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SYNOPSES

•

	

	 This effort was initiated by NASA as an exploratory
test program to evaluate ceramic materials for use
as abradable gas path seals in turbine engines at
temperatures up to 1370°C.

•

	

	 Silicon nitride and silicon carbide compositions
of varying densities and structures were evaluated
using Bradelloy 500 as a baseline material.

Honeycomb type silicon nitride and low density
silicon carbide have been recommended to NASA for
further study.

Tests with silicon nitride blade tips demonstrated
that they had desirable rub characteristics.

The initial contract was revised to broaden its
scope and exploit results of the initial test
program.

Key Words: Ceramics, Seals, Abradables, High
Temperature Seals, Ceramic Bonding,
Blade Tip Inserts, Turbine Tip
Seals, Silicon Carbide, Silicon
Nitride, Turbine Blade Tip Sealing.
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SUMMARY

Forty-four ceramic material systems were considered for potential use as
turbine blade tip gas path seals at temperatures up to 1370°C. The selected
systems were limited to silicon carbide and silicon nitride structures since
an initial analysis of the problem gave these materials the greatest
potential for development into a successful materials system. Not all of the
desired structures were available for testing.

Silicon_ nitride and silicon carbide materials over a range of densities
(processed by various methods) and a honeycomb structure of silicon nitride
were obtained as were ceramic blade tip inserts fabricated from both
materials by hot pressing. These were tested singly and in combination. The
evaluations included wear under simulated engine blade tip rub conditions,
thermal stability, impact resistance, machinability, hot gas erosion and
feasibility of fabrication into engine components.

The silicon nitride honeycomb and low--density silicon carbide using a
selected grain size distribution gave the most promising results as
rub-tolerant shroud liners and will be subject to further development.
Reaction-bonded silicon nitride materials (20-60 percent dense) failed in
test, as did similar components made from fine grained silicon carbide.
Ceramic blade tip inserts made from hot-pressed silicon nitride gave
excellent test results. Their behavior closely simulated metal tips. They
did not severely fracture during rub. Wear was similar to that of metals but
reduced by a factor of six. Analytical studies of the feasibility of
incorporating ceramic tips into metal blades are now in progress.

The results to date have demonstrated that honeycomb type silicon nitride
structures and low density silicon carbide structures should undergo further
testing and evaluation. At the same time, problem areas were identified that
needed additional study. These problem areas were: attachment to the
substructure, material optimization, the effect of variations in rub
parameters and the feasibility of using ceramic tips on turbine blades.
Therefore, the original, program plan was revised to broaden its scope and
submitted to the NASA Program Manager.
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I NTRODUM CM

The problem generated by high speed turbine blade tips moving in close
proximity to the outer case has been resolved in numerous ways by designers.
The earliest approach was to provide sufficient clearance between the tip of
the turbine blade and the outer shroud so that rubs slid not occur during any
phase of the turbine operation. The clearance required is large since
provision must be made for transient temperature differentials during
startup, acceleration, shut down, hot restart and violent maneuvers.
Tolerance stackup and other factors also contribute to the problem. To
reduce tip clearance requirements and prevent blade tip wear during rub, a
stable high temperature abradable tip shoe is needed. Because of the high
temperatures involved, and the need for high rub tolerance, low apparent
density ceramic materials are logical candidates as are open structures
similar to metal honeycomb.

This program was established by NASA to select and develop ceramic material
systems for use as turbine tip seals operating at temperatures up to 1370°C.
Silicon carbide and silicon nitride were selected as the two most logical
starting materials for this application. A total of 44 material systems were
selected during the program. To aid in evaluation, a currently used shroud
material, Bradelloy 500, was proposed as a baseline material throughout the
initial program. it was to be subjected to the same tests as the candidate
materials. Quantitative test results were to be related to the baseline
material.

'The program was divided into three tasks. Task T consisted of a material
screening test program. This screening program included thermal stability
tests, hot gas erosion tests, ambient temperature abradability testing,
abradability testing at 1370°C and ballistic impact tests. The results of
these tests were to be used to recommend a material system for advanced
laboratory evaluation in Task 11. Thermal and physical properties of the
selected material were to be determined at this time as a basis for
engineering design. Progress to date is described in this interim report.

9
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TEST PROGRAM
I: p

The test program is designed to isolate a material system satisfying the
operating requirements for a ceramic seal system as listed below.

1. Thermal and chemical stability in an oxidizing atmosphere at
temperatures up to 1370°C.

2. Resistance to thermal shock without cracking or loss of material.

3. Rob tolerance with minimal blade wear.

4. Impact resistance to prevent gross failure from foreign objects in
the gas stream at temperatures up to 1370°C.

5. Dimensional stability to retain attachment integrity and, to a
lesser extent, to maintain seal clearances.

!

	

	 The materials systems selected for this requirement are presented in Table 1.
The system numbers are used to identify the materials used in the test
program.

i
A second requirement is to establish design criteria for incorporating the
selected seal system into an existing engine. A flow chart combining initial
efforts and a revised program to meet these objectives is given in Figure 1.
Testing is designed to produce both quantitative data and a comparison with
materials currently in use.

2.1 TEST PROCEDURES

Two applications of materials, wear resistant blade tips and abradable shroud
structures, were screened prior to selecting a material system for advanced
evaluation. Oxidation resistance, ballistic impact resistance, and
abradability at room temperature were used for initial screening tests.
Selected materials were then subjected to hot gas oxidation/erosion testing
and hot abradability tests.

Figure 2 shows a flow chart of the Task T testing program, and specific test
procedures are described in the following paragraphs.

3
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Fable 1

Material Systems Variation -level Sets

Material
System
N»nber _	 - Sent Description Blade Tip

1* Corrugated from 3 mm tail height MAR-M421
2 plasticized Si

3N4 2 mm call height

3

Corrugated from

1 mm cell height

3 mm cell height silicon
1	

—

`	 MAR-M421	
--I

{
4*

i	 5 plasticized St ii1 4 2 mm cell height powder fill
I

^
and nitride

I

I	 6 1 mm cell height

E
7* Corrugated from Select best three from 1 mm Si 3N4 Ceramic tip

B
plasticized Si P

4 material systems No. 1 2 mm Si N
3 4 I

9

Reaction bonded 60 percent dense

Filled Si N

MAR-M42110

11 si3N4 50 percent dense i

12 40 percent dense

13 Reaction banded 60 percent dense !	 Ceramic tip

14 si3N4 50 percent dense

15 40 percent dense

16 silicon 60 percent dense I	 Ceramic tip

17 carbide 50 percent dense i

kis 320 Mesh 40 percent dense ^i
19¢ Hollow sic spheres 50 percent dense  MAR-M421

20* spheres in chemical vapor
40	 densepercentdeposited silicon carbide

21* matrix. 30 percent dense

22

II

Silicon carbide 60 percent dense Ceramic tip

23 100/60 Mesh 50 percent dense

24 40 percent dense
1

25 Silicon carbide 60 percent dense '!	 Ceramic tip

26 100/60 Mesh 50 percent dense dfJ

27 40 percent dense

2s Silicon carbide 6D percent dense i	 MAR-M421

29 100/60 Mesh 50 percent dense J

30 40 percent dense

31 silicon carbide fie percent dense MAR-H421

!	 32! 100/60 Mesh 50 percent dense

33 40 percent dense

f	 34

I

si3Nq 100-150 Mash MAR-M421

35 Reaction bonded 60 percent dense Ceramic tip

36 MAR-M421
Si N	 Sintered

3 
4 60 percent dense

37 Ceramic tip

3B* Sic graded structure MAR-M421

39* abradable to solid bonding Ceramic tip

40 Corrugated Si3N4 (2mm cell size) Open Thin M421 tip

41 Filled Ceramic tip

42 Corrugated si N (lmm cell size) Filled ceramic tip

43 Bradelloy 50D Baseline MAR-M421

44 Ceramic

*	 proposed vendor unable to supply and alternate source could not be located.
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PRELIMINARY SCREENING
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SILICON NITRIDE
HONEYCOMB
TASK It

i

ONE TEMPERATURE
ONE INCURSION RATE
THREE TIP VELOCITIES
:WO CELL SIZES

ONE VELOCITY
ONE TEMPERATURE
TF-PEE INCURSION RATES
TWO CELL SIZES

ONE VELOCITY
ONE INCURSION RATE
THREE TEMPERATURES
TWO CELL SIZES

BONDING SIIDIES^ (SEE FIGURE 3)
	 { DESCLLRAMICLTIPS OF

SILICON CARBIDE
THREE PARTICLE SIZE

COMBINATIONS
TASK I

FOURTH COMPOSITION
IF REQUIRED

Ll ONE INGRESSION RATE,
TEMPERATURE, TIP SPEED

SELECT THREE SETS OF TEST
PARAMETERS AND TWO MATERIAL
SYSTEMS (ONE SIC AND ONE Si3N4)

FROM ABOVE AT TWO INCURSION DEPTHS

CONDUCT FINAL PARAMETRIC TESTS

SELECT TWO SYSTEMS

ADVANCED LAS EVALUATION
TASK IV

PREPARE FINAL REPORT
TASK V

NASA CONCURRENCE REQUIRED AT THESE POINTS
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2.1.1 0xieation Resistance

Samples, 25 mm by 25 mm by 5 mm, were weighed, measured and placed in an
electric furnace preheated to 1370°C with static air as the atmospheric
environment. After 50 hours exposure the samples were removed from the
furnace, cooled to room temperature and weighed. They were then returned to
the furnace for an additional 50 hours exposure and the measurements
duplicated. The cycle was then repeated every 100 hours until a total of 500
hours exposure was reached. At completion of the test, weight change data
was evaluated and extrapolated to indicate the probable results of a
10,000-hour exposure.

In addition, the samples were examined visually for cracking, warping or
other evidence of failure each time they were removed from the furnace.
Sections were prepared of each material for metallographic examination after
500 hours exposure and compared with samples taken from each material prior
to test.

2.1.2 Ballistic Impact

The test materials were evaluated for ballistic impact resistance as follows.
Each specimen was adhesively bonded to a steel backing and then placed in the
ballistic impact test facility (Appendix A) to give an impact angle of 30
degrees. The equipment was standardized at an impact velocity of 127 mps
using a steel hall 4.78 mm in diameter with a mass of 0.440 gms. After test
the specimens were examined for impact damage (typically cracking, material
loss) and the systems ability to withstand foreign object impact caring engine
operation.

2.1.3 Abradability

Abradability of the materials was initially performed at room temperature.
Samples of each composition (50mm x 50mm x 5mm) were adhesively bonded to a
steel support fixture and machined to a 21.6 cm radius. 	 Both grinding and
single point machining were used. The single point machining proved to be
the most effective with these materials. Solar turbine blades fabricated
from DIAR-M421 alloy were used in the turbine disc for these abradability
tests. 'These blades were mounted in the disc and ground to a length of 6.4
mm for windage control.

During test, shear forces acting on the test sample (as characterized by the
stress on the instrumented sample support and measured with strain gages) and
the sample temperature rise (monitored by a thermocouple located 1.3 mm
beneath the initial center of rub) were automatically recorded. After
testing, blade wear was measured and the appearance of the tip observed.
Wear and relevant changes in the abradable materials were also determined.

7
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Representative metallurgical specimens were prepared from both the blades and
test specimens for metallurgical examination. From these data overall
performance was evaluated for the material under test.

The abradability test parameters were as follows:

•	 Temperature:	 ambient (=82°C due to air friction)

•	 Blade velocity:	 427 mps

•	 Incursion rate:	 0.025 mm per second

•	 Depth of rub:	 0.76 mm

A detailed description of this test facility can be found in Appendix E
together with a sketch depicting a typical test specimen.

2.1.4 Hot Gas/Erosion and Hot Abradability

When oxidation, abradability, and,ballistic impact tests were completed, the
most promising systems were then tested at elevated (1370°C) temperatures for
gas erosion and abradability.

Hot Gas Erosion Tests

The test facility was operated with kerosene fuel and preheated air. Com-
bustion products at a velocity of 550 mps was directed onto the sample at an
impingement angle of 30 degrees to the sample surface. During test the
sample surface temperature was monitored optically and the burner adjusted to
maintain it at 1370°C. Additional data was obtained by thermocouples located
6.4 mm beneath the initial sample surface. This temperature data was used
to maintain reproducible test conditions.

After testing for 100 hours, sample weight change, the depth of the erosion and
the area over which the sample was eroded was measured. The relative erosion
characteristics were recorded for each material and compared with the results
obtained when the baseline material was tested in the same manner.

Appendix C provides a description of the hot gas erosion test facility.

High TeTEerature Abradability

Further evaluation of abradable seal material systems was performed on the
rub test rig. These tests were similar to those conducted at room
temperature except that the sample temperature was stabilized at 1370°C prior
to test.

-	 8



As in the previous testing, temperature rise due to rub in the sample was
recorded throughout the test, as was the stress on the abradeble sample.
Temperature monitoring of the sample was accomplished by a thermocouple
located 1.3 mm beneath the initial rub surface. The baseline material was
not tested at 1200°C as originally planned since data from other tests
indicated that the material was not stable in this environment and severe
equipment damage might occur. Metallurgical sections were prepared after
test to detect any changes in the material resulting from the test.

2.2 EXPERIMENTAL RESULT'S

All of the material systems (see Table 1 for system identification) were
evaluated except for the 3 mm cell silicon nitride honeycomb (systems 1 and
4), the chemical vapor deposited hollow silicon carbide spheres (systems 19
thru 21), and the graded silicon carbide structures (systems 38 and 39).

The following sections detail results of Phase 1 screening tests.

2.2.1 Characterization of Materials

Upon receipt, each test material was weighed and measured. This data was
used to calculate its apparent density. Metallurgical sections were also
prepared to establish its initial structure for evaluation at this time and
determination of changes occurring during test. Results of the density
calculations are reported in Table 2. The systems with which each material
was evaluated can be identified by reference to Table 1. The value of 3.44
gm/cc (Handbook of Chemistry and Physics, 49th edition) is used as the basis
for calculating relative densities. For comparison purposes only, the
honeycomb structures were treated as a homogeneous structure. Subsequent
measurements showed the reaction bonded ribbon used in their manufacture had
a density of 80 percent (2.8 gm/cc) of the literature value. Filling the
openings increased its bulk density by 33 percent (1.14 gm/cc) of theoretical
density. Silicon carbide materials very closely approached specified values.
These were based on a theoretical density of 3.20 gms/cc (ibid). Two types
were received as indicated in Table 2. The first was manufactured from a
-325 mesh powder and the second from a combination of --100 and --60 mesh
material. The -325 materials were less uniform in structure than their
coarse grained counterparts. Evidence of high and low density areas were
observed as striations in the material. The coarser grained structure was
uniform in appearance.

obtaining silicon nitride materials in a rango of densities was less
successful. Materials approaching the value 60 percent dense requirement
were readily obtained. These had a uniform fine grained structure.
Materials specified to a 1owAr bulk value were not obtainable in a constant
quality and most vendors were unwilling to quote on supplying them. Those
that were obtained were far below the desired density. Typical values for
the received material lay in the neighborhood of 20 percent of theoretical
density, about half of the specified minimum value.

g
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In addition to the low density silicon nitride materials, three other ceramic
abradables could not be obtained as noted at the beginning of this section.
These were;

1. -Silicon nitride honeycomb (3 mm cell)

2. " Graded silicon carbide structures

3. Hollow silicon carbide spheres

These were deleted from the program after contacting.several vendors and
establishing that the development effort required for their production was
beyond the scope of the current program.

Bradelloy 500'was obtained in the form of brazed structures attached to a
Hastelloy X backing. Because of this structure, useful density data was not
attempted. Metallurgical specimens were prepared and are included in the
relevant sections of this report where they are used as the basis for
detecting material changes resulting from testing under various conditions.

2.2.2 Oxidation Testing

All of the materials listed in Fable 2 were tested for 500 hours in static
oxidation at 1370°C.

The results of these tests are shown graphically in Figures 3 and 4. The
data is plotted on the basis:

X = k (log [t] )
where:

x = percent weight increase
t = exposure time (hours)
k = rate constant

A significant difference was observed in the response of silicon nitride and
silicon carbide that related to basic composition rather than to the
structure under test. The structures based on silicon nitride showed a rapid
rate of oxidation during the first 50 hours of nest. This rate dropped to a
low constant value for the remainder of the test.

It was also observed that as density decreased the rate of oxidation
increased with a very rapid rate of oxidation occurring in the 20 percent
dense material. In evaluating these tests results, a value of 80 percent
(the ribbon density) should be used for the honeycomb silicon nitride
structures. Hot-pressed silicon nitride samples showed very low weight gain
when tested in this manner.

10



Table 2

Average Bulk Density or C ,-, ramic Abradables

Material
System(s)* Material

Density
(gms/cc)

Percent Theoretical Density

Specified	 Actual

3 and 6 Corrugated silicon Nitride 0.823 None	 23.9
1 mm Cell Size

2 and 5 Corrugated Silicon Nitride 0.697 None	 20.3
2 mm Cell Size

25, 26 & 27 Hot Pressed Silicon Carbide 3.22 100	 100

22 and 25 Silicon Carbide 2.00 60	 62.2
100/60 Grit

23 and 26 Silicon Carbide 1.60 50	 49.7
100/60 Grit

24 and 27 Silicon Carbide 1.28 40	 39.8
100/60 Grit

16 Silicon Carbide 1.99 60	 61.8
320 Grit

17 Silicon Carbide 1.64 50	 51.0
320 Grit

18 Silicon Carbide 1.32 40	 41.0
320 Grit

10 and 13 Silicon Nitride 2.18 60	 63.4

12 and 15 Silicon Nitride 0.727 40	 21.1

5 Filled Silicon Nitride 1.11 None	 32.3
(0.08) cell size)

6 Filled- Silicon Nitride 1.09 None	 31.7
(0.04 cell size)

34 Silicon Nitride 100-150 1.95 60	 57.3
grit (reaction banded)

36 Sintered Silicon Nitride 2.25
1
!	 60	 66.6

t

*See Table 1
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Photographs of filled and unfilled silicon nitride honeycomb samples before
and after oxidation are shown in Figures 5 through 10. There was little
visual difference between filled and unfilled samples after oxidation. Both
samples showed a glassy silica phase on exposed surfaces as well as
penetration of the oxide layer into the nodal joints of the corrugated
layers. Oxide penetration into the nodal joints was reduced in the filled
samples. Migration to the surface by the silicon nitride--glass filler
material to form a protective layer for the honeycomb was observed. However,
in many cases, the migration of material also resulted in a mechanical
breakdown of the nodal joint.

3n contrast to the silicon nitride materials, structures based on silicon
carbide had a nearly constant rate of oxidation during the test. The fine
grained, low density samples showed the least stability during test. Coarse
grained samples were less affected (100/60 mesh) particularly in the 60
percent dense material. The fully dense blade tips were little affected by
exposure in air at 1370°C and no significant changes were detected as a
result of the test.

Bradelloy 500 was also subjected to a 1370°C oxidation test. After two
hours, the Hastelloy X honeycomb had deteriorated to the point where the
physical integrity of the sample was lost (Fig. 11).

2.2.3 Abradability Testing

Nineteen material systems have been tested for ambient temperature
abradability. Sixteen of these tests used MAR-M421 blades. Three were
conducted using ceramic tipped blades (hot pressed silicon nitride and
silicon carbide). The room temperature test results are summarized in Table
3.

The rub tolerance of silicon carbide abradables was highly dependent upon
grain size and density. Fine grained (-325 mesh) materials tended to wear
blade tips and were susceptible to thermal shook. Large grained materials
(60/100 mesh) formed structures with easily dislodged grains which eroded
adjacent areas by high velocity particle impingement. Of those silicon
carbide materials tested, the 50 to 60 percent dense gave the best
abradability in both fine and coarse grained materials. However, the former
show only fair thermal stress resistance and the latter evidenced high
velocity particle erosion, as stated previously.

The appearance of the low density silicon carbide samples after rub test is
typified in Figures 12 and 13.

Porous, low density sintered silicon nitride samples exhibited poor
abradability. The 20 percent dense samples failed before a rub pattern could
develop. Because of the inherent weakness of the low density structure, it was
unable to sustain the mechanical stresses imposed. The 60 percent dense
sample shattered after 10 seconds of contact with the blade tip. High thermal
and mechanical stresses were indicated by the instrumentation and sample
appearance after test.

14



Magnification:	 16X

Figure 5.
2 mm Cell Unfilled Honeycomb

Silicon Nitride Before

Oxidation Test

Magnification:	 16X

Figure 6.

2 mm Cell Unfilled Honeycomb

Silicon Nitride After
500 Hours Oxidation Test At

13700C
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Magnification: 24X

Figure 7.
2 mm Cell Filled Honeycomb

Silicon Nitride Before
Oxidation Test
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Magnification: 24X

Figure 8.

2 mm Cell Filled Honeycomb

Silicon Nitride After 50
Hours 0,,idation at 1370%
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Figure 11.

Eradelloy 500 Specimen After

Oxidation Test at 1370°C
for 2 Hours

Reaction bonded 60 percent dense silicon_ nitride and sintered silicon nitride
from two alternate vendors were also tested with similar results (Figs. 14
and 15). The reaction bonded structure shattered completely during test with
no evidence of abrading prior to failure. Mechanical stresses and blade wear
were low. High thermal stresses, due to frictional heating, were indicated
by blade and sample appearance. The sintered structure also did not abrade.
Cracking and chipping occurred in the rub area without total material loss.
Transfer of the blade material to the ceramic surface was also evident. The
sintered structure shows some improvement over reaction bonded structures,
but cannot be described as a trua abradable material.

Rub tests on 2 mm and 1 mm cell size honeycomb silicon nitride gave similar
results (Fig. 16). Neither material showed evidence of mechanical failure
during rub and blade wear was low. Honeycomb samples filled with silicon
nitride powder were also tested. During rub the filler was lost and the
sample then behaved like the unfilled material. No observable benefit was
obtained from filling the honeycomb as originally proposed. The materials
behaved in a manner similar to low density silicon nitride materials.

Ceramic tipped blades were tested and compared with a similar MAR-M421 con-
figuration. The comparison between hot pressed silicon nitride, hot pressed
silicon carbide and MAR-M421 alloy blade tips was made on 2w4m cell size
honeycomb nitride.

Figures 17 and 1.8 illustrate the appearance of a MAR-M421 turbine blade
(reduced in the tip section to parallel the ceramic inserts) after rub. The
tip is worn for approximately 64 percent of the total penetration. wear is
over twice that of the ceramic tips from similar tests. Views are presented
in Figures 19 and 20 of silicon nitride tips subjected to this test. A
single .fracture has occurred. Although not readily visible, small

.^
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Figure 12.

Silicon Carbide, 60 Percent
Dense, 100/60 Flesh, After
Rub Testing

Figure 13.

Silicon Carbide, 50 Percent Dense,

320 Mesh, After Rub Test
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Figure 14.

Reaction Bonded, 60 Percent Dense,
Silicon Nitride After Pub Test

i

Figure 15.

Sintered, 60 Percent Dense,

Silicon Nitride After Rub Test
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Figure 16.

2 mm Honeycomb Silicon Nitride

After Rub Test

Figure 17.

MAR-M421 Bladc Tip After Test

Rub on Silicon Nitride Honeycomb
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Magnification: 2.75X

Figure 18.

End View of MAR-M421 Blade

After Rub Test

Figure 19.

Silicon Nitride Blade Tip
Profile After Rub Test

Magnification:	 1.5X

Figure 20.

Silicon Nitride Blade Tip
After Rub Test
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irregularities exist in the dovetail creating point contact in some regions.
Very little edge chipping has occurred and the overall wear resembles a metal
rather than a brittle ceramic material. The tip to seal wear is
approximately one to six in contrast to the two-to-one ratio of the metal
tip.

Identical rub tests were also conducted with silicon carbide blade tips, as
shown in Figures 21 and 22. Again, a single cross sectional fracture of the
tips occurred during rub- wear on this tip differed considerably from those
previously tested. The tip wear was exceedingly irregular. Numerous
fractures occurred during rub with the subsequent loss of blade tip particles
rather than the comparatively uniform continuous wear exhibited by the metal
and silicon nitride tips. This tendency to Fracture rather than wear is
clearly evident in Figure 23, which is a higher magnification of the silicon
carbide blade edge. The local fracture planes and tendency to chip during
rub is evident. Tip to seal wear ratio is approximately one to one, which is
half that of the metal blade but six times the wear of the silicon nitride
tip under similar test conditions.

The silicon carbide blade tips, after rub on a silicon carbide abradable
structure, are illustrated in Figures 24 and 25. The edge fracture
previously observed when this tip was tested against the silicon nitride
structure is evident. Tip wear against the low density silicon carbide was
about hall' the wear obtained when this tip material was tested on a
silicon nitride structure as previously reported.

During the program glass and metal bonds were used to join the abradable to
a backing. Both demonstrated the ability to wet the ceramics and produce a
strong joint. However, the metal alloy used for joining did not accommodate
the stresses generated during thermal cycling. The glass bond was less
susceptible to failure and this method was used to fabricate samples for
abradability testing at 1370°C. Abradability testing of ceramics bonded to a
ceramic backing were unsuccessful due to bond failure. The backing to
abradable bond failed during test. Testing of the composite system was
postponed for lack of a reliable joining method.

Silicon nitride honeycomb was rub tested at 1370°C. The sample was
mechanically retained using spring loaded clamps to compensate for thermal
expansion differentials between the core and the holder. During test, the
sample delaminated along modal bonds to produce independent sections three to
six cells wide for the full sample length. 	 These sections rose to varying
heights during test, making wear data inconsistent.

Independent bonding of each cell to the backing is required. However, in
spite of this problem none of the core was destroyed during the test and
little blade wear was evident. Appeareaice of the core surface was uniform
with no evidence of failure due to rub even though some portions showed wear
well in excess of the planned 0.7G mm, due to the previously noted rise of
the honeycomb core.

s
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Figure 22.

Silicon Carbide Blade Tip
After Rub Test

Magnification: 3X

Figure 21.

Silicon Carbide Blade Tip
After Rub Test

Magnification: 3X

Fi gure 23.

Typical Section of a Silicon

Carbid-- Blade Tip After Test
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Figure 24.

Silicon Carbide Tip Profile

After Rub on 60/100 Mesh
Silicon Carbide, 60 Percent
Dense

Figure 25.

Silicon Carbide Tip After Rub
on 60/100 Mesh Silicon Carbide,
60 Percent Dense
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As previously mentioned, Bradelloy 500 was proposed as a baseline material
for the screening tests. Considerable difficulty has been encountered in
establishing relevant baseline data on the Bradelloy 500 material. Under the
standard test conditions the material glazed, giving a hard wear resistant
surface and extremely high vibration levels in the test facility. Two test
variations were tried with this material to further explain its behavior.
These consisted of reducing penetration rate to half the standard value
(0.012mm/sec) and in a second test the rate was doubled (0.050mm/ sec).
Results of these tests are reported as tests 12, 13, and 14 in Table 3 and
are shown in Figures 26, 27 and 28. Increasing the penetration rate increased
the sample temperature rate of rise. Shear force wao uniform during this test
and the high stress peaks encountered at the lower feed rates were
eliminated. After test the sample was free of the glazing effects observed
in the tests at lower penetration rates.
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Figure 26.

Bradelloy Penetration Rate,
0.050 mm/sec

. a

77
Figure 27.

Bradelloy Penetration Rate,
0.025 mm/sec

a Figure 28.

Bradelloy Penetration Rate,
0.012 mm/sec
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2.2.4 Ballistic impact Zest

Ballistic impact testing for all samples was performed using the following
test conditions:

Impingement angle 	 30 degrees

Velocity	 127 mps

Projectile diameter	 4.78 mm

Projectile weight	 0.440 grams

After impact, samples were compared with respect to size of the impact
damaged area, depth of projectile penetration, presence of surface cracking
and general loss of physical integrity (Table 4). Figures 29 through 35 are
representative of the results of these tests. Low density silicon nitride
and silicon carbide materials exhibited the most damage. Areas with deep
projectile penetration and surface cracking are evident in Figure 29. The
silicon carbide sample in Figure 30 also shows large material losses in the
area of impact. Damage done to the higher density silicon nitride and
silicon carbide materials in Figures 31 and 32 is significantly less.
However, surface cracking still exists.

Unfilled corrugated silicon nitride structures performed well during impact
testing (Figs. 33-35). The corrugated structures tended to isolate the
effects of impact. Unfilled samples showed no sign of crack propagation.
The effect of impact was localized. Penetration depths were greater than
those in solid silicon nitride and silicon carbide samples. Filled honeycomb
silicon nitride samples exhibited cracking through the thickness of the
ribbon. The cracking was also transmitted to adjacent areas by the filler in
a manner•simil.ar to solid samples previously described.

2.2.5 Hot Gas Erosion Testing

Gas erosion tests were performed on filled and unfilled 1 mm cell silicon
nitride and on reaction bonded silicon nitride (Figs. 36 thru 41). Filler
material was a mixture of silicon nitride powder and a silica glass. Test
duration was 100 hours with a temperature of 1.370°C at the sample surface.
All samples were cooled to room temperature every 24 hours for inspection and
weighing.

]luring the erosion test the filled structure suffered an almost complete Loss
of the filler material (Fig. 37). The glass component of the filler was
separated from the ceramic powder component at the high temperature and
flowed towards the honeycomb surface. The ceramic powder component was then
carried away by the high. velocity gases. A similar- behavior was reported for
static oxidation tests. In the latter, the glass (with ceramic particles
intermixed) reached the surface where it remained as a glassy deposit in the
absence of high velocity gases. The glassy deposit was not analyzed..
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Table 4
F

Ballistic Impact Test Results at Ambient Temperature (Velocity 127 mps,
Impingement Aligle 30 Degrees, 4.78 mm Steel Spheres)

Damaged Area

Length Width Depth
Test Series System Material (mm) (mm) (mm) Comments

1 2 Corrugated Si N 30.5 8.9 6.4 Uniform crater ending abruptly
2 mm cell size 4 as energy dissipated

2 3 Corrugated Si3N 22.9 8.9 5.1 See above Test 1
1 mm cell size

3 10 & 13 Reaction bonded t ' * No penetration, crack in sample
Si P4 - 60" dense at point of impact

4 12 s 15 Reaction bonded 11.4 4.4 2.5 Shallow crater with minor edge
Si3N4 - 20% dense spelling

5 16 Silicon carbide rg ** ** Specimen shattered on impact
60% dense

6 17 Silicon carbide 6.4 3.2 1.3 slight crack originating at
50$ dense impact area

7 18 Silicon carbide 11.4 3.4 2.5 No crack formation.	 Penetration
40% dense deeper than for silicon nitride

8 22 C. 25 100/60 silicon 6.4 3.8 2.5 Deep short crater
carbide 60W dense

9 23 6 26 100/60 silicon 16.S 6.4 5.1 Crater size approximately twice
carbide 50% dense that of 60% dense material

10 24 & 27 100/60 silicon ** ** ** Specimen delaminated upon
carbide 401s dense impact

11 4 Filled corrugated 17.1 8.4 9.8 See test 1
silicon nitride
2 mm cell size

12 5 Filled corrugated 10.5 7.2 5.1 See test 1
silicon nitride
1 mm cell size

13 34 Reaction bonded No penetration, cracks in
silicon nitride sample at points of impact
60% dense

14 36 Sintered silicon >ti * sample shattered. 	 Cracks
nitride, 60% dense propagating from impact area

*	 specimen showed no measurable loss.

*	 Specimen destroyed on impact.
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Figure 30.

Silicon Carbide 40 Percent Dense

After Impact Test

(Arrows Indicate
Impact Damage)
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Figure 29.

Silicon Nitride 40 Percent Dense

After Impact Test

(Arrows Indicate
Impact Area)
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Figure 32.

Silicon Carbide 60 Percent Dense

After Impact Test

(Arrows Indicate

Impact Area)
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Figure 3].

Silicon Nitride 60 Percent Dense

After Impact Test

(Arrows Indicate

Impact Area)
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Figure 33.

Filled 1 mm Cell Silicon
Nitride After Impact

Figure 3..

Unfilled 1 mm Honeycomb

Silicon Nitride After
Impact Test
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Figure 34.

Unfilled 2 mm Honeycomb
Silicon Nitride After

Impact Test



Magnification: 9.5X

Figure 36.

1 mm Cell Unfilled Honeycomb

Slliw.)n Nitride Before

Erosion Test
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Magnification: 9.5X

Figure 37.

1 mm Cell Filled Honeycomb

Siiicon Nitride After
100 Hours Hot Gas Erosion

Magnification: 9.5X

r
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Figure 38.

tzm 1
1 mm Cell Unfilled Honey°

comb Silicon Nitride. After
100 Hours Hot Gas Erosion

(Arrows Indicate Exuded

I` a 	 00 1	 Glassy Phase)
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Magnification: 22X

Figure 39.

Reaction Bonded Silicon
Nitride After Hot Gas
Erosion Test Showing
Cracking Due to Particle
Impact
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Figure 40.

Reaction Bonded Silicon
Nitride A fter Hot Gas
Erosion 'est Showing
Crack Propagation (A)
From Impact Crater (B)

Reaction Bonded Silicon
Nitride After Hot Gas

Erosion Showing Glassy Phase

On Surface

Magnification:	 22X

Figure 4i.
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Visual examination of the unfilled silicon nitride structure after 100 hours
revealed the presence of a clear, glassy phase adhering to the cell inner
walls (Fig. 38). This deposit resembles that observed in the tests of the
filled structure and oxidation tests of low density materials based on
silicon nitride.

]founding and chipping of the ribbon edges were also observed during erosion
testing of the honeycomb sample. Blackish deposits on the ribbon surfaces
resemble carbon particle impact. The test facility has been modified to
eliminate carbon particles as a possible factor in future tests.

The su-face of the reaction bonded silicon nitride material showed
considerable pitting and coarsening after testing. A crater of diameter 0.91
mm can be identified as the origin of a hairline crack which extends through
the full thickness of the sample (Figs. 39 and 40). The effect was not
localized as with the honeycomb silicon nitr%.de structure. A glassy phase
was also present an the surface of the reaction bonded sample.

in the three material systems, weight gains were recorded rather than weight
loss.

2.3 CONCLUSIONS AND RECOMMENDATIONS

After reviewing. the results of Task I of the original contract it was
concluded that the scope of the progrz.m should be broadened to include axi
optimization of silicon carbide abradables, an analytical study of ceramic
blade tip inserts, a parametric study of silicon nitride rub variables and a
joining study. This decision was prompted by:

1. The dependence of silicon carbide material performance on density
and grain size, and the limited variations tested,

2. The success of rub tests using hot pressed silicon nitride blade
tip inserts,

3. The excellent performance of silicon nitride honeycomb structures
in abradability, oxidation, erosion and ballistic impact tests,

4. The difficulties encountered during Task I in bonding the ceramic
abradable seal to a backing and the importance of successfully
joining a highly rub tolerant seal to a high strength backing in
producing a practical system.

From the cumulative data obtained from the original program, initial
conclusions were drawn regarding silicon carbide abradables. The density
should lie in the 60 percent range and the grain size should be a combination
of fines (about -200 mesh) to enhance strength, and coarse (approximately 100
mesh) to enhance abradability and oxidation resistance while still remaining
sufficiently fine to avoid high velocity particle erosion observed in
previous testing.
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To fully characterize a honeycomb type silicon nitride as an abradabie seal
material, the effect of changing rub parameters must be evaluated. Fable 5
illustrates a typical set of variables that should be investigated. Rub may
occur during nearly any portion of the operating regime and a single test
will not characterize the material throughout this spectrum.

The great disparity between metal and ceramic expansion coefficients
necessitates the development of techniques for joining a seal material to a
higi , density, high strength ceramic backing that can be mechanically held in
the vetal shroud. Engine conditions dictate the need for a seal to backing
bonding medium which combines thermal shock resistance with high temperature
strength and long service life. The following is a list of some techniques
to be cons-;dcred:

Bonding with glass interlayers

•	 Brazing with a modified silicon alloy

•	 Bonding by reaction of a silicon alloy with nitrogen

•	 Modified, commercially available, high temperature ceramic
adhesives

Successful utilization of ceramic blade tip inserts will require a complete
design analysis. This analysis will require:

•	 Design optimization to maintain aerodynamic efficiency of
the blade

•	 Mechanical retention of the tip insert

•	 Minimizing tip fracture resulting from mechanical, thermal
and vibratory stresses

•	 Producibility of the insert and attachment.
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Table 5

Test Parameters for Abradabilit — Tests

TIP VELOCITIES

* 427 m/sec (1400 ft/sec)
305 m/sec (1000 ft/sec)
163 m/sec ( 600 ft/sec)

TEMPERATURE

1370 6C (2500°F)
982 6 C (1800°F)
538°C (1000°F)

INCURSION RATES

	

0.13 mm/sec	 (0.005 in./sec)

	

* 0.025 mm/sec	 (0.001 in./sec)
0.0051 w/sec ( .0002 in. /sec)

ABRADABLE, CELL SIZE

1.0 mm	 (0.04 in.)
2.0 mm	 (0.08 in.)

INCURSION DEPTH

*0.76 mm (0.03 in.)
1.5 mm (0.06 in.)

*Standard Test Conditions

i
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APPENDIX A

BALLISTIC IMPACT TESTING EQUIPMENT
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APPENDIX A

BALLISTIC IMPACT TESTING EQUIPMENT

The ballistic impact apparatus, shown in Figure 42, consists of a Crosman
0.22 caliber air rifle modified to accept precise charging with high pressure
air or nitrogen gas prior to each firing. spherical steel balls were used as
the projectiles. Calibration of the rifle for pellet velocity as a function
of gas pressure in the rifle is accomplished by means of a commercial
ballistic chronograph.

Figure 42. Typical Laboratory Setup for Impacting

Ceramic Specimens
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APPENDIX B

ABRADABILITY TESTING RIG

All abradability tests, room temperature screening and 1370°C hot tests were
performed using the existing Solar seal test facility. The test rig,
illustrated in Figure 43, is powered by an air driven turbine adapted for
this application from one of Solar's standard production e^gines. Air to
drive the turbine is supplied at a pressure of 0.07 Kgf/nan with a mass flow
of 1.4 Kgs/sec. The turbine is directly coupled to the output shaft through
a flexible coupling. Abradable tip seal materials are tested at speeds of up
to 427 mps and test temperatures to 1370°C. Figure 44 shows the 356 mm
diameter A-286 allay turbine disc broached with six MAR-M421 alloy turbine
blades. This setup is shown for room temperature testing.

The seal material under evaluation is located immediately below this wheel
(Fig. 45) on a platform advanced by a variable speed motor. The platform and
seal material are instrumented with strain gages and thermocouples to obtain
force and temperature data for each test.

The rig setup in Figure 46 is used for elevated temperature tests. For high
temperature tests (a honevccmb tip seal is shown), the setup includes the
addition of oxygem-MAPP gas torches to heat the seal material to the test
temperature at^d shielding to reduce heatup of the wheel and bearing housing.
The 3ssc and 'lades are heated only when they pass through the flame, or
approximately for 10 percent of the time that the seal material is heated.
This provids good simulation for the air-cooled blade temperature with
respect .,o an tulcooled seal, without the complexity introduced by air cooling.

A sample configuration is shown. in Figure 47. This sample is radiused to
match the blade tip diameter. The simple configuration was selected to allow
evaluation of a large number of materials at a reasonable cost.
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Figure 44. Seal Test Rig Wheel Showing MAR-M421 Alloy
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Figure 46. Seal Test Rig Showing Setup for Testing Honeycomb
Blade Tip Seals at Elevatad Temperature
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APPENDIX. C

OXIDATION/EROSION RIG

Solar has developed several generations of turbine environment simulators
for the evaluation of materials without the expense of using a test engine.
The rig used in this program includes a high-temperature combustion chamber
(fabricated from Hastelloy X) burning kerosene, a nozzle and a sample holder.
It is shoe n in Figure 48. The sample (50 nun x 50 mm x 5 mm) is held in the
gas stream on a water-cooled platform. Surface temperature of the sample is
maintained at 1370°C as measured optically during test. Visual observations
are made periodically for sample integrity and proper operation. Test
duration was 100 hours with sample removed for examination at 24-hour
intervals.

Figure 48. Oxidation/Erosion Rig! G
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