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Cthapter I

Introduction

1. General Discussion

Although still a comparatively young technology, remote sensing of
the environment has greatly extended man's perception of the worlid's
resources and interaction of natural and unnatural influences. Remote
sensing has grown from simple photography and photointerpretation to sa-
tellite borne sensors and sophisticated machine aided analysis. A cri-
tical portion of many modern remote sensing systems is a multispectral
scanner. Multispectral scanner systems employ sensors to observe por-
tions of the electromagnetic spectrum typically ranging from the visible
region to the reflective infrared regions. The thermal (or emissive)
portion of the spectrum also has important uses in remote sensing.

Thus, investigation of multispectral scé;;;; systems and parameters of
mul tispectral scanner systems is an important and neéessary endeavor.

Multispectral scanner systems are characterized by many parameters
interacting in complicated ways. This research develops analytical
techniques for the study of some of these parameters. Many of the
parameters tend to be dependent on the scenes'observed by the multispec-
tral scanner systems. 1t is thought that consideration of scene depen-
dent parameters in the current research provides a framework for con-
sidering very special 1zed scanner systems as well as more genera! scan-

ner systems. An important example of a parameter that must be con-
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sidered for mul tispectral scanner systems is what portions of the elec-
tromagnetic spectrum are to be observed. It is clear that this may tend
to be a very scene dependent parameter. Indeed, under differing obser—
vation conditions, it may be necessary to observe different portions of
the electromagnetic spectrum to obtain the desired information about a

single specialized scene type. The development of analytical techniques
to aid in the study of some of the parameters of multispectral scanner

systems is the objective of this research.

2. Previous Work

Up to the present, there has been little analytical work aimed at
general techniques for the study of parameters of mul tispectral scanner
systems. Most reported work has tended to be ad hoc and empirical.
This has produced detailed knowledge of various aspects of remote sen-
sing problems, but has not produced studies of of multispectral scanner
systems in an analytic context.

Studies such as those by Gates, Keegan, Schleter and Weidner L[G31]
and Sinclair, Hoffer and Schreiber [S4] are indicative of the type of
detailed knowledge that has been gained about scenes that may be obser-
ved by mul tispectral scanner systems. Examples of studies that have
been conducted for specific problems are tﬂose by Coggeshall and Hoffer
€31, and Kumar and Silva [K53. These papers are not referenced so much
for their contents, but rather as examples of the wide variety of stu-
dies that have been carried out in an effort to understand aspects of
remote sensing problems.

An early study that considers a physical basis for remote sensor

system design is described by Holmes and Macbonald [H4Y. This paper
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gives a good exposition of many of the physical considerations for mul-
tispectral scanner system design. A more recent study by Landgrebe,
Bieht and Simmons [L2], [L4] considers in an empirical manner several
important parameters in multispectral scanner systems. Some of these
parameters are spatial resclution and spatial sampling characteristics,
spectral samp!ing and bands, and signal-to-noise characteristics. These
are important parameters and many conclusions can be drawn from empiri-
cal study. However, 1t is thought that the development of analytical

technigues to study some of these and other parameters is now appropri-

ate.

3. The Present Investigation

As previously mentioned, very little anaytical consideration of
many multispectral scanner system parameters has been done. It is the
intention of this research to develop analytical techniques to study
some of these parameters. Although the developed techniques are appli-
cable to a wide variety of scenes, this reseach uses vegetation scenes
as a vehicle for consideration of the techniques.

Consider a single type of vegetation iliuminated by the sun. If
the reflected electromagnetic energy in the visible to reflective in-
frared wavelengths (approximately .4 to 3.0 micrometers, um) is measured
as a function of wavelength, 1, for several different observations of
the same vegetation type, it is observed that the spectral response ex-
hibits random variation about a mean value at each wavelength. That is,
the observations tend to be stochastic in nature. Now, if the vegeta-
tion scene is observed remotely, say from a satellite or airborne plat-

form, there are additional disturbances of the observations. * These dis-
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turbances may be due to atmospheric noise, random disturbance of the ob-
servation platform, or other sources. The point is that the multispec—
tral scanner system receives electromagnetic energy from the scene that
exhibits random variations corrupted by disturbances that also have ran-
dom variation. Under these conditions, 1t is logical to suppose that
certain spectral regions (or spectral bands) may be more useful than
others for observing those features of the scene that may be of in~
terest. It is also logica! to conclude that by studying the effect of
the disturbance on the observation of the scene, it may be possible to
minimize the adversé effects. Thus, in view of the above comments, it
would be useful to characterize analytically what information the obser-
vation conveys about the scene.

This is highly reminiscent of the classical problem in communica-
tjon systems. A receiver (multispectral scanner) obtains a signal (the
electromagnetic energy from the scene) that 1s corrupted in some manner
(perhaps. by random noise). It is then desired to introduce & guantitive
measure of what the received signal conveys about the transmitted sig-
nal. This is the special scope of the subject of information theory.
The birth of the field may be said to be, of course, in the work of
Shannon £S1]. There are voluminous references in the field with major
texts by Fano [F4] and Gallager [61]. The relation of received signal
to transmitted signal 1is described in information theory by the concept
of average (mutual) information. Loosely speaking, the average informa-
tion 1n the received signal about the transmited signal may be said to
be the reduction in uncertainty about the transmitted signal that is ob-

tained from the received signal.
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Application of the concept of average information to the study of
some parameters of multispectral scanner systems is pursued in some de-
tail in this research. It is thought that this gives insight into the
study of the relative utility of different spectral bands to be used in
scanner systems for observation of spectral scenes. Further, utlization
of information theoretic concepts can be used to study the effects of
noise disturbances on the cbservation of spectral scenes. The develop-
ment of the information theoretic concepts is the topic of Chapter II.

The computation of average information in spectral data received at
the mul tispectral scanner about an observed spectral scene is not
Wwithout difficulties. A method to circumvent the necessity of solving
some rather intractable equations is described in Chapter II. Also,
methods for digital computation of average information are developed in
Chapter I1. These computation procedures require that models for the
spectral response of a scene be developed.

Chapter III contains the development of the techniques used to con-
struct models for spectral scenes. Several approaches té construction
of the models could be pursued. Most of the approaches are studied in
terms of the system identification problem. Saridis has done extensive
work on stochastic approximation methods for systems identification
[s51, [s861, and [S71. The stochastic approximation techniques have the
advantages of being relatively easily implemented and having great gen-
erality. Maximum likelihood identification technigues have also been
extensively used. The references by Kashyap and Rao [K3J, and Kashyap
[Ké] give good dicussions of the maximum like!ihood identification tech~

nique. The maximum [ikelihood techniques are used in Chapter III to
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develop techniques for constructing models for spectral scenes. Con-
cepts from the area generally known as time series analysis are also
developed for use in construction of models for spectral scenes. Box
and Jenkins [B1], Anderson [A4]1, and Kashyap and Rao [K3] are good re-
ferences for time series analysis and its application to construction of
dynamic models from empirical data. Also discussed 1s a Bayesian iden-
tification techniqhe for models of spectral scenes. This technique is
an adaptation of a method described by Kashyap and Rao [K3] to the
present work.

A criterion for selecting one of several hypothesized models for a
spectral scene is discussed in Chapter III. Further, once a candidate
model for a spectral scene has been selected, the question of the vali-
dity of the model remains. Validation techniques for testing candidate
models for spectral scenes are also discussed in Chapter III.

Chapter IV uses the model construction techniques developed in
Chapter I1II on empirical data from actual scene types that may be obser-
ved by a multispectral scanner system for remote sensing of agricul tural
scenes. The empirical data consists of two vegetative scene types. To
demonstrate the model construction technigque on a scene of a single
vegetation type, a wheat scene is considered. A set of empirical data
made up of several vegetation types is used to demonstrate the model
construction techniques on a more general vegetative scene. The empiri-
cal data sets are divided into several spectral bands for two reasons.
First, most multispectral scanner systems tend to be designed around
different sensors for different spectral bands. Second, it is thought

that better models of the spectral scenes can be obtained by considering
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several bands-in the spectral region of interest than if only one model
is constructed for the entire spectral region (approximately .45 to 2.4
um for the present case) under consideration. Severa! models are hy-
pothesized for each band and the parameters characterizing each are
identified using the maximum {ikel thood technique. Candidate‘mod?ls are
then selected using the selection criterion developed in Chaper 11I.
Finally, candidate models are validated using the techniques developed
in Chapter III.

In Chapter V a simple application of the computation of average in-
formation as developed in Chapter II is carried out using the models‘for
the spectral response developed in Chapter IV. This application is in-
tended to demonstrate how the average information computation can he
used to select a subset of spectral bands. Also it is demonstrated that
average information can be used to study such parameters as signal-to-
noise properties in different spectral bands. The relation of average
information to spectral bandwidth is implicit in the discussion.

Chapter VI is devoted to conclusions about the research and

thoughts for extension of the research.
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Chap%er II

Information Theoretic Approach

1. Introduction

In this chapter, information theory concepts are developed for use
in the study of spectral scenes. The basis for this study is the manner
in which the spectral resaﬁnse 1s considered. The spectral response for
several observations of the same variety of vegetation exhibits random
variation about a mean spectral response at each wavelength. Thus a ma-
jor consideration for representation of a spectral scene 1s the ability
to adequately meodel its inherent randomness. Another consideration is
analytical tractability. Hence, 1t is reasonable to consider the spec-
tral response of a scene as a sample function of a portion of a random
process in wavelength. That is, the spectral response is given by s(}),
where s(x)¢S and 13[}1,Aé]. The-ensemble of sample functions for the
spectral response is S and [11;A2:| is the interval of wavelengths of in-
terest. It is not necessary to assume that the spectral random process
is stationary. In fact, it will be seen later that the spectral process
Will, in general, not be stationary. On the basis of empirical studies
by Fu, Landgrebe and Phillips [F1], a reasonable assumption on the sta-
tistics of the spectral process can be made. The spectral random pro-
cess will be assumed to be a gaussian process. The mean and variance of
the process wWill be apparent when models of the spectral process are
discussed in the next chapter. The gaussian assumption can also be jus-
tified from another point of view. When a multispectral scanner system
views a scene, it receives a signal from many sources in the field of

view. If it is assumed that the scanner system is observing many in-
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dependent and identically distributed sources, then the central limit
theorem can be invoked to justify the assumed gaussian statistics. The
gaussian assumption is important in the analytical results of this

research.

2. Definition of Average Mutua! Informations

The signa! received by a multispectral scanner is assumed to con-
sist of the spectral signal for the scene, s(i), disturbed by a statis-
tically independent additive random process (noise). This noise process
consists of the disturbances in the spectral scene not attributable to
the vegetation under observation and random disturbances in the channel
between the scene and the muitispectral scanner. In the present
research these disturbances are all combined into one noise random pro-
cess in wavelength, n{)). The noise is also assumed to be a gaussian
random process. This assumption is made for the same reasons as for the
signal process. It 1s further assumed that the noise process, n(i), is
white. In the present context, white noise 1s a zero mean random pro-
cess with autocovariance given by

Ng

EnOntuw)] =5=8G - W, i1y <2u<a

AU, -1

where

EL+*]1 is the expectation operator,

§{(*) is the Dirac delta function.

Thus the spectra[ process received by the multispectral scanner is
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represented by

y(u)r = s(a) + n(x) , a 5[31,)\2] (2-23

It is not necessary that the noise be white. However, for purposes
‘of studying the bands of a mul tispectral scanner and their information
content, this assumption is sufficient. It is still possible to allow
the white noise to have a different spectral density level in each band.
The more general problem of mutual information in t%me continuous pro-=
cesses with non-white noise is considered by Huang [H11, [HZ21.

The problem to be considered first is to define, and later calcul a-
te, the average {(mutual) information in the process y()} about the pro-
cess s(p). First, however, it is necessary to state some basic and
well=known results from information theory concerning the average infor-
mation in one set of random varibles about another set of random varia-
bles.

The averge mutual information in & set of random variables

| <
|

= {v1, Vo, e, VN} about the set of random variables

U= {u1, Usy eeey UM} is defined by L[G1]

J. J. PU (u,v)
W,v = P (u,v) log dudv (2-3)
UV uy = Py.f‘q_)pvg_) —

where

PU (u,v) = joint density function -
= of the sets U and V
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Pylw

density function of the set U

Pv(g) density function of the set V

and.f and,f represent M-fald and N-fold integrals over all the possible
valdgé of %he members of the sets U and V.

Since the definitionm of average (mutust) nformation is known for
random variables, an intuitively pleasing approach is to represent the
spectral rarmdom processes in terms of ramdom variables and thus apply
the previously known definition. Th7s is the approach of Shannon [$1]
for the case of band. limited time functiorns and an infinite cdbservation
interval. It has been shown rigorously by Gelfand and Yaglom [G2] that
this approach lLeads to a valid definition of mutual information for time
continuous. processes under almost all condations.

Suppo;e that there exi1sts a set of random variables.

S = {81, Sys ..u} that uniquely determines and is uniquely determined
by s{a). Similarly suppose that there exists a set of random variables
Y = {y1,y2,...} that uniquely determines and is uniquely determined by
the portion of y{A) that contains s(i). Under the assumption of in-
deperidence of s{A) and n(x}, any portion of y(i) not represented by the
set Y is irrelevant to the calculation of the average information in
y(1) about s(x). Then it is reasonable to say that the average informa-
tion in Y about S is the same as the average information in y(1) about

s{1). Thus we make the following definition of the average mutual infor-

mation in the process y(1) about the process s(a).
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ItsCh), vy 2 1¢s,m (2-4)

That the average (mutual) information can indeed be defined in such
a manner merits some elaboration. A method to determine S and Y for
given s(a) and n(i) is needed. First consider such a representation for

o

s{x}. Assume that the process s{x) has a finite mean square value.

A}
[l

Let ¢ = {}ilx) ; i=1,2, ... ] be a complete orthonormal set of func~

That 1is

tions for.-the class of square integrable functions on [}1, Aé]. Then

s5(2) may be represented on the interval [}1, 1é] as

n
sOD = Ladame 20 800,00, A, Sa <, (2-6)
=

o

where l.1.m. is the limit in the mean defined by

]
Uin E[ (s = 2 sa,G0% 20, < <, 2-7)
n+o i=1
The random variable S; is defined by
22
s; = sts (2-8)
T
1

The details for such a representation may be found 1n such texts as [G1]

and CV13.
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Similarly for another set of complete orthonormal functions
91(1), ez(x), ees ON [}1, Aé] the received spectral process y(a) can

be represented as

n
y() = Laiume D20 oy, 80, A, < x <A * (2-9)
~ i 1—=—"="2
e =1
where
A
2
LY =f y(eGddy . (2-10
A
1

It is often convenient to choose the set {ei(x) ; =1, ... } 'to be the
same as the set {¢i ; i=1, ... }. In particular, this is true for white
noise disturbances.

Thus, if th? sets {¢i(x) ; i=1, ... T and {ei(k) ; i#1, ... 2} can
be determined, we have sets of random variables {s_i ; i=j,2,...} and
{yi ; i=1,2,...) that uniquely determine and are uniguely determined by
s(x) and y{)) respectively in the manner previously discussed. The com-
ptete orthonormal sets {¢i(x) ; i=1,2,... and {ei(x) ; i=1,2,...> will
be determined later in a manner that is relevant 'to writing an expres-
sion for average information for the processes s(i) and y(x) .

Hence, if we define
Sn =_{s1, Sos sess sn} (2-11)

and



- 14 -
n

Y = {y1, Yor enes yn} (2-12)

we can write from the basic definition of average (mutual) information

given 1n (2-3),

f p(Sn,Yn) '
I(Sn,Yn) = . .{ P(Sn,Yn)lOg W dsndYn (2-13)
nn

where p(Sn,Yn), p(Sn), and p(Yn) are the appropriate joint probability
density functions.

SinQe in general n will be countably infinite we write

1(5,Y) = lim I(Sn,Yn) . (2-14)
N+e

Thus we have an expression for I(s(x),y(x)). The complete mathematicai
details are given by Huang TH1] and Gelfand and Yaglom [G21.

The problem now at hand is to translate this definition into a form
that is useful for the current problem of determining the average infor-
mation in the received spectral process ;?;3 about the spectral scene

s{x). In the next section this problem is pursued.

3. CLalculation of Average Information

In this sectijon, appropriate sets of basis functions
{¢1(A), ¢2(A), ...} and {81(A), 92(1), ...} are defined. These basis
functions will, at least in principle, yield a calculation technigque for

average information. First consider the representation for s(i) ,
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L

"s5(y) = i s.4.Cx) 2y <x <A, (2-15)
j=p 17 -

-~ Note:- -For -notational -simplicity we "have thahgéd Trom’
n
t.i.m. E: si¢i(x) to ther above:
n+w 1=1
The-covariance function of s{(i) is defined as

Ks(x,u«) = E[s(2)s(u)] A, Ue [11,l2]: (2=16)

and it is straightforward to show that [P1, p. 431]
K20,u < KK Cusu) (2=17)
g " = Tg Mg .

Since we-have- restricted ournseives to .processes with finite mean sguare
value, 1t-fol!lows- that

A 2

Ao A

2 A,2+ 2 + 2»

S 7 Kawddu < E':[s m]cn <e (2-18)
11 ).1 .\:] '

That 1s, the processes under consaderation' al so- have' square. 1ntedgrable
covariance functions: Since we are dealing-with argaussian-random pro-
cess, a useful additional property that-is to be: reguired of the-basis-

functions is that the tefms s andts}; i#4, be uncorrelated: That is,
5.1 = a: &, (2-19
EE1SJ LY

where
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-

The usefulneg% of this reguirement will be seen later,

These are the classic requirements for the representation of a ran-—-
dom process in terms of a Karhunen-Loeve expansion {V¥1]1, {C1]. 1In this
expansion, the basis functions ¢j(A) are the eigenfunctions of the in-

tegral equation

X
2
aj¢j(x) =J: KS(A,u)¢j(u)du M <3 5_12 . (2-20)
1

The eigenvalues of the integral equation are the numbers

{ i =1, 2, ...} . O0f course, the eigenfunctions

a.
1,

{¢j(x), 3 =1, 2, ...} have the required orthdnormality property

22

j' .6, Xd 2 = 6,, . (2-21)
i j ij
2
Another property 1s that the sum of the eigenvalues is the average ener-
gy of the precess s(3}. That is,
Y
2 2

E ST = D) a

. . (2-22)
11 i=1 3

Since it is assumed that s(a) is from a gaussian random process, the un—
correl ated random variables {Si, i=1, 2, ...} are also statistically in-
dependent. This property is used later.

Now consider the generation of appropriate basis functions

{ei(x), i=1, 2, ...} for representation of the received spectral process

y(2). Since it is assumed that y()) is of the form
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yd =800 + 0k, A <a X, (2-23)

e
where s(3) 'and n()) are statisticalkly.independent, we can write the 'co-

variance function of y(A) as

K (opu) =K G,u) + K (a,u), A, < azu < (2=24)
Y s n

Since it is assumed also that n(x) 1s gaussian white noise, its covari-

N

ance function,

N
ey = @ e -
Kn(l,u) 2—-5(1 u) (2~25)
is not square integrable.. Ift'is necessary to consider the ramifications

of this for the selection of the basis functions {ei(l) ;o i=1,2,...).

r

Consider first the use of Kﬁ(k;u) as a8 kernel for the integral'equation

(2-20).
2Ny
25850 =_j; > SG-wesuddu, ag.<2 <A (2-26)
1
or
Na
ajejcx) =5 Bj(A) Ay 2 <2y . (2-27)

The implication 1s that equation (2-26) is satisfied for any set of
N
orthonormal basis functions with corresponding eigenvalues aj = 52.

This result is & direct consequence of the fact that K QU is a delta
function. Hence, we.may just as well use eJ(x) = ¢j(1) to represent the

received process y(x). We need to make the following clarification

‘here. From Mercer's theorem 'LV1, p. 181] we need a complete:orthonormal
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set {¢j(x); i=1,2,...} to represen£ the covariance fuqction of the white
noise. If Ks(x,u) is not positive definite, the eigenfunctions
{¢j(1), i=1,4..3 Wwill not form a complete orthonormal set EV1, p. 1811.
In this case the eigenfunctions can be augmented by a sufficient addi-
tional number of orthogonal functions to form a complete orthonormal
set. The importance of obtaining a complete orthonormal set ié that
such a set can be used to expand any deterministic square integrable
function. The necessity for assuring ourselves that {¢j(x); 11,2,
is complete will be clear later. We can be content with the assurance
that eve; if Ks(x,u) is not positive definite, we can still obtain a set
{¢J(A); j=1,2,...} that is complete.

Thus, the integral equation that defines the eigenfunctions and

eigenvalues for y(a) is

A2
b.é.(a) =f K ,ué. (wdu
i%j 9 y j

A2
No
=f {Ks(;\,u) + 5 G(A—u):lcb.(u)du
M ]

Ng 2
=526, +j;L KgOuWasWdu, Xy < <hy (2728)
1
If we use
"o
b, = a, -
[ =yt 2-29

we have the original integral equation (2-20) again. The implication is
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that we may represent the received process with the eigenfunctions
N
{¢j(l); j=1,2,...2 and the eigenvalues {ai + ?g" j=1,2,...}. That is,
we may write

yO) = 2 y.e (), A SA <, (2-30)
j=1 11 — _

(l.1.m. is implicit here).

Hence, y{(1) is represented by gaussian random variables
{y1; i=1,... .} that are uncorrelated and thus statistically indepen-
dent. The correlation of Ys and Yo i,j =1,2,... 1ds given by

No
E[y,iyj] = (o, + =D 5., . (2-31)

The process y(i) uniquely determines Y = {yﬁ, Yor .+»et. By using the
eigenfunctions {¢j(k); j=1,...} we have a unique representation of that
portion of y(1) in the signal space of s(A). By the independence pro-
perty of average information, the port?aﬁ_of y{1) not In the signal spa-
ce of s(i) is 1rrelevant to the average information in y()) about s(x).
Thus, we-have achieved the goa! of representing the processes s(i) and
y(2) by uniquely defined sets of random variablés {si i=1,2,...} and

’

{yi i=1,2,...¥. These sets of random variables are now used to write
rd

-

an appropriate expression for average information.
The covariance matrix for the random variables {Si; 1=1,2,...} is a
diagonal matrix with the i1th dragonal element given by E[%i] = a..

Simitarly, the covariance matrix for the random varvables

{y1; i=1,2,...} is diagonal with the ith diagonal element given by
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N L]
E[%i] = a; t igu Also since we noted that the noise process n{i) could

be represented by {¢1(1); i=1,2,...}, we can define a set of random
varibles for the noise that have a diagonal covariance matrix with the

N
. . 2l _ 0
1th diagonal element given by EEyJ = -

It s fairly easy to show that a set of gaussian random variables

{y, = s + n., i1,2,...}, have average information about the set of

, gaussian random variables {s,.l i=1,2,...} given by [S1, Theorem 161

’

1 det Cy

where Cy and Cn are the covariance matrices of {yi; i=1,2,...+ and

N
— 0 x> * - -
{ni =5 i=1,2,...} respectively. Since Cy and Cn are diagonal, we

can write
o ND
det C = (a + =) (2-33)
=y iI=I‘I B
and
o NO
det C_ = I:I = . (2-34)
1=1
Thus, we can write
det C wa
Y _ 2 _
ot € - I:.[ (1 +-N—aj) . (2-3%
n 3= 0

Hence, the average information can be written as: -



g & Zaj
1(s,V) = _Z log}1 + o= . (2-36)
j=1 0

The average information 1s now written 1n a form such that calcula~
tion may be carried out in principle. Furthermore, the average informa-
tion can be approximated by using only the first n largest eigenvalues
in the summation. This 1s reminiscent of the feature selection probtem
in pattern recognition. Thus average information might be useful as a
feature selection criterion.

The present formulation of the average information offers insight
but still is not in an easily calculable form. The next section is con-
cerned with deriving a more useful formulation for the average'(mutual)
information. This form witl also offer more dnsight into the idea of

using average information to study parameters of multispectral scanners.

4. The Relation Between Average Information and the Wiener-Hopf Optimum

Filter Problem

This section will show the relationship between the average infor-
mation in the received process y(i) about the spectral process s(ix) and
the Wiener-Hopf optimum filter problem. As 1s well known, the Wiener-
Hopf optimum filter gives the optimum (in the mean-square sense) linear
estimate of a process that is corrupted by an 1ndependent, additive
noise process. In terms of the spectral processes of immediate concern,

we observe

1]

y(x) = s(x) + n(x) , g X< . (2-37)

We then pass the spectral process % (1) through a linear filter to obtain
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an optimal estimate 8()) of s()). This estimation technique may be

described by the equation

)y
500 = [ hGuwyde, Ay <a < (2-38)
A
1

where h{x,u) is the impulse response of the optimal filter such that

x

E[(s(l) - §(A))§] is minimized. It 1s straightforward to show LV1, p.
198-2041 that under our assumptions concerning the spectral processes

y(x) and s(i) the optimum filter must satisfy

A
2 N

_r Ks(u,v)h(k,v)dv + ég hia,u) = Ks(x,u), 11.5 A<

uF! A < U<

> (2-39)
2

N
where Ks(x,u) 15 the covariance function of s{i) and Zg-is the spectral

level of the noise process. This above relation is a form of the famous
Wiener-Hopf equation.

It is now possible to put h(x,u’ in a form that is convenient to
show its relation to average information. Since the eigenfunctions

{¢i(A), i=1,2,...} form a complete orthonormal set, it is possible to

write h(x,u) in a series expansion of the form

hGuw) = 20 hoa (e tw,  x <a <, - (2-40)

i=1
A1<u<A2

From Mercer's theorem CV1, p. 1811 we can write
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<

K ) = i; a;6. MWe W, A <au L, (2-41)

Substitute (2-40) and (2-41) into (2-39) to obtain

by
N o 2 kel o0
0 5 h.o. e, (w +f Y oale (We (W) 2L hue. (4, (Vv
-

=1 0 i v v B A i 1=1 i3 i

Lau]

= 1§] ai¢1(1)¢i(u) . (2-42)

Using the orthonormal 1ty property ©of the eigenfunctions, the above equa-

tion can.be rewritten as

oo vN w
0 . _
; hoGa + =) 4 (e (W = ; a 5,006, (W . (2-43)
i=1 i=1
1t is seen that if
2,
h-'l = mﬁa 1=112r-.-- (2-44)
a, + > .

then the equality of equation (2-43) 1s evident. Hence, expand h(x,u)

in a series as

= a

= 1 :
hix,w ;é% N ;A9 (W, PRSP WP P
+

a; t Ao CUS<A,

. (2-43)

This representation of ‘h(3,u) is found to be wseful In relating the

Wiener filter impulse response to the average nformation 1n y(i} about
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s(y7.

We first manipul ate some of the basic equations into a useful form.

The equations to be considered are reproduced below for easy reference.

J’-‘z .
aj¢j(h) = Ks(x,u)¢j(u)du , A

: 1S <, (2-20)
1
P
o2
oo =1 2-21)
)\1 -
3 2a,
I(s,Y) = T 2. log {1 +-—lil . (2-36)
i=1 No

Note that in (2-21), Ay = xq + 2 since our major interest is 1n the

spectral response interval § = ), - lT‘ The first manipulation is the

P
differentiation of I(5,Y) with respect to &. This is

o

dI¢s,y) _ 1 3~ d_ 2
SEeT L dz["’g(“ N aj’}

-—

i= 0

o da
1 2 -1 2 ]
7 L U+gan =l

i= No 0

—_—

or
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g1s,v) _ 1 Y | Mo ¢?
.Y .1 i (2-46)
dL 2 ._ 2
]—1 1 + =— a.
NO' j
L. .

da.
From the above equation it is seen that an expression for Bil'is needed.

In-order to obtain this derivative, first multaply both sides of (2-20)

by ¢j(k)and integrate over the interval Ek1, AT’ + %].. This gives

A+ PG 2 B 52
" 1 1
ad . Cwa =l |f k G,uwe duls I (2-47)
AT A . S ] )
1 1

and using the normalization criterion (2-21) we obtain

A+

1 Ayth
a = K GLwe (Wdube . 0dr . (2-48)
] l1 x1 s ] 3

Now take the derivative of (2-48) wath respect to 2 .

da S 1A
1.1
ai f"‘l [ KS(A,A1+9.)¢J.().1+£)+

Mtk a¢](u)
+ j; K ,u) —35— du ] RS
]

Xqts
+1‘A1 [ Ks(a1+m,u)¢j(x1+1) +



....26_

fl,t‘".?, ad:].(l)
+ . . (2-49)
A Ks(a,u) n dx } ¢](u)du

This can be simplified to give

daj f)\1+2.
T 2¢j(11+£) v KS(A1+£,U)¢j(U)dU

Ag R ALt 3.0
1 1 i -
+ 2f11 [fh KS(A,u)cpj(u)duJ 3 dx . (2-507

We now make the observation that equation (2-20) can be written as

+
1\12
A

a.¢,(,+) =J.
iti 1

KS(A1+L,u)¢j(u)du . (2-51)

Using equations (2-51) and (2-20) n (2-50Q) we obtain

da

i- 2
a2 2aj¢j(x1+£?

36. )

5z da . (2-52)

AatL
1
+ 2a. .
al,r)UI ¢1(A)

A simplification of the integral expression on the right hand side of
(2-52) is still needed. A useful expression may be obtained from the
normal ization expression (2-21). Differentiate (2-21) with respect to

L.
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A.te
d 1% o _ .
@, 4 (dr =0 (2-53)
or
At 34 .
= 42 A j e
0 = 850 + 2,/'*1 0,00 —L— a (2-5%)

The i1ntegral term in (2-54) is the same as 1n (2-52). Hence, using

(2-54) 1n (2-529% we obtain

da

3 - 2 . 2‘ . -
TR Zajﬁj(k1+£) aj¢j(k1+£) t2~55)
or
da. >
Hil'z 3,07 (A #a) . (2-56)

da
This is the expression for HEL that is needed in equation (2-46). Mak-—

ing the appropriate substitution we obtain

di(s,y) _ 1 )3 p 1J
N T 5 . (2-57)
j=1 (1 + — a.)
NU ]

Now compare this expression with the expression obtained for the Wiener
optimal filter response (2-45). It is clear that the relation between

(2-45) and (2-57) 1s

dI:(E’Y) - ‘}' . h(k1+2, l1+2) . (2-58)

Thus 1t 1s seen that since & varies from 0 to o Aq we may make a sim-
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plifying change of variables and write

1G5,1) = %fif hGx,\0dh - (2-59)

Thus we have a simple relationship between the average information
in y(1) about s(i) and the Wiener optimum %1lter. The exprédssion h{x,A)
1s the weighting that should 'be given to y(1) at wavelength i in order
to obtain the optimum mean-square estimate of s{(a) at wavelength iA. It
is i1nteresting that there 1s a relationship between the mean—-square es-
timation of s(x) from the observation y(1) and the expression for
average information as simple as the one given above.

There are, however, major drawbacks in the relations just derived.
The first major problem 1s that the covariance function Ks(a,u) must be
known in order to solve the Wiener-Hopf equation in an analytical man-
ner. In general the covariance function of a spectral scene is not
known in analytical form. An estimate of the covariance function can be
made, but this estimate may not be 1n a useful amalytical form and may
not be p051t3ve definite. Furthermore, estimation errors may add to the
difficulties of discerning a useful analytic form for Ks(A,u). The
second major problem lies 1n actually solving the Wiener-Hopf equation
even under the assumption that a functional form for KS(A,u) is known.
1f the spectral processes are stationary and posess rational power spec~
tral densities, then the Wiener-Hopf equation can be solved. However,
stationarity cannot ~=css ~az far -

arily ke

-
aztrzl

(11

s

w
u

o
w

-

=

th

5.

in

- o olapeult -3

The solution of the Weiner~Hopf equation for nonstationary covariance

functions is considerably more difficult.



- 29 -

5. Computation Considerations

The above considerations indicate that & more useful technique for
determination of the Wiener filter impulse response 15 needed. A tech-
nique that is useful for this computation may be found by examining the
relationship betueen Wiener filter theory and Kalman filter theory.
These twe theofies are really different viewpoints of the same probiem.
0f the two, Kalman filtering offers much more computational capability.
The relationship between Wiener and Kalman filter theory was shown by
Kalman and Bucy [K11 and Kalman EK2].

Since the purpose of this section is to study computation techni-
ques for average information, and computation 1s most easily carried out
in discrete form, we shall first recast the previous expressions in a
discrete formulation. That 1s, We shatl study the problem in terms of
discrete wavelenygths rather than continuous wavelengths. Thus, the

spectral process

y(x) = s +n(n) x1_i x < Ay
is written as
y(k) = sCk) + nCk) ké[x1, 12] (2-60)

where k is an integer corresponding to a discrete wavelength in the

wavelength interval of interest. The white noise process n{i) then

becomes a sequence, nfk), of independent, identicaily distributed zero
N

. . - 0
mean gaussian random variables with variance 5= Next, consider the

description of the spectral process s{(1). Sihce We have assumed that

s{x) 1s a gaussian random process, a reasonable model for s(i) is a
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linear dynamic system driven by an independent gaussian random process.
That s, the process s(i) is assumed to be described by a linear vector

state variable form. The |linear vector state variable form is written

as:
s = A s(u) + Buwd) (2-61)
vhere
s1(1{
sz(x)
s =
s ()
n
L, J

and 51(1), 52(1), wunes sn(x) are the state variables. More discussion

of the state variables is given later.

A is an (n x n) matrix

4 -
-d-'i" 31()\)
d
E; 32(1)
- _ d - -
s —Ei_g_(x) = |,
d
HI Sn(l)
L J

B is an n x 1 matrix
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w{X) = an independent gaussian random process

n is order of the state variable system.

The concepts of state and state variable formulations may be reviewed in
Schwartz and Friedland [S2, Chapt. 21l. Kalman [K2], and Schwartz and
Friedland [$2, p. 125-1271 also indicate the manner n which a system
given by (2-61) may be written as a discrete-time dynamic system. By

analogy the discrete form of the spectral process s{d) is given as:

3(k+1) = gg(k) + Tw(k) ks[x,l, }2] (2-462)
where
731(|<+1)"
820k+1)
stk+l) = .
Sn0k¥1)

¢ is an {n x n) matrix.

T 1s an (n x 1) vector.

wik) = a discrete inependent gaussian random process with zero
mean and variance Vw(k060k~j)

k is an integer that corresponds to a discrete wavelength
»a{}1, Aé]. With this representation for s{k) we can write the discrete

form for y(a) as



..32..

y(k) = #s(k) + nCk) k'e[x,l, 12] (2-63)

where

ﬂfg(k)

i

s(k) is the relationship between the state variable for-
mulation and the spectral response s()) for the ) that
corresponds to k.

This discrete form for representing the spectral processes 1S much
more amenable to digita! computation than the Wiener-Hopf form. It
should be recalled that the solution of the Wisner-Hopf equation vyields
the optimum (in the minimum mean-square sense) filter for the estimate

8(x) of s(a). The estimate thus may be written

<a < (2-64)

300 =f§1 hCy,wyuwdy, A , -
The Kalman-Bucy estimation equations c¢an be derived from (2-64).
Furthermore, the same equations can be derived using other techniques.
Thus the equivalence of the Wiener-Hopf techniques and the Kalman-Bucy
techniques have been firmly established. The reader is referred to Sage
and Melsa LS3, Chapter 71 for details. 1In addition, the complete Kalman

filter algorithm is included in Appendix I for reference. In these

derivations, it is a matter of course to obtain the equation for h(i,x)

as

ALY =V Q) ¢ H - _R_"1m (2-65)

3

where
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500 = s - 50V (2-66)
v o) =-Var[§(x)] = Var[_g(x) - _§_(A)] (2-67)
5
and
ROV = Var[nOY] . (2-68)

In -the present research,.R()) 1s a scalar. TheKalman filter algorithms

provide a natural and efficient technique for the computation of the es-

timation error variance !;(x). The aligorithms given above are the same
s

for the discrete case when the appropriate substitutions are made in the

relevant variables. The results are-given below

ROk, = Vo (k. = B+ RTT(K (2-69)

|

where

< A < ALY

kedla: l..l < <A,

are- integers correspondang to discrete wavelengths of jnterest.

5K = s~ 5K (2-70)
Y0 = var{300] = var[sto ~ 300] 2-71)
S - i

and
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RCk) = var[n(k)] . (2-72)

It shoutd be noted that h(k,k) 1s in vector form to conform with
the state variable models used in the Kalman filter algorithm. The re-
lationship between h(k, k) and h(k,k) can be discerned from the state
variable signal model. This topic will be covered in more detai! in
Chapter III which 15 concerned with modelling the spectral process.

Thus we are able to use Kalman filtering techniques to compute
h(k,k) and hence average information. The average information in y{i)

about s(y) is given by

15,Y) = ;— hek, k) (2-73)
ks[)ul, AZ

The Kalman fitter computation technique has several advantages over
the Wiener-Hopf approach. The most obvious advantage is the digital
computer compatibility of the Kalman filter technique. The Wiener-Hopf
equation is easily solved in only those cases for which the analytical
form of Ks(x,u) is fairly simple. For other cases, solution of the
Wiener~Hopf equation ranges from difficult to extremely difficult to
solve. The second advantage is that 1t is not necessary to have expli-
c1t knowledge of the form of Ks(x,u) in order to use Kalman filtering
techniques. This obviates the need for estimation of Ks(l,u). Another
advantage is that n(k) need not be "samples” of a white noise process.
It is possible to use noi1se models that have a {inear dynamic structure.

Thus, noise models with nonwhite power spectral densities may be im—

plemented.
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The majer remaining question is the method by which the signal
model §ﬂ£+1) is obtained. Specifically, 1t 1s necessary to obtain the
matrix ¢ and the vector T . 1f the spectral process s{i) is stationary
and has a rational pbwer Speciral dénsity; then-g_éhd I_ﬁay Be‘aeéér-
-mined from knowledge of KS(A,U) V1, pp. 516-5261. In many physical si-
tuations KS(A,U) 1s not known. The parameters ¢ and I must then be e;-
timated from whatever empirical data 1s at hand. This is a problem
which -has been studied extensively in the ar;a of system identification.
The use of these techniques for modelling the spectral process s(0} (and

hence s(x}) 1s the topic of concern for Chapter III. Thus we will leave

this problem for later consideration.

6. Further'cons1derat1on_gi the Relation Between Average Information

13

and Optimum Mean-Square Filtering

In this section, the relationship of optimum mean-square filtering
to average information is considered 1n a somewhaé more direct manner
than in the previous sections. The formulations are in the state varia-
ble viewpoint in order to be consistent with the final approach to
average information computation 1n the previous section. We shall
specifically be concerned with showing that the estimate 8(k) of s(k)

given by

HOE E[_s_k/Yk] (2-74)

where
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—<
il

K {y(k) : RE{}1, Aé]} (2-75)

the observed‘spectral process.

!

15 the estimate such that the average information in §(k) about

s(k), I(s(k), S(k)) is maximized. Then since

st = Hs(k) (2-76)

and

149)

K5k (2-77)

we have the estimate §(k) of s(k) that maximizes the average information
I(s(k), 5¢k)).

The estimate §(k) 15 a natural result of the Kalman filtering tech-
nige. Thus, a by-product of the computation for I(S,Y) is the estimate
5(k) .

In order to demonstrate the above statements, it is first necessary
to develop some intermediate results. We first show that the average

information between the estimate 5(k) and the estimation error

SCk) = sCk) - 8(k) is zero. That is,

I(8(k), (k) =0 . (2-78)

Now I(5(k), Exk)) =0 if and only if §(k) and Exk) are statistically
independent [G1, p. 241. But, based on our initial definitions and as-
sumptions, §(k) and E}k) = s(kd - (k) are gaussian random variables.

Hence, it is sufficient to observe that §(k) and Eﬁk) are uncorrelated.
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This is easily seen from

E[E(k)T_s:(k):‘ = E[E[_’s;ck)T/vk]gcm] (2-79)
However,
E[‘g’ckﬂ/vk] = E[(E(k)T - §_(k)T)/Yk]
= E[E(k)T/Yk] -zl =0 .
Hence

E[_r}_‘(k)Té(k)] =0 .

Thus Eﬂk) and §(k} are uncorrelated and hence independent. Therefore,
1t 15 clear that (2-78) 1s true.

Next, some entropy relations are needed. The relations to be shown

are

1]

H(s(k)/8(Kk)) = H(S(KI/ECK)) = H(ES (kM . (2-80)

il

First consider the random variables Z = s(k) - §(k) and W = 8(k). The

density function PLH(EJE) 15 to be determined in terms of the density

function Psg(g(k[i(k)). It is easily shown [P1, p. 2041 that

p(s(k) ~ 3(k), 3Ck)) = P, (z,w) =

= p's_gcyi,i) = Pgglstio, 3Lk (2-81)

Thus, since 5(k) = s(k) = §(k) we can write
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p(sCk) - §C(Kk)Y, § (k)

p(s(k),5(k})

= p(S(k), 5(k)) . (2-82)
So we have \
p{s(k)/§(k)) = p(S(k)/5(k))
and hence
H(s(k)/8C(k)) = H(E(k>/8(k)) . (2-83>

Now we have previously shown that
I(8Ck), SCk)) = 0 (2-78)
Hence
0 = 1(8Ck), Sk = YF () - H{é(k){g(k))
or
. H(S(k)) = H(S (k) /5Ck)) . (2-84)
Now, we can write the average information I(s(k), §Ck}) as
I¢sCk), §Ck)) = H(s(k)) - H(s(k)/58(k)) . (2-85)
But using (2-83) and (2-84) in (2-85) we have
I(s(k), 5¢k)) = H(s(k)) - H{(S(k) . (2-86)

This is a very useful result. It shows that the average information in

the estimate 8(k) of the state s(k) of the spectral process is directly
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related to the entropy of the estimation error Ekk) = s(k) - 5. Sin-

ce for a given observation the state s(k) is fixed, it is clear that to
|

maximmize I(s(k), §(k)) it is sufficient to minamize H(g(k)l.

Now since Eﬁk) 1s gaussian, it is straightforward to compute the

entropy H(S(kK)) as

HEE®)) = + log(2re)"]

5 (2-872

i

where

1Pl = det[ﬁ[’_‘s_’(k)f(k)]] . ‘

Hence 1t is clear that to minimize H(S(k)) it is sufficient to minimize
Ek' Tomita, Omatu and Soeda [T1] show directly that this is accom-
plished by the Kalman filter technique. It is sufficient for our pur-
poses to note that we already have used the Kalman filter algorithm and
it 1s knouwn [S83, Chapter 71 that it gives the minimum error variance es-
timate for our case of assumed gaussian statistics.

Thus, it is seen that the Kalman filter algorithm produces an es-
timate §(k) of the spectral response s(k) that is optimum in terms of
average information. The optimum mean square estimate &(k) is thus a
natural by=-product that is consistent with the concept of using average
information to study parameters of mul tispectral scanners.

In conclusion, this chapter develops the notion of average informa-
tion in the received spectral process y(A) about the reflectan;e spec-

tral process s(A). Furthermore, a technique for computation of average

information has been developed. The relationship between optimum mean
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square estimation and average information for the current problem is

also shoun,
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Chapter 111

Model Identification, Selection, and Validation Techniques

1. Introduction

This chapter is concerned with finding analytical models that ade-
guately represent the spectral response process of scenes observed by
mul tispectral scanners. A major requirement for the models is compati-
bit ity with the computational %technigques discussed in the previcus chap-
ter.. Specifically, we are 1nterested in obtaining the necessary
parameters to represent the models 1n the state variable forms discussed
1 Chapter II. In Chapter I, the division of the reflectance spectrat
response into bands 1s discussed. The technique for constructing models
must, therefore, be sensitive to different characteristics of the spec~
tral response process in different -spectral bands. Hence, the techni-
ques developea in this chapter are motivated by the above constraints.

very useful techniques for model construction can be drawn from the
subject area generally known as time series analysis. References for
time series analysis are numerous with major works by Anderson [A4], Box
and Jenkins [81], and Kashyap and Rao [K3J}. The reference to time is
generally a misnomer in that time nerely represents an indexing varia-
ble. We shall, of course, use wavelength as our indexing variable. We
first discuss the models that are used 1n this.research to represent

spectral response process of scenes.
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2. PModels Used to Represent Spectral Scenes.,

Recall that the spectral response of a scene 15 being considered as
a por%1on of a realization of a stochastic process 1n wavelength. Thus,
the form of the models used must reflect this consideraion. The models
consddered In this research are stochastic difference equations having a

general form given by

@1 - m2
SCk) = >0 a stk=1) + 2, b plk=3) + w(k) (3-1)
T ] . ]
1=1 j=1
where
149 1s the spectral response at the discrete wavelenth k. It
1s gaussian with mean and variance determined by the parti-
cular structure of (3-1).
wik) 18 a zero mean independent gaussian disturbance with vari-

ance p.

p{k=-1) 15 a deterministic trend term used to account for certain
characteristics of the empirical data. An example is
p{k=13=1.0, which could be used to account for a nonzero

mean 1n w(k).
a_ and bJ are unknown constant coefficients to be determined.

m1 and m2 are constants that determine the dependence of S(k) on
preceeding values of the process.
Thus the dymamic nmature of the‘spectral process S(k) 1s expressed in

/
terms of 1s own values at lower wavelengths, some possible deterministic
1
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characteristics, :and a gaussian independent disturbance. This model
formulation though somewhat restricted 1s sufficient for the purposes of
this research.

For completeness, we shall now introduce some asumptions on the
model given by (3-1). Since (3-1) rep}esents a linear system, it is
ful ly described by its second order stat}st1cal properties. The coeffi-
cients aj and bj are said to be 1dentifiable 1f they can be determined
from a semi-infinite set of observations {5(k); 1 < k < =} such that the
differencé equation (3-1) uniquely describes the second order properties
of the observéd process S{k). We shall now state some assumptions that
are necessary and sufficient condifioés for the identifiability of the

coefficients aj and bJ. The question of i1dentifiability is covered 1n

detail by Kashyap and Rao [K3, Chap. 43. The assumptions that are used

i this research are listed below.

Assumptions

1Y wlk), k=1,2,... is a sequence of zero mean 1dentically distribu-
ted, independent gaussian random variables with variance p. wWw(k) is
independent of S$(k-j) for all j > 1.

2) Define the unit delay operator b by:

Dy (k)

It

y(k:-'l) .

then (3-1) can be written as

mi .
str|1 - 3 a0 =
SETRNEN

The assumption is that all the zeros of the expression

bjw(k-j} + wik) . (3-2)

|
AMR
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m1 .
ACDY =1 = 37 5.0
i=1
lie outside the unit circle 1n the complex plane. This assumption
gives assurance that (3-1) is asymptotically covariance stationary.
The relation of this assumption to covariance stationarity is ex-
plored 1n detail by Box and Jenkins [B1, chap. 3].

Suppose we have several trend terms denoted bylwi(k),i=1,2,...£.

Represent these trend terms by the vector

$CK = Ty €k, a0, (OTT
. g Y T
Then the assumption 1s LIZ N-?é% pIpk)  exists and is positive
definite. This assumption gives assurance that the coefficients of
most trend terms can be identified. Note, however, that this as-
sumption is 1nvalid for the useful linear trend ¢{k)=k. Therefore,

a weaker assumption that follows from the above may be useful.

The vector of trend terms obeys

xr 9 2
2, 2 Cagpi (kNS = e (3-3)
k=1 1=1

for nonzero o = Eu1,a2,...a2]T . The notation used in (3-3) means
that the summation diverges. It 31s now demonstrated that (3-3) fol-

lows from assumption 3. Consider first

13 T
Lim = 20 2(kath) =
Neo ™ k=1

ORIGINAL PAGE IS
OF POOR QUALITY
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- N -
N N 1
1 2 1 = Y, k(K
y k; ¥ (K , ﬁ:é:-, by (R, ) e, NS TN
N
N 1 ,
1 3 v (k2 yeurs N Z; L AATALY
2 k=1
k=1
= [1m
N+

12“*: 2
—_ v (k)

Each of the diagonal terms in the above matrix is obviously positive.

Hence, by the assumption and the above comment,

and bounded. Thus for each 1, there exists a Bi > 0, such that

1 N
l'llﬂﬁg 'I .

9
Now consider 2: 2: (aiwi(k))z. There 15 at least one i such that
. k=1 1=1
a1§b¢0. Hence,

@ %
2
P (aizpi(k)) > Z bw xR .

1=1 k=1

=

—

But since
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7 N 2
limﬁ}:q;i(k) = B,
N-+eo k=1
we have
N 2
l1m Z; ¢1(k) = w
N+ k=1
Hence,
2 < 2
b z: wi(k) = e
k=1

and the desired relation is shoun.

These assmptions witl not be mentioned again unless specific need
arises.

We shall now list some types of models that are used in the present
research. The first type of model 1s known as the autoregressive model
of order mi. It is defined by
mi

S5(k) =

a. S(k-3) + w(k) . (3-4)
=1

A second type of model 1s found to be useful for the case of

nonzero mean for w(k). Thi1s model, called the autoregressive plus con-

-~

stant trend model of order m1, 15 given by

3
puify

Sk = . 3, S+ 0w (3-5)
)=1

Note that C corresponds to the coefficient 2f the trend term
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vik=1) = 1.0.

The third model type n1s useful n representing a nonstationary pro—
cess LK3, Chap. 3]. This model 13s in the class of integrated autore-
gressive models of order m1. WHe shall have occasion to use two cases of

this model. The first and more common case is given by

mi
vSCk) = D, a
i=1

j ¥S(k=1) + w(k) (3-6)

where
vS5(k) = s(ky - s(k-1) .

The second case of the integrated autoregressive models that will be

used is given by

1
VES(k) = ﬁi a v.5(k~-7) + w(k) (3-7>
=1 1¢

where
st(k) = S¢(k) -~ S(k-2) .

These models are shown in the next chapter to give good fits to the
spectral response processes under consideration. The models are also
easily placed in state variable form. It 1s recalled from the previous
chapter that this form 1s useful in the computational technique used to
obtain the average information 1n the received spectral process about
the spectral response process of the scene. An example for placing: one

of the above models (3-4) 1n state variable form may be useful.
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Exampl e

Assume that a spectral response is modeled as a third order
autoregressive process.

s(ky) = a1S(k-1) + a2 S(k-2) + a3s(k—3) + wik}

befine the state variables

S1Ck) = S5(k-2)

SZ(k) = 5(k-1)

53(k) = 5(k) = a153(k—1) + azsz(k-1) + a381(k-1) + wik)

Then we can write in vector and matrix form

-81('0 0 1 0 -S,I(k—"l)_ 0
500 = |50 lo o 1 s,¢k=11 _+ o] wto
5500 %3 %2 2 556D !
= o S(k=1) + rw(k)
and
S(k) = [0 0 135(k) = H'S(k) .

We shall next consider techhiques for estmmating the wunknown coef-

ficients in (3-1).

3. Estimation Techniques

The estimation technigues that wil! be used for the model! types

discussed 1n the previous section will have two main properties. First,
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the form of the estimators depends on the.assumed gaussian nature of
'w{k). The second major property is that the estimation technique must
be amenable to computational procedures. That is, it is desired that
the estiqation algorithm be in a recursive computational form,

Two related estimation techniques are d1scussed: The farst techni-
que is maximum {1kelihood estimation which does not depend on prior
‘knowl edge of the parameters. The second technique considered is Bayesi-
an estimation in which prior knowledge about the parameters may be 1n-
corﬁorated. The techniques will be shown to produce similar algorithms
for computation.

We shall begin with some preliminary manipul ations that are useful
in discussing both estimation techniques. Equation (3-1) 1is recast 1n

the following more compact form.

SCk) = 27 (k=1)g + w(k) (3-8)
where
- ; ""31 i
S (k=12 )
S (k-m1) %m
2R =y , 0= b, i
p Ck=m2)
- - bm2
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We shall assume that at wavelength k = N, we have-accumulated the fol-

lowing data.

S XN BN ., SEP, TS0, LSS S-EYY T T T TSy

e’ e——————— o
)(,1 XZ

X1 1s the portion of the data set from which the estimates are construc-
ted. Xz is the portion of the data that initializes the dynamics of the
spectral response process. Furthermore, let § be the true parameters of

the model and let p be the variance of w(k).

A) Maximum Likelihood Estimation

The observations X{(N) contain the only empirical data from which
we can estimate the parameters g and o. The probability density func-
tion of the observations is needed to obtain the estimation scheme.

This probabil ity deﬁs1ty can be written as

PCXCN))Y = pCSIND ,uue., SC-m1D)
= pCSINY/SN=1), o2, S(=m1)) e p(S =1/ SAN=2) , va ., SC-m1 D)

*eraep(SCD /S0 ..., 50-m1)) «p(SCD) ,...,SC(-m1)) 3-10)

The l1kelirhood principlte states that the estimates of the
ﬂ/paraﬁ€teﬁsﬁ@~and‘bvare’fﬁ@”ﬁa+ues~of—the&parameters that maximize the
probabil ity density function p(X{N)). This estimate 15 ¢alled the full
info}matﬁon maximum likelihood estimate (FIML) by Kasﬁyap and Rao. [X3,

Chap. 61. However, the probability density function p(s(0),...s(:m1))
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is usually edither unknown or in a ;orm that renders (3-10) too complica~
ted to be useful. Thus, the densaty function p(s(0),...,5(-m1}), which
represents the effects of the initial observations, will be ignored in
this estimation technique. If a large number of observations are
ava1lable,"1t is reasonable to expect that‘these initial observations
will not be of overriding influence. If the maximum likelzhood estima~
tion techniques are applied to the remaining terms of (3-10), we obtain
the estimates called conditional maximum likelihood (CML) estimates by
Kashyap and Rao [K3, Chap. 6]. The so-calted CML estimation techniques
are used in this research.

Due to the initial assumption of the normal ity of w(k), we can wri-

te for each of the conditional probabil ity densities in (3-1)

. 2
P(S(3)/5C5=1), .., 5C-m1)) = —— exp-5 SUITL G71I0) G-11)
VE °
Hence, since we are now only concerned with the contributions of the

conditional probabili1ty density functions in (3-10), we can write as our

like!l ithood function

N
LCoyp,X(NY) = JI pCsCk)|stk=1),...,5(-m1))
k=1
or
-3 T 2
Lo, p, X)) = (2ap) exp[—} 5 (S‘k"zp(k'”“’] (3-12)
k=1

Since we are considering conditional maximum |ikel ihood estimates, the



- 52_.—

. * .
optimum estimates Qf and , of g and , are those values that maximize
the likel1hood function L(8,p,X(N)). Equivalently, the logarithm of the

l iketihood function may be maximized. That is, maximize

L1 (8,0, X(ND) = LogLCe,p,XM)) =

nJ

N T2
= SNog(2rp) —% [):’, (s (k) Zp(k ”9)} (3-13)
k=1

First obtain the estimate for § by taking the partial derivative of

L1Qg,p,X(N)) with respect to g to obtain

)

=2z Z(S(k)-—ZT(k ~129) (SCKI-Z' (k=1)g)
8 B

-1| & . T
=5 DS Z(k=1)- 20 2(k-1)Z (k~1)g| = O

k=1 k=1

and equate to zero.

Thus the estimate becomes

. N T -1 N
8 ) = 13 2k-1Z" (k=1) Do ZCk=1)8(k) . (3-14)
k=1 k=1

N . . *
Next, differentiate (3-13) with respect to p to obtain the estimate o .

aLq (2, 0/X ()

-l M
ap T2

Z (s(n-2T k=192 = 0

+

v

1.
20

or
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*

N
> (st -2 (k=12)° (3-15)
k=1

-—

*
p(N)“ﬁ'

Since we wish to estimate p from the observations above, it is necessary
aL1 3L1

to solve the equations for e and P jointly to obtain

= P

o =

Z|

N
3o -2 (k=126")2 (3-16)
k=1

1f the second partial derivatives of the tikelihood function are taken
with respect to @ and p, 1t is seen that Ef and p* satisfy the optimal 1~
ty criterion.

For our purposes, 1t is sufficient that the elements of the matrix
in (3~14) be linearly ‘independent in k to insure that the inverse ex—
ists. This is true of all the model structures used in this research.
Kashyap and Rao LK3, Chap. 4] give a more detaited account of the condi-
tion under which the inverse in (3~14) exists. Kashyap and Rao [K3,
Chap. 4] also demonstrate the asymptotic consistency in the mean sguare
sense of the eét]mators 0*(N) and p*(N).

| Furthermore, Kashyap and Rao [K3, Chap. 4] show that the asymptotic

. * .
mean and covariance of the estimate g (N) are given by

ELo* (N> /6,01 = 6 + 0]— (3-17)
9 tNI/8 L r O

where

O)C(X)+K+‘Uasx+0,

and
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. N . -1 1
CovEg (N} /8,0 = plE| 2, ZCk=-12" (k=1) + ol (3-18)
k=1

o(x)

+ 0 as x » 0.

It is also shown by Kashyap and Rao EK3, Chap. 41 that the estimator has
asymptotically minimum variance and is asymptotically equal to the
Cramer~Rao lower bound on the estimation variance.

Next we demonstrate a recursive algorithm for the computation of
the estimate gf(N) in (3=14). The algorithm el iminates the necessity of
computing the inverse matrix each time a new observation is made. This

gives a large reduction n computational load.

Let us write

N -1
POD = | 30 2¢k=12" Ck=1) . (3-19)
k=1
Then
- _ T T
PN = 3T ZCk-1Z' (k=1) + ZN-1IZ (N-T)
k=1
or
-1 _ -1 T
PO = PON-DT + ZN-DZ D (3-20)

Now apply the matrix inversion lemma (Sage and Melsa [S3, pp. 499-500]

and given in Appendix II)} to (3-18) to obtain
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PN) = ch-1)-g(N-1>_z_(N—1)[1+f(u-1)gcn—1 )E(N—n]'“f(rm )P N=1)

Qr

PIN-1)Z(N=1)ZT (N-1DP(N=1)

PO = PN-T) - > ‘
142" (N-DP (N=T1) ZN=1)

. (3-21)

Thus (3-21) gives a recursive expression for P(N). This expression is
useful in the derdivation of a recursive algorithm for the estimate

6 (N). First write (3-14) in the form

N
YN = PO DS ZCk-1SCK) . (3-22)
. k=1

I

Then

5

N=1
8 () g(m[Zg(k-nS(k) +£(N-1)S(N)}

k=1

N-1
PN D5 Z(k=1ISCk) + PODZN-1)S(N) .
k=1

4]

But from the form of (3-22) we can write
e (N) = EﬁN)E}N-1)71gf(N-1) + PINJZIN-TISINDY . (3-23)

Now inserting the expression for P(N) from (3-21) into the first term on

the right hand side of (3-23) we ohtain



_56..

1 T
1427 (N=1DP (N=1) Z(N-1)

+ PO ZN-TISG)

or simplifying

PIN-1)Z(N=1)Z T (N-1) 0™ (N-1)

oI = gt (N-1) - -
1421 (N=1)P (N-1) Z(N-1)

+

+ PADZN-1ISN) . (3-24)

Consider the last expression on the right—hand side of (3-24). We can

write from (3-21)

PAN-1)Z(N-1)2" (N=1)P (N-1)Z(N-1)
1+ (N-1)P(N-12 Z(N-1)

PODZN-1) = PIN-1IZ(N-1) -

or

P(N~-1)Z(N-1)

PUDZN-1) = —— -
1421 (N=1)P (N=1) Z(N-1)

. (3-25)

substitute (3-25) 1nto the last expression 1n (3-24) and we obtain

PIN~1)Z(N-1)

1427 (N=1)P (N=1) Z(N-1)

8T = g IN-1) + [scm)-—f(m—ng*m—n] .

Now 1t is clear that the coefficient of the second term is-identical to

(3-25) so that we can finally write
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0¥ = gFu-) _P_(N)_Z_(N-‘l)[S(N)—_Z_T(N-'l)&*(N—‘l)] . (3-26)

The above equation along with

PIN-1)Z(N-1) 2T (N-1)P(N-1)
142 (N=1)P(N-1) Z(N-1)

PN) = PN-1)~ (3-21)

constitute the recursive algorithm for the estimate e*(N). For initié—
tion of the algorithm, one can use an arbitrary (but reasonable) vector
gf(D) and a positive-definite matrix P(0).

Thus we have shown the form of the maximuum |ikelihood estimators
e* and p*- In the next section, w; shall consider an estimation techni-
que that will allow use of prior knowledge of the parameters to be es-

timated.

B) Bayesian Estimation

In addition to the previously mentioned abil ity to consider a
prieri knowledge of the parameters, Bayesian estimation differs from
max imum 1ikelihood techniques 1n another aspect. This aspect is the in-
corporation of the loss function which is a measure of the consequence
of the error in the estimate of the parameters. The optimum Bayesian
estimate minimi1zes the expected value of the loss function (called the
risk function). The loss function most commonly used for engineering

work is the quadratic loss function

It is well known [K31, CS33, [vild, CR11, CF2] that the optimum estimate

of 8 under the quadratic loss criterion is given by
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o (N = E[p/XN] . (3-27)

That is, Qf(N) is the mean of the posterior density of & given the ob-
servations X{NJ). With a few preliminary assumptions, a form for the es-

timate gf(N) is derived. These assumptions are:

b1) The prior distribution of s is normal with mean 8y and covari-

ance matrix Pye-
b2) p is the variance of w(k).

b3) plg/x;) = ple), which insures that g consists of coefficients
of a difference equation that are independent of initial con-
ditions X,.
Using these assumptions we can derive the posterior density of g given

the observations X{(NJ).

Assertion

The posterior density p(g/X(N)) is normal with mean
(N = PN ZN:Z(k-ﬂs(k) + p1 (3-28)
SR =0 %0
and variance P(N)p where

N -
PAN) = k;yk—nyk«n + Py (3-29
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Demonstration

The assertion is demonstrated by examination and manipulation of

relevant density functions. We have by assumption

and
w(k) ~ NCO,P)

for all k. The posterior density of 5 given X(N) 1s

o PGRLXMN)) _ p(X(N)/3)p(s) _
PCa/X(N)) = LEoemrls ST . (3-30)

Consider the first expression in the numerator of (3-30).

p(X{N)/8) = p(S(N),...5(1), S(0)...S5(-m1)/9)

e e
e ™

X X

1 2

This can be written as

PX(N)/8) = P(SINI/SIN=1),...5(1)),X,,8)

p(S(N-1)lS(N*Z),...S(1),X2,§)°

PPPTLICIC PV S PRTIC VS FOTE-I0 PO R

But from (3-8) we can write

p(S(k)/S(k-1),...,S(1),X2&g) =
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=—-l——exp[i(s(k)-£—r(k-1)§_)2:| :

Vi

The second term in the numerator of (3-30) is

1 -1

= oxnl Y tamn yp 1V eam
ple) = 1/2“""[2;,(i 8g) By Lo ﬁo’]
(Znnlfo|)

The denominator of (3-30) can be written as

PIXIND) = p(X,X,) = plX, /X5)p(X,)

Now 1t is noted that pCX1/X2) does not depend on g. It does depend on
8y ED’ g, and gT(k-1). Therefore, p(X1/X2) can 'only take on the signi-
ficance of a normalization factor for the posterior density. This pro-
perty will greatly simplify the necessary manipul ations.

Hence, we can write the posterior density (3-30):from the above re-~

lations as

TP

p(a/XN)) = 1 ——1——ex'p[-£l(8(k)—£T(k*1)§)2]
k=1 2p

. 1 “Yeocs 1077 -
773 exp[?‘;-(i_e_o ) Py (p__e_OJ:I
EanifOIJ
w1
DZX1/X2) '

Collecting all normalization factors as a single term we. can write
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N
- -1 S P 2
p(g/X{N)) = K1expl22;|:k2=1 (5CkI=-Z (k=13g)

+ nggo)Tf;1(§fg0?}}.

The exponent of (3-31) can be written as

- N
2—1[ (s2k)=22T (k=1)gS (k) + g Z(k-1DZ (k=1Dg)
K

=1 -

$ +-§.TE'.511_ ZQTP 8 +£{1]'|351§0:|.

Rearrange and label some terms to give the exponent as

k=1

e et

N
-% [g[zym )_;_T(k-1)+ga1]§_

PN

N 1 To-1 -1
- 2T (k=18 +o P T PN [P (ND
2 Eg%__ 18 ¢k +aP " [P B 0

—_— W —

N
2 T, -1
+ k=§:18 (k) + 8Py go] .

(3-31)

From the expressions labeled as fﬂN}—1 and gf(N)T above, we see that in

order to '"complete the square,

term

1t is necessary to add and subtract the
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N

. _
T erm -1 =1 —yepsT
[{Zg (k=128 (k) g7 ]ﬂ(n):l_P_(N) [gcmLz SR Z(k=1)4Py ﬁoﬂ .

k=1 =1

[ — ) g

When the operation of "completing the square" is carfiéd out, the ex-
traneous terms. do not depend on 8. Theréfore, they also Cohtributé to
the normal ization factor previously mentioned. Thesé manipulations give

the exponent as

Iil-l:cfi*m)ﬂg(m* (i-i*mn]

where
N = PN %sck)zck-nw‘"" ; (3-28)
LA =B & £ g 85
and
N T
PINY = | D Z2¢k=13Z" (k~1)+P . (3-29)
- k=1 -0

Thus the exponent i5 of Gaus§ian form. Thé normalizing factof K, 8
computed from P(N) by

1

K, = — - o where @ = m1 + m2 -

The determinant |P(NY| cari be computed as fdllows

N _
P! = 3= Z¢k-Dztk=DT 4 B
- k=1
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PON-DTT + 2D ZN-1T

P(N-1)"1l:l + gcu-uyn—nguqﬂ] .
So
PIN) = l:; + g(N-1)_z_(N~1)‘_z_(N-1>T]'1_F’_‘(N-1)

It is relatively straight forward to show that C[F3, p.40]

[P (N=1) |
Tp(N-1)Z(N-1 >:|

{P(N)] =
L? + ZIN-1)

We note that this is a recursive relation with

- -1
P = [_1_+ Py yo)gcm] Py

and

Hence, we can write

N

[P(NY]| =

IT U + Z-DTP=122¢k=1))
=1 - o -

Hence, the normal ization factor K1 is given by

(3-32)

(3-33)
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172

- _
T ¢+ 2Gk=1 TP Z¢=10
k=1

K = ZHDIEOI - (3-34)

__L__ — - . . o

Thus the assertion is demonstrated.

The Bayesian esfimate gf(N) may be placed 1n a recursive form that
is similar to that formulated for the conditional maximum likelihood
(CML) estimator. In fact, the derivation of the recursive form of the
Bayesian estimator is exactly the same as for the recursive form of the
maximun | 1kel 1hood estimator. The major difference 1n the two estima-
tion schemes |ies in the manner with which the initial values of the es-
timate gf are chosen. In the Bayesian. technigue we can use .our
knowl edge (or assumption) of the.prior density function. Hence, logical

initial values would be

(@ (3-35)

i

and

PO = P, (3-36

These 1nitial values along with equations (3-26) and (3-271) constitute
the recursive Bayesian estimation scheme. ,

To summarize, we have two similar estimation schemes which give es-
timates of the parameter vector g based on the observation of the spec-
tral process S(kﬁ, k=1, ..., N. The technique presented thus far 1s
clear. The hypothesized models determane whach parameters.are to be es-
timated. These parameters are then estimated by one of the above tech-

niques.
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The guestion now arises as to what criterion 15 to be used to
select a model to represent a spectral! process. Thus, we next consider
a method for selecting a model from the hypothesized models for the

spectral response.

4. A Model Selection Criterion

We begin the discussion of the model selection criterion by de-
fining a class of models. Recall that we are dealing with models that

can be written as
Sk = 27 Ck=1)g + wlk) (3-8)

A class of models is defined by Kashyap and Rao [K3, p. 181] as the tri-
ple (f, H, @) where f is the stochastic difference equation (3-8), H is
the range of values for-g and @ is the range of values for p. A member
of the class (f, H, @) is written (f, 8, o). The parameter H is defined
such that every element of one of its members is nonzero. This means,
for example, that AR(1) models are in a different class then AR(Z)
models. The classes are said to be nonoverlapping. Thus, given several
nonoverlapping classes and the empirical data set X = {S(1),....5(\)3,
the problem is to select the class which most likely produced the empir-
ical data.

The decision rule for choosing a class of models selected is
derived from statistical likeljhood concepts. These methods are develo-
ped by Kashyap and Rao [K3, p. 183-1881. A different approach that pro-
duces essentially the same decision rule is developed by Akaike [A1],

LA2], EA3]1. The methods of Kashyap and Rao are followed here. The
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selection criterion is designed to select from the hypothesized classes
that class which gives the maximum likelihood of producing the given em-
pirical observations. Suppose that the empirical data X came from a
model (f, 8y, e’ where 4 = (8p - é) 1s unknown. Let the prababil ity
density function of X be given by p(X,QO). Furthermore, assume that
p(xtgo) is a known function of X and oq- Then the log-iikelihood func—

tion of p(X,$,) is given in terms of X alone by the following theorem.
&)

Theorem (Kashyap and Rao)
Let if be the maximum likelihood estimate of 4 based on the empir—

1cal observation set X. Then

ECLn(pCX, 8,00 /8] =
=L+ ED0C [y - 671177673 (3-37)
where
*
L=2nplX,p) - n¢ (3-38)
and
n¢ = the dimension of b

The proof of this theorem is given in Kashyap and Rao [K3, p. 1841 and
will not be reproduced here. L is regarded as an approximation of
zn(p(x,io)), the tog-likelihood of the class C with the empirical data
X.

This theorem suggests the decision rule:
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a) For every class of models C; i=1,... 2, find the maxinum
r
. . * . T
likelthood estimate b, of boi @ssuming 5 eH, using the empiri-
cal data X. Compute the class of log-tikeiahood functions L_i

as

*
L. = en{pX, Eq)) -n, (3-39)

where n. is the dwmension of 857 T {go ).

17 Poj

b} Select the clésslwhich gives the maximum value of L_i among
{Li; 11,00 e, 8}
This decision rule is relatively easy to use and allows the samul taneous
comparison of several classes of models.

Next, we simplify the form of L in (3-39)} for the model types used

n this research. The log-likelihood function is given by

anp(X,e7) = enpCSIN) ... S+ /S ..., 5C1) 67

+ gnp(Sm1),...S(1),6™) . (3-40)

Consider the first term on the right side of (3-40). From (3-8) we can

write

-t
il

RApCSINY , o e ST+ /S 1), 0 e, 801 ,47)

N
an| T pCSRNI/Sk=1),...,8¢k=-n1),47)
k=m1+1
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N
| TT —— exp|Z(s -2l (k=1257)2
k=m1+1 * 2
210

N
nre™ - 2 Y -z k-15M7 . (3-41)

*

2p  k=m1+1

_ (N-m1)
2

But recall from (3-15) that the maximum likelihood estimate of p is

given here by

N
* 1 T 2
b T RTT E (SCkY-Z (k-1)g) - (3-42)
N=m k=m1+1 =

Hence (3-41) can be wraitten

-(N-m1) % 1
I = ———-2—-—— y,n(an ) - -?(N"Hﬂ) . (3-43)

Now consider the second term on the right side of (3-40). Let us ap-
proximate p(S(m-1),...S(1),if) by considering $(m1),...5(1) as indepen-

dent Gaussian random variables with zero mean and variance Pg- Thus

2np(s(m1), ..., 513,34

m1
wn| JT p(sCk))
k=1

ﬂi pnp(Sk))

k=1

i
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LS

= 1 3 (k)2 (3-44)
== wn zﬂps) - -zp—s-k; S .

Sa combining €3:43) and (3-44) we can wWrite

1L = [—%mp*-m‘!]

a
N mi [Ps| N1 1 &2
+ | = % gn2g - x—gh|—| ~ = + |31 - — 5(k) } =
[,7 o H Z 1‘{ °s K=
t Lb S
=L 4L (3=45)

It is noted that since in general m1<<N, the term corresponding to Lb
will not vary significantly from class to class when compared to the
variation in the term corresponding to La. Thus, for comparing. classes,
it is‘sufficient to use the simplified form La in the decision rule,

Let us now discuss the significance of the various terms in the expres-

sion

L, = -%ancp*) - ml . (3-46)

The znp* term is a measure of the goodness of fit of the model with. the
estimated parameters to the empirical data. The influence of the number
of empirical data points is reflected in N. Finally, the m1 term acts
to oppose the selection of increasingly complex models. This is a quan-

titative methed of incorporating the principle of parsimony in model
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selction. Parsimoﬁ} in model construction is a reflection of the intel-
tectually appealing notion that a simple, but adequate, explanation of a
physical process is superior to a more complex explanation. Kashyap and
- -~ ~Rao- [K3, p. 185, 214-2161, Kashyap [K&1, ahd Box and Jenkins [B1, pp.
17-181 further discuss the 1dea of parsimony.
Hence, we have a model selection criterioﬂ that is analyticaly

tractable and applicable to all the model types used in this research.

Further, this selection c¢riterion has intuitively pleasing properties.

5. Validation of Models

The procedure for constructing models for the spectral processes
from the empirical data is straight forward. First, the parameters for
the hypothesized classes of models are estimated. Then the selection
criterion developed in the prevdious section 1s used to choose the best
fitting model for the spectral process. The question that remains is
how well the selected model represents the empirical data. Specifical-
ly, if the model has a certain weakness, then knowledge of the we;kness
can be used to judge whether the model 1is appropriate for the empirical
data. The selected model may also be judged on the basis of whether the
initial assumptions used to formulate the class are valid. The study of
these topics constitutes the subject of model validation. If the selec-
ted model fails these tests, then perhaps another class of models should
be considered. If the selected ﬁodel passes the validation tests, then
it is said that the model is valid for representing the empirical data.

However, 1t is possible that a class of models other than those hy-

pothesized may give a better fit to the empirical data. Thus validation

*
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L4

of a selecte& mode! should not be considered as an absolutely definitive
statement. Two approaches to validation are used.

The first set of validation tests check the initial assumptions
used in constructing the model. The selected model is used withthe em~
pirical da?a to implement these tests. The assumptions to be tested are

{see equation (3-8)):
1) the noise w(k) is zero mean with ceonstant variance o,
2) w(k) is independent of w(j) for k # j and S(k~j), j > 1,

3) periodicitics in the empirical data are adequately modeled.
To conduct these tests, we will use the residual sequence obtained from

the selected model and the empirical data. This residual sequence is
T *
X(k) = s¢k) = Z (k-Nsg , k=1,...,N . (3-47)

Thus we are using the empirical data and the selected model to estimate
the noise sequence w(k). The tests using the data generated by (3-47)
are called residual tests.

The second set of val idation tests determines whether some relevant
staistical characteristics of simulated data generated by the model are
adequately close to the statistical characteristics of the empirical da~
ta. We will be mainly concerned with two tests:

a)’ Comparison of correlograms

b)Y Comparison of periodograms
If the selected model is to be used to produce synthetic data, then it
may be useful to affirm that the synthetic data have the same trend or

other features as the empirical data. Since we are interested in the
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model for other reasons (1.e., to aid in the computation of average in-
formation), we will be concerned onty with the tests of the correlogram
and periodograms.

Next we consider in detail the tests mentioned above. We begin

with the resadual tests.

A) Restidual Tests

Test 1 - Zero Mean Test

The first test will be for the assumption that w(k), k=1, ..., N,
has zero mean. We can recast this in a hypothesis testing context. The

hypotheses can be written

Hoeo Xk wik)

0
Hyt o %G

]

8 + wlkd

where w(k) is a sequence of independent identically distributed gaussian
random variables with zero mean and variance p, p » 0 . The alternate
hypothesis H1 has g ¥ 0, == €< g € ». It is well known {(see Roussas LR1,
pp. 292-2931) that, in this case, the uniformly most powerful test for

zero mean (as the null hypothesis} is given by

[t<x)| < ng- accept Hy (3-48)

| tCx) | > ngs reject Ho

where

tlx) = (3-49)
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x|

It
==
Dq:z

x (k) (3-50)
k=1
and
N
~ o1 Y- -
p_mkzzj‘f (x(k) - . (3-51)

t(x) is the Student's t-distribution with N-1 degrees of freedom and

hence ny is chosen such that
PClt(xd] < nOIHD) =1 -«

where o is the ltevel of significance, which 1s defined as the probabili-
ty of rejecting H0 when H0 is true. The level of significance is chosen
to reflect the degree of confidence we wish to place %n the null hy-
pothes1s. Thus, weshave an easily applied test for the zero mean as-

sumption.

Test 2 - Serial Independence Test

This is a test of the assumption that the sequence w(k), k=1,...,N
is serially independent. The test is discussed by Box and Jenkins [B1,
pp. 289-2931, Box and Pierce [B2J, and Kashyap and Rac [K3, pp.
209-2101. The test is a goodness of fit test. Since 1t is a goodness

of fit test, only the hypothesis
HO: x(k) = wik)

15 defined. The alternate hypothesis 1s the set of all other residual

mode{s. Note that HD 15 the same as the nuli hypothesis in test 1.
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That 1s, H0 15 the class of zero mean white noise residual models of
variance p. To implement the test, we define the covariance of the

residual data at lag k as

N
> x(HxG-k) . (3-52)

1
k N=k 1=k+1

The required test statistic is then

(3-53)

where n1 1s chosen to be 0.1N to 0.01IN dependang on the size of the em-
pirical data set. If the residual data set is as defined byrHD, then
n(x) is (approx1matély) chi-square (xz) distributed Wwith n1 degrees of

freedom. This gives the decision rule

alx) (< ng, accept Hy (3-54)
Z—"O’ reject HD

vwhere g is computed from
pln(xd 2—"DIH0) = a . (3-55)

and o 1s the level of significance of the test.
Thus, we "have a test which examines the goodness of fit of the co-
variances taken as a whole. Furthermore, the test is easily implemented

on the computer.
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.

TJest 3 - Cumu}ative Periodogram Test

The cumulative periodogram test is designed to check for the
presence of nonrandom periodic components. In our mode! construction
technigque, 1t is assumed that deterministic periodic components in fhe
empirical data will be accounted for by an appropriate deterministic
trend term. Hence, we are 1interested in degécting any significant resi=-
dual perjodicities so that we can adjust our models if necessary.

This test is described by Bartlett [B3] based on arguments from
stochastic random walk theory and by Box and Jenkins [B1, pp. 294-297]
on the basis of similarity with the Koimogorov—shirnov tests for distri-
bution functions {see Hoel [H3, pp. 324-3271).

We consider the equation

Cn/23

x(k) = (o cosy.k + 8. s k) + wit) (3-56)
= ) ! ) j

where

and

This equation obviously represents the possibility of periodic com-
penents 1in the residual data. It is noted that 1f the frequencies

5 =‘§ﬁl.are considered, then the frequencies oN- T 2a(1-3}/N are

w
redundant if phase 1nformation is not considered. It will be seen that

phase 1nformation is not considered here. Hence, the hypotheses under
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consideration are

HO: ®x(k) = wik)
H1: at least one of the components (3-57>

as. Bj 3 =T, wuns EH is nonzero

This test 15 performed differently than the' previous two™tests., First

compute

1

,e k=1, ..., Eﬂ (3~-58)

where

22% 20 [ 2
vS = 15 ¥ k(K cosy. k| + |S )Nj x(k)sing. k| . (3-59)
1IN “3 N =1 Y3

If x(k) = w{k), a p{ot of gL”vs_ k- would: ber scattered' about™ a- straight

line between the points. (0,0) and (0.5;.1.0). The® probability that the
cumul ative periodogram lies'between‘liﬂgﬁ.parailel to‘Fhe'line between

(0,0) and (.5, 1.0) at distanCES’i11¥[ég is' given by (seet Kashyap and

“®

Rao [K3, p. 2081

2:’ (—1)Jexp{-212j2} .

i

The parameter ) is 1.36 for 0.95 probability and 1.63 for 0.99 praobabil-
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itvy.

Now even if the model is correct, the residuals will not be exactly
white since the parameters were estimated from a finite data set.
However, the cumulative periodogram will tend to indicate those boundary
crossings that are random and those that are due to gross model defi-
ciencies. If the boundary crossing are due to model inaccuracies, the
deviations will tend to be large and constitute a considerable portion
of the cumulative periodogram. Conversely, if the deviations are small
and occur over a small portion of the domain of the cumulative periodo-
gram, they might be attributable to randomness in the residuals.

Hence, the decision procedure is

1) plot the cumulative periodogram and the boundaries.
2) if the plot is within the boundaries accept HO.

3 if the plot crosses the boundaries either

al) reject H0

or

b 1f the boundary crossings are not gross consider other
characteristics (i.e., examine plots of simulated and
empirical data) to determine whether to reject HD'

Thus we have a fairly easily implemented test for nonrandom pericdici-
ties 1n the residual data.
This completes the descriptions of the residual tests used in this

research. The tests are all easily implemented on a computer and are

straight forward.
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B) Tests of Statistical Characteristics

r

Test 4 - Correlogram Test

_ . This test is-designed to -compare the FGtGcovafiance functions of
the empirical data and syhthetic data generated from the fitted model.
Thér technique of comparison of correlorams is discussed by  Kashyap and
Rao K3, pp. 211-212]1. The estwmate of the autocovariance functions

that are used in this test is given by

N
5 1 s _
RCK) = == 2. (S(§) -~ B(SG-Kk) - & k << N (3~60)
WK 2 ,
where
— 1 N
S=g 2 S .
i=1

This estimate is called the corellogram by Kashyap and Rao. Oppenheim
and Schafer [01, pp. 539-5411 show that the estimate is unbiased and the
variance is asymptotically zero (as N .w). Hence, the estimate is con-
sistent in the mean sguare sensé,

An estimate of the correlogram for thé fitted model can be obtained
by computing the average of the estimat; of R(k) giver by (3-60) over
several independent sets -of synthetic data. That is, the estimate of
the correlogram for the fitted model from J sets of synthetic data is

given by
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;4
w0 =1 2 R, o (3-61)

where

ﬁj(k) is the estimate given by (3-60) for the jth sequence

' 1

of synthetic data.

The standard deviation of the estimate given by (3-61) is
1 i: ) 5 172
Um(k) =7 (ﬁj(k) - RM(k)) (3-62)

The estimate of the correlogram for the empirical data is also computed
from (3-60) and 1s denoted R(K).

Kashyap and Rao suggest that if the following relationéhip is sa-
tisfied, the correlogram of empirical data can be regarded as adequately

fitting the correlogram of the synthetic data.
Ry(k) = 20, (k) < RCK) < Ry(k) + 20,CK), k=T, oorp N=T  (3-63)

However the variance of the estimate (3-60) becomes large as k ap~
proaches N (see Jenkins and Watts [J1, p. 1811 or Oppenheim and Schafer

[01, p. 5401). Therefore, the following relation is suggested.
RM(k) - ZaM(k) < R(K) f_RM(k) + ZOM(k), k << N. (3-64)

Usually k may be chosen to be approximately O0.IN. If the relation in
(3-64) is satisfied, then the correlogram of the empirical data can be
said to adequateiy fit the (estimated) theoretical correlogram of the

simul ated data.
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Thus, we have a method of comparing the autocovariances of the em—

pirical data and the synthetic data generated from the fitted model.

The periodogram test is a qual itative test to compare freguency
components of empirical and syntheSized data. The periodogra% has been
discussed as an estimate of the power spectrum by Oppenheim and Schaffer
L01, pp. 545-55431. However, as noted by Oppenheim and Schaffer, and
Bartlett [B3, pp. 274-2881, the estimate is biased and has a standard
deviation of the same order as the mean of the estimate. Hence, without
additional processing, the periodogram is not a particularly good es-
timate of the power spectfum. Therefore; it is not the intention of
thi1s test to produce an estimate of the power spectrum.

The periodogram is defined as

5 > N 2 T, N 2 :
v = S 2‘1, stideosy i + g 2% S5 sing, ] (3-65)
j= i=
where wy = 2£k

+

$(3> 1is either the empirical spectral process or the synthetic
spectral process generated from the fitted model.
A plot of the periodogram versus wy, for the empirical and the synthetic
data constitutes the test. If the periodogram of the synthetic data has
relative peaks at approximately the same frequgncies as the relative
peaks of the empirical data, then the fit 1s said to be adequate. It
must be said that this test is highly qualitative and will indicate only

gross defects 1n modeling any peridodicities in the empirical data.
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These five tests constitute ou; validation criteria for a selected
model. If a model successfdlly completes the tests, we will say that
the mode! has been validated. Once again, it must be stated that some
class of models other than those hypothesized may give a better fit to
the empirical data. Hence, the model validation cr{teria are useful

only in a relative sense.

6. Summary

In this chapter, we have developed some techniques for obta1ﬁ1ng
the state variable form models for use in the Kalman filter calculations
discussed in Chapter II. These calculations are then used to determine
average information 1n spectral bands. From these computations, an op-
timum (in terms of average information) subset of spectral bands is
chosen.

The model construction technique developed in this chapter is

listed below in a stepwise sequence.
7 Hypothesize several classes of models.

2) Identify (or estimate} the necessary parameters for each class
of modets from the empirical data using either maximum likel-

ihood or Bayesian estimation techniques.

3) Select a class of models using the likelthood selection cri-

terion.

4 Use the five validation tests to determine if the selected

model adequately fits the empirical data.
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The validation of a selected model 1s for a paticular set of empirical
data. The selected model 1is the best fitting model in a class of
models. The [ikel jhood selection criterion selects the most likely
class of models to represent the empirical data. In terms of this
research, the above may be interpreted as meaning that we do not state
that the validated model 1s the model for, say, wheat. Instead, we have
a class of models (i.e., second order autoregressive) that represents a
wheat scene in a spectral band.

Thus, a very flexible technique for constructing models of spectral

processes has been developed.
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Chapter IV

Application of Modeling Technigues

1. Introduction

This chapter demonstrates the application of the modeling tech-
niques developad in Chapter IIT to ampiricazl spectral response data.
The modeling techniques are shown for two empirical data sets for pur-
poses of comparison and demonstration that the techniques are applica-
ble to different spectral scene types.

The models develop2d are used 1n the noxt «chapter to demonstrate
the use of average information to choose subsets of spectral bands.

First, however, a description of the empirical data used mn this

research is given.

2. The Empirical Data

The data set for this research 1s chosen to exhibit several charac-
teristics. First, the data must be representative of the types of.
scenes observed by the multispectral scanner systems. Sscond, the data
set should be amenable to the techniques being pursued in this research.
Third, the data should be relatively free of artifacts that may be in-
troduced 1n the data collection process. Such datz s2ts are available
at the Purdue University Laboratory for Application of Remote Sensing
(LARSY. All of tha empirical data used In tﬁ1s research 1s gathered

with the Purdue/LARS Exotech 20C spactroradiometer [L1], and was col-
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lected from some test sites in Williams County, MNorth Dakota.
Two different sets of empirical data are used to demonstrate the

techniques developed in this research. The first set cansists of obser-

vations of wheat scenes and wag selected pramarily for two reasons.
First, it is desired to demonstrate the techniques for a scene that con-—
sists of a single type of vegetation . It 1s thought that this will
demonstrate the feasibility of using the developsd techniques to zanslyze
paramzters of a multispactral scamner system for observing a particular
scene type. Second, there 1s general interest {in observing the world
‘wheat crop. Reasons for observing the worlid wheat crop include estimat-
ing the world food supply :and detecting pathological conditions.

The second set of empirical data consists of several vegetation
scene types. Included in this second combinéd empirical data:set are
oats, barley, grass, alfalfa and’ failow fields. Use of this second set
of data provides insight in using the techniques developed in this
research to analyze parameters of a multaspectral scanner system for ob-
serving a more general scene. Also study of the sécond data set pro-
vides a comparison of results for two different data sets.

The data described above is available n 'the data library at the
Laboratory for Applications of Remote Sensing at” Purduz ‘Undversity. The
specific data wsed 1n this study 1s stored on data tape 3990, and each
observation is identified by its run number. ' The observations (run
numbers) used for the wheat data-are i1sted +in Table Iv-i. ‘Samitarly
the-observations used for %he .combined scene are listed in"Table IV-2.

The empirical data is subjected to some nitial processing o

- render it more useful for the «current study. First,-the data for the



Run Number

75769000
75769100
75769300
75769400
75769500
75769600
75768700

Run Number

75768400
75768500
75768600
75763700

Table IV-1.

Run Number

75769800
75769900
75770000
75770200
75770300
75770400
75770500

Table IV-2.

Run Number

75768800
75768900
75774100
75774200
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Run Number

75770600
75770700
75770800
75771000
75771100
75771200
75771300

Run Number

75774300
75774400
75774500
75774600

Wheat Scene Data Run Numbers

Run Number

75771400
75771500
75771700
75771800
75771900
75772000
75772100

Combined Scene Data Run Numbers

Run Number

75775700
75775800
75775900
75776100

Run Number
75772200
75774900
75775000
75775100
75775200
75775300
75775400

Run Number
75776200
75776300
75776400
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wheat is averagéd over the observations. That is, an ensemble average
for.each wavelength is taken. It is thought that the resultant average

spectral response provides a relatively good data set to demonstrate "the

techniques of this reséarch. The éverége spectral response for the
‘whaat data is shown in Figure IV-1. Similarly, an average spectral
response for the combined scene is taken. This average spectral
response may be considered as an average vegetation scene for the pur-
pose of this research. The average spectral response for the combined
data 1s shown in Figure IV-2. It 1s noticed in both Figures Iv-1 and
IV-2 that there are two data drop-outs at approximately 1.34 - 1.45 ni-
crometers {pm) and 1.82 - 1.96 um. These two data drop~outs are due to
atmospheric absorbtion of the incident and reflected electromagnetic
energy. Thus, these two spectral bands are not useful for the current
research.

In order that the study be carried out 1n a context that is rela-
tively realistic for multispectral scanners, the spectral response of
the two data sets ¥s divided into spectral bands. The division is rela~
tively arbitrary, but each spectral band must contain a sufficient num-
ber of data points to ensure fairly accurate parameter estgmation for
‘model identification as discussed in Chapter III. The spectral bands
for the wheat data are shown in Table IV-3. It has 'been noted previous-
dy that the gaps betwzen bands 7 and 8 and between bands 8 and ¢ are due
to atmospheric absorbtion of the incident and refiected spectral ener-
gy.‘ Similarly, spectral bands for the combined scene .are shown in Table
IV-4. Thus, the data sets and the spectral bands are defined for this

study. The next step is to identify models for the spectral bands de-
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Table IV-3. Spectra! Bands for Wheat Scene

Band Number Spectral Wavelength Interval
1 L4528 ~ (5380 um
2 L5380 - .6239 um
3 L6239 - 7097 um
4 L7097 - .8517 um
5 8517 - .9910 um
6 L9910 - 1.130 um
7 1.130 = 1.344 um
8 1.446 ~ 1,821 um
9 1.959 - 2.386 um

Table IV=4. Spectral Bands for Combined Scene

Band Number Spectral Wavelength Interval
1 L4565 = 5402 um
2 L5402 - 6246 ym
3 6266 - 7097 um
4 L7097 = 8481 um
S .8481 - 9850 um-
6 L9850 - 1.122 um
7 1.122 - 1.307 um
8 1.451 = 1.818 um
9 1.967 - 2.386 um



fined above.

3. Identified Models for the Empirical Data

Th1s section discusses the models identified for the specral baﬁds
of the two empirical data sets described in the preceding section . The
particutar identification technige used 15 the ma%imum likel ihood tech-
nigue discussed n Chapter II1I. This technique obviates the need for
assumptions about the prior density functions of the parameters. In-
stead, some arbitary (but reasonable) assumptions are made on the neces-
sary parameters needed to initiate the estimation (identification) al-
gorithm. A sample copy of a computer program that implements the ide&*
tification algorithm in FORTRAN can be found in Appendix III.

The discussion of the models identified for the two empirical data
sets is ordered by bands. It 1s thought that aside from being a logical
method of proceeding, this will provide a simple comparison of

corresponding spectral bands for the two empirical data sets.

A. Band‘l

From Tables IV-3 and IV-4 it is seen that this spectral band is in
the wavelength region of .4528 to .5402 um for the wheat data and .4565
to .5402 ym for the combined scene data. The model types identified for
the wheat scene are the autoregressive, autoregressive plus constant
trend, and the integrated autoregressive models. Hypothesized models up
to tenth order were identified. The results are tabulated in terms of
order and selection criterion as defined by (3-46) in Table IV-5. 0n
the basis of the selection c¢riterion, it is clear that the sixth order

autaregressive model 1is chosen. The residual variance is defined as the

L7
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variance of x(k) in equation (3-47) and can be considered as a measure
of the goodness of fit of the model. The residual variance for the
seliected sixth order autoregressive model is 1.26 x 10_3. Hence, the
model is judged to be a good fit to the empiricat data. The estimated
coefficients for the sixth order autoregressive model are given in Table
Iv-6.

There was some difficulty in validation of a model for band 1 of
the combined scene. Hence, the integrated autoregressivee model of the
second kind discussed in Chapter III was identified in addition to the
three model types identified for the wheat scene. Also higher order
models were identified for the combined scene. It is thought that the
more complicated models for band 1 of the combined scene are necessitat-
ed by the higher variability of the empirical data as seen in Figure
IV-2. The 1dentified hypothesized models are tabulated in terms of ord-
er and selection criterion in Table 1V-7. The model with the highest
gselection criterion that also passes all the validation tests is the
el eventh order integrated autoregressive model of the second kind. The
other models with higher selection criterion values could not pass the
serial independance test. Hence, we have an example of the ease with
which the systematic approach to identification of hypothesized models
developed in this research allows the examination of alternate models in
the event of the inadequacy of a candidate model. The residual variance
of the selected model 15 1.46 x 10-3 which is evidence of a good fit to
the empirical data for this model. The estimated coefficients for the
el eventh order integrated autoregressive model of the second kind are

given in Table IV-8.
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Table IV-5. 1identified Models for Band 1 of Wheat Scene

Selection Criterion

Order of Autoregressive Autoregressive Integrated
Modetl plus constant Autoregressive
trend
1 366.2 351.7 364.3
2 374.0 367.5 362.5
3 376.9 373.6 363.9
4 379.6 376 4 366.6
5 377.5 377.3 367.9
6 381.2 379.4 368.7
7 380.9 380.6 369.3
8 379.5 377.8 367.1
9 377.1 376.5 364.9
10 377.0 375.8 364.4

Table iv-6. Coefficients for Band 1 Selected Wheat Scene Model
Coefficient Estimated Value

.20828
- 16650
-16368
. 16533
14243
- 16945

w o o
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Table I1V-7. Identified Models for Band 1 of Combined Scene

Selection Criterion

Order of Autoregressive  Autoregressive Integrated Integrated
Model plus constant autoregressive autoregressive
_ e e eiw Arend- — - - - first-kind- - -second kind® T °
1 270.1 289.2 3141 2047
2 332.7 343.8 330.5 215.0
3 -350.7 350.0 331.9 325.3
A 351.2 351.5 331.1 326.0
5 350.4 351.6 331.9 328.7
6 346.6 247.9 330.6 330.5
7 342.9 346.5 330.7 228.3
8 340.5 343.5 329.0 334.3
9 339.7 348.2 350.2 352.2
10 346.5 256.4 348.5 352.40
11 354 .4 354.3 3494 353.1
12 352.5 352.5 350.2 356.0
13 351.4 754.1 349.7 357.5
14 354.1 352.8 358.2 358.0
15 354 .4 353.5 356.6 355.7
16 353.8 352.9
17 352.2° 350.3
18 351.6 349.4
19 349.8 349.3
20 348.8 ;

Table IV-8. Coefficients for Band 1 Selected Combined Scens Model
Coefficient Estimated Valiue

.0315%94
037784
-13395
-089051
034141
10954
. 10055
.075585
.12725
.033981
.064937
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B) Band 3

This spectral band encompasses the wavelengths .5380 ~ .6239 um for
the wheat scene and .5402 - .6246 uym for the combined scene. The iden-
tifieq models for the wheat scene are the same types identified for’band
1 of thé wheat scene. It is thought that since the empirical data is
fairly well behaved in this spectral band, the more compiicatéd in-
tegrated autoregressive model of the second kind is not needed. The hy-
pothesized models are tabulated in terms of order and selection cri-
terion in Table IV-9. It 1s clear that on the basis of the selection
criterion, the second order autoregressive model 1s to be chosen to
represent band 2 of the wheat scene. The residual variance for this
model is 6.19 x ‘IO"S indicating a good fit to the empirical data. The
estimated coefficients for this model are given in Table IV-10.

The combined scene empirical data is also fairly smooth in this
spectral band. Hence, only the three basic models are identi1fied for
this band. The hypothesized mode!s are listed in terms of order and
selection criterion in Table IV-11. It is clear from the table that
the model selected is the second order autoregressive model. The resi-
dual variance for this model is 1.72 x 10—4 thus ndicating a good fit
to the empirical data. The estimated coefficients for this model are

given in Table IV-1Z.

¢) Band 3

The spectral intervals n band 3 are .6239 = .7097 um for the wheat
scene and .6246 - 7097 ym for the combined scene. The three basic

models were identified for the wheat scene. The identified models are



Table IV-9.
Selection Criterton
Order of Autoregressive  Autoregressive
Modei plus constant
trend

1 541.8 L62.4

2 560.0 513.3

3 553:3 530.1

4 542.9 535.5

5 534.0 537.9

6 526.5 539.2

7 518.7 541.3

8 511.0 541.1

9 505.5 540.1

10 498 .8 538.2

Table IV-10.

..914_

Identified Hodels for Band 2 of Wheat Scene

Integrated
autoregressive

498.7
499.4
507.9
513.6
520.0
525.9
530.1
538.0
540.6
539.4

Coefficients for Band 2 Selected Wheat SEene Model

Coefficients

a

a

1

Estimated Valuye

- 50360
.50189
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Table IV-11. Identified Models for Band 2 of Combined Scene

Selection Criterdion

Grder of hutoregressive  hutoregressive  Integrated
hadel plus constant autoregressive
trend
1 £91.6 4394 4573.9
2 492.0 469.4 Y
3 499.9 4791 « b7T .4
4 484.0 47B.3 L7T.6
5 473.0 475.% 478.0
5 4744 G744 4L78.%
7 471.2 472.3 477.6
8 468.5 472.3 479.0
9 448,17 471.6 479.3
10 465.7 470.73 £79.3
11 452.8 G604 477.3
12 459.6 467.9 676.8
13 455.6 467.7 472.1
14 453.9 L4660 469.0
15 451.4 46521 G65.4

Table IV-12. ({oefficients for Band 2 Selected Combined Scens Modet
(gefficients Estimated Yalue

ay .530475
s 49393
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listed in terms of order and selection c¢riterion in Table Iv-13. It is
clear that according to the selection c¢riterion the eleventh arder in=,
tegrated autoregressive model is to be chosan. The residual variance
for this model is 6.00 x TD”S, thus i1ndacating a good fit to the empairi-
cal data. It 1s interesting that a higher order integrated autoregres-
sive model gives a better fit than the best (and iower order) autore-
gressive models. This may be an 1ndication of nonstationarity of the
spectral process in this band. The estimated coefficients for the
selected eleventh order integrated autoregressive model are given in
Table IV-14.

The combined scene hypothesized models were the same as for the
wheat scene. The identified models are listed according to order and
selection criterion in Table IV-15. As seen from the selection cri-
terion either the tenth or eleventh order integrated autoregressive
mode! 1s to be chosen. The eleventh .order model is chosen here since it
has lower residual variance and has a sightly better selection criterion
(if computed to more decimal places). The residual variance for the
selected model 1s 1.15 x 10_4'which 1s indicative of a good fit between
the model and the empirical data. The estimated coefficients for the

selected eleventh order integrated autoregressive process are listed in

Table IV-14.
D) Band &

The spectra!l bands consist of the wavelength interval .7097 - .8517
um for the wheat scene and .7097 - .8481 um for the combined scene. The
same three basic model types were hypothesized for this band of the

wheat scene. The identified models are given in terms of order and
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Table EV-13. Identified Models for Band 3 of Wheat Scene

Order Selection Criterion
of Autoregressive Autoregressive Integrated
Model plus constant autoregressive
trend -
1 532.9 464.3 465.5
2 511.8 484.3 478.3
2 489.1 481.9 489.5
4 470.2 4764.3 501.5
5 453.9 464.9 513.0
6 440.5 4£56.0 523.3
7 4L29.7 447.9 531.8
8 420.8 440.6 S40.4
9 414 .1 434 .8 549.4
10 408.8 429.3 551.5
1 55¢2.8
12 549.9
13 S46.4
14 538.7
15 532.4

Table IV-14., Coefficients for Band % Selfected Wheat Scene Model

Coefficient Estimated Value

.098225
.097891
.099302
. 10021
.098787
-099604
.099389
- 10044
.10047
.099348
10040

o 0 0 o
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Table IV-15. Identified Models for Band 3 of Combined Scene

order Sefection Criterion

of Autoregressive Autoregressive Integrated

Model plus constant autoregressive

trend

il 489.3 436.8 452.7
2 462.8 L4670 460,9
3 440.5 440,64 470.3
4 £21,7 431.0 480.8
5 406.9 420.9 483.8
é 396.0 412.7 4932
7 Z88.6 ' 405.9 499.8
8 384.0 401.0 505.1
9 381.4 397.5 504.6
10 380.3 394.7 505.9
11 380.2 392.7 505.9
12 380.6 191.6 504.6
13 381.5 3.0 502.6
14 383.3 3N.6 500.5
18 386.3 392.5 497.3

Table IV~14. (oefficrents for Band T Selected Combined Scen= Model
Coefficient Estimated Valus

099769
.098600
-10137
.10010
. 10057
.097140
10123
.100380
.097301
-098323
-10038

oo oo
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setection ecriterion 1n Table IV--‘I?.r The model chosen on the basis of

the selection criterion is the first order autoregressive plus constant
trend term. The constant trend term here accounts for a mean valuye in
the driving noise which is not adequately modeled 1n the initial condi-

tions taken from the empirical data. The residual variance for the.

first order autoregressive plus constant trend model 15 4.43 x 10“4

thus
indicating a good fit to the empirical data. The estimated coefficients
for this model are given in Table 1V-18. :
The three basic model types ware also identified for band 4 of the
combined scene. The identified models are listed according to order and
selection c¢riterion in Table IV-19. It is clear that on the basis of
the selection criteria, the first order autoregressive plus constant
trend model is to be chosen. The model is a good fit to the empirical

data as is exhibited by the 1.20 x 10-3 residual variance. The estimat-

ed coefficients for this model are listed 1n Table IV-20.

‘

E) Band §_

The wavelength intervals for band 5 are .8517 - 9910 um for the
wheat scene and .8481 - .9850 um for the combined scene. The three
basic model types were identified for the wheat scene. The identified
models are listed according to order and selection c¢riterion in Table
Iv-21. 1t is clear from the value of the selection criterion that the
first order autoregressive model 1s to be chosen. It 1s also noted that
the other two model types have selection criterion very close to the
one chosen. Hznce, if there is any difficuity in validation of the
selected model, two alternative mode! types are available. It is in-

teresting to note that all three model types have a first order model
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Table 1v-17. Identified Models for Band 4 of Wheat Scene

Order Selegtion Criterion
of autoregressive .autoregressive 1Integrated
Model plus constant autoregressive
“trend
o 4694 433.3 4781
2 4392 471.3 450.0
E 417.32 454.3 459.3
4 403.8 4421 468.0
5 396.7 433.6 473.6
) 394.7 428.7 877 .4
7 395.3 425.4 480.2
8 393.0 423.6 481.1
9 400.2 422.9 4%1.8
10 £03 .6 523 .4 482.0
11 406.9 423.8 480.8
12 410.2 425.6 477 .0
13 1.9 425.8 474.5
14 412.7 426.7 472.4
15 4£12:5 425.1 469.1
16 411.4 426.5 465,9
17 410.2 424.9 4bh 1
18 408.3 423.4 461,72
19 6077 £21.5 458211
20 £06.7 4194 455.1

Table FV-18. Coeffacients.for Band 4 Selected Wheat Scene Model
Coefficient Estimated value

a, .9359%
c 139569
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Table IV-19. 1Ildentified Models for Bund 4 of Combined Scene

Selection Criterion

Order of Autoregressive Autoregressive Integrated
Hodel plus constant autoregressive
trend
1 402.5 418,73 57.2
2 379.7 40,6 394.8
3 364.8 390.9 400.8
4 358.8 282.9 403.73
5 358.3 379.1 4047
6 359.0 N 376.9 40%8.3
7 362.3 376.8 407.8
8 364.6 376.7 AV
9 366.6 376.4 408.4
10 26804 376.4 4048
i 368.6 376.6 406.5
12 768.8 375.7 495.0
13 267.9 374.8 402.6
14 366.0 372.4 401.7
15 364.2 371.2 400.0

Table Iv-20. Coefficients for Band 4 Selected Combined Scene Model
Coefficient Estimated Value

a, .93382
¢ .15938
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Table 1¥-21. Identified Models for Band 5 of Wheat Scene

Selection Criterson

Order of Autoregressive Autoregressive Integrated
Model plus constant autoregressive
trend

1 339.9 339.7 38.4
2 34,1 23306 %7%6.3
3 330.6 R0 334.3
4 328.4 27.7 272.1
5 327.4 327.7 231.7
6 326.3 325.2 329.7
7 326.5 325.7 329.2
3 326.°2 325.0 128.4
9 324.8 322.9 329.3
10 322.6 21,7 327.0

Table Ivy-22. Coefficients for Band 5 Selected Wheat Scene Model
Cosfficient Estimated Value

a 1.00055

1
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With the best selction criterion. This indicates that the empirical
data 1n this band is fairly well behaved and that simple models of the
spectral response suffice for purposes of representetion . The residual
variance of the first order autoregressive model is 2.80 x 1O~3, thus
indicating a good fat to the empirical data. The estimated coefficient
of the selected model 1s given in Table Iv-22.

for the combined scenz, the three basic ~odels wzre 1dentified,
The 1dentified models are tzbulated according to order and szlection
criterion 1n Table 1V-23. According to the selection criterion, the
third order autoregressive model 15 to be chosen., The residual variance
for this model 15 3.86 x 10’3, an indication of a good fit to the empir-
1cal data. The estimated coefficrents for the selected thard order au-

toregressive model are listed in Table IV-24.

F) Band é

The spectral intervals included n band 6 are .9910 - 1.130 pm for
the wh2at scene and .9350 - 1.122 um for the combined scene. The three
basic models were 1dentified for the wheat scene and are listed accord~
1ng to order and seiction criterion n Table IV-25. It 15 seen from
the table that the second order autcoregressive plus constant trend model
is to be chosen on the basis of th2 selection criterion. This model has
a residual variance of 1.44 x 1{')_3 which 1s an indication of a good fit
to the empirical data. The estimated coefficients for the selected
model are given 1n Table Iv-26.

The mode! types identified for band 6 of the combined scene zre the
same three basic types identified for band 5 of the whzat scene. The

identi1fied models are tabulated according to order and selection cri-
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Table Iv-23. Identified Models for Band 5 of Combined Scene

Selection {riterion

Order of Autoregressive  Autoregressive  Integrated i
Model plus constant autoregressive
- trend

1 307.2 307.3 308.3

2 310.3 309.7 306.7

3 313.8 313.0 307.5

4 309.5 308.7 305.7

5 306.5 " 305.9 304.1

6 306.2 (5.5 303.3

7 304.3 304.0 302.3

8 302.3 301.8 300.5

9 201.0 300.5 299.9

10 299.0 298.6 298.4

Table 1V-24. Coefficients for Band 5 Selected Combined Scene Model

Coefficients Estimated Value
a, .38814
as . 28995
a 32304
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Table }V“ZS. Identified Model's for Band 6 of Wheat Scene

Selection Criterion

Order of Autoregressive  Autoregressive Integrated
Model plus constant autoregressive
trend

1 374.4 24,9 270.0

2 375.8 376.7 368.9

3 370.5 371.9 366.2

4 369.3 371.6 369.1
© 5 364.0 366.3 367.7

6 359.0 362.5 367.1

7 355.4 359.3 365.3

8 351.4 356.2 36T 4

9 348.2 352.1 265.72
10 343.5 345.2 364.2

Table IV-26. Coefficients for Band 6 Selected Wheat Scene Model

Coefficrent Estimated Ualué
a, .51004
aé ATT72

c L4773
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terion in Tabie IV-27. Based on the selection criterion, the first
order autoregressive model is chasen. It has only a §i1ghty bgtter
selection criterion than the first order asutoreagressive plus constant
trend model. Thus a compatitive alternate mode!l is available. The

residual variance of the selected model s 1.91 x 10_3

thus indicating a
good fit to the empirical data. The estimated coefficient for the

selected model is given in Table IV-Z28.

_@_) Band 7

Band 7 consists of the spectral intervals 1.130 - 1.344 ym for the
wheat scene and 1.122 - 1.307 um for the combined scene. The three
basic model types identified for the preceeding spectral bands were also
identified for band 7 of the wheat scene. The identified models are
l 1sted according to order and selection criterion 1n Table 10—29. Ac-
cording to the selection criterion, the eighth order integrated autore-
gressive model 1s to be chosen. However, the model w1yh the best selec—
tion criterion that also passes all of the validation tests is the fifth
order integrated autoregressive model. The residua! variance of the
selected fifth order integrated autoregressive model is 2.42 x 10~3
which indicates a good fit to the empirical data for band 7 of the wheat
scene. The estimated coefficients for the selected model are given in
Table IV~30.

The three basic models were identified for band 7 of the combined
scene. The identified models for the combined scene are given according
to order and selection criterion In Table IV-31. According to the
selection criterion, the fifteenth order integrated autoregressive model

is to be chosen. However, the fifteenth order ntegrated autoregressive
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Tshle iV-Z?. Identified Models for Band 4 bf Compined Scene

Selection Criterion

Order of Autoregressive Autoregressive Integrated
Model plus constant autoregressive
trend

1 355.9 355.8 253.9

2 347.8 3446.7 35%.1

3 338.5 T337.5 251.8

4 332.2 332.5 351.3

5, 329.1 328.5 349.2

é 326.2 227.7 348.7

7 325.7 328.°2 347.8

8 352.6 326.4 347.5

9 323.7 325.4 245.4

10 322.5 32;.4 345.4

Table Iv-28. <(oefficients for Band 6 Selected Combined Scene Model
\éoeffﬁcients- Estimated Value

a.

1 1.00091
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Table Iv-29. Identified Models for Band 7 of Wheat Scene

Selection Criterion

Order of Autoregressive  Autoregressive  Integrated
Model plus constant autoregressive
trend
1 456.6 454.3 457.3
2 437.3 435.6 457.4
3 429.0 427.0 460.2
& 425.0 424.8 461.6
5 425.5 424.2 464 .8
6 425.9 424.2 462.5
7 425.2 423.3 464 .1
8 424 .8 4231 469.3
9 427.1 427.5 469 .1
10 429.5 427.2 467.72

Table 1v-30. (oefficients.for Band 7 Selected Wheat Scene Model

Coefficient Estimated Value
3y, . T4802
a2 .0671559
8 . 10349
aA 11204
a5 .10538.
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Table IV-31. Identified Models for Band 7 of Combined Scene

Selection Criterion

Order of Autoregressive Autoregressive Integrated
Model plus constant autoregressive
trend

1 231.2 231.4 231.5

2 229.7 229.8 230.3

3 228.4 228.3 229.0

4 2271 227.0 227.8

5 225.8 225.7 227.6

6 225.6 225.9 226.1

7 224.1 261.5 259.2

8 257.5 265.0 260.2

9 259.1 267.0 259.9
10 25%.4 265.5 258.8
11 258.2 265.0 258.9
12 258.4 264.7 260.7
13 259.5 263.4 259.2
14 258.0 ) 261.8 258.7
15 257.3 261.4 253.8

Table IV-32. Coefficients for Band 7 Selected Combined Scene Model
toefficients Estimated Value

. 64063
L7721
11417
-038031
. 10856
-.058380
-.038789
-.061748
-.017016
49218

A0 D LoD O NN
OO0 =N Ul BN P —
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model fails the correlogram valiﬁét1on test. Hence, the next alternate
model 15 chosen according to Table IV-31. This 1z the ninth order au-
toregressive plus constant trend model. This mode! passes the val ida-
tion tests and the residual variance is 3.27 x 10_2.‘Hence the fit to
the empirical data is good. The estimated coefficients for this model

are given in Table IV-32.

H)Y Band §

The spectral intervals 1ncluded in band 8 a;e 1.446 - 1.821 ym for
the wheat scene and 1.451 - 1.818 um for the combined scene. The three
basic models 1dentified for the other spectral bands are also identified
for band 8. The 1dentified models for this spectral band of the wheat
scene are tabulated according to order and selection criterion In Table
IV-33. On the basi1s of the selection criterion, the ninth order in-
tegerated autoregressive model is to be selected. Unfortunately, this
model does not pass the cumul ative periodogram val idation test. The
model selected as an alternative is the eighth order integrated autore-
gressive model. This model passes all the validation tests. The resi~

4 which indicates a

dual variance for the selected model is 3.18 x 10
good fi1t to the empirical data for this band of the wheat scene. Table
IV-34 gives the estimated coefficients for the selected eighth order in-
tegraated autoregressive model,

The three basic models were also identified for band 8 of the com-
bined scene and are listed according to order and selection criterion

1n Table IV-35. The eighth order integrated autoregressive model is

chosen on the basis of the selection criterion., The residual variance
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Table 1V-33. Identified Model!s for Band 8 of Wheat Scene

Selection Criterion

Order of Autoregressive Autoregressive Integrated
Model plus constant autoregressive
trend
1 469.9 494 .7 495.7
2 447.8 457.8 506.8
3 427.8 436.0 519.4
4 422.1 429.9 526.4
5 426.1 434.2 530.2
6 433.1 441.3 540.5
7 441.9 455.2 538.5
8 448.1 463.1 555.8
9 453.8 470.7 5546.9
10 457.7 475.9 554.5
11 £60.0 477.5 568.3
12 457 .3 477.5 547.2
13 455.5 476,2 S44.4
14 454.8 477.3 546.2
15 457 .4 480.3 547.2

Table IV-34. Coefficients for Band 8 Selected Combined Scene Model

Coefficients Estimated Value

11977
-10839
. 10895
.10525
. 10025
. 11203
. 10458
.093896
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Table 1v-35. Identified Models for Band 8 of Combined Scene

Selection Criterion

Order of Autoregressive  Autoregressive Integrated
Model plus constant autoregressive
trend

[ 275.6 279.6 277.2

2 . 271.9 274.6 276.5

3 270.7 273.9 275.8

4 270.2 273.2 274.5

5 268.9 272.7 273.0

6 267.4 271.3 272.7

7 266.6 270.4 271.4

8 265.0 308.7 319.7

9 310.2 308.3 318.8
10 310.3 308.7 717.4
11 309.7 309.5 319.4
12 310.0 109.6 318.4
13 309.7 208.3 316.7
14 308.4 306.7 215.1
15 306.9 305.3 313.4

Table IV-34. Coefficients for Band 3% Selcted Combined Scene Model
Coefficients Estimated value

074048
-054155
.10216

.058484
.0380674
. 090834
.083258
. 11358

5
o 0 o

o L D o
0O~ O W)



- 112 -

e

of the selected model is 9.58% x 107 thus indizating a good fit to the

empirical data for band % of the combined scene. Table IV-35 gives the

~

estimated coefficients for the selected model.

I} Band 9

The spectral intervals for this band are 1.959 - 2.386 uym for the
wheat scene and 1.967 — 2.38%6 um for the combined scene. The three
basic model types were identified for this band 6f the wheat scene and
are tabulated according to order and selection criterion in Table IV-37.
According to the selection criterion, the sixth order integrated au-
toregressive model 1s selected. The residual! variance for the selected

model is 8.00 x 1072

thus indicating a good fit to the empirical data
for band 9 of the wheat scene. Table IV-38 gives the estimated coeffi-
cients for the selected model.

The three basic models ware also identified for band 9 of the com-
bined scene. féble IV-39 lists the identified models according to order
and selction criterion. According to the selection criterion, the first
order integra%ed autoregressive model should be chosen. However, this
model is judged not to pass the gqual itative periodegram validation
test. Therefore, the alternative selected mode!l 1s the first order au-
toregressive model. This model passes the validation tests. The resi-
dual variance for the first order autoregressive model! is 1.18 x 10‘2
thus indicating a good fit to the empirical data for band 9 of the com-
bined scene. Table IV~40 gives the estimated coefficient for the
selected first order autoregressive model.

We now have.selected models for all the defined bands of both the

wheat scene and the combined scene. Next we validate the selected
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Table IV¥~-37. Identified Models for Band ¢ of Wheat Scene

Selection Criterion

Order of Autoregressive Autoregressive integrated
Model plus constant autoregressive
trend
1 546.3 535.9 551.2
2 516.3 518.5 559.0
3 504.4 501.5 365.3
4 495.7 494 .9 569.4
5 495.9 495.3 572.6
6 501.0 4996 575.2
7 508.5 507.4 573.9
8 S14.8 514.4 572.1
9 517.8 518.3 571.6
10 519.4 520.4 570.1

Table IV-38. Coefficients for Band 9 Selected Wheat Scene Model

-

Coefficient Estimated Value

. 10952
-096485
.10262
11044
-11506
. 11766
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Table IV-39. Identified Modgls for Band 9 of Combined Scene

Selection Criterion

Order of Autoregressive Autoregressive Integrated
Model plus constant autoregressive
' trend

1 356.1 355.3 356.5
2 348.7 348.3 355.1
3 346.5 346.5 354.0
4 345.4 345.6 353.0
5 3440 244.0 351.5
6 342.3 342.5 349.9
7 3411 341.2 352.5
8 342.1 241.3 351.2
9 341.4 340.5 350.1
10 340.3 339.0 348.5

Table IV-40. Coefficients for Band 9 Selected Combined Scens Model
Coefficient Estimated Value

a L39759

1
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models. Finally, these models are used for average information calcula-

ti1ons in Chapter V.

4. Validation gj_ldentified Modzls.

In this section validation of the 1dentifired models for each band
of both scene types is carried out. The validaion techniques used here
are those developed in Chapter III. We consider thHe validation of the
selected models by bands as in the previous section of this chapter.
The validation tests are implemented wih computer programs written in

FORTRAN and 1ncluded in Appendix III.

A} Band 1

— —

We first consider val idation of the selected sixth order autore-

gressive model for band 1 of" the wheat scene.

1) Zero Mean Test

This test will be carried out foé all bands of both scene types at
a significance level of .01 so that there 15 a standard basis of compar-~
ison for all selected models. The value of ng at this tevel of signifi-
cance for thé number of samples in this research (approximately 115 to
160 samples) is ng = 2.62 LAS].

The vatue of the test statistic given by the selected model for the

wheat scene 18
lt(x)] = 1.431 x-107 (4.2)

Hence, the selected sixth order autoregressive model easgily passes-this

test.
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2) Serial Independence Test

This test is conducted on all bands of both scens types at a sighi-
ficance tevel of .01 so that there is a standard basis of comparison
for all selected models. The critical value, ngr 18 dependent on the
value of n1 used for this test. In this study n1 = .IN (N is the number
of empirical data points) for all models tested. The critical values
are listed for several values of n1 in Table IV-41 [AS].

The test statistic for the selected sixth order autoregressive

model far band 1 of the wheat scene is

n(x) = 1.515 x 10" (4-3)

for n1 = 10, It is clear from Table IV-41 that the selected model

passes the serial independence test.

Table IV-41. Critical values for Serial Independence Test

n1 Critical Vvalue, ng
9 21.6660

10 23,2093

1 24,7250

12 26.2170

13 27.6883

14 29.1413

15 30.5779



- 118 -

3) Cumulative Periodogram Test

This test is carried out on all bands of both scene types at a pro-
babil1ty level of .99, thus giving a standard basis of comparison for
all selected models. In all cumulative periodogram plots, the boun-
daries that determine the success of the test are, of course, the two
parallel lines.

The selected model for band 1 of the wheat scene passes this test

as 1s seen from Figure IV-3.

4) Correlogram Test

It 1s seen from Figure IV-4 that the selected sixth order autore-
gressive model passes this test.

In the correlogram plots, the test boundaries are shown as dashed

lines.

5) Periodogram Test

As seen in Figure I1V-5, the selected model for band 1 of the wheat
scene may be judged to pass this qualitative test. ‘

In the periodogram plots, the periodogram for the empirical data is
plotted as a solid line and the periodogram for the synthetic data gen-
erated from the candidate model 1s plotted as a dashed tine. For most
cases, the two plots are so nearly coincident as to be indistinguish-
able.

Next we consider the val idation of the selected eleventh order in-

‘tegrated autoregressive model of the second kind for band 1 of the com-

bined scene.

&) Zero Mean Test
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: The test statistic for the selected model is

ft{)f = 2

S8hex 10, Y

Hence, the'selected model easily passes this test.

~

7y ~Serial Independence Test
As noted previcusly, several of the 1dentified models with higher
selection criterion do not pass this test. As an- example, the

fifteenth order autoregressive model gives the test statistac

1

n{x) = 7:434 x 10 {4=5)

for n1 = 9. Thus the model clearty fails the test. Other models with
higher selection criterion similarly failed this.test. The selected

model has the test statistac

1

nl{x) = 2.009 x 10 (4-6)

for n1 = 10. Thus, the eleventh -order integrated autoregressive model

of the second kind passes this test.

8) Other Tests

Figures IV-6, IV-7, ad 1V-8 show that the .selected model for band 1
of the combined- scene passes the cumulative periodogram, correlogram,
and periodogram tests.

Hence, we have validated -models for band 1 of both scene: types.



B8) .Band E

The val idation of the selected second order autoregressive model

for this band of the wheat scene is considered first.

1) Zero Mean Test

The test statistic for the selected model is
Jt(x)] = 1.955 (4-6)
Thus the selected model passes this test.

2) Serial Independance Test

The test statistic for the second order autoregressive model is

a0 = 1.869 x 10 (4-7)

for n1 = 11. Hence, the selected model passes the serial independance

test.

3) Other Tests

It is seen from Figures IV-9, IV-10, and IV-11 that the selected
model for band 2 of the wheat scene passes the cumulative periodogram,
corretogram, and per1odogr$m tests.

Next, we discuss the validation of the selected second order au-

toregressive model for band 2 of the combined scene.

4) Zero Mean Test

The test statistic for the selected model is
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ftix)| = 1.055 (4-8)
Hence, the selected model easily passes this test.

5) Serial Independance Test

The selected model gives the test 'statistric
n€x) = 1.365 x 10 (4-9)
for n1 = 11. Hence, the selected model also passes this test.

6) Other Tests
The selected model for band 2 of the combined scene passes the cu-

mulative periodogram, correlogram, and periodogram tests as is seen from

Figures IV-12, 1IV-13, and IV-14.

) Band i

Val idation of the selected eleventh order integrated autoregres-

sive model for band 3 of the wheat scene is considered first.

1) Zero Mean Test

The test statistics for the zero mean test is
x| = 3.616 x 1071 . (4=-10)
Hence, the 'setected model easily passes this test.

2) Serial Independence Test

The selected model gives the test statistic
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n(x) = 1.153 x 100 (4=11)

for n1 = 10. Thus, the selected model easily passes this test.

%) Other Tests

Figures IV-15, IV-16, and IV-17 show that the selected model for
band 3 of the wheat scene passes the cumulative periodogram, correlo-
gram, and periodogram tests.

The selected eleventh order integrated autoregressive model for

band 3 of the combined scene is considered next.

4} Zero Mean Test

The test statistic for the selected model is
[t = 1.871 x 107 . 4-12)
Thus, the selected model easily passes thi1s test.

5) Serial Independance Test

The selected model gives the test statistic
alx) = 2,125 x 10 4-13)
for n1 = 10. Thus, the selected model. passes this test.

6) Other Tests

It 15 seen from Figures Iv-18, 1v-19, and IV-20 that the selected
model for band 3 of the combined scene passes the cumulative periodo-
gram, correlogram, and periodogram tests. -

Hence, we have val idated models for band 3 of both scene types.



Band 3, Wheat Scenec

57

l
1
L2 ~Hi
!
1
N SR
\

\ {

-— 1)
0. iy

2
i 35
Fig. IV=-17. Perladoyram, Band 3,

Wheat Scene

ST g 1.
T .5
S T g.
- k
%) ] 1 I -.5 1 1 {
@ 2 %) 40
1 3 2. s@
Fig. IV-15, Cumulative Periodogram, Fig. IV-16. Correlogram, Band 3,

\lheat Scene

1 51 9
1.

5

5]
2.
@ z
. 1 . 3
Fig. IV-18. Cumulative Periodogram,

Band 3, Combined Scene



- 127 =

D) Band‘i

Val idation of the selected first order autoregressive plus constant

trend model for ba:d & oi the wheat scen= 1s considered first.

1) Zero Mean Test

Tne test statistic for the selectsed modsl 1%
leCx)] = 1.753 x 1071 . (4=14)

Hence, the sslected model easily passes this rest.

)

2) Serial Independence Test

The selected model gives the test statistic

nCx) = 2.00 x 107 (4=15)

fo n1 = 12. Therefore, the selected model also passes this test.

3) Other Tests

Figures IV-21, Iv-22, and IV-23 show that the selected model passes
the cumulative pertodogram, correlogram, and periodogram tests.
We next consider vslidztion of the selected first order autore-

gressive plus constant trend model for band 4 of the combined scene.

4) Zero Mean Test

The test statistic for the selected model 1s
. [t = 1.593 x 107 . (4-16)
Hence, the selected model easily passes this test.

5) Serial Independence Test
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v

The selected model gives the test statistic

7

n(x) = 2.1250 x 107 : (4=17)
fo} nl = 12. Hance, the szlected model also passes this test.

6) Other Tests
It is seen from Figures IV-24, IV-25, and IV-26 that the selected
model passes the cumul ative periodogram, correlogram, and pariodogram

tests.

Heznce, We have validated models for both scen® types of band 4.

E)} Band 5

First, validation of the selected farst order autoregressive model

for band 5 of the wheat scene is considered.

1) Zero Mean Test

The test statistic for the selected model 1s
[t(x)| = 2.495 x 1071 (4-18)
Hence, the selected model easily passes this test.

2) Serial Correlation Test

The selected model yields the test statistic
nlx) = 1.787 x 107 (4~19)

for n1 = 11. Therefore, the selected model pases this test.

3) Other Tests
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Figures IV-27, IV-28&, and 1V-29 show that the selected model passes
the cumulative pesriodogram, correlogram, and periodogram tests.
Next, vaidation oi the selected third order autoregressive model

for band 5 of the combined stcene s considered.

4} Zero HMean Test

The test statistic for the selected model 1s

[t = 3.622 x 107° . (4-20)

Thus, the selectd model easily passes this test.

5) Serial Independence Test

The selected model gives the test statistac
n(x) = 1.628 x 10 (4~21)
for n1 = 11. Hence, the selected model passes this test.

6} Other Tests

Figures IV-30, IV-31, and IV-32 show that the sclected model passes
the cumulative periodoqram, correlogram, and periodogram tests.

Thus we have validated models for band 5 of bhoth scene types.

E} Band é

Val idation of the selected s=2cond order autoregressive plus con~

stant trend model for band 6 of the wheat scen:z 1s considered first.

1) Zero Mean Test
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The test statistic for the selected model is

[tGO ] = 1.299 x 1077 (4-22)

Thus, the selected model easly passes this test.
2} Serial Independence Test

The selected model gives the test statistic

nlx) = 2.345 x 101 (4~23)

for n1 = 11. Hence, the selected model passes this test.

3) Other Tests
The selected model passes the cumulative periodogram, correlogram,
and pericdogram tests as is seen from Figures IV-33, IV-34, and IV-35.
Next, validation of the selected first order autoregressive model

for band 6 of the combined scene is considered.

5} Zero Mean Test
The test statistic for the selected model is
[t | = 2.861 x 1077 (4-24)

Hence, the selected model easly passes this test.

5) Serial Independence Test

The selected model-yields the test statistic
nlx) = 8,322 (4-25)

for n1 =.11. Hence, the szlected model also easily passes this test.
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6) Qther Tests

it is seen from Figures IV-36, IV-37, and IV-38 that the selected
model passes the cumulative periodogram,-.correiogram, and periodogram
tests. 1

Thus, we have validated models for band 5 of both scene types.

G} Band 1

Val idation of the selected fifth order integrated autoregressive

model for band 7 of the wheat scene.

1) Zero Mean Test

The selected model gives the test statistic

[t{x>] = 1.853 (4-26)
Hence, the selected model easily passes this test.

2) Serial Independence Test

The test statistic for the szlected model is
n(x) = 1.807 x 101 4-27)

for n1 = 14. Hence, this test is passed by the selected model.

3) -Other Tests
Figures IV-39, IV-40, and IV-41 show that the selected model passes
the cumulative periocdogram, correlogram, and pearicdogram tests.

We next consider validation of the selected ninth order autoregres-

sive plus constant trend model .
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4) Zero Mean Test

The selected model gives the test statistic

[t¢x)| = 1.208 x 107 (4-28)
Thus, the selected model easily passes this test.
53 Serial Independence Test
The test statistic for the selected model is
n{x) = 5.568 (4=-29)

for n1 = 15. Therefore, the selected nmddel easily passes this test.

6) Other Tests

Figures IV-42, IV-43, and IV-44 show that the selected model passes
the cumulative periodogram, correlogram, and periodogram tests.

Hence, the selected models are validated for band 7 of both scene

types.

H) Band 8

Val idation of the selected eighth order integrated autoregressive

model for band 8 of the wheat scene is considered first.

1) Zero Mean Test

The test statistic for the selected model is
ltexd| = 7.217 x 187 (4-30)

Thus, the selected model passes this test.
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2) Serial Independence Test

The selected mode! gives the test statistics
n(x) = 2.516 x 107 4-31)
for n1 = 13. Hence, the selected model passes the test.

3) Other Tests
The selected model passes the cumulative periodogram, correlogram,
and periodogram tests as is seen from Figures IV-45, IV-46, and IV-47.
Next, validation of the selected eighth order integrated aulore-

gressive modeil or band 8 of the combined scene is considered.

4) Zero Mean Test

The selected model gives the test statistic
t(x)| = 1.033 (4-32)
Thus, the selected model easily passes this test.

5) Serijal Independence Test

The test statistic for the selected model 1s
n{xd = 3.141 (4-33)
for n1 = 13. Therefore, the selected mode!l passes this test.

6) Other Tests
Figures 1v~48, 1V-49, and IV-50 show that the selected model passes

the cumul ative periodogram, correlogram, and periodogram tests.
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Hence, we have validated models for band 3 of both scene types.

S

Band 2;-‘

validation of the selected sixth order integrated autoregressive

model for band 9 of the wheat scen2 is considered first.

1) Zero Mean Test

The selected model gives the test statistic
[tex)| = 8.142 x 107 (4-34)
Thus, the selected model easily passes this test.

2) Serial Independence Test

The test statistic for the selected model is
ni{x) = 9,915 (4-35)
for n1 = 15. Therefore, this test is passed by the sezlected model.

3) Other Tests
The selected model passes the cumulative pesriodogram, correlogram,
and periodogram tests as is;%een in Figures IV-51, IVv-52, and IV-53.
Next, validation of the selected first order autoregressive model

for band 9 of the combined scene is considered.

4) Zero Mzan Test

The test statistic for the selected mode! is
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[t | = 9.324 x 107" (4-36)
Thus, the selected model easily passes this test.

5) Serial Independence Test

The selected model gives the test statistic

1

nlx) = 1.362 x 10 (4-37)

for n1 = 15. Therefore, the selected mode! passes this test.

6) Other Tests

Figures IV-54, IV-55, and IV-56 show that the selected model passes
the cumulative periodogram, correlogram, and periodogram validation
tests.

Hence, we have validated models for band 9 of both scene types.

5. Conclusion
Models of nine spectral bands for two empirical data sets have been
identified, selected and val idated. The validated models of the two

scene types are given 1n Table IV-42 for easy reference.



- 145 ~

2
1. 8T Y
.B
S T\
i .4
2.
.2 “i
k kh"
_.s ) _1 G- 1 1 ]
2 SO 100 ‘ = "
25 7S 1 =
Fig. IV-55. Correlogram, Band 9, Fig. V=56, Periodogram, Band 9,

Combined Scene Combined Scene



- 146 -

Table Iv-42. Validated Models

Band Wh=zat Scene Combined Scene-
{ AR(6) 1AR,(11)

P AR(2) AR(2)

3 IARCTY) IARCTY)

4 ARC(D) ARCCD)

5 AR{DY AR(3)

6 ARC(2) ARC1)

7 IAR(S) ARC(9)

8 IAR(8) IAR(R)

9 IAR(62 ARC1)
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Chapter V

An Application of Information Theoretic Techniques

1. Introduction

This chapter demonstrates an app!ication of the information
theoretic techniques developad in Chapte; II to studying some parameters
of multispectral scanner systems. In particular, the technigues are ap-
plied to the models constructed 1n Chapter IV for the two spsctral scene
types under consideration in this research. The averzge information
criterion is used to select a subset of spactral bands. An zttempt at
estimation of classification accuracy for the hypothetical mul tispectral

scanner is discussed.

2. Average Information Studies

The average 1nformation computation techniques developed in Chapter
I1 are used to study average information in the received spectral pro-
cess about the spectral response process of the scene under observation.
Recall that we are representing the spectral process received by the

mul tispectral scanner by
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y{k) = s{k) + n(k) , ksﬁl1,x23 (5-1)
where

SGk) is the spectral response process of the scene

and

n{k} is the disturbance or noise process.
The models constructed in Chapter IV are used for representing the spec-—
tral response process S(k) n each spectral band. As discussed in
Chapter II, n(k) is assumed to be white noise with possibly different
powar spectral density levels in different spectral bands.
. The first computation is average mformation in y(k) about S(k) as
a function of spectral bandwidth for each spectral band of both scene
types. The average information is computed for several values of the
variance of the noise disturbamce, UE. Since the noise d1stu;banoe is
assumed- to be of constant power spectral density level for each spectral
band, considering sevenal'vahues of civhas the effect of al.lowing the
study of average information for several signal-to-noise ratio (SNR)
conditions. fThus, the objective of studying the effects of spectral
bandwidth and signal-to-noise ratios as parameters of multispectral
scanners is achieved 1n these computations. The average information
computations are made With the use of a computer program written 1n FOR-
TRAN. A copy of the computer program is included in Appendx III for
reference. The results of these computations are d1sﬁlayed graphically
in Figures V-1 to V-18. It 1s noted that these figures have curves

plotted with ci as a running parameter. Also, the curves are plotted as

a function of the number of points in the spectral Interval. .Thas has
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the advantage of making the curves applicable to the same models for
diffe}ent spectral dintervals.

Table V-1 gives the total average information for the defined spec-
tral bands of the wheat scene foir several values of the noise variance
03' Table V-2 gives similar data for the combined scene. W¥hen consid-
ering the results 1n Tables V-1 and V~2, 1t must be remembered that the
spectral bands are of different spectral bandwidths. Hence, the average
information in spectral bands of approximately the same spectral
bandwidth may be more useful in selecting subsets of bands.

Thus the technique considered in this research is used to compute
average 1nformation using the spectral models constructed for the de-

fined spectral bands.

3. Selection of a Subset of Spectral Bands

We now demonstrate a simple application of using average 1nforma-
tion to select a subset of spectral bands for inclusion on a mul tispec-
tral scanner. For the purpose of this demonstration we make the follow-
ing assumptions.. First assume that a subset of six of the defined spec-
trat bands is derived. This 1s not an unusual number of spectral bands
to be used in an application (i.e. scene classification). The second
assumption concerns the amount of observation noise to inciude in each
spectral band. For the purposes of this simple example, we assume that
the variance of the observation noise is og = 10“3 for all the defined
spectral bands. This is clearly not a realistic assumption, but is suf-

ficient for our simple demonstration. Third, 1t 1s assumed we are in-

terested in ordering the preference of spectral bands on the basis of
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the average information each band would have in an equal spectral

bandwidth. This tends to amel jorate the effect of wider spectral bands

having more average information due only to their larger spectral
bandwidth., It is thought that this method of comparison will tend to '
select the subset of spectral bands with the highest amount of average
information with each band competing on a more equal basis. Based on
these assumptions, the spectrallbands are ranked in order o;‘ preference

in Table V-3,

URIGINAL PAGE IS
OF POOR QUALITY:
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Table v-1. Average Information for Wheat Scene Bands

Band Noise Variantce, ug

10”0 107 107 107!
1 s7.07 53.49 34.50 11.43 3.95
2 50.05 28.09 10.52 445 2.75
3 51.02 34,59 20.35 12.65 8.28
Lo 616k 52.92 30.00 11.69 4.15
5 57.30 55.58 44.96 23.55 9.31
6  57.11 53.90 37.20 14.81 5.12
7 77.19 74.63 60.31 34.59 16.6
8 67.56 56.77 34.80 18.96 10.48
9  80.04 73.23 50.10 26.53 13.10

Note: The information values are given in nats here.

Table V-2. Average Information for Combined Scene Bands

Band Ne1se Variance, °§

107° 107 107> 1072 107!
4 56.19 53.70 41,37 23.09 12.23
2 53.51 38.54 16.17 6.10 3.08
3 52.73 29.10 22.68 13.73 8.72
4 61,49 57.54 40.08 17.71 6.24
5 54.36 55.11 45,73 2i. 44 7.09
& 56.21 53.381 40,96 20.05 7.83
7 an.48 8n.2%6 78.25% 63.93 30.54
8 69.93 69.31 64,15 L4 .38 22.46
9 79,93 79.33 74 .19 51.72 23.23
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o )
Table V-3. Order of Preference of Spectral Bands for the Wheat
and Combined Scenes
Rank Wheat Scene Band Combined Scene Band

VOO~ N -
NWFO- Oy
AW PO N0 =

It is noted in Table V-3 that although the ordering is different,
the six highest ranking bands are the same for both the wheat scene and
the combined scene. Band-1 is in the visible region of the spectrum tor
both scene types (see Tables IV-3 and IV-4). The other five preferred
bands are all in the infrared portion of the spectrum. Thus relative to
our averge information criterion, the {nfrared portion of the spectrum
is generally preferred to the visible portion of the spectrum since

bands 2 and 3 are ranked lowest for both the wheat scene and the com-
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bined scene. This tends to indicate that fyuture mul tispectral scanners
systems should have more spectral bands in the nfrared portion of the
spectrum, Indeed this is the case with the'thematic mapper to be placed
on LANDSAT-D (see, for example, reference [L2]1).

0f course, 1f there were different levels of noise disturbance in
different spectral bands, the order of preference could be entirely dif-
ferent. This research‘does, however, provide a systematic mathod for
deat 1ng with such circumstances. A more realistic application of t;is
technique would require such an approach.

One of the major uses of data obtained wath multispectral” scanner
systems is classification of the observed scenes. Thus it is felt that
estimation of cliassification performance gives an important measure of
the usefulneds of a proposed subset of spectral bands. The estimation
of classification errér is an 11mportant and complicated topic n itself.
Whitsitt and Landgrebe {W1] have recently spent considerable effort on
this topic. A technique, used in this research, to estimate classifica—
tion performance was developa2d by Lissack and Fu (L3]. This technique
assumes a Bayestan classification technique and provides a computational
technique for estimating classification performance. An attempt was
made to uSe,the Lissack-fu technique to estimate the cI;ssif1cation per-
formance of the six selecéed spectral bands for the two scene types stu-
d{ed in this research. The empirical data, ﬁowevér, had the unfor—
tunate property of producing covariance matrices that were singular to
the numerical accuraty of the (IBM 370} computer system used in the
researchys Hence, a meaningful estimate of the classification perfor-

mance was not possible with the present data set. Therefore, the clas-
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sification performance characteristics of the selected spectral bands

are left for future investigation.

4. Conclusions
This chapter has demonstrated the application of information
theoretic technigquss for the study of some parameters of mqltispectral
scanner systems. First, average information in a received spectral band
was calculated for several power spectral density levelslof observation
neise. This coﬁputation allowad the study of such parameters as spec-—
tral bandwidth and signal-to-noise effects on average information.
Secondly, a simple demoastration of the use of average information as a
techniﬁue for selection of a subset of spectral bands was given. Final-
ly, an attempt‘at studying the classification performance of the select-

ed subset of spectral bands indicated that a more detarled 11nvestigation

of the problem was necessary. This was left for future investigation.
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Chapter 6

Conclusions

1. Discussion

This thesis is devoted to development of techniques for analysis of
some paramete}s of multispectral scanner systems. These techniques
represent an initial effort to provide an analytical framework for what
heretofore has been approached mainly in an empirical and ad hoc manner.
The information theoretic techniques developed in Chapter II are suffi-
ciently general that they can be used to explore many different practi~
cal questions in the study of parameters of multispectral scanner sys-
tems for remote sensing. The model ing techniques developed in Chapter
I11 are applicable to aimost any scene type of interest in remote sens-
ing. Furthermore, models developed in such a manner could, of course,
be used for other research on spectral scenes. Chapters IV and V are an
extendéd study on empirical data using the technigues develop2d in
Chapters II and III. Chapter IV demonstrates the advantages of a sys-
tematic approach to model. construction by examination of severas! hy-
pothesized models. Thus several alternative models are constructed for
each spectral scene. Chapter V demonstrates that, for the empirical
data studied, the infrared portion of the spectrum deserves increased

attention in mul tispectral scanner system design.
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gf Further Research

There are several aspects of this research that merit further ex-—
ploration. Some of the more ohvious topics are mentioned.

(1) 1t may be of considerable practical interest to extend the in-
formation thecoretic results in Chapter II to the case of nonwhite obser-
vation noise. Though more complicated, an expression for average nfor-
mation can again be related to the optimum Wiener-Hopf filter 1impulse
response [H1J. The-state varisble formulation of this problem would
prove to be very useful for handling observation noise that could be
described by a dynamic model. An application of this extension might be
to study the effects of an extraneous spectral signal such as produced
by bare soi1l surrounding a vegetation scene of actual interest.

(2) Another extension of this reseach might be to consider other
models for spectral scenes. In particular, 1t may be fruitful to con-
sider moving average models or combined autoregressive-moving average
models [B1]. Such an extension may result in lower order models for
spectral scenes. However, 1deqtification of such models is more comp!i-
cated than the cases considered in this thesis [K3].

(3) Extension of the scalar models to the vector model case might
be interesting. This could have an application in temporal studies of
spectral scenes. That 1s, models of the spectral response of vegetation
scenes and their change over the growing season would be very useful
when considering mul tispectral scanner system design.

(4) An important extension of this research 1s the consideration
of the relationship between the information theoretic methods for

selecting a subset of spectral bands and the accuracy of scene classifi-
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cation using these bands. A simple expariment of this nature was at-
tempted 1n Chapter V and met with difficulties 1n estimation of some re-
quired covariance matrices. Nevertheless, 1t would be extremely useful
to study the efficacy of the infcemation theoretic band selction appli~
cation in relation to the c¢lassification problem. It 1s expected that
such things a; types of models used for the spectral scenes and, indeed,
the particular spectral scenes considered, would cause this to be a wide
ranging and complicated study. Different classification tecniques might
be expected to produce widely differing results when using a set of
bands selected by the information theoretic criterion. Indeed, propar
consideration of the many .variables in such a study has been [W11 and

should continuz to be an area of fruitful research.
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Appendix I
Kalman Filter Algorithm
The Kalman filter algorithm 15 ncluded as a reference for Chapter
I1. Deravation of the algorithm 1s fully explained by Sage and Malsa
£53] and Meditch [MTJ. The algorithm is stated here in the meanner of
Sage and M2lsa ESS,-Chapter 77.

The system model is given as
x(k+1) = o(k+1, kIx(k) + T(kIwlk) (N

and

2(k) = HODxC(K) + vk ()

where
x(k) 15 the state vector
$(k+1,k) is the state transition patr1x
I(k) is a matrix
w(k) is the draving noise vector
z(k) 15 the observation vector
H{k) 1s a matrix
v(k) is thes observation noise vector .

The assumad prior statistics zare given s
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EL(EYT =9 = £[yt] SN ")
ELx(0Y] = § (© (%)
cov [u(k), w(1] = v (08K )
cov vk, v(i)] = v, K6k 6)
cov[uk). v{(j¥} = cov [x (0, wGdj

= cov[x(D, vik)] = 0 (7>

where
§()-k) = 1. 3 = k . (3)
0, 31 #k

These assuamptions give the Kalman filter ~lgorithn for the estimate,

2k, of x (k). The estimate 1S

200 = eCkk-Dx(k=1) _}_f\_'(k)[i(k) - g(k)g(k;k—nj(k—a)l 9)
wher o
ke = v G/k-DnT o oy Gk 1l g v v ) -
X Tox -
=y aon v T 1)
- - —v

X
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*

Vo) = {1 - KGOHGIIY (4 /k=1) an

Tx ¥
PA.
j
V7K = e(TLIOY (0] (ke 1,50
X X
£ TOOY, (o ) “12)
20K = x(k) - k(KD a7

Tne eas2 with which this algoritha cen be wmplenented on 2 drgital com-
puter is evident from the above equations. S2ge and Melsa [S3, Chapter

71 give a good discussion of all the terms used above.
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Apoendax I1
Matrax Inversion Lemmn
The matrix nversion lemms s wncluded here for reference since 1t
15 used n some of thz derivations in Chapter 1II. The formulation and
jemonstiration given here 1s the sam= 35 th.t gwv'n by Sige and H:lss

233, p. 499-5991.

Matrix Inversion Lemma

If for any N x N nonsingular matrix A and any two N x M matrices

B and €, the two matrices (A + QET) and (I + Ejﬂ;l } are nonsingular,

then the-matrix identity

N A R N Y U N (1)

is val id.

Proof

beftine

D= A+oDC . 2

Then sance by assumption D 1S5 nonsingular, w2 can wrate

D=1=p A+0D 30 . (3)

1

Nouw postmul taply (%) by ﬂf to obtzin
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A (%)

Al =pg s 07tec’ale
=0 la + ATy 5
low by essumnption (E_+ Eﬁﬁjlgﬁ 15 nonsinguler. Hznca, wr can write fron
(5)
plg = A lsa s TR 6)

Postmul tiply by £F5j1 to obtain

plaea T = aTler ¢ cTa T 7

Buf 1t 1s seen from (4) that we can Write
c- 7 =pTiRCAT (8)

Hence using (8) in (7) w2 can wrate

A= =T s T ©
and using (2) we can finally write
O L L e T N L oL L o

Ths 15 the disired result.
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AN CONTINUE
YFUR=4,10
DO 20 (=)
ZISZ=TC 1242 (14120l (1)
TrYe=7T%2
20 CorTIt )
DEMO=1.N+7T52Z
DO 43 L=lav
B0 uwh [S]aM
ZZTS{Isur =)0
NO &5 J=l4
FFIZ7TUL 0l ofd o adaude =P lUsL)1 S 0.0.00 GO 10 «5
ZZTSET oL I=22T8 0w L) 77T (T uSPJL)
GO T &3
4 ZITS{I+LI=Z2TSITaL} 0,0 !
45 COMTI-IJL
Q& CQUTTMI
43 ConTIw
DO 60 L=l
DO A1 I=1.4
TP (I.L1=0.0
DO A2 J=1.m
IFISPIL+J)aEDa0adalu77TS {12001 GO TD o3
TOPLIWLI=TOP(IsL)eSpr il JIeZ LTS (JeL)
GO _TO »#
63 TOQP(ILY=TOP{T4L}+0,.0Q
62 CONTInIZ
&1 CONTIMJE
60 CONTINJL
DO 21 I=]1.v
DO 22 J=1.M
SL{I+JI=3F{1.J}~0{TOP(1+J)) /DENNY)
22 CONTINJF
21 CONTT e
TEMP=0.0
DO 23 I=1+"_
THZ=TE A2+ THCTaP (I} 22114 1)
TEMP=TH?
23 CONTINUR
COEFF=Y (<)~THZ
N 65 Isl.4
CORD(I-I{=G.U
00 66 J=1+4
TFIS(IsJ).E4.0.0.0R, ? Jrl1.ET.0.9Y GO TO AT
CARALT+ 1120 e o Iolh- [+J}®Z(Jel)
GO TQ ns
&7 CORD([-Q)'CURD(I’IJoﬂ
&R COMTI MJE
65 CONTIYIZ
DO 24 [=1.4
THEFACI) =THEYAP (1) +CORR (T 1 2COEFF
COMTL &

%3 COMT [NJL
g-.--.COWPUTATIOH OF THZTA ESTIHATF COAPLEITE
Conses COFPUTATION OF RESTuULL VAIIANCE ANO SELECTION CRITERION
¢ TEYP=0.0

MM=}4a ]
]

>
=i
5

Do A 20X
L

T e
——.

- -

i

n
>
NN O

ST~ 0T - O

Z LT M
Do e Fad | T
— A et = T 2

160 TO S0

O
rary

A T N N H T X" e

— T Y M= DS S

n
(=]
(g}

l.l-

HETAZ+THETA([)122(]»1)

(Y IK)=THETAZY = (Y (¥ ~THSTAZ)})
SYIR)=-THFTAZ

25 CONIIJJ
RAD=Q/{FLOAT (*1-1) )

CRIT=={(FLOAT () /2.u B \LODGERHOY J =t LOAT (4}

c
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EOREATEIAS3IRFSTINATE 2 COEFFICIENTS WLPMACLIS
2o BRI TR )
4 H hrd A 2ydHyz- B .
28 CONT[ nIE L N EFREIE RS P-Y
30 E:;Iré iqqlzﬂnﬂ
A Y. F . A olance = .f
AR BSTHA P SIuUAL va~lanCE e, e)
%% FOIMITLLIMT422nNE0LeCTIO ) CRITERIOY = selhat)
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TA =gt
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N -

TEMPz L1
3 CONTINIE
XgAR= L1 0/FLOAT (W) )2k
TEMP=0.0
N0 & 15]4M
R=ETEME+ (X [T)=44aR) e {x 1 1] ~XAAR)

TF 4apz2
4 coutinuz m
A0=(1.6/7 1, 08T (M=) )b
ETASSLATIELOLT{ 3/4nn) BARAS i?ﬁ&ggg
FORYET 700008 T 2 1oun AL :
F = stle.)
ARITE (1304) we O Q‘B,XG ?\,Qﬁ
FOR* AT (Ani4d = 41S1lo,4] EOO
ARITEZ(1hed) T4 0
7 EQIMAT(0niT4 = scl6Ln)

g-....PROGQaH TO PERFORM THE CUMULATIVE PERIONOGHAM VALIODATION TEST.
C

NINMENSTON X(l}ﬂol.uA"MAITDﬁlvﬁiinn)-quTDHJ'HL(fﬂﬂ)
READ (H4]1
FURMaT ({3)
READ (9421 (1L T) e [=2)ad0)
2 FORMLT(NF12,.m)
FN=FLOAT (") /2.0
NP=TFIL{FAY
DENOM=0,.0
D0 3 J=l.u2
SUM1=7.0
SuyMz2=9.1
WA= (6, 2B3LASINTRELOAT LN P AFLDAT (1)
DO & L=1.M
SUML=SY L+ L (L) *COS L, JUFLOAT (L)
SU”?:SUH?*JtLJ“Sl1CHJ4FLOLT(L
4 COMT[MUE
GAVAR{ IV ={(7_00SnM]) /F| DATIMYI) 08P ({2, NOSM2) /FL DAT(N})©&2
DENQUsDECH e S4MYA ()

3 CONT o<
Do

9 K=]leN?
FRUW=0,0
N 6 J=la.«
FRU PN e GAMMA L ])
& CONTI .JE
G{¥) =FN A TENOM
CONTINJZ
FLAM=1,63
A=Fl AY
DO T K=l«t?
BulK)={2,1FFLNAT(CI/FL)AT LI} ) +8 /592 (FLLDAT( 12])
BLIRK)= (P NeFLOSTIR)/FLOAT (M) b =A/S23TLFLOAT( 12))
T CONTENJE
WRITE (5472 _
9 FORMAT [(1H1+22-CUMULATIVE PERIQODOGRAM)
FORMAT(1HD)
WRITE(T29) K2
0 FOR'ATI(IS)
DO & X=l.M2
WK (6.,283185307oFLUAT( 1) /FLOAT ()
ARITE (610} n«.nl(ﬁ).,(<l.~urn)
10 FOIMATIIH 4w iSke216,3)
WRITEL(T 210 aKoe ﬂL(nJ'GtK!-RU(Kl
21 FOAvATIaF 6,4}
IFIGIKuLTLALIK) cGRLGIm) «BT.AUI%Y GO TO Il
GO 10 A
5 WRTTF19+12) _dxa¥
FORVAT (11 «25-JUTSIDE BOUNDARY AT WK = +E16.8.9n OR K = 4I5])
a8 EggTINUE
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E.....PHOGQA4 TO FEhFOWy [rT SERTAL INDEPEhuahCE YALIUATIOM TEST.
c DIYENSIIN A(14707,/2¢1200431120)
[

EADE=:1) N

1 FNR IAT(LS)

AFAD (.1 (XY T=]a)

2 FORUIZWT(+Fli2,.4)

Fr iz, 1°FLAAT(H)
NI=TFIX({FN]D
RI=0.0

DO 3 J=l.NM
R1=01+X(J) ()

3 CONTINyYC

RO=RE/FLOAT (4]

DO & K=1.N1

R2{K)=2.0

Kl=xKe+]

DO 5 J=€1«N

R2IR) =22 IR =X )) 2R {J=K)

S CONTINU:

RIK) =22 /FLOAT (f—n)

A CONTINUE
SUM=0.9
DD & K=1.N1
SUM=SIMeg (K]} 8 ()

6 CONTINYE
ETA=Z(FLOAT(N-r 1) 85JM} /{R022)
RATTEL1S547) " 1aETw

7 EDgMAT(SﬂVl 3 20I3454450ETA = 4E164P)

N

C
g....-PP76R!4 TO COPUTE THE PFRIOROGH 1,

AIMER STOYN 2({]w0D) yonA{T0N
QEADTAL 1Y N ! "
FQQ +AT (|4}
REﬂ[]("udl!l[Il-IEloﬂ
2 FORMAT (47 ] 1,5
FisfgQul iRz, n
KA=TER Fe i
N0 3 J=1.n2
SUMl=z0,0
S 2=9,0
WIS (6.2 95070 0. T LI ) /e LBAT (D)
DO « | =].¥
‘S;g:']’= 1|j":}0:(([_|"f'\!l\ {adeRLOAT I Y)
=) ALY Es NV derLnaT ’
4 gONTlNJE Lh
AM' A{JI={[2.,09SU' ]} /FLOAT (NI} oR2. L0
1 COMTIAIE 2+ ({eeDOSUMP) FFLOAT () ve2
WoITh (haS)
5 FOSAAT(1=]a11rPThIvuNGaay)
WHITF[&«h])
6 FGRMAT(LA0)
AFTITS(7.10) 12
10 FoevarT(i=)
BC 7 I=1..2
WISL6. 2931550 TvFLgaT (111 2R L0AT ])
2FLTE (ma3) Tawly i~ (1t
L) FGP{'ET(I"I -f‘i‘-';(-c.;o-“l?:(or"':l"o;i)
-_vCIT':“"Oll) vl Garmall)
11 FORIAT(2716.3)
T CONTIMJE
END
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Crnnes PROSRAY 10 PERFOM THE ClUwrr LOSHAM YAL]IAT[ON T25T.

OIMFYNSTn v ALPHALE 1) oY I In00 s 1162 231 vuD) Y r e (eobva (100} o (D01l
A0) ST 8) v tllnygud e YELSON} VAl EnDT)
BELALsaw) #1
& FCOMAT(IS)
RELN{R. LY (ALFHALT) o [=1.Y1)
1 FO Ay (5519, 5
RE&DV(A.2) ~
2 FoRMAT(1S)
QEADIR31{YLL)+E=1 1)
3 FORMAT (ARFID.)
M=#14]
M2zM]1+]
Nl=t-]
MAYR=2S
no }0 iv=1. 'ave
DO 11 I=1lan
Dy (IvaId=ril}

11 COnTINJE
1£=117532)+2°1%
4'4=0 .10
VRFS=,011=233453
S=SNRT [(VAFS])

DO 12 K="12.4

CLLEL GAUSSIIL+SehmaV])
W{K)=v

SU4=9.1

DO 13 I=1.M1
SUM=SUM«ALPSALE) sUY L TM,K=1)

13 CONTINUEL
DY {Idexi=sytte )

12 CONTIRNUE
Symi=n.0
00 s [=1a4
SUM1=SAL«Dr(I*s 1)

14 CONTIH e
DYBAR[IM)={1,.0/FLOAT(t) Y =5UM]
Rlz=(.0
DO 2l [=1.9
RE=PL+ (DY (14 [)~0YBAR(T 1D 194DY (] ¢ 1) -DYHAR (L))

51 CONTI.mE
AG=A1ZFLOAT (M)

NO 15 r=l4N]

SUMZ=0.0

KN=N=K

DO 16 J=l.K4

SUMPZ=SU42+ (DY (14, J)~BY3AR(IM) ) o [DY (TM, JsKI=DYIAx(TH))

1& CONTINUE
RII'aK) S (1 0/FLOAT (] ) 95UM2/20

15 conTi~yL

10 COMTT WE
SUMizn,0
DO 17 I=1.4
SUM3=S 3. ()

17 CONTINY
TBARS (1. 0/FLOAT(N) oS3
RY1=0,%

DO 52 I=1.n
RY1=RYLe(Y{I}-v2AR]}2 (Y ({}=YRA~)

52 CONTINUE

AYQ=RY1/FLOAT {N)

DO 128 X=1.N1

SUM4=0,0

KNzN~K

DO 19 J=l ek

SUMLESU A4+ (YL =YLAR) 2 [Y{J+K]1=YEAR)

19 CONTINUE
RY{f}={1.0sFLUAT {1} ) *SUHML/RYD

18 CONTIME
0O 20 K=1441
SUMS=H,0
DO 21 J=l.MavG
SUMS=SURS I (JeK)

21 CONTI[NUE
RM(K)= () «0/FLOAT (HaVG) ) @ SUMS

2n CONTI/E



23
ez

g
g0

48
93

funrung o
=g

(ST
by

44
42
&4
41

DO 22 K=1,4M1
SUMH=0.0
DU 23 Jab.4Avl

SUMh=SU A [H{JaK] —iM (K] ) =87

- 181 -

[

CoPRELOGRAM

r
+270QUTSIOE JUPPEY SGJNHD AT K

AT «

TEST]

CCNTE wle
SIGINI=3 T ((1.0/rLuaT (MAYn) oS0 An)
CONTE el
ITWT=1
ASTTE (44730}
FOR ATiL~]«lnCORHELLOUHEW)
WRLTF{7a906)
FOReATII M)
N0 24 A=1401
PUzOM (X} + [Q.4°S15(K]))
ALEqs (= (2,945 (8))
TEARY (KD ST W GO T 25
IF(RY (M) .LTa L} Gy ™3 A7
WHITE [ned D) Mol vy (K]} MY
FORMAT{In.1(S57.Flb.b))
WOITE (749} ~o-dLemT i<} U
FORMLATI([2+3F 1%y
50 TD 24
A TTE (625}
FORMAT (1=
GO T2 2v
ar JTF (5+27) ¥
FORMAT (L4 4 27THOUTS 0% LULER ROUND
10UT=10JT+1
CONT InNs _
IF(IOYT.~0.0) G2 TO 31
G0 T 33
ATITE (A3
FN>*aT{1-1h,23HPAZSES
COMTT HJE
DO 42 R-f. 4
SUMT=n,0
o) &% [=teusvn
SUMT=SUMT+Dr (T K}
LONY e
YAYS (€)= (1. 0/FLOAT (MAVG] ) o SUMT
COMTT MJE
ARITE {da 643 M
FORMAT (IS}
AR 1l e P IOYRYG URD o0 L™
Egﬁvartnilo.SJ
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