General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.
Orbit Transfer Vehicle (OTV) Engine
Phase "A" Study

Contract NAS 8-32999
Bi-Monthly Status Report 32999-M1
15 August 1978

(NASA-CR-150796) ORBIT TRANSFER VEHICLE
(OTV) ENGINE PHASE A STUDY Bi-Monthly
(Aerojet Liquid Rocket Co.) 30 p
HC A03/MF A01 CSCI 216 G3/20 31696

Prepared for:
NASA - George C. Marshall Space Flight Center

Aerojet
Liquid Rocket
Company
Report 32999-M1

15 August 1978

ORBIT TRANSFER VEHICLE (OTV) ENGINE PHASE "A" STUDY

Bi-Monthly Status Report No. 1
10 July 1978 to 31 July 1978
Contract NAS 8-32999

Prepared for:
National Aeronautics and Space Administration
George C. Marshall Space Flight Center
Marshall Space Flight Center, Alabama 35812

Prepared by:

J.A. Mellish
Study Manager
ALRC Engineering

Aerojet Liquid Rocket Company
P.O. Box 13222
Sacramento, California 95813
FOREWORD

This bi-monthly status report is submitted for the Orbit Transfer Vehicle (OTV) Engine Phase "A" Study per the requirements of Contract NAS 8-32999, Data Procurement Document No. 559, Data Requirement No. MA-02. This work is being performed by the Aerojet Liquid Rocket Company for the NASA-Marshall Space Flight Center. The study authority to proceed date was 10 July 1978.

This study program consists of parametric trades and system analysis which will lead to conceptual designs of the OTV engine for use by the OTV systems contractor.

The NASA/MSFC COR is Mr. D. H. Blount. The ALRC Program Manager is Mr. L. B. Bassham, and the Study Manager is Mr. J. A. Mellish.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>II. Summary</td>
<td>3</td>
</tr>
<tr>
<td>III. Technical Progress</td>
<td>5</td>
</tr>
<tr>
<td>A. Task I: Engine Requirement Review</td>
<td>5</td>
</tr>
<tr>
<td>B. Task II: Engine Concept Definition</td>
<td>10</td>
</tr>
<tr>
<td>C. Task III: Parametric Engine Data</td>
<td>20</td>
</tr>
<tr>
<td>D. Task IV: Engine Off-Design Operation</td>
<td>20</td>
</tr>
<tr>
<td>E. Task V: Work Breakdown Structure</td>
<td>22</td>
</tr>
<tr>
<td>F. Task VI: Programmatic Analysis and Planning</td>
<td>22</td>
</tr>
<tr>
<td>G. Task VII: Cost Estimate</td>
<td>22</td>
</tr>
<tr>
<td>H. Task VIII: Reports Requirements</td>
<td>22</td>
</tr>
<tr>
<td>IV. Current Problems</td>
<td>22</td>
</tr>
<tr>
<td>V. Work Planned</td>
<td>22</td>
</tr>
<tr>
<td>A. Task I: Engine Requirement Review</td>
<td>23</td>
</tr>
<tr>
<td>B. Task II: Engine Concept Definition</td>
<td>23</td>
</tr>
<tr>
<td>C. Task III: Parametric Engine Data</td>
<td>23</td>
</tr>
<tr>
<td>D. Task IV: Engine Off-Design Operation</td>
<td>23</td>
</tr>
<tr>
<td>E. Task V: Work Breakdown Structure</td>
<td>23</td>
</tr>
<tr>
<td>F. Task VI: Programmatic Analysis and Planning</td>
<td>23</td>
</tr>
<tr>
<td>G. Task VII: Cost Estimate</td>
<td>24</td>
</tr>
<tr>
<td>H. Task VIII: Reports Requirements</td>
<td>24</td>
</tr>
<tr>
<td>VI. Man-Hour Expenditures</td>
<td>24</td>
</tr>
</tbody>
</table>
TABLE LIST

Table No.	Page
1 | Design Point Sensitivity to Performance Requirements | 9
II | Preliminary Engine Cycle Weight Comparisons | 21

FIGURE LIST

Figure No.	Page
1 | Study Program Milestone Schedule | 4
2 | Maximum Chamber Pressure for Chamber Life Cycle Requirement vs Thrust | 8
3 | Dual Fuel-Rich Preburner Staged Combustion Cycle | 11
4 | Expander Cycle | 12
5 | Gas Generator Cycle | 13
6 | Hydrogen Pump Discharge Pressure Requirements for Various Engine Cycles | 14
7 | Oxygen Pump Discharge Pressure Requirements for Various Engine Cycles | 15
8 | Effect of Thrust Upon Coolant Outlet Temperature for an Expander Cycle Engine | 17
9 | Expander Cycle Power Balance Chamber Pressure Limits | 18
10 | Preliminary Engine Cycle Performance Comparison | 19
11 | Contractor Man-Hour Management Report | 25
I. INTRODUCTION

The Space Transportation System (STS) includes an Orbit Transfer Vehicle (OTV) that is carried into low Earth orbit by the Space Shuttle. The primary function of this OTV is to extend the STS operating regime beyond the Shuttle to include orbit plane changes, higher orbits, geosynchronous orbits and beyond. The NASA and DOD have been studying various types of OTV's in recent years. Data have been accumulated from the analyses of the various concepts, operating modes and projected missions. The foundation formulated by these studies established the desirability and the benefits of a low operating cost, high performance, versatile OTV. The OTV must be reusable to achieve a low operating cost. It is planned that an OTV have an Initial Operating Capability (IOC) in 1987.

The OTV has as a goal the same basic characteristics as the Space Shuttle, i.e., reusability, operational flexibility, and payload retrieval along with a high reliability and low operating cost. It is necessary to obtain sufficient data, of a depth to assure credibility, from which comparative systems analyses can be made to identify the development, costs, and program requirements for OTV concepts. The maximum potential of each concept to satisfy the mission goals will be identified in the OTV systems studies to be initiated in FY-79.

An assessment of the above factors will be made by the NASA to determine the candidate approaches for matching the OTV concepts to mission options within resource and schedule requirements. This study will provide the necessary data on OTV engine concept(s) based upon 1980 technology which is required to objectively select, define, and design the preferred OTV engine, and is being conducted in very close concert with the NASA.
The major objective of this Phase "A" engine study is to provide design and parametric data on the OTV engine for use by NASA and the OTV systems contractors. These data and the systems analyses will ultimately lead to the identification of the OTV engine requirements so that the conceptual design phase can be initiated. Specific study objectives are:

- Review the OTV engine requirements identified in the statement of work, make recommendations and iterate with NASA/MSFC.
- Conduct trade studies and system analyses necessary to define the engine concept(s) which meets the OTV engine requirements.
- Generate parametric OTV engine data and provide this data in suitable format for use by the OTV system contractors.
- Prepare a final report at the completion of the study which documents the technical and programmatic assessments of the OTV engine concepts studied.

To accomplish the program objectives, a study program consisting of seven major technical tasks and a reporting task is being conducted. These tasks are:

- Task I: Engine Requirement Review
- Task II: Engine Concept Definition
- Task III: Parametric Engine Data
- Task IV: Engine Off-Design Operation
- Task V: Work Breakdown Structure
- Task VI: Programmatic Analysis and Planning
- Task VII: Cost Estimate
- Task VIII: Reports Requirements
II. SUMMARY

This first bi-monthly status report covers the period from the initiation of the contract (10 July 1978) to 31 July 1978.

Initial efforts were placed upon Tasks I, II and VIII. The study program schedule along with major milestones is shown on Figure 1.

An orientation briefing on the planned study was given at NASA/MSFC prior to the initiation of the contract on 28 June 1978. This briefing and associated documentation covered the study organization, objectives, schedule, manhours, overall study logic and detailed task descriptions. (1)

A study plan providing written documentation on those items covered in the orientation briefing and updated to reflect the agreements reached at this meeting was submitted to NASA/MSFC. (2)

The review of the engine requirements set forth in the statement of work was initiated and trade studies on staged combustion, expander and gas generator engine cycles are being conducted to define an engine concept which meets the OTV engine requirements. The performance requirements favor a staged combustion cycle engine although none of the engine cycles can satisfy the performance requirements over the total thrust and stowed engine length ranges specified in the statement of work. It is anticipated that the results of these initial two tasks will be reviewed at NASA/MSFC in early September.

<table>
<thead>
<tr>
<th>TASK</th>
<th>JULY</th>
<th>AUG</th>
<th>SEPT</th>
<th>OCT</th>
<th>NOV</th>
<th>DEC</th>
<th>JAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. ENGINE REQUIREMENT REVIEW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II. ENGINE CONCEPT DEFINITION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III. PARAMETRIC ENGINE DATA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV. ENGINE OFF-DESIGN OPERATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V. WORK BREAKDOWN STRUCTURE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VI. PROGRAMMATIC ANALYSIS & PLANNING</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VII. COST ESTIMATE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIII. REPORTING</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. STUDY PLAN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. BI-MONTHLY STATUS REPORTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. SUBMIT PRELIMINARY WBS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. REVIEWS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. ORIENTATION BRIEFING</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. FINAL BRIEFING</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. FINAL REPORT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) 28 June 1978

Figure 1. Study Program Milestone Schedule
III. TECHNICAL PROGRESS

A. TASK I: ENGINE REQUIREMENT REVIEW

Engine performance/weight sensitivities were derived using vehicle weight scaling equations provided by NASA/MSFC and the mission \(\Delta V \)'s shown in Tables 26 and 27 of NASA TM-73394.

The mission \(\Delta V \)'s used for the All Propulsive Orbit Transfer Vehicle (APOTV) and the Aeromaneuvering Orbit Transfer Vehicle (AMOTV) are:

- APOTV: \(\Delta V = 27874 \) ft/sec
- AMOTV: \(\Delta V = 20432 \) ft/sec

These \(\Delta V \)'s were considered to apply at a nominal engine thrust level of 20,000 lbs.

The vehicle weight scaling equations are:

- APOTV:
 \[
 W_g = 8246 + 0.09987 (W_p - 83255) + 1.1 W_{ENG}
 \]

- AMOTV:
 \[
 W_g = 8975 + 0.09882 (W_p - 72,000) + 1.1 W_{ENG}
 \]

For both vehicle concepts:

\[
W_p = \left[1 - e^{\cfrac{\Delta V}{gI_{sv}}} \right]
\]
III, A, Task 1: Engine Requirement Review (cont.)

where:

\[I_{SV} = \text{engine vacuum specific impulse} \]
\[W_g = \text{stage cutoff weight (less payload)} \]
\[W_i = \text{initial ignition weight} = 97,300 \text{ lbs for 100,000 lb payload shuttle per S.O.W.} \]
\[W_p = \text{propellant weight} \]
\[W_{ENG} = \text{engine weight} \]

The derived performance/weight sensitivities for the baseline round trip mission for a 100K shuttle are:

APOTV:

\[\frac{\Delta W_{PL}}{\Delta W_{ENG}} = -1 \text{ lb/lb} \]
\[\frac{\Delta W_{PL}}{\Delta I_{SV}} = 60 \text{ lb/sec} \]

AMOTV:

\[\frac{\Delta W_{PL}}{\Delta W_{ENG}} = -1 \text{ lb/lb} \]
\[\frac{\Delta W_{PL}}{\Delta I_{SV}} = 73 \text{ lb/sec} \]

\[W_{PL} = \text{payload weight} \]

The equations and sensitivities shown will be used to assess the impacts of the requirements and to conduct the necessary engine trades.

6
The effect of the requirement for a service life of 300 start/shutdown cycles between overalls upon the maximum engine operating pressure was established. The analysis was based upon past study results and current projections as shown on Figure 2. The 0OS study(3), conducted in 1971, was conservative compared to today's technology. However, the chamber pressure trend with thrust was used to make the current estimation. This results in life limit chamber pressures of:

<table>
<thead>
<tr>
<th>Thrust, Klb</th>
<th>Max Pressure, Pc, psia</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1500</td>
</tr>
<tr>
<td>20</td>
<td>2000</td>
</tr>
<tr>
<td>30</td>
<td>2350</td>
</tr>
</tbody>
</table>

These values will be updated by more rigorous analyses during the course of this study. However, these preliminary values will be used to assist in the concept definition task.

The sensitivity of the engine design point (i.e., thrust chamber pressure and nozzle area ratio) to the performance requirements specified in the statement of work was also evaluated. The results of this analyses are shown on Table 1. For these performance calculations it was assumed that the engine was a staged combustion or expander cycle (i.e., no turbine exhaust bleed flow loss). The table shows that the minimum required pressure for a 10K engine exceeds that required to meet the chamber life requirement. Therefore, a performance decrease at the 10K thrust level or a chamber life reduction must be accepted. This study

TABLE I

DESIGN POINT SENSITIVITY TO PERFORMANCE REQUIREMENTS

Engine Mixture Ratio = 6.0

<table>
<thead>
<tr>
<th>Engine Vacuum Thrust, Klb</th>
<th>Engine Stowed Length, inches</th>
<th>Minimum Required Specific Impulse, sec</th>
<th>Required Nozzle Area Ratio</th>
<th>Minimum Required Chamber Pressure, psia</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>50</td>
<td>480</td>
<td>1000</td>
<td>3500</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td></td>
<td></td>
<td>3332</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td></td>
<td></td>
<td>3124</td>
</tr>
<tr>
<td>20</td>
<td>50</td>
<td>473</td>
<td>537</td>
<td>1911</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td></td>
<td>564</td>
<td>1328</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td></td>
<td>576</td>
<td>958</td>
</tr>
<tr>
<td>30</td>
<td>50</td>
<td>472</td>
<td>415</td>
<td>2246</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td></td>
<td>465</td>
<td>1652</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td></td>
<td>477</td>
<td>1191</td>
</tr>
</tbody>
</table>

(continued on next page)
III, A, Task I: Engine Requirement Review (cont.)

will assess the performance reduction. The chamber pressures at the other
thrusts and stowed lengths can be increased to the chamber life limit
values. This will result in higher than the minimum required performance. At a stowed length of 50 inches the chamber pressures at 20K and 30K lbs thrust are, for practical purposes, at the chamber life limit values.

The table also shows that performance is the primary chamber pressure "driver" at the 10K thrust level. However, when performance is almost equal (20K and 30K lbs thrust), the engine envelope is the governing requirement. This is why the chamber pressure at a thrust level of 30K is greater than that at 20K. The higher thrust engine is more difficult to fit in the envelope even though the performance requirement is slightly lower.

Expander cycle engines using existing chamber design techniques are power balance limited (see Section III,B). This cycle can only meet the performance requirement at a thrust level of 20,000 lbs thrust and a stowed length of 70 inches. Other factors such as, the man-rating requirement and development simplicity will be evaluated in comparing the staged combustion versus expander cycles.

B. TASK II: ENGINE CONCEPT DEFINITION

Preliminary engine system analyses were conducted on the staged combustion, expander and gas generator engine cycles. Simplified schematics of the cycles analyzed are shown on Figures 3, 4 and 5.

Pump discharge pressure requirements for 20,000 lb thrust engines operating at an engine mixture ratio of 6.0 are shown on Figures 6 and 7. Figure 6 displays the hydrogen pump discharge pressure as a
Figure 3. Dual Fuel-Rich Preburner Staged Combustion Cycle
Figure 6. Hydrogen pump discharge pressure requirements for various engine cycles.
Figure 7. Oxygen Pump Discharge Pressure Requirements for Various Engine Cycles
III, B, Task II: Engine Concept Definition

function of thrust chamber pressure and shows that the expander cycle engine is power balance limited. Neither the staged combustion or gas generator cycles are power balance limited for the range of chamber pressures analyzed. Hence, the maximum attainable chamber pressure for these cycles is chamber life limited (Figure 2). Figure 7 shows that the staged combustion cycle engine requires significantly higher oxidizer pump discharge pressures than the expander and gas generator cycles.

The power balances shown were conducted for a turbine inlet temperature of 1860°F for both the staged and gas generator cycles. This value was selected in the OOS study to meet the 300 cycle life limit. The OOS and RL-10 study (4) results were used in analyzing the expander cycle. The coolant outlet temperature (turbine inlet temperature) is shown as a function of thrust on Figure 8. This data was used to conduct the expander cycle power balances at other thrust levels. The result of this analysis is shown on Figure 9. This figure shows the approximate power balance chamber pressure limit as a function of thrust for the expander cycle engine. This limit is defined as 80% of the chamber pressure value at which the hydrogen pump discharge pressure becomes asymptotic.

Figure 10 compares the performance for each of the three cycles considered. For this preliminary analyses a baseline area ratio of 400 was selected at thrust chamber pressure of 2000 psia. This results in a delivered performance value of 473 secs for the staged combustion cycle engine. The attainable area ratio at other chamber pressures was then assumed directly proportional to chamber pressure since the available enveloped is fixed. The delivered performance values have also been estimated as 97.4% of

Figure 8. Effect of Thrust Upon Coolant Outlet Temperature for an Expander Cycle Engine

CHAMBER LENGTH = 18"
Figure 9. Expander Cycle Power Balance Chamber Pressure Limits

Note: Power Balance P_e limit is defined as 80% of maximum attainable P_e to provide margin.
Figure 10. Preliminary Engine Cycle Performance Comparison
theoretical ODE. This may be slightly high at the lower chamber pressures
but is accurate enough for relative comparisons.

The figure shows that the gas generator cycle engine
performance at 2000 psia (chamber life limit) is approximately equal
to that of an expander cycle at its power balance limit of 1000 psia.
At these design chamber pressures, the gas generator cycle engine weighs
10% more than the expander cycle engine. At the same operating chamber
pressure, the weights of these two engine cycles are approximately equal.
Therefore, the gas generator cycle engine does not have any weight/performance
advantage over an expander cycle. The gas generator cycle engine performance
loss (difference between the two I_S lines on the figure) consists of both
the bleed flow loss and the ODE loss associated with the thrust chamber mixture
ratio shift.

The staged combustion cycle engine, although higher performing,
weighs approximately 20% more (100 lbs) than the expander cycle engine
when each are taken at their maximum operating chamber pressure. Preliminary
engine cycle weight comparisons are shown on Table II.

C. TASK III: PARAMETRIC ENGINE DATA

No scheduled activity.

D. TASK IV: ENGINE OFF-DESIGN OPERATION

No scheduled activity.
TABLE II
PRELIMINARY ENGINE CYCLE WEIGHT COMPARISONS

<table>
<thead>
<tr>
<th></th>
<th>Cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Staged</td>
</tr>
<tr>
<td>Thrust, lb</td>
<td>20000</td>
</tr>
<tr>
<td>Chamber Pressure, psia</td>
<td>2000</td>
</tr>
<tr>
<td>Nozzle Area Ratio</td>
<td>400</td>
</tr>
<tr>
<td>Engine Mixture Ratio</td>
<td>6.0</td>
</tr>
<tr>
<td>Chamber Length, in.</td>
<td>8.0</td>
</tr>
<tr>
<td>Engine Dry Weight*, lb</td>
<td>579</td>
</tr>
</tbody>
</table>

*Does not include the weight of an engine controller.
III. Technical Progress (cont.)

E. TASK V: WORK BREAKDOWN STRUCTURE

A preliminary WBS was structured in concert with NASA in meetings following the orientation briefing. The WBS will be updated as necessary to meet the needs of the engine concept selected in Task II.

F. TASK VI: PROGRAMMATIC ANALYSIS AND PLANNING

No scheduled activity.

G. TASK VII: COST ESTIMATE

No scheduled activity.

H. TASK VIII: REPORTS REQUIREMENTS

The study plan was transmitted to NASA/MSFC on 31 July 1978 per the requirements DPD 559, DR MA-01.

IV. CURRENT PROBLEMS

No technical or administrative problems were encountered during this reporting period.

V. WORK PLANNED

The work planned for the next two months is discussed for each task in the paragraphs which follow.
V. Work Planned (cont.)

A. TASK I: ENGINE REQUIREMENT REVIEW

Complete the review of the OTV engine requirements, make recommendations and iterate with NASA/MSFC.

B. TASK II: ENGINE CONCEPT DEFINITION

Complete the tradeoff analyses to select an engine cycle and concept which best meets the engine requirements. Conduct a review of the trades, rationale and selection with NASA.

C. TASK III: PARAMETRIC ENGINE DATA

Initiate the technical effort to define the engine performance, weight and envelope parametric data for the selected engine concept.

D. TASK IV: ENGINE OFF-DESIGN OPERATION

No activity scheduled.

E. TASK V: WORK BREAKDOWN STRUCTURE

Update the WBS for the selected engine concept. Review the WBS dictionary and iterate with NASA.

F. TASK VI: PROGRAMMATIC ANALYSIS AND PLANNING

Initiate effort to define the engine DDT&E schedule and component test requirements.
V. Work Planned (cont.)

G. TASK VII: COST ESTIMATE

No activity scheduled.

H. TASK VIII: REPORTS REQUIREMENTS

Conduct the engine requirement and engine concept definition review with NASA.

VI. MAN-HOUR EXPENDITURES

The planned vs actual man-hours expended during this reporting period are shown on Figure II. The low actual expenditure rate reflects the mid-July rather than a 1 July start of the technical effort and a reporting period of only 19 days. All planned activities have been initiated and the engineering personnel are on-board.
National Aeronautics and Space Administration
Contractor Man Hour Management Report

George C. Marshall Space Flight Center, NASA	Post Office Box 13222
Marshall Space Flight Center, AL 35812	Sacramento, California
Scope of Work: Orbit Transfer Vehicle Engine Study, Phase A	Date:
Report for Month Ending:	Type: CPFF
30 July 1978 (19 days)	Contract No. NAS 8-32999

<table>
<thead>
<tr>
<th>Planned Hours (Cum)</th>
<th>Actual Hours (Cum)</th>
</tr>
</thead>
<tbody>
<tr>
<td>561</td>
<td>86</td>
</tr>
<tr>
<td>983</td>
<td></td>
</tr>
<tr>
<td>1401</td>
<td></td>
</tr>
<tr>
<td>1827</td>
<td></td>
</tr>
<tr>
<td>2072</td>
<td></td>
</tr>
<tr>
<td>2346</td>
<td></td>
</tr>
<tr>
<td>2357</td>
<td></td>
</tr>
</tbody>
</table>

![Graph showing planned and actual man hours over time](image)