
NASA Technical Memorandum 78701

SPAR Data Handling Utilities

Gary L. Giles and Raphael T. Haftka

SEPTEMBER 1978

NASA

NASA Technical Memorandum 78701

SPAR Data Handling Utilities

Gary L. Giles
Langley Research Center
Hampton, Virginia

and

Raphael T. Haftka
Illinois Institute of Technology
Chicago, Illinois

NASA
National Aeronautics
and Space Administration

Scientific and Technical
Information Office

1978

Page intentionally left blank

Page intentionally left blank

CONTENTS

Page
SUMMARY 1

INTRODUCTION 1

SPAR TECHNICAL CAPABILITIES 2

SPAR SYSTEM ORGANIZATION 3

DESCRIPTION OF THE SPAR DATA BASE COMPLEX 4
Library Structure . 5
The Data Set 5
Table of Contents 6
Master Directory 7

DESCRIPTION OF SPAR DATA HANDLING UTILITIES 8
Organization of Data Handling Utilities 9
Functions Performed by Data Handling Utilities 10

GUIDE FOR IMPLEMENTING SPAR DATA HANDLING UTILITIES 12

CONCLUDING REMARKS 15

APPENDIX A - SPAR DATA HANDLING ROUTINES CALLED BY USER PROGRAM 16

APPENDIX B - SPAR ROUTINES TO PERFORM DATA HANDLING SUPPORT
FUNCTIONS 20

APPENDIX C - ROUTINES TO INITIALIZE SPAR PROCESSORS AND READ USER
INPUT 23

APPENDIX D - CONTENTS OF LABELED COMMON BLOCKS 26

APPENDIX E - LISTING OF SAMPLE PROCESSOR 30

APPENDIX F - LISTING FROM INTERACTIVE EXECUTION OF SAMPLE PROCESSOR ... 33

APPENDIX G - DYNAMIC STORAGE ALLOCATION 36

REFERENCES 38

TABLES 39

FIGURES : 42

ill

SUMMARY

The SPAR computer software system is a collection of processors that per-
form particular steps in the finite-element structural analysis procedure. The
data generated by each processor are stored on a data base complex residing on
an auxiliary storage device, and these data are then used by subsequent proces-
sors. The computer software associated with the data base complex provides a
general capability and can be used for management of data in programs or systems
other than SPAR.

This report documents the SPAR data handling utilities, which are routines
used to transfer data between the processors and the data base complex. A
detailed description of the data base complex organization is also presented.
A discussion of how these SPAR data handling utilities are used in an applica-
tion program to perform desired user functions is given with the steps necessary
to convert an existing program to a SPAR processor by incorporating these utili-
ties. Finally, a sample SPAR processor is included to illustrate the use of the
data handling utilities. This information can be used (1) to understand more
clearly and to use more productively the existing processors in the SPAR system,
(2) to develop new SPAR processors, or (3) to use the capabilities of the data
handling utilities in a system totally unrelated to SPAR.

INTRODUCTION

Large volumes of data for a variety of purposes are generated by finite-
element structural analysis procedures. The organization of these data and the
bookkeeping methods used to store and retrieve the data are important considera-
tions in implementing the procedures as computer programs. Several large compu-
ter programs (e.g., NASTRAN® and ATLAS, refs. 1 and 2) contain methods to per-
form these data handling functions. Such analysis programs are often used in
more comprehensive systems, as discussed in references 3 and 4. The data con-
tent, organization, and handling methods must be carefully defined to provide
for communication of data between programs.

The SPAR finite-element structural analysis system (ref. 5) contains a
data base complex with a standardized organization of data and a self-contained
set of data handling utilities used to access the data. These data handling
utilities were developed by W. D. Whetstone and provide a key capability which
contributes to the effectiveness of the SPAR analysis system. The computer soft-
ware associated with the data handling utilities and data base complex is a gen-
eral capability and can be used for management of data in programs or systems
other than SPAR. Data handling functions that can be performed by a SPAR user
are described in the SPAR reference manual (ref. 5).

The purpose of the present report is to extend the available documentation
of the SPAR system by providing a detailed description of the data base complex

organization and the data handling utilities used to communicate with the data
base. A general overview of the technical capabilities and organization of the
SPAR system is given in the beginning sections of the report. Then the contents
and organization of the data base complex are described. A discussion of how
the data handling utilities perform desired user functions in an application
program is given with detailed descriptions of each of the data handling rou-
tines provided in appendixes A to D. A step-by-step procedure to incorporate
these routines into existing programs is given. Finally, a sample program which
contains these routines is included in appendixes E and F to illustrate the use
of the capabilities described herein. This information can be applied to use
the SPAR system more productively, to make additions or modifications to the
existing system, or to use the SPAR data handling utilities and associated pro-
graming practices in computer programs totally unrelated to SPAR.

Use of commercial products and names of manufacturers in this report does
not constitute an official endorsement of such products or manufacturers, either
expressed or implied, by the National Aeronautics and Space Administration.

SPAR TECHNICAL CAPABILITIES

SPAR is an analysis system capable of computing static deflections and
stresses, natural vibration frequencies and modes, and buckling loads and mode
shapes of linear finite-element structural simulations. The structural simula-
tions are composed of finite elements connected at specified joints, which can
have three translational and three rotational components of deflection. Finite
elements which are currently available for simulating the stiffness characteris-
tics of a structure include axial bars, beams of general cross section, triangu-
lar and quadrilateral plates having an option to specify coupled or uncoupled
membrane and bending stiffness, and quadrilateral shear panels. Properties of
the plates may be specified as layers in a laminate of composite materials, and
there is provision for warping of the quadrilateral plate element. Mass proper-
ties of a structure are represented by structural and nonstructural masses asso-
ciated with the stiffness elements and by concentrated masses at the joints.
Loading data can include any or all of the following categories: point forces
or moments acting at the joints, specified joint motions, inertial loading, ther-
mal or pressure loads, and initial strains in individual elements. This tech-
nical capability contained in the SPAR system is available for operation on
Control Data (CDC) 6000 or CYBER 170 Series, UNIVAC 1100 series (ref. 5), or
Prime 400 computer systems (ref. 6).

The finite-element structural analysis procedure is divided into a sequence
of steps or functions which must be performed. The computer code required for
each of these steps is referred to herein as a "processor." Processors are
separate portions of the SPAR system which are selectively executed in a logi-
cal sequence to perform a desired analysis. Each processor is designed to per-
form a limited, yet distinct and complete, function. The functions of each of
the processors in the version of SPAR denoted as level 11 are given in table 1.
The processors TAB through KG read user input, from element matrices, and assem-
ble element matrices into system matrices which represent the overall stiffness
and mass of the structure. Solutions of the system matrix equations are per-
formed by INV through PSF. The EIG and DR processors are used for eigensolu-

tions and dynamics response analyses, respectively. Calculations involving sub-
structuring are performed by SYN and STRP. The remaining processors listed in
table 1 provide three types of functions which are general and not limited to
structural analysis: (1) the arithmetic utility system (AUS) provides general
matrix input and arithmetic capability, (2) the data complex utilities (DCU and
VPRT) manage and print data, and (3) PLTA and PLTB processors perform on-line
and off-line plotting.

A general characteristic of the SPAR processors is their efficiency with
respect to both computer memory and processing time requirements. The method
for handling the large, sparse matrices encountered in finite-element structural
analysis in a manner to achieve this efficiency is described in reference 7.
All the processors make extensive use of auxiliary disk storage and operate with
computer memory which is automatically or dynamically allocated so that large
structural simulations can be analyzed: The method used for eigenvalue and
eigenvector calculations (ref. 8) performs a vibration analysis without first
reducing the number of degrees of freedom being considered. This capability
allows a single simulation to be used for both static and dynamic calculations.

The SPAR system is designed for effective interactive operation via tele-
type and/or graphics terminals. All input is in free-field format, and execu-
tive control commands call selected processors for execution. The related input
data for a given processor is typed in sequentially at a user console keyboard
after successive prompts from the operating system. The computational sequence
is continued by using another executive control command to call the next desired
processor. This flexibility for selective execution of various processors gives
the user considerable versatility in performing structural analyses.

SPAR SYSTEM ORGANIZATION

The organization of the various portions of the SPAR analysis system is
shown schematically in figure 1. User input to the system is indicated with the
executive control commands (@XQT followed by the name of the processor to be
executed) and related input data located sequentially on the input file. This
input file, shown at the upper left of the figure, is a standard input file for
UNIVAC systems, and the CDC and Prime versions of SPAR are also designed to
accept input in nearly identical format.

Names designating each of the processors illustrate the portion of the
system which performs all the analytical computations. Only a single one of
these processors is in central memory of the computer at any time during an
analysis run. For UNIVAC and Prime computers, the processors are separate pro-
grams which are called sequentially by execution commands to the operating sys-
tem (e.g., EXEC-8). For the CDC version of SPAR, all processors are designated
as primary overlays in a single program which has a zero level overlay to call
the processors for execution.

Each processor has a working storage area (shown as a single block applica-
ble to all processors in fig. 1) which contains most of the data that are input
to, calculated by, and/or output from the processor. This working storage area
is implemented as a single large vector located in blank COMMON of the processor.

Numerical values contained in various arrays used by the analysis subroutines
are stacked in this area in vector form. The lengths of these arrays are, in
general, problem dependent and the starting address for each array within the
large vector is calculated internally by each processor. This dynamic storage
allocation feature makes efficient use of the central memory of the computer.

A set of data handling utilities (the same for each processor) is used to
transfer data between the working storage area of the processor in central mem-
ory of the computer and a group of files located on an auxiliary storage device,
as shown in figure 1. This group of files is referred to as the data base com-
plex. Herein the collective term "routines" refers to both the subroutines and
the functions which comprise the data handling utilities and are called by the
processors to perform a variety of data handling tas*s. These utilities perform
all data transfer between processors, since data from one processor are written
on the data base complex and data needed for the next processor are read from
the data base complex. Data transfer takes place directly between a specified
location in the working storage area and a specified location on disk, without
the intermediate, and costly (in both storage and processing time), step of
going through a buffer area in central memory. These data handling utilities
are independent of the type of analyses performed by the processors. A discus-
sion of how these utilities communicate with the data complex is given in a sub-
sequent section of this report, and detailed descriptions of each of the rou-
tines are given in the appendixes.

The data base complex is composed of data files resident on auxiliary
disk or drum storage, as shown at the bottom of figure 1. A maximum of 26
of these data files, each referred to as a "library," are available for use.
Users can elect to store the entire data complex in a single library file.
These files are recognized by the computer operating system as having names
SPARLA ... SPARLZ, as shown in figure 1, for Control Data versions;
SPAR-A . . . SPAR-Z for UNIVAC; and SPLA . . . SPLZ for Prime. The files
are referred to by the SPAR user as libraries 1 to 26, with libraries 1 to 20
available for general use and libraries 21 to 26 reserved for temporary inter-
nal use. These library files can be retained by the user at the end of a run
and the information used in subsequent runs. This data retention is accom-
plished without data reformatting procedures, and the user need not be con-
cerned with the internal structure of the data complex. All libraries con-
tain data in the form of data sets and have an identical organization. A
description of this library organization is given in the next section.

DESCRIPTION OF THE SPAR DATA BASE COMPLEX

The SPAR data base complex is located on auxiliary disk or drum storage
devices. These devices are divided into sectors (containing 28 words on UNIVAC
drums, 55 words on Prime disks, and 64 words on CDC disks), and each read and
write operation must begin at the beginning of a sector. Therefore, the loca-
tion of all data in the data base complex is given in terms of a library number
and a relative sector number within that library. The contents of a library
file in the data base complex are described in this section, and the data han-
dling routines used to create and access the data are described in a subsequent
section. Information concerning the contents of the library is similar to that

contained in the SPAR reference manual (ref. 5) but is included herein because
it serves as a necessary background to the understanding of the data handling
routines.

Library Structure

A set of data in the SPAR data base complex is referred to by giving the
library number and a unique name assigned to that data set. A procedure to
relate the data set names to a corresponding relative sector location on disk
is provided by the data handling utilities. Information on a SPAR library
includes tables necessary to locate the analytical data in addition to the ana-
lytical data itself. The structure and contents of this information are shown
schematically in figure 2. The structure is a three-level hierarchy. The top
level is a master directory which contains the locations of a set of tables of
data set names and their corresponding locations. These tables are collectively
referred to as a table of contents (TOC), which is separated into as many as
61 segments, as indicated in figure 2. Each of the segments in a table of con-
tents contains information to describe and locate up to 32 data sets (shown as
the bottom level for only the first segment), which contain the analytical data
values. This structure of the master directory, table of contents, and data
sets on the same library makes each library a self-contained entity independent
of the processors and the other libraries.

When a user wants to read a data set from the data complex, the library
number and the data set name are all the information that is needed. The seg-
ments of the TOC for the specified library are searched automatically until a
match with the data set name is found. The disk address and size of the speci-
fied data set are contained in the TOC line, and that information is used in
reading the data into central memory.

The contents of a library are stored in sequential relative sectors of the
library file. The master directory begins at relative sector zero followed by
the first segment of the table of contents and then its corresponding data sets.
Subsequent segments of the table of contents and data sets are repeated sequen-
tially to the end of the library. Therefore, a maximum of 61 x 32 = 1952 indi-
vidually named data sets can be stored on a single library file. Utilities
exist in SPAR to store complete libraries as a single data set inside another
library (nesting of libraries) so that a user can organize data in a heirarchy
of libraries if desired. These nested libraries must be reconstituted into
separate libraries before the individual data sets can be accessed.

The overall structure of a library has been described starting at the top
level shown in figure 2. A detailed description of the contents of each of the
levels follows, starting at the bottom level with data sets, then the table of
contents, and finally the master directory.

The Data Set

The data in a library are stored as a series of computer words. A SPAR
data set is a grouping of one or more words which are stored in a library and

which can be referred to or accessed as a single entity. The contents and organ-
ization of the words within a data set are determined by the user or programer
who originates the data set. All data that are communicated among SPAR proces-
sors are handled in terms of data sets.

The data sets are identified by a four-word name: NAME!, NAME2, NAME3, and
NAME4. The words NAME! and NAME2 contain up to four alphanumeric characters,
and NAMES and NAME4 are integers. The following are examples of valid names:

JLOC BTAB 2 5

K SPAR 36 0

VIBR MODE 1 1

The names may be used to indicate the contents of the data sets; for example,
the first example above is used to refer to joint locations; the second, to the
assembled structural stiffness matrix; and the third, to natural vibration mode
shapes.

A data set may contain a large number of words, and situations may arise
when it is desirable to read or write only a few of these words at a time. For
example, when handling very large data sets, such as the assembled stiffness
matrix, it is often desirable to read or write the data set after it has been
broken down into a series of smaller blocks. Each block within the data set is
stored beginning at a new disk sector so that it can be accessed individually.

A standard form is used for all data sets contained in the libraries. Each
data set is composed of a number of blocks, and each block may be interpreted as
a two-dimensional matrix, as illustrated in figure 3. These matrices are dimen-
sioned (NI,NJ), and each block length is always NI times NJ. The information
within each block is ordered by column when stored on the disk. Each block
begins at a new sector. If the block length is not an integral multiple of the
sector length, some unused disk storage results at the end of each block, as
illustrated in the figure. The example shown in figure 3 could refer to vibra-
tion mode shapes with six degrees of freedom at seven joint locations. Each new
mode shape would start at the beginning of a new sector and could be accessed
individually.

Table of Contents

A table of contents (TOC) is used to store and relate the names, disk
addresses, and characteristics (size, type, etc.) of all data sets resident in
the data base complex. A TOC exists for each library that is used. A listing
of a typical TOC is shown in table 2. Such a listing is produced by a SPAR
utility processor and provides a concise summary of the data produced by a
given computer run.

A TOC listing contains one line or row per data set with each line contain-
ing 12 entries, as shown in table 2. The first column, denoted SEQ, provides a
sequence number for each of the data sets and is not actually stored as one of

the 12 entries. The four-word data set name (shewn as NI, N2, N3, and N4 in
table 2) is given as the last four entries and is used to identify a particular
data set. A description of the first eight entries for a data set are given in
the following table (from ref. 5):

TOG item Description

RR Disk address pointer to first word of data set at beginning of a new
sector; a preceding minus sign means that the data set has been
"disabled" (still resident on disk but cannot be accessed)

DATE Date of insertion

TIME Time of entry into the processor which inserted the data set into
the library

ER Error code:
0 no error detected during generation of the data set
1 minor error
2 fatal error

-1 incomplete data set

WORDS Total number of words in the data set; data sets are generally com-
prised of a sequence of physical records, or "blocks"; each block
is a two-dimensional matrix dimensioned (NI ,NJ), i.e., NI rows,
NJ columns; the block length is always NI*NJ

NJ See above

NI*NJ See above

TY Type code:
0 integer

-1 real
-2 double precision
4 alphanumeric

An understanding of the information contained in a TOG is necessary for
using the data handling routines in a user program to access the data sets.
Several TOC entries are used as parameters or arguments which are passed to
the routines at execution time. When TOC information is needed in central
memory, it is stored in COMMON block CLIB, as described in appendix D.

Master Directory

A SPAR library begins at sector zero with MASTER, a 64-word array, which
is the master directory for that library. This array contains the following
information:

MASTER(l) Number of the first unused sector in the library (the upper end
of the file)

MASTER(2) Number of TOC segments currently in the library

MASTER(3) Number of data sets per segment (presently fixed at 32)

MASTER(3+N) Sector number of beginning of TOC for Nth segment

Since MASTER is a 64-word array, the maximum number of segments that a library
may contain is 61. The values of MASTER(I) and MASTER(2) are updated as data
are added to the library.

As indicated, each library is self-contained, with MASTER containing point-
ers to TOC's for each segment and each TOC segment containing pointers to the
data sets. Utilities exist in SPAR to store complete libraries as a data set
(nesting of libraries), so that an unlimited number of data sets can be stored
on a single library if desired.

Any data sets to be added to the library are written at the upper end of
the file at the relative sector number given in MASTER(l). If a data set with
the same name as the new one already exists on the library, the old one is dis-
abled (indicated in the TOC by a minus sign appended to the relative sector num-
ber). When master directory information is needed in central memory, it is
stored in COMMON block CLIB, as described in appendix D.

DESCRIPTION OF SPAR DATA HANDLING UTILITIES

There are two basic ways of communicating with the SPAR data complex. The
first is to use the utility processors included in SPAR, and the second is to
use the SPAR data handling routines directly to create new processors.

The first method is useful for performing general utility operations such
as entering data created by other programs into the SPAR data complex, printing
data sets, or moving data sets between libraries.

The data complex utility (DCU) provides the capability to print tables of
contents as well as individual data sets. A COPY command is provided to trans-
fer specified data sets between libraries. This capability is very useful in
saving selected information between runs. The XCOPY and the XLOAD command are
used to copy data sets from the direct-access libraries to sequential files and
vice versa. These sequential files can then be used to interface other programs
with the SPAR system or can be stored on magnetic tape for future use. Commands
are also available in DCU for disabling and enabling or changing names of data
sets and for nesting and reconstituting SPAR libraries. The arithmetic utility
system (AUS) provides for input of user-defined data sets into the library, as
well as general matrix arithmetic operations with any of the data sets. This
mode of working with data sets in the data complex is described in the SPAR ref-
erence manual (ref. 5) and provides the flexibility to use the SPAR system in
"nonstandard" applications.

The second method involves embedding statements to call the data handling
routines directly in the user program. This method is desirable for the pro-
gramer who is writing new SPAR processors, modifying existing ones, or possibly
using the data complex to handle data in a system which is totally unrelated to
SPAR. An overview of available routines and the functions they perform in a
user program is given in this section. Detailed descriptions of these routines
are given in appendixes A and B.

<~c

Organization of Data Handling Utilities

The purpose of the data handling utilities is to perform all data communica-
tion between the SPAR libraries on disk storage and the user processors in cen-
tral memory. The relationships of the routines used for this purpose are shown
schematically in figure 4. The directions of the arrows between routines in the
figure indicate that the routine at the tail of the arrow is called by the rou-
tine at the head of the arrow to perform some desired function!.

A user processor normally makes direct use of only the five routines (RIO,
DAL, LTOC, TOCO, and FIN) shown at the top of figure 4. The routines RIO and
DAL transfer (read and write) the contents of the data sets between disk and
central memory. The routines LTOC and TOCO retrieve information from segments
of the table of contents^. This TOC information is often needed in calls to RIO
and DAL. Finally, FIN closes all files at the end of a successful exit from a
user program or processor or aborts a run after a fatal error is discovered.

Reading or writing on the disk is performed by the routine WR. In the
UNIVAC version, WR is an assembler routine, whereas in the CDC version it is a
FORTRAN routine that calls six COMPASS routines which were adapted from the
NASTRAN program (ref. 1). The Prime version has routines written in the FORTRAN
language to perform the reading and writing. The SPAR utility routine STATIC
calls such routines for each computer system to perform the function of opening,
rewinding, closing, and reading information into the file environment table
(FET) for each file in the library. Other routines are called by RIO through
WR to perform all the read and write operations directly between disk and cen-
tral memory.

The four routines (MATCH, NTOC, RDIND, and WRTIND) shown in the center of
figure 4 perform the functions necessary to store, interrogate, and retrieve
information from the table of contents. To make efficient use of central mem-
ory, only the master directory and a single segment of the table of contents
for each of two libraries are resident in central memory at any one time. There-
fore, the master directory and table of contents information, required to locate
a specified data set, must be read into central memory from disk and, if changed,
must be written back onto disk before a new set of information is requested.
The NTOC routine contains logic for performing these exchanges and calls RDIND
and WRTIND for reading and writing of the table of contents segments. The MATCH
routine searches successive segments of a table of contents until a match with a
set of four specified data set names is found.

The use of the routines RIO, DAL, LTOC, TOCO, and FIN is discussed in
the next section, and detailed descriptions are given in appendix A. Detailed

descriptions of the other utility routines shown in figure 4 are given in
appendix B.

Functions Performed by Data Handling Utilities

In this section a description is given for using RIO, DAL, LTOC, TOCO,
and FIN to perform desired functions within a user program or processor. A
general discussion of these routines is given by user function, and the formal
parameters used to call the routines are described in appendix A.

Creating data sets.- Data sets that contain only one block may be created
with a single call to DAL. For example,

CALL DAL(1,1,KA,0,1,KADR,IERR,88,1,88,0,4HCUCU,4HCUCU,1,0)

creates a data set with the four-word name CUCU CUCU 1 0 in library 1 and writes
into it the first 88 words of the array KA. On return KADR contains the first
sector number for this data set.

If a data set contains more than one block, it may be created by a call
to DAL to open the data set, followed by several calls to RIO to write out the
individual blocks of the data set. For example, to create a data set contain-
ing the array TRID(5,10,7) such that the last index is the block number, the
following sequence of FORTRAN statements is used:

CALL DAL(NU,0,TRID,KORE,IEA,KADR,IERR,350,10,50,-!,4HTRID,4HARRY,0,7,)
DO TOO 1=1,7

100 CALL RIO(NU,10,2,KADR,TRID(1 ,1,1) ,50)

The first call to DAL opens a data set called TRID ARRY 0 7 and specifies
its parameters (number of words, block size, etc.); KADR is returned with the
sector number where the data set is to be written. Note that DAL is used with
IOP=0 (see DAL description in appendix A for definition of IOP), so that not a
single word of the data set is actually written into storage. The seven calls
to RIO transfer the seven blocks of TRID into storage.

Sometimes the number of blocks or the block size that is to be written on
a data set is not known ahead of time. In this case any numbers (or zeros) may
be used for these parameters in the initial call to DAL to open the data set.
Later after all the blocks of that data set have been written into storage,
another call to DAL (CALL DAL(NU,-1 . . .)) is used to change the parameters of
the TOC for the data set. Care should be taken to avoid calling DAL to open or
write another data set into the same library before the first data set has been
completely written by appropriate calls to RIO.

Reading data sets.- The first block in a data set may be read by calling
DAL with IOP=11. For example, the statement

CALL DAL(1,11,KA,KORE,IEA,KADR,IERR,NWDS,NE,LB,ITYPE,4HCUCU,4HCUCU,1,0)

10

reads into central memory at beginning location KA the first block of the data
set CUCU CUCU 1 0. Additionally, the data set parameters NWDS, NE, LB, and
ITYPE are returned and KADR is set to be the first sector number of the data
set. If several blocks of a data set are to be read starting from the first
one, the sector number of the first block in the data set must be found and
then RIO used to read the data set block by block. This information may be
obtained by using the subroutines DAL or TOCO or the function LTOC. For exam-
ple, the first sector number of data set TRID ARRY 0 7 is placed in KADR by
either of the following three sequences:

(i) KADR = LTOC(NU,1,4HTRID,4HARRY,0,7)

(ii) CALL DAL(NU,10,KA,KORE,IEA,KADR,IERR,NWDS,NE,LB,ITYPE,4HTRID,4HARRY,0,7)

(iii) COMMON/TOCLIN/LINE(12)
NA4(1) = 4HTRID
NA4(2) = 4HARRY
NA4(3) = 0
NA4(4) = 7
NLINE = 0
CALL TOCO(NU,NA4,1,NLINE)
KADR = LINE(l)

In (i), only the desired single parameter KADR is obtained. In (ii), the other
data set parameters (NWDS, NE, LB, and ITYPE) are also returned. The third
sequence (iii), using TOCO, gives the most extensive information, as all 12 TOC
entries are placed in COMMON/TOCLIN/LINE (1 2) .

Once the sector number for the first block is obtained, RIO may be used
to read several blocks. For example, to read 7 blocks each of 50 words into
the array TRID(5,10,7) starting at sector number KADR, the following sequence
is used:

DO TOO 1=1,7
100 CALL RIO(NU,20,2,KADR,TRID(1,1,I) ,50)

Reading or modifying a part of a data set.- At times, it is desirable to
read or modify only a few words of a data set rather than the entire data set.
This action is particularly important when the data set is very large. It is
relatively simple to read or modify an entire block of a data set; it is
slightly more complicated to read or modify part of a block.

To read or modify one block of a data set, the sector number of the first
word of the block (each block begins at the beginning of a sector) must be
located. The first step is to locate the sector number KADR where the data
set starts. This may be done by using subroutines DAL or TOCO or function LTOC.
(See example in section "Reading data sets.") The second step is to calculate
the sector number of the block. If the Nth block is needed and the block size
is LB words (LB is obtained with a procedure similar to that for obtaining KADR,
as discussed in the previous section), then the sector number of the block is
obtained by the FORTRAN statement

11

KSHFT = (N-1)*NSECTS(LB)+KADR

where the SPAR function NSECTS returns the number of sectors required for LB
words. A call to RIO may now be used to read or write this block.

If a block is composed of several sectors, it may be desired to read or
modify one sector of the block. For a data set beginning at sector KADR (see
previous subsection for information on obtaining KADR) and having a block size
of LB, the sector number KSHFT containing the Mth word of the Nth block is
obtained by the FORTRAN statement

KSHFT = KADR+(N-l)*NSECTS(LB)+NSECTS(M)-1

The desired word is the Lth word in the sector, where L is obtained by

L = M-(NSECTS(M)-1)*LSECT

and the sector length LSECT resides in COMMON/CINDEX/INDEX(7),LSECT (where
LSECT = 28, 55, and 64 for UNIVAC, Prime, and CDC, respectively). Finally,
RIO is used to read the sector into central memory, say into array KA, with
the following statement:

CALL RIO(NU,2,2,KSHFT,KA,LSECT)

If RIO is used to change a data set, it is recommended practice to call
DAL(NU,-1,...). This call changes the date and the time in the TOC for the
altered data set and alerts the user that an alteration has been made.

Closing data files.- The last operation in each user program or processor
is to close the files used by the processor. This operation is performed by
using CALL FIN(0,0). Calling this routine insures that the library files which
are generated by a processor are accessible to the subsequent processors.

Detailed descriptions of routines.- The definitions of formal parameters
used in statements to call data handling routines which interface with user pro-
grams are given in appendix A. Similar descriptions of routines to perform data
handling support functions and to initialize SPAR processors and read informa-
tion from the input file are presented in appendixes B and C, respectively.
Data (in addition to formal parameters) are also communicated between these
routines through labeled COMMON blocks, and the contents of these blocks are
defined in appendix D.

The routines described in appendixes A to C form a self-contained software
package that can be used effectively in any engineering applications program or
system. Examples of use of this SPAR software can be found throughout the list-
ings of the SPAR processors.

GUIDE FOR IMPLEMENTING SPAR DATA HANDLING UTILITIES

Many computer programs presently exist and new ones are being developed
to perform a variety of engineering analysis and design tasks. One approach

12

to producing a better product using this capability is to collect all applica-
ble computer programs into a software system that can be used for extensive
analysis of that product. Such software systems require communication of data
among the various programs, and this section describes the steps necessary to
convert existing programs so that they can use the SPAR data handling utilities
for this purpose. Similar logical steps could be used in designing new programs
which are intended to use this data management capability. The steps are

(1) Divide the existing program or process into the lowest level group of
functions that the user might be interested in performing. It is important that
this division be made on a functional rather than a computer programing basis.
An example of how the finite-element structural analysis procedure was divided
into processors is given in table I1. The computer code required for each of
these functions is referred to as a module or processor. These processors
should be designed to operate as independent programs for UNIVAC and Prime ver-
sions or as primary overlays on CDC versions. All data transfer should be han-
dled through the data base complex. The zero-level overlay for the new system
would have to be able to recognize the executive control command (IXQT on CDC
and Prime and @XQT on UNIVAC) for the name of each processor and call it into
central memory for execution.

(2) Convert the processor to use dynamic allocation of blank COMMON area
in central memory for working storage for all problem-size dependent arrays.
This step is not necessary but is very desirable to provide efficient use of
central memory. An example of dynamic storage allocation is shown in appen-
dix G. Conversion of an existing program generally requires a new subroutine
to set up starting addresses for arrays in blank COMMON and to call existing
subroutines using these blank COMMON addresses in the calling sequences!. The
other subroutines that are called must be altered to provide the proper respec-
tive formal parameters in the subroutine statement and to provide dimension
statements indicating that these parameters are array names. This programing
technique can result in considerable savings of computer resources compared
with programs containing arrays with fixed dimensions.

(3) Identify all input and output data for the program or processor. Input
data include both user-supplied input for the processor and data sets which have
been generated by other processors and are available for use from the data base
complex. Output data refer to named data sets which are to be written on the
data libraries so they can be used by subsequent processors. No special consid-
erations are required for printed output. Handling of user-supplied data is
discussed in steps (6) and (7), and input and output of data sets to and from
the data base complex are discussed in steps (4) and (5). Four-word names must
be assigned to each of the data sets to be written onto the data base complex.

(4) Examine size characteristics of each data set to determine whether
the set can be handled most efficiently in a single block or in multiple blocks.

(5) Insert statements into the processor to call the appropriate data han-
dling routines. As mentioned in the section describing functions performed by
the data handling routines, LTOC and TOCO are often used to get size information
for existing data sets for use in allocating blank COMMON storage. The DAL rou-

13

tine is used to handle data sets contained in a single block. A combination of
DAL and RIO is used to handle data sets with multiple blocks.

(6) Provide a call to the RSET routine (see appendix C) at the beginning
of each processor. A DATA statement must be set up which specifies the name,
type (integer, real, or alphanumeric), and default value of each parameter to
be used in a RESET statement for the processor. RESET parameters are used to
provide an option for the user to specify parameter values which control execu-
tion of the processor, such as the library numbers or names of input and/or
output data sets, scale factors, iteration controls, and selection of case or
condition numbers. The routine RSET causes calculation and printing of the
current amount of blank COMMON available in central memory (which is a function
of user-specified field length for CDC versions). This value can be compared
with that dynamically allocated for required use by each processor.

(7) Replace all statements which read data from the input file with calls
to the READER routine. This routine provides a standard method of reading all
input records in a free-field format; Use of a free-field format is particu-
larly desirable when entering data from an interactive terminal and simplifies
user documentation for a processor. Calls to the READER routine can be used
to read tables or vectors and arrays of user input data; however, an alternate
method is recommended. The alternate method is to use the data set construction
capability of the AUS utility of SPAR to insert the required data sets into the
data base complex before calling the processor which uses them. For example,
this method is used in the present SPAR system to input data sets containing
applied-loading information.

(8) Provide a call to the FIN routine at the end of each processor to close
all files which are used!. Routine FIN also causes printing of the time on the
clock measuring CPU time for the job as well as a cumulative count of times
data were written onto disk or read into central memory during execution of a
processor. This information provides the user some measure of performance for
each processor for the application being made.

(9) Compile and load the source of the processors to form executable files.
For UNIVAC and Prime versions, each processor is a separate executable file.
For CDC versions, the processors can be grouped into overlaid programs (not
necessarily a single overlaid program). Since the processors all communicate
through the data base complex, they can be called in the desired sequence to
perform a particular set of calculations.

(10) Provide user documentation for the processor. User documentation is
written as a self-contained section for each processor. The information in
each section includes (a) the function of the processor, (b) a description of
the RESET parameters, (c) names of input and output data sets for the processor,
(d) central memory requirements (blank COMMON working area) given in terms of
variables that are generally problem size dependent, and (e) code release infor-
mation giving version of program, date coded, and originator of code.

14

CONCLUDING REMARKS

The SPAR computer software system is a collection of processors that per-
form particular steps in the finite-element structural analysis procedure. The
data generated by each processor are stored on a data base complex residing on
an auxiliary storage device, and these data are then used by subsequent proces-
sors. The organization of the data base complex provides significant benefits
to the user, such as reference to data by alphanumeric names and automatic
"bookkeeping" procedures for the data; expedites communication of data with
programs external to SPAR; and simplifies retention of data between separate
computer runs. The computer software associated with the data base complex
provides a general capability and can be used for management of data in pro-
grams or systems other than SPAR.

This report documents the SPAR data handling utilities, which are routines
used to transfer data between the processors and the data base complex. A
detailed description of the data base complex organization is also presented.
A discussion of how these SPAR data handling utilities are used in an applica-
tion program to perform desired user functions is given with the steps necessary
to convert an existing program to a SPAR processor by incorporating these utili-
ties. Finally, a sample SPAR processor is included to illustrate the use of the
data handling utilities. This information can be used (1) to understand more
clearly and to use more productively the existing processors in the SPAR sys-
tems, (2) to develop new SPAR processors, or (3) to use the capabilities of the
data handling utilities in a system totally unrelated to SPAR.

Langley Research Center
National Aeronautics and Space Administration
Hampton, VA 23665
June 19, 1978

15

APPENDIX A

SPAR DATA HANDLING ROUTINES CALLED BY USER PROGRAM

There are primarily five data handling routines that are needed in user
.programs to communicate with the data base complex. The RIO routine is the
basic input/output routine in this group and handles data sets with multiple
blocks or reads or writes information within a block. Routine DAL is used to
open new data sets, to read and write data sets contained in a single block,
and to modify TOC entries. Routines LTOC and TOCO are used to read information
from the table of contents. Routine FIN is used to close all files at the end
of a processor. A description of the formal parameters used for each of these
routines (identified as either a subroutine or a function) is given in this
appendix. In addition, the information contained in labeled COMMON blocks to
communicate information between these routines is given in appendix C.

Subroutine RIO(NU,IWR,IOP,KSHFT,KA,L)

Subroutine RIO reads or writes L words from or into library NU.

IWR Operation code (user specified):
1 wr i te
2 read

10 write and return next sector number in KSHFT
20 read and return next sector number in KSHFT

IOP Disk location code (user specified):
1 reads or writes at the disk sector number defined by adding

KSHFT to last used sector number
2 reads or writes at sector number KSHFT
3 writes at first unused sector

KSHFT Sector number or shift - see IOP (user specified and returned)

KA Starting central memory address for I/O (user specified)

L Number of words to be written or read (user specified)

Subroutine DAL(NU,IOP,KA,KORE,IEA,KADR,IERR,NWDS,NE,LB,

ITYPE,NAME1,NAME2,NAME3,NAME4)

Subroutine DAL reads or writes a data set identified by the name NAME!,
NAME2, NAME3, NAME4, from or into library NU. Additionally, DAL can initialize,
change, or retrieve some of the parameters defining the data set. The name of
the data set is composed of two alphanumeric words having up to four characters
(NAME! and NAME2) and two integers (NAME3 and NAME4). If DAL is used to operate
on an existing data set, one or more of these names may be masked (i.e., set to

16

APPENDIX A

4HMASK). Subroutine DAL would use the first active data set it encounters that
agrees with the unmasked parts of the given name.

NU Library number (user specified)

IOP Operation code (user specified):
-1 change the parameters defining the data set in TOC according

to the parameters in the calling sequence and current date
and time; IERR is set if data set not found; the disk
address pointer (KADR) is set at the first sector number
for the data set

0 set up an entry (a line) in TOC for a new data set, and dis-
able any old duplicate (same name) data sets; disk address
pointer (KADR) is set to where the data set will be written
(but data set is not actually written)

1 same as IOP=0 but a data set is also written into disk at the
end of the existing sets; the data set is written as one
block, even if LB is different from NWDS; subroutine DAL
should not be used to write data sets composed of more than
one block

2 same as IOP=1 except old data sets having the same name are
not disabled

10 get information from TOC without reading data set; IERR is
set if data set is not found

11 same as IOP=10 but one block (LB words) of a data set is also
read into central memory

KA Starting address in central memory of data set (user specified)

KORE Available central memory for data set (user specified and this value
is available as the first word of blank COMMON after RSET is called);
if LB is larger than KORE and lOP^l, then IERR is set to -2; if
KORE=0 the check for available central memory is skipped

IEA Error return indicator (user specified):
1 print error message and return
2 disregard error
Otherwise print error message and abort

KADR First sector number of data set on disk (returned)

IERR Error code (user specified for write, returned for read):
0 no errors

-1 data set not found
-2 insufficient central memory

NWDS Number of words in data set (user specified for write, returned for
read)

NE Number of columns per block (user specified for write, returned for
read)

17

APPENDIX A

LB Block size in words (user specified for write, returned for read)

ITYPE Type of data (user specified for write, returned for read):
0 integer

-1 real
-2 double precision
4 alphanumeric

NAME! Four-character alphanumeric word (user specified)

NAME2 Four-character alphanumeric word (user specified)

NAMES Integer (user specified)

NAME4 Integer (user specified)

Function LTOC(NU,J,NAME1,NAME2,NAMES,NAME4)

Function LTOC retrieves the Jth item from the TOC line for data set NAME!,
NAME2, NAMES, NAME4 in library NU. If the data set is not found, then LTOC is
equal to 4HXXXX on return.

NU Library number (user specified)

J Item number in TOC line; for example RR = 1, DATE = 2 (user
specified)

NAME!...NAME4 Data set name (user specified)

Subroutine TOCO(NU,NA4,IOP,NLINE)

This subroutine searches for a data set named NA4(1), NA4(2), NA4(3), NA4(4)
in library NU. One or more of the entries in NA4 may be masked (i.e., set to
4HMASK) and those entries are disregarded in matching NA4 against the data set
names. The search starts at line number NLINE in the table of contents.

NU Library number (user specified)

NA4 Four-word array containing the data set name (user specified)

IOP Operation code (user specified):
1 TOCO retrieves the first matching data set it encounters;

the TOC entry of the data set is stored in
COMMON/TOCLIN/LINE(12) and NLINE is set to be the line
number of the data set; if the data set is not found,
then NLINE is set equal to -1

? 1 TOCO deactivates all data sets matching NA4 found after
line NLINE; on return NLINE is equal to the number of data
sets that were deactivated

18

APPENDIX A

NLINE Line number in the table of contents (user specified and returned)

Subroutine FIN(NERR,NER)

Subroutine FIN is called as the last operation in each processor to close
the files used by the processor. If it is not called, these files might not be
accessible to the next processor. When FIN is called at the completion of the
processor task, NERR and NER are equal to 0. Subroutine FIN is also called to
abort the run after a fatal error is discovered. In this case NERR and NER are
printed out in format A4,I10 as a diagnostic for the error. Subroutine FIN
causes printing of the time on the clock measuring CPU time for the job as well
as the cumulative count of times data were written onto disk or read into cen-
tral memory during execution of a processor. FIN calls TCLOCK and DATIM for
this purpose (see appendix C), although they are not shown in figure 4 since
they are not directly involved with data handling.

19

APPENDIX B

SPAR ROUTINES TO PERFORM DATA HANDLING SUPPORT FUNCTIONS

Several routines are used to perform support functions for the five rou-
tines that are needed in user programs and were described in appendix A. These
support routines are normally not called directly by a user program. However,
a detailed description of these routines is included in this appendix to pro-
vide a more complete definition of the operation of the SPAR data handling util-
ities shown in figure 4. Such information on the more basic routines is needed
when transferring this system to a new host computer operating system.

Function MATCH(NU)

Function MATCH returns the line number (currently between 1 and 32) from a
segment of the table of contents which is resident in central memory for library
NU. The line number corresponds to the data set name which must be passed to
the function in the last four words of COMMON/TOCLIN/LINE(12). Function MATCH
searches successive lines of successive TOC segments, starting with the first
segment in library NU, until a match of data set names is found. If the speci-
fied data set name is not found, MATCH is set to 0 on return. Function MATCH
calls RDIND to read successive segments of the table of contents.

Function NTOC(NU)

To conserve central memory, bookkeeping information for portions of the
TOC for only two libraries can be resident in central memory at any one time.
The NTOC routine performs the function of exchanging this bookkeeping informa-
tion between disk and central memory as needed by DAL, LTOC, TOCO, and FIN.
This routine returns either the value 1 or 2, which corresponds to the user-
specified library number NU and reads the required information into central
memory if it is not already there. The information which is read into central
memory includes the master directory MASTER(64,2) and a segment of the table of
contents IND(12,32,2), which are both contained in COMMON/CLIB/...

Subroutine RDIND(N,IBLK)

Subroutine RDIND performs the function of reading the data in the segment
of a table of contents denoted IBLK from the library corresponding to N (either
1 or 2), where N is equal to NTOC(NU). These data are read into central memory
starting at IND(1,1,N)1 This subroutine also updates and writes the master
directory MASTER(64,N) from central memory to disk each time a new data set is
added to the library.

20

APPENDIX B

Subroutine WRTIND(N)

Subroutine WRTIND writes the information contained in the segment of the
table of contents which is in central memory and whose library corresponds to
N onto the library file on disk.

Subroutine STATIC(NU,ITYPE,IASG)

Subroutine STATIC is used to cause the file with the library number NU to
be opened or closed.

ITYPE Code for opening or closing the file:
=0 close the file and IASG will be returned to zero
1 open a direct-access file
2 open a sequential file

IASG Error code for file opening:
0 an end of file was encountered while attempting to do a

check or to read the file environment of a direct-access
file after opening it

1 a direct-access file is successfully opened

Subroutine WR(NU,KA,LE,NS,IOP ,ISTAT,NWTX)

Subroutine WR directly performs transfer of data between central memory
and disk in the UNIVAC version. For CDC and Prime versions, this subroutine
serves as an intermediary between RIO and other machine-dependent routines that
perform the transfers. All data transfers are performed using an integer number
of disk sectors. The number of disk sectors required for transferring LE words
is calculated in WRL If LE is not an integer multiple of the sector length, the
last partially filled sector is temporarily stored in COMMON/B64/L64(64) and the
filled portion of this sector is then added onto the array KA. For the CDC ver-
sion, the disk address NS at which the transfer is to occur is passed to the
COMPASS subroutines in IDX(2), which is contained in COMMON/PAR.

Function NSECTS(L)

Function NSECTS returns the number of disk sectors required to contain
L words. The number of words per sector is given in LSECT in COMMON/CINDEX/
(LSECT = 28, 55, and 64 for UNIVAC, Prime, and CDC versions, respectively).

Function LADJ(L)

Function LADJ returns the total number of words available on the disk sec-
tors which are required to contain L words. The relationship between the func-
tions LADJ and NSECTS is LADJ(L) = LSECT*NSECTS (L) .

21

APPENDIX B

Other Routines

A detailed description of the formal parameters in the call sequences of
the machine-dependent COMPASS subroutines for the CDC version are not included
herein. The general function they perform is as follows:

XOPEN opens sequential and direct-access files

XREWIND rewinds files

XEVICT closes files

READX reads data from disk to central memory

WRITEX writes data from central memory to disk

WRTINX is a write-in-pi ace subroutine for replacing existing records on a
file

The routines are used for both sequential and direct-access files. The
read and write operations do not require a buf fer area in the user's program.

22

APPENDIX C

ROUTINES TO INITIALIZE SPAR PROCESSORS AND READ USER INPUT

In addition to the data handling routines there are SPAR routines which
are used to perform the initialization of the processors and to read user-
prepared data from the input file. The relationships among these routines are
shown schematically in figure 5. Subroutine RSET is called at the beginning of
each processor. Subsequently, RSET calls KOREFL (on CDC) or KSIZE (on UNIVAC)
or uses LOG directly (on Prime) to calculate the amount of blank COMMON storage
locations available. On the UNIVAC system, RSET calls KEXP to expand the avail-
able central memory as requested by the user. Routines TCLOCK, DATIM, and IA6
are also called by RSET to supply the date and time entries for the table of
contents of all data sets produced by that processor.

Subroutine READER is used throughout the processors to read all data from
the input file. Subroutine READ actually causes a record to be read and func-
tion RALPH is used in assembling alphanumeric words as the record is being inter-
preted by READER.

Subroutine RSET(IL,M,IEA)

Subroutine RSET is used to read RESET statements which appear on the input
file following the @XQT command for each processor. Subroutine RSET also causes
the input record following the last RESET statement to be read. Parameters used
in this reading process are passed to the subroutine through the array IL and
integer M, These values are defined in DATA statements in the user program.

M Number of reset parameters to be used

IL(1,I) Contains the four-character alphanumeric name of the Ith reset parame-
ter (1 £ I S M)

IL(2,I) Contains the type code for the parameter:
0 integer

-1 real
4 alphanumeric

IL(3,I) Contains the actual value for the parameter; the default value which
is defined in the user program is replaced by the value, if any,
which is read from the RESET statement which is input

IEA Error return indicator:
0 program execution will terminate if an error is detected

on a RESET statement

^ 0 an error on a RESET statement is ignored

23

APPENDIX C

Subroutine KOREFL(A,KORE,KFL)
(This subroutine used in CDC version only)

This COMPASS subroutine calculates the amount of central memory KORE
between the address of A and the end of the user-specified field length KFL.
KORE is calculated by the equation

KORE=KFL-(Address of A)- 1

This subroutine is called by RSET in SPAR to determine the amount of blank
COMMON which is available to be allocated for working storage.

Subroutine TCLOCK(I,CP,DCP)

Subroutine TCLOCK returns the current time from the CPU clock for a job.
DCP is the amount of CPU time that has been used since the last call to this
subroutine. If I is equal to 1, DATIM is called to calculate the current date
and time which is then stored in COMMON/CIDT/IDATE,ITIME. If I is equal to 3,
DCP and CP are printed.

Subroutine DATIM(IDATE,ITIME)

This subroutine returns the current date and wall clock time as alphanu-
meric words in the form 77/03/17. and 11.12.05.

Function IA6(IA10)
(This function used in CDC version only)

Function IA6 converts a 10-character word like 0123456789 to a 6-character
word in the form 124578. The function is used in SPAR to change a date from the
alphanumeric form 77/03/17. to the integer 770317 and time from 11.12.05. to
111205. These integer forms of date and time are used as entries in the tables
of contents for data libraries.

Subroutine READER

Subroutine READER interprets the information on an input record having a
free-field format which follows the rules given in the SPAR Reference Manual
(ref. 5). The decoded information is returned in COMMON/INREC/. (See appen-
dix D for a description of the contents of this COMMON block.)

Subroutine READ(IA,IEOF)

Subroutine READ reads an 80-character record from the input fi le into an
80-word array IA. The parameter IEOF is 0 for a normal read and 1 if an end-
of-file is hit when attempting to read.

24

APPENDIX C

Function RALPH(IN,N)

Function RALPH assembles the N characters contained as separate words in
the array IN into a single left-adjusted word. The integer N must be equal to
or less than 4.

25

APPENDIX D

CONTENTS OF LABELED COMMON BLOCKS

This appendix contains the contents of labeled COMMON blocks which are
used for communication among the routines shown in figures 4 and 5. These
blocks are presented in alphabetical order of the block name for each group
of routines.

COMMON Blocks Used by Data Handling Routines of Figure 4

(Blocks CFIN and CIDT are used by some of these routines but are explained
in the next section.) The COMMON blocks used by the routines of figure 4 are
given below along with a description of their contents.

COMMON/B64/L64(64)

L64 Used for temporary storage of words from a disk sector that is
partially full (see discussion of subroutine WR in appendix B)

COMMON/CLIB/NSWAP,NUNS,NUN(2),NOP(2),NBLOKS(2),NWRITE(2),INCORE(2),NMAST,
MASTER(64,2)INDSZ,NIND,LIND,IND(12,32,2)

This COMMON block contains information on the two segments of the TOC's from
two different libraries currently resident in central memory (see also section
"Description of SPAR Data Handling Utilities")

NSWAP Counter that is incremented in function NTOC each time a segment
of the TOC of a library is exchanged between central memory and
disk

NUNS Fixed value of 2, indicating that the master directory and a seg-
ment of TOC (containing 32 entries) from two libraries can be
in central memory at the same time

NUN(I) Contains the library number which corresponds to the Ith (1 or 2)
set of directory and TOC information currently in central
memory

NOP(I) Counter which indicates the relative activity or use of the two
libraries; the library with least activity is replaced when a
new one is required

NBLOKS(I) Number of segments in the table of contents for the library;
it is identical with MASTER (3,1)

NWRITE(I) Set to 0 when the segment of the table of contents IND(12,32,I)
is written to disk, or is set to 1 when the master directory
MASTER(64,I) is written to disk (where I = 1 or 2)

26

APPENDIX D

INCORE(I) Contains the sequence number of the segment for the table of
contents of the library currently in central memory

NMAST Number of entries for each of the two libraries in MASTER; pres-
ently fixed at 64

MASTER(64,I) Master directory for the two libraries (see the section
entitled "Master Directory")

j->
INDSZ Number of entries in a line of the table of contents; presently

fixed at 12

NIND Number of lines per segment of the table of contents; presently
fixed at 32

LIND Total number of words in a segment of the table of contents;
LIND=INDSZ*NIND, presently equal to 384

IND(12,32,I) Segment of the table of contents (see the section "Table
of Contents")

COMMON/CINDEX/INDEX(7,30),LSECT

INDEX(1,1) Not defined (I refers to Ith user-specified library number)

INDEX(2,I) Current location of the disk address pointer

INDEX(3,I) Next available (not yet used) address in library I

INDEX(4,l) Counter for the number of read statements from the library

INDEX(5,I) Counter for the number of write statements to the library

INDEX(6,I) File status indicator:
-N a file has been opened and is now closed
0 a file has not been opened
N a file is currently open, where N is the user

library number; for direct-access files,
1 S N ^ 26; for a sequential file, N = 10 000

INDEX(7,I) Order of assignment of files which are currently active;
the number of entries in the NASG array

LSECT Number of words per sector on the auxiliary storage device
(28 words for UNIVAC, 55 words for Prime, and 64 words
for CDC)

COMMON/NAMASK/MASK,LUNIT

MASK Equal to 4HMASK

27

APPENDIX D

LUNIT Equal to
6HSPARL for CDC version
4HSPIA for Prime version
6HSPAR for UNIVAC version

CCMMON/PAK/IDX(2) ,NPAKS ,NASG (10) ,IPAK(17,10)

This COMMON block is used by subroutines WR and STATIC to communicate with the
COMPASS language I/O subroutines

IDX(l) Not defined

IDX(2) Used to pass the disk address at which a read or write operation
is to occur

NPAKS Maximum number of active files allowed; presently set at 10

NASG(I) User-specified library number for the Ith active file that is cur-
rently open

IPAK(17,I) 17 words comprising the file environmental tables (FET) for
the Ith active file

COMMON/TOCLIN/LINE(1 2)

LINE(I) Ith entry in a line of the TOC (see section entitled "Table of
Contents")

COMMON Blocks Used by Subroutines Shown in Figure 5

The COMMON blocks used by the routines of figure 5 are given below along
with a description of their contents.

COMMON/CFIN/IABORT,IOPRT

IABORT Flag which has a default value of zero but can be changed in a
RESET record, for any processor, to a value of unity and the
processor will not make an error abort if it encounters a seri-
ous error (e.g1., if the required data sets do not exist)

IOPRT Similar to IABORT, except a value of unity causes the processor
to print extra I/O information

COMMON/CFMT/KALT(10)

KALT Contains user-specified global control parameters for the proces-
sors; currently, only three parameters are used

KALT(l) Contains the value specified on a FORMAT input record; this param-
eter is used in different processors for different purposes
(see the TAB and SA processors in SPAR)

28

APPENDIX D

KALT(2) Contains the value specified on an ONLINE input record; the value
is 0 for minimum printout, 1 for normal printout, or 2 for max-
imum printout

KALT(3) Contains the value specified on an IOUT input record

COMMON/CIDT/IDATE,ITIME

IDATE Contains an integer date in the form 770317

ITIME Contains an integer time in the form 111205 (see the descriptions
of TCLOCK, DATIM, and IA6 in appendix C)

COMMON/INREC/IDATA(40),KIND(40),NAME,NOW,NA41,NA42,NRPR,ICHAR(81)

IDATA Contains up to 40 words which could be put on an 80-column input
card, since words must be separated by blanks, commas, etc. in
the SPAR free-field input format

KIND Contains the type code for each of the words in IDATA

NAME Contains IDATA(l) if it is an alphanumeric word; otherwise it
is zero

NOW Number of words used in the IDATA array

NA41 Word number in IDATA where four-character words in the comment
field start

NA42 Word number where the comment field ends

NRPR Contains the number of input records on the input card which was
read

ICHAR Contains the 80 characters from an input card with a $ in
ICHAR(81)

29

APPENDIX E

LISTING OF SAMPLE PROCESSOR

The sample processor contained in this appendix illustrates the use of the
SPAR data handling routines. The five data handling routines (RIO, DAL, LTOC,
TOCO, and FIN) described in appendix A are included in this processor as well
as the input routines (RSET and READER), which are described in appendix C.

The function of the processor is to create a library and subsequently read
and print a data set containing a vector of real numbers and a data set contain-
ing a matrix of integers. Comments are included in the listing, which follows,
to give a detailed description of the steps performed by the processor.

PROGRAM TEST
INTEGER VGOUVGOZ
COMMON/ I NREC/ IDATA UO) , KIND (40) , NAME , NO* , NAi* 1 , NA<42 , NRPR, ICHAR (61 }
COMMON/TOCLIN/ LINEC12)
COMMON KOREfKEVENfA(l)
DIMENSION KA(1)
DIMENSION CDATA(<40)
DIMENSION NA«(4)
DIMENSION I V (3 f < O f R V (3 f < O
EQUIVALENCE CA(l)fKAU))
EQUIVALENCE CIOATA (1) ,CDAT A (1))
EQUIVALENCE (I V (1 , 1) , » V (1 , 1))
DATA NL/4/
DATA IV

i/4HNLIBf Of 1, «MNHV , 0, 0
*f«HNKM , Of Of 4HNCM , Of 0
»/

C
C TO READ RESET VALUES AND FIRST DATA CARD
C

CALL RSET(IVfNLfO)
NU * IV(3fl)
NHONV • IV(3f2)
NRQKM 9 IV(3f3)

C
C TO SET UP POINTERS IN BLANK COMMON
C

VOiOl • 1
MG01 s VG01+NRONV
VG02 • MGUI*NROMM*NCOLM
MGOi a VG02+NRUNV

C
C TO PUT VECTOR IN BLANK COMMON STARTING AT VG01
C

DO 10 IslfNROHV
J a VGOUI-1

10 *(J; a CDATA(l)

30

APPENDIX E

C
C TO PUT MATRIX IN BLANK COMMON STARTING AT MGOt
C

DO 20 I"1,NCOLM
K • MGOifNROWM*(I«n
CALL HEADER
00 20 J«l,NRO*M
L « KfJ-1

20 KA(L) • IDATA(J)
C
C TO WHITE VECTOR ON DISK
C

CALL 0AL(NU»l,A(VG01),0,l,KADR,IERR,NROWV,l,NROWV,»l,

C
C TU WHITE MATRIX ON DISK IN BLOCKED FORM
C

NWD8 • NRONMftNCOLM
CALL OALCNU,0,A,0,1,KADR,IERH,NWOS,1,NHOWM,0,

UO JO I«1,NCOLM
J • MG01+NRONM*(I«1)

30 CALL RIO(NU,10,2»KADR,KA(J),NRQWM)
C "
C TO HEAD VECTOR INTO BLANK COMMON STARTING AT V602
C

CALL UAL(NU,11»A(VC02),0,IEA,KADR,IERH,NW08,N6,L8,ITYPE,
*<*HTE8T,«HVEC ,1,1)

ISO • VG02
IEND • IGO+NRUwV-1
WNITE«>,<*0) (AUJr l ' IGOt lEND)

40 F O H M A T (5 X , F 1 0 . 2)
C
C TO USE BOTH LTOC AND TOCO TO GET INFORMATION TO READ MATRIX
C

KAQH a LTOCCNU,1,«HTEST,«HMAT ,1,1)
NA4(}) B 4HTEST
NA4(2) * 4HMAT
NA4(3) * 1
NA<U<4) • 1
NLINE • o
CALL TOCO(NU»NA«,1, NLINE)
NM08 • LINE(S)
N6. * LlNE(b)
Lb • LINE(7)
NbLKS » NWDS/LB
IF(NBLKS*LB.NE(NMDS) NBLKS • NBLKStl

C
C TO READ MATRIX INTO BLANK COMMON STARTING AT MG02
C

DO SO I«l, NBLKS
J • MG02+LB-CI-1)

50 CALL HIO(NU,20,2,KADR,KA(J),LB)
IGO i MG02
IENU a IGO+NROMM*NCOLM»1
MHITE(6,60) (KA(I),I«IGO,IENU)

60 FOHMAT(/5X,5I7)

31

APPENDIX F

LISTING FROM INTERACTIVE EXECUTION OF SAMPLE PROCESSOR

The listing contained in this appendix is from an interactive execution
of the sample processor, so that it includes both input to and output from the
processor. The information following the operating system prompt (the "?" char-
acter) is input from the user;. All other lines are output by the processor or
related SPAR subroutines. Comments are included in the listing to describe the
input that follows each comment. These comments all begin with the $ character.

Executipn of the sample processor is initiated by the executive control
command, [XQT TEST. (Note the CDC and Prime versions use [XQT and the UNIVAC
version uses @XQT.) RESET values which control execution of the processor are
then specified. The four RESET values which can be input to the sample proces-
sor are shown in the data statement containing the IV array. (See listing of
the processor in appendix E.)

These RESET values are defined as follows:

Name Default value Meaning

NLIB 1 Library number on which data sets will be created

NRV 0 Number of rows in the vector to be input

NRM 0 Number of rows in the matrix to be input

NCM 0 Number of columns in the matrix to be input

In the listing for the interactive execution of the sample processor, the
default value of NLIB =1 is used and remaining reset values are specified by
the user, as shown in the listing. The values for the vector and the matrix are
then input by the user and, after being stored on and retrieved from disk, are
printed by the processor.

Next an executive control command is used to execute the SPAR data com-
plex utility (DCU) processor. User commands are input to this processor, which
prints the table of contents of library 1 containing the two created data sets
and also the contents of these data sets, as shown in the listing. Finally the
executive control command, [XQT EXIT, is used to terminate the run. Output from
execution of the sample processor is as follows:

33

APPENDIX F

7
7

7

TU execute rue TEST PROCESSUK
7
7 XflT fEST
0* X6CUTE TEST
7

TO INPUT RESET VALUES
7
? RESET NRV«6,NRM«5,NC*«3
NRV • 6
NRM • 5
NCM • 3
? S
7 s TO INPUT VECTOK
7 $
7 0. .1 .2 .3 .4 .S
DATA SPACE- 966U
7 *
7 S TO INPUT MATRIX - BY COLUMNS
7 »
7 11 21 31 41 51
7 12 22 32 42 52
7 13 23 33 43 53

o.oo
.10
.20
.30
.40
.50

11 21 31 4} 51

12 22 32 42 52

13 23 33 43 53
OEXIT 1.426 S 4

34

APPENDIX F

7
7 TO CALL SPAR UTILITY PROCESSOR
7
7 XQT OCU
0* XECUTE DCU
7
7 TO PHJNT TABLE OF CONTENTS
7
7 TOC 1
OATA SPACE" 8192
0
1TABLE OF CONTENTS,

DCU

SEO
1

RH
7

DATE
780523

8 780523 092148

LIBRARY 1
E
R
0
0

TIME
092148

1 TO
S
PHJNT

PKINT CONTENTS OF OATA SETS

1 TEST VEC

1
VEC

TEST

7
7
7
7
0
PRIN LJB/3Efl» I/
IBLOCK i TEST
0 I* 1 !• 2
J« 1 0. .10000E+00

OABOVfc PRODUCED FROM Lib 1
TOC« 7 780523 092148
TEST VEC

7 PRINT i TEST MAT
0
PRIN

WORDS
6
15

NJ
1
M*NJ

6

OATA SET
Nl N2

TEST VEC
TEST MAT

NAME
N3
1
1

VEC
1

I«
,20000EfOO

1

I* 4
.30000E+00

> 1

.40000E+00
!• 6
.SOOOOE+

1 1
•1

1BLOCK
0
J«
1BLOCK
0
J"
1BLOCK
0
J«

1

1

EQB I/
TEST

I* 1
11

TEST
1» 1

12
TEST

I* 1
13

2
MAT

MAT

MAT

TEST MAT
1

OABOVfc PRODUCED FROM LIB 1

2
21

2
22

2
23

1
3

31
1
3
32
1
3

33

I»

H
41

a
42

a
43

5
51

5
52

5
S3

I«

TOC»
TEST

7 IXB
OEXIT

MAT
EXIT

1.518

8 780523 092148
1

IS

35

APPENDIX G

DYNAMIC STORAGE ALLOCATION

Dynamic storage allocation is a programing technique to stack all problem-
size dependent arrays into the blank COMMON area of central memory in an effi-
cient manner. The amount of blank COMMON that is allocated for an array is the
minimum needed to accommodate the array size for a given problem. This tech-
nique eliminates most dimension statements with fixed-size arrays.

The SPAR system uses dynamic storage allocation, since the size of most of
the arrays that are used depends on the size (number of joints and elements) of
the finite-element model being analyzed. This technique is not unique to SPAR;
that is, many other programs or systems have used it. However, since this tech-
nique is very desirable for use with the SPAR data handling routines, a descrip-
tion of the basic principles of dynamic allocation is included herein for
completeness.

Use of the technique is illustrated by the following example program. This
program performs the function of reading joint coordinates and joint deflections,
adding them together to give the deformed shape, which is printed. The program
provides dynamic storage allocation for the arrays containing the joint coordi-
nates, deflections, and deformed shape. A listing of the program is given, fol-
lowed by an explanation of the statements which are important in the allocation
process.

PKOGKAM EXAMPLE(TAPES"INPUT,TAPE6"OUTPUT)
INTEGER OLO,DEFL
COMMON A(l)
HEADC5,1) NJTS

1 FOKMATU5)
OLD > 1
DEFL • QLD+NJTS*3
NE« • L>EFLtNJTS*6
NEND • NEw*NJT8*3
CALL SUM(A(OLO),A(DEFL),A(NtW),NjTS)
ICO • NEN
IEND « NEND-1
*KlU(b,2) (A(l),I»IGu,IEND)

i. FORMATC5X,6E20.»)
END

SUbROUTINE SUM (XYZ,DEFL»TOTL»NJTS)
DIMENSION XYZ(NJT8,3),DEFL(NJTS,6),TOTL(NJTS,J)
HEAD(5,}) (CXYZ(I,J),J«1,3),I«1,NJTS)

1 FOKMATUF10.5)
HEAD (5,2) (CDEFK1,J),J»1,6),I«1,NJTS)

2 FOKMATC6F10.5)
DO 10 fil,NJTS
UO 10 J«l,3

10 TUTLCI»J) • XYZ(IfJ)tDEFL(I»J)
HETUNN
END

36

APPENDIX G

The blank COMMON area is designated as array A. On CDC systems, A only
needs to be dimensioned at A(l), since it actually extends to the end of the
field length for the job. For UNIVAC programs, A is typically dimensioned to
accommodate a small or medium-size problem. Core expanding routines (such as
KEXP) may be used for large problems. Alternatively, the main program may be
recompiled with a larger value in the COMMON statements when a large problem
is solved. The problem-size-dependent parameter (NJTS), which indicates the
number of joints to be considered, is read from the input file. In SPAR, such
parameters usually come from the table of contents. The pointers OLD, DEFL,
and NEW are calculated as the starting addresses in array A for the array con-
taining joint locations, deflections, and deformed shape, respectively. The
total amount of blank COMMON required is given by NEND. These array starting
addresses are passed to the subroutine SUM, which actually performs the addi-
tion. In subroutine SUM, these arrays have names which reflect the information
they contain. The dimension statement is required for names which are arrays
in the parameter list of SUM.

Conversion of an existing program to provide dynamic storage allocation
generally requires a subroutine to set up the starting addresses of arrays and
to call other subroutines using these addresses in the calling sequences. The
calling sequences often get quite long if many arrays with different names are
used. For subroutines performing the calculations, the proper respective formal
parameters in the subroutine statement must be provided, and dimension state-
ments indicating that these parameters are array names must be added.

37

REFERENCES

1. Butler, Thomas G.; and Michel, Douglas: NASTRAN - A Summary of the Functions
and Capabilities of the NASA Structural Analysis Computer System. NASA
SP-260, 1971.

2. Miller, Ralph E., Jr.: Structures Technology and the Impact of Computers.
Integrated Design and Analysis of Aerospace Structures, R. F. Hartung, edi,
American Soc. Mech. Eng., c.1975, pp. 57-70.

3. Sobieszczanski, Jaroslaw: Building a Computer-Aided Design Capability Using
a Standard Time Share Operating System. Integrated Design and Analysis of
Aerospace Structures, R. F. Hartung, edl, American Soc. Mech. Eng:., c.1975,
pp. 93-112.

4; Giles, Gary L.: Computer-Aided Methods for Analysis and Synthesis of Super-
sonic Cruise Aircraft Structures. Proceedings of the SCAR Conference -
Part 2, NASA CP-001 , [1977], pp. 637-657'.

5. Whetstone, W. D.: SPAR Structural Analysis System Reference Manual - System
Level II. Volume I - Program Execution. NASA CR-145096-1, 1977.

6. Storaasli, Olaf 0.; and Foster, Edwin P.: Cost-Effective Use of Minicomputers
To Solve Structural Problems. AIAA Paper No. 78-484, Apr. 1978.

7. Whetstone, W. D.: Computer Analysis of Large Linear Frames. J. Struct. Div.,
American Soc. Civil Eng., vol. 95, no. STll, Nov. 1969, pp. 2401-2417.

8« Whetstone, William D.; and Jones, Charles D.: Vibrational Characteristics
of Linear Space Frames. J'. Struct. Div., American Soc; Civil Eng., vol; 95,
no. ST10, Oct. 1969, pp. 2077-2091.

38

TABLE 1.- SPAR PROCESSORS

Processor name Function

TAB Creates data sets containing tables of joint locations, section
properties, material constants, etc!.

ELD Defines the finite elements making up the model

E Generates sets of information for each element, including con-
nected joint numbers, geometrical data, material and section
property data

EKS Adds the stiffness and stress matrices for each element to the
set of information produced by the E processor

TOPO Analyzes element interconnection topology and creates data sets
used to assemble and factor the system mass and stiffness
matrices

K Assembles the unconstrained system stiffness matrix in a sparse
format

M Assembles the unconstrained system mass matrix in a sparse format

KG Assembles the unconstrained system initial-stress (geometric)
stiffness matrix in a sparse format

INV Factors the assembled system matrices

EQNF Computes equivalent joint loading associated with thermal, dislo-
cational, and pressure loading

SSOL Computes displacements and reactions due to loading applied at
the joints

39

TABLE 1.- Concluded

Processor name

GSF

PSF

EIG

DR

SYN

STRP

AUS

ECU

VPRT

PLTA

PLTB

Function

Generates element stresses and internal loads

Prints the information generated by the GSF processor

Solves linear vibration and bifurcation buckling eigenproblems

Performs a dynamic response analysis

Produces mass and stiffness matrices for systems comprised of
interconnected substructures

Computes eigenvalues and eigenvectors of substructured systems

Performs an array of matrix arithmetic functions and is used in
construction, editing, and modification of data sets

Performs an array of data management functions including display
of table of contents, data transfer between libraries, chang-
ing data set names, printing data sets, and transferring data
between libraries and sequential files

Performs editing and printing of data sets which are in the form
of vectors on the data libraries

Produces data sets containing plot specifications

Generates the graphical displays which are specified by the PLTA
processor

40

TABLE 2.- TABLE OF CONTENTS FOR SPAR DATA LIBRARY

SEQ
1
2
3
a
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
26
29
30
31
32
33
34
35
36
37
38
39
40

RR
7
•a

-12
13
14
15
16
26
32
33
37
73
129
130
131
132
133
134
U5
136
137
138
139
140
164
108
<J12
236
237
236
262
360
506
1466
1487
1511
2176
2960
2964
3008

DATE
761022
761022
761022
761022
761022
761022
761022
761022
761022
761022
761022
761022
761022
761022
761022
761022
761022
761022
761022
761022
761022
761022
761022
761022
761022
761022
761022
761022
761022
761022
761022
761022
761022
761022
761022
761022
761022
761022
761022
761022

TIMfc
081237
081237
061237
081237
081237
081237
081237
081237
081237
061237
081237
061241
081241
081241
061241
061241
081241
081241
081241
081241
081241
061241
081241
081244
061244
081244
061244
061244
081244
081244
061245
081245
061254
081248
081246
081302
061323
061333
081333
081345

E
R
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

T DATA SET NAME
rtORDS

18
250
12
30
10
48
750
250
25
250
2250
3136

2
15
12
5
7
1
1
1
1
1
1

1500
1500
1500
1500

1
1

1500
6272
8960
62720

20
1500

42560
50176
IbOO
1500

10760

NJ
1

250
1
2
1
4

250
250

1
250
250
196

1
1

12
1
1
1
1
1
1
1
1

250
250
250
250

1
i

250
250
250
196
20
250
250
250
250
250
196

Nl*NJ
18

250
12
30
10
46
750
250
25
250
2250
896
2

15
12
5
7
1
1
1
1
1
1

1500
1500
1500
1500

1
1

1500
896
1792
320
20

1500
2240
3584
1500
1500
5555

Y Nl
0 JDF1
0 JREF
1 ALTR
4 TEXT
1 MATC
1 ALTR
1 JLOC
0 JREF
1 SA
0 CON
1 QJJT
0 OEF
0 GO
0 BUT
o NELZ
0 KE
0 NS
3 ELTS
0 ELTS
0 ELTS
0 ELTS
0 ELTS
0 ELTS

APPL
APPL
UNIT
APPL
TOT

1 CONV
1 DISK
0 KMAP
0 AMAP
4 E43
0 OIK

-1 DEM
1 K
1 INV

-1 STAT
-1 STAT
•1 STRS

N2
8TA8
8TAB
BTAB
BTAB
BTAB
BTAB
BTAB
BTAB
BTAB

BTAB
£43
E43
E43
BTAB

NAME
LTYP
NNOD
ISCT
NELS
LE3
FORC
PORC
VEC
MOT!
FORC
AUS
INC

EFIL
E43
DIAU
SPAR
K
OI8P
NEAC
£43

N3
1
2
2
2
2
2
2
2
2
1
2

11
11
11
1
0
0
0
0
0
0
0
0
1
2
1
5
5
1
1

1087
1675

11
11
0

36
1

100
2

100

N4
8
6
4
i
2
4
5
6
13
0
19
4
4
4

11
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1

17
26
4
4
0
0
0
1
1
1

41

CO £>
& U

^ <J Q

|
rt HH PH

CQ^ W Q

0 >,CQ ^ &j
CO o ^ IZ

8s b 5U H î vJ'
O <D S W

ftS

<^ o
ft c ft
C/3 0) O W

0 EH

.s
(1)
g CQ Q

^ H W

t

Q)
•— i

£

-t-»

1

H < PQ
K H H

> ft ft

ft

1* H
CO CO

S
Fjj Q^

W W

co O ft

§ *

CO

W H

rt
(1)
ct
0)

s
o

"to
b£
•S

1

CQ
0)

•f-t

S
•fH
-M

I— 1
-o
2

*rt

«

m ^ Q ^
H fH r_T EH kx IT;

< C

• • • w • • •

I I I

^ <; * s
...Q ...

""* PI r i
y § o» c?

^ w * x

o
tM

K

ii_^

H

CO

H

^^ •
<u
bC

X rt
0) ?H

gto
^H

rri >rH

•° S
rt

•
TH • • • £5

^ H
OH M

PQ ^^

13 Q

w^ • • • *^

,-H

p- co
^^
^V* ^

!3 Q

PQ
J
K

2
CO

ii

<J
, _1

K

ft

n

«-
P*̂

e
Q)jj
CO

CO

co
•H

CO

1-1
ID
C
m
tf

m

o

§
•H
JJ
10
N

C
(0
o>
M
O

1

l-l
3
01

42

CM
n
(O
a

co

W
H
g
Ou

w
K
P
H
O
P
K
H

K
<
K
«

>>

°

cu

0)
CO

•" rt X

.s=|8ŝ
H co50

O> -tt«*Hg 1°
» S S

-§

O

-

<U

Ao
Rt
V

t-lo

rt o
4^ <>H
S *}•o g
'S °
h »
0 .£>

-Q -M

S 2
2 0)

S5 K

b£>
.3
T3
Ca
CO
V
f-,
FH
O
u

li
^g o

a^
S«
liCO r—I

CD
rt P

0)

c
o

• rH

%
!H
0)

o

CO
CD

•s

13

(1)
JJ

O
O

•O

10

(1)
M
D
4J
O

I

•CNI

43

CO
CQ
<U

^ ®aj ou

OS
+->
Cj

1*0
a*.

PQ

CO

CQ

CKI
i—I

X

i-l CKI
X X

\
CM

X

X >> N X >> N
to «D o ct îj <

i=l
O

•-3
S5
H-T
iz;

o
o

CM

I 1

73
a>
SH
O ^

73 CM
!H CS1
o x
CQ

O W

5 .

•§ £

CQ

01
CO

(0
-U
m
•a

10
(0

14-1
o

o
4J
to
N
•H
C
to
Uo
I
n

0)

3
O>
•H
fa

44

Input/output routines
(machine dependent)

UNIVAC
WR

CDC
WR
READX
WRITEX
WRTINX

Prime
WR
PRWFIL

File opening and closing
(machine dependent)

UNIVAC
ASG

CDC
XOPEN
XREWIND
XEVICT

Prime
SEARCH

SPAR libraries on auxiliary storage

Figure 4.- Relationships of SPAR data handling routines.

45

^H
O
CQ
CQ
(U
U
O

a

V
CQ
p

Hw
K

(U

tu ^*

• S&
^ «JT3

3 MO)0 c d
T3 '" '̂01 ^1X
°S3

££

PH
X
W

SI

U
o
u

t?
^^OJ T3

.§ w
•0"^ a?

o rt 0)
rv 0,-S
^ -t-> J3

rt o

0

ŜP

^<
i— i
<j
Q

U

U

Jg
H^S

2

•<J nj

0)
g

£

H

ci§
J,

t-l
U-l

0

10
e
ow
C
•H

•O

•o

o
(0
(0
<u
8
gj

CO 3a,
0) C
N -H

m

•H
C

K
M
Q

W
K

W w^
K » e

^,0
01

•a
<uto
a
10
0)
C

I
a>1-1
o

46

1

4

7

9

12

Report No 2 Government Accession No
NASA TM-78701

Title and Subtitle
SPAR DATA HANDLING UTILITIES

Author(s)

Gary L. Giles and Raphael T. Haftka

Performing Organization Name and Address
NASA Langley Research Center
Hampton, VA 23665

Sponsoring Agency Name and Address
National Aeronautics and Space Administration
Washington, DC 20546

3

5

6

8

10

11

13

14

Recipient's Catalog No

Report Date
September 1978
Performing Organization Code

Performing Organization Report

L-12106

Work Unit No
743-01-03-05

Contract or Grant No

No

Type of Report and Period Covered
Technical Memorandum

Sponsoring Agency Code

15 Supplementary Notes

Raphael T. Haftka: Illinois Institute of Technology, Chicago, Illinois.

16 Abstract

The SPAR computer software system is a collection of processors that perform partic-
ular steps in the finite-element structural analysis procedure. The data generated
by each processor are stored on a data base complex residing on an auxiliary storage
device, and these data are then used by subsequent processors. The computer soft-
ware associated with the data base complex provides a general capability and can be
used for management of data in programs or systems other than SPAR.

This report documents the SPAR data handling utilities, which are routines used to
transfer data between the processors and the data base complex. A detailed descrip-
tion of the data base complex organization is also presented. A discussion of how
these SPAR data handling utilities are used in an application program to perform
desired user functions is given with the steps necessary to convert an existing
program to a SPAR processor by incorporating these utilities. Finally, a sample
SPAR processor is included to illustrate the use of the data handling utilities.

17 Key Words (Suggested by Author(s))

Data handling
Data base
Data management
Data transfer

18 Distribution Statement

Unclassified - Unlimited

Subject Category 61

19 Security Classif (of this report)

Unclassified

20 Security Classif (of this page)

Unclassified

21 No of Pages

46

22 Price*

$4.50

* For sale by the National Technical Information Service, Springfield Virginia 22161 NASA-Langley 1978

National AeronauticSnd
Space Administration

Washington, D.C.
20546
Official Business
Penalty for Private Use, $300

0-CLASS Postage and Fees Paid
National Aeronautics and
Space Administration
NASA-451

US. MAIL

082178 S908Q1HO
DOUGLAS COBP

_PHlIiICATIpBS GBOJP PB 15246-A
- -- -

r\JASA POSTMASTER- If Undeliverable (Section 158
Postal Manual) Do Not Return

