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AN EVALUATION OF THE FIRST FOUR LANDSAT-D THEMATIC'


MAPPER REFLECTIVE SENSORS FOR MONITORING VEGETATION:



A COMPARISON WITH OTHER SATELLITE SENSOR SYSTEMS



Compton J. Tucker


Earth Resources Branch



ABSTRACT



The first four Landsat-D thematic mapper sensors 

were evaluated and compared to: the RBV and MSS sen

sors from Landsats-1, 2, and 3; Colvocoresses' pro

posed "operational Landsat" three band system; and the 

French SPOT three band system using simulation/inte

gration techniques and in situ collected spectral reflec

tance data. Sensors were evaluated by their ability to 

discriminate vegetation biomass, chlorophyll concentra

tion, and leaf water content. The thematic mapper and 

SPOT bands were found to be superior in a spectral reso

lution context to the other three sensor systems for 

vegetational applications. Significant improvements are 

expected for most vegetational analyses from Landsat-D 

thematic mapper and SPOT imagery over ISS and RBV 

imagery. 
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AN EVALUATION OF THE FIRST FOUR LANDSAT-D THEMATIC


MAPPER REFLECTIVE SENSORS FOR MONITORING VEGETATION:



A COMPARISON WITH OTHER SATELLITE SENSOR SYSTEMS



The use of Landsat multispectral scanner (MSS) data for monitoring vege

tation has provided a new tool for resource managers. The successful appli

cations of these data are too numerous to review and interested readers are 

directed to various survey documents such as the NASA ERTS Symposiums 

(1973a and 1973b), Williams and Carter (1976), and Short et al. (1976). 

It should be remembered, however, that the MSS is a first generation orbi

tal remote sensing device. It appears quite curious that the bands are: 0. 50 

0.60, 0.60 - 0.70, 0.70 - 0.80, and 0.80 - 1. 10 pin. Immediately questions 

spring to mind regarding at least slight wavelength or bandwidth changes for 

various applications. 

Several workers in the remote sensing of vegetation field have suggested 

what they consider to be more suitable bands for monitoring vegetation. 

Tucker and Mlaxwell (1976) evaluated the RBV and MSS bands for Landsat using 

narrow bandpass in situ collected spectral reflectances from the 0.35 - 1. 00 pm 

region. They concluded that three spectral regions of strong and persistant 

statistical significance existed for this region: 0.37 - 0. 50, 0. 63 - 0.69, and 

0.74 	 - 1. 00 jm. 

Other workers have also looked at the questions of sensor selection for 

monitoring vegetation using different approaches. Gausman et al. (1973) investi
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gated leaf spectra and found that the wavelengths of 0.68, 0.85, 1.65 and 2.20 

pm were useful for monitoring vegetation. 

Kondratyev et al. (1973) reported the most informative spectral intervals 

for the monitoring of natural materials were 0. 54 - 0. 56, 0.66 - 0. 68, and 

0.78 - 0.82 gm. In a subsequent article, Kondratyev et al. (1975) conclude that 

three main informative sections of the spectrum can be distinguished and are 

0.83 - 0.85, 0.63 - 0.69, and 0.40- 0.44 gm. 

PROPOSED SECOND GENERATION SATELLITE SENSOR SYSTEMS 

Colvocoresses' Operational Landsat 

Colvocoresses (1977) has proposed a three band sensor system for an "op

erational Landsat". This system would have bands at 0.47 - 0.57, 0.57 - 0.70, 

and 0.76 - 1.05 gm having 60 to 90, 30 to 40, and 60 to 90m resolution, respec

tively. Sensors would use multilinear array (MLA) technology, which, at the 

present, limits these devices to the 0.40 - 1.05 m spectral region. These pro

posed sensors will be evaluated in this paper. 

SPOT 

The French Centre National d'Etudes Spatial (ONES) has scheduled a 

three-band MLA satellite designed Systems Probatoire d'Observation de la 

Terre (SPOT) for launch in 1983. Three reflective bands are proposed: 0. 50 

0.59, 0.61 - 0.69, and 0.79 - 0.90Mm with 20 m spatial resolution each. 

Radiometric resolution would be eight bits (256 quantizing levels) (ONES, 1978). 

The three SPOT bands will be evaluated in this paper. 
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Landsat-D 

It became apparent, with the successes of Landsat-1, that a more suitable 

and second generation space flown scanner system would provide superior re

motely sensed data from vegetated targets. A satellite dedicated to and de

signed for vegetational monitoring was recommended by the National Academy 

of Science (CORSPERS, 1976). Christened Landsat-D, designed primarily for 

vegetational applications, and scheduled for launch in 1981, this mission is to 

fly a new multispectral scanner system called the thematic mapper (TM). 

Specific improvements over the MdSS of the first three Landsats have been 

achieved in the areas of spatial, spectral, and radiometric resolution. Specifi

cally, the IFOV will be 30 m, there will be seven spectral bands, and the TM 

will have eight bit data vs. six bit data for the ISS (i.e., 256 quantizing levels 

vs. 64 quantizing levels, respectively). In addition, the spectral channels have 

been chosen to maximize the information context for green vegetation (Table 1). 

CONSIDERATIONS IN SENSOR SELECTION 

Remote sensing of vegetation has the objective of monitoring vegetation 

using reflected or emitted electro-magnetic radiation. Heretofore, most 

efforts in this regard have used the 0.40 - 2.50 im region with the major effort 

occurring in the 0.40 - 1.10 4m area. 

Engineers charged with the task of designing a space-flown remote sensing 

instrument are usually faced with the situation of only being able to accommodate 

a small number of bands. This results from the design criteria of complexity, 
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Table 1



Thematic Mapper Spectral and Radiometric Characteristics



Band Wavelength NE Ap Basic Primary Rationale for Vegetation



TM1 0.45 - 0.52 0. 008 Sensitivity to chlorophyll- and carotinoid
concentrations 

TM 2 0.52 - 0.60 0.005 Slight sensitivity to chlorophyll, plus


green region characteristics



TM 3 0.63 - 0.69 0.005 Sensitivity to-chlorophyll



TM 4 0.76 - 0.90 0.005 Sensitivity to vegetational density. or



biomass



TM 5 1.55 - 1.75 0.0J Sensitivity to water in plant leaves



TM 6 2.08 - 2.35 0.024 Sensitivity to water in plant leaves



TM 7 10.4 - 12.5 0.5 K Thermal properties



signal/noise ratios, detector response, energy needs, weight, reliability, data 

processing and storage considerations, atmospheric effects, etc. The decision 

must then be made to allocate these sensors in such a fashion to maximize the 

information content for the application in question. 

I will now consider the reflective region of the spectrum (0.35 - 2.50 pm) 

and discuss various spectral intervals which express different information about 

vegetated surfaces. Previous basic research from physiological perspectives 

using in situ spectral data and laboratory leaf spectra are in good agreement in 

these regards. The in situ results will be briefly reviewed as will several of 
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the leaf spectra results. Five primary and two transition regions exist between 

0.35 - 2.50gm where different physiological variables control the resulting leaf 

and/or canopy spectral reflectance: 

1. The 0. 350 - 0. 500 gm region is characterized by strong absorption by 

the carotenoids and chlorophylls. A strong relationship exists between spectral 

reflectance in this region and the plant pigments present (Knipling 1970, Woolley 

1971, Salisbury and Ross 1969, Tucker 1977). 

2. The 0. 500 - 0.620 pm region is characterized by a reduced level of pig

ment absorption. This results in a higher reflectance than the adjacent blue and 

red regions which our eyes perceive as "green". A weaker relationship exists 

between spectral reflectance in this region and the plant material present 

(Knipling 1970, Woolley 1971, Salisbury and Ross 1969). 

3. The 0. 620 - 0.700 pm region is characterized by strong chlorophyll 

absorption. A strong relationship exists between spectral reflectance in this 

region and the chlorophyll present (Kmpling 1970, Woolley 1971, Salisbury and 

Ross 1969, among others). 

4. The 0. 70 - 0.74 pin region is characterized by the transition from strong 

chlorophyll absorption (ending at -0. 70 - 0.71 gm) and the high levels of reflec

tance characteristic of green vegetation which begin at -0.74 - 0.75 Mm. As 

such, there is a poor relationship (if any) between the amount of green vegeta

tion and reflectance in this region (Tucker and Maxwell, 1976). 
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5. The 0. 74 - 1.10 gm region is characterized by high levels of reflectance 

occurring in the absence of any absorptance. A strong relationship exists be

tween spectral reflectance in this region and the amount of green vegetation 

present (Knipling 1970, W(ol'ey 1971, among others). 

6. A -1.1 - 1. 3 pm transition must occur between the region of high re

flectance (-0.74 - 1.1 n) and the water absorption region (-1.3 - 2. 5pm). 

This is hypothesised because there is no experimental data to support this state

ment. 

7. The 1.30 - 2.50 gm region is characterized by strong absotption by 

water present in the vegetation. A strong relationship exists between refilec

tances from this interval and the amount of water present in the leaves of the 

canopy (Knipling 1970, Woolley 1971, among others). 

The desire to maximize the information content for reflective remote 

sensing of vegetation missions then comes down to selecting some ordered list 

drawn from the previous list of seven (Table 2). 

It should be stressed that although the 0.70 - 0.74 and -1. 1 - 1. 3rgm 

regions' reflectances are not directly coupled with green vegetation, valuable 

spectral information can be remotely sensed in these regions. The spectral 

information is related more to the background spectra or to other properties of 

the materials present. The information content is increased when using these 

indirectly coupled region(s) in conjunction with the highly correlated with green 

vegetation regions. 
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Table 2 

Ordered List of Spectral Regions in Descending


Usefulness for Monitoring Green Vegetation



Number Wavelength
(Pm) 

Utility for Vegetation 

1 0.74 - -1.1 Direct biomass sensitivity 

2 0.63 - 0.69 Direct in vivo chlorophyll sensitivity 

3 -1. 3 - 2.5 	 Direct in vivo foliar water sensitivity 

Direct in vivo carotinoid and chlorophyll4 0.37 - 0.50 	 seitvysensitivity 

5 	 0.50 - 0.62 Direct/indirect and slight sensitivity to 
chlorophyll 

6 0.70 - 0.74 	 Indirect and minimal sensitivity to vege
tation; perhaps valuable non-vegetational 

7 -1. 1 - 1.3 information 

Data Used 

Thirty-five plots were sampled in June, 1972 and forty plots were sampled 

in September, 1971. All plots were 1/4 m2 in area and were composed of blue 

grama grass. They were sampled in situ by speotroradometric measurement 

over the 0.350 - 0. 800 gim (September) and the 0.350 - 1. 000 pn (June) region at 

every 0.005 pm interval with the mobile field spectrometer laboratory (Miller 

et al. 1976). All measurements were made normal to the ground surface. 

Immediately after the reflectance measurements were completed, the plot 

was clipped of all standing vegetation and an aliquot was extracted for chlorophyll 
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analysis. Canopy biological measurements included total wet biomass, total 

dry biomass, dry green biomass, dry brown biomass, the leaf water content, 

and chlorophyll content (Table 3). 

METHODS AND ANALYSIS 

Description of Research Undertaken 

The research was undertaken to evaluate the TM sensors by integration 

of narrow bandwidth (0. 005L m) spectral radiance curves. Spectral reflec

tances were multiplied by a spectral irradiance function resulting in spectral 

radiances. The spectral irradiance was passed through the atmosphere 

(horizontal visibility at sea level = 23kim) to sea level where the various 

spectral radiances were computed by the product of the spectral irradiance 

and spectral reflectances. The spectral radiances were then passed through 

the same atmosphere to the correct orbital altitude for the sensor system 

in question. 

The resulting radiances were integrated and subsequently regressed against 

the total wet biomass, total dry biomass, dry green biomass, dry brown bio

mass, leaf water content, and total chlorophyll content to quantify the relation

ship between the simulated sensor and the various basic properties of the vege

tation canopy in question (i. e., biomass, water content, chlorophyll content). 

To give a sound basis for comparisons to other sensor systems, the same 
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Table 3



Statistical Summary of the Biophysical Characteristics of the Sample Plots. A Statistical Description



of the Vegetative Canopy Characteristics for (A) The Thirty-Five 1/4 M2 Sample Plots of Blue Grama



Sampled in June 1972, and (B) The Forty 1/4M 2 Sample Plots of Blue Grama Sampled in September 1971.



Standard Coefficient Standard Error 
Deviation of Variation of the Mean 

A. June, 1972 

Wet total biomass 52.00-1230.40 339.52 316.94 93.35 50.11 
(g/m2) 

Dry total biomass 13,04- 528.84 134.07 130.25 97.15 20.59 
(g/m2) 

Dry green biomass 12.48- 343.36 105.11 93.46 88.93 14 78 
(g/m2) 

Dry brown biomass 00.16- 185.48 28.96 40.23 138.91 6.36 
(g/m 2 ) 

Leaf water 38.12- 701.56 205.46 187.83 91.42 29.70


(g/m 2 )



81.52Chlorophyll 62.27-2108.06 414.41 515.56 124.41 
(mg/me) 

http:62.27-2108.06
http:52.00-1230.40
http:38.12-701.56
http:00.16-185.48
http:12.48-343.36
http:13,04-528.84


Table 3 (Continued) 

Standard 
Deviation 

Coefficient 
of Variation 

Standard Error 
of the Mean 

3. September, 1971 

-Wet total btoiaass 
(g/m2) 

70.83 491.22 261.31 134.00 51.44 21.,25 

Dry total bioifiass 
(g/m2) 

41.50 337.84 168.55 90.81 53.88 14.36 

Dry green biomass 
(g/M2) 

17.12 185.04 89.38 50.15 56.11 14.36 

Dry brown biomass 
(g/m2) 

20.40 186.42 82.41 48.54 58.90 7.68 

Leaf water 
(g/m 2 ) 

28.03 190.80 92.75 50.93 54.91 8.05 

Chlorophyll 
(mg/m2) 

53.02 778.97 319.58 238.73 74.70 37275 



analysis was completed for the RBV, MSS, the French SPOT System, and 

Colvocoresses, proposed sensor system. 

This research only addresses the question of spectral resolution. The 

issues of spatial and radiometric resolution are not addressed in this paper. 

The author realizes that real world comparisons between TM (post 1981) and 

other sensor system(s) imagery, for example, will effectively be a comparison 

between the spectral, spatial, and radiometric resolution interaction(s) for these 

earth resource systems. This study, however, should give insight into the 

spectral resolution(s) of the various sensor systems for making measurements 

of vegetation. 

Grass canopies are ideally suited for these experimental purposes because 

of their morphologic simplicity. More importantly, the various sensors are 

evaluated by their statistical sensitivity to basic properties of terrestrial vege

tation (wet biomass, dry biomass, green biomass, brown or dead biomass, leaf 

water content, and chlorophyll content). The results of this experiment are thus 

applicable to terrestrial vegetation in general. 

Regression Analysis 

A regression approach was undertaken to approximate the relationships 

existing between the six sampled canopy variables (Table 3) and the integrated 

radiance for each simulated sensor. Four regression models were evaluated 

for each interval. Standard regression notation after Draper and Smith (1966) 

will be used and donated as a function of wavelength by the subscript. 
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CANOPY RAD = P0ke ( 0I - plot variable) (1) 

where: 

CANOPY RAD = normal canopy §pectral radiance, 

= estimated value of po at wavelength X, 

x = estimated vAlue of flu at wavelength X, 

e = Napier's number (i.e., -2.72); 

plot variable = total wet biomass, chlorophyll, etc. 

(see Table 3). 

CANOPY RAD = Pox + n * (plot iVaritble)-1 (2) 

CANOPY RAD = Pox + Hlv" (plot variable) (3) 

and 

CANOPY BAD = S(I- e(0X + 9i"plot variable)) (4) 

where: 

S= asymptotic radiance estimate at wavelength. 

Equations (1), (2) and (4) were transformed into linear models prior to 

regression computation. 

Regression screening was used to evAluate the relationship(s) between the 

various integrated radiances and the canopy biological measurements. In this 

way comparisons can easily be inade between r 2 values to determine spectral 

sensitivity for a variety of bandwidths with respect to each of the canopy biologi

cal measurements. 
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Sensors Evaluated 

The first four TM sensors, the seven RBV and M?1SS sensors, the three 

SPOT sensors, and the three proposed operational Landsat sensors were 

evaluated using the experimental methods described herein. Data limitations 

prevented any evaluation(s) beyond 1. 00 jgm for the June data and beyond 

0.80 pm for the September data set. 

RESULTS AND DISCUSSION 

The various simulated sensors (see Table 4) were regressed against the 

six canopy variables measured for the June and September data sets. This re

sulted in 192 separate comparisons which are presented in tabular form 

(Tables 4 and 5). 

The June data was almost entirely green with little standing dead vegeta

tion (Table 3). As such, it can be considered analogous to many agricultural 

situations where the plant canopy is not only homogeneous but in-phase pheno

logically. The September data, by contrast, can be considered analogous to 

many agricultural situations where the canopy in question is beginning to enter 

senescence, has suffered from some stress, or for some reason is composed 

of appreciable amounts of live and dead material. In addition, the September 

data set is analogous to many wild or natural ecological situations where the 

vegetational scene is not homogeneous. These situations usually have a mix

ture of early maturing, late maturing, etc. species and, regardless of 
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Table 4


Coefficient of Determination (r2 ) Values Resulting from the Regressions Between Integrated



Radiance and the Various Sampled Canopy Variables for the June Data



Total Total Leaf Dry Dry Total 
Sensor (AM) Wet

Biomass 
Dry

Biomass 
Water
Content 

Green
Biomass 

Brown
Biomass 

Chlorophyll
Content 

RBV 1 .475 - .575 .73 .66 .76 .67 .24 .77 
RBV2 .580 .680 .88 .81 .91 .82 .32 .91 
RBV3 .690 .800 .65 .63 .65 .63 .51 .65 

MSS 4 .500 - .600 .78 .71 .81 .73 .27 .81 
MSS5 .600 .700 .88 .80 .91 82 .32 .91 
IVISS-6 .700 - .800 .63 .62 .63 .61 .54 .65 
MSS 7* .800 - 1.100 .72 .7i .73 .71 .61 .73 

Tl1 .450 .520 .69 .61 .72 .63 .19 .74 
TM2 .520  .600 .10 .72 .82 .74 .28 .83 
TM3 .630 .690 .88 .80 .91 .82 .32 .91 
TM4 .760 .900 .78 .76 .78 .76 .63 .78 

SPOT1 0.50 0.59 .76 .69 .79 .71. .26 .81 
SPOT2 0.61 0.69 .88 .81 .9i .82 .32 .91 
SPOT3 0.79 0.90 .77 .75 .77 .75 .63 .78 

Colvol .470 .570 .71 .65 .75 .66 .23 .76 
Colvo 2 .570  .700 .88 .80 .91 .82, .32 .91 
Colvo 3 .760 - 1.050 .74 .73 .74 .72 .62 .75 

*Data were incomplete for the 1.00 - 1.1 pm interval. The simulations for MSS7 and Colvo 3 used 1.00 pm as their upper wavelength imts. 



Table 5



Coefficient of Determination (r2) Values Resulting from the Regressions Between Integrated


Radiance and the Various Sampled Canopy Variables for the September Data



Dry Dry TotalBandwidth Total Total Leaf 
Sensor Wet Dry Water Green Brown Chlorophyll

(MM) Biomass Biomass Content Biomass Biomass Content 

RBV 1 .475 - .575 .31 .28 .41 .21 .10 .25 
RBV2 .580 .680 .40 .38 .64 .24 .07 .33 
RBV3 .690 .800 .48 .51 .41 .43 .29 .39 

MSS4 .500 .600 .25 .22 .37 .16 .07 .20 
MSS5 .600 .700 .39 .38 .65 .23 .06 .33 
MSS 6 .700 - .800 .53 .55 .48 .47 .30 .44 
MISS 7h .800  1.100 - - - - - --

TM1 .450 - .520 .56 .54 .69 .41 .19 .45 
TM2 .520 .600 .22 .20 .33 .14 .06 .18 
TM3 .630 .690 .43 .25 .70 .41 .07 .36 
TM 4* .760 .900 - - - - - --

SPOT1 0.50 0.59 .25 .17 .35 .22 .08 .20 
SPOT 2 0.61 - 0.69 .42 .24 .68 .41 .07 .35 
SPOT34 0.79 0.90 - - - - --

Colvol .470 .570 .33 .23 .43 .30 .11 .26 
Colvo2 .570 - .700 .37 .22 .62 .35 .12 .32 
Colvo 3* .760 - 1.050 - - - - --

The September data only covered the 0.350 - 0.800 Am region. Some sensois, therefore, could not be simulated. 



sampling time, have a mixture of live and dedd vegetation, several species, and 

the such. 

Interpretations then of the June and Septerfiber experimental results should 

give some insight into-the-phenol'gical utility, natural ecosystem-applicability, 

and quantify the influence of canopy heterogeneity upon the sensors evaluated. 

Coupled with the various sensor simulations presented in Tables 4 and 5, 

are the results of within-sensor integrations for all of the sensors evaluated. 

Complete tabular results for all sensors evaliiated appear in Appendex A. 

RBV and MSS 

The seven Landsat-1, 2, mid 3 reflective RJV and MSS sensors ranged from 

good to poor in terms of spectral characteristics for monitoring v~getation 

(Tables 4 and 5). 

Specifically, REBVi (0.475 - 0. 575 m) combines spectral radiances from 

the 0. 500 - 0. 575 Mm region of lessefied significance and does not include enough 

of the blue region to be effective in a mixed live/dead canopy situation (Table 5). 

The 0.475 - 0. 500 pm region of the spectrum contributes the spectral informa

tion that is highly related to plant canopies for RBV1 but this is seriously de

graded by the 0. 500 - 0. 575 pm signal of reduced statistical significance to 

green vegetation. 

RBV2 (0.58 -- 0. 68 pm) is somewhat better placed spectrally for monitoring 

green vegetation (Tables 4 and 5). It combines, however, a region of strong 

in situ chlorophyll absorption (- 0. 62 - 0. 68pim) with an adjacent region of much 
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reduced in situ chlorophyll absorption ('-'0.58 - 0.62 pm). This had little effect 

for the in-phase phenologically and homogeneous plant canopy scene but reduced 

the regression significance by 6% for the more complex canopy case (Table 5; 

leaf water content variable). 

RBV3 (0.69 - 0.80 pmo) is particularly poorly placed spectrally for monitor

ing green vegetation. It combines three separate green vegetation-reflectance 

relationships: the 0.69 - 0.70 pm region of chlorophyll absorption; the 0.70 

0. 74 pm region of lessened statistical significance or noise; and the 0.75 - 0.80 

pm region of enhanced reflectance characteristic of green vegetation. As such, 

RBV3 is seriously degraded by its spectral configuration for any green vegeta

tion application(s). 

MSS4 (0. 50 - 0. 60 bro) is placed in a spectral region where reduced chloro

phyll absorption occurs (Salisbury and Ross, 1969). This is advantageous for 

green vegetation applications because the same relationship exists across the 

entire bandwidth. Different relationships are not combined for AISS4 as they are 

for RBV1 and RBV2. Some carotenoid and chlorophyll absorption occur in the 

0. 50 - 0. 52 Im region and tis interval should be excluded to more completely 

exploit the green vegetation-spectral coupling resulting from the reduced 

chlorophyll and lack of carotenoid absorption present in the 0. 52 - 0. 60 Am 

region. 

MSS5 (0.60 - 0. 70 pm) is situated in a region of strong in vivo chlorophyll 

absorption. The in vivo absorption maxima occurs in the 0. 67 - 0. 68 pm region 
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with higher absorption coefficients for.the 0. 63 - 0.70 than 0. 60 - 0. 63 Mm re

gion (Salisbury and Ross, 1969). As such, MSS5 could be improved by exclud

ing the 0. 60 - 0. 63 pm region from the 0.63 - 0. 70 pm region. This improve

ment is most apparent for the more complex-canopy situation (Table 5). 

MSS6 is redundant to JVISS7 and includes the noisy 0.70 - 0.74gAm region. 

The usefulness of MSS6 is thought to result from the 0.75 - 0. 80 pm signal's 

strong relationship to green leaf biomass and the associated high soil-green 

vegetation reflectance contrast (Tucker and Miller, 1977). 

MSS7 receives spectral radiances which are highly and directly related to 

green leaf density from the 0. 80 - 1.10gm region. A water band situated at 

0.92 - 0. 98 pm introduces degrading atmospheric effects and filter/detector 

characteristics sharply reduce the contribution from the 0.95 - 1.10 pm region 

relative to that from the 0. 80 - 0. 95pm interval (Hovis, 1977). 

MSS7 is superior to ISS6 for high green biomass situations (reviewed in 

Tucker, 1979)" while MSS6 has been shown to be superior to MSS7 for lower 

(rangeland) green biomass applications. A hypothesis explaining this has 

been presented by Tucker and iller (1977) based upon soil-green biomass re

flectance contrasts and is in agreement with several Landsat-1 and 2 results 

(Maxwell, 1976; Rouse et al., 1974; Deering, 1978). 

Colvocoresses' Proposed Satellite Sensor System 

Colvocoress (1977) has proposed a three sensor system for an "operational" 

Landsat system. Evaluation of theie sensors was similar to RBV1, RBV 2, and 
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TM4, respectively for Colvo 1, Colvo 2, and Colvo 3 (Tables 4 and 5). The 

same criticisms of RBV and RBV2 apply to Colvo I and Colvo 2. 

Specifically, Colvo 1 (0.47 - 0. 57 pm) is poorly placed from a vegetational 

perspective. Spectral radiances from the 0.47 - 0.50pm region which are 

highly correlated with the plant pigments present are combined with spectral 

radiances from the 0.50 - 0. 57 pan region which are not highly correlated with 

green vegetation in a mixed live/dead canopy situation (Tables 4 and 5; Figure 

1). 

Colvo 2 (0.57 - 0.70 pm) combines the 0.57 - 0. 62 pm region of lower re

gression significance with the highly significant 0. 63 - 0.70 pm region resulting 

in a serious degrading of this sensor for more complex canopy applications 

(Figure 2). 

Colvo 3 (0.76 - 1.05 pm) is similar to TM4 (0.76 - 0.90 pm) except that 

Colvo 3 includes the water absorption band at -0. 92 - 0. 98 n within the 0.90 

1.05 pm region. This will restrict signature extention significantly. The sen

sors Colvocoresses (1977) has proposed are not optimum for satellite remote 

sensing of vegetation resources. Any data from these hypothetical sensors 

would not yield satisfactory results for many vegetational applications and would 

be inferior to the existing MSS data for most vegetational applications (Tables 4 

and 5). Detailed vegetational applications require optimum spectral resolution. 

Thematic Mapper 

TMI (0.45 - 0. 52 pm) is placed to take advantage of the relationship be

tween spectral radiances from vegetation which are determined in part by the 
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chlorophyll and carotenoid concentrations for the 0. 45 - 0. 50 Xn regin. In 

order to make this bandwidth wider to'give more optimum signal/noise ratios, 

the bandwidth was widened on the upper end to 0. 52 pm. It would be counterpro

ductive to-widen this sensor on-the-lower end (say to-O 43- m) -because of-atmos- 

pheric scattering effects. TM1 thus is not optimum from a strictly spectral 

perspective but avoids potential signal/noise problems by including the 0.50 

0.52 lrm region. 

TM2 (0. 52 - 0.60 jim) is placed to record green region radiances. It is 

well situated to maximize the spectral information content but is not as highly 

correlated with green vegetation as are TM 1, TM 3, and TM 4. Sensor selec

tion should attempt to place sensors in spectral regions where a particular 

relationship/process occurs to maximize the information content. It should not 

combine different relationships (see Table 2; Figures 1 and 2). TM2 is situated 

in a spectral region where a poor per se relationship holds between hetero

geneous green vegetation and spectral reflectance (Table 5). This sensor re

ceives other and potentially very valuable spectral information that is uncoupled 

from the more direct spectral-vegetational information present in the blue, red, 

and near infrared regions. 

TM3 (0. 63 - 0.69g m) is well placed from a green vegetational perspective. 

It could be widened to 0.62 - 0.70 prm if additional signal were needed with a 

slight (1 - 3%) reduction in single channel utility. It is configured to be an 

excellent in vivo chlorophyll band (Tables 4 and 5). 
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TM4 (0.76 - 0.90 pm) is well situated from a spectral perspective related 

to green vegetation (Tables 4 and 5). TM4 excludes the 0.70 - 0.74 1m transi

tion or noise region on its lower end and a 0.92 - 0.98 pm atmospheric water 

absorption band on its upper end. A previously published analysis has shown 

that this sensor combines excellent general vegetational application(s) with the 

ability to sense near-ir plateau rounding plant stress conditions within its 

0.76 - 9.90 pm bandwidth (Tucker 1978). The wide bandwidth of TM4 coupled 

with the high levels of spectral reflectance characteristic of green vegetation for 

this region should result in optimal remote sensing ofivegetational density for 

TM4. Avoiding the atmospheric water vapor absorption band in the 0.92 

0.98 pm region will improve signature extension. 

TM5 (1.55 - 1.75 im) and TM6 (2.08 - 2.35 pin) could not be evaluated in 

this paper. However, both of these bands are directly sensitive to the leaf water 

content in terrestrial vegetation (Knipling, 1970; Woolley, 1971; Tucker and 

Garratt, 1977). Gausman et al. (1978) have reported excellent soil-green vege

tation reflectance contrasts for these two wavebands. In addition to the vegeta

tional utility in these two near infrared bands, other scientists have suggested 

geological applications (Abrams et al, 1977; Rowan et al, 1977). 

SPOT 

SPOT 1 (0. 50 - 0.59 1m) is placed in sense green region spectral radiances 

(Tables 4 and 5). Slight pigment absorption may occur in the 0.50 - 0.52 pm 

region but this is a slight adjustmient. 
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SPOT 2 (0.61 - 0.69 pn) is placed to sense spectral radiances highly corre

lated with the in vivo chlorophyll concentration(s) of green vegetation (Tables 4 

and 5). A slight (I - 2%) improvement in regression significance would result 

from excluding the 0.61 - 0.63m region at a sacrifice of the signal:noise ratio. 

SPOT 3 (0.79 - 0.90 gm) is placed to sense spectral radiances which are 

highly correlated with green vegetational density (Table 4). No adjustments are 

suggested for this band. 

In general, the SPOT bands are very similar from a spectral-vegetational 

perspective to thematic mapper bands TM2, TM3, and TM14. Both SPOT and 

the thematic mapper are optimally configured for the collection of remotely 

sensed data from green vegetation targets. 

OUTLOOK FOR THE FUTURE 

Substantial improvements over MASS imagery are expected from Landsat-D's 

thematic mapper as a result of spectral resolution alone. Coupled with increased 

radiometric resolution, increased spatial resolution, and additional bands, the 

state-of-the-art of satellite remote sensing of vegetated surfaces should be 

advanced dramatically. 

In addition, the French SPOT satellite is promising from a spectral perspec

tive and suggests a rational approach for a MLA "operational" system. 

The next generation of satellite remote sensing is thus soon to begin. It will 

offer significant improvements in monitoring vegetation from orbital altitudes 

and demonstrate conclusively the many and varied applications of this technology. 
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CONCLUSIONS



1. Thematic Mapper sensors TM1, TVE2, TIVI3, and TIV14 were found to be 

very well situated for remote sensing of vegetated targets. 

2. Significant improvements can be expected from the Thematic Mapper 

over the ISS of Landsats-1, 2, and 3, resulting from optimal spectral 

resolution alone. 

3. Colvocoresses' proposed three band system was found to have two poor 

bands and one better band for monitoring vegetation. Thematic Mapper bands 

were found to be significantly superior to these proposed bands. 

4. The French satellite SPOT three band system has three well placed 

bands for momtoring vegetation. The SPOT bands are very similar to Thematic 

Mapper bands TM2, TIV3, and TM114, respectively. 

5. Sensor bandwidths must be restricted to regions of the spectrum where 

the same vegetation- spectral reflectance relationship predominates. Combining 

different vegetation-spectral reflectance relationships within the same sensor 

bandwidth seriously reduced the vegetational utility of the "combined sensor" 

especially for more complex canopy situations. 

6. Complex canopy situations necessitate a more specific spectral subset 

of the less complex canopy situation spectral regions. As such, the more hetero

geneous or complex condition(s) are of predominant value for selecting sensors of 

the greatest and most persistent vegetational utility. 
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Appendix A contains tables corresponding to each of the sensors evaluated 

for the RBV, MSS, Thematic Mapper, Colvocoresses' operational Landsat three

band system, and the SPOT three-band system. Each sensor was evaluated by 

the following method: The upper wavelength limit of the sensor was held con

stant and the lower wavelength limit increased in 0. Olpm steps until the band

width was 0.01pm wide. At each step, the respective bandwidth was integrated 

for each of the experimental spectral curves. Results were then regression 

screened to quantify the statistical significance between integrated radiance and 

the plot variable in question. Next, the lower wavelength limit was held con

stant and the upper limit decreased at 0. 011m intervals until the bandwidth was 

0.0lgm wide. The same analysis was performed on this set of data as the 

other. 

The analysis was completed for all six of the plot variables. For the sake 

of concise presentation, however, only the total wet biomass results for the 

June data and the leaf water content results for the September data are pre

sented. An explanation for this is given in the text. 

Several other factors, conditions, etc. should be remembered when inter

preting the within sensor tabular results presented in this appendix. Principal 

to these considerations are limitations in the data. The June spectral data, cov

ering the - 0.35 - 0.80gm (visible grating) and the 0.70 - 1. 00gm (infrared 

grating), suffers from a low signal/noise ratio in the - 0.35 - 0.46 pm region. 

For this reason, results from TM-1 are somewhat degraded as one can see 
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in the respective Appendix A table. 'The rest of the June spectral data, bovering 

the -0.46 - 0.80gtm and the 0.70 - 1.OU gm intervals, are excellent'data and 

do not suffer from the same dondition. 

The September spectral data, coveting the 0.35 - 0.80pgm interval, suffers 

from lower signal/noise ratios in the - 0.35 - 0.36 m and -0.79 - 0.80gm re

gions. This results from initial grating settings and/or the transducer coupling. 

The - 0.36 - 0.79Mm balance-of the 'September spectral data is excellent, 

however. 

There are, in addition, occasional glitches in the June and September 

spectral data corresponding to wavelengths where filter changes were made. 

These are not severe and are expressed as simply lower r 2 values relative to 

the adjacent higher r 2 values when the Apectral data was regressed 'against'the 

various plot variables. These types of data limitations are often impossible to 

avoid in field experiments and are noted here to explain what otherwise may be 

confusing in a small number of instances. 
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Table Al


Within Band Simulation Results for RBV-1. (A) is for 0.475 -* 0. 575m



and (B) is for 0. 475 <- 0. 575pm 

June (n =35) September (n = 40) 
Rank Ordered Wavelength Rank Ordered Wavelength 

r 2 's (pm) r2 s (m) 

A 

1 0.73 0.475 -0.575 1 0.41 0.475 - 0.575 

2 0.72 0.545 - 0.575 2 0.38 0.485  0.575 

3 0.71 0.535 - 0.575 3 0.35 0.495  0.575 

4 0.71 0.555 - 0.575 4 0.31 0.505 - 0.575 

5 0.70 0.485  0.575 5 0.29 0.565  0.575 

6 0.70 0.525 - 0.575 6 0.28 0.515 - 0.575 

7 0.68 0.515 - 0.575 7 0.25 0.525 - 0.575 

8 0.68 0.495  0.575 8 0.25 0.555  0.575 

9 0.66 0.505 -0.575 9 0.24 0.535 - 0.575 

10 0.62 0.565 - 0.575 10 0.24 0.545 - 0.575 

B 

1 0.83 0.475 - 0.485 1 0.72 0.475 - 0.495 

2 0.82 0.475 - 0.495 2 0.72 0.475 - 0.505 

3 0.79 0.475 - 0.505 3 0.70 0.475 - 0.485 

4 0M75 0.475 - 0.515 4 0.68 0.475 - 0.515 

5 0.73 0.475  0.525 5 0.64 0.475  0.525 

6 0.73 0.475 0.575 6 0.58 0.475  0.535 

7 0.72 0.475  0.565 7 0.52 0.475  0.545 

8 0.72 0.475  0.535 8 0.47 0.475 0.555 

9 0.72 0.475 0.555 9 0.43 0.475 0.565 

10 0.72 0.475 - 0.545 10 0.41 0.475  0.575 
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Table A2 
Within Band Simulation Results for RBV-2. (A) is for 0.58 -+ 0.68gmand (B) is for 0.58 - 0.68gm 

June (n 35) September (n = 40) 

Rank Ordered 
r 2 's 

Wavelength
(m()) 

ank Ordered Wavelength 

A 

1 0.93 0.67  0.68 1 0.74 0.67 - 0.68 

2 0.93 0.66 - 0.68 2 0.73 0.66 - 0.68 

3 0.93 0.65 - 0.68 3 0.73 0.65 - 0.,68 

4 0.88 0.58  0.68 4 0.72 0.64 - 0.68 

5 0.88 0.59  0.68 5 0.71 0.63 -0.68 

6 0.88 0.60 - 0.68 6 0.70 0..62 -0.68 

7 0.88 0.61 - 0.68 7 0.69 0.61 -0.68 

8 0.88 0.62 - 0.68 8 0.67 0.60 - 0.68 

9 0.87 0.63  0.68 9 0.65 0.59 - 0.68 

10 0.86 0.64 - 0.68 10 0.64 0.58 - 0.68 

B 

1 0.89 0.58 - 0.,64 1 0.64 0.58 - 0.68 

2 0.88 0.58 - 0.62 2 0.62 0.58 - 0.67 

3 0.88 0.58 - 0.63 3 0.60 0.58  0.66 

4 0.88 0.58 - 0.68 4 0.57 0.58 - 0.65 

5 0.88 0.58 0.61 5 0.54 0.58-0.64 

6 0.88 0.58 -'0.67 6 0.51 0.58 - 0.63 

7 0.87 0.58 - 0.60 7 0.48 0.58 - 0.62 

8 0.87 0.58 - 0.59 8 0.44 0.58 - 0.61 

9 0.87 0.58 - 0.66 9 0.43 0.58  0.60 

10 0.85 0.58 - 0.65 10 0.42 0.58 - 0.59 
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Table A3 

Within Band Simulation Results for RBV-3. (A) is for 0.69 - 0.80 pm 


and (B) is for 0.69 - 0.80,m 

June (n = 35) September (n = 40) 

Rank Ordered Wavelength Rank Ordered Wavelength 

r 2 's (pr) r2 's (m) 

A 

1 0.83 0.75 -0.80 1 0.68 0.76 - 0.80 

2 0.82 0.76 - 0.80 2 0.68 0.75 - 0.80 

3 0.82 0.74  0.80 3 0.66 0.74 - 0.80 

4 0.82 0.77  0.80 4 0.63 0.73  0.80 

5 0.81 0.73  0.80 5 0.63 0.77  0.80 

6 0.80 0.78 - 0.80 6 0.59 0.72  0.80 

7 0.80 0.79  0.80 7 0.54 0.71 -0.80 

8 0.78 0.72  0.80 8 0.54 0.78 - 0.80 

9 0.74 0.71 - 0.80 9 0.48 0.70 - 0.80 

10 0.70 0.70  0.80 10 0.47 0.79  0.80 

11 0.65 0.69  0.80 11 0.41 0.69  0.80 

B 

1 0.65 0.69 - 0.80 1 0.50 0.69 - 0.70 

2 0.60 0.69  0.79 2 0.41 0.69 - 0.80 

3 0.59 0.69  0.70 3 0.40 0.69  0.79 

4 0.54 0.69 - 0.71 4 0.37 0.69 - 0.71 

5 0.53 0.69 - 0.78 5 0.35 0.69 - 0.78 

6 0.43 0.69 - 0.72 6 0.29 0.69 - 0.72 

7 0.43 0.69 - 0.77 7 0.25 0.69 - 0.77 

8 0.28 0.69  0.76 8 0.18 0.69 - 0.73 

9 0.20 0.69 -0.73 9 0.10 0.69  0.76 

10 0.08 0.69  0.75 10 0.04 0.69  0.74 

11 0.01 0.69  0.74 11 0.01 0.69  0.75 
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Table A4


Within Band Simulation Results for MSS-4. (A) is for 0.50 0.60Am



and (B) is for 0.50*- 0.60pm 

June (n =35) September (n = 40) 
k Ordered Wavelength Ordered Wavelength 

Rankr2, (Pro)_ r 2 s (Pm) 

A 

1 0.87 0.59 -0.60 1 0.43 0.59 - 0.60 

2 0.87 0.58 - 0.60 2 0.48 0.58 0.60 

3 0.86 0.57 -0.60 3 0.40 0.57 0.60 

4 0.85 0.56 -0.60 4 0.37 0.56 - 0.60 

5 0.84 0.55 - 0.60 5 0.37 0.50 - 0.60 

6 0.83 0.54 - 0.60 6 0.34 0.51 - O60 

7 0.80 0.53 -10.160 7 0.34 0.55 - 0.60 

8 0.79 0.52 - 0.60 8 0.33 0.54-0.60 

9 0.78 0.51 - 0.60 9 0.33 0.52 - 0;;60 

10 0.78 0.50 - 0.60 10 0.32 0-53 - 0.60 

B 

1 0.78 0.50 - 0.60 1 0.64 0.50 - 0.51 

2 0.76 0.50 - 0.59 2 0.59 0.50 - 0.52 

3 0.73 0.50 - 0.58 3 0.52 0.50 - 0.53 

4 0.70 0.50 - 0.57 4 0.44 0.50 - 0.54 

5 0.68 0.50 - 0.51 5 0.39 0.50 - 0.55 

6 0.67 0.50 - 0.52 6 0.37 0.50 - 0.60 

7 0.67 0.50-0.56 7 0.35 0.50 -.. 56 

8 0.65 0.50 - 0.53 8 0.35 0.50 0.59 

9 0.63 0.50 - 0.55 9 0.33 0.50 - 0.58 

10 0.62 0.50 - 0.54 10 0.33 0.50 - 0.57 
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Table A5


Within Band Simulation Results for MSS-5. (A) is for 0.60 -* 0.70Am



and (B) is for 0.60- 0.70prm 

June (n 35) September (n = 40) 

Rank Ordered Wavelength Rank Ordered Wavelength 

r 2 ' s (wm) I r 2 s (gm) 

A 

1 0.90 0.65 - 0.70 1 0.68 0.64 - 0.70 

2 0.89 0.66 - 0.70 2 0.68 0.63 - 0.70 

3 0.88 0.60  0.70 3 0.67 0.62 - 0.70 

4 0.88 0.61  0.70 4 0.67 0.65  0.70 

5 0.87 0.62 0.70 5 0.66 0.61 - 0.70 

6 0.87 0.63 - 0.70 6 0.66 0.66 - 0.70 

7 0.87 0.67 - 0.70 7 0.65 0.60 -0.70 

8 0.87 0.64 - 0.70 8 0.63 0.67 -0.70 

9 0.83 0.68 - 0.70 9 0.56 0.68 -0.70 

10 0.77 0.69  0.70 10 0.50 0.69 -0.70 

B 

1 0.89 0.60 - 0.62 1 0.67 0.60 -0.68 

2 0.89 0.60 - 0.64 2 0.67 0.60 -0.69 

3 0.89 0.60 - 0.61 3 0.65 0.60 -0.67 

4 0.89 0.60 - 0.63 4 0.65 0.60 -0.70 

5 0.89 0.60 - 0.69 5 0.63 0.60 -0.66 

6 0.88 0.60 - 0.68 6 0.61 0.60 - 0.65 

7 0.88 0.60 - 0.70 7 0.58 0.60 - 0.64 

8 0.87 0.60 - 0.67 8 0.55 0.60 - 0.63 

9 0.86 0.60  0.66 9 0.52 0.60 - 0.62 

10 0.84 0.60  0.65 10 0.46 0.60  0.61 
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Tible A 
Within Band Simulatioh Results for MSS-6. (A) is for 0.70 - 0.80'pm' 

and (B) is for 0.70 <- 0.80pm 

June (n = 35) September (n = 40) . 

Rank Orderedr2,S Wavelength(AMl) Rank I Ordered. 
r 2 s 

Wavelength
(AMo ) 

A 

1 0.83 0.75 - 0.80 1 0.68 0.76 - 0.80 

2 0.82 0.76 - 0.80 2 0.68 0.75 - 0.80 

3 0.82 0.74 - 0.80 3 0.66 0.74 - 0.80 

4 0.82 0:77 - 0.8' 4 0.63 0.73 - 0.80 

5 0.81 0.73 - 0.80 5 0.63 0.77 - 0.80 

6 0.80 0.78 - 0.80 6 0.59 0.72 - 0.80 

7 0.80 0.79 - 0.80 7 0.54 0.71 - 0.80 

8 0.78 0.72 -0.80 8 0.54 0.78 - 0.80 

9 0.74 0.71 - 0.80 9 0.48 0.70 - 0.80 

10 0.70 0.70 - 0.80 10 0.47 0.79  0.80 

B 

1 0.70 0.70-0.80 1 0.48 0.70-0.80 

2 0.66 0.70 - 0.79 2 0.48 0.70 - 0.79 

3 0.61 0.70 - 0.78 3 0.45 0.70 - 0.78 

4 0.52 0.70 -0.77 4 0.36 0.70 - 0.77 

5 0.49 0.70 - 0.71 5 0.25 0.70 - 0.71 

6 0.40 0.70 - 6.76 6 0.21 0.70 - 0.76 

7 0.34 0.70 -0.72 7 0.18 0.70 - 0.72 

8 0.20 0.70 - 0.75' 8 0.07 0.70 - 0.73 

9 0.10 0.70 - 0.73 9 0.07 0.70 - 0.75 

10 0.01 0.70 - 0,. 74 10 0.00 0.70 - 0.74 
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Table A7 
Within Band Simulation Results for MSS-7 for the June Infrared Data (n = 33).



(A) is for 0.80-+41.00gum and (B) is for 0.801-1.00 pm. The upper wave

length limit of 1. 00 was used because MSS-7 receives porportionally



little signal from the 1. 00 - 1. 10 pn region relative to that of the


0.80 - 1. 00 gm region (Hovis 1977). 

A B 

Rank Ordered 
r 2 's 

Wavelength(/Am) ank Ordered 
r2 's 

Wavelength
(im) 

1 0.72 0.80 1.00 1 0.78 0.80-0.82 

2 0.72 0.81 1.00 2 0.78 0.80 -0.81 

3 0.72 0.82  1.00 3 0.78 0.80 -0.83


4 0.71 0.83 1.00 4 0.77 0.80 -0.84 

5 0.71 0.84- 1.00 5 0.77 0.80 -0.85 

6 0.71 0.85 1.00 6 0.75 0.80 -0.86 

7 0.70 0.86 1.00 7 0.75 0.80-0.87 

8 0.69 0.87 -1.00 8 0.75 0.80 - 0.88 

9 0.68 0.88 - 1.00 9 0.75 0.80 -0.89 

10 0.67 0.89 - 1.00 10 0.75 0.80 -0.90 

11 0.66 0.90 1.00 11 0.75 0.80-0.91 

12 0.65 0.91 - 1.00 12 0.75 0.80 -0.92 

13 0.63 0.92 - 1.00 13 0.75 0.80 -0.93 

14 0.61 0.93 1.00 14 0.74 0.80 -0.94 

15 0.59 0.94 1.00 15 0.74 0.80 - 0.95 

16 0.57 0.95 1.00 16 0.73 0.80-0.96 

17 0.54 0.96 1.00 17 0.73 0.80 -0.97 

18 0.49 0.97 -1.00 18 0.72 .0.80 -0.98 

19 0.40 0.98 - 1.00 19 0.72 0.80 -0.99 

20 0.33 0.99 - 1.00 20 0.72 0.80 -1.00 
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Table A8



Within Band Simulation Results for TM-1. (A) is for 0.45 -- 0.52gm


and (B) is for 0.45 --0.52 gm 

June (n = 85) September (n 40) 

Rank Ordered Wavelength Rank Ordered Wavelength 
r 2 's (rrn) rI s (UM) 

A 

1 0.71 0.48 -0.52 1 0.69 0.45 0.52 

2 0.70 0.47 0.52 2 0.68 0.46 - 0;52 

3 0.70 0.46 -0.52 3 0.67 0.47 - 0.52 

4 0.69 0.49- 0.52 4 0.66 0.48 0.52 

5 0.69 0.45 - 0.52 5 0.63 0.49 - 0.52 

6 0M67 0.50 - 0.52 6 0.59. 0.50 - 0.52 

7 0.65 0.51 - 0.52 7 0.52 0.51  0.52 

B 

1 0.69 0.45 - 0.51 1 0.73 0.45 0.50 

2 0.69 0.45 - 0.52 2 0.72 0.45 0.49 

3 0.69 0.45 - 0.50 3 0.72 0.45 - 0.51 

4 0.66 0.45 - 049 4 0.71 0.45 -0.47 

5 0.63 0.45  0.48 5 0.71 0.45  0.48 

6 0.58 0.45 - 0.47 6 0.69 0.45 - 0.52 

7 0.55 0.45  0.46 7 0.68 0.45 - 0.46 
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Table A9


Within Band Simulation Results for T1V-2. (A) is for 0. 52 -* 0.60 pm



and (B) is for 0.52 *- 0.60pm 

June (n = 35) September (n = 40) 

Ran Ordered Wavelength Rank Ordered Wavelength 
r 2 ' s (pm) r 2 ' s (pin) 

A 

1 0.87 0.59 - 0.60 1 0.43 0.59 - 0.60 

2 0.87 0.58 - 0.60 2 0.43 0.58 0.60 

3 0.86 0.57 - 0.60 3 0.40 0.57 - 0.60 

4 0.85 0.56 - 0.60 4 0.37 0.56 - 0.60 

5 0.84 0.55 - 0.60 5 0.34 0.55 - 0.60 

6 0.83 0.54 0.60 6 0.33 0.54 0.60 

7 0.80 0.53 - 0.60 7 0.33 0.52 - 0.60 

8 0.79 0.52 - 0.60 8 0.32 0.53 - 0.60 

B 

1 0.79 0.52 - 0.60 1 0.37 0.52 - 0.53 

2 0.77 0.52 - 0.59 2 0.33 0.52 - 0.60 

3 0.74 0.52 - 0.58 3 0.30 0.52 - 0.59 

4 0.70 0.52 - 0.57 4 0.30 0.52 - 0.54 

5 0.66 0.52 - 0.56 5 0.27 0.52 - 0.58 

6 0.61 0.'52 - 0.55 6 0.27 0.52 - 0.55 

7 0.61 0.52 - 0.54 7 0.26 0.52 - 0.56 

8 0.56 0.52 -0.53 8 0.25 0.52 - 0.57 
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Table A10 
Within Band Simulation Results for TM-3. (A) is for 0.63 -+ 0.69gm 

and (B) is for 0.63 - 0.69gm 

June (n = 35) September (n = 40) 

Rank Ordered Wavelength Rank Ordered Wavelength 
r 2 's ([m) r 2 ls (ftm) 

A 

1 0.92 0.65 - 0.69 1 0.71 0.64 0.69 

2 0.91 0.66 - 0.69 2 0.71 0.65 0.69 

3 0.91 0.67 - 0.69 3 0.70 0.66 - 0.69 

4 0.88 0.68 - 0.69 4 0.70 0.63 - 0.69 

5 0.88 0.63 - 0.69 5 0.69 0.67 - 0.69 

6 0.87 0.64. 0.69 6 0.62 0.68 - 0.69 

B 

1 0.89 0.63 0.64 1 0.71 0.63 - 0.68 

2 0.88 0.63 - 0.69 2 0.70 0.63 - 0.69 

3 0.87 0.63 - 0.68 3 0.70 0.63 - 0.67 

4 0.85 0.63 - 0.67 4 0.69 0.63 - 0.66 

5 0.81 0.63  0.66 5 0.67 0.63 - 0.65 

6 0.74 0.63 -0.65 6 0..62 0.63 -0.64 
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Table All 

Within Band Simulation Results for TM-4 for the June Infrared Data (n = 33). 
(A) is for 0.76 - 0. 90Am and (B) is for 0.76 *- 0.90gm 

Rank Ordered 
r 2 's 

Wavelength 
(AM) 

Rank Ordered 
r 2 's 

Wavelength 
(AiM) 

A B 

1 0.78 0.76 - 0.90 1 0.80 0.76 - 0.77 

2 0.78 0.77 - 0.90 2 0.80 0.76 - 0.78 

3 0.78 0.78 - 0.90 3 0.80 0.76 - 0.80 

4 0.77 0.79 - 0.90 4 0.80 0.76 - 0.79 

5 0.77 0.80 - 0.90 5 0.79 0.76 - 0.81 

6 0.77 0.81 - 0.90 6 0.79 0.76 - 0.82 

7 0.77 0.85 - 0.90 7 0.79 0.76 - 0.83 

8 0.77 0.82 - 0.90 8 0.79 0.76 - 0.84 

9 0.77 0.83 - 0.90 9 0.78 0.76 - 0.85 

10 0.76 0.84 - 0.90 10 0.78 0.76 - 0.86 

11 0.76 0.86  0.90 11 0.78 0.76  0.87 

12 0.76 0.87 - 0.90 12 0.78 0.76 - 0.88 

13 0.76 0.88  0.90 13 0.78 0.76  0.89 

14 0.75 0.89 - 0.90 14 0.78 0.76 -0.90 
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Table A12 
Within Band Simulation Results for Colvocoresses' Band-i. (A) is for 

0.47-) 0.57gm and: (B) is for 0.474- 0.57gm 

June (n = 35) -September (n = 40) 

Rank Ordered 
r 2ts 

Wavelength
(Pm) 

Rank Ordered 
r 2 t s 

Wavelength 
(pm) 

A 

1 0.81 0.56  0.57 1 0.43 0.47  0.57 

2 0.79 0.55 - 0.57 2 0.40 0.48  0.57 

3 0.76 0.54-0.57 3 0.37 0.49 0.57 

4 0.72 0.53  0.57 4 0.33 0.50  0.57 

5 0.71 0.47  0.57 5 0.29 0.51 - 0',57 

6 0.71 0.48 0.57 6 0.25 0.52  0.57 

7 0.71 0.49 0.57 7 0.23 0.56 - 0.57 

8 0.70 0.52  0.57 8 0.23 0.53  0.57 

9 0.70 0.50  0.57 9 0.22 0.54 - 0.57 

10 0.70 0.51 - 0.57 10 0.21 0.55 - 0.57 

B 

1 0.71 0.47  0.50 1 0.73 0.47  0.50 

2 0.71 0.47  0.51 2 0.72 0.47  0.49 

3 0.71 0.47  0.57 3 0.71 0.47 - 0.51 

4 0.70 0.47 0.52 4 0.69 0.47  0.48 

5 0.69 0.47  0.53 5 0.67 0.47  0.52 

6 0.69 0.47 0'.56 6 0.62 0.47 0.53 

7 0.69 0.47  0.49 7 0.56 0.47  0.54 

8 0.67 0.47  0.55 8 0.51 0.47  0.55 

9 0.67 0.47  0.54 9 0.46 0.47  0.56 

10 0.60 0.47  0.48 10 0.43 0.47  0.57 
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Table AlS


Within Band Simulation Results for Colvocoresses' Band-2. (A) is for



0.57- 0.70pm and (B) is for 0.57 - 0.70Mm 

June (n = 35) September (n = 40) 

Rank Ordered WavelengthRank Ordered Wavelength 
r 2's (pm) r 2 's (pmo) 

A 

1 0.90 0.65 - 0.70 1 0.68 0.64- 0.70 
2 0.89 0.66 - 0.70 2 0.68 0.63 - 0.70 
3 0.88 0.58 - 0.70 3 0.67 0.62 - 0.70 
4 0.88 0.60 - 0.70 4 0.67' 0.65 - 0.70 
5 0.88 0.59-0.70 5 0.66 0.61- 0.70 
6 0.88 0.57 - 0.70 6 0.66 0.66 - 0.70 
7 0.88 0.61 - 0.70 7 0.65 0.60 - 0.70 
8 0.87 0.62 -0.70 8 0.64 0.59 - 0.70 
9 0.87 0.63 - 0.70 9 0.63 0.67 - 0.70 

10 0.87 0.67 - 0.70 10 0.63 0.58 - 0.70 
11 0.87 0.64 - 0.70 11 0.62 0.57 - 0.70 
12 0.83 0.68 - 0.70 12 0.56 0.68 - 0.70 
13 0.77 0.69 - 0.70 13 0.50 0.69 - 0.70



B 

1 0.88 0.57 - 0.69 1 0.62 0.57 - 0.69


2 0.88 0.57 - 0.64 2 0.62 0.57 - 0.68 
3 0.88 0.57 - 0.68 3 0.62 0.57 - 0.70 
4 0.88 0.57 - 0.63 4 0.60 0.57 - 0.67 
5 0.88 0.57 - 0.62 5 0,58 0.57 - 0.66 
6 0.88 0.57 - 0.70 6 0.55 0.57 - 0.65 
7 0.88 0.57 - 0.67 7 0.53 0.57 - 0.64 
8 0.87 0.57-0.61 8 0.49 0.57- 0.63 
9 0.87 0.57 - 0.66 9 0.46 0.57 - 0.62 

10 0.86 0.57 -0.60 10 0.43 0.57 -0.61


11 0.86 0.57 - 0.59 11 0.40 0.57 - 0.60 
12 0.85 0.57 - 0.65 12 0.38 0.57 - 0.59 
13 0.85 0.57 - 0.58 13 0.34 0.57 - 0.58
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Table A14



Within Band Siinulation Results for Colvocoresses' Band-3 for the June


Infrared Data (n = 33). (A) is for 0.76-1.00#m and (B) is for 0.76 <-1. 00 pm.


The upper limit of 1.00gm was used for these simulations instead of 1.05pn.



A B 

Rank Ordered 
r 2 's 

Wavelength
(Am) 

Rank Ordered 
r2 1s 

-Wavelength 
(Ain) 

1 0.74 0.76 1.00 1 0.80 0.76 0.77 

2 0.74 0.77 1.,00 2 0.80 0.76 0.78, 
3 0.74 0.78-1.00 3 0.80 0.76 0.80 

4 0.73 0.79 1.00 4 0.80 0.76 - 0.79 

5 0.72 0.80-1.00 5 0.79 0.76 - 0.81 

6 0.72 0.81 - 1.00 6 0.79 0.76-0.82 

7 0.72 0.82-1.00 7 0.79 0M76 - 0.83 

8 0.71 0.83-1.00 8 0.79 0.76-0.-84 

9 0.71 0.84-1.00 9 0-78 0.76-0.85 

10 0.71 0.85-1.00 10 0.78 0.76-0.86 

11 0.70 0.86-1.00 11 0.78 0.76 -0.87 
12 0.69 0.87-1.00 12 0.78 0.76 -0.88 

13 0.68 0.88-1.00 13 0.78 0.76 -0.89 

14 0.67 0.89-1.00 14 0.78 0.76 0.90 

15 0.66 0.90 -1.00 15 0.78 0.76 -0.91 

16 0.65 0.91 - 1.00 16 0.78 0.76 -0.92 

17 0.63 0.92 -1.00 17 0.77 0.76 -0.93 

18 0.61 0.93 - k.00 18 0.77 0.76 -0.94 

19 0.59 0.94 -1.00 19 0.77 0.76 -0.95 

20 0.57 0.95 -. 00 20 0.76 0.76 -0.96 

21 0.54 0.96 1.00 21 0.76 0.76 - 0.97 

22 0.49 0.97 -1.00 22 0.75 0.76 - 0.98 

23 0.40 0.98 - f.'O0 23 0.75 0.76  0.99 

24 0.33 0.99 -1.00 24 0.74 0.76 -1.00 
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Table A15 

Within Band Simulation Results for SPOT-1. (A) is for 0.50 -+0.59 m and 
(B) is for 0.50 <0.59 gm. 

June (n = 35) September (n 40) 

Rank Ordered Wavelength Rank Ordered Wavelength 

r 2 's (prn) r 2 's (Am) 

A 

1 0.87 0.58 - 0.59 1 0.42 0.58 - 0.59 

2 0.86 j 0.57 - 0.59 2 0.38 0.57 - 0.59 

3 0.85 0.56 0.59 3 0.35 0.50 - 0.59 

4 0.83 0.55 0.59 4 0.34 0.56 0.59 

5 0.81 0.54- 0.59 5 0.32 0.51 0.59 

6 0.78 0.53 - 0.59 6 0.31 0.55 - 0.59 

7 0.77 0.52 0.59 7 0.30 0.52 - 0.59 

8 0.76 0.51 - 0.59 8 0.30 0.54 - 0.59 

9 0.76 0.50 - 0.59 9 0.29 0.53 - 0.59 

B 

1 0.76 0.50 0.59 1 0.64 0.50 - 0.51 

2 0.73 0.50 - 0.58 2 0.59 0.50 - 0.52 

3 0.70 0.50-0.57 3 0.52 0.50-0.53 

4 0.68 0.50 - 0.51 4 0.44 0.50 -0.54 

5 0.67 0.50 0.52 5 0.39 0.50 - 0.55 

6 0.67 0.50 - 0.56 6 0.35 0.50 - 0.56 

7 0.65 0.50 - 0.53 7 0.35 0.50 - 0.59 

8 0.63 0.50 0.55 8 0.33 0.50-0.58 

9 0.62 0.50 0.54 9 0.33 0.50 - 0.57 
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Table A16 

Within Band Simulation Results for SPOT-2. (A) is for 0.61-4 0.69 pm and 
(B) is for 0. 61 <-0. 69gm. 

June (n = 35) September (n = 40) 

Rank 
Ordered 

r2 ' s 
Wavelength 

(AMn) 
Rak 
R 

Ordered 
r 2's J Wavelength 

(pm)-

A 

1 0.92 0.65-0.69 1 0.71 0.64-0.69 

2 0.91 0.66 0.69 2 0.71 0.65 -0.69 

3 0.91 0.67-0.69 3 0.70 0.66 -0.69 

4 0.88 0.61 - 0.69 4 0.70 0.63 -0.69 

5 0.88 0.62 0.69 5 0.69 0.62 -0.69 

6 0.88 0.68 0.69 6 0.69 0.67 -0.69 

7 0.88 0.63-0.69 7 0.68 0.61 -0.69 

8 0.87 0.64,-0.69 8 0.62 0.68 -0.69 

B 

1 0.89 0.61-0.62 1 0.69 0.61 - 0.68 

2 0.89 0.61 -0.64 2 0.68 0.61-0.69 

3 0.89 0.61- 0,.63 3 0.67 0.61 -0.67 

4 0.88 0.61 -0.69 4 0.65 0.61 - 0.66 

5 0.88 0.61 -0.68 5 0.63 0.61 - 0.65 

6 0.87 0.61-0.67 6 0.61 0.61  0.64 

7 0.85 0.61 - 0.66 7 0.58 0.61  0.63 

8 0.82 0.61 - 0.65 8 0.55 0.61 0.62 
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Table Al7 

Within Band Simulation lesults for SPOT-3 for the 
June Infrared Data (n= 33). (A) is for 0.79- >0.90gm and 

(B) is for 0.79 - 0. 90 pm. 

A B 

Ordered Wavelength Rauk Ordered Wavelength 
Rank r 2 1s (Pm) r 2 ' s (Am) 

1 0.77 0.79 0.90 1 0.80 0.79 - 0.80 

2 0.77 0.80 - 0.90 2 0.79 0.79 - 0.81 

3 0.77 0.81 - 0.90 3 0.79 0.79 - 0.82 

4 0.77 0.82 -0.90 4 0.78 0.79 - 0.83 

5 0.77 0.83 0.90 5 0.78 0.79 - 0.84 

6 0.77 0.84-0.90 6 0.78 0.79 - 0.85 

7 0.76 0.85-0.90 7 0.78 0.79 - 0.86 

8 0.76 0.86 0.90 8 0.78 0.79 -0.87 

9 0.76 0.87 0.90 9 0.78 0.79 - 0.88 

10 0.76 0.88 -0.90 10 0.77 0.79 - 0.89 

11 0.75 0.89 -0.90 11 0.77 0.79 -0.90 
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