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LARGE EDDY SIMULATION OF INCOMPRESSIBLE TURBULENT CHANNEL FLOW

Abstract

The three-dimensional, time-dependent primitive equations of motion
have been numerically integrated for the case of turbulent channel flow.
For this purpose, a partially implicit numerical method has been devel-
oped. An important feature of this scheme is that the equation of con-
tinuity is solved directly. The residual field motions were simulated
through an eddy viscosity meodel, whereas the large-scale field was ob-
tained directly from the solution of the governing equations. 16 uniform
grid points were used in each of the streamwise and spanwise directioms,
and 65 grid points with non-uniform spacings in the direction normal to
the walls. An important portion of the initial velocity field was ob-
tained from the solution of the linearized Navier-Stokes equations. The
pseudospectral method was used for numerical differentiation in the hori-
zontal directions, and second-order finite-difference schemes were used
in the direction normal to the walls.

It has been shown that the Large Eddy Simulation technique is capable
of reproducing some of the important features of wall-bounded turbulent
flows. The overall agreement of the computed mean velocity profile and
turbulence statistiecs with experimental data is satisfactory. The resolv-
able portions of the root-mean square wall pressure fluctuations, pressure
velocity-gradient correlations, and velocity pressure-gradient correlations

are documented.
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Chapter I

INTRODUCTION

1,1 Historical Background

It has been known for some time that any turbulent flow contains
structures ("eddies™) in a wide range of spatial as well as temporal
scales. It is also generally recognized that large eddies differ
markedly from one flow type ta another (e.g., jets vs. boundary layers),
while the small eddies are quite similar in all flows.

Unfortunately, in the numerical simulation of (high Reynolds number)
turbulent flows, we find that due to computer limitations one cannot
resolve all the scales. Tt is this deficiency which provides the primary
inducement for the utilization of the large eddy simulation (L.E.S.)
approach.

The foundation on which this approach relies concerns the contrast
between large and small eddy modeling. More specifically, one finds that
large eddies cannot and should not be modeled, whereas with small eddies
successful modeling is possible. .

The large eddy simulation method is initiated by the introduction of
a procedure which separates the small and large scale structures. The
large scale structures will then be computed explicitly, while the small
scales are necessarily modeled.

The problem of decay of homogeneous isotropic turbulence has been
the subject of extensive study at Stanford University (Kwak et al.
(1975), Shaanan et al. (1975), Mansour et al. (1977), Ferziger et al.
(1977)). These studies have shown that with the use of algebraic models
and a relatively small number of mesh points (16 x 16 x 16 or
32 x 32 x 32), homogeneous turbulent flows can be simulated reasonably
well.

The first application of the method to problems of engineering
interest was made by Deardorff (1970) who treated the channel flow
problem. In his pioneering work, Deardorff showed that a three dimen-

sional numerical simulation of turbulence is feasible. He was able to



predict some of the features of turbulent chamnel flow with a fair amount
of success. However, as will be clear in the next section, neither
Deardorff nor the followup work of Schumman (1973) treated the most
important part of_the flow, pamely the -region very néar the wall. It is
in this region that virtually all of the turbulent energy production
occurs. By introducing artificial boundary conditions, they, in effect,
modeled the turbulence production mechanism in the wall regiom.

Finally, we note that, concurrent with the present work, Mansour
et al. (1978) simulated a time developing turbulent mixing layer. They
showed that essentiglly all the features of a turbulent mixing layer can

be reproduced using the L.E.S. approach.

1.2 Experimental Background

Many early studies of the structure-.of turbulence consisted of
measurments of the root-mean square and spectra of the turbulent velocity
fluctuations. Among the measurements that were primarily comncerned with
turbulent boundary layers were those of Townsend (1951), Klebanoff
(1954) , Willmarth and Wooldridge (1963}, and for flow near the wall (in
a pipe) Laufer (1954).

Willmarth made a single, unpublished attempt, in 1960, to bring
together the then existing results of turbulence-intemsity profiles
of the boundary layer-on_a single plot (see Willmarth, 1975). The
curves of u'Z/uT, v'2/uT,, and \f;ri;uT, as a function of
yW/G (or y+ = yWuT/v) did not agree very well (nmot within 50%).
Here, Vs is the distance to the,wall, u, is the shear wvelocity,
and & is the boundary layer thickness. [Part of the lack of agree-
ment was attributed to freestream disturbances or differences in the
methods used to trip the boundary layers. However, in spite of the
differences between various measurements of turbulence intensity, it
ig definitel _established that within a turbulent boundary layer,

U'Z/Ug > W'Z/UDD > V'Z/Uw. These differences between the root-
mean-square velocity fluctuations become larger as qgg_approaches
the wall. Furthermore, the profiles u'2 and W'z have pro-

nounced local maxima very near the wall,

2



From the measured distributions of turbulence kinetic energy,
turbulence shear stress, and dissipation, it is possible to obtain a
turbulence energy balance. Townsend (1951) and Laufer (1954) (among
others) made such a ba%ance in a boundary layer and pipe flow respec-
tively. From these data, it ean be seen that the production and disgipa—
tion terms are nearly equal but opposite to each other, and so are the
terms representing diffusion by turbulence of kinetic energy and of )
pressure emnergy. Furthermore, it may be noted that the turbulence
kinetic energy, its production and its dissipation, all show sharp maxima
in the buffer region (y+ = 10} near the wall. On the basis of energy
measurements, Townsend (1956) proposed a two-layer model for the energy
transformation process. According to this model, the whole layer is
arbitrarily divided into two parts: (i)} an inmer layer which is nearly
in energy equilibrium but within which most of the turbulence production
takes place, and (ii) anm outer layer whose Reynolds stresses retard the
mean flow but whose principal source of turbulent energy comes from the
inner layer.

The level of turbulent intensity in the outer two-thirds of the
flow is maintained by transport of energy from the inner region since the
production of energy in the outer region is too small to. balance the
viscous dissipation and transport losses. Townsend concluded that the
interaction between the inner and outer layers of the flow may be con-
sidered as two distinct processes: (i) the transfer of mean—-flow energy
from the outer region to the inner layer at a rate controlled by the
gradient of Reynolds stresses in the outer layer, and (ii) the transport
of turbulent energy from the inner layer to the outer layer.

To gain insight into the mechanics of turbu;ence production a
thorough study of the structure of the inner layer was required.
Runstadler et al. (1959), (1963) advanced a model for the inner layer
based on visual observations using dye and hydrogen bubbles. Their
studies revealed mew features of turbﬁlent boundary layers. In partic-
ular, they demonstrated that the wall layer is not two dimensional and
steady; rather it consists of relatively coherent structures of low and
high speed streaks alternating in the spanwise direction over the entire

wall. The non-dimensional mean spacing between the low speed streaks

3



was shown to have a universal correlation for fully turbulent layers

based on wall layer parameters; this is given by the relation

A = =L = 100

The streak pattern is not stationary in space. It migrates and displays
strong intermittent motion. These intermittent motions involve primar-
ily the movement of low speed streaks away from the wall. When the
streak has reached a point corresponding to y+ £ 8-12 , it begins to
oscillate. The oscillation grows in amplitude and it is followed by
breakup. The region where most of the low speed streak breakups are
observed to occur, i.e., the inner edge of the buffer zone, is the
region where a sharp peak is seen to occur in the production curve
(Klebanoff 1954). Kline et al. (1967) and Clark and Markliand (1970)
observed U shaped vortices occasionally in the inner region. In the
studies of Clark and Markland, an average spanwise spacing of these U
shaped vortices of l; = 100 and streamwise spacing of k; of 440 was
found.

Kim et al. (1971) studied bursts using motion pictures of the tra-
jectories of hydrogen bubbles. From their amalysis, they concluded that
in the region 0 < yt < lOégggésentiaily all the turbulence production
occurs during bursting. They also observed that during gradual liftup

of low-speed streaks from the sub-layer, unstable (inflectional) instan-—

taneous velocity profiles were formed. One of the important findings of
Kim et al. was that, while the bursting process indeed contributes to
the turbulent energy, its main effect is to provide turbulence with u'
and v' 1in proper phase to give large positive Reynolds stresses as
required for the increase in production.

The findings of Klime and his colleagues were largely confirmed and
supplemented by the visual studies of Corino and Brodkey (1969). One of
their observations was that, after formation of low speed streak a much
larger high speed bulk of fiuid came into view and by "interaction”
began to accelerate the low speed fluid. The entering high speed fluid
carried away the slow moving fluid remaining from the ejection process;

this they called the "sweep" event.



The above experimental investigations of the structure of turbulent
boundary layers are by no means the only onesg reported. The number of
publications on the subject is already very large. Among these is the
work of Narahari, Rao, Narasimha, and Badri Narayanan (1971), where the
frequency of occurrence of bursts was studied. Their investigation
showed that the mean bursting frequency scaled with the outer rather
than inner flow variables. This was also reported by Kim et al. (1971).
The recent experimental investigation of Blackwelder and Kaplan (1976)
studied the near wall structure of the turbulent boundary layer using
hot-wire rakes and conditiconal sampling techniques. Among their find-
ings was that, the normal velocity is directed outwards in the regions
of strong streamwise-momentum deficit (with respect to the mean velocity),
and inwards in the regions of streamwise—momentum excess. This was also
reported by Grass (1971). For further details and description of other
works on the structure of turbulent boundary layers the reader is
referred to the review articles of Willmarth (1975) and Laufer (1975).
An entire meeting was recently devoted to review of the state of knowl-

edge in this area (Abbott 1978).

1.3 Motivation and Objectives

The present study is one in a systematic program investigating large
eddy simulation of turbulence. 1In order to extend the available tech-
nology of the L.E.S. approach to wall-bound flows, we chose to study
incompressible turbulent channel flow. Due to the simplicity of its
geometry and some experimental advantages, channel flow has been a par-
ticularly attractive reference flow for both theoretical and experimental
investigations. As a result, there is a considerable amount of experi~
mental as well as theoretical findings available for a detailed evalua-
tion of the large eddy simulation technique. 1In addition, this flow
possesses important features of the flows of practical interest. This,
in turn, allows the evaluation of the L.E.S. -approach from a practical
point of view.

The specific objectives of this work may be stated as follows:



1.4

a)

b)

c)

To develop a numerical method for long time integration of the
three-dimensional governing equations for the large scale field

in a turbulent channel flow;

To carry out numerical solution of these equations using a

simple subgrid scale model;

To evaluate the performance of the Large Eddy Simulation tech-
nique in reproducing some of the laboratory observations and
measurements described above, and to compute quantities such as

pressure velocity gradient correlations that cannct be measured.

Summary

The contributions of the present work include:

a)

b)

c)

d)

e)

£)

Demonstration of the inherent numerical problems associated with

the explicit numerical solution of the dynamical equatioms of

motion in primitive form.

Derivation of consistency conditions for the initial wvelocity
field such that the Neumann and Dirichlet problems for the pres-—

sure have the same solution.

Development of a new semi~implicit numerical scheme for the

solution of dynamical equations in primitive form.

Development and use of a new subgrid model in the wall region

of the turbulent flow.

Development and use of a solution of the Orr-Sommerfeld equation
for a three-dimensional disturbance as an important part of the

initial velocity field.

Demonstration that the Large Eddy Simulation technique is
capable of reproducing many of the important features of the

turbulent boundary layer.



Chapter II

} MATHEMATTICAL FOUNDATIONS

2.1 Definition of Filtered and Residual Fields

In the large eddy simulation approach, the first and most
fundamental step is defining the large-scale field. To accomplish this
task, each author has adopted a slightly differemt approach, but they
can be treated within a single conceptual framework as shown by Leonard

(1974). If £ 4is some flow variable, we decompose it as follows:
f = £+ £ (2.1)

where f is the large-scale component and f' dis the residual field.

Leonard defined the large scale field as:
fix) = fG(z—E‘) £(x") dx' (2.2)

where G(x-x') 1is a filter function with a characteristic length A ,
and the integral is extended over the whole flow field. It is to be
noted that the above form of G (a function of (x-x') ) is most
suited for filtering in the directions in which the flow is homogeneous.
In other words, we point out that the filter function need be neither
isotropic nor homogeneous and there are many flows (or directions in a
given flow) in which neither of these properties are desirable. TIn the

present work we use the Gaussian filter,

n
sy = LI (7E) emroep™n] (2.3)
i=1 i

where Ai = 2hi R hi is the mesh size in the i-direction, and n = 1,
2, or 3, is the number of dimensions in which the flow is homogeneous.
Thus in the simulation of the decay of homogeneous isotropic turbulence,

n = 3 , while in the simulation of turbulent channel flow, we have used



n =2 . A convenient property of a homogeneous filter, G(x—x') , is
its commutivity with partial differentiation operators; using integra-
tion by parts one can show (Kwak et al. (1975)):

?F  _ oF

5%~ 3%, (2.4)

0x.
i

. Due to variation of the physical length scale of turbulence in the
direction in which the flow is homogeneous, one should not use homoge-
neous filters in that direction. This is particularly true in turbulent
boundary layers. Instead, one should use a filter with variable width
A(x) , where r is the direction in which the flow is inhomogeneous.
On the other hand, using a filter with variable width causes some mathe-
matical difficulties; in particular (2.4) will no longer held. Imn
Appendix A, we explore filters with nonuniform width in some detail.
Finally, we note that, in the numerical simulation of turbulent
channel flow, we filter only in the directions in which the flow is
homogeneous, (streamwise and spanwise directions) i.e., we do not formal-
ly filter in the direction perpendicular to the walls. The justifica—'

tion for this choice 18 twofold:

a) We are using a second order finite difference scheme to
approximate partial derivatives in the inhomogenecus direction,
and finite difference shcemes in general have inherent filter-

ing effect.

b) The Leonard term is fairly well represented by the truncation
exror of the second order central differencing scheme. (See

Shaanan (1975)).

The main disadvantage of this choice is that we do not have a formal
closed mathematical expression relating the filtered to the unfil-
tered field.

2.2 Dynamical Equations in Primitive Form

Now let us derive the primitive dynamical equations for the large-

scale flow field. Starting with the incompressible Mavier-Stokes equatiomns,
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we can apply the operation (2.2) to get the dynamical equations of large

scale field,

. . SRS 2.5)
t 9x, i ox., 9% . dx 9%, (
| P ox, i3 5 9%y

where we have decomposed uy; as in (2.1) and:

Ty = Ryg = By 84473
B - p
P/po + Rkk/S
R,. = u'u' +ulu, + u'u,
ij] T J J 1 L ]

The Tij represents the (negative) subgrid scale stresses and must be

modeled. We can write (2.5) in the following equivalent form:

Ju, _ [d%, o, F 5 2%,
5t © Yi\0x, T 9%/ T T ¥x,  9x, 'ij YV o aw, (2.6)
J i i | J 1]
where
—_ -~ 1 — —
P = P+ = Ry
2 (uJ J)

The rationale for using this form of the equation will be explained
in Section 3.5.
In order to calculate the second term on the left-hand side of (2.6),

we use (2.2) to write:



. aﬁg du. +oo _ 35; du,
1 _ _ 3 = g | 1 1 r
Uy (ax. Bx_) f Gxx") uwylgar ~ 5 fE
J i o J i

Note that, here, the filtering and the corresponding integrationm is
performed only in the directions in which the flow is homogeneous. Let

us Fourier transform the above equation (in the homogeneous directions)
to get:
-~

_ [®u, _aEl N a?;i
uj 3%,  ox. /) ¢ uj ox,  ox, 2.7)
3 i < j i

where ” denotes a Fourier-transformed quantity; a *~ over a bracket

means the transform of the bracketed quantity. Thus, given a velocity
field, E& , one can compute the term in the bracket$s on the right~hand
side of the above equation, Fourier-transform it, multiply it by G s

and invert the transform to obtain the desired term.

2.3 Residual Stress Model

An eddy viscosity model is used for Tes f

Tij = '2"1‘ sij (2.8)

where

_ g [3u;  du,
S. . = —_ —.—.1"- -+ _.......J.
ij 2\ 9x, o0x,
k| i

is the strain rate temsor and vT is an eddy viscosity associated with

the residual field motions. In the remainder of this section, we

present the models used for UT .  Throughout, we assume that the sub-

grid scale production and dissipation of turbulent kinetic energy are
equal.

10



Production of the subgrid scale turbulent kinetic energy is given
by:

P = A (2.9)
Inclusion of the experimental observation that, remote from the wall,
dissipation is controlled only by the largest subgrid-scale eddy param-
eters such that D = D(qz,ﬂ) s, coupled with dimensional analysis,
produce the result first found by Kolmogorov in 1942 that D« q3/2 .
Here, ¢ and & are the characteristic wvelocity and length scale of
subgrid scale eddies respectively. Using Prandtl's assumption for eddy
viscosity, Vp = Clql , and equating the subgrid production and dissipa-
tion, we get:

= 3

2¢,q% sij‘sij = q°/% (2.10)

From (2.10), we readily obtain:
qg = €,% v¥25_.5,.
3 ij ij
Again, using Prandtl's assumption, we get:

vy = (e W25 (2.11)
This is Smagorinsky's (1963) model, and is to be used in the regions
away from the solid boundaries.

On the other hand, very near the wall, the size of the eddies is
inhibited, and the eddies are of such a size that viscosity can be a
dissipative agent for the largest eddies. In fact, at the W%ll, the
eddy viscosity as well as its gradients should vanish. Under such con-
ditions viscosity is a factor and D = D(v,qz,ﬂ) . Application of
dimensional analysis to this condition produces the result that
D« (Uq}?ﬁz)f(qﬂlv). Moreover, at the wall the subgrid scale dissipa-

tion is given by:

11



2 2 2

1 H

b =vul (B} ¢ (Y | vo©
oy oy 22

Thus, in the vicinity of the wall, we assume that ba:vq2/22 . Equating

subgrid scale production and dissipation, we obtain for the inner region

of the boundary laver:

<
]

4 _
(022 /v) (2Sijsij) (2.12)

where C2 is a constant.

In order to determine the value of C2 , we assume that CS s
Smagorinsky's constant, is known from some other calculation e.g.,
simulation of the decay of isotropic turbulence. Strictly speaking,
there is no rigorous justification that the constant obtained from the
simulation of a totally homogeneous flow is applicable in the simulation
of a wall-bounded turbulence With.mean shear. Furthermore, in order to
determine the value of 02 » several known characteristics of turbulent
boundary layers will be applied. Among these characteristics is that,
in the logarithmic section of the layer, the slope of the mean velocity
profile in the semilogarithmic wall coordinates is 1/k , where Kk is
the von Karman constant. Hence, in what follows, we give only a rough
estimate of the value of 02 » which will be wused throughout cur simula-
tion of turbulent channel flow.

At the edge of the logarithmic section of the boundary layer, (say
y+ = 27) , we demand that the inner and outer layer models have the same
planar mean value. If we nondimensionalize all the velocities by the

shear wvelocity, u. and the lengths by the channel half width, § ,

we have in the logarithmic region:

— — U
8,. = —
ij ij dy

~

1
= (2.13)
KYW

where Vet 1s the distance to the lower wall (the lower wall is located

at y = -1 and the upper wall at v = +1 }. Note that here, we have

12


http:icy(2.13

assumed that the mean velocity gradient is much larger than all the other

velocity gradients. Equating the two models at y+'= 27 , we obtain:

g
02 = E—;; = 27 (2.14)

where we have assumed that £ = Ky, - Thus, the actual model used for

the eddy viscosity at each time step in the calculation is:

4 _— —
c2 ReT A (zsijsij) v < Y.
vy = (2.15)
¢ 0% /5. 5. . y>y
s ij 1] c

Here Ve is the coordinate of the first computational grid point away
from the wall at which the planar average of the two models are closest
to each other. It is to be noted that, y, can vary in time and in

general it does., The same relation as (2.15) is used in the upper half

of chanmel (0 < y < 1) . Finally, we turn our attention to the specifi-

cation of & .

Due to the no-slip boundary condition, £ must vanish at the walls.
Furthermore, due to lack of spatial resolution in the homogeneous direc-
tions (see S$Section 3.1), and with no further reasoning, we have used the

following expression for £ in the simulation of turbulent channel flow:

Al A3 h2 1/3
£ = | min * min * min (2.16)
L ! Lt

where &' dis the Prandtl's mixing length:

0.1 > /K

y = 1/k -

13



Al and A3 are the nondimensionalized filter widths in stream-—

wise and spanwise directions respectively, -and h2 is the local grid
size in the vertical direction. Two remarks are in ordexr. First, due
to -the partiéular gria'sizésfchosén (see Section 3.1), we have the

following global inequalities:

hz(y) < .1

Al > AB > .1

(Note that all the lengths are nondimensionalized with respect to
channel half width & ). Second, we should mention that the expression
(2.16) for & is strictly speaking, based on ad hoc foundatioms and '
more work in this area is strongly recommended (see Chapter V). This
expression was chosen initially on a trial basis; nevertheless, we did
not find any alteration of it necessary. Thus, we emphasize that in
obtaining the computational results presented here, no fine adjustments
of either CS or & were made. In spite of this, the numerical
results (see Chapter IV) are satisfactory. It is believed however, that
an optimum choice for CS and £ would somewhat improve the quantita-

tive results.

2.4 Governing Equations for the Large Scale Field

In the numerical simulation of turbulent channel flow, all the
variables are nondimensionalized by turbulent shear velocity, U, s and
the channel half width, & . 1In this case, we solve the following

equations numerically:

- — = 2—

du du Ju — 9 u,
i, — i i) 3P 3 = 1 i
— + — = _ 9 9 I S
3¢ " (3::. Bx.) ax, T %1 o, P51y F Re_ ox ox,
J i j T 3 3

(2.19)
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and

3Ei
5—;; = 0 (2.20)
where ReT is the Reyneclds number based on shear velocity, u. o, and
channel half width, & . ©Note that the second term on the right-hand
side of equation (2.19) is the mean pressure gradient imposed on the
flow.

15



Chapter TII

NUMERICAL METHODS

3,1 Grid Selection

For a given number of grid points, N , one has to choose the grid
size(s) based on the physical properties of the problem at hand. In the
simulation of the decay of homogeneous isotropic turbulence, for
example, it is desirable to select the grid size, h , such that the
filtered field contains as much of the turbulence energy as possible
(Kwak et al., 1975). On the other hand, the length of the side(s) of
the computational box in the direction(s) in which periodiec boundary
conditions are used should be long encugh to include the important large
eddies (Ferziger et al., 1977).

In the grid size selection process for the numerical simulation of
turbulent channel flow, one has to consider the average spanwise and
streamwise spacing of the turbulent structures in the vicinity of the
wall (see Section 1.3) as well as the integral scales of turbulence. In
addition, quantities such as the thickness of the viscous sublayer should
be taken into consideration. With this in mind we proceed to specify
our grid system:

In the vertical direction (-1 £y < 1) , 2 nonuniform grid spacing
is used. The following trahsformation gives the location of grid points

in the vertical direction (Mehta, 1977).

vy = i-tanh[%j tanh‘l(a)] 3.1

where

£, -1+ 2(§-2)/ (8-3) §=1,2,...,N

J

and N is the total number of grid points in the y direction. Here, a

is the adjustable parameter of the transformation (0 < a < 1) ; a

16



large value of a distributes more points near the boundary. TIn our
computation we have used a = .98346 , and N = 65 . Table 3.1 shows
the distribution of the grid points in the vertical direction with the
corresponding values of y+ = yqu/v . MNote that in reference to the
vertical direction, index (or subscript) 1 and N refer to grid points
just outside the lower and upper walls respectively.

For the grid selection in the streamwise, x , and spanwise, 2z ,
directions, one needs to consider the experimentally measured two point

correlation functions

i

Rii(r’o’o) < ui(X9Y:z) ui(X+rsysz) >

and

Rii(o,o,r) < ui(X,y,Z) ui(XSYDZ+r) >

Here < > denotes the average over an ensemble of experiments.
The use of periodic boundary conditions in a given direction can be
justified if the length of the side of the computational box in that
direction is at least twice the distance r , at which the appropriate
R.. wvanishes.

ii
Experimental data of Comte-Bellot (1963), indicates that
Xl = 6.48

and

X, = 3.26

where Xl and X3 are twice the distance, 71t , beyond which
Rll(r,0,0) and Rll(0,0,r) respectively, are negligible. Here §
is the channel half width.

For a complete simulation of the important large scale field, one

has to select the number of grid points in the streamwise, x , and
spanwise 2z , directions with careful consideration to laboratory
observations. We assume that LX and LZ , the lengths of the computa-—
tional box in the streamwise and spanwise directions, are fixed in

accordance with the above considerations. As was mentioned in Chapter I,
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Table 3.1

GRID DISTRIBUTION IN THE VERTICAL, y , DIRECTION

n y y, = |1+y] yt *
1 -1.002 .002

2 -1.000 .000 0.000
3 - .997219 .00278 1.78
4 - .993983 .00602 3.85
5 - .99022 .00978 6.26
6 - .985847 .01415 9.06
7 - .980767 .01923 12.31
8 - .974871 .02513 16.09
9 - .968035 .03197 20.47
10 - .960117 .03988 25.53
11 - .950956 04904 31.40
12 - 940372 .05963 38.18
13 - .928164 .07184 45.99
14 - .914109 .08589 | 54.99
15 - .898 102 65.33
16 - .879 .121 77.47
i7 - .858 142 90.91
i8 - 834 .166 106.28
19 - .807 .193 123.57
20 ~ .776 <224 143.42
21 ~- 741 .259 165.82
22 ~ .702 +298 190.79
23 ~ .659 .?41 218.32
24 - .611 .389 249.06
25 - .559 441 282.35
26 - .502 498 318.84
27 - 440 « 5360 358.54
28 - .374 626 400.80
29 ~ 304 .696 445.61
30 - 231 <769 492.35
31 - .156 .B44 540.37
32 - .078 .922 590.31
33 .0 1.000 640.25

*For

ReT = 640,25,
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experimental data indicate that the average {(spanwise) streak spacing

corregponds approximately to X; ~ 100 and the average streamwise

spacing of the U shaped vortices corresponds to A; = 440 ., ‘Therefore,

for the channel flow under consideration (see Chapter IV), the average

dimensionless distance between the spanwise and streamwise structures

are:

Az _ _

s - lOO/ReT = (0.156
and

Ax _

3 - 440/ReT = (.687

respectively. Here ReT is t@e Reynolds number based on shear velocity,
u, and channel half width, & and is 640 in our simulation.

Using the above values of Xl and X3 » and assuming that, at
least four grid points are needed to resolve one wavelength (structure},
we arrive at the following requirements for the number of grid points in

x and z directions:

N = 37

N = 82

It is emphasized that the above values for NX and Nz are based on
ensemble averaged spacing of the structures. Hence for an adequate
simulation of the important large scales, the following values for Nx
and Nz are recommended (with due comsideration to the capability of
present computers):

N = 32
X

N = 128
z

In the present numerical simulation of turbulent channel flow, we
have chosen the following wvalues for the nondimensjonalized streamwise

and spanwise computational box lengths:
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L = 27
4
L = 3 T

The value of L = g-ﬂ is somewhat bigger than the above value for
X3/6 . This choice was made with due consideration to stability and
resolution requirements of linear hydrodynamic stability theory (see
Section 4.3). In addition, due to computer cost and storage limitations,
we have used 16 grid points with uniform spacing, in each of the stream-
wise and spanwise directions. Therefore, the actual grid spacing used

in these directions corresponds to h; = 251 and h; = 168 respec-

tively. Hence, it is clear that we have inadequate resolution, partic-

ularly in the spanwise direction.

3.2 Numerical Differentiation

In the vertical direction, central differencing is employed with
variable grid spacin . =vy. + h, where h, =y, - ¥y. and
j=212,...,N (see Section 3.1). The partial derivatives for this case

are the following expressions with the first truncation error term

included:
of R 2’ 2
(E) = G - g (BF) +owd (3.2)
3 41 j 3y i
32f - 9 fj—l _ fj + fj+1
5y° . By(hythg ) by ke B, (bR )
h.,.-h 3
+17P5
- = ; J (3 g) 4—0(h%) (3.3)
Ay 3
V /

Note that the second term of the right-hand side of Eq. (3.2) and
(3.3) is the "extra error" introduced by the use of a nonuniform grid.

In general, however, this term is very small if the grid size varies
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slowly (Blottner, 1974) (this is the case with 3.1). It can be eagily
shown {(Blottner 1974) that a variable grid scheme is equivalent to a
coordinate stretching method if a relation of the form of Eq. (3.1) is
used to specify both the grid spacing in the wvariable grid method and
the relationship between the coordinates for the stretching method. In

both cases the derivatives are second order accurate in terms of AL ,

i.e.,
3f £ Ei-1 2
(55;) - LAy og? (3.4)"
i i+l ]
and
2 £ £ £
9£) - o3t o4, 34 + 0aeS)
oy j B (o, ) "B ho B (hom )

(3.5)

In the streamwise and spanwise directions the pseudo—spectﬁfl method
is used for the calculation of partial derivatives 3%’ é%—, é%z , etc.
For a given number of grid points, the maximum accuracy is achieved by
uging this method (see Moin et al., 1978, for a discussion of the
accuracy of numerical differentiation operators in terms of modified wave
number concept). For periodic boundary conditions, which are of interest

in x and z directions, we can represent a flow variable such as u

by a discrete Fourier expansion

ik, x, +k.x.)
1717373 (3.6)

u(xl,xz,x3) = E 2 u(kl’XZ’kB) e
0y Hs

where

P
i

[ni
1

wave number in the Xj direction

=
]

number of mesh points in the j direction
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N, N,
T A A N
hj = mesh size in_phe_ ;j _direction. -
The sum extends over all ny and n, - Suppose we wish to compute

5578x1 } we may regard (3.6) as an interpolation formula, treating %y

as a continuous variable, and differentiate to obtain

F

_ . ik, % +k,x,)
= . 1
du E E u(kl,xz,k3)1kl e 1 33 (3.7)
n, o
1 3

Multiplying both sides of (3.7) by exp(—ikixl - ikéxB) , summing over

ail %y and X3 5 and using orthogeonality, we get:

Fa¥
du G =
Bxl = 1kl u(kl’XZ’kB) (3.8)

Thus, in order to compute aﬁ7ax1 , we simply have to Fourier
transform u in the xl—direction, multiplying it by ikl , and take
the inverse transform of the result; this is called the "pseudo-
spectral" approach (Orszag (1972), Fox and Orszag (1973)). The use of
pseudo-spectral method in x and 2z directions, partially addresses
the grid resolution problem in these two directions.

For a limited number of problems with nonperiodic boundary condi-
tions we can use some other set of orthogonal functions rather than
{eikx} (see Orszag, 1971). TFor completeness and for later use in this
report, we conclude this section by describing the numerical differ~
entiation using Chebyshev polynomials.

We can express a variable such as f(y) by a discrete Chebyshev

expansion

N!T

(0 = D, a T (3.9)
=0
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where Tn(y) is the nth order Chebyshev polynomial of the first kind,
and double prime denotes that the first and last terms are taken with
factor % . Similarly, we can express the derivative of f , which is a

polynomial of degree N-1 , in terms of Tn(y) . "We then write

N~-1,
9f
S - nZ;"o b T (y) (3.10)

and seek to compute.the coefficients bn in terms of a . It can be
easily shown (see Fox and Parker, 1968) that the coefficients bn are

given by the following recurrence relations:

bn—l - bn+1 = Zn a n=1,2,...,N-2
by = 2WDay
bN—l = N ay 1 (3.11)
Finally, we note that
Tn(cos 8) = cos nb (3.12)

Thus, the transformation (y = cos 0) which is roughly adequate for
boundary layer coordinate stretching, renders the evaluation of the
Chebyshev expansion coefficients, a_ particularly simple with the

use of FIT routines.

3.3 TFundamental Numerical Problem

In this section we describe an inherent numerical problem associ-
ated with the fully explicit solution of the dynamical equations in

primitive form in a bounded domain. Consider the momentum equations

| I (3.13)



where Hi containg the viscous and convective terms. TIn the fully
explicit (time advancing) numerical solution of (3.13) one normally
specifies an arbitrary initial solenoidal velocity field satisfyimg the ]
Poisson equation for pressure obtained from the application of the
divergence operator to the momentum equations to ensure that

V‘E = 0 . The resulting pressure is then used tdgether with the com-
puted Hi in (3.13) to advance u, in time. The Neumann boundary

condition,

p _ vn ¢ Vzu (3.14)

is normally used in conjunction with the Poisson equation for pressure.
Here n is a unit vector normal to the solid boundary. This condition
is obtained from the normal momentum equation evaluated at the solid
boundary.

With regard to the boundary treatment, one has two choices:

a) Enforce the no-slip condition, and time advance the velocity

field via (3.13) only in the interior domain (not at the boundaries);

b) Time advance the velocity field throughout (interior domain as

well as boundaries).

If one chooses (a); for the tangential momentum equations to be
satigfied at the boundaries, the initial field would have to be such

that the p it generates satisfies the Dirichelet condition

B . v (3.15)

(I is a unit vector tangent to the solid boundary). The momentum equa-
tions in the directioms tangential to the so0lid boundary will not
necessarily be satisfied if the only constraints on the initial field
are that it be solenoidal and satisfy the no-slip condition. Since the
tangential momentum equations are not in general satisfied at the solid

boundary, the Poisson equation will not be satisfied there either, and
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hence we conclude that in case (a) the continuity equation will not he
satisfied at the boundary, ( g% (B'E) # 0) . This can cause serious
numerical instability. -

On the other hand, if one chooses case (b), continuity will be
satisfied everywhere, but the no-slip condition may not be satisfied,
and this is unacceptable.

It should be noted that, if one uses the Dirichlet condition (3.15)
as the pressure boundary condition then the Neumann condition (3.14)
will not necessarily be satisfied and hence similar problems will arise
in either approach (a) or (b).

In Appendix B we formally demonstrate the numerical problems
addressed in this section. In addition, in Section 3.6 it will be
shown that the numerical problems discussed here can be avoided if ome
uses three-point finite differences to approximate partial derivatives

in the direction normal to the boundaries.

3.4 Consistency Conditions for the Initial Velocity Field

In this section, we present a set of consistency conditions™ for
the initial velocity field of the channel flow such that the Neumann and
Dirichlet problems for the pressure have the same selution, i.e., we
solve the problem addressed in Section 3.3.

Fourier transforming the Poisson equation in the streamwise and

spanwise directions, we get:

Lo %P = 0 (3.16)

*The consistency condition requivements conflict with the proven
existence and uniqueness theorems for the Navier-Stokes equations.
Therefore, we emphasize that the problems addressed im the previous sec-
tion are purely numerical and mathematically there is no difficulty.
Saffman (P. G. Saffman, 1978, private communication) points out that
the fact that the Neumann problem does not satisfy the Dirichlet condi-
tion appears in the nonanalyticity of V2u on the boundary at t =0 ,
which can be interpreted physically as an initial vortex sheet diffusing
from the boundary.
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where k2 = k% + k2 , and kl and k, are the wave numbers in

3 3
streamwise and spanwise directions respectively. Here,

a 9
u

Qky,yskg) = 5:2;”5};“1;1

For k2 # 0 , the general solution of (3.16) is:

P = ¢(y) + ¢y sinh ky + ¢, cosh ky (3.17)
where:
Y oA Y oA
p(y) = f Q__@Ts;ll_lm dn{ sinh ky - f g%__hkn dn| cosh ky
~1 -1

and, eq and ¢ are constants. Thus, for the Dirichlet and Neumann

2

problems, we can determine ¢y and ¢, separately to get PD and PN

2
which are the solutions of Dirichlet and Neumann problems respectively.

Note that for the Dirichlet problem to have a solution, we must have

- . . 2 .
The above condition is equivalent to E-V w =0 on the boundaries

(y = #1) , or

2 2
9 | 9% _ 3 |3%w )
9z N T x ) (3.18)
y y==} ¥ y=1]
or
ik3 Hl(il) = ikl 113(11)
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http:y=1j(3.18

where

%4 2%
Hl = Y — and H3 = v —
dy oy

and ®w d1is the vorticity vector.
Equating PD and PN (after some algebra) we arrive at the follow-

ing constraints for the initial velocity field:

Hy (1) - Hy(-1) -
3 3 tanhlk '

i, - ¢ = ~——E——[:H2(1) + Hy(-1) - ¢ (1>_| (3.19)
Hy(1) + Hy(-1)
3 3 _ cothk '

i, - o) = T[ﬂzcl) - Hy(-1) - ¢ (1):] (3.20)

Therefore, for a successful, fully explicit numerical simulation, the
initial velocity field must satisfy the following conditions:

e it must be solenoidal,

¢ it must saﬁisfy the no-slip condition, and

e it must satisfy (3.18), (3.19), and (3.20)}.
Note that for k, = 0 and kl # 0, one can use (3.19) and (3.20) with

3
the subseript 3 replaced by 1.

3.5 Conservation Properties

As was pointed out by Phillips (1959), numerical integration of the
finite~difference analog of the Navier-Stokes equations may introduce
nonlinear instabilities if proper care is not taken. Differencing the
transport terms in the form of (2.5) will automatically conserve momentum
in an invisedid flow. However, in general, the computation becomes un-
stable and the kinetic energy increases. This can happen in spite of the
dissipative nature of Tij and the viscous terms. The nonlinear insta-
bility arises because the momentum conservative form does not necessarily
guarantee energy conservation (in the absence of dissipation), and the
effect of truncation errors on the energy is not negligible.

Moin et al. (1978) have shown that writing the dynamical equations
in the form of (2.6) results in vorticity, momentum, and energy conser—

vation for a large class of differencing schemes. Therefore, in all the
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calculations reported here, we use the dynamical equations in the form
shown by Eqn. (2.6).

3:6 " Explicit Time Advancing

By introducing one plane of grid points just outside of each bound-
ary, one is able to obtain some degree of freedom. With proper use of
this freedom, one can avoid the problem discussed in Section 3.3 (case a).
The reader should be cautioned that here we are strictly referring to the
explicit numerical solutions in which three point finite differences are
used for the numerical differentiation. (However, the latter statement
éégE_EEE_apply, for example, to the cases in which Chebyshev polynomials
are used in a finite series expansion to represent a flow variable and
its derivatives in the normal direction (see Sec. 3.2).) In practice,
one can determine the normal veloeity at the exterior point such that
the continuity equation evaluated at the wall,

g—‘y’- = 0 (3.21)
y=%1
is identically anorced. This velocity, in turn, is used in obtaining
the Neumann boundary condition for pressure. For the proper choice of
the numerical V2 operator for the Poisson equation, the reader is re-

ferred to Moin et al. (1978).

For -explicit time advancement, a second-order Adams-Bashforth method
was used. It has been shown by Lilly (1965) that this method is weakly
unstable, but the total spurious computational production of kinetic

energy is small. The Adams-Bashforth formula for Ei at time step

n+1 is
~n+l _ = 3 1 n-1 3
w; o= g+ At (Eé - 5L ) + 0(At”) (3.22)
where
Ju du — ot 32-11
- _ = _ iy _ 9P _ ij 1
‘Z: uJ (Bx Bxi) Bxi ox + 6‘1 + Re  9x.9x%
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Using the above method, we have successfully integrated the éoverning
equations for the numerical simulation of turbulent channel flow (not
reported here)., However, due to the presence of a very fine mesh near
the boundaries, one is forced to use extremely small time steps. This
stringent requirement is caused by the well-known numerical stability

criterion of the diffusion equation.

3.7 A Semi-TImplicit Numerical Scheme

As was mentioned in the previous section, due to the presence of
diffusion terms in the governing equations, the time-step requirement of
a fully explicit method becomes severe. To ecircumvent this difficulty,
we have devised a semi-implicit algorithm. All the results reported here
were obtained using this method. Thus, in what follows, we outline a

methed which treats part of the diffusion terms and pressure in the dy-
namical equations implicitly, and the remaining terms explicitly. The

equation of continuity is selved directly.

Let us start with Eqn. (2.19), written in the following form:

du, = 2%
i _ oP ~ 1 ) i .
Tl Hi §§T-+ (CiUT +-§E;- N 5 {no summation)
+ *3 (3.23)
where
_ 4, au WL
By 7 oY (Bx. T X ) * e ( N2 + 85 )
3 i T %y Xa
du, du au du
3 ( 1 ) 3 ( 3 )
+ v + + Vo =+ —
axl T \9x o :l 3x3 T 3x3 Bxi
ou, 9u du Ju
d i, %2 .9 i 2 )
+ (Bx vT) (BX * Bx.) TV o (Bx T ot e
2 2 i 2 2
. 5 aEz
Ql = Vp 5;;—(5§T) di {no summation)
1
C = 1 + 6i2



d; = 1-96;,

~ s
Vo = S VplEaXguxg) 2o
<. 1°73
< > indicates the average of bracketed quantity in X"y plane,
X1s%x3
| S _ o
v \)T \J-T

The rationale for this decomposition of Vo will be explained later in
this section. TFor time advancing, we are going to use the Adams-
Bashforth method (see Sect. 3.6) on Hi’ and the Crank—Nicolson method
(Richtmyer and Morton, 1967) on aﬁYaxi and azﬁi/axg, in the right-
hand side of Egn. (3.23). For convenience, we evaluated v, at time

T
step n. Thus, we have:

+1 —1
~ntl _ -n 3.n 1 _n-1 At [9P" 5P\
Yy '“'*At(fﬂl'zﬂi)'z(ax %, ] .
2—n+1 2—n
1 -0\ At 3 ug 0 u, .
*2 % {(nc summation)
Let
(o= + oo ))
ReT 2
rearrangement of Eqn. (3.24) yields:
2—n+1
3 u —n+1
1 —n+1 At 39— 3 o 1 n-1
— 7 *tBmu 8T - Bl i ¥ BjAt (E. 1”28 )
ox 9%,
2 i
a2at
At 9P i
B B:L Z ox, 5 2 (3.25)
b

(no summation)
Finally, we write the continuity equation at time step n + 1:
+
gl tt
i
ox,
i

= 0 (3.26)
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Now let us Fourier transform Eqns. (3.25) and (3.26) in %y and

Xq directions. This transformation converts the set of partial differ-

ential equations (3.25) and (3.26) to a set of ordinary equations for

every pair of Fourier modes kl’ k3 with X, as the independent vari-

able. Note that the dependent variables have superseript n+1. In the

remainder of this section all the dependent variables are to be inter—

preted as two-dimensional Fourier transformed gquantities. TFourier trans—

forming equations (3.25) and (3.26) results in the following set of

ordinary differential equations for the dependent variables:

a2un-l-l
1 n+l . At _n+l n At n n-1
g Y By T FakE 5P = By 4B (3H1 - by )
ax
2
2 n
3 u
. At _n 1
- i) FTE - o2
%2
2 n+l
37 u n+1
2 n+l At 9P _ n At n n-1
7 F By T By T By 6, (3H2'H2 )
sz 2
o 32un
-8 At 3P” 2
2 2 3x 2
2 ax
2
a2un+l
3 otl At _n#l n At n_ .n-1
5+ Byuy T+ 1k B, 5 P = B3u3 + 83 > (3H3 Hy )
ox
2
Z2n
9 u
. At _n 3
- ikyBy 5 F 2
2
n+l
L oan 9% .. mtl
1klul +—3—X2_+ 1k3u3 = 0 (3.27d)

Thus, for every pair of kl and k3 we have four coupled linear ordi-

nary differential equations with u?+1(k1,x2,k3), ugﬁi(kl,xz,kS),

! n+1 .
ug (kl’XZ’kB)’ and P (kl’XZ’kg) as unknowns. Note that, with no
furthe;zcomplications, one can treat more terms in Eqn. (2.19) (e.g.,
2
1 3 1 3
Re
T

7 * Re 7 > ete.) implicitly.
x

9 T o2
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Finally, it should be mentioned tlat, in order to avoid evaluating
complicated convolution sums, we have decomposed vT, to its planar
average, GT(y) and "fluctuating"zcomp?nent v%ﬁxl,x21x3). We gave_used
explicit time advancing for v% (2 uilaxz), whereas vT(8 uilaxz) is
advanced by a partial implicit scheme. This decomposition of Vp may
not be an optimum one from the standpoint of numerical stability and
accuracy. Other <hoices are possible. For example, one can decompose
vT as follows:

VT(Xl,XZ,XS) = max (VT) + v;(xl,xz,x3)
*12¥20%3
Although we did not incorporate any other decomposition than the one used
here, relatively simple numerical experiments with the diffusion equation

may result in a better decomposition for vT.

3.8 TFinite-Difference Formulation and Boundary Conditioms

In order to solve Egns. (3.27) numerically, we use the fipite dif-
ference operators (3.2) and (3.3) to approximate 3/3x2 and 32/3x§.
Having done this, we shall have a set of linear algebraic equations for
the Fourier transform of the dependent variables. This system of alge-
braic equations is of block tri-diagonal form and can be solved very
efficiently. However, in order to close the system we must provide a
set of boundary conditions, i.e., we have to specify the values of Uy
and P at the solid boundaries.

u u

2? 3’

Implementation of velocity boundary conditions poses no problem; we
simply set the value of the velocity vector at zero on the walls. In
order to obtain the pressure boundary conditions, we note that evaluation
of Equn. (3.27b) at the solid boundaries yields:
2un+l 2n

3 2 . g éE_BPn+1 _ e At g p™ . 3 u,
8x2 2 2 sz 2 2 sz sz
2 X,=%1 2 | x =1
2 2
Consider the following Neumann boundary condition for pressure:
2
du
=+ ' =+
2{xy=11 T 3X2 X, i1



Equation (3.28) was obtained from the Fourier transform of Egn. (2.19,

i = 2), and evaluated at the solid boundaries. It is clear that this
equation is consistent with the numerical analog of that equation (3.27b)
evaluated at the walls. Note that

At _
B, = = - ReT .

2 2
x2=i1
Thus, we formally use Eqn. (3.28) as the pressure boundary condition.
However, for closure the finite-difference equations require the value
of pressure at the boundaries, not its normal derivative. For this we
use the following difference relation in conjunction with the difference

analog of Eqn. (3.28):

P, - P,
] v = LA 4 omd (3.29)
2]3=2 2|5=3 L (=2
where hj =Xy, = X . 3 =2 indicates the grid point on the lower
wall, ] -1

Substituting the finite-difference analog of Eqn. (3.28) into the
left-hand side of Eqn. (3.29) and using the finite-difference form of

the continuity equation at the wall, we obtain:

2u
o - 2P3 _ P4 _ 23 (jl.q __+£Lﬁ_“)
2 h3 (h3 +-h4) ReThth h3 hé + h3

(3.30)

An analogous relation is used for the walue of the pressure at the
upper wall (j = N - 1). ©HNote that the pressure is still indeterminate
by a constant, as it should be due tc the use of Neumann boundary condi-
tions; i.e., we are mot using Dirichlet boundary conditions.

In the case kl = k3 = 0, a special S?lution technigue must be un-
dertaken. First observe that in this special case Eqns. (3.27a) and
(3.27¢) are independent of each other and Eqns. (3.27b) and (3.27d).
Furthermore, the former two eé;ations are of simple tridiagonal form and
can be solved directly to yield u?+1(0,x2,0) and u§+1(0,x2,0). Second,
the continuity equation together with the boundary conditions for u

2
vield
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u2(0,x2,0) = 0 (3.3L)
Since pressure is indeterminate by a constant, let
P(O,XZ,O) X2=_1 = 0 (3.32)

Using Eqmns. (3.30), (3.31), and (3.32) in conjunction with the finite
difference analog of Egqn. (3.27b) allows one to solve for Pn+l(0,x2-,0),
3= 3,4,... . J

Before concluding this section, we emphasize that, in obtaining the
pressure boundary conditions, we used a momentum equation evaluated at
the boundary. We were able to do this because the finite difference
equations are gemerally enforced inside the spatial domain and not omn its
boundaries. Consequently, we did not use a redundant equation. Consider
for a moment a hypothetical case in which we hawve the means to integrate
the governing equations of motion analytically. 1In this case, the equa-
tions of motion are and should be wvalid at the boundaries as well as in-
side the domain (we do not have any singularity at the boundaries). So,
in this case, use of momentum equations for the pressure boundary condi-
tions will not provide any new information. The roots of this apparent
dilemma lie in the basic physics of fluid mechanics. The fact is that
physics does not provide a priori boundary conditions for pressure.

A manifestation of this dilemma will appear if, for example, Cheby-
shev polynomials are used in a finite series expansion to represent a
flow variable in the vy direction (see Section 3.2). However, since
the equation of continuity is solved directly, it appears that the numer-
ical problems which were addressed in Section 3.2 will not cause any dif-
ficulty if one uses Chebyshev polynomials in conjunction with the semi-

implicit scheme developed here.

3.9 Computational Details

The numerical solution of the equations described here (see also the
next chapter) were carried out on the CDC 7600 computer at NASA-Ames Re-

search Center. The dimensionless time step, during most of the
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calculations, was set at At = 0.001. Throughout the computations re-

ported here, the wvalues of the following gquantities,

e, (t) = Max{At Ji+ +-|-—31——| + l311 I
1 hl hz(y) h3 j
and
|vT - < vT >xl,x3|
e, () = DMax<At
2 2
hz(y)

did not exceed 0.3 and 0.08, respectively. In addition, the numerical
stability was checked by a 200-step numerical integration in which the
value of At = 0.0005 was used. The computer-generated results of this
run agreed (within two significant figures) with the corresponding numer-
ical integration in which the value of At = 0.001 was used. Comparison
was made at the same total time of integration.

The computer time per time step was approximately 20 seconds (CPU
time). However, the present computer program is not an optimum one, and
we believe that at least a 257 savings in computer time can be achieved
by some modificatioms of this program.

Finally, it should be noted that, in the present computation, approx-
imately 80% of the small-core memory and only 50% of the available large-
core memory of the CDC 7600 was used. Therefore, a computation with
twice as many grid points as the present one is possible using the avail-

able core memory of the CDC 7600.
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Chapter IV

rd

INCOMPRESSIBLE TURBULENT CHANNEL FLOW

4,1 Physical Parameters

In order to solve Eqns. (2.19), we need to specify ReT, Reynolds
number based on channel half-width & and shear velocity u . In the
present numerical simumiation of turbulent channel flow, ReT = 640,25
was used. In their experimental investigation of the mechanics of orga-
nized waves, Hussain and Reynolds (1975) considered a channel flow with
the same Reynolds number. The mean flow parameters of their experiment

are listed below.

Re = 13800
uT
T = 0.0464
o
Um
T = 0.881
o}
UO = 21.9 ft/sec (6.67 m/sec)

-

where Re is the Reynolds number based on channel half-width, &, and
the centerline wvelocity, Uo; Um is the mean profile average veloeity,

and uT is the shear velocity.

4.2 Initial Condition

A number of initial velocity fields were explored. With the simple
sub~-grid scale model used, it is important that the initial turbulence
field be able to continually extract energy from the mean flow in order
that a statistically steady solution develop. For this purpose, we em—
ployed the governing equations of small disturbances used in hydrodynamic
stability theory (cother choices are possible) to obtain a velocity field
with negative Reynolds stress.

The equations for a small wave disturbence u, ona paraliel mean

flow U(y) are (Lin, 1955, Eqn. (1.3.9)):
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5 o= L@ gLloxtBa—aet) o . (4.1a)
1&u1 + 1Bu3 + Du2 0 {(4.1b)
fwa, + Uiod, + 00 » 4, = - 0D + = (0 - £2) § (.1¢)

1 1 2 Re Y1 :
iwn, + Tigh, = - DB + o (D% - k9 o (4.1d)

2 2 Re 2 )
iwy, + Uiow, = - iBE + 1 (D2 - kz) a {(4.1le)

3 3 Re 3 )

Here w = - dc is the (complex)frequency, and D = d/dy.

The Squire transformation (Lin, Eqmn. (3.1)),

2 = o + g (4.2a)
v = {‘12 (4.2b)
0‘31'*‘533 = ku (4.2¢)

permits reduction to 2 single fourth-order equation for ;, the Orr-
Sommerfield equation (Lin, Eqn. (1.3.15)):

5. G} (4.3)

A iaRe{(U —o) 0 -k 9 -D

For a given set of o, Re, B, and U(y), (4.3) is solved numerically
using the algorithm of Lee and Reynolds (1967).

After final calculation of 9, a is calculated from (4.1b), and

P is calculated from (4.1c) and (4.1e). The results are then used to

Fay

solve for u via {(&4.lc). Solution of (4.1le) is carried out numeri-

s
cally using i second-order algorithm. Starting at the centerline of the
channel, two solutions, each satisfying the centerline boundary condi-
tions (here we are primarily concerned with symmetric 32 and anti-
symmetric ﬁl and GB) are constructed using the Kaplan filtering tech-

nique to maintain linear independence. These two solutions are then
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combined to satisfy the wall boundary conditions. The eigenvalues are
automatically adjusted until an eigensolution is obtained.

For the Reynolds number under consideration (R.eT = 640.25) and

_~

with proper choice of o, B, and U(y), one can obtain a set of Uy s

~2, and 53 such that the corresponding Reynolds stress has the same
sign as - Du. This corresponds to an unstable disturbance from the view

8

of hydrodynamic stability theory. The resulting three-dimensional dis-
turbance extracts energy from the mean flow in a continuous fashion. TIn
the present study we have used o = 1.0, B = 1.5, and the mean velocity

profile:
U(y) = 10(1 + cos Ty)

for the generation of initial disturbances.

This profile was chosen with due consideration to the proper repre-
sentation of the resulting disturbances on the grid system in the normal
direction. TIn addition, note that the above mean velocity profile has
inflection points (at vy = i-%) which produces Kelvin-Helmholtz type
instability.

In order to avoid a net momentum in the spanwise direction, one can
add two oblique waves with the same amplitude that are traveling in the
directions which are at angles of ¢ and - ¢ with the streamwise, x,
direction. Combining two oblique waves in this fashion yields a set of
streamwise vortices (roll cells). Thus, the following velocity field was

used as the major part of the initial disturbance (initial large eddies):

al(x,y,z) = A{Gl(y) cos Rz e O 4 conj]
Ez(x,y,z) = A[ﬁzfy) cos Rz O 4 conj]
GB(X,Y,Z) = A[GBCy) sin Bz M0F 4 coni]

Here, A is a comstant, o = 1.0, B =1.5, and Gi(y) (i =1,2,3) are
the eigensolutions of the linearized equations. Im order to allow the

development of all the waves that can be resolved on the grid system, a
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solenoidal velocity field with random phase was added to the above veloc-
ity field. Furthermore, to ensure the initial dominance of the ;i
field, the amplitude of random field was about 10% of the maximum apli-
tude of Ei' Finally, in order to avoid a very long time numerical in-
tegration, the measured mean velocity profile of Hussain and Reynolds

(1975) was used as the initial mean velocity.

4.3 Preliminary Numerical Experiments

In the following three sections we shall present and discuss various
calculated quantities pertinent to turbulent channel flow. The results
will consist of running time averaged mean velocity profile and turbulence
statistics, horizontally (xz plane) averaged turbulent quantities, and
some Instantaneous velocity profiles. However, first, it is instructive
to discuss some of our initial numerical experiments (failures).

In our first integration attempt, we observed that the absolute
value of the horizontally averaged Reynolds stress, < uv > , decreased
continuously in time. This wvanishing trend occurred in spite of the fact
that the Reynolds stress profile was below the expected value. The total
time of integration was approximately 1 nondimensional unit, and the
value of eddy viscosity constant, Cs’ was specified to be 0.2 (see Moin
et al., 1978). Tt is interesting to note that the profiles of
<(u-<u> )2 > /2 were generally inecreasing, and the corresponding

profiles of < ;2 > 1/2

were decreasing slightly. Tn other words, the
correlation between (u - < u > ) and v, and mnot the respec—

tive intensities, had a rapid vanishing tremd. At this point it was de~
termined that the effective Reynolds number (taking the eddy viscosity
into account) was probably too small for a small amplitude disturbance to
grow. With this in mind, and noting that the production of Reynolds
stress is directly proportional to < ;2 > , the existing turbulent vel-
ocities were multiplied by a factor of two (and the Reynolds stress was
amplified by a factor of four). Note that no changes were made to the

final mean velocity profile, < u > . In fact, at this time < u > was

deviated considerably from its original profile.
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Using the resulting velocity field as a new initial condition (in.
what follows, we shall call this velocity field "field A"), we carried
out two parallel computations, one with C, = 0.44 and the other with
CS = 0.2. 1In the former case, the Reynolds stress profile grew contin-
uously for a nondimensional time, &, of 0.3. However, during a further
integration period (t = 0.7), it decayed drastically to a vanishing
level. Thus, it was concluded that the value of 0.44 for the subgrid
scale model constant is too large, causing turbulent motions to damp out.

The results to be presented in the following sections were obtained
using the value of 0.2 for Cs' This value is probably not the omptimum
one (more likely the optimum value is between 0.2 and 0.3); however, in
the absence of a more rigorous subgrid scale model formulation, further

adjustments of Cs seem to be unjustified.

4.4 A Time History of the Horizontally Averaged Turbulent Quantities

As was pointed out in the previous section, we use the velocity field
A as the new initial condition. Fig. 4.1 shows the horizontally averaged
resolvable shear stress < uv > of this field. For purposes of discus-—
sion, we concentrate on the lower half of the channel in this section.
Furthermore, due to the relationship between the materials to be discussed
herein and the bursting process in a turbulent boundary layer, virtually all
of our discussion will be concerned with the region near the (lower) Wall.

Figure 4.2 shows the < uv > profile at the non-dimensional tlme s
t = 0.45. Tt can be seen that the resolvable shear stress profile has
increased considerably. In particular, near the wall it has increased
significantly beyond the expected equilibrium (time-averaged) value. Figs.
4.3, 4.4, and 4.5 show the profiles of the same quantity (< uv >) at
three later times (t = .65, .85, 1.05, respectively). It is clear that,
especially in the region -.95 <y < -.7, a dynamic process exists which
nearly repeats itself in time. If we carry out the integration still

further, we see the same behavior (almost cyclic) in the < uv > profile.

One nondimensional time unit corresponds approximately to the time
in which a particle moving with centerline velocity travels 22 channel
half-widths.
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Figs. 4.6 and 4,7 show the vertilcal distribution of < uwv > obtained
at two later times corresponding to t = L.425 and t = 2.025, respec—
tively.

Since the production of the resolvable turbulent kinetic energy is

directly proportional to < uv > , it should be interesting to study the
2 1/2

2 1/2

effect of the cyclic behavior of < w > on < (@-<u>)
Figs. 4.8, 4.9, and 4.10 show the profiles of < {(u ~<u > )
the vicinity of the wall (y < 128). They correspond to the < uv >
profiles presented in Figs. 4.5, 4.6, and 4.7, respectively. Examination
of these figures shows clearly the effect of production on the

@ <T> )22

profile. It can be seen that, during the times at
which < uv > has a relatively high value, the corresponding
<(u-<u> )2 1/2 profile possesses a pronounced local maximum. Tt

is interesting to note that, during the quiescent (low < uv > ) periods,
the turbulence energy level is still quite large. TIn fact, a close exami-
nation of Figs. 4.9 and 4.10 reveals that, during these times, the energy
that gave rise to the local makima is distributed throughout the

1/2

< {u-~<u> ) > ptofile. This results in a wide maximum (in con~

trast to a sharp local one) in < (u-<u> )2 >l/2.

During their investigation of the "bursting" process in a turbulent
boundary layer, Kim et al. (1968) showed that, while the bursting process
indeed contributes to the turbulent energy, its main effect is to provide
turbulence with u' and v' in proper phase to give the large turbulence
stress required for an increase in production. This is precisely what is
observed here. To clarify this point, consider, for example, Figs. 4.6
and 4.7. If we focus out attention on the vicinity of y+ = 64 (y = -.90),
we see that the value of < uv > in Fig. 4.6 is about twice the corres-

ponding value in Fig. 4.7. On the other hand, the corresponding value

of < (u-<u )2 1/2 in Fig. 4.9 is only 6% higher than the one in
Fig. 4.10. And the corresponding values of < v2 >1/2 (Fig. 4.11) and
—2 l/2

(Fig. 4.12) show no significant change during this period.

—2 1/2

This is expected, since the governing equations of < v and

< W2 >l/2 do not contain direct production terms. These quantities can
only be fed by the inter-component transfer mechanism, which is generally

a slow process.
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We conclude this section by considering, once again, our initial
numerical experiment (see Section 4.3). Recall that, during the first
integration attempt, < uv > had a rapid vanishing trend while the in~
dividual components < (@ -<u> )2 >%/2 -and- < ;? >1/2 -did- not~ (the =~ * -
latter had a slight decreasing trend). With this and the discussion of
the present section in mind, one can see the importance of the phase re-
lationship between (u - <u > ) and v. Indeed, the correlation between
(;'- <u >) and v is the essential factor for the maintenance of tur-
bulence. We believe (on the basis of a cursory scan) that the increase in
< uv > is also highly localized in space.

It should be noted that, in a computation with a large number of
mesh points in the horizontal plames, the transitory behavior of < uv >
degscribed in this section, will not occur. In this case, the horizontal
averaging is approximately equivalent to lOng~timé averaging; and in order
to study the relationship of the bursting process to the turbulence stress,
one should study the time history of the (u - < u > ) v profile at one

(x,2z)} location. Such a study, in turn, would yield the-mean bursting

frequency.

4.5 Detailed Flow Structures

In this section we examine some of the detailed flow patterns. Par-—
ticular attention will be given to instantaneous velocity profiles. Fig.
4,13 shows typical instantaneous streamwise velocity profiles, u. These
profiels are obtained at the same location (x =0, z = 13 hB)’ but at
two different times (t = 1.625, t = 1.825). For comparison, the mean
velocity profile is also included. Fig. 4.14 shows the corresponding
normal velocity profiles, obtained at the same location and times. Exam-
ination of these figures reveals that the profile with a momentum defect
(with respect to the mean) corresponds to a case in which fluid is being
ejected from the wall (v > 0), while the profile~with excess momentum
corresponds to a case where the flow is toward the wall (v < 0). In
addition, both pairs (((W-<u>) >0, v<0) and ((u-<u> <0,
v > 0)) have positive contributions to the resolvable Reynolds stress

and, hence, they contribute to the production of turbulence.
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The velocity profiles presented here are in good qualitative agree-
ment with the flow visualization data of Kim et al. (1968) and Grass (1971).
In their study of the bursting process in a turbulent boundary layer, Kim
et al. observed that during the gradual lift-up of low speed streaks from
the sublayer, inflectional instantaneous velocity profiles were formed.

In fact, the appearance of the inflectional profile was used as one of
their criteria for the detection of the bursts.

Using the terminology of Grass, the u profile with momentum defect
corresponds to the ejection phase of the bursting process while the profile
with excess momentum corresponds to the inrush phase (sweep). In the
lower left-hand corner of Fig. 4.13, we have included the ihstantaneous
velocity profiles from the measurements of Grass (1971) in a flow over a
smooth flat plate. Tn Figs. 4.15 and 4.16, the same quantities as in Figs.
4,13 and 4.14 are plotted, but they are obtained at a different location
32 t= 1.05, 1.275). The
same behavior (qualitatively) as in Figs. 4.13 and 4.14 are displayed by

and at different times {(x = 10 hl, z =10 h

Figs. 4.15 and 4.16. Fig. 4.17 shows the instantaneous streamwise veloc-
ity profiles obtained at time ¢t = 2.025, but at two different (x,2z)
locations. This figure, together with Figs. 4.13 and 4.15, clearly demon-
strate the highly three-dimensional and unsteady nature of this flow.

The reader is cautioned against establishing a direct relationship
between the times, t, at which the instantaneous profiles are presented
here, and the corresponding times at which < uv > assumes a relatively
high or low value (see the previous section). Recall that in this section
instantaneous velocity profiles were presented at ome (x,z)} location,
while in the previous section we were concerned with the planar averages
of < uv >. At most we can say that, during the times at which < uv >
has a relatively high value near the wall, there are more locations where
the relationship between the u and v profiles are the same as those
shown in Figs. 4.13 and 4,14 (((c -<t> >0, v<0) or ((a - <u>)
<0, v >0)). This is in contrast to the times at which < uv > has a
relatively low value.

At this point, let us consider the spanwise instantaneous velocity
profiles. Figs. 4.18 and 4.19 show a typical spanwise variation of the

streamwise velocity u in the vieinity of the lower wall (second grid
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point away from the wall, y+ = 3,85) at eight consecutive streamwise
locations. The profiles presented here are obtained at time t = 1.05.
These figures demonstrate distinect regions of high-speed fluid located
adjacent to the low-speed ones. In addition, these profiles clearly show
the long streamwise extent of the high- and low-speed streaks. In their
visual studies, Runstadler et al. (1959, 1963) (see Section 1.2) demon-—
strated that the viscous sublayer consists of relatively coherent struc-
tures of low- and high-speed streaks alternating in the spanwise direction
over the entire wall. ‘It appears, therefore, that at least there is a
qualitative agreement between the calculated results and the laboratory
observations. TFigs. 4.20 and 4.21 show the spanwise profiles of u at
the same locations as in Figs. 4.18 and 4.19, but at time t = 1.425.

Once again, these profiles show the coherent structures of alternating
low-and high-speed streaks. Note that the profiles shown in Figs. 4.20
and 4.21 are generally different in magnitude and details of structures
from those presented in Figs. 4.18 and 4.19 (see, for example, the pro-
files at {(x =0, and x = 4 hl). Fig. 4.22 shows typical spanwise vari-
ation of v and w, obtained at y+ = 3,85, t=1.05, and x =4 hl'
The rapid spanwise variations of v and w clearly show the lack of grid
resolution in the z direction (see the following discussion). Neverthe-
less, these profiles demonstrate, once again, that the viscous sublayer is
the region of high flow activity, and it is three-dimensional. In addi-
tion, the spanwise variations of v indicate the distinct presence of
secondary longitudinal vortices in the wall region.

Before concluding our present discussion of the spanwise velocity
profiles, it is appropriate to make a comment about the grid resolution.
Examination of the spanwise velocity profiles, in particular v and w,
seems to show that a better resolution in the 2z direction is required
(see Section 3.1 and also note that our streak spacings are far larger
than experimental observations), In other words, more grid points in the
spanwise direction are necessary to represent the relatively rapid varia-
tions of the wvelocities (streaks) properly. This is necessary in spite
of the fact that the pseudo-spectral method is used for numerical differ-—
entiation in the =z direction. However, since the eddies away from the

boundaries are larger than the ones near the walls (see Fig. 4.23),
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it is probably sufficient to have more grid points just in the vicinity
of the walls. This requires a non-rectangular grid system (conical),
which is generally accompanied by computational difficulties. Finally,
Fig. 4.24 shows typical streamwise variations of v and w which are
obtained at t = 1.05, y+ = 3,85, and z = 8h3. Note that, in spite
of the fact that these profiles are obtained at the same plane as those
in Fig. 4.22, the streamwise grid resolution seems to be adequate. How-
ever, it appears that the streamwise extent of the computational box,

Lx’ is too small.

4,6 PRunning Time Average of Mean Velocity Profile and Turbulent Statistics

In this section, we shall present the calculated mean wvelocity pro-
file and turbulence quantities, averaged over horizontal planes and in
time. The total averaging time is about one dimensionless time unit, which
is much smaller than corresponding time intervals commonly used in labora-
tory measurements. However, the horizontal averaging should somewhat im-
prove the overall statistical sample. In addition, note that, during the
time interval used for the averaging (1.05 < t < 2,025), the resolvable
shear stress profile < uv > traversed {roughiy) ome cycle (see Sect. 4.4).

Vertical profiles of the resolvable mean Reynolds stress, < av >
(unless otherwise stated in this section, < > indicates horizontal as
well as time averaging), and the total Reynclds stress

<uv>+<—\).l,(—g%+g—§)>
are shown in Figs. 4.25 and 4.26a. These profiles indicate that an approx-
imately steady mean velocity is obtained. In other words, the average
Reynolds stress profile has nearly attained the equilibrium shape which
balances the downstream mean pressure gradient in the regions away from
the walls. 1In the vicinity of the walls, the viscous stresses are signi-
ficant, and they, together with the total Reynolds stress, balance the
mean pressure gradient, Moreover, it should be noted that the subgrid
scale cobtribution to the total Reynolds stress is significant only in

the vicinity of the walls (see Figs. 4.25, 4.26a, and 4.26b).
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Figure 4.27 shows the profile of < uw >, the mean velocity, aver-
aged over both halves of the channel. The latter averaging was performed
in order to improve the overall statistical sample*. The calculated mean
velocity profile shows a distinct logarithmic region. 1In addition, the
agreement with experimental data is satisfactory.

) Figures 4.28, 4.29, and 4.30 show the profiles of the resolvable and
total turbulent intensities averaged over both halves of the channel**.
The contribution of the subgrid scale motions to the turbulent intensi-

ties is obtained from Eqn. (2.8) and from

2 2 2
= <= b
> < F v/ e > (4.4)
C = .09

(see Moin et al., 1978, or Lilly, 1967).

It should be noted, however, that due to the presence of a rela-
tively coarse grid and the high degree of anisotropy in the channel flow,
the validity of Eqn. (4.4) is questionable, especially in the wvieinity of
the walls. For comparison, we have also included some of the available
experimental data in Figs. 4.28, 4.29, and 4.30. Examination of these
figures reveals that, aside from a relatively high walue of < ;2 >1/2
in the vicinity of the channel centerline, the qualitative behavior and
the relative magnitudes of the turbulent intensity profiles are in accord
with the experimental measurements. The gquantitative agreement of calcu-
lated turbulent intensities with experimental measurements is good for

2 >1/2 and < WZ >1/2 2 1/2

< (u-<ub> and fair for <v >"7.

One may note that the subgrid scale contribution to the total stream-
wise and spanwise turbulent intensities is relatively small. However,
Fig. 4.30 shows that, especially in the vicinity of the walls, a large

2 >1/2

fraction of the vertical turbulent intensity component < v lies

F3
The maximum deviation of the calculated mean velocity profile in each

half of the channel from the one presented in Fig. 4.27 is less than 5Z.

% .
The maximum deviation of the calculated turbulent intensities in each

half of the channel from the ones shown in Figs. 4.28, 4.29, and 4.30 is
less than 12%.
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in the subgrid scale motions. The deficiency in the contribution of the

-2 . 1/2

resolvable motions to < v suggests that a subgrid scale model

which extracts less energy from < ;2 >1/2 might be required. This, in
turn, may necessitate the use of transport equations for the subgrid
scale Reynolds stresses (Deardorff, 1973).

For many problems in fluid mechanics, a knowledge of pressure fluc-—-
tuations is desired. TFor instance, the generation of noise by turbulence
is related to the distribution of pressure fluctuations. In addition,
information about the structure of turbulence in the vicinity of the wall
may be gained from the knowledge of pressure fluctuations at the wall.
Unfortunately, due to ezperimental difficulties, direct measurements of
pressure fluctuatiens within a turbulent flow are not possible. However,
from experimental measurements and theoretical considerations, a number
of investigators have obtained values for the root-mean-square wall pres-
sure fluctuations in a turbulent boundary layer (see Willmarth and Wool-
ridge, 1962, and Lilley, 1960).

In our computer runs, we neglected to calculate the running time
average of the BMS wall pressure fluctuations. However, we had stored
the pressure and velocity fields at several dimensionless times. Table
4.1 shows a time history of root-mean square value of the resolvable wall

1/2

R —2 i g
pressure fluctuations, <p > /TW. Here, < > indicates the aver-

age of the bracketed quantity over all the grid points on a wall.

Table 4.1

RMS Value of Wall Pressure Fluctuations

Dimensionless < 52 >1/2/1_-W < 52 >1/2/Tw

Time, t Lower wall Upper Wall
(y = -1) (y = +1)
1.05 2.04 2.0L
1.275 1.78 2.81
1.425 1.87 2.50
1.625 2.13 2.00
1.825 2.00 1.95
2.025 1.72 2.01
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The average value of the entries 1? this table (an approximation
-2 /2

for the running time average), < p°~ > 7/t v - 2.07, is in accordance
with experimental measurements (see Willmarth and Wooldridge, 1962, for
the data from several measurements) and theoretic#dl estimates (Lilley;

1960).

A quantity of particular interest to turbulence modelers is the
pressure work term, - < g%-Pv >, which appears in the governing equa-

tion for the turbulent kinetic energy (Hinze, 1975). This term is some-
times neglected, partly because it cannot be measured and partly because
pressure tends to be poorly correlated with wvelocities, except mear the

wall (Townsend, 1956, and Tennekes and Lumley, 1972). Fig. 4.31 shows

the profile of the resolvable pressure work term, = < g%-%g >, It can

be seen that in the regions away from the wall (y > -.8)}, - < 5§-§;l>
is much smaller than its corresponding values in the vicinity of the wall.
In addition, the general shape of - < g%—§§'> is in accordance with the
estimates of Laufer (1954) and Townsend (1956). These estimates were ob-
tained from the turbulent energy balance in a pipe flow (see Chapter I).

The average resolvable pressure velocity-gradient correlations
(pressure-strain terms), < P gu >, < P %§-> and < P §¥-> are shown
in Fig, 4.32. These terms govern the exchange of energy between the
three components of resolvable turbulent kinetic energy. DNote that since
the sum of the above pressure velocity-gradient correlations is zero,
these terms only transfer energy from one compomnent to another, without
changing. the total energy. Moreover, the negative sign for <« §(3Ei/3x£ >
(no summation) indicates transfer of energy from < (Ei - < E' >)2 1/2
to other components (loss), whereas a positive sign.denotesenergy gain.
The profiles of < P %§-> and < P-%— > show that throughout the channel
the averaged streamwise component of resoclvable turbulence intensity
transfers energy to the other components, while the spanwise component
receives energy. It is interesting to note that in the vicinity of the
wall there is a large transfer of energy from the vertical component of
turbulence intensity to the spanwise component. This is consistent with
the deficiency of the resolvable portion of the < v2 >1/2 profile in
the region close to the wall shown in Fig. 4.28.

In order to gain better insight into the flow of energy caused by

the fluctuating pressure gradients, one might consider the governing
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equations for each component of the resolvable turbulence energy. In

these equations, the only terms where pressure appears explicitly are:

— 9P — 3P — 3P
<u % >, =<V 5y >, and =-<w 3% > for x,y, and z compo-

nents of turbulence energy, respectively. MNote that

— 9P ~ 3
— —_ = < —_—
<u8x P3x>
and
— 9P ~ 9w
—-— e e = < ——
<w 3z P 2z >
but
— 3P ~ v
- < -_— < -_— >
v oy 7 E oy

The average resolvable velocity pressure~gradient correlations are

shown in Fig. 4.33., Examination of the < ;'%§-> profile reveals that,

aside from some energy loss in the region -.95 < y < -.83, the vertical

component of the resclvable turbulent energy receives energy via - < ;7%§->.
— oF . . . —
Thus, = < v-§; > 1s primarily the source of energy for < v2 >l/2.
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Chapter V

CONCLUSIONS AND RECOMMENDATIONS

In this work, we have numerically integrated the three-dimensional,
time-dependent primitive equations of motion for the case of turbulent
channel flow. To accomplish this task, a new, partially implicit algo—
rithm and a new subgrid-scale model for’'the inner region of the boundary
layer were developed. An important feature of this partial implieit
scheme 1s that the equation of continuity is solved directly. This, in
turn, allows one to abandon the use of the Poisson equation for pressure.
In addition, the stringent requirement on the time step caused by the
numerical stability criterion for the diffusion equation is largely eased.

The present computation has shown that many of the important fea-
tures of wall-bounded turbulent flows can be reproduced using the Large
Eddy Simulation approach. The overall agreement of the computed mean
velocity and turbulence statistics with experimental data is satisfactory.

In the present formulation of the subgrid scale model, the specifi-
cation of the SGS length scale is not based on a well-definted foundation.

There are several choices available for this quantity which warrant sys-

tematic study in this area: It would be desirable, for example, to in-
corporate a Reynolds number dependence in the function defining the SGS
length scale. This function, in turn, should allow for the vanishing of
the subgrid scale model in a laminar flow. The profiles of total turbu-
lent intensities indicate that, with the present grid resolution, a sub-
grid scale model which allows anisotropy of SGS energy coﬁponents is
desirable. This modification of the subgrid scale model may not be nec-
essary, if better grid resolutlon could be utilized. Nevertheless, the
performance of the subgrid scale model used here is encouraging.

In the light of our discussions about the grid resolution, a simula-
tion with 32 X 65 X 128 mesh in x, y, and 2z direction, respectively,
is strongly recommended. We believe that such a calculation will consid-
erably improve the results obtained here and will provide the means for
an cbjective evaluation as well as improvement of the subgrid scale model,

It should be noted that this computation can presently be performed on
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the ILLIAC IV computer. In addition, the use of a computer graphic sys-
tem in conjunction with this simulation is highly desirable. This would
provide the means for an efficient and a relatively convenient study of
the detailed structures in the flow. Such a study, in turn, can consid-
erably increase our knowledge of the structure and the mechanics of tur-
bulent boundary layers.

Based on the experience gained in our initial numerical experiment
(Section 4.3), the following recommendations are made for the numerical
simulation of laminar-turbulent flow transition:

¢ Using an eddy viscosity model, the numerical simulation of transition
from laminar to fully turbulent flow may be possible, provided that
finite amplitude disturbances are added to the laminar flow.

e However, if one wants to study the time evolution of small distur-
bances, the eddy viscosity model should be used only after brealkdown.
Prior to breakdown, the use of any subgrid scale model may not be
necessary.

In extending the method to other flows, an important numerical prob-
lem which must be resolved is the handling of inflow-outflow boundary
conditions. In addition, an efficient numerical method should be devised
which can be used in calculating flows that are inhomogeneous in more
than one direction. Fully developed turbulent flow in a straight duct
with a rectangular cross section is an example of such a flow. In simu-
lating this flow, one can use periodic boundary conditions in the stream—
wise direction.

An important problem to study would be the case of turbulent flow
over a smooth, flat plate. This flow is homogeneous only in one direc-
tion. Moreover, its numerical simulation involves the handling of inflow-
outflow boundary conditions. In addition, a suitable coordinate trans-
formation should be used to map the infinite physical domain to a finite
computational box. It is believed that the numerical simulation of this
flow is an essential step towards the utilization of the Large Eddy Simu-
lation approach in problems of engineering interest.

It will be some time before the Large Eddy Simulation technique can
be used in calculating flows of practical interest. However, in the in-

terim, much information on the structure of turbulence can be cbtained
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by applying the method to simple but basic flows. The information, in
turn, can be used in developing turbulence models in a simpler method
for complex flows.” A knowledge of the pressure-velocity gradient corre-
lations, for example, is of considerable value to the turbulence model-
ers. As  was shown in this study, using the Large Eddy Simulation ap-
proach one can compute their large-scale components. Moreover, with the
large ﬁddy Simulation technique one can simultaneously obtain detailed
quantitative information about the large-scale structures of the flow at
thousands of spatial locations (grid points) throughout the flow field.
This information cannot be gained from laboratory measurements. On the
other hand, in the laboratory, one is capable of cobtaining a long time
history of the flow at relatively few spatial locations with minor ex-
pense. With the present computeré, this latter information about the
flow can be gained only at high cost, Thus, at present, combined efforts
of measurements and Large Eddy Simulation of turbulence seems to be an
attractive approach to a better understanding of turbulent flows.

The Large Eddy Simulation of turbulence is just beginning to emerge
from its infancy, but it has already demonstrated a great potential in

supplementing laboratory measurements.
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Fig. 4.1. The resolvable portion of turbulence stress in the
lower half of the channel at ¢t = 0.
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Fig. 4.2. The resolvable portion of turbulence stress in the
lower half of the channel at t = 0.45.
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Fig. 4.3. The resolvable portion of turbulence stress in the
lower half of the channel at t = 0.65.
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Fig. 4.4. The resolvable portion of turbulence stress in the
lower half of the channel at t = 0.85.
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The resolvable portion of turbulence stress in the
lower half of the chanmel at t = 1.05.
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Fig. 4.6. The resolvable portion of turbulence stress in the
lower half of the chanmel at t = 1.425.
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The resolvable portion of turbulence stress in the
lower half of the channel at t = 2.025.

59



40—
- =2 W
RACEODI
30
o ° ©
o o
i 0°0 4o °© o
o]
2o0F °
(o
LoH°
0
85 ¥/8
o —.93 -.Qj(l -.815 y —.SP
0 32 64 96 128
y'r
Fig. 4.8. Planar average of the resolvable portion of the stream-

wise turbulence intensity in the vicinity of the lower
wall at t = 1.05.

60



4.0 | i T ]
- — 12 W
oo (T-<ud) >
0 o '
B o
O
O
30— p D -
=
O
O m] —
20 ]
=]
1.0 ~
!
~95 -90 -85 y/3& =80
o | s | ]
o) 32 64 96 y+ 128

Fig. 4.9. Planar average of the resolvable portion of the stream-
wise turbulence intensity in the viecinity of the lower
wall at t = 1.425,
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Fig. 4.16. Instantaneous vertical velocity profiles obtained
_ at the same location and times as in Fig. 4.15.

68



69

Fig. 4.17.

I I I I ! I I I I I I

o Mean Velogity /o
Instantaneous velocity profile af ,’
t=2.025, x=Thy, 2=7h3 { o
---—= [nstantaneous velocity profile aof l\
t 2.025, x=10hy, z=10h3z \

18 20 22
u

24. 26

Tnstantaneous streamwise velocity profiles obtained at the same time

and at two different (x,z) locations.




17
46
- 15
lf.) < ‘4U
% & 2
42
! ; ! 1 Vol B
£ ——>
~T
- 16
éﬁ m <5 —
non u
w ™ -4
: 13
; e
i
£ o
n g
>
5
o 1 a
1n ‘“- ..3U
»x H d2.
1 I - $ 1 hd N |
o 4h, 8hy i2hy  15hg

Fig. 4.18. Instantaneous spanwise variations of the u at t = 1.09,

yt = 3.85, and at x = 0, h 2h,, 3h;.

1’ 1

70



-16

'3 15
P 1470
x 3
12

! i ! ] | I

17

16
- 15 _
o ~ 1q U
x H 13
12

i

17

- 16
B o 18
S 14
13

42

|

16

< 15
v {45
> H 13
{2

|

4h3 8h3 [2h4 15h3

Z

Fiag. 4.19. Ipstantaneous spanwise variations of u  at = 1.05,

= 3,85, and at x = 4hl, 5h1, 6h1, 7hl.



= 15
th 3. _:‘4 EF
> 13
12
i -
7
46
s 15 _
(;\llu ..4U
x H 13
12
] 1 | | | ]
17
46
- 15 _
n
% 14 d
13
42
| | 1 1 1 i
(& T
0 n
»

Fig. 4.20. Instantaneous spanwise variations of u at t = 1.425,
yt = 3.85, and at x = 0, hys 2hy, 3h,-

72



17
£ o 18
5o 15 _
.G
13
12
!
6
- 15
< 44 —
&3 30
5 13
gt
|
7
-6
= © 15
1) -
n ;; 14 U
>
13
i2
|
7
46
g © 15
; H = '4u
13
42
i ; | [ |
0 4hgz 8hs I15h3

Fig. 4.21. Instantaneous spanwise variations of u at t = 1.425,
yt = 3.85, and at x = 4b,, 5h;, 6h;, 7h,.

73



74

T T T T T T 1T 1T 17 1T 1T 17 T R
— v '1'3K|C;2
— _axi0?
= —ix1072
3 A\ A /\ \/' o
"L \/ —-1x1G2
- —|-2x102
- —]-zx16°2
[ T N N Y e |
T T T T T T T T T 17 T T T 7171 I
w
- o
AN aN 1,
c et O
q- .
¥ ol AN WA S g ¥
» M -
- —-10
I e
0 4h, 8h, 12h, 15h 4

Fig. 4.22. Instantaneous spanwise variation of v (upper figure) and w (lower

figure) at t = 1.05, y+ = 3.85, x = 4h1.



Y

2.0
1.5
1.0

B
0 l——1 { | - R OO S N A I AR S

-5
_ -0}
W
_|.5 T
2.0

1.5
1.0

B

O 1 | | i = } | | | } | | 1

=5 4hy 8hy 12h4
-1.0—
=15
~2.0

il

Fig. 4.23. Instantaneous spanwise variations of w at ¢t

1.05, x = Ahl, y = -, 807
(upper figure) and at t = 1.425, x = bhy, oy

-.304 (lower figure).



9L

3x10 2

<l

2x10 ? -
X102

—
—_——

-1x10 2
- 2xI107% -
-3x10" 2

.5

=]

1.0 |
S

12h, ISh,
0 |

1 ' T
n 12 13 14 {5 16
_'5 —

_1'5 —

Fig. 4.24. Instantaneous streamwise variations of v (upper figure) and w (lower

figure) at t = 1,05, y = 3.85, z = 8h.y.



oooddxg%
o
o
41 °
o
-3 o
o
o
S 1_: A L ¥ 3 !E
-8 -7 -5 -3 - 5 7 .9 |
o v/ S
e -2t y
o
o o
(o) -4
o
o
Q =]
%% o "".6'-
Cobo
-8+

Fig. 4.25.

Resolvable portion of turbulence stress averaged 1in
time.

77



8+
v+ <uv oo@%
6__ [o]
o]
o]
o]
441
o]
27
-9 -7 -5 =3 =l i 3 5 7
o]
A 2l y/8
o]
c ° -4+
0O [+]
o]
o] O
o -6
o o]
Q
°° -8+
Fig. 4.26a.

Total turbulence stress

(resolvable portion + SGS
contribution), averaged in time.

78




o | [ | 1 [ !
* 5 A
° NEAR THE LOWER WALL
-2 . o (o] (UV) —
° « LTV +U'V')
o
-4 ¢ ° —
¢ o
. o
. o
- - [ ] Q ]
© * . . ° o )
L J . o
-8 i i ] | [
-8 l T l 1
B . ® [ ]
. o ° e
B . » o ° -]
* o
o o]
4 " ° NEAR THE UPPER WALL  —
. - o oluv>
2k ° e LUUD+U VD _
™Y o]
0les2° | 1 I 1 |
32 64 96 y+ 128
Fig. 4.26b. The resolvable and total turbulence stress in the

vieinity of the walls.

A)
B)

Near the lower wall
Near the upper wall

79



08

| T T T T ] [T
O COMPUTATION

24— — —— LAUFER(95!) Re: 12200~ 61600 o]

----- COMTE-BELLOT (1963) Rem = 57000 S
- ————— HUSSAIN and REYNOLDS Re =13800 _ #5080 —
20— -
ut - —
16— -
- —]
12— -
8 |— o
g —

0 1 Ll N I S A B I N Y

|
7 10 20 30 4050 70 100 200 300 500 700 1000
y-l-

Fig. 4.27. Mean velocity profile. The experimental data of Laufer, Comte-Bellot, and Hussain
and Reynclds are included.



i8

4.0
(T- <y

3.0

3.0

] I 1 1

32 64 96 y+ 128

B.

O Computation
» SGS Contribution Added

Hussain and Reynolds (1975)
Re = 13800

-~-=Clark (1968) Re = 15200
—-— Comte - Bellot (1963) Re,, = 120,000

Time-averaged streamwise turbulence intensity in the vicinity of the wall (A) and

away from the wall (B).



8

0 l !

i L

32 64

96 28
y+

1.8

i.4

1.2

LO

.6

4

.2

o)

-8 -7 -6 -5 -4 -3 -2 -l

B' © Computation

. ® SGS Confribution Added

-2\ e —-—Comte-Bellot (I1963)

w2 Rep?64000
Laufer {1954)

Re = 25000

----- Clark (1968)

. Rez 15200

] ] ] | l ] ] ]

-0
y/d

Fig. 4.29. Time-averaged spanwise turbulence intensity in the vieinity of the wall (4) and
away from the wall (B).

i




£8

A.
I'OF—- —_——— T —— o
~~ . =
,/ . ¥ ——
8"‘ ..,O, s o * o o
. o]
/’ e
./ 0
o]
* o
A o
. 0
0
2
[=]
.oo
o) ] | | |
0 32 64 96 y+ 128
4.30.

Fig.

B O Computation
: e SGS Contribution Added

—.— Comte-Bellot (1963) Rey, 264000
Laufer{1954) Re = 25000

---~ Clark (1968} Re = 15200

2

0 ] | | l | l I ]

-8 -7 -6 -5 -4 -3 ~2 -~ 0
V8

Time-averaged vertical component of turbulence intensity an the vicinity of the

wall (A) and away from the wall (B).



4.0 | | I I I | I i
A.
3.0 0 = —
<595
20 —
1.0 —
0d
-0 3 —
T | L | | | Y/8
-1.0 -95 -90 -85 - 80
o) 32 64 96 128yt
0 1 i | [ | I |
B d ~—
* - — v
ol <ay PV N
(o]
/Ja"—_--6-‘<1‘_—£L‘“ﬁ5_,
0] ol ~ o‘f%____o
-1.0 — —
-2.0 I | i I | [ | |
-, -, -6 - -4 - - -1 0]
8 7 5 3 2 y/S

Fig. 4.31. Pressure work term in the vicinity of the wall {(A)
and away from the wall (B).

84



-1.0!
-2.0 7
-3.0 ._915 -_glo -.sls y/8 -.slo .
0 32 64 96 g+ 128
2.0 T | T ; ] | | I
B.

1o}
W —
0 — i
w f—o0 0
-Lo._ —_

Fig. 4.32. - Pressure velocity-gradient correlations in the wvicinity
of the wall (A) and away from the wall (B).

85



eo l i l | i I |

...LO._ ~ o

Fig. 4.33. Velocity pressure-gradient correlations in the vicinity
of the wall (A) and away {rom the wall (B).

86



Appendix A

FILTERING WITH NON-UNIFORM FILTER WIDTH

In this appendix, we briefly discuss non-uniform width filtering
and demonstrate its mathematical disadvantages. The use of such fil-
ters (non—uniform width) is desirable in the directions in which the
flow is inhomogeneous (see Section 2.1). For demonstration, we consider

only simple box averaging as the filtering operation.

Let
— 1 x+11\.+(x)
OB (ROET RO j; e (O (a.1)
where A+ and A_ are the distances from x te its adjacent grid points.

They will be treated as continuous variables. Note that here we consider

only a one-dimensional case. Differentiating f yields:

d
3? _ &' (A+ + A_) fX+A+
= = - 5 £(&) d§
@, ) +A_(0)2 7 xa
dA dA
1 + =
+ W[f(x + A_'_)(l +'a?) - f(x - A_)(l - F{)
or
d
_ — (A, +A) fx+4,) - f(x~-4A)
dx CWE N

1 da, dA ]
+W f(X+A+)Ex—+f(x—A_)'§
Using the definition (A.1), we have:
+A
of 1 fx +  9f 1 [
= = —= df =————f(x+A)-—f(x—A_):l
2% (A+ + A ) xh oE A+ + A +

(A.3)

Substitution of (A.3) in (A.2) ydields:
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4

9f _ 9f | dx ( + - — 1 + . -
9x 9% + (A+ + A_) £ - (A_!_ T A__) f(x + A'l') ?;"I' flx - A_) T
(AL

Thus, it is clear that, in gemneral,

5F
™ 7 ox

The The above inequality and the presence of unfiltered quantities in

(A.4) renders the use of explicit nonuniform width-filtering extremely
difficult.
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Appendix B

THE NUMERICAL DIFFICULTY WITH EXPLICIT TIME ADVANCING
OF EQUATIONS OF MOTION

In this appendix, we formally demonstrate the numerical difficulty
associated with the fully explicit numerical integration of the Navier-
Stokes equations (see Section 3.3). Chebyshev polynomials*and Fourier
series are used to represent the flow variables in the wvertical and

horizontal difections, respectively. Consider the governing equations:

»

R
ui = —'a-}?]:_--l- Hi (B.1)

where Hi contains the transport and diffusion terms and a *+ over a

variable denotes time derivative. Let

N
" i (klxl+k3x3)
o= 3D D0 e (i) T (x,) e (3.2)
11=0 k k
1 K3
N, 1.0k %, He X,
o= Y Z: ; by (kp.kg) T (x,) e (3.3)
n=o 1 3
N
i,, i(klxl+k3x3)
H; = 2 Z.: ; Cin(Kpokg) T(xp)e (B.4)
o 1 3
and
5P N2 " i(klxl+k3x3)
e = 1
S IEEDY ; ; al (i ,k,) T (xy) e (3.5)
2 n=0 1 3

where 'I‘n(xz) is the nth-order Chebychev polynomial of the first kind
and the double primes indicate that the first and last terms in the ser-
ies are to be taken with factor 1/2. Egns. (8.1), (B.2), (B.4), and
(B.5) yield

-ikla (k!,kD)
) Ni:" 1'm 3 £(kc] % Helx)
—_ —_ 1
u, = E Z: al;l(k',k?)) + Cn Tm(xz) e
m=0 ki k3 (B.6)
-— 1 1 1 -
ikBam(kl’kB)

*
Other choices are possible.
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From (B.3) we readily obtain:
N _n
2 L
b (kpsky) = g i Z Z u, (x; ,cos Gj_,,x3)
~1(k;x +k3x3)
¢ Ccos Ilej e (B.7)

where X, = cos Bj (see Equ. (3.12)) and Gj = wjfN,, 3 = 0,1,2,.-.,N,.

] . .
Note that”™ here we have enforced the no-slip boundary conditions, i.e.,

ﬁi(xl,@j,xs)

j=0,N2

Substituting (B.6) into (B.7), we get:
LS i § T 1
N —1 N $ _:"klam(k ’k3)
.- - 2 113 . [3 1
bl = w2 2 0 O Z Z af (k] k1)
) 17273 =1 1 x3 m=0
—ik'a (k',k')

. . L(k]x +klx k %y k bod )
+ C.m cos %gl-cos EH—-e SR RCE

1
2 2 (5.8)
The use of orthogonality of the expansion functions yields: g
—iklan(kl,k3) -ik a (k k )
[ 1 1
— —al - -
binlkroky) = | -2y (g,ky) %n " N, n; 25 {ky5kg)
-ikga (k,kg) —iksa (k;,k;)
[}_1)n+m + 1 (B.9)

The last term in (B.9), which is the result of enforcing the no-slip
boundary conditions, is the source of trouble. To make this clear, con-

sider the above equation for i = 1:

. . sl
By = - ke (o kg) + 6+ ally,ky) + (17 80k k) (B.10)
where
N'?
_ L 1" _
alk;,kg) = - , E (-tkya (kyskg) + G p)
m=0
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N
- ;L_:ii" > m
B (kl 3 k3) = Nz & ( lklam(kl » k'3) + Clm) (—1)

Multiplying (B.10) by Tn(cos Gj) and summing over all n yields:

ul(kl’x2,’k3) - iklP(kl’XZ.’kB) + Hl(kl,xzj,kB)
J 2 " N2 n
n
+ oa(kl,RB) Z cos nej + B(kl,k3)z (-1} cos nb
n=0 n=o
where

over a variable denotes two-dimensional Fourier transform of
that variable. But

0
1 J - ;
NZI' 5 Sin NZBj cot - = o, j#0
- Z cos nf, = (B.11)
=0 J
N2 -1 , j=20
and L Ei
N, - E—sin Nzej tan &~ = 0, j# N2
14}
(—1)n cos nb, = (B.12)
n=o J 1
N, - 1 i-= N2
Note
= -.ITJ.— T =
Bj Nz j 0,1,2,...,N2
Hence, it has been shown that, unless
G(kl,k3) = 0 and Bk ,k3) = 0 , (B.13)

the two~-dimensional discrete Fourier transform of u

1 is discontinuous
at the walls. It should be noted that (B.13) is equivalent to

JP

ox x,=tl ! xy=l

which is the streamwise momentum equation evaluated at the walls (see
Eqn. (3.15)).

Similarly, the two-dimensional discrete Fourier transform
of u

5 OT Ug i3 discontinuous unless
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9 | =21 2}y =21
2
or i -
3P
3z = Hy
x2=il x2=il

respectively. Therefore, if Neumann boundary condition is used for the
Poisson equation, the Fourier transforms of uy and ug will have dis-
continuity at the boundaries. On the other hand, if Dirichlet boundary
condition is used, the Fourier transform of u, will be discontinuous
at the walls. In practice, the presence of discontinuity in the depen-
dent variables results in non-convergent expansions which render a mea-
ningless computation. A remedy for this problem is presented in Section
3.4.
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Appendix C

LISTING OF THE COMPUTER PROGRAM
FOR THE CALCULATTION OF TURBULENT CHANNEL FLOW
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CREXXXREXXXRUXAXNRENRN COMDECKS HEXRXKEXEXKMRNNKEEMERREHEENERRRRRMMN AR ARERERRA
CxX%X%AXX%¥%% BY CALLING A COMDECK THE DIMENSIOMN OR COMMON STATEMENT ¥
CE¥EXXXX¥XX FOLLOWING THE COMDECK WILL BE PLACED IN THE CALLING ROUTINEX
3636 36 36 6 3¢ 96 36 36 36 36 3636 36 36 36 36 38 26 JEE 36 36 6 36 36 36 36 JE I 26 36 I 26 3 36 76 36 36 2 3636 36 XK 36 36 3 26 76 36 JEIE2E 8 36 20 36 636 3 36 36 36 36 3 HEH KM MK
¥COMDECK C1
DIMENSION XB(16),YB(1l6)
*¥COMDECK €2 )
COMMON/AVEDY/RMIU(65)
¥COMDECK C3
COMMON/WV/WAVEXC16) ,MAVEY(16) , MAVEXS(16) ,MAVEYS{16)
¥COMDECK C4
DIMENSION BETAL(65),BETAZ2(65)
*¥COMDECK C5
DIMENSION RHSV{(4,61),AMB(5,4,61),AB(4,4,61),APB{4,%,61),AAUX(4,%,
1613, AMAUX{4,4,60), APAUX(4G,4,61)
*¥COMDECK C&
COMMON/SECOND/7AP2(65),BP2(65),CP2(65)
¥COMDECK C7
COMMON/LAGRNG/AP(65),BP(65),CP(65),APR{65),BPR(65),CPR(65),DPR(65)
1,EPR(65)
XCOMDECK C38
DIMENSION Z21(16,16),ZM1(16,16),D2(62)
*COMDECK C9
DIMENSION BClR{16,16),BC1I(16,16),BCM1R(16,163,BCMII(16,16)
¥COMDECK Cl0
COMMON/DAT21/XR(16),%I(16)
¥COMDECK (11
DIMENSION HR(16,16,65)
LEVEL 2,HR
¥COMDECK Al
COMMON/DATA7/FR{16,16),FI(16,16)
¥COMBECK A2
COMMON DUDX(16,16,65)
*¥COMDECK A3
COMMON/LCM4G/DIVG(16,16,65)
LEVEL 2,BbIVC
¥COMDECK A4
COMMON/LARGE2/P(16,16,65)
LEVEL 2,P
¥COMDECK A5 N
COMMON/LARGEL1/G(16,16,65)
LEVEL 2,6
®COMDECK A6
COMMON/LCM2/UC16,16,65),V(16,16,65),W(16,16,65)
LEVEL 2,U,V,W
XCOMDECK A7
COMMON/LCM1/HI(16,16,65),H2¢16,16,65),H3(16,16,65)
LEVEL 2,H1,H2,H3
*¥COMDECK A8
COMMON/LCM3/RUC16,16,65),RV(16,16,65),RW(16,16,65)
LEVEL 2,RU,RV,RHW
*XCOMDECK AS
COMMON/STR/ZETA(65),2(65),RL(65),RM(65),E2,F2,EN,FN,R2,RN,A(653,
1C(65),D(65),RR2,RRN
¥COMDECK Al0
DIMENSION G(16,16,653
LEVEL 2.6
X¥COMDECK All
DIMENSION Ul1(16,16,65),U2(16,16,65),U3(16,16,65)
LEVEL 2,Ul,U2,U3
*COMDECK Al2
DIMENSION U(16,16,65),V(16,16,65),W(16,16,65)
LEVEL 2,U,V.HW
¥COMDECK Al3
DIMENSION USUM(65),VSUM(65),WSUM(E5)
¥COMDECK Bl
COMMON/FLT/FILTX(16),FILTY(16)
®¥COMDECK B2
COMMON/ZEDDY/CV(63)
¥COMDECK B3
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COMMON/RECOVER/FACTOR(6D)
*COMDECK B4
COMMON/HORIAV/U2S(65),V25(65),HM25(65),5SUM{65) ,EDYVI(465)
*COMDECK B3
COMMON/ZAVEDY/7MIU(G5)
*¥COMDECK B6 .
DIMENSION U2ST(65),V25T(65),W25T(65),UWNT(65)
¥COMDECK B7
COGMMON/SECOND/AP2(65),BP2(65),CP2(65)
¥COMPECK B2
COMMON/PENTAIZAL(S5),B1(65),C1(65),DY(65),E1(65),F1(65)
*COMDECK B9
DIMENSION U(16,16,65)
LEVELZ2,U
XDECK MAIN
PROGRAM MAINCINPUT,OUTPUT,TAPES, TAPE9,TAPEL0,TAPELIL)
CH®¥¥XTHIS SUBROUTINE MONITORS THE OVERALL SEQUENCE OF THE COMPUTATION
Cx%¥%x% U,V,W ARE THE VELOCITIES IN STREAMWISE,X,SPANNWISE,Y,AND VERTICAL,
Cxx¥%¥ Z DIRECTIONS.
COMMON/LTALZUSUM(E5),UTSUM(65),5TSUM(653,U25MT(65),V2S5MT(65)
1, W2SMT(65),PVT(65) ,PUT(65),PUNST(65),PVNST(65),PURST(65),PWNTI{65D
2, TCONT
COM?GN/LTAZ/PDUT(65),PDVT(GS),PDNT(GB),PDUNT(65),PDVNT(65),PDNNT
1{65
COMMON/SGTT/SGST(H5),ETED(GOB),U25TT(65),V25TT(65),W25TT(65)
1,TSHGS, TSCNT
COMMON/COUNT/ZIYCONT
COMMON/SING/IMR, JMR,IMI,JMI
COMMON/ADV/NTIME
DIMENSION A3¢61),B3(61),C3(61),D3(61),E3(6L)
COMMON/TINC/DT
COMMON/PENTAZ2/XI,QI,G6I,YI,QJ,6J,XN,QIN,GIN,¥YN,QJN,GIN,Q2,Q3,RC1,
1RC2,RP1,RP2,RP3,RP4
¥CALL C1
®CALL BS
REAL MIU
DIMENSTON VAUX(4,51)
DIMENSION AX(3,3,61),APX(3,3,61),AMX(3,3,61),AXX(3,3,612,
1APXX(3,3,613,AMXX(3,3,61),VH(3,61)
®¥CALL C3
®CALL C4%
*CALL CB
®¥CALL B7 .
¥CALL €7
COMMON/BC/CEY,CE2,CE3,CE4,CES,CES
COMMON/IDENTN/CORE
®CALL Al
®CALL A2
®¥CALL A3
*CALL AG
XCALL A5
COMMON/CONST/CL00,C101,TJK,XIJ,NHP1,HALF
COMMON/DATASIZIMAX, JMAX, LMAX, NHALFX, NHALFY
COMMDH/SCM2/1L.MAXPY,D1,D2,D9,D4,D5, D6
XCALL A6
XCALL A7
XCALL A8
*¥CALL A9
COMMON/SCM3I/DELTAL,DELTA2,RE,E
INTEGER TIME,TEND
TEND=200
COF=1.5
DT=0.001
NTIME=0Q
CODE=2.
CALL INITIAL
CALL TRANS
CC=1./7CIMAXXJMAX)
TP=0.5
ci=2.0
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C4=1.0
LMAXMZ=LMAX-2
LMAXM3=LMAX~3
LHPI=LMAX/2+1
JCONT=0
LCONT=0
LMAXML=LMAX-1
“CALL INICON
NTIME=1
CALL INITIAL
DG 306 TIME=1,TEND
NTIME=TIME
ICONT=ICONTH1
ITCONT=ICONT-20
CALL COURANTC(DT,NTIME,TEND)
CALL DIVG
CALL RHS
IF(NTIME.EQ.1) GO TO 360
IF(IICONT.NE.Q) 60 TO 350
ICONT=0
360 CONTINUE
CALL STAT
350 CONTINUE
Cx%%xx DEFINE THE WAVE NUMBER INDEPENDENT ELEMENTS OF THE BLOCK -
Cxx**TRIDIAGONAL MATRIX
DO 600 K=2,LMAX
BETAL(K)==-Cl/(DTXC(E+MIUCKI])
T BETAZ2(K)==CLl/(DT®(E+2.¥MIU(K)I)
600 CONTINUE
Cxx%%% DEFINE THE ELEMENTS OF THE TRIDIAGONAL MATRIX FOR THE CASE K1=K2=0.
DO 800 K=1,LMAXM3
KP2=K+2
B3(K)}=BP2(KP2)+BETALI(KP2)
AS(K)=AP2(KP2)
800 C3{(K)I=CP2(KP2>
T=(Z(3)-2(2))%*0.5
AK=1./(TPXDT*BETA2(3))
Cxx*x%x% AMB,AB,APB ARE THE ELEMENTS OF THE BLOCK TRIDIAGONAL MATRIX.
DO 640 M=1l,4%
DO 640 H=1,4
DO 640 K=1,LMAXM3
AB(M.N,K)=0.
AMB(M,N,K)=0.
APB(M,N,K)=0.
640 CONTIHUE
DO 645 K=1,LMAXM3
KP2=K+2 ‘
AB(1,1,K)=BP2(KP2)+BETALI(KP2)
AB(2,2,K)=AB(1,1,K)
AB(3,3,K)=BP(KP2)
AB(%,%,K)=BETA2(KP2)XBP(KP2)*DT*TP
AB(4%,3,K)=BP2(KP2)+BETA2(KP2)
645 CONTINUE
AB(%,4,1)=CE2XBETA2(3)XDT=TP
AB(4,6, LMAXM3I=CES*BETA2 (LMAXMI)%DT*TP
AB(4,3,1)=BP2(3)+BETA2(3)*CEl
AB(4,3,LMAXM3II=BP2C(LMAXMLI+BETA2(LMAXM]I )% CE6
DO 650 K=1,LMAXM3
KP2=K+2
APB(1,1,K)=CP2(KP2)
APB(2,2,K)=APB(1,1,X)
APB(3,3,K)=CP(KP2)
APB(64,6,K)=CP(KP2)¥BETA2(KP2)XDT*#TP
APB{4,3,K)=CP2(KP2)
AMB{1,1,K)=AP2(KP2)
AMB(2,2,K)=AP2(KP2)
AMB(4,3,K)=AP2(KP2)
AMBC(4,4,K)=AP(KP2)XBETA2(KP2)*DT*TP
AMB(3,3,K)=APCKP2)
650 CONTINUE
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CF PGOR QuarLiTy

AMB(4, %, LMAXMI)=CE4XBETA2(LMAXM1 IXDT*TP
APB(%,4,1)=CE3IXBETA2(3)%DTXTP
Cxxxx¥ DEFINE THE ELEMENTS OF THE,K1=0,BLOCK TRIDIAGONAL SYSTEM
po 750 M=1,3
DO 758 N=1,3
DO 754 K=1,LMAXM3
AX(M,N,K)=0.
APYI(M,.N,K)=0.
AMX(M,N,K)=0.
750 CONTINUE
DO 752 K=1,LMAXM3
AX(2,2,K)=AB(4,3,K)
APX(2,2,K)=APB(4,3.,K)
AMX(2,2,K)=AMB(4%,3,K?
AX(3,1,K)=AB(2,2,K)
APX{3,1,K)=APB(2,2,K)
AMX(3,1,K)=AMB(2,2,K)
A¥X(2,3,K)=AB(4,4,K)
APX(2,3,K)=APB(4,4,K)
AMX(2,3,KI=AMB(4%,%,K)
AX(1,2,K)=AB(3,3,K)
APX(1,2,K}=APB(3,3,K)
AMX(1,2,K)=AMB(3,3,K)
752 CONTINUE
C%xx¥ DEFINE THE RHS OF THE BLOCK TRIDIAGDNAL SYSTEM
CALL VISCBSU)
DO 618 K=3,LMAXM1
DO 610 J=1, JMAX
DO 610 I=1,IMAX
UCI,J,KISBETAL(KI®(U(T,J,KI+DT*(COF%H1(I,J,KI~0.5%RU(I,JsKID))-
1DUDX(I,J,KI%C4q
610 CONTINUE
CALL VISCOS(V)
D 615 K=3,LMAXM1
DD 615 J=1,JMAX
DO 615 I=1,IMAX
VCI,J,KI=BETAL(KIR(YCTI,J,KI+DT*(COFXH2(I,J,K)=D.5%RV{1,J,KI)I)-
IDUDX(I,J,KI%Cq
615 CONTINUE
CALL VISCOS(W
DO 620 K=3,LMAXMI
DO 620 J=1,JMAX
DO 620 I=1,IMAX
WCI,J,KI=BETAZ(KI®CWCY,J,KI+DTX(COF*H3(T,J,K)~0.5%XRN(I,J,K))I~
1DUDX(L,J,KI*C4
620 CONTINUE
Cxx%%X FOURRIER TRANSFORM
D0 625 K=3,LMAXM1
CALL MOVLEV(U{(1,1,K),FR{(1,12,1I4)
CALL FFTX(1.0)
CALL FFTY(1l.90,CC)
CALL MOVLEV(FR(1,1),U(1,1,
CALL MOVLEV(FI(1,1),RU(],1
CALL MOVLEV(V(1,1,K),FR(1,
CALL FFTX(1.0)
CALL FFTY{1.0,CC)
CALL MOVLEV(FR(1,1),V(1,1,K},IJ)
CALL MOVLEV(FI(1,1),RV(1,1,K),IJ)
CALL MOVLEV(W(L,1,K),FR(1,13,1IJ)
CALL FFTX(1.0)
CALL FFTY(1.0,CC)
CALL MOVLEV(FR(1,1),W(1,1,K),IJ)
CALL MOVLEV(FI(1,1),RW(1,1L,K},IJ)
625 CONTINUE
Cxxxx%x THE REAL AND IMAGINARY PARTS OF THE FOURIER TRANSFORM OF THE RHS
Cxxxx¥% OF THE BLOCK TRIDIAGONAL MATRIX IS COMPUTED .
Cx¥x%%% NOW DEFINE THE MATRIX ELEMENTS FOR EACH K1 AND K2.
NHP1X=IMAX/2+1
NHP1Y=JMAX/2+1
NHPZX=NHP1X+1

J2
1J2
4

K
»K
1)

I

Hd
),
s 1
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NHP2Y=NHP1Y+1
DO 638 J=1,JMAX
DO 630 I=1,IMAX
WAV=WAVEXS (I}+IWAVEYS(J)
IF(I.EQ.1.AND.J.EQ.1) GO TO 662
IF(I.EQ.1) GO TO 418
IF(J.EQ.T) GD TO 420
IFCJ.GE.NHP2Y) GO T0O 430
410 IFCJ.LT.NHP2Y) GO TO 630
GO TO 722
420 IFCI.LT.NHP2X) GO TO 630
GO TO 440
630 IF{I.EQ.1,.8R.I.EQ.NHP1X) GO TO 630
440 CONTINUE
DO 635 K=1,LMAXM3
KP2=K+2
Cxxx¥%¥ FIRST SOLVE FOR IMAGINARY PART OF U,V,AND REAL PART OF W AND P.
RHSV(1.,K)=RU(I,J,KP2)
RHSV(2,KJ)=RV(1,J,KP2)
RHSV(3,K)=0.
RHSV(4,KI=W(I,J,KP2)
635 CONTINUE
DO 647 K=1,LMAXM3
KP2=K+2
AB{3,1,K)=-WAVEX(I)XIMAX
AB(3,2,K)=-WAVEY(JI)*¥JMAX
AB{1,4,K)=-AB(3,1,K)XBETAL(KP2)}%DT*TP
AB(2,4,K)==AB(3,2,K)XBETAL(KP2)%DTXTP
647 CONTINUE
Cxx¥x%%%x REARRANGING THE ROWS FOR CENTRAL DIFFERENCING
DO 655 M=1,4
DO 655 K=1,LMAXM3
AAUX(1,M,K3=AB(3,
AAUX(4,M,K)=AB(1,
AAUX(3,M,KI=AB (4,
APAUXC(I,M,K)=APB(
APAUX(%,M,K3I=APB(
APAUX(3,M,KI=APB(
AMAUX (I, M,KI=AMB(
AMAUX(4,M,K)=AMB(
AMAUX(3,M,KX=AMB(
AAUX(2,M,K3I=AB(2,
AMAUX(Z2, M, K)Y=AMB{(
APAUX(2,M,KI=APB(
655 CONTINUE
DO 310 M=1,4
DO 310 K=1,LMAXM3
310 VAUX(M,K)SRHSV(M,K)
DO 315 K=1,LMAXMI
RHSV({1,K)=VAUX(3,K3}
RHSV(4,K)=VAUX(1,K)
RHSV(3,K3=VAUX(4,K}
315 CONTINUE
IMR=I
JMR=J
CALL MTDAGCAMAUX,AAUX, APAUX,RHSV, &, LMAXM3)
DO 660 K=3,LMAXM1
KM2=K-2
RUCI,J,K)=RHSV(1,KM2)
RY(I,J,K)=RHS5V(2,KM2)
W(I,J,KI=RHSV(3,KM2)
G(I,J,KI=RHSV(4,KM2)
660 CONTINUE
Cxx%xx%¥ COMPUTE THE REAL PART OF PRESSURE TRANSFORM AT THE WALL.
G(I,J,2)=QI%G(I,J,3)+GIXG(T,J,6)-(2,.%(1.-CEL)/CAP(3)I%¥DT)IXN(I,J,3)
GCI,J, LMAX)I=QINXGCI,J, LMAXMLI+GINXG(I,J,LMAXM2)-(2.%(1.~CE6)/
1(CP{LMAXM1IX%DT ) IXKW(I,J, LMAXML)
GO TO 630
662 CONTINUE
G{I,J,3)=T%W(I,J,3I*AK

M.K3
M.K)
M,K)
3,M,
1,M,
4, M,
3,M,
1,M,
&,M,
M,K3
2,M,
2:M,

K)
K3
K
L)
K
K>
KJ
K
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663

664

ORIGINAL PACE IS

G(i,J,4)=(1.~T*BP(3))*G(I;J;S)/(T*CP(S)) OF POOR QUALITY)
G(I,J,2)=0.

G(I,d,1)5-CPL2IXGCI,J,3)7AP(2)

DD 663 K=6,LMAX

AK=1./(TPXDTXBETAZ(K))
GCI,J,K+1)=CNCI,J,KIXAK=AP(K)XGCI,J,K-1)-BPCKI*GCI,J,K) I/CP(K)
CONTINUE

DO 664 K=2,LMAX

WCI,d,K)=0.

RUCI,J,K)=0.

RVCI,J,K)=0.

CONTINUE

60 TO 630

C¥x%x* SOLVE WHEN K1=0

722

CONTINUE

Cx¥xx¥ FIRST SOLVE FOR U, SIMPLE TRIDIAGONAL

724

726

DO 724 K=1,LMAXM3
D3(KI=RU(I,J,K+2)
CALL TRIB(A3.B3,C3,E3,D3,LMAXM3)
DO 726 K=3,LMAXML
RUCI,J,KI=D3(K-2)

Cxxxxxx SOLVE FOR V,W,AND P,BLOCK TRIDIAGONAL

728

730

732

734

PO 728 K=1,LMAXM3
KP2=K+2

VH(1,KJ)=0.
YH{2,K)=W(I,J,KP2)
VH(3,KI=RV(I,J,KP2)
CONTINUE

DO 730 K=1,LMAXM3
KP2=K+2

AX(1, 1, K)=-WAVEY(JI*JMAX
AX(3,3,K)=~AX(1,1,KI¥BETALI(XP2)*DT*TP
CONTINUE

DO 732 M=1,3

bo 732 N=1,3

DO 732 K=1,LMAXM3
AXX{M, N, KI=AX(M,N,K2
APXX (M, H,K)Y=APX(M,N,K)
AMXX (M, N, KY=AMX{M, N, K)
CONTINUE

IMR=I

JriR=J

CALL MTDAGCAMXX, AXX,APXX,VH,3,LMAXM3)
DO 734 K=3,LMAXM1
KM2=K-2
RV(I,J.KI=VH(1,KM22}
W(I,J,KI=VH(2,KM2)
G(I,J,KI=VH(3,KM2)
CONTINUE

Cxaexx COMPUTE THE REAL PART QF PRESSURE TRANSFORM AT THE WALL,

630

510
220

530
540

GCI,J,2)=0I%G(I,J,3)+GIXG(I,J,4)~(2.%¥(1.-CEL)/CAP(3)%DTIIXU(E,J, 3
G(I,J,LMAXI=QINXG(I,J,LMAXMLI+GIN®G(I,J,LMAXM2)-(2.%(1.-CES)/

1(CPCLMAXMLIXDT ) )%WC(I, J, LMAXM1)

CONTINUE

DO 665 J=1,JMAX

DO 665 I=1,IMAX
IF(I.EQ.L.AND.J.ER.1) GD TO 810
WAV=WAVERS (I J+WAVEYS(J)
IF(I.EQ.1) GO 70 510

IF(J.EQ.1) GO TO B20
IF(J.GE.NHP2Y) GD TO 530
IF(J.LT.NHP2Y) GO TOQ 6465

GO TO 736

IFCI.LT.NHPGX} GO TO 665

60 70 540
IF(I.EQ.1.0R.I.EQ.NHP1X) GO TO 665
CONTINUE

Cxxx¥xx NOW SOLVE FOR REAL PART OF U,V,AND IMAGINARY PART OF W AND P.

DO 670 K=1,LMAXM3
Kp2=K+2
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RHSV(L,K)=U(I,J,KP2)
RHSV(2,K3=V(I,J),KP2)
RHSV(3,K)=0.
RHSV(4,K>=RW(I,J,KP2)
670 CONTINUE
DO 677 K=1,LMAXM3
KP22K+2
AB(3,1,K)=WAVEX(I}*®IMAX
AB{3,2,KI=WAVEYC(J)%JMAX
AB(L1,4,K)=-AB(3,1,K)*BETAL(KP2)XDTXTP
ABL2,4,K)=-AB(3,2,K)XBETAL(KP2IXDT%TP
677 CONTINUE
Cxxxxx REARRANGING THE ROWS FOR CENTRAL DIFFERENCING
DD 649 M=1,6
DO 649 K=1,LMAXM3
AAUXCL,M,KI)=AB(3,M,K)
AAUX (G, M, KI=ABCL,M, KDY
AAUX(3,M,K)=AB(4%,M,K)
APAUX(1,M,K)=AFPB(3,M,K)
APAUX(4,M,K)=APB(1,M, KD
APAUX(3,M,K)=APB(4,M,K)
AMAUXC(I,M,K)=AMB{3,M, K
AMAUX(4,M,K)=AMB(1,M, KD
AMAUX(3,. M, KI=AMB(4,
AAUX(2,M,K)I=AB(2,M,
AMAUX(2,M,KI=AMB(2,
APAUX(2,M,K)=APB(2Z,
649 CONTINUE
bo 320 M=1,¢4
DO 320 K=1,LMAXM3
320 VAUX{M,K)=RHSV(M,K)
DO 325 K=1,LMAXM3
RHSV(1,K)=VAUX(3,K)
RHSV(4,K)=VAUX(1,K3
RHSV(3,K}=VAUX(4,K)
325 CONTINUE
IMI=I1 ‘
JMI=J
CALL MTDAGCAMAUX, AAUX, APAUX,RHSV, 4, LMAXM3)
DO 690 K=3,LMAXM1
KM2=K~2
UB(I,J,K)=RHSV(1,KM2)
VCI,J,K)I=RHSV(2,KM2)
RiWC(I,J,KI=SRHSV(3,KM2)
PUDX(I,J,K)=RHSV{%,KM2)
690 CONTINUE
CHx¥%x%% COMPUTE THE IMAGINARY PART OF PRESSURE TRANSFORM AT THE WALL.
DUDX(I,J,2)=QI*DUDX(I,J,3)+GIXDYDXC(I,J,4)-(2.%(1.~-CEL1}/7(AP(33%DT
1))Y%RW(T,J,32
DUDXCY,J, LMAX)=QINXDUDXCI, J, LMAXML I +GIN*DUDX(I, ), LMAXM2)-(2.
lééliacgg;/(CP(LMAXMI)*DT))*RM(I.J.LMAXMI)
Cx¥xxxx SIMPLE TRIDIAGONAL SOLUTION WHEN K1=0 AND K2=0.
810 CONTINUE
DO 820 K=1,LMAXM3
820 D3C(KI=U(I,J,K+2)
CALL TRIB(A3,B3,C3,E3,D3,LMAXMS)
DD 825 K=3,LMAXML ,
825 U(I,J,K)=D3(K-2)
DO 830 K=1,LMAXM3
830 DI(KI=V(I.,J,K+2)
CALL TRIB(A3,B3,C3,E3,D3,LMAXM3)
DO 835 K=3,LMAXMI
835 V(I,J4,K)=D3(K-2)
GO TO 665
Cxxxxx SOLVE WHEN KI1=¢
736 CONTINUE
Cxxx%%¥ FIRST SOLVE FOR U, SIMPLE TRIDIAGONAL
DO 738 K=1,LMAXM3
738 D3I(KI=H(I,J,K+2)
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CALL TRIBCA3,B3,C3,E3,D3,LMAXM3)
DO 740 K=3,LMAXM]
BAL U‘éofvE)FDS(ﬁ ) AND P,BLOCK TRIDIAGONAL
KRRHAX OR V,UW,AND P, R
go 762 K=1,LMAXM3 ORIGINAL P{?fli’;'?ﬂ
P2IK+2
VHC1,K)=0. OF POOR Q
VE(2,K)=RU(T,J,KP2)
VHC3,K)=Y(I,d,KP2)
742 CONTINUE
DG 744 K=1,LMAXM3
KP2=K+2
AX(1,1,KYSWAVEY(J)*JIMAX
AX(3,3,K)=-AX(1,1,KIXBETAL(KP2)XDTXTP
744 CONTINUE
DO 746 M=1,3
DO 766 N=1,3
DO 746 K=1,LMAXM3
AXX(M,N,KIZAXC(M, N, K)
APXX(M, N,K)=APX(M, N,K)
AMXX (M, N, K)=AMX (M, N, K)
766 CONTINUE
IMI=T
IMI=J
CALL MTDAGCAMXX,AXX,APXX,VH, 3, LMAXM3)
DO 748 K=3,LMAXM1
KM2=K-2
YCI,J,KIZVHCL,KM2)
RWCT,J,K)I=VH(2,KM2)
DUDX(I,J,K)=VH(3,KM2)
768 CONTINUE
DUDX(I,J,2)=QIXDUDX(I,J,3)+GI®DUDXCI,J,G)~(2.%(1.~CEL}/CAP(3)I%DT
1)IXRWCI>J, 3)
DUDX(I,J,LMAX3=QINXDUDXCE,J, LMAXML ) +GINXDUDXC I, J, LMAXM2)-(2.
1%(1.-CE63/(CP (LMAXM1)XDT ) JXRWCI, J» LMAXML)
665 CONTINUE
DO 706 J=1,JMAX
DO 784 I=1,IMAX
WAV=WAVEXS (1) +NAVEYS (J)
IFCWAY.GT.0.00001) GO TO 706
DO 694 K=1,LMAXP1
RW(I,J,K)=0.
696 DUDXCI,J,K}=0.
704 CONTINUE
Cxxx¥¥ USE THE FACT THAT THE FLOW VARIABLES ARE REAL TC OBTAIN THE REMAI
Cxxx%% -NING FOURIER COEFFICIENTS.
DO 627 K=2,LMAX
DO 627 I=1,IMAX
UCT,NHP1Y,K)=0.
VI, NHP1Y,K)=0.
WCI,NHP1Y.K)=0.
RUCT,NHP1Y,K)=0.
RV(I,NHP1Y,K)=0.
RWCT,NHP1Y,K>=0.
61, NHPLY,K}=0.
DUDX(I,NHPLY,K)=0.
627 CONTINUE
DO 629 K=2,LMAX
DO 629 J=1,JMAX
UCNHPLX, J,K)=0.
VONHPIX, 3,K)=0.
W(NHP1X,J,K)=0.
RUCNHP1X, J,K)=0.
RV(NHP1X,J,K)=0.
RWCNHP1X, ,K) =0,
G(NHP1X, J,K)=0.
DUDX(NHP1X,J,K)=0.
629 CONTINUE
DO 550 K=2,LMAX
DO 550 J=RHP2Y,JMAX
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550

560

570

JJ=JMAX-J+2

DO 550 I=NHP2X, IMAX
II=IMAX-I+2
UCII,Jd,K¥=U(1,J,K)
V(II,JJ,KI=V(I,J,K)
WCIT,Jd,KI=HCI,J,K)

GCEL, Jid, K=6(1,J,K)
UCI,JJ,K)=U(I1,J,K)
V{I,JJ,KI=V(I1,J,K)
W(I,JJ,KISH(II,J,K)
G{I,JJ,KI=G(II,J,K)
RUCII,JJ,KI)=-RU(I,JsK)
RV(II,JJ,KI=-RV(I,J,K)
RWC(II,JJ,K)==RU(I,J,KI
DUDX{(II,JJ,K3=-DUDX(I,J,K)
RUCY, JJ,KI=-RU(II,J,K)
RVY(I,JJ,K)=~RV(II,J,K)
RWCTI,JJ,KIZ-RW(II,J,K3
DUDX(I,JJ,K)=-DUDX(II,J,K)
CONTINUE

DO 560 K=2,LMAX

DO 560 I=NHP2X,IMAX
IT=IMAX-I+2
UCII,1,K)=U(I,1,K)
V(II,1,K)=V(1,1,K)
WCII,1,KI=W(I,1,K)
G(II,1,K)=G(I,1,K)
RUCII,1,K)=-RU{I,1,K)
RV(II,1,K)=-RV(I,1,K}
RN(IIpl;K)=-RN(I,1,K)
DUDX(TI,1,K)=-DUDX(I,1,K)
CONTINUE

DO 570 K=2,LMAX

DO 578 J=HHP2X,.JMAX
JI=IMAX-J+2
UCl,JJd,K=U(1,4,K)
V(l,Jd,K)=v(1,4,K)
WCL,Jdd,KI=W(1,d,K)
G(1,JJ,KI=6(1,J,K)
RU(L,JJ,KI=-RU(1,J,K]
RV(1,JJ,KI==RV(1,J,K) B
RW(1,JJ,KI=-RW(1,J,K)
DUDX(1,JJ,K)y=~DUDX(L, J,K)
CONTINUE

Cxxxxx INVERSE TRANSFORM

695

DO 695 K=3,LMAXM1

CALL MOVLEV(U(L,1,K},FR(1,13,IJ]

CALL MOVLEV{(RU(1,1,K},FI(1,1),1IJ)
CALL FETX(-1.0)

CALL FFTY(-1.8,CC)

CALL MOVLEV(FR(1,1),U(1,
CALL MOVLEV(FI(1,1),RU(L
CALL MOVLEV(V(1, 1 K) FR(
CALL MOVLEV(RV(1, »FI
CALL FFTX(~-1.8)

CALL FFTY(-1.0,CC)

CALL MOVLEV(FR(1.,1),V(1,
CALL MOVLEV(FI(1,1),RV¥(1l
CALL MOVLEV(W(L,1,K),FR(
CALL MOVLEV{RMW(1,1,K),FIX
CALL FFTX(-1.02

CALL FFTY(-1.0,CC)

CALL MOVLEV(FR(1,1),W(1,1,K3,1J)

CALL MOVLEV(FICL,1),RW(1,1,K),IJ)
CONTINUVE

DO 702 K=1,LMAXP1

DO 763 J=1,JMAX

DO 763 I=1,IMAX

e el

* FR(I,J)=G(I,J,K)

FI(I,J)=DUDX(I.J,K)
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703 CONTINUE A1} PAGE 18
CALL FFTX(~1.0) ORIGINAL QUALITY
CALL FFTY(-1.0,CC) OF POOR
DO 705 J=1,JMAX
DO 705 I=1,IMAX
6CI,J,K)ZFR(I,J)
DUDX(T, J,KYSFIC(I,J)
705 CONTINUE
Yxkxs STORE DATA ¢ N OR NEXT TIME
Cxx¥¥xx STORE DATA CRU,RV,AND RW) F STEP |
coLL ST o 08 OOR QUALITY
- » L &3
DO 710 J=1,JMAX QUALITY,
DO 710 I=1,IMAX
RUCT,J,K)=HICT,J,KI+DUDXCT, J,K)
710 CONTINUE
CALL PARTIAL(2,6)
DO 715 K=1,LMAXP1
DO 715 J=1,JMAX
DO 715 I=1,IMAX
RV(I,J,K3=H2(I, J,KI+DUDXCT, J,K)
715 CONTINUE
CALL PARTIAL(3,G)
DD 720 K=1,LMAXP1
DO 720 J=I,JMAX
Dg 720 I=1,IMAX
RW(I,J,K)=HICE,J,K)+DUDXCT,Jd,K)
720 CONTINUE
CALL LTAVG
LCONT=SLCONT+1
LLCONT=LCONT~20
IF(LLCONT.NE.G) 60 TO 450
LCONT=0
CALL LTPR
450 CONTINUE
TP=0.5
C4=1.0
€1=3.0
200 FORMAT(1X,1P9E14.5)
COF=1.5
CALL EXTERN(3,1,R2,RR2)
PRINT 400, TIME
NHT=TEND/2
IFCNTIME.EQ.NHT) CALL STAT
400 FORMAT(3X,% TIME STEP=%,13)
IF(NTIME.NE.TEND) GO TO 300
WRITEC9) U,V,H
WRITE(9) UTSUM,U2SMT,V2SMT,W2SMT,STSUM, PUT,PVT, PUT, PUNST,PVNST,
1PWNST,SGST, ETED, U2STT, V28 7T, W25TT, TCONT, TSHGS, TSCNT
2,PDUT,PDVT, PDWT, PDUNT, PDVNT, PDWNT
CALL STAT
CALL LTPR
STOP .
360 CONTINUE
STOP
END
¥DECK PARTIAL
SUBROUTINE PARTIAL(M,U)
(36 36 56 36 3E 38 96 2636 36 36 36 5 36 38 3 3 36 J€ 36 36 36 26 36 36 3¢ 6 36 3E I 36 36 36 36 26 € 36 I 36 I 3 2E IE 76 36 3 M IE I 36 36 3 3 3K IE I 36 I 36 I 36 I 3 ;I I 2 36 26 6 3¢ 3
¢ THIS SUBROUTINE COMPUTES THE PARTIAL DERIVATIVE OF U . M=1 CORRESPONDS X
C TO DERIVATIVE IN THE X-DIRECTION ,M=2 CORRESPONDS TO THE DERIVATIVE X
C IN THE Y-DIRECTION ,AND M=3 CORRESPONDS 70 THE DERIVATIVE IN THE Z-DIRECX
3 36 56 €3 € E € 3¢ 3¢ 5 € 36 € 36 J6 3¢ 3 JEIE 36 IE I I 3 2 36 36 36 36 3 J E 3 3 I I€ 36 3 36 3 3 6 36 36 6 IE I 3 36 36 3¢ IEIE 3 36 I I I 363 3 I IE I 3 3 I8 36 € 36 3K
COMMON/ IDENTN, CODE
COMMON/DATA9/IMAX, JMAX, LMAX, NHALFX, NHALFY
COMMON/CONST/C100,C101,1JK, IJ, NHP1, HALF
XCALL A2
XCALL A9
*CALL €7
xCALL B9
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®CALL €3
¥CALL Al

LMAXPI=LMAX+1

DO 28 J=1,JMAX

DO 20 I=1,IMAX

DUDX(I,J,1)=¢0,

DUDX(I,J,LMAXP1)=0.
20 CONTINUE

IF (M.EQ.2) GO TO 30

IF (M.EQ.3) GO TO 70

Cxxxxxx DERIVATIVE IN THE X-DIRECTION

DO 10 L=2,LMAX
SIGN=1.0
GALL MOVLEV(U(1,1,L),FRC1,1),1I4)
CALL FFTX(SIGN)
B0 15 J=1,JMAX
DO 15 I=1,IMAX
DUM=FI(I,J) -
FICI,J)=HAVEXCII*FR(I,J)
FR{I,J)=-WAVEX(I)%DUM
15 CONTINUE
SIGN=-1,0
CALL FFTX(SIGN)
CALL MOVLEV(FR(1,1),DUDX(1,1,L),IJ)
10 CONTINUE
GO TGO 300
30 CONTINUE

Cxxx¥%XDERIVATIVE IN THE Y-DIRECTION

CC=1.0
DO 35 L=2,LMAX
SIGN=1.0
CALL MOVLEV(U(1,1,L},FR(1,1),1J)
b0 32 J=1,JMAX
DO 32 I=1,IMAX
FI(I,J)=0.0
32 CONTINUE
CALL FFTY(SIGN,CC)
D0 46 J=1,JMAX
D0 40 I=1,IMAX
DUM=FI(I,J)
FICL,I=SWAVEY(JIXFRC(I,J)
FR(I, JI=-WAVEY(J)*DUM
40 CONTIRUE
SIGH=-1.0
CALL FFTY(SIGN,CC)
CALL MOVLEV(FR(1,1),DUDX(1,1,L),1J3
35 CONTINUE
GO TGO 300
70 CONTINUE

CX¥¥A¥FIRST DERIVATIVE IN THE Z-DIRECTION

DO 82 J=1,JMAX

DO 82 I=1,IMAX

DO 82 K=2,LMAX

KP1=K+1

KM1=K-1

DUDX(I,J,KI=AP(KI®UCT, J,KMLI+CPCKIXULI,J> KPl)
82 CONTINUE
90 CONTINUE

340 CONTINUE

RETURN
END

¥DECK FFT

BOW K KKK

IDENT FFT (A,B,N,ISN)
ENTRY FFT
RADIX 2 COMPLEX FAST FOURIER TRANSFORM, COMPUTED IN PLACE.
SEE a0N COMPUTING THE FAST FOURIER TRANSFORM, a R. SINGLETON,
comMM, ACM, V.10, N.10, PP.647-654, OCT. 1967
ARRAY A CONTAINS THE REAL COMPONENT OF THE DATA AND RESULT,
ARRAY B CONTAINS THE IMAGINARY COMPONENT.
N, THE NUMBER OF COMPLEX DATA VALUES,
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KEEEXKEKKEEBEKEKEEK KK KKK

ORIGINAL PAGE I
QE POOR QUALITY

MUST BE A POWER OF 2 AND GREATER THAN 1

THE SIGN @F ISN IS THE SIGN OF THE EXPONENTIAL IN THE TRANSFORM.

THE MAGNITUDE OF ISN IS THE INCREMENT SIZE FOR INDEXING

A AND B,

AND IS ONE IN THE USUAL CASE.

DATA MAY ALTERNATIVELY BE STORED FORTRAN COMPLEX

IN A SINGLE ARRAY,

IN WHICH CASE THE MAGNITUDE

OF ISH IS THWO AND ADDRESS B IS A(2), I.E.

CALL FFT2(A,A(2),HN,2)
INSTEAD OF

CALL FFT2(A,B,N,1)
PROGRAM CONTAINS SINE TABLE FOR MAXIMUM N OF 32768

6400 TIME FOR N=1024,

220 M.SEC.

6400 TIME FOR N=2¥%M IS 21.5%XN*M MICRO-SEC.

6600 TIME FOR N=1024,

44 M.SEC.

6600 TIME FOR N=2%xM IS 4. 3¥NXM MICRO-SEC.
RMS ERROR FOR TRANSFORM-INVERSE IS LESS THAN 1.3E-13

FOR N=32768 OR SMALLER.

FORTRAN 2,3 SUBROUTINE

BY R. C. SINGL

Lio0 $X9
SBg
SB3
AXQ
S$B5
SB6
$X1
EQ

L1io 5B%
SBS
Sh2
SA3
SAG
NX7
SAS
NX6
SA7
SAS
NX7
NX6
SA7
SAs
LT

L1206 SBe
SB5
SA2
543
SA%
NX7
SAS
NXe6
SA7
SAL
NX7
SX0
NX6
SA7
SAs

L1308 AXD
IX1
PL
LX1T
SB4
IX1
SB5
GE
LY

SB1
SAl
SB2

FET

BO
B3-B7
1

BO

X0

B5
B6,B87,FFT
B3-B4%
B3-B5
Bl+B4
B1+4B5
B2+B4%

B6,B4,L110
B&+B7
B6+B5
B1+B4
B1+B5
B2+B%

X1-X0
§1,L130

B4+B7
X1+X0

X1
B5,B4,L110
B4,B6,L120

Al
Al+l
X1l

EgON, STANFORD RESEﬁRCH INSTITUTE, NOV. 1968

KK=0
NH=NN-INC
KSPAN=NN/2
K2=0

K2=K2

IF(KSPAN .EQ. INC) RETURN
KK=NN-KK

K2=NN-K2

EXCHANGE ACKK),ACKZ2) AND BC(KK),B(K2)

END OF EXCHANGE

IF(KSPAN .LT. KK) GO TO L1110
KK=KK+INC

K2=KSPANTK2

EXCHANGE A(KKY,A(K2) AND B(KKJ,B(K2)

K=KSPAN

END OF EXCHANGE

K=Krs2

Kz2=K2-K

IF(K2 .GE. 0) GO TO L138
K=K+K

KK=KK+INC

KZ2=K2+K

K2=K2

IF(K2 .GE. KK} GO TO L110
IF(KK .LT. KSPAN) GO YO L120

105

FFT2C
FFT2C
FFT2C
FFT2C
FFT2C
FFT2C
FFT2C
FFT12C
FF12C
FFi2C
FFT2¢C
FFT2C
FETZ2C
FFT2C
FFTZC
FFT2C
FFI2C
FFT2C
FET2C
FF12C
FFT2C
FFT2C
FFT2C
FFT2C
FFT2C
FFT2C
FFT2C
FFT12C
FFT2C
FFT2C
FFT2C
FET2C
FFT12C
FFT2C
FFT2C
FFT2C
FFT2C
FF72C
EFT2C
FFT2C
FFT2C
FFT2C
FFT2ZC
FFT2C
FFT2C
FFT2C
FFT2C
FFT2C
FFT2C
FFT2C
FET2C
FETZC
FFT2C
FFT2C
FFT2C
FFT2C
FFT2C
FFT2C
FET2C
EFT2C
FFT2C
FFTZC
FFT2C
FFT2C
FFT2C
FET2C
FF12¢
INSR1
INSR1
INSR1

e Bt St SN N AN BN
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L10

L20

L30

L40

L5¢

SAL
SB3
SAL
SB4
SA4
Mx2
SA5
SA3
Lx2
PX7
BX6

BX6
BX%
LX3
SA6
NXO
pPX2
SB7
DX7
SAl
5B3
5Bé

SA3
RX%
RX7
RX5
RX6
RX4
RX6
NX5
RX7
RX0
NX1
SB5
SAZ2
S5A3
SA4
RX6
SAB
RX2
SA6
RX7
RX3
RX%
SA7
RX5
RX2
RX6
RX%
SA6
RX7
SB4%
547

SB35
BX1
SB%
LT

SB4
SA2

SB4%
SX5
AX5
5B6
SBS
SA2
SA3

B4,B3,L30
B4-B3

-X1

B6-B5
B5,B4,L30
B4+B7

Sb
B4,B5,L20
B§

B

1

X5
B6+B4%
Bl+B4%
B1+B5

ISN
MASK

IF(ISN .GE. 0) GO TO L10
INC=-]INC

S(M)

NN=INC¥N
KSPAN=NN
GO TO L&O

SD¥%CH
SD*SN
CD¥SN
CD¥CN

K2=KSPAN+KK
ACKK)
ACK2)
BC(KK)

B(K2)
RE
ACKK?
CN¥RE
Im

B{KK)
SN*IM
SN¥RE

CH%IM
A(K2)

KK=KSPAN+K2

B{K2)

IF(KK .LT. NN) GO TO L30
K2=KK-NHN

CN=-CN

KK=KSPAN-K2

IF(KZ ,1T. KK» GO TO L30
KK=KK+INC

IFCKK .LT. K2) GO TO L20
KK=0

KSPAN=KSPAN/2
K2=KSPAN+KK

ACKK)
ACK2)
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INSRE 4
INSR1 &
INSRI 6
INSRL 7
FFT2C 77
FFT2C 78
FFT2C 79
FET2C &6
FFT2C 81
FFT2C 82
FFT2C 383
FFT2C 84
FET2C 85
FFT2C &6
FFT2C 87
FFT2C 88
FFT2C 89
FFT2C 90
FFTeC 91
FFT2C 92
FFT2C 93
FFT2C 94
FFT2C 95
FFT2C 96
FFT2C 97
FFT2C 98
FFT2C 99
FET2C1060
FFT2Cl01
FFT2C102
FFT2C103
FFT2Cl04%
FFT2C105
FFT2C1046
FETZ2C107
FFT2Cl08
FFT2C109
FET2C110
FFT2Cl1l1
FFT2C112
FFT2C113
FFT2Cll4
FFT2C115
FFT2C116
FFT2C117
FFT2C1l18
FFT2C119
FET2C120
FFT2C)21
FFT2C¢122
FET2C123
FFT2Cl24
FFT2Cl25
FFT2C126
FFT2C127
FFT2C128
FFT2€129
FFT2C130
FFT2C131
FFT2C132
FFT2C133
FFT2C134%
FFT2¢135
FFT2C136
FFT2C137
FFT2C138
FFT2C139
FFT2C140
FFT2C141
FFT2C142



QF BOOR QUALIIY
SA4 B2+B4% B{KK)
RX6 X2+X3
SAS B2+B5 B{K2)
RX7 X2-X3
SA6 A2 ACKK)
SA7 A3 ACK2)
RXS6 X&+X5
SB4 B6+B5G KK=KSPAN+K2
RX7 X4=-X5
SAé AG B{KKJ
SA7 A5 B(K2)
LT B4,B3,L50 IF(KK .LT. NN) GO TO L50
EQ B6,B7.,L100 IF(KSPAN .EQ. INC) GO TO L1090
SAl Al S(M)
5B4 B7 KK=INC
RX6 X1xX]
SAl Al+l M=M+l, S{M)
FX6 X6+X6
SA3 ONE
SAb ¢D CD=2RS(MIRN2
L60 BX0 X1l SN=SD
RX6 X3-X6 CH=1.0-CD
BX7 X0
NX1 X6
SA7 SD
EQ L30 G0 TO L3¢
S DATA 9.5873799095977346E-5
DATA 1.91747597310670331E-4
DATA 3.83649518757139559E-4
DATA 7.6699031874270453E-4
DATA 1.5339801862847656E-3
DATA 3.0679567629659763E-3
DATA 6£.1358846491544756E-3
DATA 1.2271538285719926E-2
DATA 2.4541228522912288E-2 -
DATA %.9067676327418014E-2
DATA 9.8017140329560602E-2
DATA 1.95090632201612827E~1
DATA 3.8268343236508977E-1
DATA 0.7071067811865475
ONE DATA 1.¢
Ch
SD
END
¥DECK FFTX

C*K***KK************************X********K*************K***************K

SUBRDUTINE FFTX(SIGN)

C FAST FOURIER TRANSFORM IN X-DIRECTION

C******************k***************X**********K**********XK****K*N*KKN**

¥CALL
*¥CALL

GIiN =

118

126

.. PAGE I3

N S T

COMMON/DATAS/IMAX, JMAX, LMAX, NHALFX, NHALFY

Al

Clo

ISN=-SIGN

IF (SIGN .LT. 0.) GO TO 3
DO 2 J=1,JMAX

DD 1 I=1,IMAX

FICI,J)=0,

CONTINUE

CONTINUE

CONTIRNUE

DG 108 J=1,JMAX

DO 110 I=1,IMAX
XR(IY=FR(I,J)
XI(I)=FI(I,J)

CONTINUE

CALL FFT(XR,XI,IMAX,ISN)
DO 120 I=1,IMAX
FR(I,J)=XR(I)
FIC(I,J3=XI(I)

CONTINUE
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FFT2Cl43
FFT2Cl644
FFT2C145
FET2C146
FFET20147
FFT2Cl148
FFT2Cl49
FFT2C150
FFT2C151
FFT2Cl52
FFT2Cl153
FET2C1l54
FFT2Cl55
FFT2C156
FFT2C157
FFT2C158
EFT2C159
FFT2Cl60
FFT2C161
FFT2C162
FFT2C163
FFT2C1l64
FFT2Cl65
FFT2C166
FFT2C167
FFT2C168
FFT2Cl69
FFT2CLl70
FFT2C171
FET2Cl72
FFT2C173
FFT2Cl74
FFT2Cl75
FFT2C176
FFT2C177
FFT2C178
FET2C179
FFT2C188
FFT2C181
FET2¢182
FFT2Cl83
FFT2C184%
FFT2Cl85
FFT2C186



100 CONTINUE
RETURN
END
¥DECK FFTY
SUBROUTINE FFTY(SIGN,COEF3) i
G HIEE NN HIEHI K 263636556 58 3 2 33636396 X X MMM KK KK K K3 X3 H N HHH MMM HHHEHNHMK
C FAST FOURIER TRANSFORM IN Y=DIRECTION *
€ 2626696 36 3 I IEE 6 IEKE 26 336 J I I 06636 336 36 396 6 3 3 H 2 3 362 H I K I X I K H MM KM MMM MM R KH NN NN K
¥CALL Al
XCALL C1¢
COMMON/DATAS/IMAX, JMAX, LMAX, NHALFX, NHALFY
ISN=-SIGN
¢ Y-TRANSFORM
DO 100 I=1,IMAX
DO 110 J=1,JMAX
XR(JI=FR(I.J)
XICJI=FI(I,Jd
110 CONTINUE
CALL FFT(XR,XI,JMAX,ISN)
IF(SIGN.LT.¢.) GO TO 200
DO 120 J=1,JMAX
FR(I,JI=XR(J)
FICI,J)Y=XI(J)
120 CONTINUE
GO TG 100
200 DO 130 J=1,JMAX
FR{I,JI=XR{JI*COEF3
FI(I,J)=XI(JIXCOEF3
130 CONTINUE
100 CONTINUE
RETURN
END
XDECK INITIAL
SUBROUTINE INITIAL
€338 36 36 3 HIEHIEH N MK MMM IEHNHERH M NNHHH KN KN KM HH M M RHW RN RN HHR KRN HHH A
C* THIS SUBROUTINE COMPUTES THE VARIOUS NECESSARY ARRAYS AND CONSTANTS X

CXFOR SGS,PARTIAL,POISON,AND FILTER SUBROUTINES ¥
€36 269696 36 36 2636 JEIEE 3336 3626 JE KN, H KM HIEHRHHHRKHMMRKRHNH KK I NI H M KKK KKK KR KN HH KRN KH K
¥CALL Al

COMMON/ADV/NTIME
XCALL B

1
COMMON/DATAS/ IMAX, JMAX, LMAX, NHALFX, NHALFY
COMMON/SCM2/LMAXP1,D1,D2,D3,D%,D5,D6
COMMON/SCM3/DELTAL,DELTA2,RE, E
COMMON/SCM4/CI, CJ,CK, CJK, CIK,CIJ
¥CALL C3
COMMON/CONST/C100,C101,IJK, IJ,NHPL1,HALF
REAL NAVG
C=0.4
5=2./3.
PAI=ACOS(-1.)
Caxxxx DELTAL AND DELTAZ2 ARE THE MESH SIZES IN X AND Y DIRECTIONS
DELTAI=PAI/8.
DELTA2=PAI/12.
IMAX=16
JMAX=16
LMAX=64
TJ=IMAX®RIMAX
LMAXPL=LMAX+]
IJK=IMAX*%JMAX%LMAXP1
CI=1./IMAX
CJ=1./JMAX
CK=1./LMAXP1
CJIK=1./{JMAX¥LMAXPL)
CIK=1./7(IMAXXLMAXP1)
CIJ=1./7(IMAX®JMAX)
RE=640.25
E=1./RE
NHALFX=IMAX,/2
NHALFY=JMAXs2
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http:RE=640.25

NHPIX=NHALFX+]
NHPIY=NHALFY+1
C100=2.0%PAL/(IMAX*DELTAL) ]
Cl0=2.0¥PAI/(JMAX%DELTA2)
Cl01=Cl00/IMAX
Cl1l=C10/JMAX
Cxxx%%x DEFINE WAVE NUMBERS.
Cxxxx¥ NOTE THAT WAVEX AND WAVEY ARE SMALLER THAN THE ACTUAL WAVE NUMBERS
Cxx%x% BY FACTOR OF IMAX ANHD JMAX RESPECTIVELY.
DO 100 I=1,IMAX
MM=I/NHP1X
M=MM*IMAX+1
WAVEX(IJ}=CLOIX(I-M)
WAVEXS(I)=(CLO0*(I-M)D*%2
106 CONTINUE
WAVEX({NHP1X)=0.
WAVEXS (HHP1X)=0,
B0 130 J=1,JMAX
MM=J/NHP1Y
M=MM*JMAX+]
WAVEY (J)=CL1%(J~MI
WAVEYS(J)=(CLO%(J-MI ) xx%2
130 CONTINUE
WAVEY (NHP1Y)=0.
WAVEYS(NHP1Y)=0,.
1000 FORMAT(IP8E15.7)
NAVG=2
IF(NTIME.EQR.0) NAVG=6
NHP2X=NHP1IX+l1
NHPZ2Y=NHP1Y+1
C¥%X%XCOMPUTE THE NORMALIZED FOURIER TRANSFORM OF THE FILTER FUNCTION IN X-DIREC
DO 306 J=1,JMAX
DO 300 I=1,NHPIX
FR(I,JIZEXP(~6 . ¥FLOAT{I-1)%%2/(NAVGXX%2))
300 CONTINUE
DO 310 J=1,JMAX
DO 310 I=NHP2X,IMAX
II=IMAX-I+2
FR(I,J)=FR(II.,J)
318 CONTINUE
Cxxxx¥ COMPUTE THE NORMALIZATION CONST,AREA.
AREA=Q.
DO 320 I=1,IMAX
AREA=AREA+FR(I, 1)
320 CONTINUE
DO 330 J=1,JMAX
B0 330 I=1,IMAX
FR(I,J)=FRCI,J}/AREA
FI(I,J)=0.
330 CONTINUE
CALL FFTX(1.0)
DO 340 I=1,IMAX
FILTX(I}=FR(I,1)
340 CONTINUE
CxX%%XCOMPUTE THE NORMALIZED FOURIER TRANSFORM OF THE FILTER FUNCTION IN Y-DIREC
DD 400 J=1,NHPLY
DO 400 I=1,IMAX
FRCI,JIZEXP(-6 . XFLOAT(J-1)%%2/ (HAVGX%Z))
400 CONTINUE
DO 418 J=NHP2Y,JMAX
DO 410 I=1,IMAX
JJ=IMAX-J+2
FR(I,JI=FR({I,JJ)
4140 CONTINUE
AREA=0.
DO 428 J=1,JMAX
AREA=AREA+FR(1,J)
420 CONTINUE
DO 430 J=1,JMAX
DO 430 I=1,IMAX
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430

440

¥DECK

FRCI,J)=FR(I,J)/AREA
FICI,J)=0.

CONTINUE

CALL FFTY(1.0,1.03
DC 440 J=1, IMAX
FILTY(J)= FR(l J)
CONTINUE
FILTA(NHPIX)=0,
FILTY(NHP1Y)=0.

PRINT 10060, (WAVEX(L),L=1,IMAX)
PRINT 1000, CWAVEY(L},L=1,JMAX)
PRINT 1000, (WAVEXS(L),L=1,IMAXD
PRINT 1000, (MAVEYS(L).L=1,JMAXD
RETURN

END

INICON

SUBROUTINE INICON

36 7626 JE 626 236 3 236 6 363 56 36 2 38 36 536 36 26 26 36 36 36 3 3636 JE 36 36 36 36 36 3¢ 6 36 36 € 36 36 6 36 36 36 636 36 3¢ 36 36 6 36 26 36 IE I 36 36 3 2 36 H I : 3 o 3 2 3

C¥

THIS SUBROGUTINE GENERATES THE INITIAL FIELD FOR THE COMPUTATION ¥

G622 I H I HHEH MMM MMM HMICH XN IEIEH NI MMN MMM MMMM MM MN A RN MM R MMM MR K I HH KRN

#CALL

H¥CALL
XCALL

COMMON/DATA9/IMAX, JMAX, LMAX, NHALFX, NHALFY
DIMENSION G(161),¥(161),F(65)
CDMMUH/SCMSIDELTAI DELTAZ RE,E

ggMMON/COHST/CIOO;CIOI » IJK, IJ,NHPL1,HALF
Al3
COTMUH/SCHQ!CI;CJ,CK;CJK.CIK;CIJ

:ﬁw

#CALL Al

*CALL
¥CALL
®CALL
¥CALL

210

ESUIVALEHCE (Ul,H1),(U2,H2), (U3,.H3)
Ab

A7

A9

PAI=ACOS(-1.)

LMAXPI=LMAX+1

LMAXML=LMAX-1

DO 210 J=1,JMAX

DO 210 I=1,IMAX

ulcl,

J

I;J
U3CI,J
I,J

»Jd

*

2=
2)
2)
1)
1)
1)

QQQQQO

ISRt

»
;
»
TEIEIN
B1CI,d,LMAX)=0.

UZ(I;J,LMAX)=0.
U3{I,J,LMAX)=0.

Ul{I,J,LMAXP1)=0.
U2{I,Jd,LMAXP1)=0.
U3C(I,J,LMAXPL1)=0.
U(I,J,23=0.
V(I,J,2)=0.
W(I,J,2)=0.
U(E,J,1)=0.
V(I,J,1)=0.
W(I,J,1)=0.
UCI.J,LMAX)=0.
V(I,J,LMAX)=0
WCI,J,LMAX)= 0.

UCI,J,LMAXP1)=0.
V(I,J,LMAXP1)=0.
W(I,J,LMAXPL)=0.
CONTINUE

3 3636 € 3 2 36 36 36 36 36 36 36 6 36 36 36 36 36 26 3 6 36 3 36 36 36 I8 3 36 3 36 I E 36 36 JEIE I I IE 3K 36 3¢ I 36 € 36 IE 36 36 36 I€ JE IE 36 I JE 36 36 34 3€ BE I I IE I 36 36 2

THE VELOCITY FIELD FOR THE INITIATION OF THE PROGRAM IS OBTAINED *
FROM THE DISK. THE ORIGINAL VELOCITY FIELD IS GENERATED FROM A S
SEPARATE PROGRAM (SEE SECTION 4.2 IN THE TEXTJ. *
Ul,U2,U3 ARE THE COMPONENTS OF THE VELOCITY FIELD AT TIME STEP N *
RU,RV,AND RW ARE THE INFORMATION AT TIME STEP N-1,NECESSARY FOR %
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Cx

FﬂfﬂiﬂmAL_ﬁggﬁgis
OB BOOR QUALITY

ADAMS BASHFORTH METHOD.

¥

O3 36 3936 3636 36 336 36 3 36 30 M3 26 3636 36 36 56 3¢ 3636 36 36 3636 36 6 36 I 36 36 3K 36 6 26 96 36 36 3¢ 36 26 36 3636 36 36 36 36 36 36 I 36 IE I 36 36 3¢ 26 3 H HH H M3 X

25

1000
2060

*¥DECK

READ(8) Ul,U2,U3,RU,RV,RN
DO 25 K=2,LMAX

DO 25 J=1,JMAX

DO 25 I=1,IMAX
UCI,d,KY=UI1(I,J,K)
V(I,J,KI=U2(I,J,K)
W(I,J,K)=U3(I,J,K)
CONTINUE

CALL EXTERN(3,1,R2,RR2)
CALL EXTERN(31,33,RN,RRN)
PRINT 2000
FORMAT(1P8E15.7)

FORMAT(1H1,* VELOCITY IN THE X-DIRECTION ACCROS5S THE CHANNEL x)

PRINT 1006, CUC16,10,K)Y,K=1,LMAXPL)

RETURN

END

CURL

SUBROUTINE CURLCU,V,W) 3

Gxxxxx THIS SUBROUTINE COMPUTES THE VORTICITY FIELD

®CALL

*CALL
¥CALL
¥CALL

10

15

20

¥DECK

COMMON/DATAS/IMAX, JMAX, LMAX, NHALFX, NHALFY
EE?MON/CONST/01UU:0101,IJK,IJ,NHPl.HALF
EQUIVALENCE (U1,H1),(U2,H2),(U3,H3)
aAl2

a7

A2

LMAXPI=LMAX+1

CALL PARTIALC2,W)

CALL MOVLEV(DUDX(I1,1,13,U1(1,1,1),IJK)
CALL PARTIYAL(3,V)

DO 10 K=1,LMAXPL

DO 10 J=1,JMAX

DO 10 I=1,IMAX
U1(I,J,KI=Ul(I,J,K)-DUDX(I,J,K)
CONTINUE

CALL PARTIAL(3,U)

CALL MOVLEV(DUDX(1,1,13,U2¢1,1,1),IJK)
CALL PARTIALC(1,WD

DO 15 K=1,LMAXP1

DO 15 J=1,JMAX

DO 15 I=1,IMAX
U2{I,J,K>=U2(1,J,K)-DUDX(I,J,K)
CONTINUE

CALL PARTIAL(l,V}

CALL MOVLEV(DURPX(1l,1,1),U3(1,1,1),IJK)
CALL PARTIAL(Z,U}

DG 20 K=1,LMAXPL

DO 20 J=1,JMAX

DO 20 I=1,IMAX
U3C(I,J,KI=U3CT,d,KI-DUDX(I,J,¥K)
CONTINUE

RETURN

END

RHS

SUBROUTINE RHS

(33T 3333 333333323 253332 3333333333583 3 324522

C¥ THIS SUBROUTINE COMPUTES THE RIGHT HAND SIDE OF THE GOVERNING

C¥EQUATIONS, EXCLUDING THE PRESSURE.
€36 3 36 3 36 36 336 36 3636 36 36 36 36 3 3 3 362636 36 56 3 36 3 363636 36 333 N 3638 36 36 656 36 36 3 36 36 3¢ 3 3 336 3 336 326 363 3 33 3 3 N KK ¥

XCALL
¥CALL
¥CALL
¥CALL

COMMON/DATAS/IMAX, JMAX, LMAX, NHALFX, NHALFY
COMMON/CONST/C1006,C101,TJK,IJ,NHP1,HALF
COMMON/SCM2/LMAXPY,D1,D2,D3,D4,D5, D6
ggNMON/SCMSIDELTAIpDELTAZ,RE,E

A5

Ab

A7

CALL SG5
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Cx*¥¥¥XXMOMENTUM EQUATION IN THE X-DIRECTION
CALL PARTIAL(1l.V)
DO 10 K=1,LMAXP1
BO 10 J=1,JMAX
B0 1§ I=]1,IMAX
G(I,J,KI=V(I,J,KIXDUDX(I,J,K)
10 CORTINUE

CALL PARTIALCL,W)
BP0 20 K=1,LMAXP1
B0 28 J=1,JMAX
DO 20 I=1,IMAX
GCX,J,KI=GCI,J,KI+W(T,J,KI%DUDX(I,J,K3

20 CONTINUE
CALL PARTIAL(Z2,U)
DO 30 K=1,LMAXP1l
D0 30 J=1,JMAX
DO 30 I=1,IMAX
G(I;J}K)=G(I)J;K)"V(I)J}K)*DUDX(I'J’K)

30 CONTINUE
CALL PARTIAL(3,U}
DO &0 K=1,LMAXP1
DO 40 J=1,JdMAX
DO 40 I=1,IMAX
G(I,J,K)=6C1,J,K)-W(I,J,KI¥DUDX(I,J,K3

40 CONTINUE
CALL FILTER(G)
DO 45 K=1,LMAXP1
DO 45 J=1,JMAX
DO 65 I=1,IMAX
H1{I,J,K)=G(TI,J,K)+HI(TI,J,K)+*1.

45 CONTINUE

Cx%%%%COMPUTE THE VISCOUS TERMS IN THE X-MOMENTUM EQUATION

CALL PARTIALC(L,U3
CALL MOVLEV(DUDX(1,1,1),G6(1,1,1),1JK)
CALL PARTIAL(L,G)
DO 50 K=1,LMAXP1
DG 50 J=1,IMAX
DO 50 I=1,IMAX
H1CI,J,K)=H1(I,J,KI+EXDUDX(I,J,K)

E8 CONTINUE
CALL PARTIAL(Z.,U)
CALL MOVLEV(DUDX(1,1,1)>,6(1,1,1),IJK)
CALL PARTIAL{(2.,G)
DO 55 K=1,LMAXP1l
DO 55 J=1,JMAX
Dg 55 I=1,IMAX
H1<I,J,K)=H1(I,J,K)+EXDUDX(1,J,K)

55 CONTINUE

CxXXXXXMOMENTUM EQUATION IN THE Y-DIRECTION

CALL PARTIAL(Z2,U)
DO 65 K=1,LMAXP1
DO 65 J=1,.dMAX
D0 65 I=1,IMAX
GCI,J,K)=UCI,J,K)¥DUDX(I,J,K)

65 CONTINUE
CALL PARTIAL(Z,W)
DO 78 K=1,LMAXP1
DO 70 J=1.JMAX
DB 70 I=1,IMAX
G(Y,J,K)=GCI,J,K)+WC(L, J,K)%DUDX(X,J,K)

79 CONTINUE
CALL PARTIAL(3,V)
DG 75 K=1,LMAXP1
DG 75 J=1,JMAX
DO 75 X=1,IMAX
G(I,J,KI=6CI,J,KI-W(I,J,KI*DUDX(I,J K2

75 CONTINUE
CALL PARTIAL(1,V)
DO 80 K=1,LMAXPl
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a0

85

- PAG
OF Poor g K
DO 80 J=1,JMAX Eoog QUALITY
b0 80 I=1,IMAX ~
G(I:J)K)::G(IrJ:K)"U(I;J:K)*DUDX(I’J)K)
CONTINUE

CALL FILTER(G)

DO 85 K=1,LMAXP1

DO 85 J=1,JMAX

PO 85 I=]1,IMAX
H2(I,J,KI=H2(I,J,KI+G(I,J,K)
CONTINUE

Cxxxx%XCOMPUTE THE VISCOUS TERMS IN THE Y-MOMENTUM EQUATIOHN

920

95

CALL PARTIAL(L,V)

CALL MOVLEV(DUDX(1,1,1),6(1,1,13,1.JK}
CALL PARTIAL(1,G)

DO 50 K=1,LMAXP1

DO 90 J=1,JMAX

P00 %0 I=1,IMAX
H2(I,J,K)=H2(I,J,KI+EXDUDX(I,J,K)
CONTINUE

CALL PARTIAL(Z2.,V)

CALL MOVLEV(DUDX(1,1},12,6G(1,1,1),IJK)
CALL PARTIAL(Z,G)

DO 95 K=1,LMAXP]

DO 95 J=1,JMAX

DO 85 I=1,IMAX
HZ(I,J,K)=H2(I,J,KI+EXDUDX(I,J,K)
CONTINUE

CHXX¥XMOMENTUM EQUATION IN THE Z-DIRECTION

193

110

115

120

125

CALL PARTIAL(3,V)

DO 105 K=1,LMAXP1

DO 105 J=1,JMAX

DO 165 I=1,IMAX
G(I,J,K)I=V(I,J,KIXDUDX(I, J,K)

CONTINUE

CALL PARTIAL(3,U)

DO 110 K=1,LMAXPL

DO 110 J=1,JMAX

b0 110 I=1,IMAX
GC(I,J,KI=6{I,J,KI+U(I,J,KIXDUDX(I,J.K)
CONTIRUE

CALL PARTIAL(Z2,W)

DG 115 K=1,LMAXP1

DO 115 J=1,JMAX

DG 115 I=1,IMAX
GCI,J,KI=G(I,J,KI-V(I,J,KIXDUDX(I,J,K?
CONTINUE

CALL PARTIAL(L, W)

DO 120 K=1,LMAXP1

DO 1206 J=1,JMAX

DO 120 I=1,IMAX
6(T,4,K)=6(1,J,KI-UCI,J,KI%DBUDX(I,J,K?
CONTINUE

CALL FILTER(G)

Do 125 K=1,LMAXP1

PO 125 J=1,JMAX

p0 125 I=1,IMAX
H3(I,J,K3=H3(I,J,KI+G(I,J,K)

CONTINUE

Cxx%%%COMPUTE THE VISCOUS TERMS IN THE Z-MOMENTUM EQUATION

130

CALL PARTIALCL1,W)

CALL MOVLEV(DPUDX(1,1,1),G(1,1,1),IJK)
CALL PARTIALC(1,G)

DO 130 K=1,LMAXPl

PO 130 J=1,JMAX

DO 130 I=I,IMAX
H3(I,J,K)=H3(I.J,KI)+EXDUDX(I,J,K)
CONTINUE

CALL PARTIALCZ,W)

CALL MOVLEV(DUDX(1,1,13,G(1,1,1),IJK)
CALL PARTIAL(Z,G)
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DO 135 K=},LMAXP1
DO 135 J=1,JMAX
DO 135 I=],TIMAX
H3(I,J,K)=H3(I,J,KI+EXDUDX(I,J,K)
135 CONTINUE
RETURN
__. . END -
®DECK S5SGS
SUBROUTINE S$G6S
O 36 5 36 36 36 3¢ 3¢ 36 36 36 36 3¢ 363 76 3 36 3 6 I6-3E 6 3 I€ 6 I I 2K 5 IE I 33 3 36 I 36 36 36 26 3 € 3636 36 I 3¢ 3 I€ 36 I 3¢ 3 36 38 I 3 3626 3 I 3636 3 3 XM HH MK
C¥THIS SUBROUTINE COMPUTES THE EDDY VISCOSITY AND THE SUBGRID SCALE *
C*TERMS WHICH ARE ADDED TO THE RIGHT HAND SIDE OF THE GOVERNING MOMEN %
C¥-TUM EQUATIONS.THE EDDY VISCOSITY IS SET EQUAL TO ZERO AT THE WALL., X
€36 3 26 36 3 36 36 3% 36 36 36 36 36 J6 36 36 36 56 36 3 3¢ 36 IE 6 36 3¢ 36 36 3 36 I IE 3¢ 3 36 6 36 36 36 36 3 36 6 36 36 2696 36 E 26 33 6 3 3 336 IE I I 36 26 I 3 3 3 M 3
COMMON/ADV/NTIME :
COMMON/SGTT/SGST(65), ETED(65),U25TT(65),V25TT(65),W25TT(65)
1,TSHGS, TSCNT
COMMON/TINC/DT
REAL MIiU
COMMON/COUNT/IICONT
COMMON/CONST/C100,CL01,EJK,IJ,NHP1,HALF
COMMON/DATAS/IMAX, JMAX, LMAX, NHALFX, NHALFY
COMMON/SCM2/LMAXP1, D1,D2,D3,D%,D5,D6
COMMON/ INNERC/CVINR(65)
DIMENSION EDVO(65),EDVI(65)
¥CALL A2
¥CALL A9
®CALL B2
®CALL B3
¥CALL B4
XCALL B5
XCALL A4
XCALL A7
XCALL Aé
®CALL A5
LMAXML=LMAX-1
IF(NTIME.NE.1) GO TO 5
TSCNT=0.
TSHGS=0.
b0 2 K=1,LlMAXP1
SGSTCK)=0,
ETEDE(K>=0.
U2STT(KI=0.
V2STT(K)=0.
W2STT(K)=0.
2 CONTINUE
5 CONTINUE
LHP1=LMAX/2+1
Cxxxx¥% FIRST COMPUTE THE EDDY VISCOSITY,G.
CALL PARTIAL(L,W)
DO 10 K=3,LMAXM1
DO 10 J=1,JMAX
DO 10 I=1,IMAX
G(I,Jd,K)=DUDX(I,J,KI%x2
10 CONTINUE
CALL PARTIAL(Z2,V)
DO 15 K=3,LMAXM1
D0 15 J=1,JMAX
DO 15 I=1,IMAX
GLI,J,KI=G(1,J,KI)+DUDX{I, ), K)*x2
15 CONTINUE
GCALL PARTIAL(3,W)
B0 20 K=3,LMAXM1
b0 20 J=1,JMAX
DO 20 I=1,IMAX
G{I,J,KI=G(I,J,KI+DUDX(I,J,KIxx2
2¢ CONTINUE
CALL PARTIAL(2,U)
CALL MOVLEV(DUDX(1,1,1),P(1,1,12,IJK)
CALL PARTIALC1,\W)
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DO 25 K=3,LMAXM1 BF Poor QUa-

DO 25 J=1,JMAX
DO 25 I=1,IMAX
G(I,J,KI1=2.%G(T,J,K)I+(DUDX(I,J,KI+P(I,J,K)I%x2

25 CONTINUE
CALL PARTIAL(Z2,W)
CALL MOVLEV(DUDX(1,1,1),P(1,1,1),IJK)
CALL PARTIAL(3,V)
DO 30 K=3,LMAXMI
DG 30 J=1,JMAX
DO 30 I=1,IMAX
G(I,J,K)=G(I,J,KIF(DUDX(I,J,KIHtP(I,J,K))x%x2

30 CONTINUE
CALL PARTIALCI,W)
CALL MOVLEV(DUDX(1,1,1),P(1,1,1),IJK)
CALL PARTIALC3,U)
BMAX=0.
DO 35 K=3,LMAXMI
DO 35 J=1,JIMAX
DO 35 I=1,IMAX
CCC=G{I,J,K)+(DUDXCI,J,K)+P(I,J,K))*x2
H2(I,J,K)=CV(K)YXSQRT(CCC)
H1(X,J,K)=CVINR{(KI*CCC

35 CONTINUE
CC=1./(IMAX%JMAX]

Cxxxx* COMPUTE THE PLANAR AVERAGE OF INNER AND OUTER LAYER MODELS.

DO 900 K=3, MAXM1
EDVO(K2=0.
EDVIC(KI=0.
DO 910 J=1,JMAX
DO 910 I=1,IMAX
EDVO(KI=EDVOC(K)+H2(I,J,K)
EDVI(KY=EDVI(KI+HI(I,J,K)

910 CONTINUE
EDVOC(KI=EDVO(KIX*CC
EDVIC(KI=EDVI{K)X*CC

900 CONTINUE
CR=1.0
MMM=0
DG §15 K=3,LHPIl
IFCEDVI(K).GT.EDVO(K)} MMM=2
IF(MMM.EQ.2) GO TO 915
IF(EDVIC(K).LT.EDVO(K)) KCROS1=K

915 CONTINUE
MMM=9
DO 920 K=LHP1,LMAXM1
KK=LMAXM1-K+LHP1
IF(EDVI(KK).GT.EDVO(KK]}Y MMM=2
IF(MMM.EQ.23 GO TO 920
IF(EDVIC(KK).LT.EDVO(KK)) KCROS2=KK

920 CONTINUE
PRINT 925,KCR0S1,KCR0OS2

925 FORMAT(5X,% CROSS OVER POINTS OF INNER AND OUTER LAYER%,2I5)
PRINT 938

930 FORMAT(/,20X,* PLANE AVERAGE OF INHNER LAYER MODEL %)
PRINT 200, (EDVI{(K),K=3,LMAXM1)
PRINT 935

935 FORMAT(/,20X,% PLANE AVERAGE OF OUTER LAYER MODEL %)
PRINT 208, (EDVO(K),K=3,LMAXML)
DO 960 K=3,KCROS1
DO 940 J=1,JMAX
DO 940 I=1,IMAX
G(I,J,K)=H1(I1,J,KI%XCR

940 CONTINUE
KCRBS3=KCROS1+1
KCROS5%=KCR052-1
DG 945 K=KCROS3,KCROS4
DO 945 J=1,JMAX
DO 945 I=1,IMAX
G(I,J,KI=H2(I,J,K}
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945 CONTINUE
DO 950 K=KCRDS52,LMAXM1
DO 850 J=1,JMAX
DO 956 I=1,IMAX
G(I,J,K)=H1(I,J,KI%CR
950 CONTINUE
DO 40 J=1., JMAX
DO 40 I=],IMAX
G(I,J,1)=0.
6{I.,J,2)=0,
G(I,J,LMAX)=0.
G(I,d, MAXP13=0.
40 CONTINUE
200 FORMAT(1X,1P9El4.5)
Cx%xx¥¥% COMPUTE THE AVERAGE OF EDDY VISCOSITY IN X-Y PLANES
DD 600 K=1,LMAXP1
MIUCK)=0.
DO 610 J=1,JMAX
DO 610 I=1,IMAX
MIUCK) =MIUCKI+G(I,J,K2
518 CONTINUE
MIUCKI=MIUCK)/ (IMAXXIMAX)
600 CONTINUE
PRINT 190
190 FORMAT(LO0X,%X AVERAGE EDDY VISCOSITY %)
PRINT 200, (MIUCK),K=2, LMAX)
C*%x*Kng;PgTE THE VISCOUS INSTABILITY CRITERION.
DO 400 K=3,LHP1
KM1=K-1
DO 400 J=1,JMAX
DO 400 X=1,IMAX
VIS=((Z(KY-Z(KM1)I%%2)/CABS(G(I,J,K)-MIUCK}I})
VIS=DTsVIS
IF(VYIS.LT.BMAX) GO TO 400
BMAX=VIS
IDUM2=I
JDUM2=J
KDUMZ2=K
400 CONTINUE
DMAX=0.
DO 500 K=LHP1,LMAXM1
KP1=K+1
DO 500 J=1,JMAX
DO 500 I=1,IMAX
VIS=((Z(KP1I~Z(KIIXX2}/ (ABS(GC(I,J,KI-MIUCKIY)
VIS=DT/ VIS
IF{VIS.LT.DMAX) GO TC 500
DMAX=VIS
IDUM1=1
JDUM1=)
KDUM1=K
500 CONTINUE
PRINT 510,BMAX,IDUML,JDUM1,KDUM1,DMAX,IDUM2,JDUM2,KDUM2
516 FORMAT(1X,* VIS INSTABILITY %*,1PlE14.5,315,5X,1P1El4.5,313)
CHR¥XXXEDDY VISCOSITY IS COMPUTED,NOW COMPUTE THE SUBGRID SCALE TERMS
CALL PARTIAL(CL,U)
DO 60 K=1,LMAXP1
DO 60 J=1,JMAX
DO 60 I=1,IMAX
P(I,J,K)=2.%G(I,J,KI®XDUDX(I,J,K)
60 CONTINUE
CALL PARTIAL(L,P)
DO 62 K=1,LMAXP1
DO 62 J=1,JMAX
DO 62 I=],IMAX
H1(X,J,KI=DUDX(I,J,K)
62 CONTINUE
CALL PARTIAL(Z2,U)
CALL MOVLEV(DUDX(1,1,1),P(1,1,1),3JK)
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CALL PARTIAL(1,V)
DO 64 K=1,LMAXP1
DO 64 J=1,JMAX
DO 64 1I=1,IMAX
P(I,J,K)=G(I,J,KI¥(PCI,J,K)+DUDX(I,J,K))
6% CONTINUE
CALL PARTIAL(2,P}
DO 66 K=1,LMAXP1
DO 66 J=1,JMAX
DO 66 I=1,IMAX
H1(1,J,K)=H1(I,J,K)+DUDX(I,J.K)
66 CONTINUE
CALL PARTIALC(3I, U}
CALL MOVLEV(DUDX{(1,1,1),P(1,1,12,IJK)
CALL PARTIALCL,W)
B0 68 K=1,LMAXP1
DO 68 J=1,JMAX
DO 68 I=1,IMAX
P{I,J,K)=P(X,J,KY+DUDX(I,J,K)
68 CONTINUE
Cxxxxx¥ CALCULATE SGS CONTRIBUTIONS TO REYNOLDS STRESS AND INTENSITIES.
Cxxxxxx ALSO AVERAGE THEM IN TIME.
TSHGS=TSHGS+]
DO 92 K=1,LMAXP1
SS5UM(K)=0,
DO 94 J=1,JMAX
DO 94 I=1,IMAX
SSUMCKI=SSUM{K)+P{I,J,K)*XG(I,J,K)
94 CONTINUE
SSUM(KI=—SSUM(K) Z/{ IMAXXJIMAX)
SGSTLK)=SGST{KI+SSUM(K]}
92 CONTINUE
IF(NTIME.EQ.1) GO TO 360
IF(IJICONT.NE.O0) GO TO 35%
3649 CONTINUE
DO 98 K=1,LMAXP1
EDYVI(K)>=0.
DO 102 J=1,JMAX
DO 182 I=1,IMAX
EDYVICKI=EDYVI(K)+G(I,J,K)xx2
102 CONTINUE
EDYVICKISEDYVI(KIXFACTOR(K)/Z (IMAXXIMAX)
98 CONTINUE
CALL PARTIALCI,U)
D0 104 K=1,LMAXP]1
U2S¢KJ)=0.
DO 106 J=1,JMAX
DO 106 I=1,IMAX
U2S(KI=U25(K)+G6(X,J,KIXDUDX(I,J,K)
106 CONTINUE
U2S{K)=U2s{KI*2 .7 {IMAX*¥JIMAX)
U2S5(KI=EDYVI(K)-U25(K)
104 CONTIHUE
CALL PARTIAL(2,V)
DO 188 K=1,LMAXP1
V2S(KJ=0.
B0 110 J=1,.JMAX
b0 110 I=1,IMAX
VE2S(KI=V2S{KI+G({I,J,K)XDUDX(I,J,K)
110 CONTINUE
Ye2STKI=V2S(K)%2 . /CIMAXXIMAX)
V2SCKI=EDYVIC(K)I-V25(K)
108 CONTINUE
CALL PARTIALC(3,W)
DO 112 K=1.,LMAXP1
W2S(K3=0,
DO 114 J=1,JMAX
DD 116 I=1,IMAX
W2S(K)Y=W2S(K)+G(I,J,KI*DYDX(I,J,K)
114 CONTINUE
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W25 (K)=W2S (K)*2 . 7 CIMAXRIMAKX)D
W2S (KI=EDYVI(K)-W2S(K)
112 CONTINUE
TSCHT=TSCNT+1
DO 220 K=3,LMAXML
ETED(K) ZETED(K)+EDYVI(K)
U2STT-CKY=U2STT(KX+U25(K)
V2STTIK)I=V2STT(K)+V2s5(K)
W2STT(KI=W2STTIK)+W25(K)
220 CONTINUE
350 CONTIRUE
CALL PARTIAL(3,P)
b0 70 K=1,LMAXPI
B0 70 J=1,JMAX
DO 70 I=1,IMAX
H1CI,J,K)=HIC(I,J,KI+(G(I,J KI-MIUCKII®DUDX(I,J,K)
70 CONTINUE
CALL PARTIAL(3,06)
DO 71 K=1,LMAXP1
PO 71 J=1,JMAX
DO 71 I=1,IMAX
H1C¢I,J,K)=H1(I,J,K)+DUDX(I,J,KI¥P(I,J,K)
71 CONTINUE
CALL PARTIALC(L,W)
CALL MOVLEV(DUDX(1,1,1),P(1,1,13,IJK)
CALL PARTIAL(3,P)
DO 715 K=1,LlMAXF1
D8 715 J=1,JMAX
DG 715 I=1,IMAX
H1(I,J,K)=H1(I,J,K)+MIUCK)*DUDXCI,J,K)
715 CONTINUE
Cxxx¥xx Y-MOMENTUM EQUATICN.
CALL PARTIALC(I,Y)
CALL MOVLEV(DUDX(1,1,1),P(1,1,123,IJK)
CALL PARTIAL(Z.U) -
DO 72 K=1,LMAXPL1
DO 72 J=1,JMAX
DO 72 I=1,IMAX
P{I,J,K)SG(I,J,KI¥C(P(I,J,K)+DUDX(X,J,K))
72 CONTINUE
CALL PARTIAL(1,P)
CALL MOVLEV(DUDX(1,1,1),H2¢(3,1,1),1IJK)
CALL PARTIAL(2,W)
DO 74 K=1,LMAXP1l
DO 74 J=1,JMAX
DG 74 I=1,IMAX
PCI,J,K)=2.%G(I,J,KI¥DUDX(I,J,Kd
764 CONTINUE
CALL PARTIAL(2,P)
DO 76 K=1,LMAXP1
PO 76 J=1,JMAX
DB 76 I=1,IMAX
H2{I,J,K)=H2(I,J,K)+DUDX(I,J,K)
76 CONTINUE
CALL PARTIAL(3,V)
CALL MOVLEV(DUDX{(1,1,1),P(1,1,12,IJK]
CALL PARTIAL(Z,MW)
DD 78 K=1,LMAXPL
Da 78 J=1,JMAX
DG 78 I=1,IMAX
P{I,J,K)}=P(I,J,K)+DUDX(I,J,K)
78 CONTIRNUE
CALL PARTIAL(3,P)
DO 80 K=1,LMAXPL
DO &0 J=1,JMAX
DO 80 I=1,IMAX
H2(I,J,K)=H2(I,J,K)+(G(I,J,K)-MIUCK))I*DUDX(I,J,K)
80 CONTINUE
CALL PARTIALC(3,G)
D0 81 K=1,LMAXP1
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DG 81 J=1,JMAX
DO 81 I=1,IMAX
H2(I,J,K)=H2(I,J,K)+DUDX(I,J,KI*¥P(I,J,K)
31 CONTINUE
CALL PARTIALC(2,W)
CALL MOVLEV(DUDX(1,1,1),P(1,1,1),IJK)
CALL PARTIAL(3,P)
D8 815 K=1,LMAXFP1
DO 815 J=1,JMAX
DO 815 I=1,IMAX
H2(1,J,K¥=H2(I,J,KY+MIUCKI%DUDX(I,J,K)
815 CONTINUE
Cxxxxxx Z-MOMENTUM EQUATION.
CALL PARTIALC(L,UD
CALL MOVLEV(DUDX(1,1,13,P(1,1,1),1IJK)
CALL PARTIAL{3,U)
DO 82 K=1,LMAXP1
DO 82 J=1,JMAX
DO 82 I=1, IMAX
PCI,J,K)=G¢I,J,KI¥(PL{I,J,K)+DUDX(I,J,K))
82 CONTINUE
CALL PARTIALC1,P)
CALL MOVLEV(DUDX(1,1,1},H3(1,1,1),IJK]
CALL PARTIAL(Z2,W)
CALL MOVLEV(DUDX(1,1,1),P(1,1,13,1IJK)
CALL PARTIAL(3,Y>
DD 84 K=1,LMAXP1
DO 84 J¥1,JMAX
DO 84 I=1,IMAX
PLILJ,KI=GCT, J, K% (P(T,J,K)+DUDX(I,J,KI)
84 CONTINUE
CALL PARTIAL(Z,P)
DO 86 K=1,LMAXP1
DG 86 J=1.,JMAX
DO 86 I=1,IMAX
H3(I,J,K)Y=H3(I,J,K)+DUDX(I,J,K)
86 CONTIHUE
CALL PARTIAL(3,W?
B0 88 K=1,LMAXP]
DO 88 J=1,JMAX
PO 88 I=1,IMAX
P(I,J,K)=2.%¥DUDX(I,J,K)
88 CONTINUE
CALL PARTIAL(3.P)
D8 90 K=1,LMAXP1
DO 90 J=1,JMAX
Do 90 I=1,IMAX
H3CY,J,KI=HI(I,J,KI+(6(I,J,KI-MIUCK))IXDUDX(I,J,K)
90 CONTINUE
CALL PARTIAL(3,G)
D0 91 K=1,LMAXP1
DO 91 J=1,JMAX
DO 81 I=1,IMAX
H3(1,J,KI=H3{3,J,K)+BUDX(I,J,KI¥P(X,J,K)
21 CONTINUE
DD 100 J=1,JMAX
po 100 I=1, IMAX
H1(I,
H1(I
H2(I
H2(IX
I
I

O

QQC’@QQ
e a2 s

H3(
H3( .
H1(I,J,LMAX)=0.
H2(I,J,LMAX)=0.
H3(X,J,LMAX)=0.
H1(I,J,LMAXP1)=0.
H2(I,J,LMAXP1)=0.
H3(I,J,LMAXPL)=0.
100 CONTINUE

J,1)
J,2)
Js1)
J:2)
4,19
J,2)=

N N % W W W
PR
NI—‘NHN!—‘
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RETURN
END
*DECK FILTER
SUBROUTINE FILTERCHR)
3% MK KRNI K20 M I H K I K 3 MW MK M IEH HK NI H I 3 H 333X HIIEH R H I HEH MM HHH R
¢% THIS SUBROUTINE FILTERS A THREE DIMENSIONAL ARRAY IN X AND Y DIRECTIONS
(€3 3 636 36 36 36 36 36 JE 366 3036 3 36 3¢ 56 36 3 36 336 3 3636 6 6 6 36 36 96 96 I 2 36 36 36 26 26 26 263 3 3 3 36 36 96 36 3 36 336 M MK H MMM JH H MM HH KR
COMMONZDATA9/IMAX, JMAX, LMAX, NHALFX, NHALFY
COMMON/SCM2/LMAXP1,D1,D2,D3,D%,D5,D6
COMMON/CONST/C100,C101,IJK, IJ,NHP1,HALF
®CALL Cl11
¥CALL Al
¥CALL Bl
CC=1./ (IMAXXJIMAX)
DO 20 L=1,LMAXP1
CALL MOVLEV(HR(I,1,L),FR(1,1),IJ)
CALL FFTX(1.0)
CALL FFTY(1.0,1.02
DO 30 I=1,IMAX
DO 30 J=1,JMAX
FRCI,J)=FR(I,JI¥FILTXCI)XFILTY(J)
FI(T,J)SFIC(I,JIXFILTXC(IX¥FILTY(J)
30 CONTINUE
CALL FFTY(-1.0,CC)
CALL FFTX(-1.0)
CALL MOVLEV(FR(1,1),HR(1,1,L),IJ)
20 CONHTINUE
RETURN
END
*DECK STAT
SUBROUTINE STAT
€36 363 33636 9636 3 236 356 3 336 I JEIEE 226 263 M M IEHE K I 636 3 36 3 3 H I H NI HMMMHIEN I M X MK MR RNRHAKUKRNNK
Cx THIS SUBROUTINE COMPUTES THE STATISTICS OF THE FLOW FOR OUTPUT. ¥
(36 366 3 6 3636 3 6 36 396 36 3 36 26 3636 336 2 33 .36 36 3 36 36 336 3636 36 26 26 24 26 D3 D6 36 2 36 36 3 36 36 3 36 X I H M MM MM H K H KN KA H K
COMMON/CONST/C100,CL01,IJK,IJ,NHP1,HALF
COMMON/SCM2/LMAXPL,D1,D2,D3,04,D5,D6
COMMON/SCM4G/7CY,CJ, CK,CJK,CIK,CIJ
COMMON/DATA9/IMAX, JMAX, LMAX, NHALFX, NHALFY
¥CALL B4
XCALL B6
XCALL A6
XCALL A9
PRINT 2008
2008 FORMAT(1H1)
PRINT 11080
1100 FORMAT(1X,% UAVG IN X-Y%,4X,*%VAVG IN X-Y¥,3X,%WAVG IN X-Y%,1X,X
1U2AVG IN XY¥%,3X,%V2AV6 IN XY¥,3X,*W2AV6 IN XY%,3X,%Q2AVG IN XY*
1,3X,%¥TURB SHEARX,7X,%Z%)
uToT=0.
VT0T7=0.
WT0T=0.
uzT0T=0.
V2T0T=0.
W2ToT=0,
QTOT=0.
PAI=ACOS(-1.)
DO 100 K=1,LMAXP]
USuUM=0.
VSUM=0.
WSUM=0.
DO 110 J=1,JMAX
Do 110 I=1,IMAX
USUM=USUM+U(I,J,K)
VSUM=VSUM+V(I,J,K)
WSUM=WSUM+NCT, J,K)
110 CONTINUE
USUM=USUM*CIJ
VSUM=VSUMXCIJ
WSUM=WSUMXCIJ
SHEAR=D.
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120

109

12560

10086
200
210
3080
310

320
330

¥DECK
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y2s5umM=0.

vasum=0.

W25UM=0.

DO 120 J=1,JMAX

DG 128 I=1,IMAX
U2SUM=U2SUM+(UC(T,J,KI-USUM) %x2
V2SUM=V2SUM+(V (I, J,KI-VSUMIxx2
W2SUM=WZSUM+ (W(TI,J,KI-WSUM) xx%2
SHEARSSHEAR+ (UCI,J,KI)-USUMIX(W(I,J,KI-NSUM)
CONTINUE
Q=(U2SUM+V2SUM+W2SUMIXCIJ®.5
U2SUM=5QRT (U25UMXCIJ)
VZ2SUM=SQRT(V25UMXCIJ)
W2SUM=SQRT{W2S5UM=CIJ)
SHEAR=SHEARXCIJ

PRINT 10006,USUM,VSUM,WSUM,U25UM, V2SUM,W25UM, Q, SHEAR, Z(K)
U2ST(KI=SQRT(U25UM**x2+U25(K))
V25T{K)=SQRT{V2SUM*%2+V25(KJ)
W2ST(K)=SQRT (W2SUM*%2+W25(K))
UWT{KI=SHEAR+SSUMLK)
UTOT=UTOT+USUM

VTOT=VTOT+VSUM

WTOT=WTOT+WSUM
U2TBT7=U2TO0T+U25UM
V2TBT=V2T0T+V25UM
W2TOT=W2T0T+W25UM

QTOT=QT0T+Q

CONTINUE

UTOT=UTOT*CK

VTOT=VTOT*CK

WTOT=WTOT*CK

U2T0T=U2TOTXCK

V2T0T=V2TOT*CK

W2TOT=W2TBT*CK

QTOT=QTOT*CK

PRINT 1200

FORMATC//7,1X, % UTOT IN X-Y VTOT IN X-Y WTOT IN X-Y u2TeT

1 IN X-¥ V2TO0T IN X-Y w2707 IN X-Y TURB ENERGY #)

PRINT 1000,UTOT,VTOT,WTOT,U2TOT,V2T0T,W2TOT,QTOT
FORMAT(1P%El1%.5)

PRINT 208

FORMAT{s/,5X,% INSTANTENEDUS UxX)
PRINT 218,(U(8,8,K),K=1,LMAXPL)
FORMAT(1X,1P9E14.5)

PRINT 300

FO%ﬁéTgig//,SUX,* 565 CONTRIBUTIONS ADDED¥)

PR

FORMAT(1X,¥ SGS ENERGY¥,4X,% TOTALU2S %,5X,% TOTAL V25 %,3X,¥ TOT

1ALWZS %, 3X,¥TOTAL SHEARX,3X,%¥ PLANEW)

LMAXM1=LMAX-1

DO 320 K=3,LMAXM1

PRINT 330,EDYVI(K),U25T(K),V2S5T{K),W25T(K),UNT(K),K
CONTINUE

FORMAT(1X,1P3E1l4.5,16)

RETURK

END

TRANS

SUBROUTINE TRANS

036 563 3 36 3 36 3 36 36 36 36 36 36 36 96 JE 3636 36 26 3 3 36 36 I 3 3 36 36 36 36 6 36 36 3 36 36 I JE 36 I HEIE 36 I 24 3E J6 I IE I IE 3 IE HE 6 I 3E I I 3 3K 3 238 3 M

C% THIS SUBROUTINE COMPUTES THE VARIOUS TRANSFORMATION QUANTITIES *
(C3636 36 36 386 3 36 3636 36 2 36 36 3 9636 36 3 26 36 26 36 36 336 26 36 36 34 3636 3 2 34 26 36 36 3636 3 36 I 36 96 HE M I H HIEH M MK M MK 32 M MK

¥CALL

COMMON/DATA9/IMAX, JMAX, L MAX, NHALFX, NHALFY
COMMON/LENGTH/LSCALE(652

REAL LSCALE

COMMON/INNERC/CVINR(65)
COMMON/SCM3/DELTAL,DELTAZ,RE, E
COMMON/RANGE/LMAXM1 , LMAXMZ, LMAXM3 , LMAXM% , LMAXMS
COMMON/TINC/DT
ggNNDN/BC/CEI,CEZ,CES,CEQ;CES,CEG
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®CALL
*CALL
¥CALL
®CALL
¥CALL

B3

A9

c7

ha

B

COMMON/PENTA2/XI,QI,GI,YI,QJ,G6J,XN,QIN,GIN,YN,QJN,GJN,Q2,Q3,-
1RCI,RC2,RP1,RP2,RP3,RP4%

COMMON/ZER0/C3,C4

COMMON/IDENTN/CODE

LMAXML=LMAX-1

LMAXM2=LMAX~2

LMAXM3=LMAX-3

LMAXMG=LMAX-4

LMAXM5=LMAX~5

LMAXPI1=LMAX+1

LHPI=LMAX/2+1

Cxxxxx MESH STRECHIRG TRANSFORMATION

20
30
40
50
CHxXHX

308

31¢0

P=8.98346
TANIP=0.5%ALGG((1l.+P)7(1.-P))
PINV=1./P
P2=P¥x2
DO 5 J=1,LMAXF1l
ZETACJ)=-1.+2.%(J=-2)/7(LMAX~-2)"
DUML=ZETA(JIXTANIP
Z(JI=PINV*TANH(DUM1)
RL{SI=(2.%P2/TANIPIX®((COSH{DUML) I*%3 )% (SINH(DUM1))
RM(J)=P2%((COSH(DUM1))¥%4)/{TANIP®%2)
CONTINUE
DELTA3I=ZETA(2)-ZETA(1)
E2=RL(2)/(2,.%DELTA3IXRE)
F2=RM(2}7((DELTA3%X2I%RE)
EN=RL(LMAX) /(2. XDELTAIXRE)
FN=RM{LMAX)/ ( (DELTA3%X%2}%RE)
RZ=(F2+E2)/(F2-E2)
RN=(FN-EN)/ (FN+EN)
RR2=1./(E2-F2)
RRN=-1./CEN+FHN)
PRINT 20
FORMAT (6X,XZETAX, 12X, ¥Z%, 14X, ¥RL %, 16X, XRM*)
DO 30 K=1,LMAXP1
PRINT 44,ZETACKY,Z(K),RL{K),RM{K)
CONTINUE
FORMAT(1X,1P4E15.7)
PRINT 50,E2,F2,EN,FN,R2,RN,DELTAS
EgREAE(IX,//,1P7E14.5)
¥ COMPUTE THE LENGTH SGALE FOR THE 565 MODEL
VONK=0.4
DFILT1=2.%DELTAL
DFILT2=2.%¥DELTAZ2
POWER=1./3,
DG 308 K=3,LHPl
KMi=K=-1
DW=C(ZC{K}=Z(2) I%¥VONK
GRID=Z(KJ)-Z{KM1)
LSCALE(K)=(AMINI(DW,0.1,DFILT1)I%(AMINLCDY, 0.1,DFILT2))%(AMIN]
1(DW-0.1,GRID)] .
LSCALEC(KI-LSCALE(K)IX*POWER
CONTINUE
DO 318 K=LHP1,LMAXM]
KK=LMAXM1-K+LHP1
KKP1=KK+1
DW=CZ(LMAX)-Z(KK) I¥VONK
GRID=Z(KKP1)-Z{(KK)
LSCALECKK)=(AMIN1CDW,0.1,DFILT1))X(AMINI{DW,0.1,DFILT2))%X{AMINL
1(bW,0.1,GRID))
LSCALE(KK)I=LSCALECKK)*XPOWER
CONTINUE
CINER=(CC¥%2) /7 (VONK®27.)
DO 320 K=3,LMAXMI
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pacE B

oRIGINAY quALITY

of ®O

328
330

340

110
120

100
CHX %X

CH¥¥EX

12
o3 3

&80
90

¥DECK

CHNXX

9)%8

CV(KI)S(CCXLSCALE(K) )xx2

CVINR(KI=CINERXREX{LSCALEC(K))%x*§

CONTINUE

FRINT 330

FORMAT(//,20X,% COEFFICIENT OF INNER SGS%)

PRINT 120, (CYINR(K),K=3,LMAXM1)

PRINT 340 : .

FORMAT(/7,20X,* SUBGRID LENGTH SCALEX)

PRINT 120, (LSCALE(K),K=3, MAXM1)

PRINT 110

FORMAT(20X,¥ COEFFICIENT OF SGS %)

PRINT 120, (CV{(K),K=3,LMAXML)

FORMAT(1X,1P%EL14.5)

FAC=226%(COX%2)/3.

FACTOR(1)=0.

FACTOR(2)=0.

FACTOR(LMAX)=0.

FACTOR(LMAXPL1) =0,

DO 100 K=3,LMAXM1

FACTOR(K)I=FAC/CV(K)

CONTINUE

DG 12 J=2,LMAX

H1=Z(J)-Z2(J-1)

H2=Z(J+1)-Z2(J)
¥ ARRAYS FOR FINITE DIFFERENCE IN Z-DIRECTION
AP(J)==-1./C2CJ+1)-2(J-13)

BP{J)=0.

CP{JI==-AP(J)
¥x%x%x%¥ DEFINE THE COEFFICIENTS FOR SECOND DERIVATIVE IN Z DIREC
AP2(J)=2./(H1%{H1+H2))

BP2(J)==2./(HLI%H2)

CP2(J3=2./(H2%(H1+H2)}

PRINT 80,AP(J),BP{J),CP{J), AP2(J),BP2(J),CP2(J)
CONTINUE

CONSTANTS FOR THE BLOCK TRI-DIAGONAL MATRIX IN THE MAIN PROGRAM
T=0.5%(Z2(3)-Z(2))
CEL=1.-AP(3)XTREXDT*D.5%(CP2(2)-AP2(2)XCP(2)/AP(2) )/ (1. +TRAP(3))
CE2=BP(3)+AP(3)%(1.-TXBP(3))}/(1.+T%AP(3))
CE3=CP(3)-AP(3)XT*CP(3)/ (1. +TXAP(3))
T=0.5%(Z(LMAX)-Z(LMAXM12)

CEG=AP(LMAXMI Y+ CP(LMAXMIIXT®¥AP(LMAXME) 7 (1, ~T*%CP(LMAXM1)2
CES=BP(LMAXML)+CP(LMAXML)IX {1 . +T*BP(LMAXML) /(1. -TXCP(LMAXM1))
CE6S1.+CP(LMAXML)IXTHEXDT*0 . 5% CAP2(LMAX)-CP2(LMAX)I*AP (LMAX)
1/CPCLMAX) ) /(L. ~TXCPC(LMAXM1D)

T=0.5%(Z{3)-2(2))

C3=(1.-TXBP(3))/7CP(3)

C4=(T*CP(33/(1.~T%BP(3)2)

Q=1./€1 . +TXAP{3I})

RI=-T%Q

QI=(1.-T%BP(3)I%Q

GI=—-TXCP{3)%Q

YI=(1.+BP(2)I%T¥QI/AP(2)
QJ=(BP{2)%¥(TXBP(3)~1.)¥Q~CP(2))/7AP(2)}
GJ=BP(2IXRTXCP(3IIXQ/AP(2)

T=0.5%¥(Z(LMAX)~Z(LMAXML])

Q=1./(1.~T¥CP{LMAXM1))

AN=T*Q

QIN=(1.+TXBP(LMAXM1)I%Q

GIN=T*AP{LMAXM1)*Q

YN=(1.-BP(LMAX)®T*Q)/CP(LMAX]
QIH=-(BP{LMAXI® (1. +T¥BP (LMAXML) ¥%Q+AP(LMAXY 3/7CP(LMAXD
GJN=-T*AP (LMAXML)IXBP (LMAX)%¥Q/CP{LMAX)
FORMAT(1X,1P3E15.7,5X,1P3E15.7)

FORMAT(1X,1P3E15.7)

RETURN

END

VISCOS

SUBROUTINE VISCOS(U)
¥ THIS SUBRQUTINE COMPUTES THE SECOND DERIVATIVE OF U IN THE Z-DIRECTION
COMMON/DATA9/IMAX, JMAX, LMAX, NHALFX, NHALFY
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¥CALL
®*CALL
*¥CALL
®CALL

20

30

X¥DECK

A2

B7

B9

A9

LMAXP1=LMAX+1
DELTA3=2./(LMAX-2.)
DD 28 J=l, JMAX

DO 20 I=1,IMAX
bupx(I,J,1)=0.
DUDX(I,J,LMAXF1)=0.
CONTINUE

DO 30 K=2,LMAX

DO 39 J=1,JMAX

DO 30 I=1,IMAX
KP1=K+1

KM1=K-1
DUDX(CI,J,KITAP2(KI¥U(I,J,KMI)+BP2(KI*U(I,J,KI+CP2(KI*U(I,J,KPL)
CONTINUE

RETURN

END

EXTERN

SUBROUTINE EXTERN(L1,L2Z2,R,RR)

C IR 3 I I 363 56 334 3 3633 336 6 IEIEH 6 3 36 3 3 36 3636 336 3 36 36 36 36 36 2 36 3 K I 26 396 3 K 3 36 3 I I3 3 I H MM HRH KR
C % THIS SUBROUTINE FIXES THE EXTERNAL VALUES OF THE U AND V_AND W

C ¥ NOTE THAT THE EXTERNAL VALUES OF U AND V WILL NOT ENTER INTO THE
C X COMPUTATION. AND THEY ARE UNNECESSARY

C BIEMMMMMNMIIININ KR K MMM KM MK K33 I I 330 M I I HEH 3 H I 3 3636 3626 36 3 36 IE 33 36 3 3 393 ¢

COMMON/CONSTZC100,C101,IJK,IJ,NHPL,HALF
COMMON/SCM3/DELTAL,DELTAZ2,RE,E
COMMON/DATAG/IMAX, JMAX, LMAX, NHALFX, NHALFY

¥CALL Al

¥CALL
®CALL
¥CALL

90

97
95
¥DECK
c
c
c
¢
c
C
¢

C3
Ab
Cc?
LMAXPL=LMAX+1
LMAXMI=LMAX-1
DO 8¢ J=1,JMAX
B0 90 I=1,IMAX
W(I,Jd,1)=-CP(2)%WN(I,J,3)7AP(2)
W(I,J,LMAXPLY=~-APCLMAXI®WCTI,J, LMAXML)ZCP(LMAX)
DD 97 J=1,JMAX
DO 97 I-1,IMAX
Uu{I,J,1)=0.
V{I,J.:1)=0.
UCI,J,LMAXPL)
V(I,J.LMAXPI)
CONTINUE
CONTINUE
RETURKN
END
MTDAG
SUBROUTINE MTDAGCAM,A,AP,V,N,K)
SOLVES COUPLED TRI-DIAGONAL ALGEBRAIC EQUATIONS
AMCI, J,LIXCJ, L-10+ACT, J, LOXCI, LIFAPLIJ, L3 X{J, L+LI=Y(I, L)
(SUM OVER J IN EACH EQUATION)
(I,J,L) I IS EQUATION TYPE, J IS VARIABLE TYPE, L IS NODE
AT CALL W(I,L)=X(I,L) Y(J,L) IS5 RETURNED IN V(J.L)
THE AM,A,AP ARRAYS ARE RETURNED AS GARBAGE
REAL AMCN,HN,K),A(N,N,K)Y,AP{N,N,K),V{N,K)
COMMON/SING/IMR, JMR, IMI, JMI
ELIMINATE TO OBTAIN A SEQUENTIALLY SOLVABLE FORM
DO 20 LX=1,K
L=K~-LX*1
EM=L~-1
b0 18 J=1.N
C=A(J,Jd,L)
IF (C.EQ.G.) GO TO 80
Do 1GE%I?I:ATE X(J,L) FROM ALL EQUATIONS OTHER THAN ITS OWN
ELIMINATE X{J,L) FROM THE EQUATION FOR THE HODE L~1
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ORIGINAL PAGE 18
OF, POOR QUALITY,

12

14
16
20

26
30
80
10
90
¥DECK

*CALL
¥CALL
¥CALL

10

20

30

IF (L.EQ.1) 60 TO 12
F=AP(I,J,LM)
IF (F.EQ.0.0) 60 TO 12
F=F/C
DO 6 J1=1,N
ACI,J1,LMI=ACT, J1,LM)=F*AM{J,J1,L)
AP(I,J1,LM)=AP(I,J1,LM)-FXACJ,J1,L1)
VCI, LMV (I, LM=FRV(J,L)
ELIMINATE X(J,L) FROM OTHER EQUATIONS AT THIS NODE L

IF {I.EQ.J) &GO TO 16
F=ACI,J,L)

IF (F.EqQ.0.0) GO TO 16
F=F/C .

DO 14 J1=1,N
ACT,J1,L)=ACI,J1,L)-F¥A(Jd,J1,L)
IF (L.E®€.1) GO TO 14
AMCI,J1,L3=AM(I, J1,L)-F*%AMOJ,J1,L)
CONTINUE
YOI, LI=VCILLY-F%V{J, L)
CONTINUE
CONTINUE
CONTINUE
CARRY OUT THE BACK SOLUTION
D0 30 E=1,K
LM=L-1
B0 28 I=1,N
C=A(I,I,L)
IF (C.EQ.0.0) GO TO 80
F=¥(I,L)
IF (L.EQ.L) GO TO 28
bo 24 J1=1.N
F=F-AM(I,J1,L)*V(JL,LM)
Y(I,LI=F/C
CONTIRNUE
RETURN
PRINT 90
PRINT 10,IMR,JMR,IMI,JMI
FORMAT(4X,4L5)
RETURN
FORMAT(///7,10X,% MTDAG MATRIX IS SINGULAR ¥
END -
DIVG
SUBROUTINE DIVG
THIS SUBROUTINE COMPUTES THE DIVERGENCE OF VELOCITY FIELD
COMMON/DATA9/IMAN, JMAX, LMAX, NHALFX, NHALFY
gOMMON/COHST/CIOU,ClOl,IJKpIJ,HHPI,HALF
2
A6
A5
CALL PARTIAL(L,U)
CALL MOVLEV(DUDX{1,1,13,6(1,1,13,IJK}
CALL PARTIALC(Z2,V)
DG 10 K=2,LMAX
DO 10 J=1,JMAX
b0 19 I=1,IMAX
G(I,J,K)=G(TI,J,KI+DUDXC(I,J,K)
CONTINUE
CALL PARTIAL(3,WD
DB 20 K=2,LMAX
DG 20 J=1,JMAX
D8 20 I=1,IMAX
G(I,J,K}=G(I,J,K)+DUDX(I,J,K)
CONTINUE
BMAX=0.
DO 30 K=2,1LMAX
D0 30 J=1,JMAX
DO 36 I=1,IMAX
IFC(ABS(GCI,J,K)).GT.BMAXY BMAX=ABS(G(I,J,K})
CONTINUE
PRINT 40,BMAX
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40

FORMAT(2X,% MAX DIVERGENCE=X,1PiE15.7)
RSBURN :
E

¥DECK COURANT

TN
¥CALL
XCALL

51

56

61

*DECK

Crxxx
Crxxx

¥CALL
XCALL
XCALLE
®CALL
®CALL

SUBROUTINE COURANT(DT,NTIME,TEND)
*AEHIS SUBROUTINE MONITORS THE COURANT NUMBER
Ab

GOMMON/SCM3/DELTAL, DELTAZ,RE,E
COMMON/DATAS/ IMAX, JMAX, LMAX, NHALFX, NHALFY
LMAXMI=LMAX-1

LHP1=LMAX/2+1

BMAX=0.

DO 51 K=3,LHP1

KM1=K-1

DO 51 J=1,JMAX

DO 51 I=],IMAX

CMAX1=ABS (WC(T, J,K))I/{Z2{(K)-Z(KM1))+ABSCU(I,J,K)/DELTAL}+ABS(V(],J,
1K))/DELTA2

IF(CMAX1.LT.BMAX) GO TO 51

BMAX=CMAX1

IDUM1=I

JDUML=J

KDUM1=K

CONTINUE

DMAX=0.

DO 56 K=LHP1l,LMAXMI

KP1=K+1

DO 56 J=1,JMAX

DO 56 I=1,IMAX

CMAX2=ABS (W(I,J,K) I/ (Z{KP1)~-Z(K>)+ABSC(U(I,J,K))/DELTAI+ABS(
IV(TI,J,K)3/DELTA2

IF(CMAX2.LT.DMAX) GO TO 56

DMAX=CMAX2

IpuM2=I

JDUM2=J

KDUM2=K

CONTINUE

BMAX=BMAX%DT

DMAX=DMAXXDT

PRINT 61,BMAX,IDUMI,JDUMI,KDUMI,DMAX, IDUM2, JDUMZ,KDUMZ

FORMAT(2X,% COURRANT ¥,1P1E14.5,315,1P1El14.5,313)
IF(BMAX.GT.0.35.0R.DMAX.GT.0.35) NTIME=TEND
RETURN

END

LTAVG

SUBROUTINE 'LTAVG
% THIS SUBROUTINE COMPUTES THE RUNNING TIME AVERAGE OF VARIOUS
¥ STATISTICAL QUANTITIES.

COMMON/SCM4/CI,CJ,CK,CJK,CIK,CIJ
ggMMON/DATA9/IMAX.JMAX.LHAX,NHALFX:NHALFY

A3

A%

A¢

COMMON/RANGE/LMAXMI , LMAXM2 , LMAXM3 , LMAXMG, LMAXMS
COMMON/SCM2/LMAXPY, DL, D2,D9,D4,D5,D6
COMMON/LTAL/USUM(65),UTSUMC65), STSUM(65) ,U2SMT{65),V25MT(65)
%’¥ESQ;(65),PVT(65),PUT(GSJ,PUHST(BBJ,PVHST(65).PHNST(BS):PNT(BS)
?
1?2??0N/LTA2/PDUT(65),PDVT(65),PDNT(65).PDUHT(65),PDVNT(65)aPDNNT
COMMON/ADV/NTIME

IF(NTIME.NE.1) GO TO 5

TCONT=0.

P00 2 K=3,LMAXM1

UTSUM(K)=0.

U2SMT(K}=8.

V2SMT(K)=0.
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http:IF(BMAX.GT.O.35.OR.DMAX.GT.O.35

OgﬁGrNél‘?

Cﬂ&]ﬂﬂiﬁl-

15

10

25

20

30

35

&5

49

W28SMT(
STSUMC
PUT(K)
PVT(K)
PUT(K)
PUNST(
PVNST(
PUNST(

PDVT{K)=0.

PDWT(K3=0.

PDUNT(K)=0.

PDVNT(K)=0.

PDWNT(K3=0.

CONTINUE

CONTINUE

TCONT=TCONT+1

DO 10 K=3,LMAXM1
USUMIKI=0.

DO 15 J=1,JMAX

DO 15 I=1,IMAX
USUM{KY=USUMCKI+UCT, 4,K)
CONTINUE
USUMIK)I=USUMIKI*CIJ
UTSUMCKY=UTSUMCKI+USUM(K]
CONTINUE

DO 20 K=3,LMAXM1
U2sUM=g.

V25UM=9.

W25UmM=0.

SSUM=0.

D8 25 J=1,JMAX

Do 25 I=1,IMAX
U2SUM=U23UM+ (U, J,K)-USUM{K) I %x2
V2SUM=V2SUM+V (I, J,KIxx2
W2SUM=W2SUM+W(T,J,K)*x2
SSUM=5SUM+W(I, J,KI*¥(UCI,J,KI-USUMIK))
CONTINUE

U25UM=U25UM=CIJ
V2SUM=V25UM%CIJ
W2SUM=W2SUMXCIJ
SSUM=35UMxCIJ
UZSMT(K) =U25MT (K} +U25UM
V2SMT{K)=V2SMT(K}+V2SUM
W2SMT (KI =W2SMT (K +ll2SUM
STSUMCKI=STSUMC(KI+SSUM
CONTINUE

D0 30 K=1,LMAXP1

DO 30 J=1,JMAX

DO 30 I=1,IMAX
PCI,J,KI=(UCI, J,KI%x2+V (I, J, KI*%2+W(I, J,KINX2) /2.
GONTINUE

CALL FILTER(P)

DO 35 K=1,LMAXF1

DO 35 J=1,JMAX

DO 35 I=1,IMAX
DIVC(I.J,K)=G(I,J,K)-P(I,4,K)
CONTINUE

CALL PARTIAL(1.DIVC)

DO 40 K=3,LMAXML

PU=0,

DO 45 J=1,JMAX

DO 45 I=1,IMAX
PUSPU+DUDX{I,J,KI®XU(CI,J,K)
CONTINUE

PU=PU%CIJ
PUT(K)=PUT(K)+PU
CONTINUE

CALL PARTIAL(1,G)

B0 50 K=3,LMAXM1
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55

50

65

60

75

70

85

80

95

90

105

100

PUNS=0.

DO 55 J=1,JMAX

DO 55 I=1,IMAX
PUNS=PUNS+DUDX(I,J,KI*U(I,J,K)
CONTINUE

PUNS=PUNSXCIJ_
RUNSTCKI=PUNST(K)+PUNS
CONTINUE

CALL PARTIAL(2,DIVCY

DO 60 K=3,LMAXML

PV=D.

DO 65 J=1,JMAX

D6 65 I=1,IMAX
PY=PVIDUDXC(I,J,K1%V{I,J, K}
CONTINUE

PY=PV*{TIJ

PYTCKI=PYT(K)+PV

CONTINUE

CALL PARTIAL(2,G)

DO 70 K=3,LMAXML

PVYRS=0.

D3 75 J=1,JMAX

DO 75 I=1,IMAX
PYNS=PVYNS+DUDX(TI,J,KI*¥V(I,J,K)
CONTINUE

PVNSSPVNS*CIJ .
PVNSTC(KI=PYNST(K)+PVNS
CONTINUE

CALL PARTIALC(3,DIVC)

DO 80 K=3,LMAXM1

PW=0.

DO 8% J=1,JMAX

DO 85 I=1,IMAX
PW=PW+DUDX(I,J,KI*W(I,J,K)
CONTINUE

PW=PW*CIJ

PUTECKISPUT{K)+PW

CONTINUE

CALL PARTIALC(3,G)

DG 96 K=3,LMAXM1

PWNS=0.

DO 95 J=1,JMAX

DG 95 I=1,IMAX
PWRNS=PWNS+DUDX(I,J,KI*WN(I,J,K)
CONTINUE ,
PWNS=PWNS*CIJ
PWNST(K)=PWHNST(K)+PWNS
CONTINUE

CALL PARTIALC(LI,UD

DO 108 K=3,LMAXM1

PDU=0.

PDUN=0.

DO 105 J=1,JMAX

DO 105 I=1,IMAX
PBU=PBU+DUDX(I,J,K)XDIVC(I,J,K)
PDUN=PDUN+DUDX(I,J,K)*G(I,J,K?
CONTINUE .

PDU=PDUX%CIJ

PDUN=PDUNXCIJ

PDUN=PDUN%CIJ
PDUT(K)=PDUT(K)+PDU
PDUNT(K)=PDUNT(K)+PDUN
CONTINUE

CALL PARTIAL(Z,V)

DO 110 K=3,LMAXML
PDV=0.

PDVN=(Q.

DG 115 J=1,JMAX

DO 115 I=1,IMAX
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o PDV=PDV+DUDX(I,J,K)XDIVCCI,J,K)
_ PDVNSPDVN+DUDX(I,J,KIXGCI,JoK)
115 CONTINUE
PDV=PDV%CIJ
PDVN=PDVYNXCIJ
PDVT(K)=PDVT(K) +PDY
PDVNTC(K)=PDVNTCK)+PDVN
116 CONTINUE
CALL PARTIALC3,W)
DO 120 K=3,LMAXML
PDWNN=0.
PDW=0.
DO 125 I=1,IMAX
DO 125 J=1,JMAX
PDW=PDW+DUDX (>, KIXDIVCCT, J,K)
PDWN=PDWN+DUDX (I, J, KIXG(I, J,K)
125 CONTINUE
PDW=PDWXCIJ
PDWN=PDWNXCI.)
PDIT (K) =PDUT (K )+PDW
PDWNT (K)=PDWNT (K) +PDWN
120 GONTINUE
RETURN
END
XDECK LTPR
SUBROUTINE LTPR
Cxx¥x%¥ THIS SUBROUTINE PRINTS LONG TIME AVERAGES AT DESIGNATED INTERVALS
COMMON/RANGE/LMAXMY , LMAXMZ, LMAXMS , LMAXMS , LMAXMS
COMMON/LTAL/USUMC65), UTSUMC65) » STSUM(65) , U2SMTC65) , V2SMT (65)
L UZSMT(65),PUTC65), PUT(65), PUNST(65), PUNST(65) , PUNST(65), PUT (65
» 0
| COUNMON/LTAZ/PDUT(65>, PDVT(65) , PDUT (65 ), PDUNT (653 ,PDVNT (65, PDUNT
COMMON/SGTT/SGSTC65), ETEDCH5) ,U2STT(65),V25TT(65),W25TT(65)
1,TSHGS, TSCNT
PRINT 10,TCONT,TSHGS,TSCNT
10 FORMAT(/7,10X,% COUNTERS %,1P3El%.5)
F1=1./TCONT
F2=1./TSHGS
F331./TSCNT
DO 20 K=3,LMAXML
AL=UTSUMCK)IXFL
A2=U2SMTC(KIXFI
AZSV2SMT(K)*F1
AGSWZSMT (KIXF1
ASSSTSUMCK)*F1
ABSPUT (K)¥F1
A7SPYTCK)*F1
ABSPWT(K)¥F1
PRINT 30,A1,A2,A3,A%,A5,A6,A7,A8,K
20 CONTINUE
PRINT 40
40 EORMATC//777)
DO 50 K=3,LMAXML
ALSPUNST (K)XF1
AZ=PYNST(K)¥F1
A3Z=PUNST(K)XF1
A4=SGST(K)XF2
ASSETED(K)XF3
AG=U2STTCK)XF3
A7=V2STT(K)%F3
ABSW2STT(K)IXF3
PRINT 30,A1,A2,A3,A4,A5,A6,A7,A8,K
50 CONTINUE
30 FORMAT(3X,1P8E14.5,I5)
PRINT 40
DO 60 K=3,LMAXML
AL=PDUT (K)XF1
AZ=PDVT (KD %F1
A3=PDWT (K)XF1
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AG=PDUNT(K)%F1
AS=PDVNT(K)*F1

AG=PDWNT (KYXF1

PRINT 70,A1,A2,A3,A4,A5,A6,K
CONTINUE

FORMATCIP6EL4.5,15)

RETURN. :

END -
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