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FOREWORD

This Final Report describes the work performed by

Ultrasystems, Inc. during the period 14 April 1977 through

12 May 1978 under Contract NAS3--20400, "Synthesis of

Perfluoroalkylene Aromatic Diamines ". The investigations

,Arere carried out by K. L. Paciorek, T. I. Ito, J. H. Nakahara,

and R. H. Kratzer, project manager, at the Chemicals and

Materials Research Department, Irvine, California. The

contract was administered by the NASA Lewis Research

Center with Dr. Tito T. Serafini as the project manager.
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1. SUMMARY

This is the final report describing work. performed by Ultrasystems,

Inc. for the National Aeronautics and Space Administration, Lewis Research

Center, under Contract NAS3-20400.

The objective of this contract was to synthesize analogues of methylene

dianilines in which the methylene group between the two aromatic nuclei

is replaced by various perfluoroalkylene linkages and to determine the

hydrolytic, thermal, and thermal oxidative characteristics of PMR Polyimides

derived from these diamines.

Attempts to prepare 1, 2-bis (4-aminophenyl)tetrafluoroethane were

unsuccessful. 1, 3-Bis (4--aminophenyl)hexafluoropropane was obtained

by coupling of 1, 3-diiodohexafluoropropane with p-iodoacetanilide followed

by liberation of the free amine. Since 1, 3-diiodohexafluoropropane is un-

available commercially it had to be synthesized from perfluoroglutarimidine.

Bromination of 2 , 2-bis (4-hydroxyphenyl)hexafluoropropane , Bisphenol--

AF, failed to give the 4-bromo derivative. Equally unsuccessful was the

direct transformation of Bisphenol-AP into the 4-amino analogue using

treatment with either aniline hydrochloride or CaCl2 (NH3 )x . Replacement

of the hydroxyl group by bromine in 4-(hexafluoro--2-hydroxy-isopropyl)-

aniline was accomplished; however the yield was relatively low and the

product separation tedious. The desired 2 , 2-bis (4-aminophenyl)hexa-

fluoropropane was obtained by coupling 4-(hexafluoro-2-hydroxy-isopropyl)-

aniline and aniline in the presence of aluminum chloride.

Three types of PMR Polyimide discs were Fabricated from the dimethyl

ester of 3 , 3' , 4, 4'-benzophenonetetracarboxylic acid, the methyl ester of

5-norbornene-2, 3-dicarboxylic acid, and one of the following three diamines:
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methylene dianiline , 1, 3-bis (4-aminophenyl)hexafluoropropane , and 2 , 2-bis-

(4-aminophenyl.)hexafluoropropane . The polyimide based on 2 , 2--bis (4-amino-

phenyl)hexafluoropropane exhibited the best hydrolytic, thermal, and thermal

oxidative characteristics as determined by moisture uptake and thermogravimetric

analysis.
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2 . INTRODUCTION

Perfluoroalkyl substituents are known to enhance chemical, thermal,

and oxidative stabilities of the resultant compositions as exemplified, among

others, by fluorinated silicones. Based on these findings the replacement of

the methylene group by perfluoroalkylene Linkages in 4,4'-methyienedianiline

derived PMR Polyimides (ref. 1) appeared to offer a number of potential ad-

vantages, especially with respect to hydrolytic stability. Considering the

latter to be associated, at least to a degree, with the hydrophobic or hydro-

philic nature of the polymer a pendant perfluoroalkyl group would seem to be

the preferred arrangement. However, to assess the overall effects as compared

to the fluorine-free resin both linear and branched linkages were investigated.
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3. EXPERIMENTAL DETAILS AND PROCEDURES

All solvents used were reagent grade and were dried and distilled

prior to use. Operations involving moisture or air sensitive materials

were carried out either in an inert atmosphere enclosure (Vacuum Atmospheres

Model HE-93B) or under nitrogen by-pass. The commercially available start-

ing materials were us ,:,ally purified by distillation, crystallization, or other

appropriate means.

Molecular weights (MW) were determined using a Mechrolab Osmometer

Model 302 at concentrations of 4-6 mg/m1. Infrared (IR) spectra were

recorded on double mulls (Kel-F oil No. l0 .and Nujol) using a Perkin-Elmer.

Corporation Infrared Spectrophotometer Mode. 21. Differential scanning

calorimetry (DSC) , differential. thermal (DTA) , and thermogravimetric

analysis (TGA), were performed on a Du Pont 951/990 Thermal Analyzer.

All materials synthesized were dried in vacuo before physical and

chemical characterization. The elemental analyses were performed by

Schwarzkopf Microanalytical Laboratory, Woodside, New York.

Determination of Solubilities

Solubilities were determined by stirring, the sample with alcohol

for 3 hr under nitrogen by--pass to obtain a saturated solution. A measured

volume (1 ml) of the supernatant solution was removed to a tared flask and

the solvent distilled bulb-to-bulb to a tared collector. Values were cal-

culated from the weights of solute and solvent..

Nomenclature

Since both the structural formulae and the appropriate chemical

nomenclature for the monomers used during this program are complex and
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cumbersome, these compounds have been coded to aid in clarity of

presentation especially in polymer descriptions. The codes used are

as follows:

HFD	 1, 3-bis (4-aminophenyl)hexafluoropropane

H2 N-C6 H4- (CF 2)3-C6H4-NH2

HF1D	 2 , 2-bis (4-aminophenyl)hexafluoropropane

H2N-C6H4-C (CF3)2-C6H4-NH2

MDA	 4 , 4'-methylenedianiline

H2N-C6HA-CH2-C6H4-NH2

NE	 monomethyl ester of 5-norbornene-2,3-dicarboxylic acid

STDE	 dimethyl ester of 3, 3 1 ,  4 , 4' -benzophenonetetra-

carboxylic acid

Reaction of 1 2--diiodo erfluoroethane with Rhenyloogger

Under nitrogen by-pass to freshly prepared phenylmagnesium bromide

(59.52 mmol) in ether (50 ml) was added at 2-40C cuprous bromide (9.22 g,

32.14 mmol) over a period of 40 min. After stirring at 0-2 0C for 3 hr to this

mixture was added 1, 2-di.iodoperfluoroethane (10.96 g, 30.93 mmol) at

0-50C over a period of 15 min. The mixture became yellow and some gas

evolution was observed; analysis of the evolved gas showed it to be

composed exclusively of tetrafluoroethylene. After stirring at 0--50C for

an additional 15 min a liquid aliquot was withdrawn and after hydrolysis

analyzed by gas chromatography. The major product found was iodobenzene

admixed with some 1,2-diiodoperfluoroethane, benzene, and traces of

biphenyl. No other products were found after stirring for an additional

-	 2 he at 0-50C; the product mixture following hydrolysis of the total sample
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was essentially the same. It should be noted that on hydrolysis, large
quantities of tetrafluoreethylene were evolved; no other fluorocarbons
were detected in the gaseous products.

Hydrolysis of 1'erfluorocrlutarimid ine

The hydrolysis of perfluvroglutarimidine was performed following
basically the procedure of W. R. Griffin (ref. 2), with the exception that
the process was performed at 90 0C inasmuch as the room temperature re-
action was found to proceed very slowly. Thus, perfluoroglutarim.idine
(50 g) was heated with stirring in 450 ml of concentrated hydrochloric
acid at 90-9500 for 4 hr. Subsequently the aqueous solution was continu-
ously extracted with ether over a period of 48 hr. On removal of ether
a solid-liquid mixture was obtained. Based on the facile etherate forma-
tion exhibited by perfluorinated acids (ref. 3) it was assumed that a free
acid and acid etherate mixture was present.. Heating of the above mixture
with a small quantity of water at 90-105 00 for 3 hr followed by removal
of water at 1000C in vacuo gave 48 g (95.5% of yield) of perfluoroglutaric
acid.

Preparation of Silver Perfluoroglutarate

To an aqueous solution of perfluoroglutaric acid (44.5 g, 0.185 mol)
in 30 ml water was added freshly prepared silver oxide (obtained from 70 g,
0.412 mol, of silver nitrate and 5 N sodium hydroxide); the resulting solu-
tion (containing some undissolved silver oxide) was stirred at 55 0C for
3 hr. Subsequently the excess of silver oxide was filtered off and the clear
filtrate on successive evaporations under reduced pressure in the absence
of light gave (71.2 g, 85% yield) of crystalline silver salt which was dried

r	in the dark in a desiccator over phosphorus pentoxide.
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Preparation of 1, 3-diiodohexafluoropxopane

To a mixture of PC-43 (20 mi) and iodine (17.24 g, 67.92 mmol)

in a three-neck flask equipped with nitrogen by-pass, solids addition

device and distillation head (leading to a 00C cooled receiver followed

by a -7800 trap) was added silver perfluoroglutarate (5.10 g, 11.24 mmol)

at 135-160 0C over a period of 20 min. Heating was continued for an

additional hour at which time 4.41 g of distillate was collected. This

distillate was freed from elemental iodine by room temperature vacuum

distillation. On standing at 0 0C the liquid separated into two layers,

the top layer contained mainly FC-43 , whereas the bottom layer consisted

essentially of 1; 3-diiodohexafluoropropane. Based on GC analysis 3.82 g

(84.1% yield) of the desired product was obtained.

Conducting the reaction with 25.04 g of silver perfluoroglutarate

gave on purification 12.92 g (58% yield) of 1, 3-diiodohexafluoropropane .

Purification was accomplished by separation at -23 0C of the FC-43 and

1, 3-diiodohexafluoropropane layers, followed by iodine removal using

copper-bronze powder.

Preparation of 1, 3-bis (4-ace tam idophenyl)hexafluoropropane

Copper bronze (23.52 g, 370.16 mmol) was added to a solution of

4-iodoacetanilide (24.05 g, 92.13 mmol) and 1, 3-diiodohexafluoropropane

(18.64 g, 46.15 mmol) in dimethylsulfoxide (95 ml). The mixture was

stirred and heated under a nitrogen atmosphere for 4 hr at 120-133°C,

then the cooled reaction mixture was added to water (500 ml) . The

suspension after stirring for,,, 5 min was filtered and washed with ether.

This was followed by extraction with- hot methanol (200 ml) and treatment

with activated charcoal. The clear solution on cooling gave the desired

product 19.31 g (78.4% yield) mp 239-2400C. Due to the compound's
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insolubility in chloroform, benzene and hexafluorobenzene its molecular

weight was not determined; the high melting point in conjunction with the

material's low volatility prevented the obtaining of its mass spectral break-

down pattern using the probe technique.

Preparation of 1 3-his 47amino hen 1 hexafluoro ro ane

1, 3-Bis (4--acetamidophenyl)hexafluoropropane (12.54 g, 29.98 mmol)

obtained as described above was refluxed for 5.5 hr in a solution of cron-

centrated hydrochloric acid (9.0 ml) and methanol (120 ml) . The reaction

solution was then diluted with 600 ml water and treated with sodium bi-

carbonate until neutral to litmus paper. The resulting emulsion was extract-

ed with ether (4 x 100 ml) and the combin-d extracts washed with water

(5 x 200 ml), dried over anhydrous magnesium sulfate, filtered, and the

filtrate evaporated to give a yellow oil (11.2 g) . The oil was then treated

with hot cyclohexane and the combined extracts were concentrated, treated

with activated charcoal, filtered and cooled to give 3.53 g (35.2%) of the

desired product, mp 67.5-68.5 0C. The DTA scan is presented in Figure 1.
Anal. Calcd. for C 15 H 12 F6 N2 : C, 53.90; H, 3.62; F, 34.10; N, 8.38;

MW, 334.26. Found: C, 54.56; H, 9.81; F, 33.59; N, 8.34; MW,
331.

The structure was confirmed by mass spectral analysis wherein the

molecular peak as well as characteristic breakdown fragments were observed.

The mass r ,_ ictrum is given in Table I. The solubility in methanol was

measured as 3.0095 g/ml; in ethanol 1.8989 g/ml.

The alcohol treatment resulted in .50 "a material transformation into
what appears to be H 2 NC 6 H4co (CF 2 )2C 6 H4NH21 rnp 136-137.50Cfbased
on its mass spectral breakdown pattern given in Table 11
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Attempted Preparation of 2 , 2-bis {44-bromophenyl}hexafluoroREopane

a) Via reaction of 2 , 2-bis (4-hydrox-rahenyl)hexafluoropropane

(Bisphenol-AF)_with phosphorus pentabromide in the absence of solvent

Bisphenol-AF (5,09 g, 15.14 mmol) was mixed with phosphorus penta-

bromide (12.90 g, 29.74 mmol) and heated under nitrogen by-pass for 6 hr

at 100-1220C. Treatment with water gave 12.68 g of material which was

then further purified by dissolution in aqueous potassium hydroxide; most

dissolved indicating that phenolic groups remained. Acidification of the

solution gave a solid which based on its infrared spectrum consisted

essentially of the starting material admixed possibly with bromosubstituted

aromatics.

b? Via reaction of Bisphenol-AF with phosphorus pentabromide in.

bromobenzene

The solvent was utilized to provide a homogeneous reaction mixture

inasmuch as under conditions employed in (a) a solid remained throughout

the heating process. Thus a mixture of Bisphenol-AF (2.07 g, 6.16 mmol) ,

phosphorus pentabromide (5.36 g, 12.45 mmol) and bromobenzene (5 ml)

was heated at 70-1000C for 1.5 hr, then at 120-1250C for 5 hr. The

cooled reaction mixture was treated with water and extracted with ether.

Removal of ether gave 2.55 g of residue which on crystallization from

ether-petroleum ether yielded 1.21 g (40% yield) of 2 2-bis (4-hydroxy-x--

bromophenyl)hexafluoropropane, mp 148-1530C. The structure was

elucidated from the mass spectral breakdown pattern (see Table III).

Attempted Preparation of 2 , 2-bis (4-aminoRhenyl)hexafluoroproipane

via reaction of Bisphenol-AF with aniline hydrochloride

a) At 175--200oC under atmospheric pressure

Heating a 1:5 mixture of Bisphenol-AP and aniline, hydrochloride

9



at 175-200°C over a period of 4 hr resulted in the sublimation of aniline

hydrochloride and recovery of the Eisphenol-AX.

b) At 1900C in a sealed ampoule

Heating Bisphenol-AF (4.40 g) with aniline hydrochloride (6.78 g)

at 190°C for 48 hr resulted in quantitative Bisphenol-AF recovery.

c)_-- At - 250 and 290°C in a sealed ampoule

Heating Bisphenol-AF (5.53 g) with aniline hydrochloride (8.53 g)

at 250°C for 160 hr gave - 7 0,o' yield of diphenylamine identified by GC-MS;

82% of Bisphenol--AF was recovered. Conducting the reaction ar 290°C for

42 hr increased only the yield of diphenylamine; no 2, 2-bis (4- amino phenyl) -

peri:luoropropane was produced.

Treatment of Bisphenol--AF with CaC12 NH3)x

W. Borsche and M. Wagner -- Roemmich (ref. 4) do not specify the

number of ammonia moieties present in CaCl2 (NH3 )x . Compounds of

composition CaC12 (NH 3)x wherein x = 1, 2,4 and 8 are known (ref. 5 ,6).

It has been found here that to prepare any of these adducts, calcium

chloride must be absolutely anhydrous. In view of the high vapor pressure

at room temperature of CaCl2 (NH3 ) 4,8 treatment of CaC12 with liquid

ammonia gave after removal in vacuo of the excess ammonia the composi-

tion CaCl2 (NH 3)2.5 (mainly CaCl2 (NH3 ) 2 admixed with some CaCl 2 (NH 3 ) 4) .

Thus a mixture of Bisphenol-AF (0.28 g, 0.83 mmol) and CaC1 2 (NH 3 ) 2i 5
(0.97 g, 6.32 mmol) was heated in a sealed, evacuated ampoule at 300°C

for 160 hr, The solid (0.21 g) obtained after water treatment' of the reaction

mixture follow-id by solvent extraction was found to consist essentially

of the starting material, Bisphenol--AP, adrnb:ed with some phenol. Based

on mass spectral analysis none of the desirad 2 , 2-bis (4-aminophenyl)--

hexafluoropropane was formed.
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Preparation of 4-(hexafluoro-2-hydroxy-isopropyl)aniline

Under nitrogen by--pass, in an apparatus equipped with dry, ice

condenser and addition funnel, into aniline (9.50 g, 102.01 mmol) at

17000 was added hexafluoroacetone hydrate (20.16 g, 104.43 mmol) over

a 2 hr period. After an additional hr at 170 00 the hot liquid was poured

into a beaker and the solid mass obtained or, cooling was then crystallized

from ether-petroleum ether giving the desired product, 11.08 g (42% yield)

mp 149-15000 (ref. 7, 149-150 00) .

Attempted Preparation of 2,2-bis(4-aminoRhenyl)hexafluorol3rol3ane

A Using aluminum chloride catalysis

A mixture of 4-(hexafluoro-2-hydroxy-isopropyl) aniline (1.90 g,

7.33 mmol) was heated under nitrogen by-pass with aluminum chloride

(1.02 g, 7.65 mmol) and aniline (2.75 g, 29.53 mmcl) at 170 00 for 4 hr.

The black mixture obtained on cooling was taken up in ether and washed

with water. from the residue obtained after solvent and aniline removal

the starting material was quantitatively recovered.

b) Using p-toluenesulfonic acid catalysis

A mixture of 4-(hexafluoro-2--hydroxy-isopropyl)aniline (1.94 g,

7.49 mmol) was heated under nitrogen by-pass with p-toluenesulfonic

acid (30 mg, 0.15 mmol) and aniline (1.42 g, 15.25 mmol) at 180 00 for

4 hr. After removal of aniline the starting material was quantitatively

recovered.

Treatment of 4- (hex afluoro-2-hydroxy-isopropyl)aniline with

phosphorus pentabromide

a) At 87-9300

A mixture of 4-(hexafluoro-2-hydroxy-isopropyl)aniline (3.63 g,

11	 4
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14.01 mmol) and phosphorus pentabromide (6.29 g, 14.61 mmol) was

heated under nitrogen by--pass at 87-93°C for 2 hr; a red pasty material

resulted. Trituration with cold petroleum ether resulted in isolation

of 1.86 g (51%) of the starting material as an insoluble solid. The

petroleum ether fractions on evaporation yielded a liquid admixed with

some solid. The solid (0.37 g, 8.2% yield) was manually separated from

the liquid and crystallized from ether--petroleum ether, mp 130-131 0C.
Its infrared spectrum was different from that of the starting material

and the mass spectrum indicated that one of the hydrogens .(most likely

on the ring) was substituted by bromine (m/e, 337).

b) At 93-122°C

A mixture of 4-(hexafluoro-2-hydroxy-isopropyl) aniline (1.68 g,

6.48 mmol) and phosphorus pentabromide (2.79 g, 6.48 mmol) was

heated under nitrogen by-pass at 93-100°C for 1 hr, then at 100 to 122°C

for another 1 hr, and finally at 122°C for 2 hr. A dark colored liquid

resulted. This material was treated with water at 0°C and neutralized

with concentrated potassium hydroxide solution. Subsequently, the

mixture was extracted with ether. On removal of ether the remaining

tacky material was treated with petroleum ether giving a powdery solid

(0.93 g, 44% yield) . Crystallization from ether-petroleum ether gave a

material with mp 141--143 0C; based on mass spectral analysis it contained 70%

of the desired product H 2 X-C 6H4-C (CF 3 ) 2 Br, admixed with H 2N-C6H4

-C (CF 3 )2OH and H2 N-C6 H3 Br-C(CF3)2OR. The material wherein the

hydroxyl group was substituted by bromine was identified by its parent

peak at m/e 322 and the characteristic mass spectral breakdown pattern.
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Treatment of 4-(hexafluoro-2--hydroxv-isopropyl)aniline with

aniline and aluminum chloride

a) Using excess or. aluminum_ chloride, in a sealed am oule

A mixture of 4- (hexafluoro-2 -hydroxy-isopropyl) aniline (2.06 g,

7.95 mmol), aluminum chloride (8.26 g, 61.95 mmol) and aniline

(1.46 g, 15.68 mmol) was sealed in vacua and heated in a furnace at

2000C for 66 hr. Subsequently the ampoule was cooled, the evolved

hydrogen chloride vented and the black reaction mixture poured onto ice.

The aqueous solution (400 ml) was neutralized with sodium hydroxide and

extracted with ether. The reddish material (0.90 g) obtained on evapora-

tion of ether consisted of a mixture of aniline and benzidine as determined

by GC-MS analysis. No 2,2-bis(4-aminophenyl)hexafluoropropane was

detected. The original black, acid insoluble residue was extracted with

ether and benzene and this process was repeated after treatment with base.

Only a trace, M 100 mg, of material was thus extracted and it dial not contain

the desired product.

b) Using a 4-(hexafluoro-2-hydroxy-isopropyi)aniline to

alurr.'num chloride ratio of 1:1

A mixture of 4--(hexafluoro--2-hydroxy-isopropyl) aniline (11.50 g,

44.38 mmol), aluminum chloride (6.21 g, 46.57 mmol), and aniline

(16.58 g, 178.03 mmol) was heated under nitrogen by-pass for .116 hr at

186-19800. After cooling, water, (400 ml) was added and the mixture was

continuously extracted with ether for 40 hr. The ethereal solution was

then washed with 10% hydrochloric acid (800 ml); neutralization of the

acidic aqueous solution followed by ether extraction gave 4.94 g of a

semisolid mass which consisted of 23% of the desired product and 30.5%

of the starting material, 4-(hexafluoro-2-hydroxy-isopropyl) aniline,

13



admixed with diphenylamine and aniline. To isolate 2 , 2-bis (4-amino-

phenyl)hexafluoropropane the semisolid mass was washed with a small

quantity of benzene and the residue: was sublimed at 70-85 °C to remove

any starting material. The sublimation residue consisted of pure 2,2--bis-

(4-ami.nophenyl)hexafluoropropane (which itself sublimed readily at 95°C);
0mp 1 90-193 C (after crystallization from benzene); the DSC scan is given

in Figure 2. Anal. Calcd. for C^ 5 H12 F6 N2 : C, 53.90; H, 3.62; F, 34,10;

N, 8.38. Found: C, 54.27; H, 3.68; F, 35.59; N, 8.13.

The structure was confirmed by mass spectral analysis wherein the

molecular peak together with characteristic breakdown fragments were

observed. The mass spectrum is given in Table IV.

Solubility was determined to be 0 . 1726 g/ml in methanol; 0.1368 g/ml

in ethanol.

Preparation of BTDE/MDA/NE, 1500 FMW Resin

To a methanolic solution of BTDE (prepared from BTDA (17.05 mmol)

and methanol) were added at ambient temperature MDA (5 . 00 g, 25 . 23 mmol),

NE (3.21 g, 16.34 mmol) and methanol (8.21 g) . The solvent was then

removed in an air circulating oven at 120°F over a period of 69 hr affording

13.86 g of the uncured product; this was imidized at 390-400°F over a

period of 3 hr.

Preparation of BTDE/HFD/NE, 1636 FMLl4r Resin

To a methanolic solution of BTDE (prepared from BTDA (1.21 mmol)

and methanol) were added at ambient. temperature HFD (0.601 g, 1, 79

mmol) , NE (0.229 g, 1.16 mmol) and methanol (0.827 g) . The mixture

was stirred until a solution resulted. The solvent was removed in an air

°	 °circulating oven at 158-167F. The solid was subsequently dried at 167F



over a period of 20 hr and this was followed by imidization for 3 hr at

390-400°F.

Preparation of BTDE/HFID/NE , .1636 FMW Resin.

To a solution of BTDE (prepared from BTDA (4.05 mmol) and methanol)

in methanol were added at ambient temperature HFID (2.001 g, 5.99 mmol),

NE (0.761 g, 3.88 mmol) and methanol (2.761 g). The mixture was then

stirred overnight to permit complete dissolution of HFID. The solvent

was then removed in an air circulating oven at 160 0F. . The solid was

subsequently dried at 160-170°F over a period of 21 hr and this was follow-

ed by imidization for . 3 hr at 390-400°F.

Preparation of Discs

A number of procedures were explored for the preparation of the fully

cured discs. It was found that best results were obtained by using pre-

imidized material and conducting the cure in the 0.5" die by initially

compressing the sample at room temperature at 2500 psi for 24 hr, raising

the temperature to e,, 400°F with the same pressure applied, then reducing

to contact pressure while gradually heating from 400°F to 600°F over a

period of 3 hr. followed by treatment at 600°F for 1.5 hr. Cooling was

also gradual (2 hr, 600 to 150°F) . The discs were post--cured by placing

the disc (mold set in a C-clamp) into an oven at 570-581°F (4 hr), followed

by an increase of temperature (15-30 min) to 650°F and finally 1 hr residence

at 650oF. The mold was removed and cooled. The discs were well formed.

Hydrolytic Stability Testing

Weighed discs were placed in a desiccator containing an aqueous

_	 solution of sodium sulfate (15% by weight) calculated to give a humidity

of" 95% at 25°C (ref. 8). The exposure time was 30 days. The weight
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gain-time relationship is given in tabular form in Table V, and as a

graphical presentation in Figure 3. The results of thermogravimetric

studies performed on the polyimides are summarized in Table VI.



4 . TECHNICAL DISCUSSION

The objective of this contract was to prepare analogues of methylene

dianilines in which the methylene group between the two aromatic nuclei

is replaced by various perfluoroalkylene linkages. These diamines were

then to be used to prepare polyimides using the PMR technique (ref. 1) and

the resulting products evaluated in regard to their thermal„ oxidative, and

hydrolytic stabilities.

4.1 MONOMER SYNTHESIS

A number of potential synthetic routes exist for the preparation of

perfluoroalkylene linked aromatic materials such as e.g.,  perfluoro-

alkylene linked diamines,

H2 N /	
R 
	 \ NH 

I

Generally the simplest procedure to obtain perfluoroethylene linked

aromatics is the interaction of the perfluoroalkyl diiodide with bromo-

or iodo-substituted aromatics. Tetrafluoroethylene is commercially

available and the simple interaction with iodine affords the diiodoethane

in essentially quantitative yield. Consequently, materials derived from

reaction of 1, 2--diiodotetrafluoroethane appeared economically attractive.

Past work (ref. 9) has shown that direct reaction of an aromatic
halide with 1, 2-diiodotetrafluoroethane using copper--bronze in DMSO

resulted in tetrafluoroethylene liberation at temperatures above 400C

necessary to initiate the reaction. It was hoped that treatment of

s
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phenylcopper in ethereal suspension at low temperature with 1, 2-diiodo-

tetrafluoroethane would result in the desired coupling.

2 C6H5Cu f ICF2OF21

C6H5OF2CF2 C 6H5 -^ Cu2I2	C6H5I f CuCF2CF2 I and/or CuCF2OF2Cu

Unfortunately instead of coupling an exchange giving iodobenzene and

1-copper--2-iodotetrafluoroethane and/or possibly 1, 2-dicoppertetrafluoro-

ethane took place. One would expect CuCF 2OF2 I to liberate tetrafluoro-

ethylene readily, whereas CuCF2 OF2 Cu would be unlikely to do so. It

should be noted that during addition of 1 , 2--diiodotetrafluoroethane to the

phenylcopper suspension some tetrafluoroethylene was liberated (indicating

formation and decomposition of CuCF 2 OF I); however, the bulk of tetra-

fluoroethylene was formed only on hydrolysis of the reaction mixture

Since no tetrafluoroethane was observed in the evolved gases, it seems

safe to assume that no dicopper compounds were formed.

For 1, 3-diiodohexafluoroprepane , where no tendency exists to

liberate iodine with formation of an olefin, it was shown (ref. 9, 10) that

coupling with a variety of aromatic iodides in the presence of copper-

bronze can be successfully accomplished. Unfortunately, 1,3-diiodo-

hexafluoropropane is unavailable commercially and thus had to be prepared

from perfluoroglutarimidine , which was kindly donated by Mr. W. R.

Griffin of the Air Force Materials Laboratory. Below is presented the

reaction path to the desired diiodo--compound:
}



NH
it

/ C% 	 HCl	 Ag 2 t7
(CF2 ) 3	`NH	 C1 I, HOOC(CF2 ) 3000H - Ag20 & AgOOC(CF2)3COOAg

\ C	
If	 r2

NH
I (CF2)31

In the case of silver perfluoroglutarate the conventional Hunsdiecker

reaction, wherein the salt and iodine are mixed together and heated, was

found to give very low yields of the diiodide due to predominant lactone

formation (ref. 11) . W. R. Griffin (ref. 2) discovered that the yield can

be improved using FC-43 as the solvent. Accordingly, to the iodine in

hot FC-43 was added Vic solid silver salt; yields ranging from 84-58%

were realized using this procedure. The direct copper=bronze coupling of

p-iodoaniline with 1, 3-diiodohexafluoropropane did not yield the desired 1,3-

bis (4-ami.nophenyl)hexafluoropropane . However, using p-iodoacetanilide,

1, 3-bis (p- ace tam id ophe nyl) hexaflu oropropa ne was obtained in 78% yield,

and it gave the free amine on hydrolysis in 35% yield i.e.:

2 CH3CONH-C 6 H41 + I(CF2)3I

Copper-bronze

CH3CONH-C6H4- (CF 2) 3-C6H4-NHCOCH3

HCl

H2 NC6H4- (CF 2)3-C6H4NH2
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The amine appears to be thermally and hydrolytically unstable as

indicated by the exotherm at IV 11,00C in its DTA scan (see Figure 1) and

by the low degree of material recovary after determining the solubility in

alcohols. The instability wk;suld thus explain the low yields realized on

preparation of the free dianiliae from the acetanilide and the inability to

conduct the coupling directly. Based on mass spectral analysis (see Table

II) the major degradation product seems to be H 2 NC6 H4COCF2 CF2 C6H4NH2 0

To produce a material wherein the Rf moiety . of the basic structure I
is C (CF 3 ) 2 , one of the most promising avenues would appear to be the

transformation of Bisphenol-AF, HO-C 6 HA-C(CF 3 ) 2 C6 H4-OH, inasmuch

as this compound is commercially available. The route via a dibromo compound,

although consisting of a two step sequence, appeared especially

attractive Le..

HO-C 6 -C (CF2) 2--C6H4-OH

PBr5

Br-C 6 H4-C (CF3 }2-C6H4^-Br

KNH2 (or NH 2}

H2N-CB H4-C (Cr 3}2-06H4--NH2

Unfortunately, phosphorus pentabromide failed to exchange the hydroxyl

group with bromine; instead ring bromination occurred giving -thus a 40%

yield of 2, 2-bi.s (4-hydroxy-x-bromophenyl)hexafluoropropane.
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Krimm et al (ref. 12) prepared 2 , 2-bis (4-aminophenyl)propane from

the corresponding hydroxy compound via treatment with aniline hydrochloride

at,., 1800C C. Thus extending this process to Bisphenol-AF was an obvious

choice, i.e.:

CF3	 C6H5NII2a, HC1	 CF
3

HO-C6H4-C-C6H4-OH	 H2N-C6H4-C-C6H4-NH2

OF 	 CF 

However, heating Bisphenol-AF with aniline hydrochloride below 2000C

gave quantitative starting material recovery. Between 250-290 0C the only

product formed was diphenylamine .

The transformation of a phenolic moiety into an amino group has

been reported (ref. 4) using CaCl2 (NH 3 )x at 250-270oC. In the case of

Bisphenol-AF this reaction leads to rupture of the phenyl-perfluoroiso-

propyl linkage with concomitant formation of phenol.

Based on the above unsuccessful transformation attempts it is

obvious that the perfluoroalkyl bridging group has a much more pronounced

effect upon the reactivity and behavior of the hydroxyl groups than would

appear just from the consideration of the electrophilic nature of this moiety.

Furthermore, as can be seen from the formation of phenol, the perfluoroiso-

propyl group itself can be involved in reactions preventing the desired

process or processes from occurring.

Bisphenol-AF itse..)f is obtained from the reaction of hexafluoroacetone

and phenol in the presence of hydrogen fluoride at 1000  (ref. 13,14). It

has been reported that aniline at 170--200 0C gives 4-(hexafluoro-2--hydroxy-

isopropyl)aniline (ref. 6) . This material is a potential precursor of 2 , 2-bis-

(4-aminophenyl)hexafluoropropane. Accordingly, 4-(hexafluoro-2--hydroxy-

isopropyl)aniline was prepared from hexafluoroacetone hydrate and aniline
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in 42% yield following essentially the proceaure of Gilbert, et al (ref. 7)

although these investigators utilized hexafluoroace bone itself which is no

longer commercially available:

H2N-05 H5 + (OF3 ) 200.1.5H O ------r- H2N-CSH4-C(CF )2 OR

Attempts were made to couple this material with additional quantities

of aniline in the presence of aluminum chloride and p -toluene sulfanic.

acid, i.e. ,

H2N-CS1I4-0(CF3 ) 2OH + 0 H NH2

catalyst

H2 N-C 5H4-C(CF3) 2-C6 H4NH2 + H0	 a

However, utilizing reaction times comparable to those employed in the

synthesis of 4-(hexafluoro-2-hydroxy-isopropyl) aniline the starting

materials were recovered essentially quantitatively.

In view of the pronounced ability of perfluoroalkyl halides to couple

with iodobenzene derivatives in the presence . of . copper bronze and the

ready formation of the hexafluoroisopropanol derivative it seemed worth-

while to attempt the replacement of the hydroxy group by a bromine atom.

The resulting bromide would then be expected to couple with p--iodo-

acetanilide using the copper-bronze DMSO procedure, i.e.:

H2 N- C (3 H4-G(CF3 ) 2 Br + I-C5H4-NHCOCH

E" -.0 	 (CFA) 2--C5H4-NHC0CH3
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Treatment of 4-(haxafluoro-2-hydroxy-isopropyl) aniline with

phosphorus pentabromide below 05 00 resulted in 50,0 starting material

recovery and in the isolation of Sea of ring brominated products as

determined by mass spectral analysis, i.e. ,

PBr
H2N-C6 H4-G(Cr3) 2OH ^ ^ H2N-06H3Br-C(CF3)2®H

Conducting the phosphorus pentabromide reaction at 100--120`'

gave a 45e^ yield of a product mixture which contained , 70 0,J of the	 i

desired product admixed with the starting material and the ring brominated

compounds:

1T N-C H -C (CF) OH + PBr	 100-1200C
2	 6 4	 32	 5

HE N-C.6H4_0(Cr3 ) 2 Br + POBr. + HBr.

The low yield of the desired. product, together with the difficulties.

associated with its isolation and the unknown prospects of the next re-

quired coupling step made this approach lass attractive than the reinvesti-

gation of the direct reaction.

Interaction of 4- (hexafluoro- 2-hydroxy- isopropyl) aniline with aniline

and aluminum chloride at 100°C for 65 hr using an aluminum chloride . to

4- (hexafluoro-2-hydroxy--i.sopropyl)anili.ne ratio of S to 1 gave as the only

d iamino -compound benzi.dine . However, employing a 1:1 reagent ratio and

a four fold excess of aniline afforded the desired 2,2-bis(4-aminophenyl)-

Iieafluornprc^pane in 0,'^ yield as dr^tertningdy GC-l^B analysis. The

product was :identified by comparison of its GC-retention time, melting

23



point, mass and infrared spectra with that of an authentic sample. The

mass spectr um of 2, 2-bis (4-aminophenyl)hexafluoropropane is given in

Table IV. It should be noted that the m/e peaks 334, 335 (molecular

weight) and 265 (loss of CF  group) are characteristic for this compound.

It is believed that this process could be optimized to afford yields in excess

of the reported 10%, but this was not within the scope of the program.

4.2 POLYMER INVESTIGATIONS

Three PMR Polyimides, namely BIDE/MDA/NE (1500 F", BTDE/HFD/NE

(1636 FMW) and BTDE /HFID/NE (1636 FMW) were prepared using the PMR

technique. The imidization, fabrication and curing conditions employed are

fully described in the experimental section.

The moisture absorption characteristics of the cured discs were	 3

determined by exposure to a 955 humidity atmosphere for 30 days at room 	
i

temperature. As can be seen from Table V and the graphical presentation

given in Figure 3 the absorption process reached a steady state between

2 and 9 days. In agreement with predictions BTDE/HFID/NE exhibited

the least moisture absorption. The behavior of BTDEA1PD/NE resin is

not really surprising if one considers the instability of the parent diamine. 	 j

The thermal and thermal oxidative characteristics of these discs were

determined by TGA, both prior and after exposure to the 955 humidity

environment. The results of these tests are summarized in Table VI.

The temperature region considered in this tabulation, namely weight loss

up to 400 0
 C, has been selected since this appears. to be the stability limit
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of this resin system based on TGA. Examining the data it can be deduced

that in nitrogen BTDE%HFID/NE polyimide loses all the absorbed moisture

without any retention or increased degradation. In air the presence of

moisture seems to promote oxidation since the weight loss at 4000  (2.75%)

is somewhat less than the sum of moisture absorbed plus the weight loss

of the untreated sample (1.76 + I.25) . This effect is evident to a

significantly larger extent in the BTDE/MDA/NE resin and is most pro-

nounced in the BTDE/HFD /NE materials.



5. CONCLUSIONS AND RECOMMENDATIONS

Summarized below are conclusions and recommendations reached

during the current investigations of perfluoroalkylene aromatic diamines

as potential candidates in polyimide optimization.

1) Two diamines were synthesized, 1, 3-bis (4-aminophenyl)hexa--

fluoropropane and 2 , 2-bis (4-aminophenyl)hexafluoropropane .

2) The hydrolytic, thermal and thermal oxidative stability of the

2 , 2-bis (4-aminophenyl)hexafluoropropane derived polyimide was

found to be superior to that of methylenedianiline and 1, 3-bis (4-

aminophenyl)hexafluoropropane derived resins.

3) The presence of difluoromethylene groups next to the aromatic ring

appears to impart the observed hydrolytic instability of 1, 3--bis (4-

aminophenyl)hexafluoropropane, whereas the perfluoroisopropyl
1

linkage-provides the desired hydrophobic properties without any

decrease in the thermal and thermal oxidative stability of the
9

resultant polyimide.

4) The synthesis of 2 , 2-bis (4-aminophenyl)hexafluoropropane via

interaction of 4-(hexaflucro-2:-hydroxy-isopropyl) aniline with

aniline and alumiwarn chloride gave the desired product in only

10% yield. This process should and most likely can be optimized

to achieve more reasonable yields.
S
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TABLE I

ION FRAGMENTS AND INTENSITIES RELATIVE

TO BASE PEAK OF H2N-C6 HA- (CF2)3-C6H4-NH2 a

m/e m/e

20 3.0 115	 4.4
32 8.9 122.	 2.0
39 2.4 125	 2.0
65 4.5 142	 100.
92 2.0 143	 8.0
93 2.0 173	 5.7
95 4.5 334	 32.5

114 2.6 335	 5.4

a) Peaks having intensities less than 2% of the base
peak are not reported.

TABLE II

ION FRAGMENTS AND INTENSITIES RELATIVE

TO BASE PEAK OF H2 N-C6 H4 CF2 CF2 C (0)C6H4--NH2a

m/e m/e

20 3.3 115	 4.0
39 5.7 120	 100.
65 28.2 121	 21.4
66 5.4 122	 3.3
78 4.6 142	 51.3
91 6.8 143	 6.8
92 31.3 173	 3.6
93 3.7 312	 32.4
95 3.3 313	 10.5

_	 a) Peaks having Intensities less than 3% of the base
peak are not reported.



TABLE III

ION FRAGMENTS AND INTENSITIES RELATIVE TO

BASE PEAK OF H2N-C6H3Br--C(GF3)2-CSH3Br-NH2 a

m/e m/e We

69 65.4 113 13.8 237 12.1
74 11.4 125 11.4 265 .72.0
75 21.1 132 33.2 266 14.2
79 73.7 137 10.4 275 23.2
80 92.4 138 20.1 277 24.6
81 66.8 139 26.6 344' 20.4
82 100. 167 12.1 346 18.3
83 29.8 168 26.6 413 10.4
84 19.7 169 10.7 423 42.6
85 26.3 188 11.8 425 72.7
93 20.1 197 29.4 426 11.1
97 13.1 207 11.1. 427 3804
98 17.6 215 11.1 492 17.0
99 16.6 217 13.5 494 35.3

107 19.0 236 32.5 496 22.5

a) Peaks having intensities less than 10% of the base peak
are not reported.

TABLE IV

ION FRAGMENTS AND INTENSITIES RELATIVE TO

BASE PEAK OF H2N-C6H4-C(CF3)2-C6H4-1VH2 a

m/e m/e m/e

52 5.2 142 8.2 198 14.8
63 5.1 151 6.4 225 10.6
65 10.5 152 5.6 245 6.0
77 5.0 167 17.8 248 7.3
78 7.5 168 17.6 249 7.4
83 12.3 178 6.9 264 24.1
84 5.3 179 9.3 265 100.
89 6.0 180 24.1 266 40.7
92 6.2 181 5.3 315 7.6
93 5.1 194 5.3 333 6.3
97 23.2 195 55.8 334 85.3
98: 53.6 196 30.2 335 26.7



TABLE V

WEIGHT GAIN OF FULLY CURED RESINS ON EXPOSURE

TO 95% HUMIDITY

Sample -__ Weight Percent Gain	 -

Day Day Day	 Day Day
1 9 16	 23 30

BIDE/MDA/NE 1.17 2.18 2.44	 2.50 2.52
BTDE/HFD/NE 2 . 95 3.87 3.94	 4.08 4.15
BIDE/HF1D/NE 1.35 1.69 1.73	 1.73 1.76

TABLE VI

GRAVIMETRIC INVESTIGATION OF POLYIMIDE RESINS

95% Humidity Exposure 	 TGAP Weight Loss between 100--400 C
c.^	 Compound Sample Weight	 Weight Gain	 Post Cured Samples Exposed to 951 Humidity° mg	 %	 N2	 Air N2 Air

BTDE/MDA/NE 384.7	 2.52	 2.50	 2.50 4.38 3.75
(Fig. 4)	 (Fig. 5) (Fig. 6) (Fig. 7)

BTDE/HFD./NE 291.8	 4.15	 3.13	 2.75 5.62 5.12
(Fig. 8)	 (Fig. 9) (Fig. 10) (Fig. -11)

BTDE/HFID/NE 295.6	 1.76	 1.25	 1.25 3.13 2.75
(Fig. 12)	 (Fig.	 13) (Fig. 14) (Fig. 15)

a) All the materials exposed to the 95% humidity for 30 days were post cured.
b) The numbers in parenthesis below the weight. loss value correspond to number of the figures given in

.	 Appendix.
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CŴ jj	'iAMF'LE
.[^	 A

	

^J'1li''/ itp^ lJ^	
PROSF1ATE "G/m:n__^ - 	 [mcdi^BEl.liln..W._.^ SUPPRESSION mtg__^^6^ MODE

L{	 P06T P Rgl7	 !-TEAT ^ COOL _ ISO - WEiGHT. mg - 	 -- -._ WEIGHT mg - l d ^ 0^ . _. SAMPLr SIZE----.	 ^ _- -. — -- -- -
A t,A^1 f^ _,. ..	 _ SHIFT In 	 -__..	 .__. REFERENCE	 TIMETIME CONST. sec t	 LOAD S	 .^.. -- ---. - .^-..------.-._-----...- --

QFLphldi^ATc ^^^If^I^6a' Gsi	 ----_^ dY- (mq/min3nn.	 dY.Eti]X)imllsimin]/In— —.--_

i..4	 I

_	 Iy	 _	 .	

i

717T _7

k



F"T NO, 990098
I

;4UN ! jO l(O& DAIL_ j'r M1►j 74TGA T-AXIS DTA-0SC. TGA TMA

OPFRATE)P -	 _44 SCALE 'C,,r. _M_ SCALE "C,n_ SCAi.E SCALE	 rmf.-,
sArA F-e-

5TOC 1
F

14 CA/ NC
PROG RATE SUPPF'E SSIO'4r ft-f-, - 0 itl) MODE

SW M 10 1 r 
I 
ap Hi 1.1	 COOL	 ISO WEIGHT	 ,g-- WEIGHT SAMPLE

41 r " 	NJ,	 .." - , ___ -:,41PI	 ---	 - REFERENCE___..___.___. TIME C;ONST rut_!_ LOAO Q_

r-LCJV,;RATE	 (DO L%1 )I%lr't cry tmQ.'rn$"7.0ln_ ay I I ox I ( Man./m,n) /,n-

- -----	

-77 7' 7
4

CD	 ....	 ..

...	 ....	 ..	 .

..	 .	 ....	 ...

C=.

L U_j
7— 7	 7 7—

cr
>

Uj

D

U3

^7	 q

Uj

0	 50 100 150	 200	 250	 300	 3501 	 400 1150 500	 550	 600
TEMPERATURE. 'C (CHROMEL / ALUMEL-,

Figure 6: TGA Scan of Post Cured-Humidity Exposed

650	 70C



PART NO. @°J	 BB

FiLIN A 
_ _.DATk T-AXIS C)TA- DSC TGA TMA - -

rJPL-HATCIFI_s?4	 _. -_ F SCALP: "Cl-n_ SCALE	 C , in SCALE rng,;h_

{	 fM	 NIT PROD. "AYf=. ' G rne n _._	 _ Imc it hf+r.l ^^s,__T—. SUPPHESS1Ot;	 Q^70 NACIDE-- -. -

^4VF+flDf^le'O HEAT_.. _C001.— --ISO-._— WEIGHT. mg— WEIGHT, mq—_ _:.^._-.— SAMPLE ^E
SHIFT in_—	 ---__-- RFFERENCE; _-- TIME CONST LOAO. n—

FLOW RATE.-INMlj.W► -_— -_	 ---- _— —_._	 __.._._--- [fY im^.'min)Iln,^sZe-_ dY,f1ox),r n.E3imin)/m_ ^—^_	 ^-----i

{1111 9-
-;

•- .. .:_^

1+

1

..

45—

0	 s0	 1'00	 150	 200	 250	 300	 350	 400	 45O	 500	 5HO	 SOD	 650	 7OC

TEMPERATURE. °C LCHROMEL f ALUMELI	 t

Figure 7: TGA.Scan of Post Cured- Humidity Exposed PTDEIMDA/NF Resin (in Air)



^ ^	 1 T-AXIS D t A -0, ?GA TMA

^i - ; r ;ATGFi-- 	ti/ i. SCL LI	 40	
--

 r..ALE:	 n,il^.

T,-^f^i-1: (^L.F 	 ^ -F3F7^G FATS ^"G r i ,r	 ^. ^	 r mcyi ^r ^r ]! ri .	 ^^',IJPPA^raSIGf 7 m^	 ^) j 0^^^ fJ1CJD^ . «_,._ _— _^^-_._ ._.._______	 . _._	 _.

SOS	 G4	 p T..	 _CC1C1L_,_t! yio	 __HEA

^
VJEIG.T.my_.—_----- UVF{SHT mM___..Q_. ^_.._ $AMPLE SIZE __—_,

RF-FE;;F-t-CFZ	..--__—' -'°- TFC,A!'-	 Cf~,1[J r-:T	 •^F_:._	 j	 __. LOAC"i.

FLOJV RATE_ ^QG iw1 ^AtFx _ .^.-	 —	 _ - -----	 _ - _ __:_._^ -_. __	 ? __ t3Y imrl rrrlrr3 ^,n ^^ ^__ nY,C IE}iC] [mrrr,i>n,rsZ/er ^ ^_.

m.
T

F_

Y -. I





r

PART NO 99MBB

/^+=turn Nf}qFR DAl F .^'1M^iY? --TAXIS qTADSC TGA TMA —
SCALE "Cirri_ -59 -... ULALE SCALE .—.-
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Figure 13: TGA Scan of Post Cured BTDE/HPID/NE Resin (in Air)
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Figure I4: TGA Scan of Post Cu,ed-Humidity Exposed BTDE/HFID/NE Resin (fin Nitrogen)
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Figure 15: TGA Scan of Post Cured-Humidity Exposed BTDE/HFTD/NE Resin (in Air)


