a reliable non-
analytical simulator. Several linear models were derived, both from the
nonlinear analytical model, and also from DYNGEN. A time optimal control
problem was formulated, subject to various constraints. Dynamic Program-
ming theory and the Successive Approximations technique were explored, and
applied to the problem of interest, while several improvements in the
numerical programming were introduced. Analytical and numerical results
were obtained for several models, both constrained and unconstrained.
Finally, these results were tested on the two principal simulators, DYNGEN
and the analytical nonlinear model.

The study successfully achieved time optimal feedback control lawvs
for various models of the two-spool turbofan jet engine. Furthermore,

valuable insight into the nature of the problem was obtained, and much



useful computer software was developed. However, an optimal control law
obtained from any model can only be as good as the model itself. For

this reason, more work is needed to develop'a better nonlinear analytical

model of the two-spool turbofan jet engine.
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CHAPTER I
INTRODUCTION

This work explores an alternative to existing methods which are
commonly used to design controls for jet engines. Whereas most modern
designs implement piecewise-linear quadratic regulators, this represents
an attempt to obtain a global nonlinear optimal control for a two-spool
turbofan jet engine.

A necessary starting point, therefore, is to have a good nonlinear
model on which to perform the control studies. Unfortunately, the only
accﬁrate existing models of jet engines are (1) linear analytical models
valid only for small regions, or (2) massive nonlinear, non-analytical
computer programs which attempt to match experimental data. What is
needed for this study is something which lies.bétween these two extremes,
i.e., a nonlinear, analytical model.

Finally, after a suitable model(s) of the F-100-like jet engine is
obtained, a time-optimal control can be calculated. This control will

be determined subject to various constraints. It will be derived using

Dynamic Programming and the Successive Approximations technique.



CHATTER II
TWO SPOOL TURBOFAN JET ENGINE MODELS

2.1 Introduction

In this chapter, a hierarchy of models for a two spool turbofan jet
engine is discussed. The configuration for this engine has been speci-
fied by NASA Lewis Research Center personnel. A preliminary version of
this work is given in reference [1] and has also been reported in [2].
The models have been classified as follows:

Model 0. The actual jet engine (hypothetical).

. Model 1. The DYNGEN [3] simulation program, coded with data
presumed to have been taken from experimental measure-
ments on Model 0. This model so%ves 16 nonlinear
differential equations and use; data maps and thermo-
dynamic tables which cannot be expressed analytically.

Model 2. This model involves the primary thrust of this chapter,

and is a 5th order nonlinear analytical model. It
includes the 5 state differential equations which gov-
ern the dynamic behavior of the system, along with 20
algebraic equations which express the relationship
between various engine variables.

In addition to these nonlinear models, several linear models have
been developed. Their original purpose was to provide an indirect method
to compare Models 1 and 2. Subsequently, they also became important in
the determination of a time-optimal control for the jet engine, when
comparisons showed marked differences between Models 1 and 2.

Model 1L5. This is a normalized 5th order linear model which is

obtained numerically from Model 1, using the experi-

mental DYGABCD [4] program of L. Geyser.



Model 1L3. This is a normalized 3rd order linear model obtained
by means of an order reduction performed on Model 1L5.
Model 1L2. This is the corresponding 2nd order reduction of
Model 1L3.
Model 2L5. This is a normalized 5th order linear model obtained
by taking partial derivatives of the analytical Model 2.
Model 2L3. This is a normalized 3rd order linear model obtained
by means of an order reduction performed on Model 2L5.
. Model 2L2., This is the corresponding 2nd order reduction of

Model 2L3.

2.2 Model 2 Development

There are several purposes for the develbpﬁent of Model 2. First,
it enables one to readily see the basic nonlinear relationships between
the engine variables. This allows one to gain insight into their static
and dynamic behavior. Second, it is fundamental that an analytical
model be available for the application of optimal control techniques.
Finally, linear models obtained by partial differentiation of this model
tend to have more structure (zero entries in the ABCD matrices) than
those obtained numerically. This in turn gives the linear control
designer more insight.

Model 2 was intended to be an approximation of Model 1, based on
the specified engine configuration. Theoretical relationships developed
in references [5], [6], and [7] were employed .s a starting point and
certain simplifications suggested in [8] were used. In various situa-
tions, least squares and exact fits were made tc theoretical forms, and
if a theoretical form was unavailable, polynomial, linear, and expcnen—

tial forms were used, whatever seemed to best fit the situation.



In most cases, the variables used in Model 2 correspond to those of
Model 1. A letter key provides consistency among the variable names in

the following manner:

B a pressure

T a temperature

u a specific energy
v a vclume

W a flow

Similarly, numbers in the variable names identify engine locations as

per figure 2,1. Table 2.1 is a list of all variables used.
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FIGURE 2.1. Jet Engine Diagram



Before delving into the details of the model, certain decisions had
to be made regarding the choice of state variables and the order of the
system. There is no general agreement as to what the order of a jet
engine system is. It is a physical, not mathematical, entity and thus,
every mathematical model is 2n approximation to the reality. Naturally,
the higher the order of the model, the more accurate the approximation
should be. The order that was selected (5th) was a function of the
accuracy required by the control study to follow. This contrasts with
the DYNGEN 16th ordgr model, but is not an excessively low choice, for
even first order models could yield reasonable results.

The most obvious states to choose are the rotor speeds, (1) NC and
(2) NF' The other selections were (3) the burner pressure, P4’ a vari-
able which is strongly affected by changes in fuel, WFB; (4) the burner
internal energy, U,, a variable which is related by a constant to the
burner temperature; and (5) the afterburner pressure, P7, a variable
which is strongly affected by changes in the nozzle area, AB'

Table 2.2 gives a listing of the inputs, states and outputs. In
actual existing control systems, inputs (1) and (2) are used, along with
movable guide vanes mounted throughout the compressor and fan stages.
These vanes cause changes in the air flow in a manner similar to the
bleeds used in the model.

Tables 2.3, 2.4, and 2.5 respectively are listings of the constants
used in the model, the design values corresponéiug to the specified
engine configuration, and the nonlinear state equations. Note that the
state equations are formulated in terms of intermediate variables which
have a very real physical interpretation.

Table 2.6 is a listing of these nonlinear relationships existing

between the state variables and the intermediate variables. Some of



TABLE 2.1
SYMEJLS FOR VARIABLES

Symbol Variable Description
A8 nozzle area
CNC corrected compressor rotor speed
CNF corrected fan rotor speed
FG thrust
NC compressor rotor ~"need
NF fan rotor speed
PCMAX compressor pressure ratio at surge
PFMAX fan pressure ratio at surge
P21 fan exit (compressor inlet) pressure
P3 compressor exit pressure
P4 combustor exit pressure
P7 afterburner exit pressure ;
T21 fan exit (compressor inlet) temperature
T3 compressor exit temperature
T4 combustor exit temperature
T50 high pressure turbine exit temperature
T55 low pressure turbine exit temperature
T7 afterburner exit temperature
U4 combustor internal energy
WAC compressor airflow rate
WAF fan airflow rate
WA3 airflow rate into combustor
WCMAX maximum compressor airflow rate
AWCMAX correction term for maximum compressor airflow rate
WFB fuel flow rate into combustor
waAX maximum fan airflow rate
WG4 gaseous flow rate out of combustor
WG50 gaseous flow rate out of high pressure turbine
WG55 gaseous flow rate out of low pressure turbine
WG7 gaseous flow rate out of afterburner
ZC compressure surge margin
ZF fan surge margin




TABLE 2.2
INPUT, STATE, AND OUTPUT VARIABLES

Variable Description Symbol
uy fuel flow WFB
u, nozzle area AB
X, compressor rotor speed NC
X, fan rotor speed NF
Xq burner exit pressure P4
x, afterburner exit pressure P7
Xg high pressure turbine inlet energy U4
Yy thrust FG
Yy high yressure turbine inlet temperature T4

TABLE 2.3
CONSTANTS

Symbo1l Description Value
J(AT) mechanical equivalent of heat 778.26
G force of gravity 32.174049
R(RA) gas constant .0252
) ratio of specific heats 1.4
P2 fan inlet pressure 518.668
IC(PMIHP) high pressure rotor polar moment of inertia 3.8
IF(PMILP) low pressure rotor polar moment of inertia 4.5
VCOMB combustor wvolume 1.65
VAFBN afterburner volume 49.77
CVMNOZ nozzle thrust coefficient . 9494
NCDESIGN high pressure rctor design spesed 1007C

(XNHPDS)

NFDESIGN low pressure rotor design speed 9651

(XNLPDS)

N combustor efficiency 20 . TS
CPC compressor specific pressure 24
CPF fan specific pressure 24
CVB combustor specific volume .20279
CPHT high pressure turbine specific pressure +B2588
CPLT low pressure turbine specific pressure 27938
¢ (PCBLC) percent of compressor exit air bled for ceoling .16
a (PCBLDU} | percent of bleed air which leaks into fanduct .208
B(PCBLHP) | percent of bleed air put into high pressure turbine .726
y(PCBLLP) | percent of bleed air put into low pressure turbine .066




TABLE 2.4
DESIGN EQUILIBRIUM VALUES

Variable Value Variable Value
WFB 2.75 PFMAX 3.3624
A8 2.948255 WAF 221.573
NC 11899.1 wCMAX 54,4151
NF 9873.95 AWCMAX 1.5805
P4 23.9299 PCMAX 10.270
U4 586.467 WAC 137.649
P7 2.55142 WA3 115.625
CNF 1.02310 WG50 134,364
T21 742.957 WG4 118.375
CNC .98730 WG55 135.818
T3 1467.47 T55 1789.15
'I‘4 2892.04 T7 1413.81
T50 2103.47 WG7 224,323
P3 25.3522 FG 13431.02
P21 2.9960 zc .8143
WFMAX 203.123 ZF .8333
TABLE 2.5

STATE EQUATIONS

State # State Equation
d 2
(1) jﬁ: (ﬂ) = [, WAC(T,, - T.) + C__ WG50(T, - T..)]
dt R T W 2% PHT § 5D
dN 2
._F_ = _3_0_ _J_;._f s 4 -
SIS T T Tl 1 Bl
dp #
(3) dt4 = VEX_ (T ,WA3 + WFB - WG4]
COMB
dp, Ry*T7
(4) s g [WG4 - WFB - WA3]
AFBN
du, C,.RT, %
) | g5 = v [T,(W64 - WFB - WA3} + y {T,WA3 - T WG4 + T, (1+n)WFB}]

COMB™ 4




TABLE 2.6a

FUNCTIONAL RELATIONSHIPS BETWEEN VARTABLES

Eq. # Equation
(1) g = NFDEEIGN s 92?1
(2) T, = T, + 214.2732 CNF” - 48(Ag - 2.948255)
(3) |enc = e = e -
NDESIGN /'Tlﬁ‘; 10070 WB
) |1y = T, + 743.2722 oNe” - 68(Ag - 2.948255)
(5) |T, = U4/CVB
©® |1, = 727 1,
(7) |Py = 1.05944 P, )
8) |p,, = -6.20568 + .0129774 T, - .0185376 P,
(9) |Wipyyy = 261.01 CNF - 63.196
(10)|Py . = 3.516739 CNF - .23561
(11) |VAF = Wy, +28.502 1 - e 72313268 Pryax T
(12) [Wgyy = 13754 = 457.987 ONC + 564.325 cnc? - 188.113 CNCO
(13) | AW gy, = 6-492 = 4.9749 CNC
(14) [Py = 26-43184 = 89.0%84 CNC + 109.7243 ene? - 36.5756 cnc>
s
b ~.3662(P - in
asylwac = Wong * Mopay L - 3

ff;1/518.668




TABLE 2.6b

FUNCTIONAL RELATIONSHIPS BETWEEN VARIABLES

Eq. #

Equation

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

WA3 = (1 - ¢)WAC = .84 WAC

WG50 = 301.957 Palff;

WG4 = WG50 - B$WAC = WG50 - .11616 WAC

WG55 = WG 50 + y¢WAC = WG50 + .01056 WAC

TSS = 106.002 - .86154 TSO - .10458 CNCVEZITSO
T7 = .49661 T55 + 205.886 P7

1121.786 P7A

WG7 = 8
/1,
FG = .02951 WG7Y1934.415 T, + 68558.365 + 2116.217 AB(.53978 P
=3 (P3/P21 ) -1
= P -1
CMAX
P.. -1

ZF s Telet -

Pomx ~ 1

7

_1)

10



these can be readily observed in a DYNGEN listing, while others are far
more obscure. Equations (9) through (15) are approximations to the fan

and compressor block data maps.

2.3 Linearization and Order Reductions of Model 2

Model 2L5 was obtained through a very tedious and time-consuming
hand-calculated linearization. The partial derivative of each state
equation and nonlinear function was calculated, and then combined to-
g.ether to form a linear model. This linear model was then normalized
as follows.

Let A be n x n and let B be n x m. Then each state derivative may
be written

.. u, (2.3-1)
, i3

e
]

hes~18
4]
+

[l e =
o

X,
1 1303 j

Let the values of x at the design point be denoted x, and denote the

normalized state variable as x :

X, = x (2.3-2)

Similarly for the controls:

L e (2.3-3)

i

=

Combine (2.3-2) and (2.3-3) with (2.3-1),
~ L ~ m A
%)=} a,, X, x, + J b,,u, u (2.3-4)

and éimplify, resulting in

i i 4
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- n ~ m -~

= X. = u

Xy jzl (a4 i] ) x + j£1 (s ij ) v (2.3-5)
i i

Thus, elements of the normalized matrices are nbtained by

o "

8.3 = 8, A (2.3-6)
b %
3

and

= u

bij = bij :_j__ (2.3-7)
5

The normalized linear Model 2L5 is given in Table 2.7. The eigenvalues
of Model 2L5 are (1)(2) -7.2264 + 1.3913j, (4) -73.554, (5) -153.27, and
(3) -343.11. The numbered eigenvalues can be associated with the state
of like number, as they bear a loose resemblance with the diagonal terms.
Note that all eigenvalues are negetive, and the model is clearly stable.
It seems quite reasonable that lower order models would be almost
as accurate, suggested by the clear difference in the mugnitudes of the
eigenvalues. They will also be much easier to use to perform Dynamic
Programming studies, saving much storage space and c.p.u. time. As
mentioned above, the eigenvalues show that the states which will be
eliminated as the order is decreased, are P4(3), then U4(5), then P7(4).
The method used to perform the order reduction is to first rearrange

the states into partitions of "states to keep", X1, and "states to

eliminate", X2.
2l = fa. 4. HEY . P (2.3-8)

X2 A A X B

Now set the derivative of XZ equal to zero, since their dynamic behavior

is to be eliminated. Thus,
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Ay, X, Ay X, +B,u=0 (2.3-9)

Solving for Xz,

. =-A_ "W . X - B u} : (2.3-10)

X, is now replaced in equation (2.3-8) by its expression in (2.3-10),

yielding

x1=(

=1

1
12 Azz Azl) xl B,)u (2.3-11)

A + (B; - Ay Ay, By

Ay~
Application of this method yields Models 2L3 and 2L2 per Tables 2.8

and 2.9 respectively. Note that the most important eigenvalues have not

changed significantly in the model reductions.

2.4 Linearizations and Order Reductions of Model 1

As previously mentioned, linear models obtained from Model 1 will
be useful in comparing with those obtained from Model 2. 1In addition, it
should yield a good model of the DYNGEN simulator in the area of the
design point.

The general method for obtaining numerical linearizations of Model 1
is outlined in reference [10], including all the necessary program inputs.
Additional insight into the selection of states for low order models is
provided by DYGABCD. This stems from the identification technique used
in DYGABCD, which is to perturb the inputs and states one at a time, and
then measure the changes in each state derivative. A loose hierarchy of
states in terms of their importance in the model is obtained by measur-
ing how much each state perturbation affects the fan speed (which is
certainly one of the most important states). A close resemblance with

the choice of states for Model 2 occurs.
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TABLE 2.7
MODEL 2L5
Matrix Matrix Elements Eigenvalues
-12.549 -1.6928 3.584 .23786 1.7011 | -343.11
.83305 -5.6135 1.645 14381  1.304 -153.27
A 671.66 387.71 -392.67 -26.16 160.53 | -73.554
-104.15 21.135 64.925 -67.803 2.6314 | -7.2264 + 1.3913j
50.953 -55.855 -81.205 -7.4745 -105.74
0 1.4078
0 .75817
B = 1.2813 -122.31
0 -48.928
149.21 -3.092
c 0 0 0 1.461 0
0 0 0 0 3
0 1.2138
2 0 0
TABLE 2.8
MODEL 2L3
Matrix Matrix Elements Eigenvalues
-8.4226 -1.2541 -.047955 -72.576
A 2.3957 -5.9244 .0048531 -7.1663 + 1.2441j
-11.566 56.677 -72.562
3.406 19722
B 2.1241 .56161
31.486 -64.49
c 0 0 1.461
-.63298 -.97907 -.01486
D 0 1.2138
1.072 .1598
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TABLE 2.9
MODEL 2L2
Matrix Matrix Elements Eigenvalues
A -8.415 -1.2916 -7.1678 + 1.2401j
2.3949 -5.9206
B 3.3852 .83984
2.1262 .5573
c -.23288 1,1412
-.63061 -.99068
D .63396 -.084644
1.0656 11301
TABLE 2.10
MODEL 1L5
Matrix Matrix Elements Eigenvalues
-3.8 -1.277 2.067 -1.152 1.448 | -251.51 + 23.147j
2,748 -5.39 1.585 -1.991 1.071 -96.366
A 377.9 49,51 -264.9 86.807 78.91 | -5.0491 + .83858j
31.26 139.39 -6.269 -88.69 27.83
-176.5 23.91 -10.27 -37.4 -246.7
-.00259 .3553
.2116 -.31618
B 12.54 -13.774
-.6201 -99.3
157.78 6.84
c -.8594 -.1397 . 6672 1.167 -.1236
.055591 . 00656 -.001837 .01354 .85391
D -.10277 . 90094
-.013839 .020856




TABLE 2.11

MODEL 1L3
Matrix Matrix Elements igenvalues
-2.4307 -.70897 -.81149 -92.242
A 3.8281 -4.9579 -1.7235 -5.0644 + .86196j
2.4466 140.5 -94.982
1.395 .30875
B 1.2585 -.35303
15.434 -98.208
c .034897 -.0083832 1.3734
-.60014 .081353 =-.12635
D -.023854 .86846
.52351 .046147
TABLE 2.12
MODEL 1L2
Matrix Matrix Elements Eigenvalues
A -2.4516 -1.91 -4.9795 + .91478j
3.7857 ~-7.5073
B 1.2631 1.1483
. 97844 1.429
c .070274  2.0232
-.60339 -.10555
D .19932 -,55158
.50298 .17879
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Table 2,10 details the results for Model 1L5 after normalization.
Inspection shows that Models 1L5 and 2L5 do not closely match on an
element-by-element basis, although there is not great disparity between
the eigenvalues of the two models.

Order reductions of Model 1L5 were performed by the same method
detailed in section 2.3, rather than direct use of DYGABCD. It was
felt that Model 1L5 was a reasonable approximation to the DYNGEN simu-
lator at the design point, and it was desired not to rely heavily on an
experimental program. Tables 2.11 and 2.12 list Models 1L3 and 1L2
respectively. Again, the eigenvalues do not change appreciably after

the order reduction.

2.5 Comparison of Model Responses

Concurrent with the development of Model 2 was the development of a
computer program describing Model 2 (see Appendix). It employs an
Euler integration and was used with a time step (DT) of .001, very
suitable in light of the values of the eigenvalues of the linear models;
DYNGEN was run with time steps of .01 and higher, for it employs a
modified Euler technique [3] which allows larger increments to be used.
In addition, the linear models were tested on program ABCD (see Appendix),
with a Runga-Kutta integration. Figures 2.2, 2.3, and 2.4 show
various time responses of Models 1 and 2. Unfortunately, the responses
shown are the closest Models 1 and 2 came towards agreement. The linear
responses are evidence that the linearization and order reductions were
correctly calculated.

Comparisons of the various linear models are given in figures 2.5,
2.6, 2.7, and 2.8. There seems to be better agreement between models
for the frequency responses involving the"high pressure turbine inlet

temperature (T&).
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Figure 2.9 is yet cnother comparison of Models 1 and 2. It shows

the steady state equilibriums of both models as fuel is varied. It is

Eovou )

not surprising that a change in fuel in Model 2 produces a corresponding

E [f change in steady state which is greater than Model 1 would produce.
1
b This follows since Model 2L2 is known to have higher eigenvalues than

Model 1L2. Also shown atre transients for step inputs between a low

thrust point and a high thrust point (the design point).
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CHAPTER III
THE TIME OPTIMAL CONTROL FROBLEM

3.1 TIntroduction

In light of the disagreements between models found in Chapter TI,
no single model will be relied upon to determine a time optimal control
law for the jet engine. The control problem is to determine a coutroller
which will drive a model from a low thrust equilibrium to the design
point, in minimum time, and subject to certain constraints, as yet
undetermined. In addition, it is desired that the controller be deter-
mined by feedback contxol law, for the usual reasons: vreduced sensitivity
to plant variations; control over system stability; and regarding pro-—-

gramming aspects, the ease at which a global solution can be obtained.

3.2 BStatement of the Problem

The necessary first step is to reformulate the models as discrete

time systems. Let
2({t + At) = x(t) + Acef{xn(t), ulL)) (3.2-1)

represent the system with starting time k and terminal time N. It is

understood that
Flx(t), ult)) = Ax(t) + B u(t) . (3.2-2)

for linear models. Let x(k) be the starting state and let the terminal
time N be defined as the first instant at which the system state reaches
the designated target set S§. All x(t) are £X, the state set. The per-

formance index

N-At
J(x,u) = ) At (3.2~3)
t=k

t = k’ k+ At,t..-, N—At

23
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is to be minimized with u(t) = U, the control set, and u defined as the

control sequence.
a=uk), ulk + At),...u(¥-At) (3.2-4)
Furthermore, the minimization is subject to hard constraints of the form

2y {x(t), u(t)) e, (3.2-5)

3.3 Constraint Determination

The final step in a complete formulation of the control problem
lies in the determination of the g, and c; of equation (3.2-5). There is
2 strong intuitive need for such constraints, for the physical jet
engine has very real pexformance limitations. Bremnan and Leake [8]
have chosen turbine inlet temperature and surge margin as constraint
variables in their studies of the drone engine, and similar constraints
have been chusen for this study: (1) high pressure turbine inlet
temperature (T4); (2) compressor surge margin (Zc); and (3) fan surge

maxgin (ZF). The surge margin of a compressor or fan is defined as

7 = Cout/Finy - 1 (3.3-1)
)

max
If either the surge margin or the turbine temperature is too high, the

constraints will be violated. By definition, let

T, = 8 (x(t), ult)) . (3.3-2)
ZC = gz (X(t)a ‘U.(t)) ) (3-3"3)
Zy = Bq (x{t)s u(t)) (3.3-4)

The next step is to determine gy for each model.

Model 2 presents no difficulty whatsoever since all three constraint
variahles are defined in the Chapter II development. It will be an easy

matter to incorporate these equations into subsequent control tests.

ol
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The constraints are harder to determine for the linear models, and
a starting point is needed. Contrel studiés by Basso and Leake [12]
have used constraints which were strictiy functions of the states. How-
ever, such is not the case here. Simulations of hoth Models 1 and 2
show T

4

of state space, yet step inputs elicit strong overshoots from both

and Zc to have very little steady state change over a wide range

variables. Clearly the constraints must be functions of both the states
and the inputs.-

Once again, DYGABCD was used to obtain linear expressions for the
constfaint variables. An order reduction was performed (per Chapter II)

yielding the 8; for Model 112:

=
{

= - ,6105% X - .10759 %, + .50292 o, + .17689 u, (3.3-5)

4 2 1
Z, =~ 20154 x, ~ .45813 x, + .20423 u; + .14724 u, (3.3-6)
Z_ =~ ,58229 x, 4 .46872 x, + .18877 u, - .92545 u, (3.3-7)

F 1 2 1 2

Constraint functions were not determined for the other linear models,

since Dynamic Programming solutions (see Chapter V) subject to constraints

were only obtained using Model 1L2Z and Model 2.

The final task remaining is to determine reasonable values for c;
of the constraint equations. These ¢y will play a fundamental reole in
the optimal control solutions of Chapter V, for they are hard con-

straints which will often affect the control chosen. After studying

results of DYNGEN simulations, it was decided to use the following

values:
e; = +150 (3.3-8)
c, = .105 (3.3~9)

25



CHAPTER IV
THE DYNAMIC PROGRAMMING METHOD

4,1 Tntroduction

It has been pointed out in Chapter III that & feedback control law
is desired, rather than an open loop control. Furthermore, the Dynamic
Programming method has been extensively used in such situations toobtain
numerical solutions. One of the more recent examples of its application
is found in reference [12], where Basso and Leake have sSuccesgfully ob-
tained a feedback contrel law for a single spool turbojet engine. TUse
of Dynamic Programming methods to solve time optimal problems was shown

to involve a successive approximations technique.

4.2 Dynamic Programming Theory

The basic applications of the Dynamic Programming method are fixed

time, free right end problems. Let

x{t + At) = x(£) + £(x(t), ult)) (4.2-1)
with u(t) e U

The starting time k is known, and the terminal time N is knowm. The

target set is any x(N) £ X. The object is to find
Vk (%) = min Jk (x,u) {4.2-2)

for a given initial state x, where

N-At
I, (xu) = K@) + ] LG(t),ult) t) (4.2-3)
k t=kc
Rewriting:. _ _
o ) ' N-At '

T G = K@) + L(x u(k) O+ T L(x(t) ,u(t) t) PR
: LT _ _ _ __._. tﬂk + At o :‘_(4;2¥£) o
Jk(ng? = LCx,u(k) k) +J + Ath(k-+ At) U) |  ..; ;fﬁfz;é?'
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The Principle of Optimality states that in order for the entire
state trajectory to be optimal from k to N, it has to be optimal from

k + At to N. Thus, equation (4.2-4) can be reformulated as

Jk(me) = L{x,u(k),k) + Vk + At(x(k + At)) (4.2-6)

which leads to

Vk(x) = z%;) {L{x,ulk),k) + Vk + ﬂt(x(k + At))} (4.2-7)

Since the minimization really only comcerns u(k}, (u(k + At) .... u(N ~ At)

are previously determined), u(k) can be defined as u, and Bellman's

Bquation res$ults:

Vk(x) = min {L(x,u,k) + Vk - At(X + £(x,u))} (4.2-8)

The boundary condition is

VN(x) = K(x(N)) (4.2-9)

These equations are necessary and sufficient for optimality.

4.3 Succesgive Approximations Technique

The task is to fit the time optimal problem (i.e., free time, fixed
right end), into a form which can utilize the basic Dynamic Programming
method. This was developed by Leake, Liu, and Richardson in references
[13] and [14], and later applied by Basso and Leake in [12].

As per [12], let an(x) be any function such that an(x) Z.Vk(x)
and let vn(x,k) be a control law which results when performing the

minimization.

min [L(x,u,k) + (x + £(x,u))] (x,k) ¢ 8 {(4.3-1)

n
V.
wed k+ At
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It is shown in [14] that if an+l(x) is the performance index

resulting from.Vn(x,k), then
v < v < v (4.3-2)

and further that an(x) converges monotonically to Vk(x) in a finite
number of steps, although each (x,k) may require a different number of

steps. Thus, it is concluded in [12] that

vk“‘*l(x) = min [LGx,u,K) + Vile + £0e,u))] (4.3-3)
- ugl - (x,k) ¢ 3

which very closely parallels Bellman's Equation. The only difference is
that in the solution of the fixed time, free right end problem, equation
(4.2-8) is rvelating two performance indices for the same state, but
separated by At in time; whereas, equation (4.3-3) is relating two per-
formance indices for the same state, and the same time k, one being a
better approximation than the other.

It now appears that the time optimal free time free right end prob-
lem can be successfully solved, using the existing Dynamic Programming
method. Indeed this is true for all practical purposes; however, there

is a slight discrepancy between the successive approximaticn theory and

its application to Dynamic Programming. To be specific, it is a fallacy .

to conclude that equation (&.3~3) guarantees that (4.3-2) be true. By

definition, Vkﬁ+l is the cost which results when applying vn(x,k}, until

the target set § is reached, which is not gqqétion (4.3-3). TFor example,

let

max

RATCIES SRR
‘ (x ’k) 1: 3

and
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v, () = . . (4.3-5)
{x,k) £ 8

Then, if x Is sufficiently far away from S, it is quite possible that

there exists no v(x,k) € U which will enable the equation

V%G + £(x,u)) = 0 ' (4.3-6)

to be true, i.e., the control could not cause the system to reach the
target set in a time of At. Since equation (4.3-4) is true for all

(x,k) £ S, then

Vkl(x) = min [L{x,u,k)] + vk"(x) (4.3.7
uel :

and equation (4.3-2) is no longer valid. 1In practical situationms, how-
ever, the method used in [12] and also used in Chapter V of this
study, using equation (4.3-3), will still converge.

zA further simplification can be made when the control problem is

time—independent, which is the case in this study (see section 3.2).

Equation (4.3-3) simplifies to

V) = min [Llx,u) + V(x + £0x,u))] (4.3-8)
uel (x,k) = 8

4.4 Technique Refinements

One way of assuring that equation (4.3-2) will always be true is to

replace (4.3-8) with

v (x)
Vn+i(x) = min
min
uel [Lix,u) + V(x + £(x,u))] (4.3-9)

Rewriting this in terms of the problem as described in Chapter III,
' vH(x)

Vn+1(x) = win

min [At + V'(x + £(x,u))] (4.3-10)

uel
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'all x € X and stored V

‘A successive approximation problem allows still another departure .
from the basn.c Dynamic Programming problem (fixed *'J.me, free right end)
Let us examine “how equation (4 2—8), descr:.bing a f:.xed tll'[lE. problem,
uould be implemenced on a computer. N At(x) would be calculated for

Ne 2At(x) would be calculated and stored and ‘so

forth. Therefore, each :f.terat:.on has a spec:t.fic t:une assoc::.ated w:n.th 1.t;_-

v:However.,' :Ln the successive approxlmatlons technlque, either all agprox:.—

o 1mations are concerned v.‘r:.th the same t:Lme, or the problem is tlme 1nde—
v;-'penden_t. In Basso and Leake [12], V (x) wag. calculated for all X e X

. vand stored in an array. : Then V (x) was:. calculated and after t.hat had’ .

been completed for all x B X, V (x) replaced V (x) in the array, and SO

:Eorth. It would be more efficlent to: :r.mmedlately change each V (x) to

the Just-calculated V (x) :m a- state—by—state “nanner. I reallty then,

.the approx:.mations for V changes much 1uore fapldl‘y‘, for one does not

ﬂwalt uncll the completlon of *'he sweep "hrough state space before us:mg

:Lnformatlon derived dur:n.ng that sweep. In th:r_s manner, f’xew :1.nfomat10n

'.becomes avallable at a faste‘r' rate, speedlng up" the convergence to V(x)

Furthermore, 5 & one starts the state space sweep at the target _ and o
vslowly moves away from the target, convergence will Occur stlll faster.
. By starting near, the target one is testing controls for states whx.ch

can probably reach the target dn’ a tlme of the order of At. since V (x) e

. :for the ;f'target .‘1s equal to zero, Whi..Le guesses for V (x) at other Stc.tES‘

'tion. propagate _outwardﬁto other states.‘ F:Lgure 4 1 shows the loglc for ;
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Begin at target: i=j=nuﬁbef of point Tepresenting
‘target (NTP); number of points per state = NPX

-
o o

s

State space

Make the necessary calculations at this point in

j+i+1

IStop — eatire state
space has been searched

e
)

FIGURE 4.1l. State Searching Algoritim
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b TABLE b.1
. A COMPARISON OF COSTS FOR "FAST UPDATE" SUCCESSIVE
{ APPROXIMATIONS vs. THE "SLOW UPDATE" METHOD
(V(x)slow is listed first for each state)
Iteration
- ‘ #6 X,

0.85 0.95 1.05 1.15

1.15 0.5463 0.3825 0.2733 0.2925
. _ 0.h4680 0.3530 0.2513 0.2678

1.05 0.ko2h 0,2222 0.1378 0.267L
X 0.3658 0.2156 0.1354 0.2525

0.95 0.3101 0.1578 0.2190 0.3726
0.2890 0.1519 0.2126 0.3%10

0.85 0.3477 0.2968 0.3920  0.518%4
0.3102 0.2643 0.3L498 0.4h80

| SRR

R TS |
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As proof of the numerical superiority of this "fast update” method,
Tabie-4.l.comparés‘Dynamic Programming,results~fnr Vﬁ(x), one obtained
through regular "do 1oop sweeps through state space, the other by the

"fast update' method. Both started w1th the same.v (x) Note Lhat the

~éuperscript-on:the_cost function no longer refers to the approximation
?nuuber,.But:uervés as a record of how many sweeps through state space
- have quufma&e,. In”tﬁe~fast update of Table 4.1, the;e Will_have been
.':6p'2 aﬁpﬁbxiuationé*méde,Hwhere'p is the number of discrete points for
;éach state'in‘this:secoﬁd order system. Of course, c.p.u. time is

'f'v1rtually identlcal fbr'both.programs.

Since-the number- of actual approxxmatlons in the fast update method

‘is'équal-to the number of the sweep through state space times the number

“of points-in state space, the finmer the quantization, the more benefit

is derived‘through uge of the fast. update method. An alternative expla—

‘nation is that the oldfmethoﬁ (do loops) makés'you wait even longer

before obtaining new information, when you increase the quantization of

thé staﬁe'spacé;

v4 5. General Program Structure

One ofvthe flrst con51derat10ns is e.p.u. time. This is a function

of:tyg numbgruof_points ;n_control space and.statu space, as well as the
'.time iuuruménu At which is used. - (It‘should;also bé mentioned that this
_;efjefg._.-_t_c‘,,_c.'._p .u. time on cn TBM 370/158 computer). In this study, indi-
{ vidual‘prqgrams;were Jimited to 14 minutes, 59 seconds, to aveid a&di—

*ftionul.job cdﬁtrol language complicatiqns which occcur for higher iimes.

Thus, 51ng1e Dynamlc Programming solutions may be the result of several

.'vprogram runs._ Near the end of the.tlme 1im1t, each 46b stores cost

AT information on. disk to be used: by a subsequent job as a starting polnt
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vo(x). Ta addition, control Information is stored, so that the optimal
feadback‘control law will be easily acecessed by the simulators in
Chaptex VI.

Dynamic Programming is generally best-written in a somewhat ad hoe
fashion. The number of subscripts in an array is dependent on the
order of the system, and interpolation schemes will differ according to
the dimension of state space. However, there gtill remains a basic
structure to the program. Figure 4.2 shows a flow chart, while the
actugl program is contained in-the Appendix. Note the absence of a
"do loop" for searching the state space. Also, the target cost is set
to zero and left there, never allowing.interpolation errors due to
quantization to occur. When controls are tes§e¢ for possible violation
of constraints, the values of the "present state" x(t) are used. How-
ever, the "future state" x(t + At) is used when testing whether or not a
particular control takes the state outside of the state set X. The
interpolation scheme is a standard method as used in reference [12] for
two dimensions, and is analogously extended for third order models

(Mcdel 2L3 in particular).
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CHAPTER V

OPTIMAEL CONTROL LAWS

5.1 Basic Problem Comnsiderations

In order to compare countrol studies of the liﬁear models of
Chapter II with studies of the nonlinear Model 2, linear affine models

must be formulated. If the linear description of the system is
x = Ax + Bu (5.1-1)

and the equilibrium values at the target are designated as % and ﬁ, then

the linear affine system is
x=(x-% =A(x - %) +Blu - 1) (5.1~2)
Similarly the constraint variables become

(y-9) =C(x - % +Du - (5.1-3)

L)

where § is the equilibrium of the constraint variable. Since all the
linear models found in Chapter II were normalized, Xx=u-= ; = 1.

The time increment At (henceforth known as DT) for the linear
models was selected based orn the eigenvalues of each system. In all
cases, DT = .0l seemed to be an acceptable choice, and convergence of
the approximations did occur with this value.

Quantization of the control and state spaces must be considered
next. In general, one would like as fine a quantization as possible,
but practical limitations on the cpu time will dictate a compromise. It
is desirable that the quantization of the state space be small enough
such that the program does not rely too heavily omn interpolation. How-
ever, if the state quantization becomes too small, DT must also be

decreased. In other words, the amount by which a state can change in a

time step LT will also have a bearing on the state quantization. For
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example, at a point in state space near the target, it is possible that
the true optimal cost V(x) could be less than bm, if the state quantiza-
tion ig too fine.

The presence of constraints is important, for om: desires small
enough quantization to ascertain when the constraints are affecting the
choice of control. If quantization is coarse, it may be much harder to
recggnize that.a control is riding a constraint.

A big factor in an optimal control solution is the definition of
the control set U, not only as regards the quantization, but also the
maximum and minimum values. These, of course, are chosen to reflect a
true physical situation, and as such, it is expected that they influence
the resultant control law. In these studies, the controls were limited

such that

0.5 < WEB < 1.4 (5.1-4)

0.7 < A8 < 1.2 (5.1-5).

Again, these are normalized values. The state set, X, does not affect
the solutivn for the states of iInterest, as long as these states are

sufficiently far from the boundaries of X.

5.2 Model 213 Unconstrained

The basic choice of Vo(x) for all models was

Vi) =min | V___ = .70
max
2 2
cl(x1 - 1"+ cz(x2 - 1"+ Cq

with the cy chosen such that Vo(x) > V{x). Whether or not this condi-
tion was satisfied was easily recognized by the success or failure of _

the Vn(x) to converge to a sclution.
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The program wﬁs orig$naliy'aeveloped using only one control, WFB.
Stubsequently, the A8 control was added but constraints were not yet
considered. Figures 5.1 and 5.2 present the resulté, showing a single
cross seﬁtioﬁ of the three-dimensional state spacé? as defined bﬁ the

plane XB(PT} = 1.

it is interesting that.the control law WFB(x) remains basically
unchanged with-the addition of the second input. However, the benefit
derived by its addition is clearly evident, since the two—input system
reaches the target roughly 10% faster than the one-input system, for any

glven state.

Another significant result is that the optimal contyrol solution

for Model 213 is virtually the same for a given x, and x,, regardless

1
of the choice of Xy The largest difference occurs at (xl =1, Xy = 1,
Xq = 1) where V(x) = 0.0161 seconds, as opposed to V(x) = 0 a2t the target

(xl = 1, x, = 1, Xy = 1). The farther th%F % and %, are from the
target, the smaller the difference becomes. This suggests that a second
order model would be satisfactory to use, and, Indeed, it comes as no
surprise considering the eigénvalue infotmation garne;ed'in Chapter IIL.
P7 (afterburnef p:essure) reacts so quiéklj that it only slightly alters

the cost when N is far from the target. -

5.3 Optimal Control Theory

Heﬁc6forth, it is assumed that second order models of the jet

engine are entirely suitable for this study. Considering the low order

of the system, it was decided that analytical optimal control theory

might provide good insight into the ultimate feedback controller
solution, at the same time providing a means to check theuaccuracy of

the numerical program. The analytical approach is examined here.
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Let us first restate the general problem in continuous time:

Minimize

t

1
J(xo,u ,t) = K(x(tl)) + J L(x(t),u(t),t)dt {5.3~1)
[to’t] +
o

such that

x = £(x,u,t) (5.3-2)

where t, = the starting time
tl = the time at which the target set S is reached
x, = x(to)

u{t) e U, the control set

(x(t;)st,) € 8

u[t t] = the continuous control over the interval from to to t
O’

Note that fthe constraints gi(x(t),u(t)) are excluded from the problem in

this analytical study.
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{ . For the problem of interest, 'equati_ons’;.('j _._37-'1;),a'nd (5.3-2) can be
restated as: 7
I-Iininiize

] - J(x RE

[, et = J de - | (5.3-3)
t

Q

Such t:hat

b x= w—D+Bm—E o (5.3

o s - {(x(tl),tl?= e=Tr o

There are two principal analytical eipproéches tb":sglvje th:Ls ;_probiém,

and. bcf:_hem’ploj the Hamiltonian H defined as:

T
N
et e |

B.(x,p,u t) < p,fx,u,t) >+ Py L(x u,t) o - {5.3-5)

where p is kno\:m as the adjoint varlable, and P, equals 1 in this case, .

The flrst approach [14] states that if an infa.num J‘ ex:Lst;s for

AT ——y
[

equation (5 .3-3) o

e

& . . - . = .
T GEaty) = dnf Jhepe) (3.3-6)

u
' [t—o._at: 1

‘then it solves the Hamilton-Jacobi equation

T

o LE KT
8 (xo-’to)_ + H _(x, 3J -(-?:{'.o".i_:o)- ? .t_) =0
' B Cx ,t ) ; s _ D o (5.3.7)
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.* _— . —
J (xo’te) = K(xo,to) for (xo,to) £ S (5.3-8)

2 *
Solution of equation (5.3-7) will yield a control v (x, 3J T(xo,to) s B

X
If this control does carry (x(to),to) to S, the target set, then the
control is optimal. Often the control law reduces to v*(x), i.e., a
pure state fesadback control law. This is similar to Dynamic Programming,
and, in fact, Bellman's equation (4.2-8) is actually a d;scratization of
the Hamilton~Jacobi equation (5.3-7).

In this case, an easier analytical approach is through application
of the Minimum Principle [ 9] and the Hamilton Canonical Equations.
Pontryagin's Minimum Principle states the Hamiltonian must be 2 minimum
ag a necessary condition for optimality, i.e.,

* % FJ
H(x ,p ,u ,t) < H(x,p,u,t) . (5.3-9)
¥Yuel

%
where u is the optimal control. The Canonical Equations state that

3 =- BH (5.3-10)
ox
a T
x = B8H (5.3-11)
ap .
such that
< p,dx > - Hdt - P, dK =0 (5.3-12)
£y

where the differentials of equation (5.3-12) are consistent with the
problem constraints. Equation (5.3-12) is known as the Transversality
Condition [1h].

For the problem of interest,

45
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S R?<&M+Bu>+l%<A?;x>+ffmn>+1 (5.3-13)

e

. RPN -

where' p,x, and u are vectors. To mlnxmlze (5. 3~1,,,.u ﬁﬁétulie-at éh

extreme point of its control set, dependzng on the 51gqs of (B p)l and

(B p}z i.e.,'

if (B p)

!
!

}; - | B g (;) “1'mgx1“2 max - ‘

L _ 2w, .. u ‘if (B p) (B7p), = S

R ' u- =1 1 min 2 max. . A'A A ;2 . (5.3~14)
(4) . . R

- e
1 max. 2 min-

A (B?p‘)‘zé -

[
r'+'

n
I
o i AR

i
+

" Thiis' we obtaln the usuol "bang—bang" solutlon, so>cﬁaracteristic of manjf
tlma optlmal oontrol problems.: It is now certaln,that the controls w1ll _'
rlde the. boundarles of the control set U The'problem lles in dgtermln—

rlng What cont rol 1s applled when, and for how long.' Thi§ 1oad§_ooo‘£o_o_ o i

.'switching polnt analy51s. z | | | |

In.reFerence [11] Pontxyagin shows a method for such an ana1y51s.

Equatlon (5 3~14) shows that 1f the tragectory-of p (the ad301nt system)_

is known, then the swmtchlngs are known. Thus. Pontryagln delves 1nto an

,analy51s of the adgolnt system, employing varlous transformatlon and

translatlogs to obtain

s &

il

= 1
=]

15
o
jy)

'“g,}?,- _ ﬁﬁete'X-ajd'u”descriBe tﬁé'compiex eigeovaiﬁeé-i 4-uj.as:pef Cﬁépﬁériligg
SR Further analysms of’equations (5 3-15)- and (5 3-16) ylelds the tlme

- fntervals fbr whlch each control w1ll be applled
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5.4 Model 212 Unconstrained

l: For Model 2L2, unconstrained, contyuls (1) and (3) as per equation

(5.3-14) have time intervals of approximately 1.27 seconds, while con-
B trols (2) and (4) have time intexvals of 0.00149 seconds. From this

information, state space trajectories can be constructed. Since the

selutions of (5.3-15) and (5.3-16) are basically sinusoids, the sequence

of controls will begin at a particular control, depending on its loeca-

tion in state space, and follow the control sequence in numerical order

i _ (and repeating) for the specified time intervals, until the target is

reached. This, naturally means that the first and last intervals may

PP T D T T P T Wy S P P S T U g Jrany

be shorter than the others.
Let us first construct trajectories for a number of initial points

1 In state space, given that only a single controi is applied. As shown

AR .
T T

i - in Figures 5.3 throvgh 5.6, each set of trajectories has a point of S

Qo gingularity, which is the egquilibrium point of the system with the given
b control applied. Each "x" mark shows a time interval of 0.1 second. As
F the figures show, there exists a single trajectory for each control

which will pass through the target. Let us start at the target, and

Fadrmpietny

reconstruct the trajectory for each control, going backwards in time

R T [P PP E U ST

(Figure 5.7). Considering the optimal control knowledge embodied in

Coms -...,-3

s s

equation (5.3-14), it is clear that the final stage of any optimal tra-

jeCtorY'ﬁESt'nECESSatily_fbllowfpart or. all of one of these arcs, in

[ o
A

order to reach the target. Furthermore, if the last stage of an optimal

gy
dor ek

-trajectoty.féilows the trajectdfy due fo control i to the target, then

it necessarily was moving in accordance with control law i-1 prior to

o arala adia -

ol - the switching. In this way, figure 5.8 can be constructed. There will D

cccur at most two switchings in the optimal contrel law for the area of

R

s A L] = : e DIt

state space which is of interest in this problem.
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By plotiing the four trajectory systems cn one graph, a composite
picture is obtained, showing the optimal trajectories for the entire
state space. This is shown in Figure 5.9. Due to the relatively short
time.interval for which contrels (2) and (4) are applied, they have a
negligible effect om the solution.__In fact, for the scales used in
figure 5.9, these control regions do h&t appear.

As an example, suppose the initial state is (1.05, 0.75). Control

(1) would be applied for approximately 0.2 seconds, then control (2)

for 0.00149 seconds, and finally contrel (3) for approximately 0.06

. seconds. Control (2) could have been eliminated for all practical pur-

poses, In fact, that is precisely what occurs in the Dynamic Programming
for the problem. :

The Dynamic‘Programming results for Model 2L2, uneconstrained, are
shown in Figure 5.10. In general, there seems to be good agreement be-
tween the analytical study and the numerical results When considering
the amount of time necessary to reach the target, V(x). The control
laws, however, are not exactly the same. While the Dynamic Programming
results show controls (1) and (3) to be optimum in the same areas (for
the most part)} as the analytical results, the boundary areas between the
control regions do not agree as well as had been desired

This is accounted for by a simple explanation. Tor some states,
there exist control laws (in the Dynamic Programming results) which ave
not theoretically optimal. Bul when these control laws are applied,
they yield coéts which are so close to the optimal cost that, in a
numerical study subject to interpolation error, a non-optimal cost with
a corresponding non-optimal control law may be chosen o§ar an optimal

cost with a corresponding optimal control law. Thus, although the
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difference between controls (1) and (3) is 1argé?:(ﬁﬁeﬁe one would be
optimal and the other nbneoptimal), application of each at the paxticu—‘
lar state (in the vicinity of a boundary) will yield costs which are

nearly equal.

_5.5 Model 11.2 Unconstrained

Switching point analysis (per Section 5.3):foriodel 1LZ shows. that

controls (1) and (3) have maximum time intervals of 1.22 secon&s, while
controls (2) aznd (%) have maximum intervals of 0.49 séconds. In this

case, a maximum of ome switching may occur for the state space areas of

" interest. TFigures 5.11 through 5.14 show the various trajectories for

each control. TIn this case, the singularity points are not as close
together as they were for Model 212, and éhus the different controls
cause nuch different trajecfories to occur. BRecall that in Section 5.4,
the close proximiti‘nfltwo singularities revealed that two.controls both
had the same genenairéffgct on the state trajectory, hut one control
waS‘aiways slightly better. for a much larger arvea of the state space.

The composite effect is shown ia Figure 5.15. These results are
dramatically different from those of Model 1LZ, which is not surprising
sinece the relative magnitudeé of elements in the B matrices of the two
models is very different.

P

Although the results are not included in this-wo:k, it is a
relatively easy job to devise a controller.based,strictlf on Eﬁese
analytiﬁal results. Simple knowledge of several points along each of
the four main trajectories (whichk ﬁompletély define the cpntrql regions)

will allo&'oné'fﬁ'fi£~a curveffo-eachJBOundaryg¢11n:this.way, the

. . R L .
control is applied according to the region of state space, continuocasly

.

testing as the trajectory moves throughout state space:_ This woulr be

57
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the method utilized In a controller simulation, if constraints did not
need to be considered.

The Dynamic Programming results for Model 112, unconstrained, are
shown in Figure 5.16. Again, while there is excellent agreement on V(x)
between the analytical and the numerical results, the optimal control
laws do not precisely agree, for the same reasons as mentioned in

Section 5.4,

5.6 Medel 1L2 Constrained

Analytical results are not possible when the constraints, as
developed in Chapter III, are considered. Basically, these state-
control constraints may be interpreted as control constraints which
vary as a funetion of the state. Furthermore, it is not clear which
constraints affect the control law at a given state ﬁerely by studying
the trajectory of an optimal solution. If the constraints were functions

of the state only (as was the case in reference [12]),the optimal tra-

jectory would easily reveal when the control was riding a state constraint.

The Dynamic Programming results for Model 1L2, constrained, are
presented in Figure 5.17, and the effects of the constraints are seen in
Figure 5.18. Note that each of the constraints has an effect on the
optimal feedback control law for some area of state space. In fact,
there is only a small region of state space where the constraints do not
affect the solution, The main impact of these constraints is that the
control law no longer even rescmbles a bang-bang controller, but instead
is a continuocusly changing function. The more finely quantized that the

control set U becomes, the smoother the control law will be,
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5.7 Model 2 TUpconstraipad

After sufficiently analyzing the linear models, it now remains to
study the nonlinear Model 2. No attampt will be made here at a non-
linear system analysis, which would be more complicated than the linear
analysis outlined in Sectionr 5.3. Furthermore, while the Dynamic
Programming theory remains unchanged, the actual programming gets much
more complicated,

If Model 2 could be embodied in 5 state equaticns, each a function

of state variables and inputs, there still would be no significant

-difference in programming difficulty from the linear models. Unfor-

tunately, Model 2 consists of many equations involving many intermediate

variables, and the number of operations required for each point in state
space is dramatically increased. In fact, a fifth order solution would
require a prohibitive amount of c.p.u. time, and is automatically ruled
out., A method must.now be found to reduce the order of the system,
preferably to second order. Ideally, one desires to set the derivatives
of the unwanted state variables to zero, just as was done in Sections 2.3
and 2.4 with the linear models. However, it is impossible to obtain a
closed form solution for all the intermediate variables, with state
variables 3,4, and 5 eliminated, This leads us to consider iterative
galutions.

If equations 1 through 25 of Table 2.6 are to be solved {which is
necessary to evaluate the state derivatives), then values for Pg’ U4 and
P7 must somehow be determined. Recall that Dynamic Programming involves
a determination of x(t + At} for a given x and a given u. The first
attempt, then, was to supply an initial guess for the eliminated states

(PQ, U4, and Py), holding NC’ ¥._ . and the controls fixed, and iterate

F’
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until a steady-state solution was'reached.

This method failed for several reasons. If one undergoes this
iteration process for each state and each control on every successive
approximation, c.p.u. time is extremely high. Altermatively, if one
stores all the steady state values for P7, P4’ and U& for eéch state
and each control after the first approximation (eliminating the need -to
iterate on sﬁbsequent approximations) a prohibitivély high amount of
memory is required. Furthermore, if an imitial guess for the eliminated
states is not close to the actual.steady-state solution, instabilities
will occur and the system blows up. All of which requires us to loock
for another solution.

As a compromise to the problems encountered in determining wvalues
for the eliminated states, linear approximations are obtained from
Model 215 and an order reduction is performed. This eliminates any
instability problems and also dréstically reduces c.p.d. time. The

resulting equations are

P& = 1.4663 X +.53032 x2‘+r40998 uy -,18155 u, (5.7-1)
P7 = -,15836 Xy +.78107 Xy +.43393 uy -.88875 u, {5.7-2)
U4 = ~,63063 X, -.99071 x, +1.0656 uq +.17300 u, (5.7-3)

These equations are then converted.to linear affine for utilization by
the program.

The Dynamic Programming computer program for Model 2 is found in the
Appendix. Tt is divided into four subroutines: (1) the main program,
which is basically the Dynamic Programming method as outl?ned in Figure
4,2, along with the constants used in Model 2 per Table 2,3; (2) the

static relations of Model 2 per Table 2.6; (3) the dynamic relatioms of
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Mbdél 2 per Table 2.5, minus the eliminated state variables;.and (4)
equations for determination of P4= P7 and:Ua, per equations (5,7-1),
(5.7-2) and (5.7-3). ©Note that subroutines XSLOW and MODELZ utilize the
unnormalized system, While the main program and XFAST utilize the
normalized system. Thus coﬁversions from one system to thgtother are
made at several pointé in the program.

It is also important to note that, even though c.p.u. time has been
cut as much as possible, it still takes ﬁp to five times longer to obtain

a Dynamic Programming Solution for Model 2 than for the linear models.

" For this reason, it is important to use as much c.p.u. time as possible

per job run, but still leaving enough time to insure that the results are

‘stored on disk before the allotted program time limit is exceeded. The

program itself insures that the results are safely stored, by measuring
how much c.p.u. time is required for the first successive approximation,'
and then uging that information to decide when to write the results on
disk.

The first results presented in Figure 5.19 are for Model 2, uncon-
strained, and are normalized values. The control law is similar to the
solution for Model 2L2? unconstrained, but the cost is less than the
Model 2L2 cost for most points in state space. It is somewhat surprising

that nozzle area does nmot ride the limits of U at several states,

5.8 Model 2 Comstrained

Figure 5.20 shows the Dynamic Programming results for Model 2 with
the constraint limits as specified in equations (3.3-8),(3.3-9), and
(3.3-10), and using equations 23, 24, and 25 of Table 2.6. While the
control can actually only ride one constraint at a time, there is a

large area of state space where both T& and Zc are very near their
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) respective limifs; and thus they both are shown as affecting the %q
golution in Figure 5.21. If only the constraint closest to its limit 1?j
is shown, it would result in at least 10 smaller regions. In fact, it iﬂ;
is umrealistic to show these smaller regions, since the somewhat coarse ?5

T. quantization of U used in this study»will have a strong effect on which ;
constraint the controls are rising. The result is an almost random _ .i?}

R choice as to which constraint (Zc ox T4) that the controls ride (in the

Tl;—zc region). Note also that the constraints affect the solution wmuch !j
RIS differently than they did for Model 1L2 in Figure 5.18.
This Dynamic Programming solution requires approximaiely 90 minutes

of c.p.u. time, using a 225-point state space search, and a 209-point

i control space search. ' o
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CHAPTER VI
CONTROLLER SIMULATIONS

6.1 1Introduction

Now that feedback control laws have been obtained for several
models, both constrained and unconstrained, any state (N,, NF) can be
driven to the specified target in (approximately) minimum time. Thus,
initial starting states can be chosen which reflect low-thrust condi-
tions for both Model 1 and Model 2. The simulators read the feedback
control law from its disk storage and change the fuel flow and the
nozzle area accordingly. This will necessarily involve an interpolation
schene to.decide where the trajectory lies in state space, and is accom-
plished using the same scheme as employed in the Dynamic Programming.
it is desirable that the quantization of the control law be as fine as
possible for these purposes, but limits om c.p.u. time once again lead
to a compromise.

Interpolation will often lead te error when you are interpolating
in a region of state space where the control laws change abruptly.
Obviously, the optimal countrol which is desired is either one extreme
or the other, and not something in-between. In this case, the interpola-
tion scheme could be overridden by an analytical test, similar to that
which was mentioned in Section 5.5. Such considerations have not been
implemented in this study.

The addition of constraints, and their resultant "smoothing" effect
on the original "bang-bang" control law, will reduce the number of abrupt
changes in the contrel law. Hence, the interpolation scheme is expected
to be more reliable when applying a contrul law which was derived sub-

ject to constraints.
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There is another very fundamental comsideration for the controller
simulations. While the optimal control law at some arbitrary state
(xl, xz) is quite possibly the same, or nearly the same as that for
state (xl + g X, + 8), (e,8 .small), this is mot at all true near the

target. The optimal control law at the target is simply (ul =1, u, =1)

2
for the normalized system. However, this law is only valid for that

single point in state space which defines the target. The state

(=

1 =1+ §) will have an entirely different law.

=1+ g, x2

In reality, we will consider the target to be some small region,
not an ipfinitesimally small point. As far as the simulations are con-
cerned, this small target region has already been determined by the
gquantization used in the Dynamic Programming. Whenever both states are
within Ax (the quantization size) of the target, the simulator will
begin to interpolate on the control law (ul =1, u, = 1) for the target.
This will cause the states to be slowly easad towards the targei, which
might be considered unacceptable, depending on how large a region of
state space is involved. TFor this reason, these simulations determine
approximate times at which the target point is reached, and exact times
at which the target area is reached.

Since all the Dynamic Programming solutions involve normalized
values, both simulators must convert to the unnormalized system, All
plotted figures in this chapter are normalized, for purpeses of
comparison.

Although the specified goal is to take a low-thrust starting state
to the high~thrust target state in minimum time, the nature of an optimal
control study (and in particular; the Dynamic Programminé'method} is

that it is more concerned with state space and the time domain. As such,
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no plots of thrust are presented, although thrust plots would be very
necessary in frequency domain transfer funetion studies of linear sys-
tems. It is assumed here that satisfactory output responses are
cbtained when the system constraints are not violated.

The choice of the initial state for the following simulations is
somewhat affected by the peculiarities of the DYNGEN (Model 1) computer
program. Specification of the initial conditions is determined by an
"off-design point" (see reference [10]), which is generally determined
by specification of WFB and A8. Ideally, it would be desirable to
choose a starting state as far from the target as possible, in order to
demonstrate ;he usefulness of the global feedback control law. This
often would iInvolve specification of an extremely low WPB, and is easily
accomplished. However, the control law at this point will be a much
higher WFB, and results in convergence problems once the transient simu-
lation has begun. The success or failure of the simulation to converge
is strongly controlled by the TOLALL and DT variables (see reference
[10] and the program inputs given in the Appendix) and amounts to much
trial-and-error technique. Even these variables cannot totally control
the convergence difficulties, and further changes in the DYNGEN program
itself are sometimes required, as explained in [3].

Due to the above considerations, a2 somewhat High initial condition
is used in the simulations, the feeling being that lower initial condi-
tions would require an unacceptable amount of tampering with the tapes
on which DYNGEN is stored. TFor similar reasons, no control laws which

were obtained from unconstrained models are tested on DYNGEN.
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6.2 Model 2 Simulation Utilizing Model 2L2 (Unconstrained) Control Law

- The Model 2 controllers are implemented using the program shown in
the Appendix. Figures 6.1 through 6.4 show the results of a simulation
utilizing the Model 212 (unconstrained) control law, which was presented
in Section 5.4. The starting state chosen corresponds to a thrust of
approximately 807% of design thrust. The affects of interpolation on
the contrel law are readily seen in Figure 6.1, showing the inputs ver-
sus time. After 0,08 seconds, the controls are slowly eased towards
their normalized design values (WFB = 1, A8 = 1). Tigure 6.2 reveals
an overshoot of approximately 100% for compressor speed (NC) and 30% for
fan speed.(NF), certainly not a desirable response for a jet engine.
Unfortunately, elimination of the constraints in the determination of
the contrecl law has resulted in these undesirable consequences, as shown
in Figure 6.3. Turbine inlet temperature (T4) has skyrocketed to 550%
of its design value in only 0.0é seconds, and the surge margins have
also reached intolerable levels. The state space trajectory, as shown
in Figure 6.4, agrees remarkably well with the optimal trajecteries
which were analytically determined and presented in Figure 5.9 of the
previous chapter, The time it takes to reach the target is also in
agreement with the cost results as presented in Figure 5.10, approxi-
mately 0.12 seconds.

6.3 Model 2 Simulation, Utilizing Model 2 (Unconstrained) Control Law

Fipures 6.5 through 6.8 represent the results when utilizing the
Model 2 (unconstrained) contrel law, as determined in Section 5.7. The
same initial state is used here as for the linear controller of
Section 6.2, and with remarkably.close results. The control laws are

slightly different, but the resulting state and constraint variable
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trajectories are quite similar to the trajectories 'produced with the
Model 2L2 control law. This is certainly striking evidence that Model 2
is a nearly linear system.

6.4 Model 2 Simulation, Utiiizing Model 2 (Constrained) Control Law

The effects of constraints on the control law can be quite clearly
demonstrated. Figures 6.9 through 6.12 represent the results of the
Model 2 simulation, utilizing the Model 2 (constrained) control law,
as developed in Section 5.8. The starting state corresponds to a thrust

of approximately 74% of the design value. The controls are considerably

" smoothed out, and Figure 6.10 shows that the state-time trajectories

proceed to the target much slower and less abruptly, than was the case

in the previous two sections. However, tﬂe constraints are now at
acceptable levels, as evidenced by Figure 6.11. Furthermore, the control
is riding both the turbine temperature and compressor surge margin con-
straints from the time = 0.02 seconds to time = 0.16 seconds. This
agrees with the constraint analysis as shown in Figure 5.21 of the pre-
vious chapter. Unfortunately, the constraint limits, as given in
equations (3.3-8), (3.3-9), and (3.3-10) are slightly exceeded, even in
this simulation. This is mot entirely unexpected, when considering the
rather important fact that the effects of three state variables are not
seen in these results. Recall that the optimal control law was derived
(see Section 5.7),out of necessity, by employing linear approximations
for states (3), (4), and (5) of Model 2 (see Table 2.5). The simulation
of the controller as presented in this section uses no such approxima-
tion, and hence, some variation is expected. Fufthermore, the choice

of initial conditions for states.(B), {4), and (5) introduces yet
another_consideration, and in fact, the particular choiées for this

simulation were somewhat arbitrary. Regardless of these slight
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deficiencies, the cost is in good agreement with the Dynamic Programming
results,

6.5 Model 1 Simulation Utilizing Model 2 (Constrained) Control Law

In view of all the evidence accumulated in Chapters 2 and 5 which

show the differences between Model 1 and Model 2, non~optimal results

are expected when applying on Model 1 a control law which was derived
from Model 2. Indeed, this is clearly the case, as demonstrated by
Figures 6.13 through 6.16., The starting state corresponds to an off-
design point of (WFB = 2.2, A8 = 2.95) on the DYNGEN simulator, and is
the same starting point as was used in Section 6.4. While the constraint
variubles are within acceptable limits, the state-time trajectories
resemble %erf sloy ramp functions. It takes 0.34 seconds to reach the
target area and, while Model 1 is known to react more slowly than

Model 2, it is not expected that the cost be that high. Clearly the
control law is not satisfactory.for use on Model 1.

6.6 Model 1 Simulation Utilizing Model 1L2 (Constrained) Control Law

Application of the Model 1L2 (constrained) control law produces the
best results for Model 1. This is established by Figures 6.17 through
6.20, using the same starting state as the previous two simulations
(approximately 74% of design thrust). -After 0.23 seconds, both rotor
speeds are within 1.0% of their respective design wvalues, a significantly
better performance than is provided by the Model 2 control law. It is
somewhat slower, however, than the cost predicted by the Dynamice
Programming results of Section 5.5 (.205 seconds). This is not dis-
turbing, and perhaps quite satisfactory, when considering that HModel 1
is a 16th order nonlinear simulation. It must be expected that the use

of a second order linear approximation in obtaining a control law caunot
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possibly result in the exact prediction of the minimum time it kakes the
trajectory to reach the target. The contrel quite clearly rides the
turbine inlet temperature and compressor surge margin constraints over
most of the trajectory, in agreement with the constraint analysis of

Figure 5.18.
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CHAPTER VII
SUMMARY

The goal of this work was to obtain a global nonlinear optimal
control for a two spool turbefan jet engine. Various models were
developad, pursuant to this goal. Most important of these models was
the nonlinear analytically-expressed Model 2, which correctly models
most of the qualitative behavior of the jet engine, but which fails to
achieve strong numerical agreement with the non-analytical Model 1
simulator. The time optimal control program was then expressed in
detail, and various constraints were added to the problem. Dynamic
Programming theory and the Successive Approximations technique were
explored, and applied to the problem of interest, while several improve-
ments in the numerical programming were introduced. Analytical and
numerical results were obtained for several models, both constrained
and unconstrained. Finally, these results were tested on the two
principal simulators, Model 1 and Model 2.

Indeed, this study has successfully achieved time optimal feedback
contreol laws for various models of the two-spool turbofan jet engine.
Furthermore, valuable insight into the nature of the problem has been
obtained, and much useful computer sofitware has been developed. Unfor-
tunately, all enthusiasm for the results achieved 'in this study must be
tempered by the realization that an optimal control law obtained from
any model can only be as good as the model itself. For this reason,
more work is needed to develop a better nonlinear analytical model,
similar to Model 2 as presented in this study.

As the accuracy of these models is further improved, more consid-
eration should also be given to the details which so gréatly influence

the time optimal feedback control law: the determination of the
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aliowable controls, U; and the limits placed on the selected constraint
variables. As the entire analytical problem formulation (model, con-
straints, etc.) becomes closer and closer to the actual physical problem,
more detailed solutions can then be obtained in the numerical analysis.
In conclusion, this study should be viewed as one more step in the
efforts to ac. »ve global optimal control laws for two-spool turbofan
jet engines, It has accomplished much of its original goal, but leaves

much more work remaining.
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ABSTRACT

This paper describes an algorithm for obtaining a nonlinear znalytical model of a
Jet engine from measurements of two equilibrium point values and the linearized A
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A DIRECT METHOD FOR OBTAINING NONLINEAR ' ‘]

ANALYTICAL MODELS OF A JET ENGINE®

R. J. Leake and J. G. Comiskey .

Department of Electrical Engineeriné
University of Notre Dame ,
Notre Dame, Indiana 46556 : .

ABSTRACT

This paper describes an algorithm for obtaining a nonlinear analytical model of a
~ Jet engine from measurements of two equilibrium point values and the linearized A !
] and B matrices at those points. The method is compared with more conventional proce- ;
® dures of intercomnecting individual component approximations. ?

.
'y

: :
3. INTRODUCTION o

In this work we continue the study of nonlinear analytical models for a two spool
~ turbofan jet engine first reported in [1]. The model given in [1] is refined here
! and compared with an entirely new model which is the main subject of this paper. Imn
. ¥ order to distinguish the various models, we make the following designations.

~ Model 1.

TN

i Sy L e nn e A

-A large, flexible generalized engine simulator called DYNGENW wvinich has
been developed at NASA Lewis Research Center [2,3] and coded for a parti-
cular hypothetical two spool turbofan engine.

< Hodel 2. An analytically expressed set of 5 nonlinear differential equations plus

E about 20 nonlinear static equations approzimating the relationship between l
o warlous engine variables. ‘

7 Model 3. A relatively simple two-input, five-state model which can be generated g
o . automatically for any engine from data of two equilibrium points plus A Sy
' -+ -and B matrices by the algorithm to be presented below. . -3

Lae

1 2. DESCRIPTION OF MODEL 2

A refined and updated version of the two-input, five-state, two-cutput nonlinear

analytical model presented in [1] is given in this section.
t tions are:

U

The variable designa- 4

= fuel flow (WFB)

. il.- Ui = pozzle area (AB) )
. ) Xi = compressor rotor speed (Nc)
: i X2 = fan rotor speed (NF)
p g Xé = burner exit pressure (}4} * i
: {E . Xi = after burner exit pressure (Pi) o
i; N Xﬁ = high inlet energy (UA)
%; EE Yl w thrust (FG) - <

Yz = high turbine inlet temperature (TA)

,q}he system is completely specified as follows. ) .
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bacudle

Constants

AFBN

J = AJ = 778.26 n = 20.71175 ‘ORI
G = 32.174049 Cpc ™ mROoR
R=RA = .0252 Cop =
Yk = 1.4 Cyp = +20279
P, = 518.668 cPHT = ,22589
I, = PMIHP = 3.8 Cppp = +27938
Ty PHLE = 463 ¢ = 2L . peprc = .16
V.. =1.65 ek
COoMB : @ = PCBLDU = .208
Vappy = 49-77 B = PCBLHP = .726
EVRERS & = S00n Y = PCBLLP = .066
CAPSF = 2116.217
N, DESIGN = XNHPDS = 10070 '
N, DESIGN = XNLPDS = 9651
Design Equilibrium Point (Sea Level Static)
WFB = 2.75 Nc = 11899.1
Ag = 2.9482558 F = 9873.95
4 = 23.9299
4 = 586.46;
P, = 2.55142
CNF = 1.02310 P, = 25.3522
.T21 = 742.957 Py, = 2.9960
"CNC = ,98730 WFMAX = 203.123
T, = 1467.47 PCMAX = 10.270
Tsp = 2103.47 WG7 = 224,323
Tgg = 1789.15 WAC = 137.649
Z2C = ,81430 ZF = .8333
SFC = .737071 BYPASS = .609694
State Equations
AN 39,2
e &I mo—— J -
(1)_dt (1,) Ich [cPCkAr(l 3) + CPHTWGSO(T4 TSO)]
(2) EEE = (3952 [c RAF(T ) W c WGSS(T -T55)]
dt u IFNF 27T 50 :
dp, _
3) r ———Y-—V [T.,‘WA'J + WFB - WG4]
COMB
dP7 RY*T
(%) i [WG4 - WFB - WA3)

PA(H;

4ﬂll:3, '

FG = 13432.02

Th = 2892.04

WG50 = 134.364
WG4 = 118.375
WG55 = 135.818

"~ PFMAX = 3.3624

WAF = 221.573
HWCMAX = 54,4151
AWMAX = 1.5805
WG24 = 88.5047
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G - e

o
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P
e g

dy c IFT

4 VB . & - . " -
(5) 37 7 v [T,{HG4 ~ WP« a3} + Y {T3‘H'A3 T, WG4 T4(1+n)m‘13}]
COMB 4 )
Honlinear Functions Requirced lor Srate Equations
N N .

F F
(1) onr N DESTCH = 9651

(2) T.. = T. + 214.2732 CNF® - ~ 2.948255)
21 2 &8(&8

NC RC

{3) CNC = - — G
T T . 668
X Dl’:SlG\h‘lzl/‘l‘z 10070:1‘21/518 6
2

{4 I = ?21 + 743.2722 CRC® - 68(:‘\8-—:’..948255)

(5) 7, =u,/c,

{6) TSD. = 727 '.1‘4 .

¥)) P3 = 1.05944 P4

(8} P21 = -6.20568 + .0129774 TZl ~ 0185376 P3

(9) Hmm}: 4+ 261.01 CNF ~ 63.196 : «

1))} PFMAX = 3,516739 CNF ~ .23561
-~2.313265(P )'l
- _ FMAX 21
{(11) WAF = “?me + 28.502&. e

{12) WCHAK = 137.54 — 457.987 CNC + 564.325 CNC ~ 188.113 CRC

(13) chmx ,

(14) Py, = 26.43184 ~ 89,0454 CXC + 109.7243 cNGZ - 36.5756 CNC-
. v,

21. W + A 21

CMAX

W (1-e
1A%
! -
fg21/518 668

S _—— S ool ——y — S

3

= 6.492 - 4.9749 CKC

(15) WAC =

{16) WA3 = (1-9)}WAC = .84 WAC .
(17) wG50 = 301,957 ?4{.@"

{19) WG5S = WG50 + y¢WAC = WG5S0 + .01056 wac

= - - e T d 10 8
(20) Tgs 106.002 . 86154 50 45 CNCJTZJ_TSO

(21) T, = 49661 Ty5 + 205.886 P, ; -

1121.786 P?AB
{22) wWG7 =

§ £18) WG4 = WGS50 ~ BOWAC = WGS0 -~ .11616 WAC
] &l

A

st L

b Vit

.
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Nonlinecar Equations for Outputs

(1) FG¢ = .0295] WG7/1934.415 T, + G8558.365 + 2116.217 AB(.53978 P?wl)

(2 2 = 22t
Fomx ~ *
P, -1

(3) 2F = 52— ‘ o

3. DIRECT METHOD -

We now consider a direct computer method for obtaining nonlinear models. Let
% = £(x,u) ) - (1)

with x an n vector and u an m vector denoting a dynamical system such as a jet
engine, in which the state variables and parameters u remain positive throughout
the system operation and there is a function g(u) such that for each equilihrium
point

flx,u) = 0 +—+ x = g(u) )
"The steady state system analysis involves the study of the function g(u).

We propose to approximate the system (1) by .
% = A(x)[x -~ g(w)] o , 33

whera A(x) is a square marrix which varies as a function of x. Notiee that if x?
is an equilibrium point of (1), = g(uD), then a linearization about this equili-
- brium point results in the linear system _ ..
B = A 6x + B 8u . _ . (%)

- #nd a linearization of the approximating system (2) at X = g(cD) results in

8% = Ax )ox + [-A(x) -g—g (u) 18u . ' (5)

: Hence, the linearization of (2) will match the linearization of (1) if and only if

AGy) = A, A 3B (uy ZB T - (6)

Also, if is invertlble, as is often the case for jet engine models, equatlon (6)
. ylelds .
38 oy o oa”l - ' ' -
u (HD) AD BD . (?)

The basic idea of the proposed direct method Is to usé the above developments toge-
ther with function approximations for A(x) and g(u) to arrive at a nonlinear model.
Since equilibrium points and linearized models at those points can be obtained by

% known algorithms, we shall use this fact. Our initial approach is to use just two

equilibrium points, say X and Xge The input information is thus

e U e Ao A By By ' &

wvhere and x_ are design and off-design equilibrium points. and A _ are the

system A-matrices at these points and Ups Uy BD, BW’ are the associated parameter
 and input matrices. Mathemarically,
d*’(xD,uD) 3E (xp5u)

AB - BD = au . .o (9
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We shall employ a linear approximation for A(x), given by .

*p,” ™y I
A(x) = Aw diag ——i:~——— -+ AD diag —*-:T—TQL— (10)
xnj ij "Dj ’wj

In which diag (+) is a diagonal matrix which causes the jth column of A(x) to be

Interpolated linearly between the jth columns of AW and AD with x, as the interpola-
. . d
tion variable.

The parameter vector u is presumed to be made up of physical control variables, and
parameters such as altitude and Mach number. The equilibriuvm function is to be
approximated in a manner such that both the equilibrium values and the lineariza-
tions of the approximating system (3) matech those of system (1)} at both Xy and Xy
This requires then that

gluy) = X5 g(uw) = %X (11)
and also :

9 -1 ? -1

‘55' {uy) = -8B, gﬁ (u) = -4, B . (12)

The method we propose here is to approximate each scalar component g, (u) of g(u) by
a linear affine power lav form ' *

e ¢ c
- . wkl w2 wim
gigu) eu; Feetou e, LUy u, wee U + ey 1o (13)
for which the jth partial derivative is C
c c
: Bgi ulm+l...u“fﬂﬂl . .
o, - %5 T ComiaCmg u i L - a8
3 b -
-Now, 1if the wariables are normalized and scaled such that )
cry = (1.1 = 1 u, = (a,2,...,2) =2 N )
then, the conditions of (11) and (1Z) can be put in the form o
3g
T -
k3 ™ (1) cj + c2m+lcm+j )
3g Zc -1
N = wj .
) kﬁdﬂ Buj {a) cj + cszlcm+ﬂa ) . : (16)
: Eomiy = 831 = Tey Fepnn F Conng
: Ie
'I. = = T m-i‘j
: Komip = 84 () = aley +ey 2 * Comiz
" and summing the first two of these over j yilelds
2k3 = xcj *.c2m+l Ecm+j
e, ~1 co ~
= k]
zkm+j Ecj + Comtld Ecnﬁﬂ
a7
-
komt1 ™ %5 * Conpy T Comeg
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1

Ie .
- k- .
amt2 ~ 35Cy T Copyqd * Comi2

‘which is of the form

8y = Ty FxgT,

k

. rz—l
82 = rl + rBrza
8q = rl 4 r3 + ra
* r2 R ’ -
séﬂarl-l-rsa +r4 .
which, iIncidentally, is the w=1 condition also. This set of transcendental equa-
tions is solved numerically for rl’r2’r3’r4 and (16) is then used to solve for

(18}

. each ¢;. In the event that (I18) has no solution, a2 best fit is made on the second

XN
-t
Ry

e

9

equativn by varying T while the other conditions are satisfied exactly.

4. ALGORITHM OF THE DIRECT METHOD

In this section, we present an algorithm which serves toautomate the process of
finding a nonlinear model for a system

x = f(x,u) (1)
to be approximated from XD’uD’xW’UW’AD’BD’AW’BW’ 'by a normalized system. The algo-

rithm will automatically perform the normalization and, hence, actually approximate
the system .

X = £(%,10) - ()
- where :‘::i = xi/xDi, Gj = uj!unj. ‘The approximating system is of the form )
& ~ ~ A A N *
"x o= AR [x-g(u)] | . (3)
Wherez-2 X ) xDi- X, . X - xwi .
x) = AW diag =——— + % diag ———= (4)
. R D W |
and ol
- 1 1 whj i
= T 63 *
8y jcjuj ey 3r ud + eono ) (-5)
where u¥ = o 0, + B8..
37 %% T
Alporithm T,
1. Input: xD,uD,AD,BD,m,n,a, g’xvl’uW’AW’BW . ) ‘.'

2. Calculate:

iy = diag(l/xni) AD diag Cxpi)

Hw = diag(l/xni) A, diag(xDi)

BD = diag(l/xni) BD diag(uDi)

i

a1
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B, = diag(l/x, ) B, diag(uy
1

144

3. Calculate

1]

1

(1-a)u_ f(u,. -u. )
3 D,"p, ”wg

B, = (au_ -u, )/{u_ ~u. )
D " Dquj

3 3

4, Calculate:

i a—=la i
Ep= GApBpyy Ko
1::!. """"1"‘ ) ki

5. Calculate

e €

e B r = raic ;:i IR o .‘ .

R
A VoL

JS-A

Algorithm IT

8. Output

1. Input:

i i i
8T = } k s, =
1 4=1 3 2
i i i

85 = Konga g =

6. Go to Algorithm II.

7. Calculate:

Send: si, sé, sg, 52, a, €
.., 1 41 1 4
Receive: rl, Tos Tas ré,Y
2wl 73 Zmi2
-3 T g
I B B
Coirg i 3
172t 1)
T, (a -
j(
&, et
1’."’ 2m_*_2
oA By
.

2. Calculate:

51352553154’533
. - 83-54

L35 R TR WY
B3-S4

It
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3. Minimize by line search:

T P IR T Ty

v

=, This matrix together with the values w=1.1 and 8= 0.1 and the matrices AD and fm

_f‘ completely specify Model 3A.

: x-1 a -]
E ax o
P, ~ P = ‘
i a-1
T for -10 < x < 10, x ¥ 0, x# 1
ae :
4. Calculate:
: Py QRIGINAL' Pag ..
T 2T F ¥3 7 T OF POOR Quia; 1y -
i . - a 2___1 Amm
rar:' 2 a"'l «
1 T, !
i s, - + 1, (a T-a) : r, -1
' o 3 4 " "3 ~ 1 ~ -2 ~
- 1 ira Y =g (8 msy Ty (e 1)
T, . '
_ 5, ~ asy - r3(a ~a)
=i T2 i~a ‘ i?
5 5. Refurn to Algorithm I.6
. T 5. NUMERICAL RESULTS _
- The algorithm of the previous section was applied o data obtained using DYNGEN with
T X, and uy specified as in Section 2. An off-design point was obtained using uy =
% (.72727, .72727), with the resulting normalized state X = (.9000, .7897, .7381,.
" «8401, .9454). The normalized A ard B matrices are : ,
. I '. _ . - - -
e 4~3.8 -1.277 2.067, -=%.152 1.448 -.00259  .3553
- . 2,748 -5.39 1.585 ~1.991 1.071 . .2116  -,31618
AD= 377.9 49,51 -264.9 86.807 78.91 BW = 12.54  -13.774( (1)
“ 31.26  139.39 -6.269  -B8B.69 27.83 -.6201 -99.3
o v lei76.5 0 23091 ~10.27  -37.4 —246.7 157.78  6.84
LL ~4.744  ~1.3838 3.2468 -1.4571 1.196% J-.04546 0013 ]
L .82186 -26.726  2,5585 -1.8609  .45548 . .0086 -.0121
¥ AH= 475.73  137.55 -328.91 27.791 81.495 B = 2.434 -.613 (2)
3‘ -50.103 110.91 63.188 -116.69 8.2883 W .67865 ~97.467
E ~-186.77 -67.682 -~41.681 24,586 -243.23 203.44 64755
2 - . L .
.. Using the parameter value a = ,7, the c?‘ coefficient which specify the equilibrium
T+, function g(u) as in Section 4.are giveniby the matrix 1
I‘* «246267 -.00213 1.50082 8.09916  .02864 .73088 ,‘;
2 A 1.01593  .85407 .89872 .66919 -.81879 -.05121 -
Tt C= | 73445  .10133  6.90586 3.09409  .011495 .15272 (3 !
Taat .77234  -.35905 2.49867 2.87415 -~075198 .66191 «3
Lyt s «39503 -.27262 -3.44682 13.4468  .01838 .85921 e

" Another model which we will call Model 3B is easily obtained by using a linear
affine approximation to g(u} such that g(uy) = }'ED, ﬁ(ﬁw) = X,. Model 3B is specifidd

L3

- LY

T

,..,_L
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o aty

R 8 e b e 2 e o B A retk & s ot a4 o

rn T+ = dr il




ii by a = eﬂl, = 2.31.778, g = ~1,31778 and the coefFleient matrix SR . _ N

I +1553 .0028 1.0 1.8 0. 8418
& 1619 .1707 1.0 1.4 0. 5674 .
" ¢ = ].5351 -.1208 1.0 1.0 0. 0857 | ' . )
. .5B878 -.49313 1.0 1.8 0. +9053 '
rg : + 2962 ~.2099 1.0 1.0 a. 9137
. I In o;der to compare the four models, a test point far removed from was chosen
& by setting 3. = {.8,1), and calculating the equilibr}um %.. A step change to u =
{1,1) then ciiuses an accelevaticn transient back to x ﬂfha results of this com-

parison for the rotor speeds are shown in Table 1. More detalled information is
shown for Models 1 and 2 in Figure 1.

P Model 1 Yodel 2 Model 3A Model 3B
- £ Y % Yoo o NOX Ne o T |
T . 0 .94 .829  .934 ,901  ,936 .940  .928  .925 S
4 X .968 946 985 . 943 958  ,955 .954  .945 .. b
16 o -2%0  .977 1,004 ,%86 984  ,978 .983  .975 ‘o
:"F". ) . ‘5 . 998 5993 1: 004 s 998 1 99& N 991 9995 .990 . "'
7 1000 o998 1,003 1,002 998 .997  .998 .97 RO
. - " Tf.})_le 1. Comparison of i:,I Equilibrium gncl Acceleration Transients _ ] i
~ 6. QiSGUSSIDN . OE PQOR QUAM L w
" A numgrical algorlghm for obhtaining nemlinear analytical models for jet engines is Lo
ik presented; The methed ig to separate the transient A(x) and equilibrium g{u)} parts ;

of the system dynamies and approximate these using easily accessible data. The com-

'jf ponents of g(u) are approximated by z linear affiné power law form. The principal
.« numerical difficulty is that all boundary cenditions may be impossible to meet. The

* algorithm then satisfies all but the second of the equations (18) in Section 3 and

L ke by o ol Sl s

AT R T S T T

- fits the second as closely as possible, The variable Yy is zero when an exact fit

1 occurs; buf, otherwise, it sauses a least sguares fit on the derivative conditionsat g

7 -0f equations (16), Section 3, while matehing the other conditions exactly. The ,

. free parameter in the linear affime approximation of Model 3B are handled similarly.

] -.: :
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Abstract

Recently, the CARDIAD (Complex Acceptability
Region for DTAponal Dominance) plot has been in-
troduced and applied to the problem of designing
dynamical precoupensation to achieve column dom—
fnance. This paper illustrates several basic
fecatures of the method while using it to design a
single, low-order dynamical compensator which a-
chieves doxinance at five operating points of a
realistic two-spool turbofan digital simulation.
- chasd

=

1. Introduction

1 The CARDIAD (Complex Acceptability Region for
DIAgonal Dominance) plot is a graphical technique
for choosing dynamical compensators to achieve
diagonal row or column deminance, as define. by
Rosunbrock [1]. Without essential loss of general-
ity, the compensator is assumed to have its di-
agonal elcments equal to unity, and a typical

- CARDIAD plot describes the acceptable range of the
rerl and imaginary parts of the off-diagonal el-
| ements such that dominance is achieved. The basic

graphical building block is the circle. Each
circle represents the acceptable range at a spec—
ific frequency. Solid circles are drawn if ac-
ceptable real and imaginary pairs correspond tc
points inside the circle, and dashed circles are
drawn if acceptable pairs correspond to points out-
side the circle. Plotted as a function of fre-
quency, these circles describe the acceptable range
of the compensator element in question, considered
as a complex function of frequency.

£

Recently, CARDIAD plots have been shown to be
an effective design tool in dynamical precom-
pensation of multivariable plants to achieve dom—
inance [2, 3, 4, 5]. This paper focuses upon an-
other aspect of the CARDIAD plot, namely its
ability to assist with che classification of var-
ious operating points of a nonlinear svstem with
regard to their deminance possibilities and to help
with the design of compensators which achieve dom-
inance of nultiple operating points.

.'ﬂ

. *This &prk was supported in part by the National

" Aeronattjics and Space Administration under Crant
KSG 3048 and in part by the National Science
Foundation under Grant ENG 75-22322.
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2. Specific Assumptions

S g St e &

Plant models used to construct the plers in
the sequel have been generated from the general
purpose digital jet engine simulator DYNGEN [6]
under a load which provides behavior similar to
that of the F-100 two-spool turbofan engine at sea
level static conditions. The models have two in-
puts, five states, and two outputs. They are lin-
earizations of DYNGEN obtained with the aid of the
DYGAECD package [7] under developmeant at NASA Lewis
Research Center. Fhysical description of the
states.can be found in the references [3]. The in-
puts are fuel flow and exhaust areca; the ocutputs
are thrust and high turbine inlet temperature.
Parameterization is accomplished through the nom-
inal value of the fuel flow WF3, which takes the
€ive values 2.145, 2.31, 2,475, 2.64, and 2.75
LBM/SEC, ranging from a low thrust condition to
high thrust without augmentation. All the models
have been normalized.

Thus the plant transfer function matrix has
two rows and two columns, and exhibits traasfer
functions of degree five in both numerator and
denominator. Space limitations preclude their
presence in this manuscript.

Denote the plant by G(s). Then the issue is
to select a precompensator K(s) in such a way that
G(s) K(s) is column dominant [1]. 1In particular,
it is desired to select one K(s) so that column
dominance is maintained over all five nominal fuel
flow conditions.

3. General CARDIAD Features

If the origin of the CARDIAD plot for a given
column is included by all solid circles and ex-
cluded by all dashed circles, that column of the
system is dominant without further compensation,
in as much as the origin represents unity cou-
pensation. Thus, the eventual goal of compernsation
using the CARDIAD plot method is to arrive at a
system where all the CARDIAD plots have this
feature. If there exists a point on the rcal axis
such that the peint is included by all solid
circles and excluded by all dashed circles in the
CARDIAD plot for a given colunm, then the choice
of the value of this point in the off-diagonal

- - ‘e - - - - - -
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entry which the CARDIAD plot represents will make

the column dominant at all frequencies. If there

ia Qo such point the CARDIAD plot describes the

range of a frequency dependent off-diagonal entry
l which will make the column dominant.

CARDIAD plots for two input, two output sys-
tens have some intevescing features. A circle at
& specific frequency in the CARDIAD plot for one
I column will be solid if and only if the cther
column is dominant at that frequency. Thus, when
a systenm is dominant at all frequeacies, all the
circles in the CARDIAD plots will be .solid and all
; will contain the origin. Another interesting fea-
ture is the effect of a column switch, that is,
sultiplication by a matrix with the only non zero
elements being ones on the off-diagonal. The
effects of such a switching of the inputs are that
all the solid circles become dashed, all the dashed
circles become solid, and the shapes of the columm
one and two plots are switched. This fact will be
B vsed in the next section to achieve dominance in
I the various set point models.

4. Design Example
The CARDIAD plots of the five uncompensated
models are all very ‘similar in shape. This great
similarity suggests that one compensator might be
I found that will make all of the models column dom-
g inant. The uncompensated plots also show ..at a
column switch would make the first column of each
of the models dominant at all frequencies without
further compensation. Thus, R1 was choseu (o be

-

1 1 o - *
-
Figures 1 - 10 are the CARDIAD plots of G(s)K: for
the five models. The repetition of the general

_shapes of the plots, which is unaffected by the
column switch, is very apparent. The plots also
show that the first column of each of the models
4s now dominant. This can be ascertained either
by the fact that the origins of the column one

* plots are included by all solid circles and ex-
cluded by all dashed circles or by noting that all
of the circles in the column two plots are solid.

To achieve dominance in the second columns of
the models, it is clear that some sort of frequency
l depentent compensation will be necessary be:ause
there exist no points on the real axes of the plots
which lie inside all of the solid circles. A firsc
choice of a function to fit the paths of the cir-
cles could be a simple first order function which
traces a semicircle through the complex plane as
the frequency varies. However, it is desired that
. one such function be found that will work on all
five of the models; so, a second order compensator
-l wiil be used to fit better the shape of the circles
at the hihger frequencies. Two things that should
be noted about the shapes of the cirecles in the
column two plots are that the circles tend to be
! larger for the lower values of fuel flow and that
in general, the center of the lowest frequency
(largest) circles moves toward the ovigin as the
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nominal value of the fuel flow Increases. Since
there is more margin for error in the lower nowm-
inal value of fuel flow models, a compensator
which is fit to a rough average of the five plots
and which tends to be closer to the higher nominal
value of fuel flow models, mlght achieve domlnance
in all five models. 1

l

The average value of the center of the lowest
frequency circle of the five plots 1s -9.81. Tuis
-~ supgests that designing a compensator to fit the
nominal fuel flow of 2.75 wmodel which has as the
center of the lewest frequency circle the value of
-=9.59 might achieve dominance in all of the mod-
els. The second order funtion that was chosen is

’07425 - 9.59
.014s% -, 998s + 1.

and the pnext compensator, Kz(s), is
1 -.742s = 9.59 i
2
.014s” ~.998s +1 .
0 1

K(s) =

+

' Thus, the overall compensation is K(s) given by
o 1
K(s) =

we Ml v 9:59
.014s” —.998s + 1.

1

Figures 11 - 20 are the CARDIAD plots of
G(s)X(s) for the five models. It is clear that
they are all dominant at all frequencies since
211 of the circles are sclid and all include the
origin. Thus, one compensator has been found
which will make all five of the models considered
in this paper dominant.

5. Conclusions

Through the use of CARDIAD plots, it has been
possible to achieve dominance over a range of
operating points of a jet engine simulation. The
compensator given zbove also achieves dominance at
all but a very narrow range of frequencies in the
model of another operating point. The results
suggest two things. First, using the CARDIAD
plots as a guide, it could be possible to design
a compensator which varies with the nominal value
of the fuel flow and achieves global dominance
over a wide range of operating points. This is
currently being studied. Second, the repetitive
shape of the CARDIAD plots over the range of
operating points suggests that the CARDIAD plot
might be a useful tool in the classification of
operating points with regard to interaction. Such
a feature could be quite helpful in analysis of
which models to use over flight envelopes varying
from sca level toc high altitude and frow low

through high thrust. ¥
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entry which the CARDIAD plot represents will make nouinal value of the fuel flow Increases. Since
the column dominant at all frequencies., If there there 1is more marpin for evror in the lower nom-
is oo such point tha CARDIAD plot described the - inal value of fuel flow models, 2 compensator
ranpe of a frequancy dependeant ofi-diaponal entry - which {s f1t to a rough average of the five plocs
! which will make the column dominant. and which tends to ba closer to the higher nominal
lr : value of fuel flow models, mlight achieve dominance
CARDIAD plots for two input, two output sys— in 21} five models. T e . o
tems have some interescing features, A circle at : !
8 specific frequency in the CARDIAD plat for one ) The averape valuc of the center of the lowest
’l column will be solid 4f and only if the cther ) frequency circle of the five plots 1s -9.81. This
colurcn is dominant at that frequency. Thus, when -~ supgests that desipning a compensator to £it the
a system is dominant at all frequeacies, all the k nominal fuel flow of 2.75 model vhich has as the
. circles in the CARDIAD plots will be.solid and all center of the lowest frequency cirele the value of
will contain the origin. Anorher interesting fea- - -=9.5% might achieve dominance in all of the mod-
ture Is the effect of a column switch, that is, els. The second order funtion that was chosen is
multiplication by a2 matrix with the ouly non zero
elements being ones on the off-diagonal, The -. 7425 — 9.59
Y effects of such a swirching of the inputs are that .014s% ~,998s + 1.
all the solid circles become dashed, a2ll the dashed
. circles become solid, and the shapes of the columm and the next compensator, Kz(s), is
one and two plots are switched. This fact will be —.7425 ~ 9,59
s vsed in the next section te achieve dominance in ' 1. = 3 * :
l the various set point medels. , K(s) = Y L014s” <,998s +1 .
C e o : 1
. : ! i
b g - 4. Design Exauple " Thus, the overall compensation is K({s) given by
The CARDIAD plots of the five uncompensated o : 1 )
models are all very 'similar in shape. This great
similarity sugpests that one compensator might be .K ' i -
b i found that will make all of the models column dom— (8) = ~.742s — 9.59 3
dnant. The uncompensated plots also show Laat a ’ Oié 2 998s + 1
column switch would make the first colupnn of each -014s" -.998s + 1.
of the models dominant at all freguencies without
. . 1 e R Figures 11 -~ 20 are the CARDIAD plots of
o | further compensation. Thus, Ll was chosed io be : "G(s)K(s) for the five models. Xt is clear that
. 0 1 they are all dominent at all frequencies since o
) 1 o . - M - : - 211 of the circles are solid and all include the
’ . ' C - origin. Thus, one compensator has been found
']° Figures 1 — 10 are the CARDIAD plots of-G{s)K1 for which will make 21l five of the models considered:
& the five models. The reperition of the gemeral in this paper dominant. .

: [
.shapes of the plots, which is unaffected by the . . R -
colvmn switeh, is very apparenr. The plots also : : oo ;
show that the firsr tolugn of each of Ehe models - COnclusions f
is now dominant. This can be ascertained either
by the fact that the origins of the column one

* plots are included by all solid circles and ex-
cluded by all dashed circles or by noting that all.
of the circles in rthe column two plots arxe solid.

»"-u_ ‘.{

Through the use of CARDIAD plats, it has been
possible to achieve dominance over a range of
“operating peints of a jet engine simulation.. The

all but a very narrow range of frequencies in the
model of another operating point. The results
sugpest two things. First, using the CARDIAD -

‘. plots as a guide, it could be possible to design

To achieve dominznce in the second columns of
the models, it is elear that some sort of frequency
. depentent compensarion will be necessary because
there exist uo poincs on the real axes of rhe plots
which 1de inside all of the solid circles. A first of the fuel flow and achieves global dom%;ancu_
choice of a function to fit the paths of the cir- over a wide range of.o?arating points. 18 is
. ¢les could be a simple first order function which . - currently being studied. Second, the repetitive
traces a semicircle thiough the corplex plane as h 'shapa-gf theiCARDIAD plots Ever Ehe :;E%EDosl
the frequency varies. However, it is desired that operating points suggests that the C ) plot

- -

one such function be found that will work on all might be a USE:UI tool in the classification of
. T five of the madels; so, a second order compensatoxr operating points with regard to interaction, Such_
.I wiil be used to fit better the shape of the circles. - & feature could be quite helpful in analysis of .
¥ “ 77 .which models to use over [light envelopes varying .-

- at the hihger frequencies.  Two things'chqt shouldf.

be noted about the shapes of the cirecles in the from sca level to: hlgh alvitude and from low

c¢olurm two plots are that the circles tend to be’ .~ through high thruse.: -~ ~
I larger for the lower values of fuel flow and that ) -

in peneral, the cenrer of the lowest frequency o - X

{laxgest) circles maves toward ihe ovigin as the T D el mgee v . e - 4 m e
] . - L | - | | | : ) Ta owm
? K - o ot ['.""‘TE:.‘:"' -vvl:ﬁ - AR L aled 2‘_.-;.';_ A nELETIN "

1 - : -
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compensator given asbove also achieves dominance at.

a compensator which varies with the nominal value.;jﬂ
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Foreword

From the outset, the use of a Theme Problem has posed certain challenges. Authors
from academic backgrounds tend to be in need of highly detailed information about
plant and specifications, while workers in industry and laboratories must often be
satisfied with indirect information and sometimes with none at all. We have tried
to arrange a reasonable compromise somewhere on middle ground. Our decision to
select a problem related to a realistic modern turbofan engine had special ramifi-
cations of its own, not the least of which was the fact that certain types of addi-
tional data were precluded for proprietary or other reasons. We believed all along
that the advantages of data realism outweigh the disadvantages of incomplete infor-
mation.

The chronology of the Theme Problem begins in late summer, 1976, during discussions
with J. L. Melsa. Subsequent contacts with several potential Forum participants

led to the drafting of a Tentative Theme Problem Description, which was sent out to
various.workers for critique in early 1977. When evaluations were in hand, a Theme
Problem Description was prepared on March 1, 1977 and became the working document
for authors preparing papers for the meeting. Communications with several addition-
al researchers established the need for minor modifications and élarifications,
which were decided at a committee meeting held during the Joint Automatic Control
Conference at San Francisco in June, 1977. These decisions formed the basis for an
addition Theme Problem Memorandum mailed to all participants on July 18, 1977.

All these adjustments are included in the Final Theme Problem Description, which is
included here.

Any clarity which may be present in this final problem description is due in large
part to the valued advice of many colleagues, among whom I must especially mention
R. L. DeHoff, R. D. Hackney, B. Lehtinen, W. C. Merrill, J. L. Peczkowski, C. A. -
Skira, and H. A. Spang, III. Credit for any and all obscurities must, of necessity,
accrue to the author.

M. K. Sain
Notre Dame, Indiana
September, 1977
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ABSTRACT

-me design problem should serve the Forum goals in at least three ways. Firsg
r%a' 1d help to unify the presentations and, thus, make them more useful for group
"tn v after publication. Second, it should help to make ithe Forum relevant to the
present—day design world by focusing upon a real system of considerable current in-

,‘e~.:u. Third, it should help to delineate the state of computaticnal readiness of

» various design viewpoints, and so help to point out where additional numerical
earches would be useful.

at' It is important to recognize the generally positive intent involved with
the use of this problem. It is not intended that the theme problem usage degenerate

;h"o a computational contest.

1. INTRODUCTION

.
r

e d very important developing area for linear multivariable rontrol has arisen because
-~ of recent increases in the complexity of aircraft turbine engines. Engines in use
 today have, essentially, the one control variable of fuel flow, though some make use

of a variable nozzle area which is not unlike the iris diaphragm that controls
aperture settings i a camera. Engines in the not-so-distant future can be expected
to permit control of vanes in the stator portions of the various compressor stages.
Further down the development line are engines with enough variable geometry to re-
ceive the informal designation of '"rubber engines' by research engineers in the
industry.

It is widely accepted that the older, workhorse, hydromechanical control methods are
not equal to these new tasks and that they will, therefore, give way to electronic
digital control. The entrance of the digital computer opens up vast numbers of new
design possibilities, which are now beginning to receive increased attention in the
industry. The central role played by the aircraft turbine engines in civil and
military aviation makes clear the economic import of these trends. It would be hard
to select a more timely theme design example for comparison of linear control alter-
natives than the jet engine.

In the United States, a joint study is now underway on the Pratt & Whitney F100-PW-
100 afterburning turbofan, a low-bypass-ratio, twin-spool, axial-flow engine. Spon-
sored by the Air Force and by the National Aeronautics and Space Administration,
this study focuses on the linear quadratic regulator theory, applied at multiple
operating points in the control regime. :

One effect of the theme usage of such a plant in the NEC Forum should be a broaden-
ing of the design discussion to include other design viewpoints as well.

2. PLANT

The numerical model of the jet engine is supplied in (A,B,C,D) form on Attachment 1.
For the A and C matrices, note that columns 9-16 are listed below columns 1-8. This
model is for zero altitude and for a power lever angle (PLA) of 83 degrees, which is
near maximum non-afterburning power. The motivation for choosing this operating
point comes from the fact that every engine has to pass through this condition, as,
for example, on takeoff. Also supplied is a list of the input, state, and output
variables associated with this model. These two pages are taken from the report
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R. J. Miller and R. D. Hackney, "F100
Multivariable Control System Models/
Design Criteria,'" Pratt and Whitney
Aircraft Group, United Technologies
Corporation, West Palm Beach, Florida,
November 1976.

Because a number of the techniques which will be discussed at the Forum have graphi-
cal aspects, it is planned to facilitate the inclusion of curves in the publication
by limiting the plant to three control inputs. In consultation with numbers of our
Theme Problem Advisory Committee, we have selected U,, U,, and U, as these inputs.
Workers who feel an absolute necessity to use all fivVe inputs aré welcome to do so;
however, we would ask that in such a case they provide a comparison of the effect
of using five ‘inputs over and above that of using only cvhree. This request is

'designed to increase the comparability of the various design results.

Actuator information for the three control inputs is given in Attachment 2. Also
provided is iﬁformation associated with the actuation of U,, if that input is used
in addition to U 99 and U,. Finally, should U_. be used in addition to U,, UZ’

.and U,, a servo %1me constant of 0.02 sec. can be assumed for actuation. Various

rate limits on the actuators can be noted, as in Table A.

Table A
Actuator Rate Limits

U 15,800 (1b/hr)/sec.

1.

U2 3.6 thlsec.
U3 48 Deg/sec.
UQ 40 Deg/sec.

The actuators have some limits, also, which will be mentioned here. On U_,, it may
be assumed that the limit is + 6°. On U,, a limit arises because the nozzle area
is pretty well down to its minimum at this operating point; the limit is assumed to
be about 1 square feet in that direction.

The Theme Problem models are in absolute, unnormalized form, without any mention of
the set point values. This makes it difficult to size inputs. The committee worked
out a proposal to supply "ballpark" set point values so that the model could be
normalized. Uufortunately, it was not possible to obtain even such approximate in-
formation.

A consc-uence of this fact is that the absolute rate limits of Table A have meaning
only ia relationship to the size of reference commands assumed. Because we are un-
able to supply the suggested reference command, the effect of actuator rate limits
can be treated only hypothetically; and we have to leave the issue of whether to do
this, and how te do this, in the hands of the authors.

Turning now to the sensed variables, we have available X, , X,, X,, X., and (X
), the last of which is denoted FTIT for "fan turbine inlet té&mperature."
Sensor time ~onstants in seconds are listed in Table 3.
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Table B
Sensor Time Constants
AL PAGE 13 X 0.03
DB ROOR QUALITY xi 0.05
x3 0.05
XS 0.05

Sensing of FTIT is a bit more elaborate and is indicated on Attachment 3.
3. ENVIRONMENT

Measurement noise is on the order of 1%; and state noise is negligible. Therefore
it is not planned to supply any noise data. Authors wishing to make noise studies
must make their own assumptions. This is not unrealistic for the present stage of
discussion. Though some techniques may well make use of observers or dynamical out-
put feedback, no formal stress on filters is anticipated. The Forum, then, is
visualized primarily as a control meeting, although contributed papers in the stoc-
hastic area will be accepted if they contribute to the Forum theme.

Practice in the industry involves the use of multiple linear models at various oper-
ating points from sea level to high altitude and from low to high thrust. As oper-
ation transitions from the neighborhood of one operating point to the neighborhood
of another, these models change in consonance with some physical variable. Para-
meter veriation is, therefore, an aspect of design.

But publicly available neighboring linear models are not near encugh to the Theme
Problem model to provide meaningful data on parametric variation. This fact, com-
bined with lack of set point information, led the committee to suggest a 5% change
in eigenvalues as one, hopefully useful, measure of such variation. Because normal-
ization of the model is a similarity transformation, this characterization is in-
dependent of set point.

4. REDUCED ORDER MODELS

Approximate eigenvalues of the Theme Problem plant are -577, -176, -59.2, -50.7,
-47.1, =38.7, -21.3 + {.822, -17.3 + 14.78, -1%.0, -6.71 + 11.31, -2.62, -1.91,
-.648. It is the nature of the jet engine control problem that these can usually
be well identified with physical variables. For example, -.648 associates with X, .,
-1.91 associates with X,., -2.62 associates with X,, and so forth. X, 'is related
to the eigenvalue pair -6.71 + i1.31. This typé of information can be deduced
from a study of the eigenvectors corresponding to a particular eigenvalue. It can
be expected that actuator modes, such as that involved with fuel flow, will enter
into this list. Some discussion on :"is point can be found in R. L. DeHoff and

W. E. Hall, Jr., "Design of a Multivariable Controller for an Advanced Turbofan
Engine," Proceedings 1976 IEEE Conference on Decision and Control, page 1002.

In the interest of offering some assistance to authors who might be having computa-
tional difficulty with the full size problem, the following reduced model has been
made available by Dr. DeHoff of Systems Control, Inc. (Vt.). It is a model which
neglects sensor dynamics, augments the plant by the dominant actuator dynamics, and
then reduces to fifth order. The resulting five states are

A

Xl = Fan Speed (rpm)
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Note that the "Augmentor" Pressure X, is not to be identified with X_.; the quanti-
ties are not defined at the same phySical location.

X,
X

~

-

Zs

one of the original states.

Remark:

of considerably less dominance.

permits.
able.

A'(5 x5)

~-.3245E+01
«1742E+01
«1685E-01
.0000

-.2163E+01

B (5 x5)

«1432E-01
«2871E+00
-.2469E-02
«1000E+02
-+1311E+00

c (5 x 5)

«1662E+01
.1383E-01
«1694E+00
. 7590E~-04
-.4859E-04

D (5 x5)

«1302E+00
«1449E-06
«2967E-01
+1046E-05
-.8395E-05

-.2158E+01

-.5941E+01

-.2554E-01
.0000
.6862E+01

-.3553E+03
. 7286E+03

-.1030E+03
.0000
.3295E+03

-.1768E+0L
.3142E-05
-.1129E+00
.3269E-05
.1381E-03

.1992E+03
+3395E+00
« 7927E+02
-.7720E-02
-.7897E-02

4

= Compressor Speed (rpm)

= "Augmentor" Pressure (psia)

= Fuel Flow (1b./hr.)

= Burner Pressure (psia)

~-«9155E+03
-.2816E+03
-.1003E+02
.0000
. 7405E+03

-.9906E+02
.2514E+02
.6333E+00
.0000

-.2500E+02

.7999E+02
-.1060E-01
-.4959E+01
-.1477E-01

.1140E-01

.4802E+02
.6806E+00
.2567E+01
-.5814E-02
-.6841E-03

.5731E+00
.1897E+00
.7994E-02
-.1000E+02
.1195E+01

-.1549E+02

~-.6487E+02

-.3213E+00
.0000
.6257E+02

-.1890E+00
.1289E-03
.7386E-01
.2284E-05
.1951E-04

-.1503E+02
.2812E-03
-.7631E+00
.1157E-03
~-.9643E-03

Note also that

The U, Actuator diagram shows a Servo System gain of 2.4.
our attention that a more realistic number for this gain would be about 12.0.
effect of this gain change is to take the dominant CIVV position actuator eignevalue
from a location of high dominance in the overall plant-actuator system to a location
It is not necessary for authors to make this change
if they have already completed their calculations, inasmuch as the 2.4 gain apparent-
ly is one of those "glitches" which crept in an uninvited manner.
choose to compare the effect of the gain 12.0 with the gain 2.4, if time and space
We have included this remark here so that the reduced order model, which
has the same controls and outputs as the full size system, may be more understand-

.1342E+03
.5705E+02
.5807E+00
.0000
-.1715E+03

.2220E+05

.8122E+04
-.7418E+02

.0000
-.6445E+05

«3771E+02
-.1839E-06
-.1835E+00

.4315E-04
-.2688E-02

.1083E+05
.3204E-03
. 2066E+04
.6605E-01
-.2815E+00

X. was not

It has come to

Some authors may

SlAe e, = L
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5. SPECIFICATIONS

The overall viewpoint of the controller is quite simple. The pilot has one lever,
which we might intuitively call the throttle and which sets what is called in the
industry the "power lever angle." Basically, the pilot increases the lever angle

to obtain more thrust. All the cther variables must be controlled so as to achieve
the new thrust quickly, but without overshoot and without violating some important
physical considerations. An example of one of these is the temperature at the inlet
to the "high" turbine just aft of the burmer. This temperaturc is ordinarily
scheduled very near its maximum safe value, and temperature increases are not wel-
come because the turbine elements are thin, respond very fast, and can be permanent-
ly damaged or create a need for more frequent engine overhauls. Another example of
a constraint is the various undesirable stall conditions in the compressor.

This problem comes down to us in the following form. Assuming a step change in
power lever angle, we want to move the engine to a slightly different operating
point in the above described acceptable dynamic fashion. The power lever angle
change is converted by a master engine scheduler into a reference input for our
linearized feedback model. The nature of this reference input is not highly specif-
ic. Step inputs are commonly studied. It is not likely that highly detailed infor-
mation about these references will be available, but we can try to firm up any par-
ticular issues which may be crucial to one paper or another. The exact nature of
these references gets one into the exact nature of the schedulers. It does not seem
too productive in a linear meeting to go very far into such '"global" issues. If
greater reference variety is needed, it can probably be safely assumed. It would

be good, however, if each paper tried to discuss at least the reference step.

For purposes of design, we can group the variables into two families. Y., Y_, Xl,
and X, are desired to respond fast without overshoot. Y4 should not decieasé more
than ~.05; Y5 should not decrease more than .15.

Remark: The decrease limits on Y and Y. are to be regarded in the same spirit as

the U, actuator gain change in the preccalng section. If calculations are complete,
there”is no requirement to incorporate it. Some authors may wish to study its
effect, however.

6. VIEWPOINT

We believe that the theme problem should appear in each presentation as the major,
and prcbably the only, illustration of the particular design methodology being
described. We visualize each paper as an exposition of design viewpoint, with jet
engine illustration. We do not visuvalize the paper as an exposition of jet engine
design. In other words, the theme problem will be an apparent thread through the
fabric of the Forum, but the pattern of the fabric will be set by the various linear
control alternatives as entities in themselves. Put in yet another way, the Forum
is on "Alternatives for Linear Multivariable Control" and is not upon "Various
Approaches to Jet Engine Control."
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F100 MODEL ALT=0.0 PLA=83

THE A MATRIX

-4.328 L1714 5.376 401.6

-.4402 -5.643 127.5 -233.5
1.038 6.073 -165.0 ~4.483
.5304 -.1086 131.3 -578.3
.8476E-02 -,1563E-01 .5602E-01 1.573
.8350 ~.1249E~-01 -.3567E-01 -.6074
.6768 ~.1264E-01 ~.9683E~01 ~.3567

~.9696E-01 .B666 16.87 1.051

-.8785E-02 ~.1636E-01 .1847 .2169

~.1298E-03 -.2430E-03 .2718E-02

-1.207 -6.717 26.26 12.49

-.2730E-01 -.4539 -52.72 198.8

-.1206E-02 -.2017E-01 -2.343 g.835

~-.1613 -.2469 -24.05 23.38

-.1244E-01 .3020E-01 -.1198

-1.653 1.831 -3.822 113.4

® .9990 1.521 -4.062 9.567

11.32 10.90 -4.,071

-.9389E-02 .1352 5.638

-3.081 -4,529 5.707 -.2346
.2090E-02 -,5256E~01 -.4077E-01 -.9182E-02

.3214E-02

-.4821E~01

-.5739E-01
«2246E-01

~724.6

-.1953E-01 -,1622 °
.1878E-01 ~,2129

.2253E-01 .1791
-49.99 .6760E-01
-.6666 -.6657

.2854 2.332
-9.627 -9,557
-.4278 =. 4245
-4.414 =4.,354

-.1127E-02 ~.6760E-02
.5004 -.1437

-.6439E-02 =.2346E-01
-.9337E-02 -.3144E-01

.8371E-02 .2645E-01
39.46 .4991E-02
.5847 .6654E-04
=47.65 . 3406
38.48 -50.01
1.710 ~2.000
17.66 -3.113

.1835E-01 —-.9981E-03
~2.416 =.1073

-1.933
~434,3 20.59
1049. -82.45
102.0 =-9.240
-10.05 .1952
37.65 -19.79
80.24 -.8239E-01
-102.3 29.66
-8.420 .7003
-.1246 .1039E-01
-1269. 103.0
-28.09 2.243
-1.248 .9975E-01
146.3 1.638
5.673 -.4525
341.4 ~27.34
10.08 -.6017
-.6063 -.7488E-01
.1797 . 2407E-01
-2.111 -.2460
-.8178E-01 .3428E-01
-.2201 -.2514E-01
-.2919 -.3370E-01
.2560 .2835E-01
.8983E-01 .5349E-02
.1347E-02 .7131E-04
3.065 .3624
.1011 .1203E~-01
-1.996 «5349E-03
-3.018 -19.77
-.1347E-01 -.1070E-02
-1.078 30.63

1.020 ..

2.040
-5.314
-1.146
-.8804E~-02
-.1813
=20.47

.5943

.5666E-01

.8395E-03

7.480

L1794

.8059E-02

.1385

19.81
=2.040

-.1312
-.5936
1.100
-.4686
.4995E-02
-.3749E-02
.8873E-01
~.3749E-01
.0
.0
-.4343
-.4686E~-01
-.1999E-02
-.4999E-01
=20.00
19.89

~.9820
-2.592
5.097
-2.408
-.2110E-01
-.2962E-01
~.3928E-01
-19.97
6.623
.9812E-01
36.84
9.750
.4333
4.486
.1249
-.6166

.9602E-01
-.9602E-01
.2743E-01
-.3223
-.1256E-01
-.3361E~-01
-.4458E-01
.3635E-01
.1372E-01
.2057E-03
L4681
.1715E-01
. 7544E-03
.1509E-01
-.2057E-02
-50.16
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THE B MATRIX
~.4570E-01 -451.6 -105.8 ~-1.506 851.5
.1114 -546.1 -6.575 -107.8 3526.
.2153 1362. 13.46 20.14 -.6777E+05 e
.3262 208.0 -2.888 -1.653 -269.1
.9948E-02 ~-98.39 .5069 -.1940 -94.70
.2728E-01 71.62 9.608 -.3160 -184.1
.1716E-01 71.71 8.571 .7989 -515.2
-.7741E-01 -141.2 -,8215 39.74 1376 Vi
.3855E-01 -7.710 -.4371E-01 -.1024 -6684.
.5707E-03 -.1144 -.6359E-03 -.1432E-02 ~99.02
5.727 -1745. -8.940 -17.96 .8898E+H05
.1392 -24.30 -.2736 -.3403 -6931.
.6172E-02 -1.082 -.1183E-01 -.1452E-01 -307.7
.6777E-01 16.60 .3980 +2311E-01 ~-2588.
.1880E-02 9.147 ~-.8241 .8984E-01 -32.31
L1677 435.8 -89.94 4.900 -295.5
THE C MATRIX
© .4866 -.6741 5.392 95.42 24.03 10.52 .8190 -.4492
.1383E-01 .2739E-05 .0 .0 -.1081E-01 -.5545E-04 .4722E-04 .0
.0 .0 .0 .0 .0 .0 .0 .0
.7418E-04 .5496E-05 .4790E-05 .1478E-03 -.1504E-01 -,6503E-04 .8820E-04 .4999E-05
.1538E-04 .1201E-03 -.2579E-02 -,1609E-03 .1618E-01 -.1071E-02 -.9561E-04 -.5503E~05
«5195 .8437 -1.863 .5709E-01 .4815 3.428 2.161 .7681E-01
.0 .0 .0 .0 .0 .0 .0 .0
.0 .0 1.000 .0 .0 .0 .0 .0
.3434E~05 .2727E-04 .1128E-05 .4002E-05 .3673E-04 .4290E-05 -.4958E-05 .5609E-05
-.3732E-05 ~.2996E-04 -.1234E~-05 ~,4380E-05 -,4024E-04 -.4721E~05 .5324E-05 -.6103E-05
THE D MATRIX
-.6777E-01 -420.5 32.97 -1.824 1245,
.1282E-03 .3353 . 6804 .« =+5605E-04 -.1199E-01
.0 .0 .0 .0 .0
.1030E-05 ~.1193E-01 ~.5806E-02 .,6015E-04 .4463E-01
.8109E-05 .2328E~-01 .1178E~03 ~.5538E-02 -.1039
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Engine State Variables

e
wmo s W N
]

’SN\ONQ”\FG‘” A M M

N
[
I

X9
e’ e
4 =
o [ S
6"

Fan Speed, SNFAN (Nl) - rpm
Compressor Speed, SNCOM (N2) - Tpm

Compressor Discharge Pressure, P - psia

t3

Interturbine Volume Pressure, Pt4 5

- psia

Augmentor Pressure, - psia

P
t/m
Fan Inside Diameter Discharge Temperature, th 5h T °R

Duct Temperature, °R

Te2.5¢ =
Compressor Discharge Temperature, Tt3 - °R

°R
°R

Burner Exit Fast Response Temperature, Tthhi -

Burner Exit Slow Response Temperature, Tt4lo -

= Burner Exit Total Temperature, Tt4 - °R

Fan Turbir : Inlet Fast Response Temperature, Tt4 Shi " *R
Fan Turbinc¢ Inlet Slow Responase Temperature, Tt4 510 °R

Fan Turbine Exit Temperature, Tts - °R
[+]
Duct Exit Temperature, Tt6c R

Duct Exit Temperature, Tt?m - °R

Engine Inputs

U

-

W N

Main Burner Fuel Flow, WFMB - 1lb/hr
Nozzle Jet Area, Aj - ft2
Inlet Guide Vane Position, CIVV - deg

High Variable Stator Position, RCVV - deg

Customer Compressor Bleed Flow, BLC - %

Engine Outputs

Y =

Ko
i & W N =
]

Engine Net Thrust Level, FN - 1b
Total Engine Airflow, WFAN - 1b/sec
Turbine Inlet Temperature, Tt4 - °R
Fan Stall Margir, SMAF

Compressor Stall Margin, SMHC

10
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ATTACHMENT 2

Metering Valve

Pump Controller

Fuel Flow Fuel Flow
rse———< 1 . 1 -
Request 0.028 + 1 0.1 + 1 To Engine

U, Actuator

1

Servo System

Air Motor Dynamics

' 1
1 1 2 2g
3 - g —
Aj Request 0.01s + l_ 5" +—S +1 A Position
; w 2 w j
n n
w_ = 6Hz
n
t = 0.56
U2 Actuator
. Servo Power
Stepper Motor System System Cylinder
Position 1 2.4 1 CIVV
a—— S = -
Request 0.028 + 1 0.01s + 1 S Position
U3 Actuator
Servo System Power Cylinder
Position Request 40 RCVV Position

1

+><f? >15.01s + 1|

g

U4 Actuator

11




s Sowl S0 NOE NS WS e Eiad esae amees St e e med Greed e meed deesd B

ATTACHMENT 3

FTIT Sensor

0.309
‘ —>> 0.5955 + 1
+ FTIT
FHT Sensed
o} _0.691 M
5.495 + 1
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INPUT COMPENSATION FOR DOMINANCE OF TURBOFAN MODELS

The determinant of return difference

J As a result, Nyquist

R. M. Schafer and M. K. Sain

Department of Electrical Engineering
University of Notre Dame
Notre Dame, Indiana 46556
U.S.A.

. ABSTRACT

establishes a crucial 1link between open and
closed locp characteristic pelynomials in multivariable feedback control systems.
constructions on this determinant carry important design infor-
One way to extract this information is by achieving diagonal dominance.

91 This peaper presents a method which uses dynamical input compensation to achieve
colunn dominance. Application to the Theme Problem is included.

-,




.-

INPUT COMPENSATION FOR DO’ . .JCE OF TURBOFAN MODELS

R. M. Schafer and M. K. Sain

University of Notre Dame
Notre Dame, Indiana 46556
© U.S.A.

ABSTRACT

The determinant of return difference establishes a crucial link between opca and
closed loop characteristic polynomials in multivariable feedback control sys*ems.
As a result, quuist constructions on this determinant carry important design infor-
mation. One way to extract this information is by achieving diagonal dominance.
This paper presents a method which uses dynamical input compensation to achieve
column dominance. Application to the Theme Problem is included.

! Department of Electrical Engineering

1. INTRODUCTION

Recent advances in the generalized Nyquist theory Ior linear multivariable feedback
- control systems have brought about very substantial new opportunities for research
in the area of frequency domain control design. Most of these advances are predi-
* cated upon the relationship between closed loop and open loop characteristic poly-
nomials—-as embodied in the determinant of return difference. Features of the Nyquist
diagram of this determinant are important aids to control system design.

" 2

It is apparent that a diagonal return difference will decompose ihe return differ-

. ence determinant into a product of its diagonal elements, thus reducing a multi-

- variable problem to classical single-input, single-output form. Less apparent, but
of much greater practicalsignificance is the fact that an approximately diagonal
return difference can have essentially the same reducing effect on a multivariable
problem, when regarded from a generalized Nyquist viewpoint. The best known of
these approximately diagonal conditions has come to be described as diagonal domi-
.flance. A productive design strategy can be mounted, therefore, in two steps. First,
achieve diagonal dominance; second, apply classical single-input, single-output
techniques [1]. 3

[ S ] .
& - L ]

q,..a‘.mxz;.’

Unfortunately, methods to attain diagonal dominance have been rather slow to advance.
For the most part, they have been restricted to the selection of constant real com-
pensators, the entries of which are typically obtained by procedures of optimization
that do little to preserve some of the classical advantages, such as insight, affor-
ded by the frequency domain approach. Much work needs yet to be done on the theory
of attaining diagonal dominance by use of frequency dependent, dynamical compencation.

-

This paper considers the application to the Theme Problem of a wseful new design aid
called the CARDIAD Plot. In its prusent form, this method deals with the design of

" a dynamic precompensator for the plant, in such a way that column dominance is
“achieved. An important feature of the approach is the enhancement of designer in-
sight toward the coupling present in a plant. .

" Section 2 introduces the CARDIAD method for two-input, two-output plants, and Sec-
tion 3 provides an illustration of certain basic features of the method, in the con-
- text of a jet engine plant related to the Theme Problem. Section 4 gives a genera-

lization of the idea to three inputs and three outputs, and Section 5 applies these
‘results to the Theme Problem. Conclusions appear in Section 6.
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2. GRAPHICAL APPROACH
The ith column of a matrix Z(s) is said to be dominant if

n .
lzii(s)i - Zl Izji(s)l > 0 (D

#

for all s on a Nyquist contour D. A similar definition can be made for row domi-
nance.

For 2 two-input, two-output system, Eq. (1) can be equivalently written

Izu(s)l2 = Izji(s)lz >0 143 - €2)

for all s on D, -

Consider a two-input, two-output system having only precompensation. The open loop
transfer function of the system is

Q(s) = G(s)K(s). (3)
Let K(s) be restricted to the form
T 1 uz(s) :
K(s) = . . (4)
ul(s) 1 :

" Since any matrix having nonzero entries on its main diagonal may be put into this

form by multiplication with a diagonal matrix, and since multiplicaticn by a diago-
nal matrix does not affect dominance, this can be done without essential loss of gen-
erality.

Let G(s) be evaluated at a specific frequency w. Then

-

ro+ 13 o +i] 1 %, by ,
Q(jw) = 11 }1 12 12 2 2 . (5)
Tyy t iy d Tyt iyyd ¥+ y,y3 . ‘
Performing the indicated matrix multiplication, the four entries in the matrix
Q(s) are
=jm
9 =T ¥ 1,3+ (1'12 + ilzj) (xl 2 YlJ'), ) (6)
Qg = Top + dgpd * (ry) + 15130 (xp +y 1) ®)
From Eq. (2); the first column of Q(s) will be dominant if
2 2 - R
|92|" = |92 > O (10)

Pérforming the indicated subtraction results in what will be referred to as the domi-
nance inequality for column 1. The form of this inequality is

_ 2 * 2 .
fl(xl,yl) = axy 4 ay; + bel + 2cyl td O,
where the constants are defined as
= tz + 12 - r2 -1 2 (11)
&% Ty 119 “ T3 =1y ]
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brtmid” utn - tatn ~ntar (12)

e = rodyy i T Tiadin < Yooty g:mmw PAGQ . ' (13)
Vi, R : S

4w r2 + 12 2 2 - QUAL\'ITY (14)

T RS s L
Note that each constant is composed of complex field elements which come from evalu-
ation of G(s) at a specific frequency w.

The function fl(xl,yl) is a paraboloid in three-space and is normal to the xl~y1

plane. If this paraboloid intersects the x.-y, plane, the intersection will be 2
eircle. Standard maximum-minimum analysis “gives that the maximum or minimum of the
dominance function occurs at
= - = - 15)
x, = -b/a v, = —cla , (15)
To determine if the point that was found is a minimum or a maximum, the hessian is
formed. If the hessian is negative definite, the point found is a maximum. If the

hessian is positive definite, the point found is a minimum. The hessian of the domi-
nance gguation for column one is

e 2 | | o ' (16)
0 2a b

so that the second derivative test reduces to a test on the sign of a.

Proceeding from this analysis, there are four possible cases. The point that was
found was a positive maximum, positive minimum, negative maximum, or negative mini-
mum. The two cases that are of interest are the positive maximum and tue negative
minimum since it has been shown [2] that the other two cases cannot occur. In each
of the cases of interest, the positive maximum and the negative minimum, there is

an Intersection of the x ¥y plane. Recalling that the column will be dominant if
f1Cx1,y ) is positive, t%e analysis of the two cases is as follows. In the positive
maximum case, the values of X1 and yj; which will result in solution of the dominance
inequality are those points which lie inside the intersection of fl(xl,yl) and the
X7Y; plane, that is the circle which is the solution of fl(xl,yl)==0. In the nega-
tive minimum case, the choices of X1 and y; which result in solution of the domi-
nance inequality are those points which lie outside the circle of intersection.
Thus, the intersection of the dominance function fl(xl,yl) for column one and the

xl—y1 planec defines the acceptablé range of X1 and Yy such that the system will be
dominant in the first column at the specific frequency at which the analysis was per-

. formed. In like fashion, the second column of the system may be analyzed, and the

acceptable choices of X, and y, may be determined.

If this dominance analysis is repeated over a range of frequencies, and the result-
ing circles of intersection plotted, a CARDIAD (Complex Acceptability Region for
DIAgonz1l Dominarce) Plot is produced. A solid circle is drawn if the acceptable
choice of x and y lie inside the circle, and a dashed circle is drawn if the accept-
able region is outside the circle of intersection. Associated with each CARDIAD plot
is a -locus of centers pnlot, which indicates the centers and labels the frequency of
each. Space limitations do not allow the locus of centers plots to be included with
the CARDIAD plots in this paper, but they will be mentioned and referenced as neces-

sary.
3. TLLUSTRATION

Figs. 1 and 2 are CARDIAD Plots of a two-input, five-state. two-output model of a
jet cngine. The model is derived from a jet engine simulator called DYNGEN [3,4])
and represents an F-100 turbofan jet engine with a fuel flow of 2.75 Lba/sec. (full
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Fig. 1. Column 1, Uncompensated Fig., 2. Column 2, Uncompensated

throttle without afterburners). The inputs are fuel flow and exhaust area and the
outputs are thrust and high turbine inlet temperature. This model is one of a
series of such models presently being used in a set point study of an F-100 like
jet engine. ’

The analysis of CARDIAD plots proceeds as follows. Recall that, at any given fre-

quency, the acceptable region is outside the circle if the circle is dashed or

inside if the cirecle is solid. The first question of interest is whether the columns

of the system are dominant uncompensated. For this to be the case, the origin of o
the CARDIAD plot must be included in all solid circles and excluded by all dashed

circles, since the origin represents identity compensation of the column. This is

- not the case for either of the two CARDIAD plots of this system. The next jquestion

is vwhethe: the system can be made dominant by constant real precompensation. If
this is the case, there will exist a point on the rzal zxis which lies inside all
solid circles and outside all dashed circles. TFig. 1 shows that the first column

of the system can be made dominant at all frequencies by the choice of any constant
X, which lies outside all the dashed circles of the CARDIAD plot. Fig. 2 shows

that there exists no constant value that will make the second column of the system
dominant at all frequencies. Thus, some form of frequency dependent precompensation
will be necessary.

Before proceeding with dominating this system, some of the features of CARDIAD plots
should be mentioned. One property is that a cirele at a specific frequency in the
plot for one column will be solid ir the other column is dominant at that frequency
and will be dashed if the other column is not dominant. From this fact it follows
that the transition from one type of circle to the other in the CARDIAD plot for

one column occurs when there is a change in dominance in the other column. Once
again considering Figs. 1 and 2, these facts indicate that the second column is not
dominant at any frequency since all of the circles in the CARDIAD plot for the first
column are dashed and that the first column is dominant at low frequencies (until
w=7) because the circles in the CARDIAD plot for the second colunn are solid for
this and all lower frequencies.

A second feature of the CARDIAD Plot is the cffects of a column switch on the plots,

! T
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that is, premultiplication by a matrix with the only nonzero cntrics being off-dia-
-gonal 1's. The effects of such a switching of the inputs are that all solid circles
become dashed circles, all dashed circles become solid, and the shapes of the column
one and two plots are switched. The CARDIAD plots of the system with this type of
compensation are given in Figs. 3 and 4. MNote that the first column is now domi-
nant at all fraquencies without further compensation. This fact can be ascertained
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Fig. 3. Colummn 1, G(s)*K Fig. 4. Column 2, G(s)*K

1

either from the fact that the origin in the CARDIAD plot for column one is includad
by all solid circles and excluded by all dashed circles, or from the fact that all
of the circles in the CARDIAD plot for the second column are scolid.

S8ince switching the inputs makes one column dominant uncompensated, it seems a logi-

ca2l first step in compensating for dominance at all frequencies. Thus, Kl is chosen

to be [0 1 . . |
= L] - ) (1?
5%, . an

Tt is still necessary to make the second column of- the system dominant. From the
CARDIAD plot for this column (Fig. 4), it is apparent that frequency dependent com—
pensation will be necessary since there exists no point in the real axis which is
included in all the solid circles eof this plot. To desipn such'a compensator, a
function of s is fitted to the shape of the CARDIAD plot so that, at any given fre-
quency, the compensator lies inside the snlid circle essociated with the same fre-
gquency in the CARDIAD plot. While it is possible to yind a first order compensator
that will make this column dominant, a second order compensator has been used be-

.. cause this same compensator could also achieve dominance at four other set points

of the model. K,(s) is the compensator tha" achieves dominance in the second column

of t:\s, %K a h
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¥ The overallf&bmphnsation is Kl*Kz(s) = K{s) given below.
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The CARDIAD plots of the system with this compensator are given in Figs. 5 and 6.
It is obvious either from the fact that only solid circles appear in the plots or
from the fact that all the solid circles imclude the origin that each column of the
system is now dominant at all frequencies.
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L. GENERALIZATION

The CARDIAD Plot approach to syster dominance in the three-input, three—output case
is similar to the approach in the two~input, two—output case.

e . . . B .
The actual condition for dominance in the 3 X 3 ecase is the 1 h column of a matrix

Z{s) will be dominant if : .
3 .
. lzii(S)l > Z Izji(s)[ . . . {20)
 for all s on D. If both sides of this inequality are squared as. in the 2 x 2 case,

then an equivalent condition is o .

'. 2 [ 3 2 |

lzii(s)l >1 ;l 1zji(s)[. . . A ‘ (21)

| 35 _ .
Using inequality (21), the condition for dominance in, say, the first column is
12 : 2 2 | i
[z, M7 > 2y 7 + [z, ()% + 2]z, ()| |24 (8] (22)

The ecross term produced by squaring adds non-integral power terms to the dominance
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inequality for the 3 x 3 system. To circumvent this problem, the last term of ine-

«quality (22) is replaced by an upper bound. Since

|z21(s)[ & |z31(s)] 3_2{221(5)]|z3l(s)] ' - (23)

with equality when [z (s)] |z (s)l it is convenient to replace the last term
of inequality (22) w1tﬁ the left mcmber of inequality (23). This yields a suffi-
cient condition for dominance. For column 1, the condition is

2, ()% - 21221(5)12 - 2[231(s)|2 > 03 | (24)
and the general form is .
izii(s)lz_—z-g ]zji(s)|2 >0, 1-=1,2,3. ' ’ (25)
344 |

From inequality (24), the derivation of the dominance equation for the 3 x 3 case
proceeds analogously to the 2 x 2 derivation. The general form of the compensator
used in the analysis is

- 1 alz(s) u13(S) _
K(s) = [y, () 1 ¢y5(s) ' " (26)
tgp(8) g, (s) 1 i ' oo : ) ‘
Where fgg) TRy T Vgl :
=jm

Once again, the open loop transfer function matrix G(s) and the general form (26) of
the compensator are evaluated at a specific frequency and multiplied to form Q(jw).
_Then, using inequality (25}, a dominance inequality for eacih of the three columns of
Q@(jw) can be formed. For example, the first column of Q(jw) will be dominant at the

frequency w if
2 2 2 -
lag 17 ~2layy |7 -2lay 1" >0 - (27)
and the dominance function for column 1 is

fl(x + x

iy = e 2 2 2
213721°%331° 731 1

9
21 Cp T ¥y ¢y TRy ey F Yy 0q
31%

3174 7 21%31%8

+ 2 - L%

* 2yp1935% t 2%01Y31% T Fa3¥21% > 0

vhere the constants ¢,—c, are functions of G(s) evaluated at the frequency w. Simi-
lar dominance functidons can be derived for the other two columns, '

The maximusm-minimum analysis is performed in two different ways. In the first
approach, which will be referred to as the standard analysis, the variables of the
dominance inequality are first paired by the entry in the compensator which they
vepresent; and the maximum-wminimum analysis is performed on each pair assumlng that
the other pair s zero. The resulting maximums or minimums are

Xoy = meuley8 ¥gy = —es/ey,
%y = mcglogi Ygp = me,feq.

R TPy P ety 2

e i s ey - 4 Kh

4 2x,.¢, + 2y21c5 + Zt c, + ZYBlc + 2x,. % . (28)




ﬁl The hessian for each palr of variables is diagonal and the second derivative test
‘once again reduces to a sign test, .

i! The dominance'analysis is repeated over a range of frequencies and CARDIAD plots

result. There is one plot for cach off-diagonal entry in the compensator and each
entry is plotted assuming that the other off-diagonal entry in the column is zero. ,
Using CARDIAD plots generated by the standard analysis, dominance is achieved by Cy
setting one of the off-diagonal entries to zere while the other is chosen as was the ?
case in the 2 x 2 design,

WA T T

T

There does not always exist a valre in one off-diagonal entry of a celumn of the com- i
pensator that will make the column of the system dominant when the othar off-diagonal ;
entry in that column of the compensator is zero. When this occurs, the maxinum-—
minimum analysis is pevformed by finding the full gradient of the dominance function. i
The hessian is no longer diagonal but the eigenvalues of the hessian are all nega- ;
tive in Section 5, so the point that is found is a maximum. Design which is per-

formed on plots generated by the full gradient analysis involves both of the ofi-

diagonal entries of a column of the compensator, and functions must be fit to each i
to achieve dominance.

A new symbol appears in the plots. At any given frequency, unless dominance can be 1
achieved at that frequency with the other entry zero, a small triangle is drawn
wWhich shows the best that can be done towards achieving dominance. It should be
noted that the triangle can appear in plots generated by either analysis. In the :
standard analysis CARDIAD plots, if triamngles appear in one plot for a column but 4
not the other, dominance can be achieved by keeping the entry in which the triangles
appeared zero and using the other entry to achieve dominance. In the full gradient 4
analysis plots, triangles appearing in both plots do not mean that dominance cannot
be achieved, Given that one entry in the compensator is chosen exactly on the tri-
angle -t a-certain frequency, there is a radius of points around the triangle in
the other plot that will achieve dominance; but since the size of the circle is a
function of how well the other entry is fit to the triangles, such a circle could
easily be misleading. Both of these points will be illustrated in the next section.
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5. THEME PROBLEM ANALYSIS ) .,

The following design is performed on the reduced order model of the theme problem
with state feedback. The states being fed back are the two turbine speeds and the
pressure Pb° Dominance will be achieved using only precompensation.

The plots for the uncompensated system using the standard dominance analysis showed
that the first two columns of the system could be made dominant with one off-diag-
onal entry in each of the first two columns of the compensator zero. The third
-column, however, could not be made dominant at any frequency with either one of the
off-diagonal entries in the third column zero. Physically, this indicates that the
principal effects of all three inputs (fuel flow, exhaust area, and guide vanes)

are on the two speed states, 7To facilitate achieving domlnance, a columnn switch was

ik Mo i

H done by choosing the first compensator to be
T 0 1 0 . .
i K, ={0 0 1| : ~ .

1 0 O

Fips. 7-12 are the CARDIAD plots of the system with this compensator and use the
staundard dominance analysis. The plots for the entries in the first column, Figs.

7 and 8, show that the first column is dominant without further compensation, since _
the origin of each plot is included inside all solid circles and excluded by all :
dashed circles. Fips. 9 and 10 are the CARDIAD plots for the second column. Fig. :
10, the plot for the 3,2 entry, has several triangles in it, Indicating that, at
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the frequencies where they occur, there is no value in the 3,2 entry that will make
the column dominant with the 1,2 element zero. However, Fig. 9 shows that there are
no such triangles in the 1,2 entry; so, if a function is fit to the shape of the

" gplid circles of this plot and if the 3,2 cntry is k2pt at zero, dominance can be

« achieved. Tigs. 11 and 12 are the CARDIAD plots for the third column. The 1,3 en-

'ﬂ;'try is all triangles and the 2,3 entry has triangles at lower frequencies. Thus,
there is no way to makc this column of the system dominant with one of the off-
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diagonal entries in the compensator zero. ‘ !

Figs. 13 and 14 are the plots for the third column using the full gradient rather
than the standard analysis. The solid circles which appear at high frequencies in
Fig. 14 are very important. Recall that the circle will only be drawn if dominance

r.. . v .
ST O FEE MM OB N S e el

can be achieved while the other entry is zero.
these solid circles, dominance can be achieved at the frequencies at which they
occur while the 1,3 entry in the compensator is zero. Thus, irn designing the 2,3

This means that by staying inside
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entry, the «ryat - that Is employed is to follow the triangles at low frequencles
and ooy Iuoide ;ﬁﬂ solid circles at the higher frequencies. 'If this is done, the
design of the 1, -—atry will be simplified because it will only be necessary to fit
.the enivvy to the .ow frequency triangles and have the function go to zero at higher
S Tvs s vies. ' :

" a2 this strategy, a lag compensator was designed to £it the 2,3 entry as
~v.hed previously., The compensator entry that was chosen is

-129.45 -1940.2
.0365s + 1.

At ‘e same time, another lag compensator is fit to the solid circles in Fig. 9,
. ihv CARDIAD plot for the 1,2 entry. This was chosen to be

.0127 ' S
e1162s + 1. °

Defining this compensator as X,({s) with all the other off-diagonal entries zero, the
¢~ 'rall compensation thus far Is K3(s) = Kle(s)._

*

‘?’-23 (s) =

‘. _,i, i i—..,i ‘;3 ! Ei_u_. 3

ky,(s) =

F

e g i

. “6 1 ~129.4s - 1840.2 | |
03655 + 1 ORIGINAL PAGE 3
1- < .0127
' 1 TI1e9s F 1L S |

Figs. 15-20 are the CARDIAD plots of G(s)KB(s) using the standard dominance analysis. !
The plots show that the first two columns of the system are dominant at all frequen- 7 ]
cies since in Figs. 15-18 the origin of each plot is contained by all solid circles
and excluded by all dashed circles. Fig. 19 shows that the strategy applied in the
design for the 2,3 entry was successful. To make the third column dominant, it is

S -5
v, Pl

g

v now only necessary to fit a compensator to the shape of the solid circles in Fig. 19 }f
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ivilmd have it 8o
_.532s + 16,917

o . k 5} o ________________ 10327 . _ ey . 'm,
l 13 .0127s% + .1986s + 1. - g‘f““‘m”’wmg

The only change this has en the overall compensator is tha»ii the zero in the 3,3

ero at higher frequencies. The function that was chosen is

' .entry is replaced by this functionm. When the third column is replotted using this

compensator and stapdard dominance analysis, Figs. 21 and 22, the CARDIAD plots

show that the third celumn is now dominant at all frequenecies. Thus, the system is

-
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now dominant at all frequencies.
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. 10% :
! The graphical CARDIAD method described in this paper has been effective on the Thene

Problem. The authors' experience indicates that it is an easily learned design aid
which can be quite helpful in achieving dominance for realistic plants. A special i
i advantage of the CARDIAD approach lies in the way in which it provides insight to i
the designer. The plots indicate whether or not it will be possible to achieve
dominance with simple, lead-lag compensators. Examples up to this time suggest that, it 3
over :the useful bandwidth, simple compensators are often successful in this regard.

aaa

It should be noted that this paper illustrates only compensator selection for domi-
wance. Completion of the design is by classical means. For an example, see [5].

#{ particular ncte is the fact that compensator denominators having right half plane
zeros do not necessarily lead to unstable controllers. This may also be seen in [3].
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! Continued research on this class of graphical, interactive methods is in progress.
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