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Chapter I



Introduction



1. General Discussion



Although still a comparatively young technology, remote sensing of



the environment has greatly extended man's perception of the world's



resources and interaction of natural and unnatural influences. Remote



sensing has grown from simple photography and photointerpretation to sa­


tellite borne sensors and sophisticated machine aided analysis. A cri­


tical portion of many modern remote sensing systems is a multispectral



scanner. Muttispectrat scanner systems employ sensors to observe por­


tions of the electromagnetic spectrum typically ranging from the visible



region to the reflective infrared regions. Thethermal (or emissive)



portion of the spectrum also has important uses in remote sensing.



Thus, investigation of multispectral scanner systems and parameters of



multispectrat scanner systems is an important and necessary endeavor.



Multispectral scanner systems are characterized by many parameters
 


interacting in compticated ways. This research develops analytical



techniques for the study of some of these parameters. Many of the



parameters tend to be dependent on the scenes observed by the multispec­


tral scanner systems. It is thought that consideration of scene depen­


dent parameters in the current research provides a framework for con­


sidering very specialized scanner systems as well as more general scan­


ner systems. An important example of a parameter that must be con­
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sidered for multispectraL scanner systems is what portions of the elec­


tromagnetic spectrum are to be observed. It is clear that this may tend



to be a very scene dependent parameter. Indeed, under differing obser­


vation conditions, it may be necessary to observe different portions of



the electromagnetic spectrum to obtain the desired information about a



single specialized scene type. The development of analytical techniques



to aid in the study of some of the parameters of multispectral scanner



systems is the objective of this research.



2. Previous Work



Up to the present, there has been little analytical work aimed at



general techniques for the study of parameters of multispectral scanner



systems. Most reported work has tended to be ad hoc and empirical.



This has produced detailed knowledge of various aspects of remote sen­


sing problems, but has not produced studies of of multispectral scanner



systems in an analytic context.



Studies such as those by Gates, Keegan, Schleter and Weidner EG3]



and Sinclair, Hoffer and Schreiber ES4) are indicative of the type of



detailed knowledge that has been gained about scenes that may be obser­


ved by multispectraL scanner systems. Examples of studies that have



been conducted for specific problems are those by CoggeshalL and Hoffer



[C32, and Kumar and Silva [K5]. These papers are not referenced so much



for their contents, but rather as examples of the wide variety of stu­


dies that have been carried out in an effort to understand aspects of



remote sensing problems.



An early study that considers a physical basis for remote sensor



system design is described by Holmes and MacDonald [H4. This paper
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gives a good exposition of many of the physical considerations for mul­


tispectral scanner system design. A more recent study by Landgrebe,



Biehl and Simmons EL2J, EL4J considers in an empirical manner several



important parameters in multispectra scanner systems. Some of these



parameters are spatial resolution and spatial sampling characteristics,



spectral sampling and bands, and signal-to-noise characteristics. These



are important parameters and many conclusions can be drawn from empiri­


cal study. However, it is thought that the development of analytical



techniques to study some of these and other parameters is now appropri­


ate.



3. The Present Investigation
 


As previously mentioned, very little anaytical consideration of



many multispectral scanner system parameters has been done. It is the



intention of this research to develop analytical techniques to study



some of these parameters. Although the developed techniques are appli­


cable to a wide variety of scenes, this reseach uses vegetation scenes



as a vehicle for consideration of the techniques.



Consider a single type of vegetation illuminated by the sun. If



the reflected electromagnetic energy in the visible to reflective in­


frared wavelengths (approximately .4 to 3.0 micrometers, jm) is measured



as a function of wavelength, x, for several different observations of



the same vegetation type, it is observed that the spectral response ex­


hibits random variation about a mean value at each wavelength. That is,



the observations tend to be stochastic in nature. Now, if the vegeta­


tion scene is observed remotely, say from a satellite or airborne plat­


form, there are additional disturbances of the observations. These dis­
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turbances may be due to atmospheric noise, random disturbance of the ob­


servation platform,, or other sources. The point is that the multispec­


trat scanner system receives electromagnetic energy from the scene that



exhibits random variations corrupted by disturbances that also have ran­


dom variation. Under these conditions, it is logical to suppose that



certain spectral regions (or spectral bands) may be more useful than



others for observing those features of the scene that may be of in­


terest. It is also logical to conclude that by studying the effect of



the disturbance on the observation of the scene, it may be possible to



minimize the adverse effects. Thus, in view,of the above comments, it



would be useful to characterize analytically what information the obser­


vation conveys about the scene.



This is highty reminiscent of the classical problem in communica­


tion systems. A receiver (multispectral scanner) obtains a signal (the



electromagnetic energy from the scene) that is corrupted in some manner



(perhaps by random noise). It is then desired to introduce a quantitive



measure of what the received signal conveys about the transmitted sig­


nal. This is the special scope of the subject of information theory.



The birth of the field may be said to be, of course, in the work of



Shannon IS1J. There are voluminous references in the field with major



texts by Fano EF4] and Gatlager [GI]. The relation of received signal



to transmitted signal is described in information theory by the concept



of average (mutual) information. Loosely speaking, the average informa­


tion in the received signal about the transmited signal may be said to



be the reduction in uncertainty about the transmitted signal that isob­


tained from the received signal.
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Application of the concept of average information to the study of



some parameters of multispectrat scanner systems is pursued in some de­


tail in this research. It is thought that this gives insight into the



study of the relative utility of different spectral bands to be used in



scanner systems for observation of spectral scenes. Further, utlization



of information theoretic concepts can be used to study the effects of



noise disturbances on the observation of spectral scenes. The develop­


ment of the information theoretic concepts is the topic of Chapter II.



The computation of average information in spectral data received at



the multispectrat scanner about an observed spectral scene is not



without difficulties. A method to circumvent the necessity of solving



some rather intractable equations is described in Chapter II. Also,



methods for digital computation of average information are developed in



Chapter II. These computation procedures require that models for the



spectral response of a scene be developed.



Chapter III contains the development of the techniques used to con­


struct models for spectral scenes. Several approaches to construction



of the models could be pursued. Most of the approaches are studied in



terms of the system identification problem. Saridis has done extensive



work on stochastic approximation methods for systems identification



[S5], ES6J, and ES7. The stochastic approximation techniques have the



advantages of being relatively easily implemented and having great gen­


erality. Maximum likelihood identification techniques have also been



extensively used. The references by Kashyap and Rao EK3), and Kashyap



EK6J give good dicussions of the maximum likelihood identification tech­


nique. The maximum likelihood techniques are used in Chapter III to
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develop techniques for constructing models for spectra[ scenes. Con­


cepts from the area generally known as time series analysis are also
 


developed for use in construction of models for spectral scenes. Box



and Jenkins [81), Anderson EA4J, and Kashyap and Rao DK3] are good re­


ferences for time series analysis and its application to construction of



dynamic models from empirical data. Also discussed is a Bayesian iden­


tification technique for models of spectral scenes. This technique is



an adaptation of a method described by Kashyap and Rao 1K33 to the



present work.



A criterion for selecting one of several hypothesized models for a



spectral scene is discussed in Chapter III. Further, once a candidate



model for a spectra[ scene has been selected, the question of the vali­


dity of the model remains. Validation techniques for testing candidate



models for spectral scenes are also discussed in Chapter III.



Chapter IV uses the model construction techniques developed in



Chapter III on empirical data from actual scene types that may be obser­


ved by a multispectral scanner system for remote sensing of agricultural



scenes. The empirical data consists of two vegetative scene types. To



demonstrate the model construction technique on a scene of a single



vegetation type, a wheat scene is considered. A set of empirical data



made up of several vegetation types is used to demonstrate the model



construction techniques on a more general vegetative scene. The empiri­


cal data sets are divided into several spectral bands for two reasons.



First, most multispectral scanner systems tend to be designed around



different sensors for different spectral bands. Second, it is thought



that better models of the spectral scenes can be obtained by considering
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several bands in the spectral region of interest than if only one model



is constructed for the entire spectral region (approximately .45 to 2.4



pm for the present case) under consideration. Several models are hy­


pothesized for each band and the parameters characterizing each are



identified using the maximum likelihood technique. Candidate models are



then selected using the selection criterion developed in Chaper III.



Finally, candidate models are validated using the techniques developed



in Chapter III.



In Chapter V a simple application of the computation of average in­


formation as developed in Chapter II is carried out using the models for



the spectral response developed in Chapter IV. This application is in­


tended to demonstrate how the average information computation can be



used to select a subset of spectral bands. Also it is demonstrated that



average information can be used to study such parameters as signal-to­


noise properties in different spectral bands. The relation of average



information to spectral bandwidth is implicit in the discussion.



Chapter VI is devoted to conclusions about the research and



thoughts for extension of the research.
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Chapter II



Information Theoretic Approach



1. Introduction



In this chapter, information theory concepts are developed for use



in the study of spectral scenes. The basis for this study is the manner



in which the spectral response is considered. The spectral response for



several observations of the same' variety of vegetation exhibits random



variation about a mean spectral response at each wavelength. Thus a ma­


jor consideration for representation of a spectral scene is the ability



to adequately model its inherent randomness. Another consideration is



analytical tractability. Hence, it is reasonable to consider the spec­


tral response of a scene as a sample function of a portion of a random



process in wavelength. That is, the spectral response is given by s(x),



where s(A)eS and xc E"2] The-ensemble of sample functions for the



spectral response is S and [xIX 2] is the interval of wavelengths of in­


terest. It is not necessary to assume that the spectral random process



is stationary. In fact, it will be seen later that the spectral process



will, in general, not be stationary. On the basis of empirical studies



by Fu, Landgrebe and Phillips [F1J, a reasonable assumption on the sta­


tistics of the spectral process can be made. The spectral random pro­


cess will be assumed to be a gaussian process. The mean and variance of



the process will be apparent when models of the spectral process are



discussed in the next chapter. The gaussian assumption can also be jus­


tified from another point of view. When a multispectral scanner system



views a scene, it receives a signal from many sources in the field of



view. If it is assumed that the scanner system is observing many in­
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dependent and identically distributed sources, then the central limit



theorem can be invoked to justify the assumed gaussian statistics. The



gaussian assumption is important in the analytical results of this



research.



2. Definition of Average Mutual Informatipns



The signal received by a multispectrat scanner is assumed to con­


sist of the spectral signal for the scene, s(x), disturbed by a statis­


tically independent additive random process (noise). This noise process



consists of the disturbances in the spectral scene not attributable to



the vegetation under observation and random disturbances in the channel



between the scene and the multispectral scanner. In the present



research these disturbances are all combined into one noise random pro­


cess in wavelength, n(x). The noise is also assumed to be a gaussian



random process. This assumption is made for the same reasons as for the



signal process. It is further assumed that the noise process, n(x), is



white. In the present context, white noise is a zero mean random pro­


cess with autocovariance given by



No 
E[n(X)n(u)] = - (x - u), x1 < x,u < A2 (2-1) 

where



Ej.] is the expectation operator,



s() is the Dirac delta function.



Thus the spectral, process received by the multispectral scanner is
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represented by



y(x) = s(x) + n(x) e ,A2 (2-2)
, Ex 

It is not necessary that the noise be white. However, for purposes



of studying the bands of a multispectral scanner and their information
 


content, this assumption is sufficient. It is still possible to allow



the white noise to have a different spectral density level in each band.



The more general problem of mutual information in time continuous pro­


cesses with non-white noise is considered by Huang [H1], [H22.



The problem to be considered first is to define, and later calcula­


te, the average (mutual) information in the process y(x) about the pro­


cess s(x). First, however, it is necessary to state some basic and



well-known results from information theory concerning the average infor­


mation in one set of random varibles about another set of random varia­


bt es.



The averge mutual information in a set of random variables 

V = (v1, v2, ..., vNI about the set of random variables 

U {Cul, u2, .... , uMI is defined by EG1J 

ICUV=f fP~v Puv(SY) 1 
I(UV) f f PUV (u,v) log U()p (v)j dudv (2-3)

UV R au)--
 ( 

where



PUV(u,v) = joint density function


-- of the sets U and V
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Pu) = density function of the set U 

YO = density function of the set V 

and! andf represent M-fodld and N-fold integrals over all the possible


U V 

values of The m-mber-s of the se-ts U and' V. 

Since the definition of average (mutual) information is known for 

random variables, an intuitively pleasing approach is to represent the 

spectral random proc-esses int terms of random variables and thus apply 

the previously known definition. Thn is the approach of Shannon S1J 

for the case of band- limited time functiorrs and an infinite,dbservation 

interval. I-t has been shown rigorously by Gelfand and Yaglom EG2] that 

this approach Leads to a valid definitlon o.f mutual information for time 

continuous.processes under almost all conditions. 

Suppose that there exists a set of random variables. 

S = Is1" s2" -- l that uniquely determines and is uniquely determined 

by s(x). Similarly suppose that there exists a set of random variable-s 

Y = {yY 2, ... } that uniquely daterminas and is uniquely determined by 

the portion of y(x) that contains s[X). Under the assumption of in­

dependence of s(X) and n(X), any portion of y(x) not represented by the 

set Y is irrelevant to the cal culation of the average information in 

y(x) about sx). Then it is reasonable to say that the" average informa­

tion in Y about S is the same as the average information in y(x) about 

s(x). Thus we make the following definition of the average- utual infor­

mation in the process y(x) about the process- s,(x). 
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I(s(x), y(x)) g I(S,Y) (2-4) 

That the average (mutual) information can indeed be defined in such



a manner merits some elaboration. A method to determine S and Y for



given s(,) and n(x) is needed. First consider such a representation for



s(x). Assume that the process s(x) has a finite mean square value.



That is



E[s2( X) < Wf XeC Xjif X2] (2-5)' 

Let D = [SO(x) ; i = 1, 2, ... be a complete orthonormal set of func­

tions for~the class of square integrable functions on X1" X2. Then 

s(x) may be represented on the interval 1" X] as 

n 
s() = t.i.m. 7 Si~i(x) X1 < X < X2 (2-6) 

n w i=1 

where l.i.m. is the Limit in the mean defined by



nim E (x) - W),= , X1 X < X2 (2-7) 

The random variable s. is defined by



X2 
si f s(x)4O(x)dx (2-8)

xl



The details for such a representation may be found in such texts as [G1J



and [V1].





- 13 -

Similarly for another set of complete orthonormal functions 

1 (x), e2(x), .... on X1, 2] the received spectral process y(x) can 

be represented as 

n 
y(x) = t.i.m. Yi X) , X1 < X < X2 (2-9) 

n+w i=1 

where



2


Yi 5 y(x),e(x)dx (2-10) 

It is often convenient to choose the set CeiO(x) ; i=1, ... } to be the 

same as the set {Qi ; i=1, ... I. In particular, this is true for white 

noise disturbances. 

Thus, if the sets {gi(x) ; i=1, ... } and {ei(x) ; i=1, .. } can



be determined, we have sets of random variables {s. ; i1,2,...2and



Cyi ; i=1,2,...- that uniquely determine and are uniquely determined by



s(x) and y(X) respectively in the manner previously discussed. The com­


plete orthonormat sets {i(x) ; i=1,2,...) and (e(x) ; i=1,2,...) wilt



be determined later in a manner that is relevant to writing an expres­


sion for average information for the processes s() and y(x)



Hence, if we define



S {sI , s2 , ..., sn} (2-1I)



and
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= 1Y2" Yn]. 	 (2-12) 

we can write from the basic definition of average (mutual) information



given in (2-3),



U PCSn,Yn) 1 ' 

I(S ,Y) = J J ,Yn) toS n n dS dY (2-13)Sn Yn 	 LpSn) P(Ynn n SYf n LPs)CnJ n n 

where 	 p(S n,Yn), P(Sn) , and p(Yn) are the appropriate joint probability



density functions.



Since in general n will be countably infinite we write



I(SY) = lim I(S,Y) . (2-14) 
n- n 
 n 

Thus 	 we have an expression for I(sOx),y(x)). The complete mathematical



details are given by Huang EH1] and Gelfand and Yaglom [G2].



The problem now at hand is to translate this definition into a form



that 	 is useful for the current problem of determining the average infor­


mation in the received spectral process y(A) about the spectral scene



s(X). In the next section this problem is pursued.



3. 	 Calculation of Average Information



In this section, appropriate sets of basis functions



{.1(x), *2(W, ...} and {e(1 x), e2 (x), ...} are defined. These basis 

functions will, at least in principle, yield a calculation technique for 

average information. First consider the representation for s(x) , 
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sO,) =iS s WCX) x1 < X < 2" (2-15) 

Note:- -For -notational -simpl-icity-we-have -acig6d' fr6o


n 

t.i.m. > s.i.i() to the, above. 
nfw i=1



The-covariance function of s(X) is defined as



Ks (x,u) Es(x)s(u)J Au[X11, 2] (2-16) 

and it is straightforward to show that [PI, p. 431J



K2(X,u-) C K (x,x)K (u u) (2'17)
S - S S 

Since we--Iave- restricted,ourselves to, processes with finite, mean square



value, it-follows- that



f, I'K2S(x,u)dxdu- < LE S2(X)] dl <(2"18)' 

xi1 1



That is, the, processes under consideratior" also have square, integrable



covariance functions; Since we are deating-with a-gqaussian-random pro­


cess, a useful. additional property that-is to be- required of the-bas-is­


functions is that the terms s andt s]o itj, be uncorrelated That is,



E=is = a 6,j (2-19) 

where



II 0, iwjS= 1, i=j
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The usefulness of this requirement will be seen later.



These are the classic requirements for the representation of a ran­


dom process in terms of a Karhunen-Loeve expansion V1, CC1J. In this



expansion, the basis functions j(x) are the eigenfunctions of the in­


tegral equation



aj¢ ((X) Ks(xu),(u)du , 

X1 


J X1 < X < X2 (2-20) 

The eigenvalues of the integral equation are the numbers



3,
a. j = 1, 2, ... } Of course, the eigenfunctions 

{gj(x), j = 1, 2, .. have the required orthonormality property



X2



f 1 i(x) ¢(x)d x = 6.. (2-21) 

Another property is that the sum of the eigenvalues is the average ener­


gy of the process s(x). That is,



E S2()dj = a. 
(2-22)



Since it is assumed that s(x) is from a gaussian random process, the un­


correlated random variables (s. i1, 2, ...} are also statistically in­


dependent. This property is used later.



Now consider the generation of appropriate basis functions



{i(x), i=1, 2, ...} for representation of the received spectral process



y(X). Since it is assumed that y(x) is of the form
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y(x) = s(x) + n(x) , < x < x2 " (2-23) 

where s(x) 'and n(x) are statisticatLy,independent, we can write the co­


variance function of y() as



Ky(x;u) =,K s(,u) + Kn (x,u); x1 < Xu < x2' (2-24) 

Since it is assumed also that n(x) is gaussian white noise, its covari­


ance function,
 


N 
K (x,u) - s(x-u) (2-25) 

is not square integrable. Itis necessary to consider the ramifications



of this for the selection of the basis functions (eix0) ; i=1;2,...}.



Consider first the use of KnCxu) as a kernel for the integral'equation



(2-20).



2 N0 


X1 (2-26)
aj j(x) =f N- 6(X-u)6o u),du, < x < 
 12 
x


1



or



a o(x) N­N--0j(%) x1 < x < X2 (2-27)


The implication is that equation (2-26) is satisfied for any set of


No



orthonormal basis functions with corresponding eigenvalues a, =-.



This result is a direct consequence of the fact that Kn (1,u) is a delta



function. Hence, wemay just as well use x(x)= *1 (X) to 
 represent the
 

received process y(x). We need to make the following cltarification



'here. From Mercer's theorem I1, p. 181) we need a completeorthonormal





set {Qj(x); j=1,2,...} to represent the covariance function of the white 

noise. If Ks (x,u) is not positive definite, the eigenfunctions 

{j(x), j=1,...1 will not form a complete orthonormal set [V1, p. 1812. 

In this case the eigenfunctions can be augmented by a sufficient addi­

tional number of orthogonal functions to form a complete orthonormal 

set. The importance of obtaining a complete orthonormal set is that 

such a set can be used to expand any deterministic square integrable 

function. The necessity for assuring ourselves that {4j(x); 1,2,...} 

is complete will be clear later. We can be content with the assurance



that even if Ks(X,u) is not positive definite, we can still obtain a set



{ (x); j=1,2,...} that is complete.



Thus, the integral equation that defines the eigenfunctions and



eigenvalues for y(x) is



b.jj(X) 4 Ky (X,u) j(u)du



j [KS(X'u) + 2- _(x-ujs..(u)du 

N0 

- %(X) x<~ 2 (-8 

If we use
 


NO 

bj = aj + 0-- (2-29) 

we have the original integral equation (2-20) again. The implication is
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that we may represent the received process with the eigenfunctions



-C4CW); j=1,2,...} and the eigenvalues {a + 
2
-0 , j=1,2,...}. That is,


3 i _ 

we may write 

y(X) = yi() X1 < X < X2 (2-30)
j=1



(l.i.m. is implicit here).
 


Hence, y(X) is represented by gaussian random variables



{Yl; i=1,....} that are uncorrelated and thus statistically indepen­


dent. The correlation of yi and yj, i,j = 1,2,... is given by



No


E[yiYj = (a. + N-)0 (2-31)
 

The process y(x) uniquely determines Y = {y1, Y2, ""} By using the.



eigenfUnctions {4.Cx); j=l,...} we have a unaque representation of that



portion of y(x) in the signal space of sO). By the independence pro­


perty of average information, the portion of y(x) not in the signal spa­


ce of s() is irrelevant to the average information in y(x) about s(x).



Thus, we have achieved the goal of representing the processes s() and



y(x) by uniquely defined sets of random variables {s.1, i:1,2,...} and



{yi, i=1,2,....}. These sets of random variables are now used to write



an appropriate expression for average information.



The covariance matrix for the random variables Csi; i=1,2,...} is a



diagonal matrix with the ith diagonal element given by E[Sa a



Similarly, the covariance matrix for the random variables



yI; i=1,2,... is diagonal wi.th the ith diagonal element given by
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E 2= a + -0. Also since we noted that the noise process n(X) could


be represented by { (x);W i1,2,..., we can define
 a set of random


varibles for the noise that have a diagonal covariance matrix with the


ith diagonal element given by E n -


It is fairly easy to show that a set of gaussian random variables 

(yi= s + n , i=1,2,...1, have average information about the set of 

,gaussian random variables Csi, i=1,2,...) given by £$1, Theorem 16] 

1('Y Fdet c]I
ICS,Y) = logtogLdt- - C2I (2-32)
* 
 

where C and C are the covariance matrices of {yi; i=1,2,...) and
n 1n



Cni = -2-- ; i=1,2,...) respectively. Since Cy and Cn are diagonal, we



can write



N0


det C = (i 
 + -)
Ca (2-33)
 

y j 2


and



.oNo


(2-34)
det C=f 2- . 

Thus, we can write



det C 2


y (1++ aj(2-35)
det C, j)
n =1



Hence, the average information can be written as:
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+o .2 j]2-36) 

I(S,Y) = 191+ -0 C(2 

The average information is now written in a form such that calcula­


tion may be carried out in principle. Furthermore, the average informa­


tion can be approximated by using only the first n largest eigenvatues



in the summation. This is reminiscent of the feature selection problem



in pattern recognition. Thus average information might be useful as a



feature selection criterion.



The present formulation of the average information offers insight



but still is not in an easily calculable form. The next section is con­


cerned with deriving a more useful formulation for the average (mutual)



information. This form will also offer more insight into the idea of



using average information to study parameters of multispectral scanners.



4. The Relation Between Average Information and the Wiener-Hopf Optimum



Filter Problem



This section will show the relationship between the average infor­


mation in the received process y(x) about the spectral process s(X) and



the Wiener-Hopf optimum filter problem. As is well known, the -Wiener-


Hopf optimum filter gives the optimum (in the mean-square sense) linear



estimate of a process that is corrupted by an independent, additive



noise process. In terms of the spectral processes of immediate concern,



we observe



y(x) = s() + n(x) , 11 
< X < 2 . (2-37) 

We then pass the spectral process tycA) through a linear filter to obtain
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an optimal estimate §(X) of s(x,). This estimation technique may be



described by the equation



9() = h(x,u)y(u)du, X1 < X < X2 (2-38)



where h(x,u) is the impulse response of the optimal filter such that



E[(s(x) - 9(W))2] is minimized. It is straightforward to show [V1, p.



198-2042 that under our assumptions concerning the spectral processes



y(x) and s() the optimum filter must satisfy



X2 
 NO 
f Ks(u,v)h(x,v)dv + 0 h(x,u) = Ks(X,u), X1 X < X 2 (2-39) 
1 1 < u < 2 

NO



where K5(x,u) is the covariance function of s() and 0 is the spectral



level of the noise process. This above relation is a form of the famous



Wiener-Hopf equation.
 


It is now possible to put h(x,u) in a form that is convenient to



show its relation to average information. Since the eigenfunctions



{(), i=1,2,...} form a complete orthonormal set, it is possible to



write h(x,u) in a series expansion of the form



h(x,u) = Z h @i(x) i(u), X < A < 2 (2-40)
i=1 ~ 11 

X1 < u < A2 

From Mercer's theorem EVI, p. 181) we can write





- 23 -

Ks(Au) = ai l O X1 Xu < X 2 (2-41)()*.u)" 
 

Substitute (2-40) and (2-41) into (2-39) to ,obtain



h=1 i(u)+ 2 aIllCu)4l(v) hj (x)j(v)dv
il(X f j 
*1 1X 1 1= =1 : 

= >1 aiiC1 )t(u) (2-42) 

Using the orthonormality property of the eigenfunctions, the above equa­


tion c~nbe rewritten as



IN


i=l hI (,a + 7 ) (x)s(u) i=11a . (x) i(u) (2-43) 

It is seen that if



a


h= i=1,2,.,.. (2-44)



aI+ ­

then the equality of equation (2-43) is evident. Hence, expand b(xu)



in a series as



g.
ai


h(x,u) N1 " Xu) (2-45)
X X< A < A2
f- <(x) 
 

i=1 
 X+ <U<
1 2



This representation of hx,u) is found to beuseful in relating the



,Wiener filter impulse response to the average information in y(x) about
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s(X)



We first manipulate some of the basic equations into a useful form.



The equations to be considered are reproduced below for easy reference.



aj.Jx) K (X,u)4(u)du , x1 < I < X2 (2-20) 

1 
 2 
f @fx)dx = 1 (2-21) 

j=l



Note that in (2-21), x2 = "1 + z since our major interest is in the 

spectral response interval L = x2 - x1l The first manipulation is the



differentiation of I(S,Y) with respect to L. This is



dI(S,Y)

di 

-

2 .~i logd1 + a~
dt 7 ~j=1 d 

1 1+2 da 
-= + aa ) 

j=1 0 0



or
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2da 

ddCS,Y) 1 N cl (246
di 2 j=l1 + 00 a 

da



From the above equation it is seen that an expression for T is needed.



In order to obtain this derivative, first mul'tzply both sides of (2-20)



by 4j(X)and integrate over the intervat IX), X11 + )].. This gives 

Xt+f t(x)dx =f Ks(X u)QiCu)d 3}(x)dx (2-47) 

and using the normalization criterion (2-21) we obtain



1 1 K (,u$,)t(u)d .(x)dx (2-48)a=f tdu 

Now take the derivative of (2-48) with respect to t



dad f+L sCx 1+ )€ Cx1+t) + 

a (u ) '


+ f K x,u) du t (x)dx 

+f I K('x +tu)tj(xl+t) + 
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K (X,u) dx Qj(u)du (2-49)

atXI s 

This can be simplified to give



da. f+t
-
aZ 2j(x1+t) Xi KS(xl+tu)j (u)du



13



f2fl+Z [fxil+ Ks(*,u). (u)d dx (2-50)
XL 1 _ at 

We now make the observation that equation (2-20) can be written as



a2.j(Xl+t) fX1 Ks(Xl+Z.u)judu (2-51)


X1 KsC 1+tut.ud



Using equations (2-51) and (2-20) in (2-50) we obtain



daj 2a 
 2j(X1 +0
2 +



rX1+ a0.Cx)



+ 2a f.(X) - (2-52)' dx 

i 1 at



A simplification of the integral expression on the right hand side of



(2-52) is still needed. A useful expression may be obtained from the



normalization expression (2-21). Differentiate (2-21) with respect to



L.



http:1+tut.ud


- 27 ­

df 1+ 4,Y()dX = 0 (2-530
xi 

or



1
0 
 2(xI+z) + 2f X j(X) 3,x dx (2-5-4) 

The integral term in (2-54) is the same as in (2-52). Hence, using



(2-54) in (2-52) we obt-ain



da.= 22I)
dai = 2aj2jxl+0 - aj2. (2-55) 

or



da. 
 2


d__= aj2(X1t) 
 

(2-56)



da


This is the expression for d-- that is needed in equation ('2-46).. Mak­


ing the appropriate substitution we obtain



dItSY) N0 5C 1+)25)


j=-( 2 a



Now compare this expression with the expression obtained for the Wiener



optimal filter response (2-45). It i-s c-lear that the relation between



(2-45) and (2-57) is



-6----t " h(x1+z, xl+z) 
 (2-58)



Thus it is seen that since Z varies from 0 to X2 - X, we may make a sim­
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plifying change of variables and write



I(SY) = fI hcx,x)dx
f'22-59)



Thus we have a simple relationship between the average information



in y(x) about s(x) and the Wiener optimum filter. The exprdssion h(x,x)



is the weighting that should'be given to y(i) at wavelength X in order



to obtain the optimum mean-square estimate of s(x) at wavelength X. It



is interesting that there is a relationship between the mean-square es­


timation of s(x) from the observation y(x) and the expression for



average information as simple as the on given above.



There are, however, major drawbacks in the relations just derived.



The first major problem is that the covariance function Ks (X,u) must be



known in order to solve the Wiener-Hopf equation in an analytical man­


ner. Ingeneral the covariance function of a spectral scene is not



known in analytical form. An estimate of the covariance function can be



made, but this estimate may not be in a useful analytical form and may



not be positive definite. Furthermore, estimation errors may add to the



difficult'ies of discerning a useful analytic form for Ks (x,u). The



second major problem lies in actually solving the Wiener-Hopf equation



even under the assumption that a functional form for Ks (x,u) is known.



If the spectral processes are stationary and posess rational power spec­


tral densities, then the Wiener-Hopf equation can be solved. However,



stationarity cannot -e:essarily be ass-e: 4-r t-e s-e:tral -::esses.



The solution of the Weiner-Hopf equation for nonstationary covariance



functions is considerably more difficult.
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5. Computation Considerations



the above considerations indicate that a more useful technique for



determination of the Wiener filter impulse response is needed. A tech­


nique that is useful for this computation may be found by examining the



relationship between Wiener filter theory and Kalman filter theory.



These two theories are really different viewpoints of the same problem.



Of the two, Kalman filtering offers much more computational capability.



The relationship between Wiener and Kalman filter theory was shown by



Kalman and Bucy EK13 and Kalman LK21.



Since the purpose of this section is to study computation techni­


ques for average information, and computation is most easily carried out



in discrete form, we shall first recast the previous expressions in a



discrete formulation. That is, we shall study the problem in terms of



discrete wavelengths rather than continuous wavelengths. Thus, the



spectral process



y(x) = s(x)+n(x) 1 < X < X2 

is written as



y(k) = s(k) + n(k) kt x1 , Q2 (2-60) 

where k is an integer corresponding to a discrete wavelength in the



wavelength interval of interest. The white noise process n(X) then



becomes a sequence, n(k), of independent, identically distributed zero


No



mean gaussian random variables with variance -. Next, consider the



description of the spectral process s(X). Since we have assumed that



s() is a gaussian random process, a reasonable model for s(X) is a
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linear dynamic system driven by an independent gaussian random process.



That is, the process s(x) is assumed to be described by a linear vector



state variable form. The linear vector state variable form is written



as:



sx) = A s(x) + Bw() (2-61) 

where



Cx)7 

s Cx0)


-- W ­

SW,



n



and s1 (x), s2(x), .. s,Cn(X) 
 state variables.
are the More discussion
 

of the state variables is given later.



A is an (n x n) matrix



S1 (X) 

d 

sOD= ssx)
d =S- x 

dx 2



-( ) d



dd



C Sni1) 

8 is an n x 1 matrix 
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w(X) = an independent gaussian random process



n is order of the state variable system.



The concepts of state and state variable formulations may be reviewed in



Schwartz and FriedLand [$2, Chapt. 2). Kalman [K2], and Schwartz and



Friedland [$2, p. 125-127] also indicate the manner in which a system



given by (2-61) may be written as a discrete-time dynamic system. By



analogy the discrete form of the spectral process s(x is given as:



s(k+1) = s( k) + rw(k) k[X1 '2] (2-62) 

where



1 Ck+1 

s(k+l) = 

Sn (,k+1 

0 is an ('n x n) matrix.



r is an (n x 1) vector.



w(k) = a discrete inependent gaussian random process with zero



mean and variance Vw(k-)6(,k-j)



k is an integer that correspond's to a discrete wavelength



xoe1 X 2]- With this representation for s,(k) we can write the discrete



form for yCx) as
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y(k) = HTs(k) + n(k) 1[ 1" Xj2] (2-63) 

where



H T s(k) s(k) is the relationship between the state variable for­


mulation and the spectral response s(x) for the x that 

corresponds to k.



This discrete form for representing the spectral processes is much



more amenable to digital computation than the Wiener-Hopf form. It



should be recalled that the solution of the Wiener-Hopf equation yields



the optimum (inthe minimum mean-square sense) filter for the estimate



9(W) of s(x). The estimate thus may be written



§(x) = f h(x,u)y(u)du, X < X < X (2-64)
f1 -1 - 2



The Kalman-Bucy estimation equations can be derived from (2-64).



Furthermore, the same equations can be derived using other techniques.



Thus the equivalence of the Wiener-Hopf techniques and the Kalman-Bucy



techniques have been firmly established. The reader is referred to Sage



and Metsa ES3, Chapter 72 for details. In addition, the complete Kalman



filter algorithm is included in Appendix I for reference. In these



derivations, it is a matter of course to obtain the equation for h(x,x)



as



h(x,x) = V W • H R- (1) (2-65) 

where
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%(X) = SW) - (x) (2-66) 

V (X)=-VarF(X)l Var x)- §(x) (2-67) 
s 

and



R(X) = Van [n(x)] (2-68) 

Inthe present research,,R(X) is a scatar. The, Kalman filter algorithms



provide a natural and efficient technique for the computation of the es­


timation error variance V (x). The at:gorithms given above are the same


S 

for the discrete case when the appropriate substitutions are made in the



relevant variables. The results are-given bel-ow



h(k,k) = V (k), H R- (k) (2-69)


S



where



kc x: x1 < x < 2?



are-integers correspondang to discrete wavelengths of interest.



(k) s(k) --§(k) (2-70)



V (k var, , W] = Var[%Ck) - 9(0], (2-71)
S n 

and
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R(k) = Var[nCk)] (2-72) 

It should be noted that h(k,k) is in vector form to conform with



the state variable models used in the Kalman filter algorithm. The re­


lationship between h(k,k) and h(k,k) can be discerned from the state



variable signal model. This topic will be covered in more detail in



Chapter III which is concerned with modelling the spectral process.



Thus we are able to use Kalman filtering techniques to compute



h(k,k) and hence average information. The average information in y(x)



about s(x) is given by



I(SY) [X h(k,k) (2-73)



The Kalman filter computation technique has several advantages over



the Wiener-Hopf approach. The most obvious advantage is the digital



computer compatibility of the Kalman filter technique. The Wiener-Hopf



equation is easily solved in only those cases for which the analytical



form of Ks (x,u) is fairly simple. For other cases, solution of the



Wiener-Hopf equation ranges from difficult to extremely difficult to



solve. The second advantage is that it is not necessary to have expli­


cit knowledge of the form of Ks C,u) in order to use Kalman filtering
 


techniques. This obviates the need for estimation of Ks (X,u). Another



advantage is that n(k) need not be "samples" of a white noise process.



It is possible to use noise models that have a linear dynamic structure.



Thus, noise models with nonwhite power spectral densities may be im­


plemented.
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The major remaining question is the method by which the signal 

model s(k+1) isobtained. Specifically, it is necessary to obtain the 

matrix and the vector r . If the spectral process s(X) is stationary 

ard has a rational power spectral density, then t and r may be deter­

-mined from knowledge of Ks(X,u) EVI, pp. 516-526J. In many physical si­

tuations Ks (x,u) is not known. The parameters P and r must then be es­

timated from whatever empirical data is at hand. This is a problem 

which-has been studied extensively in the area of system identification. 

The use of these techniques for modelling the spectral process sC.) (and 

hence s(X)) is the topic of concern for Chapter III. Thus we will leave 

this problem for later consideration.



6. Further consideration of the Re[-ation Between Average Information
 


and Optimum Mean-Square Filtering



In this section, the relationship of optimum mean-square filtering



to average information is considered in a somewhat more direct manner



than in the previous sections. The formulations are in the state varia­


ble viewpoint in order to be consistent with the final approach to



average information computation in the previous section. We shaL



specifically be concerned with showing that the estimate M(k) of s(k)



given by



9(k) = E k/Yk (2-74) 

where
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Yk = Cy(k) : keI1 X2] (2-75) 

= the observed spectral process.



is the estimate such that the average information in 9(k) about



s(k), I(s(k), 9(k)) is maximized. Then since



s(k) = HTs(k) (2-76)



and



(kY = HT9(k) (2-77) 

we have the estimate 9(k) of s(k) that maximizes the average information



I(s(k), 9(k)).



The estimate §(k) is a natural result of the Kalman filtering tech­


niqe. Thus, a by-product of the computation for I(S,Y) is the estimate



9(k).



In order to demonstrate the above statements, it is first necessary



to develop some intermediate results. We first show that the average



information between the estimate 9(k) and the estimation error



s(k) = s(k) - 9(k) is zero. That is, 

I(MCk), -'(k)) = 0 (2-78)



Now IC§Ck), _(k)) = 0 if and only if (k) and _(k) are statistically



independent [G1, p. 24]. But, based on our initial definitions and as­


sumptions, 9(k) and ?(k) = s(k) - §(k) are gaussian random variables.



Hence, it is sufficient to observe that 9(k) and '(k) are uncorrelated.
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This is easily seen from



E W(k)T(k)]= E[E[Ck)T/Yk]§ ( k)] (2-79) 

However,



E1-ik) T/Yk] =E[C(s(k) T _ 9(k)T)/Yk] 

Hec E1i M)T/Yk] - !Ck)T 0 

Hence



Thus ?(k) and 9(k) are uncorrelated and hence independent. Therefore, 

it is clear that (2-78) is true. 

Next, some entropy relations are needed. The relations to be shown 

are 

H(s(k)/§(k)) = H(?(k)/g(k)) = H(3(k)) (2-80)



First consider the random variables 2 = s(k) - 9(k) and W = §(k). The



density function PiW(z,w) is to be determined in terms of the density



function Ps (s(k)(Ck)). It is easily shown [P1, p. 204] that



p(s(k) - 9(k), 9(k)) = P zw (Z.w) 

- Psg(z+w,w) = Ps(s(k), k)) (2-81) 

Thus, since i(k) = s(k) - 9(k) we can write 
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p(s(k),§(k)) = p(s(k) - MCk), 9 k)) 

= p(-i(k), 9(k)) (2-82)



So we have



p(s(k)/§(k)) = p(_(k)/§(k))



and hence



H(s(k)/g(k)) = H(?(k)/§(k)) (2-83)



Now we have previousty shown that



I(§(k), ?(k)) = 0 (2-78)



Hence



0 = (k)) = '(k))­1(9(k), W ) H(s(k)/§(k)) 

or



HC((k)) = H(s'(k)/g(k)) (2-84)



Now, we can write the average information I(s(k), 9(k)) as



I(s(k), 9(k)) = H(s(k)) - H(s(k)/§(k)) (2-85) 

But using (2-83) and (2-84) in (2-85) we have 

I(s(k), 9(k)) = H(s(k)) - H(_'(k)) (2-86) 

This is a very useful resutt. It shows that the average information in



the estimate M(k) of the state s(k) of the spectral process is directty
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related to the entropy of the estimation error _(k) = s(k) - (k). Sin­


ce for a given observation the state s(k) is fixed, it is clear that to



maximize I(s(k), 9(k)) it is sufficient t- minimize HCs(k))-.



Now since s(k) is gaussian, it is straightforward to compute the



entropy H(i(k)) as



HCIkk)) t og (27re) nIj (2-87) 

where



IPI = det[El_!Mi(kk] 

Hence it is clear that to minimize H(-i(k)) it is sufficient to minimize



P Tomita, Omatu and Soeda [T1J show directly that this is accom­


plished by the Kalman filter technique. It is sufficient for our pur­


poses to note that we already have used the Kalman filter algorithm and



it is known ES3, Chapter 7] that it gives the minimum error variance es­


timate for our case of assumed gaussian statistics.



Thus, it is seen that the Kalman filter algorithm produces an es­


timate 9(k) of the spectral response s(k) that is optimum in terms of



average information.. The optimum mean square estimate 9(k) is thus a



natural by-product that is consistent with the concept of using average



information to study parameters of multispectral scanners.



In conclusion, this chapter develops the notion of average informa­


tion in the received spectra[ process y(X) about the reflectance spec­


tral process s(X). Furthermore, a technique for computation of average



information has been developed. The relationship between optimum mean
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square estimation and average inforndation for the current problem is



also shown.
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Chapter III



Model Identification, Selection, and Validation Techniques



1. Introduction



This chapter is concerned with finding analytical models that ade­


quately represent the spectral response process of scenes observed by



multispectral scanners. A major requirement for the models is compati­


bility with the computational techniques discussed in the previous chap­


ter.- Specifically, we are interested in obtaining the necessary



parameters to represent the models in the state variable forms discussed



in Chapter II. In Chapter I, the division of the reflectance spectral



response into bands is discussed. The technique for constructing models



must, therefore, be sensitive to different characteristics of the spec­


tral response process in different-spectral bands. Hence, the techni­


ques developed in this chapter are motivated by the above constraints.



Very useful techniques for model construction can be drawn from the



subject area generally known as time series analysis. References for



time series analysis are numerous with major works by Anderson EA4), Box



and Jenkins [B1, and Kashyap and Rao EK3J. The reference to time is



generally a misnomer in that time ierely represents an indexing varia­


ble. We shall, of course, use wavelength as our indexing variable. We



first discuss the models that are used in this-research to represent



spectral response process of scenes.
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2. Models Used to Represent Spectral Scenes.



Recall that the spectral response of a scene is being considered as



a portion of a realization of a stochastic process in wavelength. Thus,



the form of the models used must reflect this consideraion. The models



considered in this research are stochastic difference equations having a



general form given by



ml 	 -m2 
S(k) = a S(k-j) + 'E b '(k-J) + w(k) 	 (3-1) 

j=1 J j=l 

where



S(k) 	 is the spectral response at the discrete wavelenth k. It
 


is gaussian with mean and variance determined by the parti­


cular structure of (3-1).



w(k) 	 is a zero mean independent gaussian disturbance with vari­


ance p.



(k-j) 	 is a deterministic trend term used to account for certain



characteristics of the empirical data. An example is



i(k-l)=1.0, which could be used to account for a nonzero



mean in w(k).



a and b are unknown constant coefficients to be determined.


J 	 I



ml and m2, are constants that determine the dependence of s(k) on



preceeding values of the process.



Thus the dynamic nature of the spectral process S(k) is expressed in



terms of is own values at lower wavelengths, some possible deterministic
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characteristics, ,and a gaussian independent disturbance. This model



formulation though somewhat restricted is sufficient for the purposes of



this research.



For completeness, we shall now introduce some asumptions on the



model given by (3-1). Since (3-1) represents a linear system, it is



fully described by its second order statistical properties. The coeffi­


cients a. and b. are said to be identifiable if they can be determined
j J 

from a semi-infinite set of observations {S(k); 1 < k < -} such that the 

differenc6 equation (3-1) uniquely describes the second order properties 

of the observed process S(k). We shall now state some assumptions that 

are necessary and sufficient conditions for the identifiability of the 

coefficients a.J and bJ . The question of identifiability is covered in 

detail by Kashyap and Rao [K3, Chap. 4]. The assumptions that are used 

in this research are listed below. 

Assumptions



1) 	 w(k), k = 1,2,... is a sequence of zero mean identically distribu­


ted, independent gaussian random variables with variance p. w(k) is



independent of S(k-j) for all j > 1.
 


2) 	 Define the unit delay operator D by:



Dy(k) = y(k-1) 

then 	 (3-1) can be written as



S(k) - ajD = , b.4(k-j) + w(k) (3-2) 
j=1J=1 
 

The 	 assumption is that all the zeros of the expression
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ml


A(D) = 1 - E a.Dj 

j=1 I 

Lie outside the unit circle in the complex plane. This assumption



gives assurance that (3-1) is asymptotically covariance stationary.



The relation of this assumption to covariance stationarity is ex­


plored in detail by Box and Jenkins £B1, Chap. 3).



3) 	 Suppose we have several trend terms denoted by i(k),i=1,2,...Z.



Represent these trend terms by the vector



T


*(k) =,...,¢ 9k)W
 

1NT


Then the assumption is lim ,E (k)*pk exists and is positive



definite. This assumption gives assurance that the coefficients of



most trend terms can be identified. Note, however, that this as­


sumption is invalid for the useful linear trend (k)=k. Therefore,



a weaker assumption that follows from the above may be useful.



4) The vector of trend terms obeys



(aii M) 2 (3-3) 

k=1 i=1 

for 	 nonzero a = Cala 2,...9 1]T The notation used in (3-3) means 

that the summation diverges. It is now demonstrated that (3-3) fol-


Lows from assumption 3. Consider first



lm 1 	 NT 
I F m (k)() 

N' 	 k=1



ORIGINAL PAGE IS 
OF POOR QUALITY 
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N1 2 N I 1. (k,()
jj3 1Ck)2 , , ' 1Ck)F 2Ck) ,... N _ 1 

1N N 

1kN 2(0)2 1 k=l ,W(),k



E ,.., Nk=1 
k=1 

k)
 
N~~ z
kN=k..1 
 

Each of the diagonal terms in the above matrix isobviously positive.
 


Hence, by the assumption and the above comment,
 


9 12



rf tim 3 (k) > 0 
N 
i=1 N+- i
 

and bounded. Thus for each i, there exists a B. > 0, such that



N i W



91



Now consider E a .
 There is at
C.ipCk) 2 least one i such that
 
k=1 i=1



albO. Hence,



CaiCk))2 > Z, b2 
k=1 i=1 k=1 

f, ( Ck)2 

But since
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1 i(k)2I im 1)
n- 1N>= 2 = B.



we have



N
lkm >3 ' (k)22 = 

N-= k=1 

Hence,



b2 (k)2 =



' k=1 
 

and the desired relation is shown.



These assmptions will not be mentioned again unless specific need



arises.



We shall now list some types of models that are used in the present



research. The first type of model is known as the autoregressive model



of order ml. It is defined by



ml 
=
Sk) aI S(k-J) + w(k) (3-4) 

j=l 

A second type of model is found to be useful for the case of



nonzero mean for w(k). This model, called the autoregressive plus con­


stant trend model of order ml, is given by



ml 
S(k) = > a S(k-j) + C + w(k) (3-5) 

j=l te 

Note that C corresponds to the coefficient of the trend term





- 47 ­


*(k-1) = 1.0.



The third model type is useful in representing a nonstationary pro­


cess CK3, Chap. 33. This model is in the class of integrated autore­


gressive models of order ml. We shall have occasion to use two cases of



this model. The first and more common case is given by



ml 
vS(k) = F a. vS(k-]) + w(k) (3-6)

jj=1 

where



vS(k) = S(k) - S(k-1)



The second case of the integrated autoregreisive models that wilt be



used is given by



V2S(k) = a v2S(k- j) + w(k) (3-7) 
j=1



where



V2S(k) = S(k) - Sk-2)



These models are shown in the next chapter to give good fits to the



spectral response processes under consideration. The models are also



easily placed in state variable form. It is recalled from the previous



chapter that this form is useful in the computational technique used to



obtain the average information in the received spectral process about



the spectral response process of the scene. An example for placing-one



of the above models (3-4) in state variable form may be useful.
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Exampl e



Assume that a spectral response is modeled as a third order



autoregressive process.



S(k) = a1S(k-1) + a2 S(k-2) + a 3S(k-3) + w(k)



Define the state variables



SI(k) = 	 S(k-2) 

S2(k) = 	 S(k-1) 

S3 k) 	 s(k) = a1S3(k-1) + a2S2 (k-1) + a3S (k-1) + w(k)



Then we 	 can write in vector and matrix form



s 1 (0 1 0 s(k-I) 

SMk) = 	 s2(k)] 0(k-i + ,w(k) 

S3(k) 23 a2 $3(R-1 )a 3 alj (ki1i 

= o S(k-1) + rw(k) 

and



S(k) = E0 0 1IS(k) = HTS(k) 

We s'halI next consider techhiques for estimating the unknown coef­


ficients in (3-1).



3. Estimation Techniques



The estimation techniques that will be used for the model types



discussed in the previous section will have two main properties. First,
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the form of the estimators depends on the.assumed gaussian nature of



Iw(k). The second major property is that the estimation technique must



be amenable to computational procedures. That is, it is desired that



the estimation algorithm be in a recursive computational form.



Two related estimation techniques are discussed. The first techni­


que is maximum likelihood estimation which does not depend on prior



'knowledge of the parameters. The second technique considered is Bayesi­


an estimation in which prior knowledge about the parameters may be in­


corporated. The techniques will be shown to produce similar algorithms



for computation.



We shall begin with some preliminary manipulations that are useful



in discussing both estimation techniques. Equation (3-1) is recast in



the following more compact form.



S(k) - zT(k-1)O + w(k) (3-8) 

where 

al



S(k-1)



S(k-ml) a1


!Ckl = (k-1) ~-­ b1


L (k-m2) b 
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We shall assume that at wavelength k = N, we have-accumulated the fol­


lowing data.



X-(N-)-= [S(N-);.,S (I), -S(0),.:..S.-.I. 
 }I- 3-9Y 

X1 
 X2



X1 is the portioh of the data set from which the estimates are construc­


ted. X2 is the portion of the data that initializes the dynamics of the



spectral response process. Furthermore, let e be the true parameters of



the model and let p be the variance of w(k).



A) Maximum Likelihood Estimation



The observations X(N) contain the only empirical data from which



we can estimate the parameters a and p-. The probability density func­


tion of the observations is needed to obtain the estimation scheme.



This probability density can be written as



P(X(N)) p(S(N) .... S(-ml))



=p(S(N)/S(N-I),. .,,S(-ml,))'p(S(N-I)/S'(N 2), .... ,S'(-ml)) 

...-p(S(1)/S(O),...,S(-ml))-p(S(O),...,S(-ml)) (3-10)



The likelihood principle states that the estimates of the



.par~a-6te~r_.-and'-pare-te-e'v-i-ue-s-of-the-parameters that maximize the



probability density function p(X(N)). This estimate is ca4 led the full



information maximum likelihood estimate (FIML) by Kashyap and Rao.[K3,



Chap. 6). However, the probability density function p(s(O),...s(:ml))
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is usually either unknown or in a form that renders (3-10) too complica­


ted to be useful. Thus, the density function p(S(O),...,S(-ml)), which



represents the effects of the initial observations, will be ignored in



this estimation technique. If a large number of observations are



available, it is reasonable to expect that these initil observations



will not be of overriding influence. If the maximum likelihood estima­


tion techniques are applied to the remaining terms of (3-10), we obtain



the estimates called conditional maximum likelihood (CML) estimates by



Kashyap and Rao [K3, Chap. 6J. The so-called CML estimation techniques
 


are used in this research.



Due to the initial assumption of the normality of w(k), we can wri­


te for each of the conditional probability densities in (3-10)



p(S(j)/S(j-1),...,S(-ml)) = . exp 1 S7 ) 1 (3-11) 

Hence, since we are now only concerned with the contributions of the



conditional probability density functions in (3-10), we can write as our



likelihood function
 


N


L(O,p,X(N)) = fi p(Sk)IS(k-1),...,S(-ml))

k=1



or



N 

L(o,p,X(N)) = (2np) - exp [ 1 (3-12) 

L' k=1 J 

Since we are considering conditional maximum likelihood estimates, the
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optimum estimates 0* and of a and p are those values that maximize



the likelihood function L(o,p,X(N)). Equivalently, the logarithm of the



likelihood function may be maximized. That is,maximize



L (,p,X(N)) = logL(e,p,X(N)) = 

1 
(3-13)
=--N

First obtain the estimate for e by taking the partial derivative of



LI(e,p,X(N)) with respect to e to obtain



aLIO"PX(N) _a fLy,(S(k)-Z (k-1)o)(S(k)-zT(k-1)O

1 (epXCN))
-


~ 3 r k=1 . . 

NT 
= S(k)Z(k-1)- Z(k-1)Z = 0 

k=1 

and equate to zero.



Thus the estimate becomes



e*(N) = Z(k-)Z (k-1 k-1)s(. (3-14)
-- k=1- - k=1-


Next, differentiate (3-13) with respect to p to obtain the estimate p



1 (gp/XCN) - N 1 + Al(S(k)ZT(k1)O)2 = 0 

-- . 2p2k= ­

or
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p*(N) - 1 (s(k)zT(k-1)0)2 (3-15) 
k=1



Since we wish to estimate p from the observations above, it is necessary


3L 8L
1 1 

to solve the equations for -and - jointly to obtain 

iN



P 1kl(S(k)-zT(k-1)_*)2 (3-16)-(N) 

NkW



If the second partial derivatives of the likelihood function are taken



with respect to a and p, it is seen that 0* and p* satisfy the optimali­


ty criterion.



For our purposes, it is sufficient that the elements of the matrix



in (3-14) be linearly independent in k to insure that the inverse ex­


ists. This is true of all the model structures used in this research.



Kashyap and Rao LK3, Chap. 4) give a more detailed account of the condi­


tion under which the inverse in (3-14) exists. Kashyap and Rao EK3,



Chap. 4) also demonstrate the asymptotic consistency in the mean square



sense of the estimators o (N) and p*(N).



Furthermore, Kashyap and Rao CK3, Chap. 4J show that the asymptotic



mean and covariance of the estimate o*(N) are given by



E[o_*(N)/e,p] = 6 + 0 (3-17)



where



--W K ; 0 as x . 0, 
x 

and
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Covle*(N)/e,pJ PE[E!(k-1)zT(k-1 + 0( ) (3-18) 

where



ox) 0 as x . o. 
x 

It is also shown by Kashyap and Rao [K3, Chao. 4J that the estimator has



asymptotically minimum variance and is asymptotically equal to the



Cramer'-Rao Lower bound on the estimation variance.



Next we demonstrate a recursive algorithm for the ,computation of



,the estimate 0*(N) in (3-14). The algorithm eliminates the necessity of



computing the inverse matrix each time a new observation is made. This



gives a large reduction in,combutational load.



Let us write



CN) (k-1 1 (3-19) 

Then



- 1 N-1 ZVN-1)Z(N) ' !k1Z~-1) U + z<Nl1zT (N-1) 

k=1



or



- 1 -
P(N) = P(N-1) 1 + Z(N-1)ZT(N-1) (3-20)



Now apply the matrix inversion leinma (Sage and Melsa [S3, pp. 499-500J



and given in Appendix II) to (3-18) to obtain
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P(N) = P(N-1)-PCN-1)Z(N-1) [1+Z(Nc1>N 1)z(N1j IzT (N1)PN-1) 

or 

P(N) = P(N-1) - P(N-I)Z(N-I)zT(N-.)P(N-1) (3-21) 
l+zT(Nl)P(N1)Z(N-l) 

Thus (3-21) gives a recursive expression for P(N). This expression is



useful in the derivation of a recursive algorithm for the estimate



0*(N). First write (3-14) in the form
 


N 
0*(N) : P(N) LZ(k-1)S(k) (3-22) 

k=1



Then



o*(N) = P(N)[ Zz(k-l)s(k) + Z(N-1)S(N 

N-1


p(N)EZ(k-1)S(k) + P(N)Z(N-1)S(N)
-

k=1



But from the form of (3-22) we can write 

0* (N) = P(N)P(N-1)10*(N-1) + P(N)Z(N-,1)S(N) (3-23) 

Now inserting the expression for P(N) from (3-21) into the first term on



the right hand side of (3-23) we obtain
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=*(N) (N-1)P(N-)Z(N-1)zT (N-1)P(N- 1) P(N-1)- (N-1) 
-- (N)= L- 1+ZT(N-I)P(N-z)Z(N-I- j 

+ P(N)Z(N-1)S(N)



or simplifying



* 	 (N) = e*(N-i) - P(N-1)Z(N-l)Z 1(N-I)0*(N-1) + 

1+Z T(N-l)P(N-1)Z(N-1) 

+ P(N)Z(N-1)S(N) 	 (3-24)



Consider the last expression on the right-hand side of (3-24). We can



write from, (3-21)



P(N)Z(N-1) =P(N-)Z(N-I) - P(N-l)Z(N-1)ZT(N-1)P(N-1)Z(N-1)



SP I+zT (N-l)P(N-I)Z(N-1)



or



P(N)Z(N-1) = P(N-1)Z(N-1) 	 (3-25)
I+zT(N-1)P(N-1)Z(N-1)



substitute (3-25) into the last expression in (3-24) and we obtain



e(N) = o*(N-1) + P(N-1)Z(N-1) [S(N)ZT (N_1)e*(Nl) 
-- -- I+Z (N- I)P (N-1 )Z(N-1 ) L-[-

Now it is clear that the coefficient of the second term is-identical to



(3-25) so that we can finally write
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.6* (N) = e*(N-i) + P(N)I(NI1)IS(N)ZT(N1ke*(N-1)] (3-26) 

The above equation along with



- -1 )
P(N) =P(N-I)P (N- 1)Z(N 1)ZT (N-1)P(N 0321)



S _ I+zT (N-1)P(N-1)Z(N-1)



constifute the recursive algorithm for the estimate 0*(N). For initia­


tion of the algorithm, one can use an arbitrary (but reasonable) vector



e*(0) and a positive-definite matrix P(O).



Thus we have shown the form of the maximuum likelihood estimators 

e and p . In the next section, we shall consider an estimation techni­

que that wilt allow use of prior knowledge of the parameters to be es­

timated. 

B) Bayesian Estimation



In addition to the previously mentioned ability to consider a



priori knowledge of the parameters, Bayesian estimation differs from



maximum tikelihood techniques in another aspect. This aspect is the in­


corporation of the loss function which is a measure of the consequence



of the error in the estimate of the parameters. The optimum Bayesian
 


estimate minimizes the expected value of the loss function (called the



risk function). The loss function most commonly used for engineering



work is the quadratic loss function



0*
)
L(e,e*) = ( -e*)T(-0
 

It is well known [K3], [s3], [V1], CR1), EF2] that the optimum estimate



of e under the quadratic loss criterion is given by
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(N) = 	 EW/XCN)J 	 (3-27) 

That is, o*(N) is the mean of the posterior density of e given the ob­

servations X(N). With a few preliminary assumptions, a form for the es­

timate e*(N) is derived. These assumptions are: 

bl) 	 The prior distribution of 6 is normal with mean 0 and covari­


ance matrix POp.



b2) 	 p is the variance of w(k).



b3) 	 p(e/x 2) = p(e), which insures that a consists of coefficients



of a difference equation that are independent of initial con­


ditions X2.



Using these assumptions we can derive the posterior density of o given



the observations X(N).



Assertion



The posterior density p(e/X(N)) is normal with mean



6*(N) 	 = P(N) Z(k-1)S(k) + i1 	 (3-28) 

and variance P(N)p where



P(N) 	 = [ktZ(k-l)Z(k-1)T + -0 	 (3-29) 
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Demonstration



Tte assertion is demonstrated by examination and manipulation of



relevant density functions. We have by assumption



e -N( Pp



and 

w(k) - N(OP) 

for all k. The posterior density of e given X(N) is 

Pe/XCN)) = P(e,X(N)) - p(X(N)/e)P() (3-30)
_/(N) P(X(N)) p(X(N))



Consider the first expression in the numerator of (3-30).



p(X(N)/e) = p(S(N),...S(1), S(O)...S(-ml)fe)



X1 
 X2 

This can be written as 

p(X(N)/_) = p(S(N)/S(N-1),...S(1)),X 2,e_)-

p(S(N-1)/S(N-2),...S(1),X 2,e).



• .... p(S(1)/ 2,1_).p(/X 2 ) p ( X 2 ) 

But from (3-8) we can write 

p(S(k)/S(k-1),...,S(1),X 2,_)= 



60 ­

=-------exp [iisk_zTkne2]1 

The second term in the numerator'of (3-30) is



_ 1 ,xpF -)ipico-
p(O) ke.)]

(2-rp Io I) 1 P --0 --

The denominator of (3-30) can be written as



p(XCN)) = p(X1,X2) = PIX/X2)p(X2) 

Now it is noted that p(X1/X2) does not depend on a. It does depend on



0, 0, p, and Z(k-1). Therefore, p(X1 /X2 ) can only take on the signi­


ficance of a normalization factor for the posterior density. This pro­


perty will greatly simplify the necessary'manipulations.



Hence, we can write the posterior density (3-30),from the above re­


lations as



p(e/X((N)) 1A [i-ex~p j(S(k)zT(k-1)8)fl 

1~ /2exp[ii(e176 )TPl 

p(X11x2 )



Collecting all normalization factors as a singL[e term we. can' write
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1 ) L) 2 
P(e/X(N)) = KleXpi - k=1_( S ( k) - ZT ( k ­

+ ( 0)TPP- 1- I. (3-31) 

The exponent of (3-31) can be written as



-1r (S2 (k)-2ZT(k-1)eS(k) + 6Tz(k-1)zT(k-1)O) 

- 20T+ 6TP-1 6 e o
 T 

Rearrange and label some terms to give the exponent as



2[[ZZ(kl)(kl)+eT1 (~ PC- e 

T- 6* (N 

-~ ~ ~ T2R­ PNPN TTklSk 

+E - 2(k) + eTP 0­

k=1


-
From the expressions labeled as P(N) 1 and e*(N) T above, we see that in



order to "complete the square," it is necessary to add and subtract the



term
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When the operation of "completing the square" is cartid out, the ex­


traneous terms-do not depend on e. Therefore, they also bohtribute to



the normalization factor previously mentioned. These manipulations give



the exponent as



-1 (~o(N))Tp(N)-I(o-e* (N))



where



e*(N) = P(N) _S(k)Z(k-1)+p1 (B-28) 

and



P1(N) [ 1 k-1rTck Pi+ j1 (3-29)



Thus the exponent is of Gausgian form. Th n6rmLiiing factor K1 i§



computed from P(N) by



K 1 where mnl ml + m2 
1 E[2crnp I P(N)I1 1/2 

The determinant IP(N)I can be computed as follows



N


p(N)-I E (k-l)Z(k~l)T + 1



k=1
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-1 
 = P(N-1) + Z(N-1)Z(N-1)T 

- PCN-1) Ez + P(N-1)ZC-11) (N-1)jT 

So 

P(N) + PCN-1) CN-1)-Z(N-1)T]-1P,(N-) 

It is relatively straight forward to show that £F3, p.40]


= IPCN-1)I (3-32)(PN)I 


[1 + ZCN-1)TP(N-1)Z(N-1) 


We note that this is a recursive relation with



.1)-- L + zozoaT]-lm 

and



IP(1) I = 
1 + Z(O)T _Zj(O) 

Hence, we can write 

I~oI 
IP(N)l = N (3-33) 

fl (1+ Z(k-1)T(k-1)Z(k-1)) 

Hence, the normalization factor K1 is given by
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1/2



01 + M(-1 )Tp(k-1)Z(k-1))
 


K = 1 ZC (3-34)
.l 
 
Thus the assertion is demonstrated.



The Bayesian estimate e*(N) may be placed in a recursive form that



is similar to that formulated for the conditional maximum likelihood



(CML) estimator. In fact, the derivation of the recursive form of the
 


Bayesian estimator is exactly the same as for the recursive form of the
 


maximun likelihood estimator. The major difference in the two estima­


tion schemes lies in the manner with which the initial values of the es­


timate e are chosen. In thp Bayesian.technique we can use .our



knowledge (or assumption) of the.prior dens4ty function. leHnqe, logical



initial values would be



!e0' (3-35)



and



P(0) = 3-36) 

These initial values along with equations (3-26) and (3-21) constitute



the recursive Bayesian estimation scheme.



To summarize, we have two similar estimation schemes which give es­


timates of the parameter vector o based on. the observation, of the spec­


tral process S(k), k=1, ..., N. The technique presented thus far is



clear. The hypothesized models determine which parametprs are to be es­


timated. These parameters are then estimated by one of the above tech­


niques.
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The question now arises as to what criterion is to be used to



select a model to represent a spectral process. Thus, we next consider



a method for selecting a model from the hypothesized models for the



spectral response.



4. A Model Selection Criterion



We begin the discussion of the model selection criterion by de­


fining a class of models. Recall that we are dealing with models that



can be written as



Sk) = ZT(k-1)e + w(k) (3-8) 

A class of models is defined by Kashyap and Rao [K3, p.. 181) as the tri­


ple (f, H, 0) where f is the stochastic difference equation (3-8), H is
 


the range of values for o and n is the range of values for p. A member



of the class (f,H, ) is written (f, e, p). The parameter H is defined



such that every element of one of its members is nonzero. This means,



for example, that AR(M) models are in a different class then AR2)



models. The classes are said to be nonoverlapping. Thus, given several



nonoverlapping classes and the empirical data set X = {S(1),....S(N)),



the problem is to select the class which most likely produced the empir­


ical data.



The decision rule for choosing a class of models selected is



derived from statistical likelihood concepts. These methods are develo­


ped by Kashyap and Rao [K3, p. 183-188]. A different approach that pro­


duces essentially the same decision rule is developed by Akaike [All,



[A2J, EA3J. The methods of Kashyap and Rao are followed here. The
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selection criterion is designed to select from the hypothesized classes



that class which gives the maximum likelihood of producing the given em­


piricat observations. Suppose that the empirical data X came from a



model (f, , p0 ) where p. = (0, p) is unknown. Let the probability 

density function of X be given by p(X, ). Furthermore, assume that



p(X,Th) is a known function of X and _t. Then the log-liketihood func­


tion of p(X,_c ]) isgiven in terms of X atone by the following theorem.



Theorem (Kashyap and Rao)



Let* be the maximum likelihood estimate of based on the empir­


ical observation set X. Then



E[zn(p(X,_mO)) I$*I = 

*]  
 L + ECO(Ii, 0 1*3)/ (3-37) 

where



L = in p(X, *) - n (3-38) 

and



n the dimension of



The proof of this theorem isgiven in Kashyap and Rao EK3, p. 184] and



will not be reproduced here. L is regarded as an approximation of



zn(p(X,o)), the tog-likelihood of the class C with the empirical data



X.



This theorem suggests the decision rule:
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a) For every class of models C. i = 1,... t , find the maximum1, 

likelihood estimate * of &oi assuming _o~eHi using the empiri­


cat data X. Compute the class of log-likelihood functions L.
1 

as 

L n(pCX, jt) - n. (3-39) 

where n. is the dimension of oi = (aoi, Poi. 

b) Select the class which gives the maximum value of Li among


{Li;=



This decision rule is relatively easy to use and allows the simultaneous



comparison of several classes of models.



Next, we simplify the form of L in (3-39) for the model types used



in this research. The log-likelihood function is given by



inp(X,t*) = £np(S(N),...S(ml+I)/S(ml),...,S(1),±*)



+ znp(S~ml),...S(1),.) (3-40)



Consider the first term on the right side of (3-40). From (3-8) we can



write 

I = £np(S(N),...S(ml+I)/Sml)...,S1),±*) 

-n 
 nf p(S(k))/S(k-1),...,S(k-m),j

[k=m1 +1 
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= zn .< 'IhI exp 12 (S W * )[=m1 +1 21>rP* (S-kzT(k-1) 

) *)-m TN 
(N-mi) £n(2 * -f E (S(k)-Z1 (k-1) 9 *)2 (3-41) 
2 2p* k=ml+l 

But recall from (3-15) that the maximum tlikelihood estimate of p is 

given here by



NT2 
- (S(k)-Z (k-1)9) (3-42)k=,1+1



Hence (3-41) can be written



-(N--m) n(2r ) 1(N-mi) (3-43) 
2 (w 

Now consider the second term on the right side of (3-40). Let us ap­


proximate p(S(m-1),...S(1),_*) by considering S(m1),...S(1) as indepen­


dent Gaussian random variables with zero mean and variance pS" Thus



II z~np(S(ml),...,S(1),j)



%n [nkI p (s(k)) 

= np(S(k)) 

k=1
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=-ml m
-1 
 

- SEL S(k) 2
--zn(2fps) 
2PSk=1 

So combining (3:43) and (3-44) we can write



N*
L 
 

La ­


+ - n4 -n2M n [itn[] - N + ml k1 ]1: 

Lb 

=La + Lb (3-45)



It is noted that since in general ml<<N, the term corresponding to Lb



will not vary significantly from class to class when compared to the



variation in the term corresponding to La. Thus, for comparing, classes,



it is sufficient to use the simplified form La in the decision rule.



Let us now discuss the significance of the various terms in the expres­


sion



La = -nzn(p) ml (3-46)



The inp term is a measure of the goodness of fit of the model with, the



estimated parameters to the empirical data. The influence of the number



of empirical data points is reflected in N. Finally, the ml term acts



to oppose the selection of increasingly complex models_. This is a quan­


titative method of incorporating the principle of parsimony in model
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selction. Parsimony in model construction is a reflection of the intel­


lectually appealing notion that a simple, but adequate, explanation of a



physical process is superior to a more complex explanation. Kashyap and



...-- Rao- DK3, p. 185; 214-21-6, Kash-yap [KW]Jarid Box and Jenkins [B1, pp. 

17-18 further discuss the idea of parsimony. 

Hence, we have a model selection criterion that is analyticaly 

tractable and applicable to al the model types used in this research. 

Further, this selection criterion has intuitively pleasing properties. 

5. Validation of Models



The procedure for constructing models for the spectral processes



from the empirical data is straight forward. First, the parameters for



the hypothesized classes of models are estimated. Then the selection



criterion developed in the previous section is used to choose the best



fitting model for the spectral process. The question that remains is



how well the selected model represents the empirical data. Specifical­


ty, if the model has a certain weakness, then knowledge of the weakness



can be used to judge whether the model is appropriate for the empirical



data. The selected model may also be judged on the basis of whether the



initial assumptions used to formulate the class are valid. The study of



these topics constitutes the subject of model validation. If the selec­


ted model fails these tests, then perhaps another class of models should



be considered. If the selected model passes the validation tests, then



it i-s said that the model is valid for representing the empirical data.



However, it is possible that a class of models other than those hy­


pothesized may give a better fit to the empirical data. Thus validation
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of a selected model should not be considered as an absolutely definitive



statement. Two approaches to validation are used.



The first set of validation tests check the initial assumptions



used in constructing the model. The selected model is used withthe em­


pirical data to implement these tests. The assumptions to be tested are



(see equation (3-8)):



1) the noise w(k) is zero mean with constant variance p,



2) w(k) is independent of w(j) for k # j and S(k-j), j > 1, 

3) periodicltics in the empirical data are adequately modeled.
 


To conduct these tests, we will use the residual sequence obtained from



the selected model and the empirical data. This residual sequence is



Xk) = S(k) - ZT(k-l)e*, k = 1,...,N . (3-47) 

Thus we are using the empirical data and the selected model to estimate



the noise sequence w(k). The tests using the data generated by (3-47)



are called residual tests.



The second set of validation tests determines whether some relevant



staistical characteristics of simulated data generated by the model are



adequately close to the statistical characteristics of the empirical da­


ta. We will be mainly concerned with two tests:



a) Comparison of correlograms



b) Comparison of periodograms



If theselected model is to be used to produce synthetic data, then it



may be useful to affirm that the synthetic data have the same trend or



other features as the empirical data. Since we are interested in the
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model for other reasons (i.e., to aid in the computation of average in­


formation), we will be concerned only with the tests of the correLogram



and periodograms.



Next we consider in detail the tests mentioned above. We begin



with the residual tests.



A) Residual Tests



Test 1 - Zero Mean Test
 


The first test wilt be for the assumption that w(k), k = 1, ..., N,



has zero mean. We can recast this in a hypothesis testing context. The



hypotheses can be written



H0 : X(k) = w(k)



HI: X(k) = o + w(k)



where w(k) is a sequence of independent identically distributed gausslan



random variables with zero mean and variance p, p > 0 The alternate



hypothesis H1 has e 6 0, -. < e < .. It is well known (see Roussas [RI,



pp. 292-293]) that, in this case, the uniformly most powerful test for



zero mean (as the null hypothesis) is given by



It(x)I < no., accept H0 (3-48)



It(x)I > n., reject H0 

where



t(x) = T (3-49)

P~
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N



k=1



and



N 2NE xWk) - )2 (3-51)

P-7 k=l 

t(x) is the Student's t-distribution with N-I degrees of freedom and



hence no is chosen such that



P(It(x)l < noIH O ) 1 ­

where a is the level of significance, which is defined as the probabili­


ty of rejecting H0 when H0 is true. The level of significance is chosen



to reflect the degree of confidence we wish to place in the null hy­


pothesis. Thus, wethave an easily applied test for the zero mean as­


sumption.



Test 2 - Serial Independence Test



This is a test of the assumption that the sequence w(k), k=l,...,N



is serially independent. The test is discussed by Box and Jenkins [B1,



pp. 289-2933, Box and Pierce £B2J, and Kashyap and Rao [K3, pp.



209-2103. The test is a goodness of fit test. Since it is a goodness



of fit test, only the hypothesis



Ho: x(k) = w(k)



is defined. The alternate hypothesis is the set of all other residual



models. Note that H0 is the same as the null hypothesis in test 1.





- 74 -


That is, H0 is the class of zero mean white noise residual models of



variance p. To implement the test, we define the covariance of the



residual data at tag k as
 


1 L x(j)x(j-k) 
 (3-52)



The required test statistic is then



ni


(N-ni) E- (Rk)2



)k=1 (fto)22 	 (3-53) 

(R0)



where n1 is chosen to be 0.1N to 0.1N depending on the size of the em­


pirical data set. If the residual data set is as defined by, H0 , then



n(x) is (approximately) chi-square (x2 ) distributed with n1 degrees of



freedom. This gives the decision rule



ncx) 	 < n0 , accept H0 (3-54) 

> no, reject H0 

where no is computed from



p(n(x) 	 > n0 iHO ) = 	 (3-55) 

and a is the level of significance of the test.



Thus, we-have a test which examines the goodness of fit of the co­


variances taken as a whole. Furthermore, the test is easily implemented



on the computer.
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Test 3 - Cumulative Periodogram Test



The cumulative periodogram test is designed to check for the



presence of nonrandom periodic components. In our model construction



technique, it is assumed that deterministic periodic components in the



empirical data will be accounted for by an appropriate deterministic



trend term. Hence, we are interested in detecting any significant resi­


dual periodicities so that we can adjust our models if necessary.



This test is described by Bartlett B31 based on arguments from



stochastic random walk theory and by Box and Jenkins £B1, pp. 294-297]



on the basis of similarity with the Kolmogorov-Smirnov tests for distri­


bution functions (see Hoel EH3, pp. 324-327]).
 


We consider the equation



EN/2]

x(k) E>ii (cosw k + e smnjrk) + w(t) (3-56)
 

j=1


where



[N]
=largest integer < N 

and



J i=I,, ... ,= 

This equation obviously represents the possibility of periodic com­


ponents in the residual data. It is noted that if the frequencies



_ 2,3 are considered, then the frequencies 'Nj = 2r(I-j)/N are
N



redundant if phase information isnot considered. It will be seen that



phase information isnot considered here. Hence, the hypotheses under
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consideration are'



H0 xk) = w(k) 

Hi: at Least one of the components (3-57)



aj, Bj j =I, ... , is nonzero 

ii] 

This test is performed differently than the' previous two'tests. First



compute



k 
2



(3-58)= l , ... , 
 
,2 "



where



' xc(kcoswj, ,k()s i~ ]( (359)­=. + inwJ.Yj x cs. 
k=1 k=1l 

If x(k) = w(k), a plot of gvk, vS. k,would:be-'scattered about-a' straight 

Line between the points. (0,0) and (0.5110). The'probab.itity,that the 

cumulative periodogram Lies between Lines.paratLet to. the- line between 

(0,0) and (.5, 1.0) at distances ±+ [ j is given by (seeKashyap and 

Rao EK3, p. 2082) 

. (-l)Jexp{-2x2 j 2 

The parameter x is 1.36 for 0.95 probability and 1.63 for 0.99 probabit­




- 77 ­


ity. 

Now even if the model is correct, the residuals will not be exactly



white since the parameters were estimated from a finite data set.



However, the cumulative periodogram will tend to indicate those boundary



crossings that are random and those that are due to gross model defi­


ciencies. If the boundary crossing are due to model inaccuracies, the



deviations will tend to be large and constitute a considerable portion



of the cumulative periodogram. Conversely, if the deviations are small



and occur over a small portion of the domain of the cumulative periodo­


gram, they might be attributable to randomness in the residuals.



Hence, the decision procedure is



1) plot the cumulative periodogram and the boundaries.



2) if the plot is within the boundaries accept H0.



3) if the plot crosses the boundaries either



a) reject H0



or



b) if the boundary crossings are not gross consider other



characteristics (i.e., examine plots of simulated and



empirical data) to determine whether to reject H0.



Thus we have a fairly easily implemented test for nonrandom periodici­


ties in the residual data.



This completes the descriptions of the residual tests used in this



research. The tests are all easily implemented on a computer and are



straight forward.
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B) Tests of Statistical Characteristics



Test 4 - CorreLogram Test 

Th-is test is-des-igned- to -compare thW jt6bo~aF-iancrefunctions-of



the empirical data and synthetic data generated from the fitted model.



Tht'technique of comparison of correlorams is discussed by Kashyap and



Rao EK3, pp. 211-2122. The estimate of the autocovariance functions



that are used in this test is given by



R(k) 1 N (S(j) - )(S(j-k) - k << N (3-60) 

j=k+1



where



1N



N E S(j)


j=1



This estimate is called the cotellogram by Kashyap and Rao. Oppenheim



and Schafer [01, pp. 539-5412 show that the estimate is unbiased and the



variance is asymptotically zero (as N .). Hence, the estimate is con­


sistent in the mean square sehs6.



An estimate of the correlogramt for the fitted model can be obtained



by computing, the average of the estimate of R(k) given by (3-60) over



several independent sets of synthetic data. That is, the estimate of



the correlogram for the fitted model from J sets of synthetic data is



given by
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RMk)= -1 (3-61)
j=1 

where



is the estimate given by (3-60) for the jth sequence
W.Ck)

II 

of synthetic data.



The standard deviation of the estimate given by (3-61) is



aMk = [- (P(k M-)M] (3-62)
j=l 

The estimate of the correlogram for the empirical data is also computed



from (3-60) and is denoted f(k).



Kashyap and Rao suggest that if the following relationship is sa­


tisfied, the correlogram of empirical data can be regarded as adequately



fitting the correlogram of the synt'hetic data.



§M(k) - 20M(k) < R(k) < RM(k) + 2oM(k), k=l, ... , N-I (3-63) 

However the variance of the estimate (3-60) becomes Large as k ap­


proaches N (see Jenkins and Watts EJi, p. 181J or Oppenheim and Schafer



E01, p. 5402). Therefore, the following relation is suggested.



R(k) < k << N.RM(k) - 2aM(k) < A RMk) + 20M(k), (3-64) 

Usually k may be chosen to be approximately 0.1N. If the relation in



(3-64) is satisfied, then the correlogram of the empirical data can be



said to adequately fit the (estimated) theoretical correlogram of the



simulated data.
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Thus, we have a method of comparing the autocovariances of the em­


pirical data and the synthetic data generated from the fitted model.



Test 5o'- Pefibddgram Tbst'



The periodogram test is a qualitative test to compare frequency



components of empirical and synthesized data. The periodogram has been



discussed as an estimate of the power spectrum by Oppenheim and Schaffer



E01, pp. 545-5542. However, as noted by Oppenheim and Schaffer, and



Bartlett EB3, pp. 274-2882, the estimate is biased and has a standard



deviation of the same order as the mean of the estimate. Hence, without



additional processing, the periodogram is not a particularly good es­


timate of the power spectrum. Therefore) it is not the intention of



this test to produce an estimate of the'power spectrum.



The periodogram is defined as



2 k) = E S(j)coswki + RZ S(j)sinwk ' (3-65)
j=1 -1 j=1 

2 k
 
NWk
where 

S(j) is either the empirical spectral process or the synthetic



spectral process generated from the fitted'mbdel.



A plot of the periodogram versus wk for the empirical and the synthetic



data constitutes the test. If the periodogram of the synthetic data has



' 
 relative peaks at approximately the same frequencies as the relative



peaks of the empirical data, then the fit is said to be adequate. It



must be said that this test is highly qualitative and will indicate only



gross defects in modeling any peribdicities in the empirical data.
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These five tests constitute our validation criteria for a setected



model. If a model successfully completes the tests, we will say that



the model has been validated. Once again, it must be stated that some



class of models other than those hypothesized may give a better fit to



the empirical data. Hence, the model validation criteria are useful



only in a relative sense.



6. 	 Summary



In this chapter, we have developed some techniques for obtaining



the state variable form models for use in the Kalman fitter calculations



discussed in Chapter II. These calculations are then used to determine



average information in spectral bands. From these computations, an op­


timum (in terms of average information) subset of spectraL bands is



chosen.



The model construction technique developed in this chapter is



listed below in a stepwise sequence.



1) 	 Hypothesize several classes of models.



2) 	 Identify (or estimate) the necessary parameters for each class



of models from the empirical data using either maximum likel­


ihood or Bayesian estimation techniques.



3) 	 Select a class of models using the likelihood selection cri­


terion.



4) 	 Use the five validation tests to determine if the selected



model adequately fits the empirical data.
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The validation of a selected model is for a paticular set of empirical



data. The selected model is the best fitting model in a class of



models. The likelihood selection criterion selects the most likely



ctas-s-of models to represent the empirical data. In terms of this



research, the above may be interpreted as meaning that we do not state



that the validated model is the model for, say, wheat. Instead, we have



a class of models (ibe., second order autoregressive) that represents a



wheat scene in a spectra[ band.



Thus, a very flexible technique for constructing models of spectral



processes has been developed.





Chapter IV



Application of Modeling Techniques



1. Introduction



Tnis chapter demonstrates the application of the modeling tech­


niques developed in Chapter III to empirical spectral response data.



The modeling techniques are shown for two empirical data sets for pur­


poses of comparison and demonstration that the techniques are applica­


ble to different spectral scene types.



The models developed are used in the n~xt chapter to demonstrate



the use of average information to choose subsets of spectral bands.



First, however, a description of the empirical data used in this



research is given.



2. The Empirical Data



The data set for this research is chosen to exhibit several charac­


teristics. First, the data must be representative of the types of



scenes observed by the multispectral scanner systems. Second, the data



set should be amenable to the techniques being pursued in this research.



Third, the data should be relatively free of artifacts that may be in­


troduced in the data collection process. Such data sets are available



at the Purdue University Laboratory for Application of Remote Sensing



(LARS). All of the empirical data used in this research is gathered



with the Purdue/LARS Exotech 20C spectroradiometer 1LI], and was col­
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lected from some test sites in Williams County, North Dakota.



Two different sets of empirical data are used to demonstrate the



techniques developed in this research. The first set cqnsists o obser­


vations of wheat scenes and was selected primarily for two reasons.



First, it is desired to demonstrate the techniques'for a scene that con­


sists of a single type of vegetation . It is thought that this wilt



demonstrate the feasibility of using the developed techniques to analyze



parameters of a multispectral scanner system for observing a particular



scene type. Second, there is general interest in -observing the world



'wheat crop. Reasons for observing the world wheat crop include estimat­


ing the world food supply nd detecting pathological conditions.



The second set of empirical data consists of several vegetation



scene types. Included in this second combined empirical data-set are



oats, barley, grass, alfalfa andffallow fields. Use of this second set



of data provides insight in using the techniques developed in this



research to analyze-parameters'of a multispectral scanner system for ob­


serving a more general scene. Also study of the second data set pro­


vides a comparison of results-for two different-data sets.



The data described above is available in 'the data library at the



Laboratory for Applications of Remote Sensing at'Purdue 'University. The



specific data used in this study is stored on data tape 3990, and each



observation is identified by its run number. +The observations (run



numbers) used 'for the wheat data'are listed 'inTable IV-i. SimiFarly



the-observations used for the ,combined scene are listed in-Table IV-2.



The empirical data is ,subjected tosome-initial processing 'o



render it more useful for the current study. First,,the data for the
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Table IV-1. Wheat Scene Data Run Numbers



Run Number Run Number 

75769000 75769800 

75769100 75769900 

75769300 75770000 

75769400 75770200 

75769500 75770300 

75769600 75770400 

75768700 75770500 

Table IV-2. 

Run Number Run Number 

75768400 75768800 

75768500 75768900 

75768600 75774100 

75768700 75774200 

Run Number 
 

75770600 
 

75770700 
 

75770800 
 

75771000 
 

75771100 
 

75771200 
 

75771300 
 

Combined Scene Data 
 

Run Number 
 

75774300 
 

75774400 
 

75774500 
 

75774600 
 

Run Number 


75771400 


75771500 


75771700 


75771800 


75771900 


75772000 


75772100 


Run Numbers 


Run Number 


75775700 


75775800 


75775900 


75776100 


Run Number 


75772200 


75774900 


75775000 


75775100 


75775200 


75775300 


75775400 


Run Number 


75776200 


75776300 


75776400 
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wheat is averaged over the observations. That is,an ensembl'e average



for~each wavelength is taken. It is thought that the resultant average



spectral response provides a relatively good data set to demonstrate the



techniques -o4 this'_rsearch. The average spectral response for the



,wheat data is shown in Figure IV-1. Similarly, an average spectral



response for the combined scene is taken. This average spectral



response may be considered as an average vegetation scene for the pur­


pose of this research. The average spectral response for the combined



data is shown in Figure IV-2. It isnoticed inboth Figures IV-1 and



IV-2 that there are two data drop-outs at approximately 1.34 - 1.45 mi­


crometers (pm) and 1.82 - 1.96 urm. These two data drop-outs are due to



atmospheric absorbtion of the incident and refleCted electromagnetic
 


energy. Thus, these two spectral bands are not useful for the current



research.



In order that the study be carried out in a context that is rela­


tively realistic for multispectral scanners, the spectral response of



the two data sets i's divided into spectral bands. The division is rela­


tively arbitrary, but each spectral band must contain a sufficient num­


ber of data points to ensure fairly accurate parameter estimation for



model identification as discussed in Chapter III. The spectral bands



for the wheat data are shown in Table IV-3. It has 'been noted previous­


,ly that the gaps between bands 7 and'8 and between bands 8 and 9 are due



to atmospheric absorbtion of the incident and reflected spectral ener­


gy. Similarly, spectral bands for the combined scene ,are shown in Table



IV-4. Thus, the data sets and the spectral bands are defined for thi's



study. The next step is to identi;fy models for th'e spectral bands de­
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Fig. IV-l. Average Spectral Response--Wheat Scene
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Fig. IV-2. Average Spectral Response--Combined Scene
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Table IV-3. Spectral Bands for Wheat Scene 

Band Number Spectral Wavelength Interval 
1 .4528 - .5380 pm 
2 .5380 - .6239 pm 
3 .6239 - .7097 im 
4 .7097 - .8517 pm 
5 .8517 - .9910 pm 
6 .9910 - 1.130 pm 
7 1.130 - 1.344 pm 
8 1.446 - 1.821 pm 
9 1.959 - 2.386 pm 

Table IV-4. Spectral Bands for Combined Scene 

Band Number Spectral Wavelength Interval 
1 .4565 - .540Z pm 
2 .5402 - .6246pm 
3 .6246 - .7097 pm 
4 .7097 - .8481Vpm 
5 .8481 - .9850 pm, 
6 .9850 - 1.122 pm 
7 1.122 - 1.307 pm 
8 1.451 - 1.818 pm 
9 1.967 - 2.386 pm 



fined above.
 


3. 	 Identified Models for the Empirical Data



This section discusses the models identified for the specral bands



of the two empirical data sets described in the preceding section . The



particular identification techniqe used is the maximum likelihood tech­


nique discussed in Chapter III. This technique obviates the need for



assumptions about the prior density functions of the parameters. In­


stead, some arbitary (but reasonable) assumptions are made on the neces­


sary parameters needed to initiate the estimation (identification) al­


gorithm. A sample copy of a computer program that implements the iden­


tification algorithm in FORTRAN can be found in Appendix III.



The discussion of the models identified for the two empirical data



sets is ordered by bands. It is thought that aside from being a logical



method of proceeding, this will provide a simple comparison of



corresponding spectral bands for the two empirical data sets.
 


A. 	 Band 1



From Tables IV-3 and IV-4 it is seen that this spectral band is in



the wavelength region of .4528 to :5402 Um for the wheat data and .4565



to .5402 pm for the combined scene data. The model types identified for



the wheat scene are the autoregressive, autoregressive plus constant



trend, and the integrated autoregressive models. Hypothesized models up



to tenth order were identified. The results are tabulated in terms of



order and selection criterion as defined by (3-46) in Table IV-5. On



the basis of the selection criterion, it is clear that the sixth order



autoregressive model is chosen. The residual variance is defined as the
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variance of x(k) in equation (3-47) and can be considered as a measure



of the goodness of fit of the model. The residual variance for the



x 10-3 
selected sixth order autoregressive model is 1.26 . Hence, the



model is judged to be a good fit to the empirical data. The estimated



coefficients for the sixth order autoregressive model are given in Table



IV-6.



There was some difficulty in validation of a mode[ for band 1 of
 


the combined scene. Hence, the integrated autoregressivee model of the



second kind discussed in Chapter III was identified in addition to the



three model, types identified for the wheat scene. Also higher order



models were identified for the combined scene. It is thought that the



more complicated models for band 1 of the combined scene are necessitat­


ed by the higher variability of the empirical data as seen in Figure



IV-2. The identified hypothesized models are tabulated in terms of ord­


er and selection criterion in Table IV-7. The model with the highest



selection criterion that also passes all the validation tests is the



eleventh order integrated autoregressive model of the second kind. The



other models with higher selection criterion values could not pass the



serial independance test. Hence, we have an example of the ease with



which the systematic approach to identification of hypothesized models



developed in this research allows the examination of alternate models in



the event of the inadequacy of a candidate model. The residual variance



x 10-3 
 of the selected model is 1.46 which is evidence of a good fit to



the empirical data for this model. The estimated coefficients for the



eleventh order integrated autoregressive model of the second kind are



given in Table IV-8.
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Table IV-5. Identified Models for Band 1 of Wheat Scene



Selection Criterion


Order of Autoregressive Autoregressive Integrated 
Model plus constant Autoregressive 

trend 

1 366.2 351.7 364.3 
2 374.0 367.5 362.5 
3 376.9 373.6 363.9 
4 379.6 376'4 366.6 
5 377.5 377.3 367.9 
6 381.2 379.4 368.7 
7 8 380.6 369.3 
8 379.5 377.8 367.1 
9 377.1 376.5 364.9 

10 377.0 375.8 364.4



Table IV-6. Coefficients for Band 1 Selected Wheat Scene Model



Coefficient Estimated Yalue



aI1 .20828


a2 .16650
2 
 

.16368


a4 
 
a3 
 

.16533


a5 
 .14243



.16945
a6 
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Table IV-?. Identified Models for Band 1 of Combined Scene



Selection ,Criterion



Order of Autoregressive Autoregressive Integrated Integrated 

Model plus constant autoregressive autoregressive 


---------­ -­ trend­. - . f-rst--k-ind­ -second'-kind­

1 270.1 289.2 31'4.1 304.7 

2 332.7 343.8 330.5 315.0 
3 -350.7 350.0 331.9 325.3 
,4 351.2 351.5 331.1 326.0 

5 350.4 351.6 331.9 328.7 
6 346.6 347.9 330.6 330.5 
7 342.9 346.5 330.7 328.3 
8 340.5 343.5 329.0 334.3 

9 339.7 348.2 350.2 352.2 

10 346.5 356.4 348.5 352.0 
11 354.4 354.3 349,4 353.1 
12 352.5 352.5 350.2 356.0 
13 351,4 354.1 349.7 357.5 
14 354.1 352.8 358.2 358.0 
15 354.4 353.5 356.6 355.7 

16 353.8 352.9 
17 352.2' 350.3 
18 351.6 349.4 
19 349.8 349.3 
20 348.8 

Table IV-8. Coefficients for Band 1 Selected Combined Scene Model



Coefficient Estimated Value



.031594
a1 
 

.037784
a2 
 

.13395
a3 
 

.089051
a4 
 

.084141
a5 
 

.10954
a6 
 

.10055
a7 
 

.075585
a8 
 

.121'25
a9 
 
a10 .033931


a11 .064937
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B) Band 2



This spectral band encompasses the wavelengths .5380 - .6239 pm for



the wheat scene and .5402 - .6246 pm for the combined scene. The iden­


tified models for the wheat scene are the same types identified for band



1 of the wheat scene. It is thought that since the empirical data is



fairly welt behaved in this spectral band, the more complicated in­


tegrated autoregressive model of the second kind is not needed. The hy­


pothesized models are tabulated in terms of order and selection cri­


terion in Table IV-9. It is clear that on the basis of the selection



criterion, the second order autoregressive model is to be chosen to



represent band 2 of the wheat scene. The residual variance for this



model is 6.19 x 10-5 indicating a good fit to the empirical data. The



estimated coefficients for this model are given in Table IV-10.
 


The combined scene empirical data is also fairly smooth in this



spectral band. Hence, only the three basic models are identified for



this band. The hypothesized models are listed in terms of order and



selection criterion in Table IV-11. It is clear from the table that



the model selected is the second order autoregressive model. The resi­


dual variance for this model is 1.72 x 10-4 thus indicating a good fit



to the empirical data. The estimated coefficients for this model are



given in Table IV-12.



C) Band 3



The spectral intervals in band 3 are .6239 - .7097 pm for the wheat



scene and .6246 - ,7097 Um for the combined scene. The three basic



models were identified for the wheat scene. The identified models are
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Table IV-9. Identified Models for Band 2 of Wheat Scene



Selection Criterion


Order of Autoregressive Autoregressive Integratid 
Model plus constant autoregressive 

trend 

1 541.8 462.4 490.7 
2 560.0 513.3 499.4 
3 553.3 530.1 507.9 
4 542.9 535.5 513.6 
5 534.0 537.9 520.0 
6 526.5 539.2 525.9 
7 518.7 541.3 530.1 
8 511.0 541.1 538.0 
9 505.5 540.1 540.6 

10 498.8 538.2 539.4 

Table IV-10. Coefficients for Band 2 Selected Wheat Scene Model



Coefficients Estimated Value



a1 .50360


a2 .50189
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TabLe IV-11. Identified ModeLs for Band 2 of Combined Scene



Selection Criterion 
Order of Autoregressive Autoregressive Integrated 
Model plus constant autoregressive 

trend 

1 491.6 439.8 473.9 

2 492.0 469.4 .474.4 

3 490.9 479.1 477.4 

4 484.0 47B.3 477.6 
5 478.0 475.9 478.0 
6 474.4 474.4 478.9 
7 471.2 472.3 477.6 

8 468.6 472.3 479.0 
9 468.1 471.6 479.3 
1D 465.7 470.3 478.3 

17 462.8 469.4 477.3 
12 459.6 467.9 474.8 
13 456-6 467.2 472.1 
14 453.9 466.0 469.0 
15 451.4 465.1 465.4 

Table IV-12. Coefficients for Band 2 Selected Combined Scene Model



Coefficients Estimated Value



a1 .50475


az .49893
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listed in terms of order and selection criterion in Table IV-13. It is
 


clear that according to the selection criterion 'the eleventh order in-,



tegrated autoregressive model is to be chosen. The residual variance



for this model is 6.00 x 10-5 , thus incdcating a good fit to the empiri­


cal data. It is interesting that a higher order integrated autoregres­


sive model gives a better fit than the best (and lower order) autore­


gressive models. This may be an indication of nonstationarity of the



spectral process in this band. The estimated coefficients for the



selected eleventh order integrated autoregressive model are given in



Table IV-14.



The combined scene hypothesized models were the same as for the



wheat scene. The identified models are listed according to order and



selection criterion in Table IV-15. As seen from the selection cri­


terion either the tenth or eleventh order integrated autoregressive



model is to be chosen. The eleventhorder model is chosen here since it



has lower residual variance and has a sightly better selection criterion
 


(ifcomputed to more decimal places). The residual variance for the



10-4 
selected model is 1.15 x ,which is indicative of a good fit between



the model and the empirical dat'a. The estimated coefficients for the



selected eleventh order integrated autoregressive process are listed in



Table IV-16.



D) Band 4



The spectral bands consist ol the wavelength interval .7097 - .8517



pm for the wheat scene and .7097 - .8481 Um for the combined scene. The



same three basic model types were hypothesized for this band of the



wheat scene. The identified models are given in terms of order and
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Table IV-13. Identified Models for Band 3 of Wheat Scene



Order Selection Criterion


of Autoregressive Autoregressive Integrated 
Model plus constant autoregressive 

trend 

1 532.9 464.3 465.5


2 511.8 484.3 478.3


3 489.1 481.9 489.5


4 470.2 474.3 501.5


5 453.9 464.9 513.0


6 440.5 456.0 523.3


7 429.7 447.9 531.8


8 420.8 440.6 540.4


9 414.1 434.8 549.4



10 408.8 429.3 551.5


11 552.8


12 549.9


13 546.4 
14 538.7 
15 532.4 

Table IV-14. Coefficients for Band 3 Selected Wheat Scene Model



Coefficient Estimated Value



a1 .098225


a2 .099891


a. .099802


a 4.10021
 

a5 
 .098787


a6 
 .099604



.099389
a7 
 

.10044
a8 
 

.10047


a1 .099348


11 .10040



a9 
 



Table IV-1,5. Identified Models for Band 3 of Combined Scene



Order Selection Criterion


of Autoregressive Autoregressive Integrated 
Model plus constant autoregressive 

trend 

1 489.3 436.8 452.7 
2 462.8 447.0 460.9 
3 440.5 440.6 470.3 
4 421.7 431.0 480.8 
5 406.9 420.9 488.8 
6 396.0 412.7 493.2 
7 388.6 405.9 499.8 
8 384.0 401.0 505.1 
9 381.4 397.5 504.6 

TO 380.3 394.7 505.9 
1I 380.2 392.7 505.9 
12 380.6 191.6 504.6 
13 381.5 391.0 502.6


14 383.3 391.6 500.5


15 386.3 392.5 497.3



Table I.V-16. Coefficients for Band 3 Selected Combined Scene Model



Coefficient Estimated Value



a1 .,099769


a2 
 .098600



.10137
a3 
 

.10010
a4 
 

.10057
a5 
 

.097140
a6 
 

.10123
a7 
 

.10080
a8 
 

.097301


a10 .098323


a11 .10038



a9 
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selection criterion in Table IV-17. The model chosen on the basis of



the selection criterion is the first order autoregressive plus constant



trend term. The constant trend term here accounts for a mean value in



the driving noise which is not adequately modeled in the initial condi­


tions taken from the empirical data. The residual variance for the­


first order autoregressive plus constant trend model is 4.43 x 10-4 thus



indicating a good fit to the empirical data. The estimated coefficients



for this model are given in Table IV-18.



The three basic model types were also identified for band 4 of the



combined scene. The identified models are listed according to order and



selection criterion in Table IV-19. It is clear that on the basis of



the selection criteria, the first order autoregressive plus constant



trend model is to be chosen. The model is a good fit to the empirical



data as is exhibited by the 1.20 x 10-3 residual variance. The estimat­


ed coefficients for this model are listed in Table IV-20.
 


E) Band 5



The wavelength intervals for band 5 are .8517 - .9910 jrm for the 

wheat scene and .8481 - .9850 pm for the combined scene. The three 

basic model types were identified for the wheat scene. The identified 

models are listed according to order and selection criterion in Table 

IV-21. It is clear from the value of the selection criterion that the 

first order autoregressive model is to be chosen. It is also noted that 

the other two model types have selection criterion very-close to the 

one chosen. Hence, if there is any difficulty in validation of the 

selected model, two alternative model types are available. It is in­


teresting to note that all three model types have a first order model
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Table IV-17. Identified Models for Band 4 of Wheat Scene



Order Selection Criterion 
of autoregressive autoregressive integrated 
Model plus constant autoregressive 

-tehd 

,1 469.4 453.3 433.1


2 439.2 471.3 450.0



417.3 454.3 459.3


4 403.8 442.1 463.0


5 396-7 433.6 473.6


6 394.7 428.7 477.4


7 395.3 425.4 480.2


8 393.0 42.6 481.1


9 400.2 422.9 481.8



10 403.,6 ;23.4 482.0


11 406.9 423.8 480.8


12 410.2 425.6 477.,0


'13 411.9 425.8 474.5


14 412.7 426.7 472.4


15 41'2.5 426.1 469.1


16 411.4 426.5 465.9


17 410.2 ,424.9 464.1


18 408.3 423.4 461.2


1,9 407.7 421.5 453f1


20 406.7 419.4 455.1



Table IV-1. Coefficients,for Band 4 Selected Wheat Scene Model



Coefficient Estimated Value



a1 .93597


c .13969
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Table IV-19. Identified Models for Bind 4 of Combined Scene



Selection Criterion 
Order of Autoregressive Autoregressive Integrated 
Model plus, constant autoregressive 

trend 

1 402.5 418.3 17.2


2 379.7 40.6 394.8


3 364.8 390.9 400.8


4 358.8 382.9 403.3


5 358.3 379.1 404.7


6 359.0 76.9 405.3


7 362.3 376.8 407.8


8 364.6 376.7 408.6


9 366.6 376.4 408.4



10 363.4 376.4 404.8


11 363.6 376.6 406.5


12 363.8 375.7 405.0


13 367.9 374.8 402.6


14 366.0 372.4 401.7


15 364.2 371.2 400.0



Table IV-20. Coefficients for 33nd 4 Selected Combined Scene Model



Coefficient Estimated Value



.93382


c .15938


a1 
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Table IV-21. Identified Models for Band 5 of Wheat Scene



Selection Criterion


Order of Autoregressive Autoregressive Integrated 
Model pl-us constant autoregressive 

trend 

1 339.9 339.7 38.4 
2 734.1 733.6 z36.3 
3 330.6 30.0 334.3 
4 328.4 327.7 732.1 
5 327.4 327. 331.7 
6 326.3 325.2 329.7 
7 326.5 325.7 329.2 
8 326.2 K25.0 328.4 
9 324.8 323.9 329.2 

10 322.6 321.7 327.0 

Table IV-22. Coefficients for Band 5 Selected Wheat Scene Model



Coefficient Estimated Value



1.00055
a1 
 

OPPORxqAPOOR QIJAL7mPAGEIJS 
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with the best selction criterion. This indicates that the empirical



data in this band is fairly well behaved and that simple models of the



spectral response suffice for purposes of representation . The residual 

3
variance of the first order autoregressive model is 2.80 x 10- , thus



indicating a good fit to the empirical data. The estimated coefficient



of the selected model is given in Table IV-22.
 


For the combined scene, the three basic ,odels were identified.



The identified models are tabulated according to order and selection



criterion in Table IV-23. According to the selection criterion, the



third order autoregressive model is to be chosen. The residual variance



for this model is 3.86 x 10-3, an indication of a good fit to the empir­


ical data. The estimated coefficients for the selected third order au­


toregressive model are listed in Table IV-24.
 


F) Band 6



The spectral intervals included in band 6 are .9910 - 1.130 pm for



the wheat scene and .9350 - 1.122 Um for the combined scene. The three



basic models were identified for the wheat scene and are listed accord­


ing to order and selction criterion in Table IV-25. It is seen from



the table that the second order autoregressive plus constant trend model



is to be chosen on the basis of the selection criterion. This model has



-
a residual variance of 1.44 x 10 3 which is an indication of a good fit



to the empirical data. The estimated coefficients for the selected



model are given in Table IV-26.



The model types identified for band 6 of the combined scene are the



same three basic types identified for band 6 of the wheat scene. The 

identified models are tabulated according to order and selection cri­
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Table IV-23. Identified Models for Band 5 of Combined Scene



Selection Criterion


Order of Autoregressive Autoregressive Integrated 
Model plus constant autoregressive 

trend 

1 307.2 307.3 308.3


2 310.3 309.7 306.7


3 313.8 313.0 307.5


4 U 308.7 305.7


5 306.5 305.9 304.1


6 306.2 305.5 303.3


7 304.3 304.0 302.3


18 302.3 301.8 300.5


9 301.0 300.5 299.9



10 299.0 298.6 298.4



Table IV-24. Coefficients for Band 5 Selected Combined Scene Model
 


Coefficients Estimated Value



a1 .38814


a2 
 .28995



.32304
a3 
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Table IV-25. Identified Model's for Band 6 of Wheat Scene



Selection Criterion
 

Order of Autoregressive Autoregressive Integrated 
Model plus constant autoregressive 

trend 

1 374.4 374.9 370.0


2 375.8 376.7 368.9


3 370.5 371.9 366.2


4 369.3 371.6 369.1


5 364.0 366.3 367.7


,6 359.0 362.5 367.1


7 355.4 359.3 765.3


8 351.4 356.2 367.4


9 348.2 352.1 365.2



10 343.5 345.2 364.2



Table IV-26. Coefficients for Band 6 Selected Wheat Scene Model



Coefficient Estimated Value



a .51004
1 
 .47772


c .14773


a2 
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ternon in Table IV-27. Based on the selection criterion, the first



order autoregressive model is chosen. It has only a siighty better



selection criterion than the first order autoregressive plus constant



trend mod'el. Thus a competitive alternate model is available. The



res-idual variance of the selected model is 1.91 x 10-3 thus indicating a



good fit to the empirical data. The estimated coefficient for the



selected model is given in Table IV-28.



G) Band 7



Band 7 consists of the spectral intervals 1.130 - 1.344 Um for the 

wheat scene and 1.122 - 1.307 um for the combined scene. The three 

basic model types identified-for the preceeding spectral bands'were also 

identified for band 7 of the wheat scene. The identified models are 

listed according to order and selection criterion in Table IV-29. Ac­

cording to the selection criterion, the eighth order integrated autore­

gressive model is to be chosen. However, the model with the best selec­

tion criterion that also passes all of the validation tests is the fifth 

order integrated autoregressive model. The residual variance of the 

-3


selected fifth order integrated autoregressive model is 2.42 x 10
 

which indicates a good fit to the empirical data for band 7 of the wheat



scene. The estimated coefficients for the selected model are given in



Table IV-30.



The three basic models were identified for band 7 of the combined



scene. The identified models for the combined scene are given according



to order and selection criterion in Table IV-31. According to the



selection criterion, the fifteenth order integrated autoregressive model



is to be chosen. However, the fifteenth order integrated autoregressive
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Table "IV-27. Identified ModeLs for Band 6 of Combined Scene



Selection Criterion


Order of Autoregressive Autoregressive Integrated 
Model plus constant autoregressive 

trend 

1 355.9 355.8 753.9 
2 347.8 346.7 353.1 
3 338.5 '337.5 351.8 
4 332.2 332.5 751.3 
5 329.1 328.5 349.2 , 

6 326.2 327.7 348.7 
7 325.7 328.2 347.8 
8 352.6 326.4 347.5 
9 323.7 325.4 345.4 
10 322.5 323.4 345.4 

Table IV-28. Coefficie6ts for Band 6 Selected Combined Scene Model



'Coefficients Estimated Value



a1, 1.00091
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Table IV-29. Identified Models for Band 7 of Wheat Scene



Selection Criterion


Order of Autoregressive Autoregressive Integrated 
Model plus constant autoregr-essive 

trend 

1 456.6 454.3 457.3 
2 437.3 435.6 457.4 
3. 429.0 427.0 460.2 

425.0 424.8 461.6 
5 425.5 424.2 464.8 
6 425'.9 424.2 462.5 
7 425.2 423.3 464.1 
8 424.3 423.1 469.3 
9 427.1 427.5 469.1 

10 429.5 427.2 467.2 

Table IV-30. Coefficients.for Band 7 Selected Wheat Scene Model



Coefficient Estimated Value



a1 .14802 
a 2 .061'55,9 
a3 .1'0349


a4 .11204



a5 .10538.
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Table IV-31. Identified 	 Models for Band 7 of Combined Scene



Selection Criterion
 

Order of Autoregressive Autoregressive Integrated 
Model plus constant autoregressive 

trend 

1 231.2 231.4 231.5


2 229.7 229.8 230.3


3 228.4 228.3 229.0


4 227.1 227.0 227.8


5 225.8 225.7 227.6


6 225.6 225.9 226,1


7 224.1 261.5 259.2


8 257.5 265.0 260.2


9 259.1 267.0 259.9



10 259.4 265.5 253.8


11 258.2 265.0 258.9


12 258.4 264.7 260.7


13 259.5 263.4 259.2


14 258.0 261.8 258.7


15 257.3 261.4 253.8



Table IV-32. Coefficients for Band 7 Selected Combined Scene Model



Coefficients Estimated Value



a .64063


al .17721


a3
2.11417

a4 .088031


a5 .10856



-.058380 
a7 -.038789 
a7 -.061748 

a6 
 

a8 -.017016


c9.49218
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model fails the correlogram validation test. Hence, the next alternate



model is chosen according to Table IV-31. This is the ninth order au­


toregressive plus constant trend model. This model passes the vatida­


tion tests and the residual variance is 3.27 x 10-2 . Hence the fit to



the empirical data is good. The estimated coefficients for this model



are given in Table IV-32.



H) B3nd 8



The spectral intervals included in band 8 are 1.446 - 1.821 pm for



the wheat scene and 1.451 - 1.818 pm for the combined scene. The three



basic models identified for the other spectral bands are also identified



for band 8. The identified models for this spectral band of the wheat



scene are tabulated according to order and selection criterion in Table



IV-33. On the basis of the selection criterion, the ninth order in­


tegerated autoregressive model is to be selected. Unfortunately, this



model does not pass the cumulative periodogram validation test. The



model selected as an alternative is the eighth order integrated autore­


gressive model. This model passes all the validation tests. The resi­


-
dual variance for the selected model is 3.18 x 10 4 which indicates a



good fit to the empirical data for this band of the wheat scene. Table



IV-34 gives the estimated coefficients for the selected eighth order in­


tegraated autoregressive model.



The three basic models were also identified for band 8 of the com­


bined scene and are listed according to order and selection criterion



in Table,IV-35. The eighth order integrated autoregressive model is



chosen on the basis of the selection criterion. The residual variance





Table IV-33. Identified Models for Band B of Wheat Scene



Selection Criterion


Order of' Autoregressive Autoregressive Integrated 
Model plus constant autoregressive 

trend 

1 469.9 494.7 495.7 
2 447.8 457.8 506.8 
3 427.8 436.0 519.4 
4 422.1 429.9 526.4 
5 426.1 434.2 510.2 
6 433.1 441.3 540.5 
7 441.9 455.2 538.5 
8 448.1 463.1 555.8 
9 453.8 470.7 556.9 

10 457.7 475.9 554.5 
11 460.0 477.5 548.3 
12 457.3 477.5 547.2 
13 455.5 476.2 544.4 
14 454.8 477.3 546.2 
15 457.4 480.3 547.2 

Table IV-34. Coefficients for Band 8 Selected Combined Scene Model



Coefficients Estimated Value
 


.11977
a1 
 

.10839
a2 
 

.10895
a3 
 

.10525
a4 
 

.10025
a5 
 .11203
a6 
 

.10458
a7 
 

.093896
a8 
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Table IV-35. Identified Models for Band 8 of Combined Scene



Selection Criterion
 

Order of Autoregressive Autoregressive Integrated 
Model plus constant autoregressive 

trend 

1 275.6 279.6 277.2 
2 271.9 274.6 276.5 
3 270.7 273.9 275.8 
4 270.2 -273.2 274.5 
5 268.9 272.3 273.0 
6 267.4 271.3 272.7 
7 266.6 270.4 271.4 
8 265.0 308.7 319.7 
9 310.2 303.3 318.8 
10 310.3 308.7 19.4 
11 309.7 309.5 319.4 
12 310.0 309.6 318.,4 
13 309.7 308.3 316.7 
14 308.4 306.7 315.1 
15 306.9 305.3 313.4 

Table IV-36. Coefficients for Band 8 Seicted Combined Scene Model



Coefficients 'Estimated Value 

-a1 .074048 
a2 .054155 
a3 .10216 
a4 .058484 
a5 .080674 
a6 .090834 

a7 .083258 
a8 .11358 



-
of the selected model is 9.53 x 10 thus indicating a good fi- to the



empirical data for band 8 of the combined scene. Table IV-36 gives the



estimated coefficients for the selected model.



I) Band 9



The spectral intervals for this band are 1.959 - 2.386 um for the



wheat scene and 1.967 - 2.356 pm for the combined scene. The three



basic model types were identified for this band 6f the wheat scene and



are tabulated according to order and selection criterion in Table IV-37.
 


According to the selection criterion, the sixth order integrated au­


toregressive model is selected. The residual variance for the selected



-
model is 8.00 x 10 4 thus indicating a good fit to the empirical data



for band 9 of the wheat scene. Table IV-38 gives the estimated coeffi­


cients for the selected model.



The three basic models were also identified for band 9 of the com­


bined scene. Table IV-39 lists the identified models according to order



and selction criterion. According to the selection criterion, the first



order integrated autoregressive model should be chosen. However, this



model is judged not to pass the qualitative periodogram validation



test. Therefore, the alternative selected model is the first order au­


toregressive model. This model passes the validation tests. The resi­


-2


dual variance for the first order autoregressive model is 1.18 x 10
 

thus indicating a good fit to the empirical data for band 9 of the com­


bined scene. Table IV-40 gives the estimated coefficient for the



selected first order autoregressive model.



We now have selected models for all the defined bands of both the



wkeat scene and the combined scene. Next we validate the selected
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Table IV-37. Identified Models for Band 9 of Wheat Scene 

Selection Criterion


Order of Autoregressive Autoregressive Integrated 
Model plus constant autoregressive 

trend 

1 546.3 575.9 551.2 
2 516.3 518.5 559.0 
3 504.4 50,1.5 565.3 
4 495.7 494.9 569.4 
5 495.9 495.3 572.6 
6 501.0 499.6 575.2 
7 508.5 507.4 573.9 
8 514.8 514.4 572.1 
9 517.8 51'8.3 571.6 

10 519.4 520.4 570,.1 

Table IV-38. Coeff'iciehts fo Band 9 Selected Wheat Scene Model
 


Coefficient Es'tinfated Value


a1 .10952



a2 
 .096485


.10262



a4 
 
a3 
 

.11044



a5 
 .11506


a6 
 .11766
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Table IV-39. Identified Models for Band 9 of Combined Scene 

Selection Criterion


Order of Autoregressive Autoregressive Integrated 
Model plus constant autoregressive 

trend 

1 356.1 355.3 356.5 
2 348.7 348.3 ;55.1 
3 346.5 346.5 354.0 
4 345.4 345.6 353.0 
5 344.0 344.0 351.5 
6 342.3 342.5 349.9 
7 341.1 341.2 352.5 
8 342.1 341.3 351.2 
9 341.4 340.5 350.1 

10 340.3 339.0 348.5 

Table IV-40. Coefficients for Band 9 SeLected Combined Scene Model



Coefficient Estimated Value



.99759
a1 
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models. Finally, these models are used for average information calcula­


tions in Chapter V.



4. Validation of Identified Models.



In this section validation of the identified models for each band



of both scene types is carried out. The vatidaion techniques used here



are those developed in Chapter III. We consider the validation of the



selected models by bands as in the previous section of this chapter.



The validation tests are implemented wih computer programs written in



FORTRAN and included in Appendix III.



A) Band 1



We first consider validation of the selected sixth order autore­


gressive model for band 1 of-the wheat scene.



1) Zero Mean Test



This test will be carried out foe all bands of both scene types at 

a significance level of .01 so that there is a standard basis of compar­

ison for all selected models. The value of no at this level of signifi­

cance for the number of samples in this research (approximately 115 to 

160 samples) is n0 = 2.62 £A5]. 

The value of the test statistic given by -the selected model for the



wheat scene is



1
It(x)I = 1.431 x-1O- (4.2) 

Hence, the selected sixth order autoregressive model easily passes.this



test.
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2) Serial Independence Test



This test is conducted on all bands of both scene types at a signi­


ficance level of .01 so that there is a standard basis of comparison



for all selected models. The critical value, n0, is dependent on the



value of nl used for this test. In this study nl = .1N (N is the number



of empirical data points) for all models tested. The critical values



are listed for several values of nl in Table IV-41 £A5J.



The test statistic for the selected sixth order autoregressive
 


model for band 1 of the wheat scene is



n(x) = 1.515 x 101 (4-3) 

for n1 = 10. It is clear from Table IV-41 that the selected model
 


passes the serial independence test'.



Table IV-41. Critical Values for Serial Independence Test



nl Critical Value, no



9 21.6660



10 23.2093



11 24.7250



12 26.2170



13 27.6883



14 29.1413



15 30.5779
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3) Cumulative Periodogram Test



This test is carried out on all bands of both scene types at a pro­


bability level of .99, thus giving a standard basis of comparison for



all selected models. In all cumulative periodogram plots, the boun­


daries that determine the success of the test are, of course, the two



parallel lines.



The selected model for band 1 of the wheat scene passes this test
 


as is seen from Figure IV-3.



4) Correlogram Test



It is seen from Figure IV-4 that the selected sixth order autore­


gressive model passes this test.
 


In the corretogram plots, the test boundaries are shown as dashed



lines.



5) Periodogram Test



As seen in Figure IV-5, the selected model for band 1 of the wheat



scene may be judged to pass this qualitative test.



In the periodogram plots, the periodogram for the empirical data is



plotted as a solid Line and the periodogram for the synthetic data gen­


erated from the candidate model is plotted as a dashed line. For most



cases, the two plots are so nearly coincident as to be indistinguish­


able.



Next we consider the validation of the selected eleventh order in­


tegrated autoregressive model of the second kind for band 1 of the com­


bined scene.



6) Zero Mean Test
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The test statistic for the selected model is



It(x)l = 2.184,× 10-1­

thence, -the'selected model easitypasses th-is test.



7) '.Serial Independence Test



As noted previously, several of the identified models with higher
 


selection criterion do not pass this test. As an example, the



fifteenth order autoregressive model gives the test statistic



n(x) = 7434 x 101 (4-5)



for nl = 9. Thus the model clearly fails 'the test. Other models with



higher selection criterion simiLarly failed this-test. The selected



model has the test statistic



n(x) = 2.009 x 10 (4-6) 

for nl = 10. Thus, the eleventhorder integrated autoregressive model



of the second kind passes this test.



8) Other Tests



Figures IV-6, IV-7, ad 'IV- show that the-selectedmodel for band 1



of the combined-scene passes the cumulat'ive periodogram, correlogram,



bnd periodogram tests.



Hence, we have validated-models for band I of both scenetyes.





B) .Band 2



The vat idation of the selected second order autoregressive model



for this band of the wheat scene is considered first.



1) Zero Mean Test



The test statistic for the selected model is



jt(x)l = 1.955 (4-6)



Thus the selected model passes this test.



2) Serial Independance Test



The test statistic for the second order autoregressive model is



n(x) = 1.869 x 101 (4-7)



for n1 = 11. Hence, the selected model passes the serial independance



test.



3) Other Tests



It is seen from Figures IV-9, IV-10, and IV-11 that the selected



model for band 2 of the wheat scene passes the cumulative periodogram,



correlogram, and periodogram tests.



Next, we discuss the validation of the selected second order au­


toregressive model for band 2 of the combined scene.



4) Zero Mean Test



The test statistic for the selected model is
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It(x)I = 1.055 (4-8) 

Hence, the selected model easily passes this test. 

5) Serial Independance Test 

The selected model gives the test 'statistic



D(x) = 1.365 x 101 (4-9)



for n1 11. Hence, the selected model also passes this test.



6) Other Tests



The selected model for band 2 of the combined scene passes the cu­


mulativeperiodogram, correlogram, and periodogram tests as is seen from



Figures IV-12, IV-13, and IV-14.



C) Band 3



Validation of the selected eleventh order integrated autoregres­


sive model for band 3 of the wheat scene is considered first.



1) Zero Mean Test



The test statistics for the zero mean test is



It(x)I = 3.616 x 10-1  . (4-10) 

Hence, the 'selected model easily passes this test. 

2) Serial Independence Test 

The selected model gives the test statistic
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n(x) = 1.153 x 101 (4-11)



for n1 = 10. Thus, the selected model easily passes this test.
 


3) Other Tests



Figures IV-15, IV-16, and IV-17 s'how that the selected model for



band 3 of the wheat scene passes the cumulative periodogram, correlo­


gram, and periodogram tests.



The selected eleventh order integrated autoregressive model for



band 3 of the combined scene is considered next.



4) Zero Mean Test



The test statistic for the selected model is



Jt(x) = 1.871 x 10-1 (4-12)



Thus, the selected model easily passes this test.



5) Serial Independance Test



The selected model gives the test statistic



n(x) = 2.125 x 101 (4-13)



for n1 = 10. Thus, the selected model- passes this test.



6) Other Tests



It is seen from Figures IV-18, IV-19, and IV-20 that the selected



model for band 3 of the combined scene passes the cumulative periodo­


gram, correlogram, and periodogram tests.



Hence, we have validated models for band 3 of both scene types.





.1 
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D) Band 4



Validation of the selected first order autoregressive plus constant



trend model for bat'4 of thp wheat scen- is considered first.



1) Zero Mean Test



Tne test statistic for the selected Tcrel is



jt(x)j = 1.753 x 10-1 . (4-14) 

Hence, the selected model easily passes this test.



2) Serial Independence Test



The selected model gives the test statistic



=
r(x) 2.00 x 101 (4-15)



fo nl = 12. Therefore, the selected model also p3sses tis test.



3) Other Tests



Figures IV-21, IV-22, and IV-23 show that the selected model passes



the cumulative periodogram, correlogram, and periodogram tests.



We next consider vat idation of the set ected first order autore­


gressive plus constant trend model for band 4 of the combined scene.,



4) Zero Mean Test



The test statistic for the selected model is 

It(x)[ = 1.598 x 10-1 (4-16) 

Hence, the selected model easily passes this test. 

5) Serial Independence Test 
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The selected model gives the test statistic



(x) = 	 2.1250 x 101 	 (4-17) 

for n1 = 12. Hence, the selected model also passes this test.
 


6) 	 Other Tests



It is seen from, Figures IV-24, IV-25, and IV-26 that the selected



model passes the cumulative periodogram, correlogram, and periodogram



tests.



Hence, we have validated models for both scenn types of band 4.



E) Band 5



First, validation of the selected first order autoregressive model



for band 5 of the wheat scene is considered.



1) Zero Mean Test



The test statistic for the selected model is



it(x)i = 2.495 x 10 - 1 . (4-18) 

Hence, the selected model easily passes this test. 

2) Serial Correlation Test 

The selected model yields the test statistic



n(x) = 1.787 x 101 (4-19)



for n1 = 11. Therefore, the selected model pases this test.



3) Other Tests
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Figures IV-27, IV-28, and IV-29 show that the selected model passes



the cumulative periodogram, correlogram, and periodogram tests.



Next, vaidation o, the seiec-ted third order autorcegressive model



for band 5 of the combined scene is considered.



4) Zero Mean Test



The test statistic for the selected model is



It(x)l = 3.622 x 10- 2 . (4-20) 

Thus, the selectd model easily passes this test.
 


5) Serial Independence Test



The selected model gives the test statistic



=
n(x) 1.628 x 101 (4-21)



for nl = 11. Hence, the selected model pisses this test.



6) Other Tests



Fiqures IV-30, IV-31, and IV-32 show that the selected model passes



the cumulative periodogram, correloqram, and pr.riodogram tests.



Thus we have validated models for band 5 of both scene types.



F) Band 6



Validation of the selected second order autoregressive plus con­


stant trend model for band 6 of the wheat scene is considered first.



1) Zero Mean Test
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The test statistic for the selected model is



It(x)I = 1.299 x 10-1 (4-22)



Thus, the selected model easly passes this test.



2) Serial Independence Test



The selected model gives the test statistic



n(x) = 2.345 x 101 (4-23)



for n1 = 11. Hence, the selected model passes this test.
 


3) Other Tests



The selected model passes the cumulative periodogram, correlogram,



and periodogram tests as is seen from Figures IV-33, IV-34, and IV-35.



Next, validation of the selected first order autoregressive model



for band 6 of the combined scene is considered.



5) Zero Mean Test



The test statistic for the selected model is



x 10-1  
 It(x)I = 2.861 (4-24)



Hence, the selected model easly passes this test.
 


5) Serial Independence Test



The selected model yields the test statistic



n(x) = 8.322 (4-25)



for n1 =-11. Hence, the selected model also easily passes this test.
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6) Other Tests



It is seen from Figures IV-36, IV-37, and IV-38 that the selected



model passes the cumulative periodogram,.correlogram, and periodogram



tests. 
 I 

Thus, we have validated models for band 6 of both scene types.



G) Band 7



Validation of the selected fifth order integrated autoregressive



model for band 7 of the wheat scene.



1) Zero Mean Test



The selected model gives the test statistic



It(x)I = 1.853 (4-26)



Hence, the selected model easily passes this test.



2) Serial Independence Test



The test statistic for the selected model is



n(x) = 1.807 x 101 (4-27)



for n1 = 14. Hence, this test is passed by the selected model.



3) "Other Tests



Figures IV-39, IV-40, and IV-41 show that the selected model passes



the cumulative periodogram, correlogram, and periodogram tests.



We next consider validation of the selected ninth order autoregres­


sive plus constant trend model.
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4) Zero Mean Test



The selected model gives the test statistic



-
it(x)j = 1.208 x 10 1 (4-28)



Thus, the selected model easily passes this test.



5) Serial Independence Test



The test statistic for the selected model is



n(x) = 5.568 (4-29)



for n1 = 15. Therefore, the selected mddel easily passes this test.



6) other Tests



Figures IV-42, IV-43, and IV-44 show that the selected model passes



the cumulative periodogram, correlogram, and periodogram tests.



Hence, the selected models are validated for band 7 of both scene



types.



H) Band 8



Va'lidation of the selected eighth order integrated autoregressive



model for band 8 of the wheat scene is considered first.
 


1) Zero Mean Test



The test statistic for the selected model is



It(x)I = 7.217 x 1'0
-1
 (4-30)



Thus, the selected model passes this test.
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2) Serial Independence Test



The selected model gives the test statistics



n(x) = 2.516 x 101 (4-31) 

for n1 = 13. Hence, the selected model passes the test.



3) Other Tests



The selected model passes the cumulative periodogram, correlogram,
 


and periodogram tests as is seen from Figures IV-45, IV-46, and IV-47.



Next, validation of the selected eighth order integrated autore­


gressive model or band 8 of the combined scene is considered.



4) Zero Mean Test



The selected model gives the test statistic



!t(x)I = 1.083 (4-32)



Thus, the selected model easily passes this test.



5) Serial Independence Test



The test statistic for the selected model is



n(x) = 3.141 (4-33)



for n1 = 13. Therefore, the selected model passes this test.



6) Other Tests



Figures IV-48, IV-49, and IV-50 show that the selected model passes



the cumulative periodogram, corretogram, and periodogram tests.





- 141 ­

2


,. y i,.s g 

.-75 

.s1. 

.2S



0.		 0. 2.- - - F 1m.-

0 1 2 3 	 0 13 2 

Fig. IV-47. 	 Periodogram, Band 8, Fig. IV-48. Cumulative Periodogram,


Wheat Scene Band 8, Combined Scene



j R s 	 2.S y 

.S1.5



k 0-I . I I { 0 . '-

0-2. 50 7k 2 5 
25 75 

Fig. IV-49. 	 Correlogram, Band 8, Fig. IV-50. Periodogram, Band 8,


Combined Scene Combined Scene





- 142 -

Hence, we have validated models for band S of both scene types.



I) Band 9--­

Valid'ation of the selected sixth order'integrated autoregressive 

model for band 9 of the wheat scene is considered first. 

1) Zero Mean Test



The selected model gives the test statistic



- 1
!t(x)I = 8.142 x 10 (4-34)



Thus, the selected model easily passes this test.
 


2) Serial Independence Test



The test statistic for the selected model is



n(x) = 9,915 (4-35)



for nl= 15. Therefore, this test is ,passed by the selected model.



3) Other Tests



The selected model passes the cumulative periodogram, correlogram,
 


and periodogram tests as is'seen in Figures IV-51, IV-52, and IV-53.



Next, validation of the selected first order autoregressive model
 


for band 9 of the combined scene is considered.



4) Zero Mean Test



The test statistic for the selected model is
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ItCx)i = 9.324 x 10-I (4-36)


Thus, the selected model easily passes this test.
 

5) Serial Independence Test


The selected model gives the test statistic
 

p(x) = 1.362 x 101 (4-37)



for n1 = 15. Therefore, the selected model passes this test.



6) Other Tests



Figures IV-54, IV-55, and IV-56 show that the selected model passes



the cumulative periodogram, correiogram, and periodogram validation



tests.



Hence, we have validated models for band 9 of both scene types.



5. Conclusion



Models of nine spectral bands for two empirical data sets 'have been
 


identified, selected and validated. The validated modets of the two



scene types are given in Table IV-42 for easy reference.
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Table IV-42. 
 Validated Models


Band Wheat Scene 
 Combined Scene-


AR(6) 
 IAR 2(11)


2 AR(2) 
 AR(2)


3 IAR(11) 
 IAR(11)


4 ARC(O) 
 ARCC1)


5 AR(1) 
 AR(3)


6 ARC(2) 
 AR(1)


7 IAR(5) 
 ARC(9)


8 IAR(8) 
 IAR(8)


9 IAR(6) 
 AR()
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Chapter V



An Application of Information Theoretic Techniques
 


1. Introduction



This chapter demonstrates an application of the information



theoretic techniques developed in Chapter II to studying some parameters



of multispectraL scanner systems. In particular, the techniques are ap­


plied to the models constructed in Chapter IV for the two spectral scene



types under consideration in this research. The average information



criterion is used to select a subset of spectral bands. An attempt at



estimation of classification accuracy for the hypothetical muttispectral



scanner is discussed.



2. 	Average Information Studies



The average information computation techniques developed in Chapter



II are used to study average information in the received spectral pro­


cess about the spectral response process of the scene under observation.



Recall that we are representing the spectral process received by the



multispectral scanner by
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y(k) = S(k) + n(k) , kc[ l,k2]  (5-1) 

where



S(tk) is the spectral response process of the scene



and



n(k) is the disturbance or noise process.



The models constructed in Chapter IV are used for representing the spec­


tral response process S(k) in each spectral band. As discussed in



Chapter II, n(k) is assumed to be white noise with possibly different



power spectral density levels in different spectral bands.



The first computation is average information in y(k) about S(k) as



a function of spectral bandwidth for each spectral band of both scene



types. The average information is computed for several values of the



variance of the noise disturbance,, a . Since the noise disturbance is


n 

assumed-to be of constant power spectral density level for each spectral



band, considering several vabues of c2 has the effect of allowing the 

study of average information for several signal-to-noise ratio (SNR)



conditions. Thus, the objective of studying the effects of spectral



bandwidth and signal-to-noise ratios as parameters of multispectral



scanners is achieved in these computations. The average information



computations are made with the use of a computer program written in FOR-


TRAN. A copy of the computer program is included in Appendix III for



reference. The results of these computations are displayed graphically



in Figures V-1 to V-18. It is noted that these figures have curves



plotted with a2 as a running parameter. Also, the curves are plotted as


n 

a function of the number of points in the spectral interval- -Th-is has
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the advantage of making the curves appi icabie to the same models for 

different spectral intervals.



Table V-i gives the total average information for the defined spec­

tral bands of the wheat scene foi several values of the noise variance


on Table V-2 gives similar data for the combined scene. When consid­

ering the results in Tables V-I' and V-2, it must be remembered that the 

spectral bands are of different spectral bandwidths. Hence, the average 

information in spectral bands of approximately the same spectral 

bandwidth may be more useful in selecting subsets of bands. 

Thus the technique considered in this research is used to compute



average information using the spectral models constructed for the de­


fined spectra[' bands.



3. Selection of a Subset of Spectral Bands



We now demonstrate a simple application of using average informa­


tion to select a subset of spectral bands for inclusion on a multispec­


tral scanner. For the purpose of this demonstration we make the follow­


ing assumptions., First assume that a subset of six of the defined spec­


tral bands is derived. This is not an unusual number of spectral bands



to be used in an application (i.e. scene classification). The second



assumption concerns the amount of observation noise to include in each



spectral band. For the purposes of this simple example, we assume that



the variance of the observation noise is a2 = 10-3 for all the defined
n 

spectral bands. This is clearly not a ,realistic assumption, but is suf­


ficient for our simple demonstration. Third, it is assumed we are in­


terested in ordering the preference of spectral bands on the basis of
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the average information each band would have in an equal spectral



bandwidth. This tends to ameliorate the effect of wider spectral bands



having more average information due only to their larger spectral



bandwidth. It is thought that this method of comparison will tend to



select the subset of spectral bands with the highest amount of average



information with each band competing on a more equal basis. Based on



these assumptions, the spectral bands are ranked inorder of preference



inTable V-3.



ORIGINAL PAGE IS


OF POOR QUALITY





- 160 -

Table V-1. Average Information for Wheat Scene Bands
 


Noise Variance, a2
2



Band 
 

- -4 10-3  10-2 10-110 5 10 

1 57.07 53.49 34.50 11.43 3.95 
2 50.05 28.09 10.52 4.45 2.75


3 51.02 34.59 20.35 12.65 8.28


4 61.64 52.92 30.00 11.69 4.15


5 57.30 55.58 44.96 23.55 9.31


6 57.11 53.90 37.20 14.81 5.12


7 77.19 74.63 60.31 34.59 16.6


8 67.56 56.77 34.80 18.96 10.48


9 80.04 73.23 50.10 26.53 13.10



Note: The information values are given in nats here.
 


Table V-2. Average Information for Combined Scene Bands



Noise Variance, a
Band 
 n



10-5 10i4 10-3' 10-2 10-1



1 56.19 53.70 41.3, 23.09 12.23


2 53.51 38.54 16.17 6.10 3.05


3 52.73 39.10 22.93 13.73 8.72


4 61.49 57.54 40.08 17.71 6.24


5 56.36 55.11 45.73 21.44 7.09


6 56.21 53.81 40.96 20.05 7.83 
7 80.48 80.26 78.25 6.93 30.54


8 69.93 69.31 64.15 44.38 22.46


9 79.93 79.33 74.19 51.72 23.28
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Table V-3. Order of Preference of Spectral Bands for the Wheat 
and Combined Scenes 

Rank Wheat Scene Band Combined Scene Band 
1 5 7 
2 7 9 
3 6 8 
4 9 5 
5 1 1 
6 8 6 
7 4 4 
8 3 3 
9 2 2 

It is noted in Table V-3 that although the ordering is different,



the six highest ranking bands are the same for both the wheat scene and



the combined scene. Band.1 is in the visible region of the spectrum for



both scene types (see Tables IV-3 and IV-4). The other five preferred



bands are all in the infrared portion of the spectrum. Thus relative to



our averge information criterion, the infrared portion of the spectrum



is generally preferred to the visible portion of the spectrum since



bands 2 and 3 are ranked lowest for both the wheat scene and the com­
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bined scene. This tends to indicate that -future multispectral scanners



systems should have more spectral bands in the infrared portiob of the



spectrum. Indeed this is the case, with the'thematic mapper to be placed



on LANDSAT-D (see, for example, reference [L2]).



Of course, if there were different levels of noise disturbance in



different spectral bands, the order of preference could be entirety dif­


ferent. This research does, however, provide a systematic method for



dealing with such circumstances. A more realistic application of this



technique would require such an approach.



One of the major uses of data obta'ined with multispectral" scanner



systems is classificatiorv of the observed scenes. Thus it is felt-that



estimation of classification performance gives an important measure of



the useful ess of a proposed subset of spectral bands. The estimation



of classification err6r is an infportant and complicated topic in itself.



Whitsitt and Landgrebe 11413 have recently spent considerable effort on



this topic. A technique, used in this research, to estimate classifica­


tion performance was developad by Lissack and Fu 1L31. This technique



assumes a Bayesian classification technique and provides a computational



technique for estimating classification performance. An attempt was



made to use the Lissack-Fu technique to estimate the classification per­


formance of the six selected spectral bands for the two scene types stu­


died in this research. The empirical data, however, had the unfbr­


tunate property of producing covariance matrices that were singular to



the numerical accuraby of the (IBM 370) computer system used in the



research.' Hence, a meaningful estimate of the classification perfor­


mance was not possible with the present data set. Therefore, the clas­
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sification performance characteristics of the selected spectral bands



are left for future investigation.



4. 	 Conclusions



This chapter has demonstrated the application of information



theoretic techniques for the study of some parameters of multispectral



scanner systems. First, average information in a received spectral band



was calculated for several power spectral density levels of observation



noise. This computation allowed the study of such parameters as spec­


tral bandwidth and signal-to-noise effects on average information.



Secondly, a simple demonstration of the use of average information as a



technique for selection of a subset of spectral bands was given. Final­


ly, an attempt at studying the classification performance of the select­


ed subset of spectral bands, indicated that a more detailed investigation



of the problem was necessary. This was left for future investigation.
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Chapter 6



Conclusions



1. Discussion



This thesis is devoted to development of techniques for analysis of



some parameters of multispectral scanner systems. These techniques



represent an initial effort to provide an analytical framework for what
 


heretofore has been approached mainly in an empirical and ad hoc manner.



The information theoretic techniques developed in Chapter II are suffi­


ciently general that they can be used to explore many different practi­


cal questions in the study of parameters of multispectral scanner sys­


tems for remote sensing. The modeling techniques developed in Chapter



III are applicable to almost any scene type of interest in remote sens­


ing. Furthermore, models developed in such a manner could, of course,



be used for other research on spectral scenes. Chapters IV and V are an



extended study on empirical data using the techniques developed in



Chapters II and III. Chapter IV demonstrates the advantages of a sys­


tematic approach to model construction by examination of several hy­


pothesized models. Thus several alternative models are constructed for



each spectral scene. Chapter V demonstrates that, for the empirical



data studied, the infrared portion of the spectrum deserves increased



attention in multispectral scanner system design.
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2. Further Research



There are several aspects of this research that merit further ex­


ploration. Some of the more obvious topics are meotioned.



(1) It may be of considerable practical interest to extend the in­


formation theoretic results in Chapter II to the case of nonwhite obser­


vation noise. Though more complicated, an expression for average infor­


mation can again be related to the optimum Wiener-Hopf filter impulse



response EH1]. The-state variable formulation of this problem would



prove to be very useful for handling observation noise that could be



described by a dynamic model. An application of this extension might be



to study the effects of an extraneous spectral signal such as produced



by bare soil surrounding a vegetation scene of actual interest.



(2) Another extension of this reseach might be to consider other



models for spectral scenes. In particular, it may be fruitful to con­


sider moving average models or combined autoregressive-moving average



models EB1]t Such an extension may result in lower order models for



spectral scenes. However, identification of such models is more compli­


cated than the cases considered in this thesis EK3J.



(3) Extension of the scalar models to the vector model case might



be interesting. This could have an application in temporal studies of



spectral scenes. That is,models of the spectral response of vegetation



scenes and their change over the growing season would be very useful



when considering multispectral scanner system design.



(4) An important ex-tension of this research is the consideration



of the relationship between the information theoretic methods for



selecting a subset of spectral bands and the accuracy of scene classifi­
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cation using these bands. A simple experiment of this nature was at­


tempted in Chapter V and met with difficulties in estimation of some re­


quired covariance matrices. Nevertheless, it would be extremely useful



to study the efficacy of the infosmation theoretic bond selction appli­


cation in relation to the classification problem. It is expected that



such things as types of models used for the spectral scenes and, indeed,



the particular spectral scenes considered, would cause this to be a wide



ranging and complicated study. Different classification tecniques might



be expected to produce widely differing results when using a set of



bands selected by the information theoretic criterion. Indeed, proper



consideration of the manyxvariables in such a study has been [W13 and



should continue to be an area of fruitful research.
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App,ndix I



Kalman Filter Algorithm



The Kalman filter algorithm is included as a reference for Chapter



II. Derivation of the algorithm is fully explained by Sage and Melsa



CS3] and Meditch EM1]. The algorithm is stated here in the manner of



Sage and Melsa ES3, Chapter 71.



The system model is given as



x(k+1) = oCk+1, k)x(k) + r(k)w(k) (1)



and



z(k) = H(k)x(k) + v(k) (2)



where



x(k) is the state vector



0(k+1,k) is the state transition matrix



r(k) is a matrix



w(k) is the driving noise vector



z(k) is the observation vector



H(k) is a matrix



v(k) is the observation noise vector



The assumed prior statistics are given as
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EF:(kl = o0 ECk)1 -
 U)
 

E-[_-¢-O)- = kx(O) (4)


cov [(k), w(j)- = V (k)6(j-k) (5) 

cov [v(k), v(j)j = V (k)6(j-k) (6)



coqL,( k), v(j)j = coy Fx(Of), u(k)-j 

= cov x(O), v(k)] 0 (7) 

where 

6(3-k) = 1. ] = k (S) 
0, j k 

These assumptions give the Kalman filter -IgorithT for the estimate,



Mk), of x(k). The estimate is



R(k) = 4(kk-1)(k-1) + (k) z(k)- ((k))(k;k-1)k(k-1)I 

wher 

K(k) = V (k/k-l)ll(k)l (k)V (W/k 1)11 TW) f V (k) 
x . x



= V (k)H T()V 1 M (10) 
v
x 
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V k) = - K(k)tI(k)-lV ' I/k-) (11) 
X ORIGrINAL PAGgI 

OPPOORt QUArjqij 

V (k+l/k) = Q(k+l.k)V (k)4T(k+lk)


x x



+ r(k)V (k) rT(G) (12) 

R(k) = x(k) - R(k) (17) 

Tne eas- with which this algorithma can be imptlementrd on nidigital com­


puter is evident from the above equations. Sage and Melsa L$3S Chapter



7] give a good discussion of all the terms used above.
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Apo, njix II 

Mttrix Inversion L.,m-i



The matrix inversion lemmi is included here for reference since it



is used in some of the derivations in Chapter III. The formulation and



lamonstration given here is the sir- 3s th.t 3iv~n by Si9e and M'-tsi



_S5, D. 499-599].



Matrix Inversion Lemma



If for any N x N nonsingular matrix A and any two N x N matrices



B and C, the two matrices (A + CT ) and (I + C TA- 0) are nonsingular,



then the-matrix identity



-
1
(A + OC = A- - A-1 B(I + CTA-13)cTA () 

is valid. 

Proof



Define



D = A + BCT (2) 

Then since by assumption D is nonsingular, we can write



D-1D = I = D-IA + D-19C T (3) 

-
Now postmultiply (7) by A to obtain
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-A = D -+ D-Sc TA (4)


Next postmultiply each sida of (-4Yby B to obtain 

A-1 = D-B + D-IBCT A-I B 

SD- 18(I + cTA-1) CS) 

fo- by assumption (I + CTA 3) is nonsingul6r. 

(5) 

D--B = A-10(I + cT A-B)-1 

Hnce, w? can vrize from 

(6) 

Postmultiply by CTA­ 1 to obtain 

D-BC TA ­ = A-1 (I + CTA­ )- CTA­ 1 (7) 

But it is scen from 

=1, _ D-1 

(4) that we 

= D-'1 1 A-I 

can write 

Hence u~in (3) in (7) wti can write 

A­ - -1D= A-1 (I + cTA-IB)-ICTA- 1 (9) 

and using (2) we can finally write 

(A + BCT )1-1 = A-T - A-1 IU + CT A-1 G) -1 CTA­ 1 (10) 

This is thf% d sir,-J rsuIl t. 
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/PP LI:o IX I II ORIGiMqL PAcE1. 
0?Poo Qb'tz~i 

PIOGRAiISCOMPUTER 

CI



C..... PP',2' TO IDENTIFY "PIlLLS OF SPECTUAL HAND); 3Y MAA4JMU Lt ELIHuO)
C . .,TECH II jUE. 
C 

PI "E'ISI O Y(1%40)o-PSI(Ib00,Ih, "T( Q .30 , W (3).,-0),S(30- il),ZZT9 (3
40.11,I, r A(10)1 LP ( 31 J0 I,T. TAP( 30) , Z(30 11 C)RV (3u I,1, IV wI 
A.X(1500)},r)( 1500 1 

C 
C *..DATA INPUT
C 

READ( .11 N 
I FOR'AT(i5)


2 FOR'AT(FIO.5)



C 
E ..... 1 MUST 1E CHANGED TO CHANGE ORDER OF AR SYSTEM 
C 

Ml=l


WRITECI6.71) 41



71 FORMAT(IS)

LI=O



C


6..* LI IS THE NUM"Eg OF TPFNIf IEPMS



C....INITIALIZATION OF THETA AND S(I.J)
C ID=2



it(I=0.0

00 70 =I-O.J



70 CONTINUE


N=MILI


00 10 1=1-1


THETA(I)=.10

00 11 'J1i.4


S (J)=O.O
ZZT(IJ)=O.O


SP(t.J)OG.O


ZZTS(IJ)O.O 
TOP(IJ2O.0O



11 CONTIt'E


S(I,f)=I.0


10 CONTINjUE


O 12 I=I,4


Z(1.1)=J.O

CORR(I,)=0 0~(lI)=OO


12 ENI NUF



CC 2....
INITIAIZATIG,i COMPLETE



C


C.... COMPUTATION OF THETA ESTIMATE FOLLOS


C 

NM=M.IO


00 13 K=M.N
00 17 l=lml



Z(1 1)=Y(K-1}

17 CONTINUE 

IF(L1.EQ.0) GO TO I


Z(M,1 ,1 .0
 


15 CONTINUE
DO III I=IH


THETAPII)=THETA(I)


DO 19 J=1,

ZZT-(I,J)=Z(I,).Z(J,I)


SP(I,J)=3(I.J)
j CONTINUE 
CONTINJE 
DO 40 1=1,m


SZ(I,')=.O



GO TO 42SZ(!.1)=SZ(1I.SP(1.J)°Z(J,1) 
GO TO -1



41 COII1UE 

http:TOP(IJ2O.0O
http:THETA(I)=.10
http:WRITECI6.71
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4fl 	 CO% T I-0JE 
F, -=0 aa



00 20
 I.mi,
ZIS2=TS 1)Z iIttc ''-2(1ol* 
 

20 	 COI rIt.c­
OE0'.=n1 .O.-TSZ


DO 	 43 L=1-" 
!)0.4 1=1,'
7ZT'( I ,L)0.0


nO 45 J.A


IF((i.-).i,)d.O.i,-'P(J.L).'-.0.) 	 GO 10 b
77TSCIIL) ZZTS(I,L).72T ([.J)-';;'(J,L)
GO TO .



46 ZZT(I.L)zZZTS(TL)-0.0


45 CO'IT 110E


44 	 COJTI- UE 
43 CMIT IJ­


00 60 L-I'm


DO 61 Ill.4
TOD(T.L) =0O 
00 62 J=1.1 
IF(SPI, J)..U..oU,,.77TS(J.L].IE:.. VI GO TO 3 
TOP(I,L)-TOP(I.L).Sr(IJ)ZZIS (J,L)

60 	 TO tP



63 TOPII .L! xTOP(I ,L) O.O


6? CONTI , J
-

61 CONTI'I J


60 CONT INE



0O 	 21 1l, 
00 22 J-I.M



22 	 CONT IjJ­
-21 	 COtNT 'IJc 
TFYP 0.0 
00 23 11.'


TH: E1-*T ETAP( I -Z(1 1)


TEMP=TN7



23 	 CONT'JUJ;


COFF=Yk)-TZ

nO 6= I=l.
COPQ(I.1I =0.0



00 	 66 J= .4 
!F(S(I.J)°.Eo.0..(R.7hn1)* .E ) GO TO A7



GO 	 TO tb


67 CORPCI 1)C)RO(I,1,l)


66 C01T I4U£


65 	 CON4TI J3



00 Z4 IhI.M
T-E A ( I ):TdETtPI(j *C0,aS(1,1)OCOEFF 
2& COIT I WIE


13 CONTINJE



C 
C ..... COPUTATION OF T-ETA £STIVATI C04PLETE 
C 
C.....COPPUT.VI04 OF GESIuU.L VAR114CE AND SELECTI0I CRITERIO4 
C 

TEP=O.0



XCI)=O9 0


DO 	 25 C''.14 
X(K-"I)=3.0


THETAZ=O.0


OD 26 1:,.1,

Z(I.I)-Y(,-I)



26 CONTINIJE


IFCLI.v)°o) G0 T bO
7I',1J=.0



50 COT IUE


00 	 5? I=I." 
THETA=THE14ZTHETA {I) Z(I• 1)



52 COJt I 4J%.


R=TEi.( (y(()-TETAZ)} (Y("I-THf TAZ))TE"F=P 
X (K-,M)=Y (K)-TI-FTAZ


25 	 CONT I Wt 

R0g=q/(FLAT(I-I4))

CRIT=-( (FLOAT( / .) 'LG. O 1-f LOI F1-4) 

C ..... RESIDUA L VAPIANC_ .11) LAITERION/ C(}IPUTAT,1IO4 COMVt EIE 
C 
C 

27 FOPFAT(Il-.31-rSTI.IT I COEFFICIEVT; .LPHA(I.P) 
DO 2R rtI.4 

?Q 	 Fn;Puilr(IMOSALPA I?.JH)=.E.eo 
28 	 CO.TI ,4JE 

*417Cp1,3n1 .. S 

31 FO'±II(n .?>. ELtCIo, CPITE.410J = .c16.6)

75 Co 'llJ



r =. ­
1 1%
4PITE.().1


32 F -( ',t,



E r) 

http:I?.JH)=.E.eo
http:FOPFAT(Il-.31-rSTI.IT
http:COPQ(I.1I
http:J)..U..oU,,.77TS(J.L].IE
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C


C .. PRIG9q4 TO PrRFOFW ZERO flFAN VALIDATIONJ TEST. 
C



DItlrNsio X0\ O


READ (4, N



I FOQPAT(1,)



00 3 r:I.. 

3CONTIN)-E

Xt1ArP(1O/FLOAT(,J)JoX i


n0 4 tz104



4 	 CO'JTI't.W 

4F O R ' A ( 7 H -I OP , i l .4 

7 	 F0~i4vAT(OrET4 =


END



... PROGRAM TO PERFOPRM THE CUMULATIVE PEi.10004,UAM VALIOATION TEST. 
c 

I 
PEAOU I)l
FUR' AT (IS) 

'I 

DENOM: 0.0 
D0 3 J=flj2 
SU-4I : *0 

SUM?=9. 0 
WJ=(6.2b3A307OkLOMT(j) )/FLO)AT(iI 
D0 4 L=1IJN 

4.CO'IT1ilJJE 
riA 4A( 1=1 
DEfl OcOLIH+,A 

3 CONT EwJE 
no 5 
FN'J't=0.*0 
no 6 =. 

A(J] 
D~-l.FgATINJ)**o?*I.nS)M?/ AT (N))o* 

6 CO'(TI JE 

5 CONTP.,JC 
FLANM.63 
=FL A 

DO 7 K=11' 

AL(K)z(?.!&FLOAT(r)/PL0AT (Nl)-A/S2 T(LATC
7 CD'JTI'JJE 
wQITE(6A,) 

q F0RMAT(IH1.22CUmUL-AT1VE: PEPIODOGPAM) 
13 FORUAT(1M0) 

WRITE(7,20) N.2 
20 FOR A) (IS)

00 8 K=1042 
WK= (6. 2e31653 07rLA )/FL OAT (N) 

J,)] 

10 FO I-AT(1M.CA.4.)
WPITECT.21).KL(jO.U) 

21 FOPuAr('.F16.A)
TF(GCK).LT.L().O.G().6T.aU(o)I GO01011 
GO 10 ;1 

TFC4. 12) 4K5F~'A~l 2SfUSIEBOIOPY~TWK 9E16.8.9m1 
0J CONJTINUJE 

END 

OR K : 15) 
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C 
C ... PkOO.a4 TO PjrkFflJ9 r~r SEPIAL IN~c0 E'Fo.4CE VALItATION TES5T. 
C 

VTIifC1N X I1A10) ,dk l ) * C12fl) 

2 F0IP'T(I1.4)
Ft mI-lFLOATl(I) 
Nl= IFIs(Fkl)

RI=O.0 
00 3 J=I.4 

3 CONTIN'.W 
PO'P /FLCA T (N)
 

00 4 ICI.NI


PP (K)=O



00 5 .=Ir(.N



5 CONT[N-it 
P (K) =,?dlI/F LOAT (1-AI



4 CONTtINUE


SUNO * '


DO K1.,NI



6 CONT I' JE 
ETA=lFLOA-T(N-1 1)o5j ,)/(PO,.o2) 

F0"4A(51NEN7 *5,5ETA =,E16.P) 

C ... PP')6, I A To CO'-PUTt TIF PFlsjorro~.,'.
C 

RIE t ;lol X(1-) I~ 

00 3JIN 

4 CONlTI'tJE 
OAM4(AJC?4S )/F/LOAT4102.(CO*M).? 
 FLOAT ($I,..
(-
I CONTISIJE 

6 FC'b'AT(L-O 

DO 7 h.-

FOIAC6.i3,S~7.Lj~' /LA( 

1FOP lI(2n1e.g)
7 CO TINtJE 

END



http:FOIAC6.i3,S~7.Lj
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C
C 

* Ph0SRA" TO PERFI. r'F C(J. PLOPaI VALI )AIt I,T±.Sr. 

01A I,31,ALP4,,-12f .,Y 
A0) Is3I( .o) . 1 '(1,t)* 

3IAf,
YII| 

* 
" 

c').1IO)
I *.txfs.( 

,'Y4,­
) 

(ctI) .M(1 00I , (2 1-,.Q0 

I 

3 

FOQ-''IT ('-I 5)
nEtiP(q.?)1 
FO0VAT(IS)
READ H .3) (Y( I) I 
F(;OAT (AF0.1)
*4IA1 .1 

1 3 

MZM1. 1NI='-I 

no s VI.-1 - 'AVG 
DO11I1=1. 

11 
OlY T .I) -Y (.I
COhTINJE 
14=1175321o2 I"A'4=0.0 
VPFS=.01113;653 
S=SOPT ( ;S)
DO 12 K=1IP. 
CALL GAUSSI&,S.AI,V) 
W(K)=VSU'1=O.0 
00 13 1=1.1l1 
SUM=SU'4tALP A (r) UY( IM 

13 CONJTItjUby (I 4.K. T=SU-t-, (K 
<,K-) 

12 CONTINUESUM I=,*0 
00 14 IICJ 
SUrI=SII.D((I, !) 

14 CONTI Jlt 
DYBAAIM)=1.0/FLOAT(tIJVSU-1RI:6.0 

51 

00 '1 IIN 
I=PI. (DY ( .I -OYbA1( 

CO-4T I.UL 
P01I/FLOIT (')
nO 1'9 =lNI 

It) ) ( y I I) -0Y9A1 1() 

SUH2=0.0 
KN=N-K 
00 16 J=I.K4
SUM?=SJA .(0Y(I',J)-DlY3A'(() )0(DY(ttJKOY.3Al(M) 

16 CONTIUE
6R(II.K}(I.0/FLOAT.)OSU'U2/'D

15 COTI'UE 
10 COJTI 4UE 

-U"jA9.O 
DO 17 IzI.J 
SU'3=SJ'I3.Y (I)

17 CONTINUE 
Y6Aa-(1.I/FLOAT(N))RYIz0.O oSUl3 

DO 5? 11 IN 
RYI=PYI1MY(1)-Y A ) (Y()-YIA')

52 CONTINUE 
PYO=RYI/FLOAT (N)
DO 1I-1.N1 
SU44O*O 
KN=N-K 
00 19 J=I.K,4
SUU 4=SU 4-°( y J) -ybA4) y (J.K) -Y8.A; } 

19 CONT INJERY {'}=( 1.0/'LOAT (J) S'AU,/RY9 
18 CONTIt.JEDO 20 r=I,'JI 

SUO5=0.0 
DO 21 J1,mAvG
SUNSSIUJ5.­ (JK)

21 CONTI'UE 
21 (K) =( I. 0/FLOAT (IMVG))-SU45 

20 CONT INUE. 



DO ?2 K-IAI


sUMt,=O 0


Du 23 Jzl,.4AA(,



23 CC%'TI Jr%I{, )} j T ( {1.• /rLUA T(*dAV, )) oSU o)



22 CO'.T I,.JLI,lUT=



30 F04t AT( II I,lCOk'(LLLOu~t-) 

90 FO' AT(I')

DO 2 i=1,,41


OP= I(K) * U.rcC 'i( ))



IF(NY(K) .LT. L) 60 M0 ;7
QIITE (b.4) K.ttL, Y{K},HtU 

40 FGRAT(,1( S.c Ib.b)l ,U
WQITE(7, I) -,4L, fM .) 
 
o


91 FORt aTII,3FI" d)

GO TO 2 4 

25 4,ITE(6.26) K 
26 FOPAT(II ,27rOUTSIO3E JePEP =0JN3 T K = ,15 

GO TO 21 
27 tv?!TFl5.'i) 
28 FORPAT(I1 *27HOUTSLJE L4FQR ROIJND AT K = .I5 
29 IOUr=IOOTfl 
24 CONTJt. 

IF(IOIT.Q,0) GO TO 31


GO TO 33



31 XAI4TT (h3?1

32 FO''AT(l Ifl,3HPASSES COPPELOGRA" TEST) 
33 COlTI UE 

DO 12 K-I,', 
SUM7= 0


DI) 4^1 f=I."14V

SU7=SU'17.ODrI ,K)

4J LONI LN'J. 
YAV():O,=Ii.O/FLOATIMAVG))OSUM



42 C0 r! ,'JEI
4QIT~f,4,443 'I 

44 FOR'4A'I 115) 
ARIV: III WI)10AVGVA ) It-Q1"'0j 

41 FOPfAT(bE 10.5)
El;



http:4,ITE(6.26
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C 

cc... PROGRAM TO COMPUTE 

PEAL I JF.Oq4.mUf I 
0r 10 1=1.21)
00 71 J1.-20 

PHI (I.J)0.0

GTl (.J3.0


C? Cl *J) tl. 

T1U..Jz=1.) 
SH(I.J'fl. I 
O (I .j) 1 
01fl!.J1=C.0 

1 1(1 .jl *~ 

P3ll.j I).n



?T (I.11=.


VPO(I *i I 'O* 

VXrtI.J)tO.o


GAH(I.J)l. 

7.1 .J) '1.OlJ

u0(OI. 0 
VA4(l ,O.'3 
U (I IJ=0 

72 C l * 0 * 0 
P3A(.113. 

C~m1192.)I 

3PFOQ A(1 3 10.0) 

VxCO-,lTI') 3


PvPlI--n.0A~-II


(I.J)O.0PHWI



71 HaN=1.2J



CO 
D0 I IE
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AVERAGF ("UT~IL) IlFOa'AlAT OIJ. 

http:HaN=1.2J


no t J=h,'t2,P., 1.4 )Z:. 0J 0 
6 	 COST Itilt 

PrI I ihI) - l 
5 	 COT PYJL



nO 7'J=1.' 2


OrI.(UP, J)-AC (13--J) 

7 	 CONT I 4Lt 
(,o TO 1 


60 PI,( I . I )I=ALHA'
I I 
'l COfTPIxJ-" 

00- 1=1,2
6A' . =0 .,0,4 IA' 


A CMIT I 'JE


HT ('=? .- l,) = 3 ,


IFC l.F0.0) GO TO 62

00 q, I= .4 
HT (I.i )'=0.0.


9 	 CO'4T1*JJE 
6' CONTI-J'
Vs.O01' '1 oA40



00 10 1=1,. '2


D0 11 J=.2
VX4(IJ)=O.O



1,1. CO'NT I'LUEVx0(1I)=I.0

1'0 COIhT ',Jl 

vvO= .000101


DO 200'0	 -UT='1,
1 	 ,VVO=VVi .* 

202 FOI'(T I;)

1

2PO ' =Ih,, ,


VVd I')=-VVl)


12 COt r ItJE
vRO=V0VVR=VV{Il



VVW=00



E-..-END Or SYSTEM PARAItETEOS 
C 
C ,c......-INITlLIZAT-I0 OF FILTER PRA-METFPq F0k CVSDXUTArIC. IF ENTROy,
C 0O 13 I=1.2 1'3P ( lvi I GA"A ('I .41})*-V,0 ( rT.0/VVO) 

13 CONT INUr 

CALL MlTTPPCHT.2J,,2J,)

CALL MA TU ( ,.eg.)?-, 0. .- I )C'AU{L -67TUH-(P 'I-"Sed"P.1 .0. 1),



CALL MAXT T (1)].22,. J. -,17)

CALL MAT 411L (1.O1 . .',1 •')


CALL IAATVI,L (D. V,,0, Z., P-TI,

CALL A'TrP( AtA'4A,.c.,T) _
DO 40 J1', 
 
VnGT I I Jb=Vf-GT (1,J)


4'0 CO'iTIN*J 
CALL fMAT'IIJL (A.A.A',r.T2o.2o.2o,.T )CALL ATTPO(r.-20,n .,I,),00 41 1=1i-'12


00 4;.' J=I-,M'2


VGO'(I',.,J) =VVO0GPT(I, J)


4'2 CONT [fUE
41 COl'T I'UtCALL $AT4IIL (E'.v4l.?.,0,T2)



CALL MA 'AO FT I . - * .) i* TTI

CALL 4ATSUJq('T , iS") 

00 17' 1=,4M? 
DO V1 J=J, 2 
VA' PIlJ) r4St ('1.J 

VSACG'4TtNJ{V X A. f F. Il = VAAC ., 

JJ=JJIJ
17 CONV IN'Jk. 
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CALL JtJLv.).1r.oq ICrLL 'Ar ''LC''./:.. ,.20..n. •,,,
fCC4.=l. i/(t€( I I) 'q(fli 

r)u 14 ,0A I+to ,i w' (I*


14 CO'T' i



DO I; J:1.42 

i.4
no 1. i 
1 COmrN)"-


U (1.11 I A
15 CO'4T 1Vf 

CALL r 1 Lrt U.t+CALL .IA1T~iJ lfijAp ~).Li,.
CALLCALL MA&TMIJL I( P2,-1(JP + ,P24 ,20, P3) 

00 19 >Ij.M2
00 PO J=JJ.,p 
PX I*ji=-if( .J)
?X f-I. 1) ",J(1 .j)20 CONT IJYUE 
PX(ft *1)--P3 ft.I)


JJzJJlI



19 CONT I 'J 
CALL 'ATTPfOH!.2 .2d..PHJT)
CALLAAILV'.'ul 
 4rl1
CALL MA T 1IL (Pat. v,? I r.2b?0.2O opT

CALL 'ATADU CPV'.Te,2O.21)')T)
dd--l
DO 31 1=.4


DO 3? JrJj.;


VX (,J)=VT(ftj)
%X(J-11-VT I.J



22 COtJrlSJL 
VX(I I)--4T(1.*I
Jd=JJ+J



31 CONTINUE 
C
C ..... END OF IJITIAtizAlTOJ 
C 
CC....COMPUTaTO-i or VAlh'-CES rOLLOAS 
C



MUTIr-O.Or 
00 100 K(2.Nl

VR=VVl,)
90 2 [: ,"?


lI* IA t i) // 20(1 .9'/V CC)I



CALL v. rJLS',,-4, Q,?o. o-+,C4LL P.t ,PId(PsiPe ,t ' ,;jiCALL 'Al.(i.,'>r
CALL


CALL NtTIJL(OI.9JJ.4).I).AITI)


CALLMAr(C.9e.)



DO ?3? 1l2

00 43 JI., ?


VGO(I.J=VV * Ii Ij.j)


4 CO1TI JE
-23 CLITI,.)f
CALL LIAuIJLIG?,2s,20.;n.r

CALL MATAOOT I.T2, 2 T.T1)3

,


CALL MbTTUt (TTT3,40,23,VXA)


Jd=l


DO 24 =.m2

DO 25 J=jj..q

VXAP(IJH t~IJ
VXAP (J ):VA(. .j


25 COTlT'JE


VXAP(It.I IzxA(.I)

JJ=JJ •



24 CONJ,1jj

CALL .'AT WI AP , T, ,9. 
CALL MAT.IL(H.4,r.21,) .1O.o.n.
COR'4nI.*2/j-4qH , I).*j/. )


CAL Ar.AJLIVXAf ,nT,20,20,?O.CA
00 6 ~lM 

http:nT,20,20,?O.CA
http:MAT.IL(H.4,r.21
http:CALLMAr(C.9e
http:MUTIr-O.Or
http:r.2b?0.2O
http:JtJLv.).1r.oq
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26 	 CO'0J *i ft



CALL tArMJL (G-AT'N,, dl .0 ..?I 'l
CALL A'jx'ruIj.P1-. .'?)


CALLMAML('VAV .e..f3


JJ=1



00 	 ?q j=jj. I 

Px (2.!)=p(J)


2a COTIJ-,J



PA(II)= l(1.I)

JJ=JJ. I



27 CONTI .uE
IJ=O


II= .


oO ?I J=l.M2


00 	 31 
 I
yJ=7J. I1.11
 

AAf(I )P((t,J)


30 CONTr',J­


29 	 CONTINUE


C ..... ENO OF CAIWA.NC COM)PUTATION
C 
C 
C.....MUTUAL INFORMATIO COAPUT5TION FOLL1nS 
C 

AVGI ',NF'IT) -- I ..r0U 

C
C..... MUTUAL INFOATIO' COAPLRE 
C 

l00 CONTINJE


200 CONTI'JUt 

DO 	 201 i.?,WR I TE I A,.5I?) K. AVG INF (I WK} AVG6 I' (20,() AVG I NF (3,rA) ,AVG INF {KK) •AVdI 

ANF 3.gK)

52 FOOAAI(d 09S.502.5
 U )WRITF1(7,?03) ,%AqG iFi(.k) .AVGI-IF' .) AVI.V1l (3KI) AVINF(4,K AVG 
AIoF(5.K)



203 FORP"AtIU.SFI?.5)

201 CONTIJE



END~



http:CAIWA.NC
http:A'jx'ruIj.P1
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OF POOR QUALITY 


SUI3I'jIT P;r ")1 "IL'.,- * *' 
, -

. " r~ 

nu I ,Jz1.~f 
Oil d :th
CII.J) jO 

C(I .J1C ,J) *A {I ,Ni d, <. J) 

Co,T 11.,Ir 

iC"NT 1,U,
RE TUli'
EI D 

I t=AS (2t'J. ,j()flIj . 2))1 

co I) .I(.J)-(I,,.)SCOTi J.*J.


I CON?!'. JL



P; TU-'l 

SUOOIJTI NF_*t T4D0 a .RI ' .r) 
D [MI"1 1*1 a I?0 , J (jfSfIn I C (20,2O 
no I IlI.',I
O0 2 J=l.'.2 

2 CONT 'N'J-
I COtIT IhJ.kPTU411 

END 

SUr. 
4

I10T I 1" MtAT TWA.±J 1* I)J .) 

00 1I lI.II 

P 
I 

COITI... 
CO' TI ,J. 
PtTUg
END 


