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By @I>,yllis M. Nagel

Vought Corporation Nampton Technical Center

ABSTRACT

Methods of model inct the de't oction tia;e oi• latency period of ,i hard-
ware Fault in a din ital systtlm are propoerd that OX[IIdin how a Gotnuutoa°
detects halts ill 	 computational nuyde. The obimtives were to stutiv
how sof'twire reacts to a fault, to acOcount, for as many variables as possible
affecting detectian anti to forecast a given prooram's detectila abilifv
prior to computation. A series of eXpcariments was cottduet.ed nn a sr;all
emulated miorotaarooessnr with fault inia+ction can,ihility. Results indicate
that the detectinu capability of a protn"am larooly de pends an the instru:-

'	 tioal subset used during computation and thti !'requency of its use and has
little direct dependene.o )It 	 variables as fault- made, mulikir set,
degree: of hranchin(i and program leannth, A model isdiscussh, ; which ea;0 nys
an analog with Kills in an urn to explain the rite of which Subsoouont
repetitions of an instruction cu^ instruction set detect s kliven fault. l
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INTRODUCTION

The concept of coverage as an important variable in the

reliability assessment of fault tolerant computer systems has long

been recognized (ref.. 1, 2), Coverage, in effect, provides a measure

of the chances of a system's recovery in response to a hardware fault,

The determination of coverage for a given system largely depends

on two variables: The time to detection or latency time of a

fault during which the computer continues its computationai task

undisturbed, and the reconfiguration time, niven detection, during

which the computer must isolate the fault and implement the recovery

strateny of the system. Of the two the latter is the easiest to understand

and is the most intuitive to the system desioner and cnnseauently is easier

to model realistically in reliability calculations. It is no surprise,

however, that realistic models of detection time are difficult to find.

The variable is highly d ynamic, not only fault dependent, as is recon-

figuration time, but also dependent on the type and schedulin g of the

detectors detecting the fault and on the computational burden o f the

entire system.

Models of coverage usually model the time to detection, in terms of

a function of one or more random variables reflectinn the characteristics

of the detector or detectors used in sensino the fault. CARE II (ref, 3,

4) contains, by far, the most careful develo pment of the mathematical

interaction of these variarles by introducinn the concept o f cnmpetina

detectors on fault classes, unfortunately the use of this model in

assessing the reliability of a specific system is handica pped by the complete

lack of data with which to model and forecast the behavior of a niven

detector beyond the realm of the educated guess.

2

},	 ,

1	
^. _.. ai
	
7:......



t	 r

is

To rectify this deficiency and understand more completely the

nature of latent 'faults, the Present reieareh has selected the com apator?

Map for detailed ronsidaration. The importance of this detector

Is undeniable in that the use of votin g across two or mere channels as

a detractor of faulty output is basics to the desi g n of every redundant,

reconfiaurable computer system. The problem of evaluatin g the comparator,

voted' as a detector is not an easy one however, in that it is not one

of evaluatin g the efficiency and perforvanee of a particular p iece of

hardware. Since the remit of a vote is based on the out put of a

prog ram, the entity being evaluated is the rapacit y of a pronram to

detect hardware faults in a com putational mode.

The importance of a computation-based analysis in the calculation

of coverage Was recognized by Movor (ref. bl. There he ar gues that it'

reliability calculations are to reflect the computational needs of the

user in the definition of system success then computation-based measures do so

more accurately than standard, structure-based analysis, Thus, the present

investi g ation concentrates on computation-based detection of hardware faults

in an effort to sla i n further insight into the interaction between structure and

task as it influences coverage.

The Working hypothesis governing the experiments presented in this

paper is that different programs With varvinba program features such as

the decree of branchin g , the number of instructions oxeeuted the tope of

instructions executed, the number set u,od in com putation, etc., van

both in their capacity to detract and in their rate of detection, Phat

then titles this detection ca pability de pend on for a g iven nrouram :viii

can it be forecasted prior to computation from physical features of the

program itsolf

The existence of a program implies the existence of a system within

which it is to operate and to accurately ovaluate theta? Questions the program

should be investigated as it Performs in its computational onvironeent.

Since large diagnostic ganeral purpose emulators do not exist, the properties

of software detection Were. explored under less +alnamie conditions and the
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results that follow are relative to this less than realistic environment,

The experiments were conducted on a diagnostic emulator with Fault

injection capability at the gate level currently under develo pment by

the Aircraft Electronic Systems Branch at NASA, lanalev, The emulator

was programmed to emulate a very simple processor with thirteen instruc-

tions referred to in this paper as the very simple processor or VSP,

Programs were written with this instruction set, run in the presence of randomly

injected gate faults and data collected on the accuracy of the output,

EXPERTUNT

The instruction set for the very simple processor contains the

following thirteen instructions;

*fetch and *store

*'add and *subtract

shift ri g ht and shift left

AND and OR

indirect addressing

overflow indicator

*branch

copy to and from temporary storage,

Six programs were written in the lanouaoe and are described below. The

results of the analysis that follows were based on the output of simulating

the first five programs and the output of the sixth was used as a confir-

mation case. As,a control device all six proorams were coded usino only

the five starred instruction.

1. Fibonacci (FIB) - Creates a sequence such that any member is the

sum of the preceding two members starting with a pair of random

initial values. Eight members of the sequence are generated.

2. Fetch and Store QW) - Fetches a number from memory and stores

4
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it in another location. This process is repeated eight times.

3. Add and Subtract WS) - Four subtractions and four sums are

computed alternately from values in memory.

q, Search and Compute (S&C) - Two random numbers are chosen from a

list of the first twenty numbers and identified by a search.

The 20 X 20 square region is divided vertically and horizontally

by a random division D and additional computations performed in the

areas indicated to form three separate branches:

III	 Branch I - a simple count

D	 I	 Branch II - a subtraction and a count

II	 Branch III- a subtraction and a multi-
D	 plication

A correct run was determined by a correct identification and a

correct branch computation.

5. Linear Convergence (LC) - A line with a random slope and intercept

is adjusted in slope so as to cross the x-axis prior to a predetermined

x value, x I . Once crossed, its deviation from the x-axis at x l is

minimized over slope. From the point on the line just optimized at

x l a new line of opposite slope is obtained by repeating this process

at new value x 2 . Iterations are continued until a given number of

computer cycles has elapsed. A successful run was one that completed

this number of cycles without error.

SAMPLE OUTPUT - LC PROGRAM

5
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6. Quadratic (QUAD) - Computes the value of various quadratic polynomials

of the type Ax° - Bx - C where A, B and C are positive integers and

-10 < X < 10, For a given run, four sets of the four initial values

are selected at random and four computations performed.

A program was simulated by running it N times with random input, each

run in the presence of a different single gate fault selected at random

uniformly over the gate list. For each run the fault was injected prior to

computation and the fault mode was determined by treating input and output

faults, stuck-at-1 and stuck-at-0 as equally likely alternatives.

It was not the intent of this investigation to explore faults in the

voter/comparator but to evaluate how software reacts when executing in the

presence of a hardware fault. Thus comparisons were made not b! , voting over

two or more copies but by comparing the output of the simulation to a correct

value achieved either by hand calculation or by a fault free run of the same

program under the same initial conditions, A record was then kept of the

number of runs having faulty output for sample sizes that varied from 97 to

211. The table below contains a summary of the recorded results.

Estimated Estimated
Program Sample Size Detections	 gotection Probability Standard Deviation

FIB 211 98	 ,464 .034

F&S 118 42	 .356 .044

A&S 208 117	 ,553 .034

S&C 118 64	 .542 .046

LC 133 78	 .586 .043

QUAD 97 55	 .577 .050

Simulation Results

;!V	 Note the imprecision in the estimates of detection probability as measured

by the standard deviation. This suggests that in general deviations from the

c;	 given estimates by at least four in the second digit are still quite likely.

S`
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No. of Program No, of Executed Memory No.
Pragr^anr Statements_ Statements	 _ _ Locations Size

FIB 12 33 17 O to it "a

F&S 18 lti 27 0 to 85

A&S 2'w 20 35 0 to 85

S&G 344 151.5	 (Avg.) 375 -50 to RD

LO 318 Random 311 t 00

^i

No. of
Rranr.hos

0
0

0

3

Random

1	 '
i e

Initially a sample size of ap proximately 100 runs per prom"an was

selected as optimal with renard to time and budnet. Later two of the

programs FIB and A&S, were extended to approximately twice that amount

in order to evaluate to some extent the effect of sample size on the

stabiljty of the estimate of detection probability.

DATA ANALYSIS

Once the detection probabilities were obtained it was anticipated

that variations between them could be explained in terms of variations

in Program features such as the number of executed in$tMICH nrrS, the

number of different instructions used in computation, the denree of

branching, the number set, etc, The sinniFican+: features could than be

used to predict the Performance of a M ven pronram's canacit y to detect

{;, rdware faults ill 	 processor.

The first table of the two that follow contains i breakdown of

several program Features for each of the first five pro g rams anel the

second summarizes the instruction set utilized durin g computation.

1

E;

Program Features
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I?rowallr, Fetch store llrailn k Add SnbtlIIct

FIB X X X X

.FRS X X

ARS X X X X

SRC X X X X X

LC X X X X X

Instruction Set

Using linear regression, variations in the probability of detection

were explored as a function of the entries for the first four programs in the

table of Program Features. Since every combination of variables considered

by these methods produced at least one negative regression coefficient, this

data did not begin to explain the source of variation in the results of the

simulations.

In contrast when the information in the Instruction Set table

was investigated a more consistent signal emerged. The following

sections explore the nature of this signal and consider the question of the

dependence of the probability of detection on the individual variables of

the feature table in more detail.

Instruction Set

The primary difference in instruction set between the FIB program

and the FRS program is the add instruction, With the addition of the add

instruction in FIB to the fetch and store instructions in FRS the corresponding	 i

probability of detection jumped from 356 to .464. Similarly when a subtract

instruction was added in US to the instruction in FIB the probability jumped
1	

from .464 to .567 and remained approximately at this level (.542) when the

instruction set was hold constant in SAC.

,
4
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To determine if these 	 are roa1 or due to statistical error

several statistioal te!^ts of r,i gnificance were conducted, first a test for

equality betwocu the detection proba!°!lity of (;ID and that of FRS was rejected.

Thus the addition of the add instruction in Flll to those of i'RS increased the

detection probability by a signifi%%int amount. MmilUurly a test for e+luality
between the detection probability of FRS and ARS was ro,iected so that the

inclusion of the subtrae.t instruction increased the detection capability

significantly. Sillce SRC' and ARS use the same instruction set, a test fol,

etluality between tho.ir detection { c robabilities should net reject if the overall

thesis that detec`tioll prilnal'ily depends till the ill5tvuetion se't is valid, This
was indeed the ease. The ostilllated probabilities for these two proylrams do

differ of course but the results of tho test indicate that if there are roal

difforonces they aro stall buried in statititical error and thorcfore are

much smaller than the difforences betwoon ARS and F1:1 for example.

Prior to simulating the IC prooram the e,u vly results from ARS were

combined with those from SRC' to form. the estimlto

A.1 \)

This was used as a point e,tulla *e to forecast the behavior of the IX icrocfranl

Since the instruction Set for Li is approVirmte21V the Salwv a9 that for A&S

and SRC. Acknowled,lino that com,ideralc1e error still o\i ,^ted ill this forecast

due to sal`Iple Size, a tl tl'% iollfixioiwo interval wai computed a e, all interval

estimate. Thus the interval

[.66 ,11	 I.6S ^	 - ["As. .CQ11

was the actual forecast for the dotcc:tion probability of the t,l' program. The

results of the tf pvouram based on 133 runs show a detection probability° of

686 which is well within the+ prediction interval, Using all snbseauent. runs

of AVS chamles the interval to

I
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which still validates the prediction.

If the toy microprocessor should he employed as a serious computational

device it would now be passible to forecast the detection probability of any

pvogvam utilizin
g
 all or part of this instruction lot of five instructions.

The least squares estimate of that part of the detection probability due to

the fetch and store instructions, which includes as well the effect of those

faults whose detection is common to all instructionsc is .356. The additional

contribution to the probability due to the inclusion of an add is .108 and

the additional due to a subtract is .100, A total point estimate for a program

utilizing all five instructions is .06.1

In the preceding discussion the role of the branch instruction was not

established as its effect is not c:lcOK statistically this instruction has

zero effect as a predictor of detection probabilit y . It seems quite plausible

that the effect of this instruction over and above the other four instructions

to which it is very closely related is so small that it cannot be separated from

the random fluctuation still present. in the data at these sample sizes.

F'aul t Mode

Of interest in studying the properties of software fault detection is a
	 ^	 t

f

determination of the strength of the relationship between detection and fault

mode. That is are input "faults more detectable than output, or .re S-a -1 faults

more easily detected than s-a-07 Statistical chi-square tests of independence in

contingency tables ware performed on all programs for :,-tectior versus 110,

detection versus SAW, s-a-0 and detection versus the combined signal. None of 	 {

the s-a-1, s-a-0 tests were significant nor were in^v of the test conducted on the 	 j

comb'ned signal. Two of the Ito tests rejected independence namely FIB and 	
II !

S&C, the rest did not, of the two that implied dependence the dependence was 	 ^t

in oFrOos i tc directions, that is output faults were more likely to be detected 	 .

by the FIB program than input Tullis and for Sit: the effect was reversed. 	 l

^J{

t^

f
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When the samples from all five programs were combined the dependence in I/O

was no longer significant. All tests were conducted at the 501 level of

significance.

Number Size

The dependence or independence of detection oil 	 size is difficult

to measure directly from these experiments in that number size is not a

control variable and consequently expands, expands and contracts or changes

at random throughout the program, By selectively sampling the data, however,

new experiments can be defined which provide some information on the nature

of this relationship. These experiments were conducted on the three essentially

repetitive programs FIB, F&S and A&S.

The F&S program performed each iteration on an independent random number

having full octal range (0-8 5 ). The experiment on number size consisted of

matching a run that detected the fault at random with a run containing a

fault that was not detected. Foi
l

	pair the numbers executing at the time

detection occurred were recorded for the detected run and its undetecting

companion. Run by run differences across the pairs were then computed and

this set of differences formed the basic sample. This same procedure was

followed for the A&S progran except that for each iteration two independent

numbers are invol ,,ed in the computation instead of one. Thus the differences

were taken between the averages of the two numbers executing at the time of

detection for the detected run and its paired partner.

,
It was then hypothesized that if number size was a significant factor .

in detection the mean value of these differences should shift away front

A statistical "t" test was conducted on this mean for each program testing for

zero versus non zero. Neither test showed a significant difference from zero.

It can therefore be concluded that there is no significant difference in runs

that were detected and those that were not with respect to number size.

11
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For FIB, number size is a function of the size of the two random initial

in puts and therefore a slightly different experiment was defined. First the^

averages were sorted by whether detection occurred, creating a Sample from

each of two populations. A test was conducted for equality of the two means

versus inequality as Q010, it was hypothesized ttat if detection depended

an number size those should be a shift away from equality. The test showed

no significant difference between then. The density for each sample is

plotted below.

u
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Branching and p rogram Length

The S&C program contains 3 distinct branches that can be ranked short,

medium and long as the avera ge number of executed statements is 42.3, 113.9

and 305.3 respectively. This provides a means of testing if the branch effect

is significant. The detected and nondetected runs were categorized by branch

to form a 2X3 contingency tao1e. A test for independence was conducted and

Failed to reject thereby implying that there is no strong evidence supporting

the hypothesis that detection depends on branch in this case.

Another test was conducted 
oil
	 data to see if there was any dependence

of detection on the number of statements actually executed during Hie running

of the program, The number of executed statements ranged from 14 to 432. The

data was divided into 100's and a probability of detection calculated for each.

The results are given below.

No. of Statements	 No. of Samples	 No.. Detected 	 Probability

	0 - 99	 56	 27	 482	 ! 1
	100 - 199	 22	 15	 .682	 }

	

200 - 259	 15	 11	 .733

	

300 - 399	 19	 10	 .526

k

Program Length vs. Detection - S&C Program

z

The four data points over 399 were ontitted from consideration. It was

hypothesized that if there was no dependence of detection on the number of

executed statements these probabilities should all be statistically equal.

I, chi-square test conducted on these four proportions assuming equality

against all alternatives failed to reject. Thus at these sample sizes there 	

4

is no evidence to support the contention that the detection is dependent on

13

r_



f	 i

,

F
1a4

I

the number of executed statements.	 This is further substantiated when it is
It

I	
noted that the data from 200 on A all from brunch III so that even thounh

computational Werepanev is minimal,	 the proportions, thnugh different, are

i
contrary to expectations.

y ..

When other programs are considered with respect, to the number of statements

executed the same confusion is evident.	 nP f.6s program takes ahem half as

many executions as FIR to detect: .N as many Faults. 	 A&S, on the other hand,

takes about .7 as many executions as no to detect 1,2 times as many Faults,

netection Time

The signal cominI1 from the number of Statements executed is confounded,t
with the signal coming from the nature of the statements being executed.	 Thus `u

it omy be more reasnnabl n to 	 treat the entire program as an entity ,'.Ind attempt
It

i to predict: its performance as a whole.

When proportion of detection is plotted ngninAt file nluahnr of times the

program has repeated itseir at the time of detection it is apparent that there

is a dependence.	 The three programs US, FIR and f&s are repetitive or nearly

I' repetitive and provide a moans for evaluating the nature of this dependency.

The followin g table hives the number of failures For each of these programs as

a function of which repetition the program was executing when detection occurred.

5
1

iI
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Several models We been investi gated in an attempt t o rhararteri:e the
efficiency of detection witil regard to repeated loel.`t at a fault, Only the
two of them discussed below ,a ppear to a%QquatolN etplain the behavior displayed

In the above table from both a numerical and 'Intuitive point of Vview, i-tnc
First is teased on a model proposed in Ml_ 11 tre y, 3, 41 'that time to detect,

for the comparator Now oporatino continuous!%, is ov%ponontiall\" distributed
With a Constant multipl i er drnoting the overall pi"ehahiliq of detection, the
second utilkes as .analo,ty of ball; to an urn to model the way in which a
program detects a 'fault where clenerdl'ing a fault is equivalent to roaehinq into
the urn and marking a ball. Still ,another phenomenon related to this general
question is cited in the `ect.ioil on flip confirmation program.

M

I\ponential Model

Modify iml the aswmptien< of the VARI 11 model :li ghtly to reflect that

tht prog rams wovo terminated .after on1v ei ght iterations. leads to the

foliowing structure on the de»•ate function or

1:,
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y a min (t,T)

where t is the time of detection measured in repetitions and T is the

truncation time of the test, in this ease eight,

r^`0
PY	

y T
I,(An Pool-^Tn tie	 y Q T 	 al-P )

In	 o

0 elsewhere

There are two reasons why a fault mat not' he detected under the assumptions of

this model: ones , because the fault mat not he detectable by tho program in

question (denoted by a) or two, because sufficient time has not elapsed for the

fault to be seem (denoted by 1), 00 measures a, the probability of a fault

remaining undetected for all time, P
o 0
-0

measures 6, the probabilit y of doing

undetected because of insufficient time or attention by the program, and Po
is the stand alone detection probability.

Maximum likelihood estimators tar the parameters P o and y of this model

reduce to solving the following Pair o e simultaneous 'transcendental equations:

po Clre"T WN

n TV-XT

where	 n	 number of runs terminating in a detection,

N	 number of rums

and	 ti	 detection time in terms OF repetitions.
,

16
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By solving the second equation iteratively for 1 and substituting into the

first the following table was computed,

p ra l aui ^'n A	 IIpox n.N

A&S .568 .577	 1.02 .432 1006

'	 .FIB .474 .491	 1.04 .526 1009

F&S .371 .390	 1.07 .629 1015

MLE Estimates - Exponential Model

It is interesting to note that even though there is wide variation in the individual

estimates of pp and A there is remarkable stability in their ratio. The

final two columns dive estimates for the probability that the fault will remain

permanently undetected by the program and the probability that the fault is

not detected due to test truncation, respectively. plots of this function

superimposed on histograms of the detection data for each of the three

programs appear below.

2	 4	 G	 6 4	 6	 3
! -i

• ;;	 ^	 6	 H	 4

Time to NSA (Repetitions)

Exponential Model

17
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Urn Model

Though the previous model explains much of the variation in detection

time, it only provides information on the rate of detection and not on the

mechanism of detection. For this reason a new model is proposed in this

section which explores, by means of an analogy with halls in an urn, the

question of what a program experiences while it is executing in a faulty processor

and, once determined, provides a method of forecasting a program's detection

efficiency as a function of time,

Let S be the set of all ,gate states for a given processor. For this

example then, S is the set of all triplets of the form (x l , x , , Q where xi

is the gate, x designates its use as an input or an output gate and x.j

denotes its value, Let A be the subset of all gate states in S that are

encountered during repeated use of a given program, If, by analogy, the set

S = s a set of balls in an urn consisting of two colors, say red and blue,

representing the sets A and A respectively, then generating a random fault
is equivalent to reaching into the urn and marking a ball, The probability

that the ball is red is simply the stand alone probability of detection for

that program designated Po in the exponential model.

To complete the analogy it will be assumed that executing a pro g ram is

equivalent to reaching into the urn and withdrawing a handful of red balls,

since the program only exercises slate states in its detectable set. Each

successive repetition of the program is modeled by assuming that the with-

drawn balls are replaced in the urn after every draw, and the sizes of the

draws are statistically the same. NOW of being entirely independent, how-

ever, the draws share some balls in common. That is, from repetition to repetition

the assumption is that some gate states are common to every computation

performed on that program and some are not.

These assumptions lead to the following model for the probability of

detecting a fault on the kth draw, Pk:

p i = Ppo	k 41

P k = (1 - P )(1 - ) k-2,, Po	 k '1

18
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where Po is as before, the stand alone probability of detection, P is the

Probability of detection on the first craw given that the draws are from the

red bal'is, and ". represents a probabilistic measure of the unstrared nate

states. Thus the probability of detection oil 	 first draw is the probability

of withdrawing the marked ball given that the ball is red, times the probability

that i red ball is marked. The probability that the marked ball is withdrawn

oil 	 second draw is (1-P) 0 Po , where the (1-P) 0 Factor now represents the

conditional probability that the marked ball is not withdrawn on the first

draw, times the probability that it is selected oil 	 second in that part of

the draw unshared by the first, given that the marked ball is red.

Modifying this distribution slightly to account for the fact that the

-test was truncated at k=S, the distribution for Y, where y-min (k,li) and

K is the time of observed detection, becomes

4

}

1' Po	 Y = 1

h (Y)	 0- P)(1-r)y'` Po	2	 y c
N

P o o 	 A+ Qo y = Q Qo = 1_Po
i=9

v
	 elsewhere

By assuming that Po (1-P)(t-a) `, is zero, approximate MLE estimates

for Po , P and o can be obtained for each of the three programs MS, FIB and

F5S by solving the equations

P  = n/N
P

n-n>

 

t
i -

III

where n, N and t i are deFined as in the exponential model and

n	 number of runs terminating in a detection

durinq the initial repetitinu.
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Results of these computations are Found in the table below,

P er	 P ,,	 A it

A&S	 .663	 AM JRH	 .437 1110

FIR	 AM	 061 „111	 1h3b 1t11h

F,AS	 X6	 AN .00	 .644 1033

MLL BMWs 4 Urn Model

Plots of this model appear as dashed curves in the graphs that follow,

Though the function and the observed data plotted with it are both discrete,

the points have been connected with strai g ht lines For bettor visabilitvl

It should be noted that the estimate Far Po Forces the model to coincide with

the data at the first repetition. Since, too,there are three 'Free parameters

to estimate in this model instead of onl y two in the exponential model, the

Fit is appreciably bettor.
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The quality of the fit, however particularly with regard to explaining the fall

off at t = 2 is consistent and appears to provide an explanation for detection

not contained in the exponential model.

It is premature to predict the performance of the parameters of the model

in any definitive way except to note certain broad features. In particular it

is interesting that P is a fairly stable parameter over all three programs

and that the variation between programs, in addition to that already discussed

earlier with regard to the diffeeences in overall performance as measured by

Po , is also evident in p. In particular A&S and FIB are the two programs which

have been run at sample sizes large enough to nearly stabilize the estimate of

Po . For these programs

Po (A&S)	 o(A&S)

P
O
(FIB)	 p FIB 

That is the p's are in the same ratio as the P o 's correct to two decimal

places. This fact is not true, however, when these programs are compared

to F&S and attributing this to the remaining instability in the estimates of

F&S can only be conjectured.

Confirmation Program

After data on the first five programs had been collected and a preliminary

model formulated, it became apparent that the data for the SRC and 4C programs

did not entirely support the model with regard to rate of detection. If the

model on rate was correct, subsequent repetitions of these programs should

detect more faults and thus increase their overall probability of detection,

At the same time, however, the estimated overall probability of detection was

already at the predicted level based on the first repetition of these programs

only and hence under this prediction subsequent repetitions should detect very

little. Since, too, both of these programs are much more complicated than those

previously analysed, it is conceivable that neither model is correct and that

further explanation is in order. Because of restrictions on the number of
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`i cycles for the VSp , it was not practical to e\tend either of these two programs

I

to more repetitions. 	 Thus, to rosolve this apparent contradiction a sinh program
QUAD was written and simulated as an exaluplr of a more complicated program 

running in repetition. C

t, Since 'the Q1 1AD program uses all of the five previousl,v defined instruc-
^ Lions,	 the data from the A,SS, SAC and IC pro gramn were combined to form a point

' estimate of 064 as a forecast for the behavior of QUAD. 	 The overall detection

^'- probability of QUAD based on a sample size of 07 is	 .01",	 Not only is thin value
t

^f close to the predicted Valle but it is also close to the point estimate .06.4

for A,&S though AM, is a highly time do rode nt dt toctor,	 lihon the Aata fo1	 QUAD

was sortod by repetition, PS of the 56 detected rune detected on the fitnt.

repetition, three detected on the third and one detected on the fourth based

on a test truncation time OF ;l.	 That in, almost all of the faults causing
i

faulty output did so the first time the program looked at the fault; a

k r phenomenon confirming previous rosults obtained from the Ian and SAO programs,

Thus, though the overall	 level of detection is predictable. there in little

or no dependence of detection on future looks at the name vault when provimms

get complicated.

Though at f'irs't thought those resuits are surprising , they vocomo loss so  
t̂

when the complexity of the prog rams .Ire= studied with the a,,um ptionr; of the

rate model in mind, that is, when then are interpreted ON the seers model thev

appear to violate.	 A ntructure co
mmon to the let,, t.h and QUAD Program is their

repetitive use of comp a rison and multiplication loops to do much of the

computation,	 Since both of these instruction sets involve the u4o o f all	 five

of the instructions under consideration, their us e is repetitive but	 insl &

the program.	 As a result the cumnulative effect of detection is nrnsad ON 	 the e	 ^;

program but is only tapped after manN	 repetitions for each of the instructions

{ have boon o ycorciSed.	 Thu g it	 is the integral	 that	 is observed and not 	 tht, ill
I

repetition.	 In effect, this loads to a new model of detection W nod not Only j

on the instruction Sot but on the frequency with which a g iveninstructi on is

used during compU[ation recognizin g that detection is a docavino function of

` frequonoy but with no a rlN' constant. rate.



Suggestions for Continued Experimentation

Several issues have been raised in

be validated somewhat more completely if

conducted. Whether they should be contii

computer model is difficult to assess in

of the small computer. In any event the

continued experimentation.

the preceding discussion that could

additional ex perimentation was

hued on the VSP or await a more realistic

that it depends on the credibility

following list contains suggestions for

1. The prediction method for predicting stand alone probability

is severely hampered due to the statistical error in the

estimated probability. Therefore several programs need

to be run to large sample sizes in order to sharpen the

forecasting tool.

2. Forecasting the parameters of the urn model requires new

programs run to larger sample sizes as suggested in 1.

These would provide data for predicting the level and

stability of P and the dependence of p on Po.

3. The interactive model for more complex programs involving

the dependence of detection on instruction set and their

frequency of use during computation is not definitive. A

series of controlled experiments could be designed to

investigate this dependence.

A. When the interactive model is completed it could be tested

,
for its prediction capability by varying the fault injection

time.

'	 5. The emulator now has a memory with fault infection capability.

Though it is expected that the degree of modeling complexity
F

is no way near as complicated as that for the processor,

simulations could be conducted to determine if this is so.

;•	 6. When a processor is used as a component in a fault

4	 tolerant flight computer, tasks will be run back to back

23
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i With repetitions of one program interspersed with repetitions

of others, As a result it is not sufficient to study a

Program in isolation but in tandem with other programs.

As a first step this issue could be explored using two

programs in tandem that have already been studied in

isolation.

7. Recent infortination has indicated that pin failure instead

of gate failure is a more realistic model of IC failure,

Some of these experiments should be repeated to explore the

consequences of this information.

CONCLUSION

The intent of this investigation has been to propose methods of modeling

the duration and extent of latent faults by explovirg the way a computer

detects faults in a computational mode, In particular the desire was to account

for as many variables as possible affecting detection and to use them in fore.

casting a given program's detecting ability prior to computation.

This investigation has shown that relative to the simplified version of

a microprocessor used in these experiments, detecting capacity of a program

largely depends on the instruction subset used in computation and the frequency

of its use and has little dependence, if any, on such variables as fault mode,

number size, branching and program length.

For simple programs that control the use of a given instruction or instruc-

tion set, two models are explored that show a decaying dependence of detection

on repetitive use of the program. The most interesting of the two models

employs a simple analogy with balls in an urn, to explain both the mechanism

of detection and the rate at which subsequent repetitions of tho program detect

a given fault. For more complicated programs, the data supports the contention

that where repetitive use of an instruction is excercised during computation,

detection is equivalent to sensing the cuannulative effect of repeated exposure

to the fault. Thus complex programs detect more the first time they see a

fault and repeated looks provide little additional information.
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Though these results should be regarded as exploratory in part because

of the computational environment and in part because there is still a consider-

able amount of statistical error in the datao nevertheless they should be

considered with some seriousness, The picture they provide of the computing

process is both reasonable and self consistent and it is conceivable that with

a larger facility emulating a realistic processor, the methods and results

presented here can provide insight into a more general theory of computation

based detection.

Vought Corporation Hampton Technical Center

Hampton, Virginia 23666

June 15, 1978
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