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MODELING OF A LATENT FAULY
DETECTOR IN A DIGITAL SYSTEM

By Phyllis M. Nagel
Vought Corporation Hampton Technical Canter

ABSTRACT

Methods of modeling the deraction time or latency beriod of a havd=
ware fault in a4 digital systom are propased that oxplain how a eomputer
detects fauits in a computational mde,  The obicctives wore to study
how sot'tware veacts to o fault, to acepunt for as many variables as possible
affoecting detection and to forecast a aiven proovam's detecting ability
prigr to computation. A serios of exporiments was conducted ab a small
emulated microprocessor with fault indection capakilitv. Rosults indicate
that the detecting capability of a program larosly depends on the instrus=
tion subset used durding computation and the Meguency of 168 use and has
Tittle divect dependence an such vardables as fault made, numboy sot,
degrae of branching and proaran YTenath. A modal is discussed which omplovs
an analog with balls in an urn to expladn the rate of which subsecauent
repetitions of an instruction or instroction set detect a aiven fault.



INTRODUCTION

The concept of coverage as an important variable in the

reliability assessment of fault tolerant computer systems has long

been recognized {ref. 1, 2), Coverage, in effect, provides a measure
of the chances of a system's recovery in response to a hardware fault,

The determination of coverage for a given system largely depends

on two variables: The time to detection or latency time of a

fault during which the computer continues its computational task
andisturbed, and the reconfinuration time, aiven detection, during
which the computer must isoiate the fault and implement the racovery
strateay of the system, Of the two the latter is the easiest to understand
and is the most intuitive to the system desioner and conseouently 1s easier
to model realistically in reliability caleulations, It is no surprise,
however, that realistic models of detection time are difficuit to find.
The variable is highly dynamic, not only fault denendent, as is recoti-
figuration time, but also denendent on the type and schedulina of the
detectors detecting the fault and on the computational burden of the

entire system.

Models of coverage usua]Ty model the time to detection, in terms of

a function of one or more random variables reflectina the characteristics
of the detector or detectors used in sensina the fault. CARE IT (ref. 3,
4} contains, by far, the most careful develaopment of the mathematical
interaction of these variacles by introducine the concept of competing
detectors on fault classes., Unfortunately the use of this model in
assessing the reltability of a specific system is handicapped by the compiete
lack of data with which to model and forecast the behavior of a ajven
detectar beyond the realm of the educated quess.
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To rectify this deficiency and understand mare comnletely the
nature of latent Faults, the present reavareh has selected the comparator?
yoter for detailed eensideration,  The fmportance of this detector
{5 undeniable in that the use of voting aeross two or more chamnels as
a detoctor of faulty output is basic tv the destan of everv redundant,
reconfiqurabie computer svstem, The probem of svaluating the comparators
votor as a detector s not an casy one however, in that it is not one
of evatuating the efficioncy and porformancs of a particular pioce of
hardware,  Since the result of a vote is based on the outout of a
program, the entity being evatuated 18 the vapacity of a promram o
detect havdware faults in a computabtional mode,

The impartance of a computation=hased analysis in the ¢aleulation
pf coverage was recoanized by Hover {vet. 5Y,  There he araues that if
reliability caleulations are to reflegt the computational needs of the
user in the definition of system suecess then vcomputatisn-based measures do so
wore acgurately than standard, structure-based analysis.  Thus, the present
favestiaation concontrates on coamputation<basod doetection of hardware faults
in an effort to gain further insiaht inte the interaction petweon structire amd
task ag it {nfluences coverage.

The working hypothosis governimt the exporiments mresentoed in this
paperr is that Jdirffment prouwrams with varving program featires such as
the dearee of branching, the numbor of insbractions oxecuted the type of
instrouctions executod, *he nupber sat gad 10 comrtation, ofe,, v
hath in their capacity to detect and in their vate of detection,  Vhat
then does this detection capability depend on for g aiven orogvam and
gan it he forecasted priov to computation from physival foatures of the
progqram itseif? _

The existence of a progran impifes the oxistence of o systom within
which it is to oporate and to accurataly evauate those auastians the proaram
should be fnvestivated as 1t perfarms in its computational enviromment,

Since large diagnostic general purpose cmulators do not exist, the properties
of software detoction were axplovad under Toss dynamic comditions and the



rasutts that follow are relative to this less than realistic envirvomment,

The experiments were ¢onducted on a diagnostic emulator with fault

injection capability at the gate lTevel currently under development by

the Afrcraft Electronic Systems Branch at NASA, Lanaley, The emulator

was programmed to emulate o very simple processor with thirteen instruc-

tions referred to in this paper as the very simple processor or VSP,

Programs were written with this instruction set, run in the presence of randomly
injected gate faults and data collected on the accuracy of the output,

EXPERTMENT

The instruction set for the very simpie processor containg the

following thirteen instructions:

*fateh and *store
*add and *subtract
shift right and shift left
AND and OR
indirect addressing
overflow indicator
*branch
copy to and from temporary storaae,

Six programs were written in the lanauaqe and are described below. The
results of the analysis that follows were based on the output of simulatino
the first five programs and the putput of the sixth was used as a confir-
mation case. As a control device all six proarams were coded usina anly
the five starred instruction,

1. Fibonacci (FIB) - Creates a sequence such that any member is the
sum of the preceding two wembers starting with a pajr of random
ipitial values. Fight members of the sequence are generated.

2. Fatch and Store {F8§) - Fetches a number from wemory and stores
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it 1n another location. This process is repeated eight times.

Add and Subtract (A&S) - Four subtractions and four sums are
computed alternately from values in memory.

Search and Compute (S&) - Two random numbers are chosen from a
Tist.of the first twenty numbers and identified Ey a search.

The 20 X 20 square region is divided vertically and horizontally

by a random division D and additional computations performed in the
areas indicated to form three separate branches:

IIt Branch I - a simple count
I Branch II - a subtraction and a count
I7 Branch IIT- a subtraction and a multi-
T plication

A correct run was determined by a correct identification and a
correct branch computation. '

Linear Convergence (LC) =~ A line with a random slope and intercept

is adjusted in slope so as to cross the x-axis prior to a predetermined
x value, x;. Once crossed, its deviation from the x-axis at x; is
minimized over slope. From the point on the Tine just optimized at

X1 a new line of opposite slope is obtained by repeating this process
at pew value Xx,. [Iterations are continued until a given number of
computer cycles has elapsed. A successful run was one that completed
this number of cycles without error.

N

SAMPLE OUTPUT ~ LC PROGRAM
. .



6. Quadratic (QUAD) - Computes the value of various quadratic polynomials

. of the type Ax* - Bx - C where A, B and C are positive integers and
-10 = X < 10, For a given run, four sets of the four initial values
are selected at random and four computations performed.

A program was simulated by running it N times with random input, each
run in the presence of a different single gate fault selected at random
uniformly over the gate 1ist. For each run the fault was injected prior to
computation and the fault mode was determined by treating input and output
faults, stuck-at-1 and stuck-at-0 as equaily 1ikely alternatives.

It was not the intent of this investigation to explore faults in the
voter/comparator but to evaluate how software reacts when executing in the
presence of a haydware fault. Thus comparisons were made not by voting over
two or more copies but by comparing the output of the simulation to a correct
value achieved either by hand calculation or by a fault free run of the same
program under the same initial conditionhs, A record was then kept of the
number of runs having faulty output for sample sizes that varied from 97 tu
211. The table below contains a summary of the recorded results.

Estimated Estimated

Program Sample Size Detections Jetection Probability Standard Deviation
FI8 211 98 ,464 .034
F&s 118 : 42 .356 .044
A&S 208 17 .563 ] .34
S&C 118 64 542 046
e 133 78 | ~ .586 .043
QuaD 97 55 | 577 .050

Simulation Results

Note the imprecfsfon in the estimates of detection probability as measured.
by the standard deviation. This suggests that in general deviatjons from the
given estimates by at least four in the second digit are still quite likely.
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Initially a sample size of approximately 1IN0 runs per program was
selected as optimal with veaard to time and buduet, Later two of the
programs FIB and ASS, were extended to approximately twice that amount
in order to evaluate to some extent the effect of sample size on the
stability of the estimate of detection probability.

DATA ANALYSIS

Qnece the detection probabilities wgve;nhtained it was anticinrated
that varfatfons between them could be explaihed in terms of variations
in program features such as the number of executed instructions, the
number of different instructions used in computation, the dearce of
branching, the number sat, ete. The significant features could thun be
used to predict the performance of a viven proaram’s gapacity to detect
hardware faults in the processor,

The first table of the two that follow contains a breakdown of
saveral program features for each of the first five proarams and the
second summarizes the instruction set uwtilized durina computation.

No. of Program No., of Executed Memory No.
frogram Statements =~ Statements = Lacations  Size
FIB 12 33 17 0 to 85
F&S 18 16 o7 0 to 85
A&S a0 20 - 35 D to 8%
S&C 344 151.5 (Avg.) 375 ~50 to 200
LC 318 Random 341 =200

Program Features

Na, of
Branches

\

0

)
-3
Random
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hrogram Feteh Store franch Add  Subtract
FI1B X X X X
£8§ X X
ASS X X X X
S&%C X X X X b
LG X X X X X

Instruction Set

Using Tinear reqression, variations in the probability of detection
were explored as a function of the entries for the first four programs in the
table of Program Features, Since overy combination of variables considered
by these methods produced at least one neaative regression coefficient, this
data did not beain to explain the source of variation in the results of the
simulations,

In contrast whon the information in the Instruction Set table
was investigated a more consistent signal emeraed, The following
sections explore the nature of this siunal and consider the question of the
dependence of the probability of datection on the individual variables of
the featwre table in more Jetail,

Instruction Set

The primary difference in instruction set between the FIB program
and the F&S program is the add instruction, With the addition of the add
instruction in FIR to the fetch and store instructions in F&S the corresponding

-probability of detoction Jjumped from (388 to 484, Similarly when a subtract

instruction was added in A%S to the instruction in FIB the probability jumped
from 464 to 567 and remained approximately at this level (,540) when the
ingtruetion set was held constant in $8C.



To determine 1f these Jifferonces e real or Jue to statistical oror
saveral statistical tests of siaificance were conducted. Fiest a tost for
equality between the detoction probertlity of FIB and that of F8§ was rejected,
Thus the addition of the add instruction in FIR to those of F&S inereased the
detection probability by a significant amount.  Similarly o test for equality
between the detection mrabability of F&Y and ASS was rejected so that the
inglusion of the subtract instruction increased the detoction capability
significantly. Since S8 and ASS use the same instruction set, a test for
gquality between theiv dotection prapabilitios should not reject if the overall
thesis that detection primarily depends on the instruction set is valid,  This
was indeod the case, The estimated probabilities for these two progeams do
differ of course but the rosulbs of the test indicate that if there are real

diffarences thav are st111 burdod in statistical arvor and thovefore arp
much smaller than the diFferences botwoen ANS and FIR fop axample,

Prior to simutativg the 1O prodeam the early resuplts from ASS were
combined with those fram S&¢ ta form the estimate

138
3

CBGR,

This was used as @ point estimate to forecast the behavior of the L proaran
gince the instruvtinn'%vt far Lo 75 approvimataly the same as that for ASS

and S§C.  Acknowledaing that considerable eeeor <371 ovisted in this forecast
dug to sample size, a @00 contfidence intorval was computed as an intorwval

estimate.  Thus the interval

[.868 « T.68 (.03 ] =« [U98, el
was the actual forecast for the detoction probability of the LC proweam,  The
pesults of the LC program based on 133 rans show o detoction probability of

L386 which 18 well within the prediction interval.  Using all subsequent runs
of ASS changes the interval to
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[.558 « 1.65 (0T - (L5612, 603]

wiich sti11 validates the prediction.

If the toy microprocessor should be emplayved as a serious computationd)
device it would now be possible to farccast the detection probability of any
program utilizing all or part of this instruction gt of five instructions,

The least squares ostimate of that part of the detection probability due o

the feteh and store instructions, which inclwdes as well the effect of those
faults whose detection {s common to a1l instructions, 15 .366. The additiomal
gontribution to the prababitity due to the inclusion of an add is .108 and

the additional due to a subtract is 100, A total point estimate for a program
utilizing all five instructions s ,Had

In the preceding discussion the role of the branch instruction was nob
ostablished as its effect is not clear. Statistically this instruction has
warp effect as a predigtor of detection probability. It seews guite plausible
that the effect of this instruction ever and above the other fowr instructions
to which 1t 1s very closely related 18 so small that it cannot be separated from
the random Fluctuation sti1l present in the data at these sample sizes,

Fault Mode

OF interest in studving the properties of software f fault detection is a
determination of the strenath of the relationship between detectiva and fault
mode.  That is are inmput faults more detectable than autput, or . re §-a-1 faults
more easily detected than s-a-03 Statistical chi-square tosis of independence in
contingency tables were porformed on 11 proorams for setaotion versus 1AQ,
datection versus s-a-1, s-a-0 and Jdetection versus the combined sfunal, Mone of
the §-a=1, s-a-0 tests wore sionificant nor wers any of the test \UHdULtDﬁ on the
cambined signal, Two of the 170 tests rejected independence namely FIR and
S&C, the vest did not. OF the two that implied dependerce the dependence was
in opposite diractions, that is output faults were more 1ikely to be detoected
by the FIB provvam than input faults and for S8C the effect was reversed.
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When the samples from all five programs were combined the dependence in 1/0
was no longer significant, A1l tests were conducted at the 5% level of
significance.

Number §ize
The dependence or independence of detection on number size is difficult

to measure directly from these experiments in that number size is not a

control variable and consequently expands, expands and contracts or changes

at random throughout the program, By selectively sampling the data, however,

new experiments can be defined which provide some information on the nature

of this relationship, These experiments were conducted on the three essentially

repetitive programs FIB, F&S and A4S,

The F&S program performed each iteration on an independent random number

having full octal range (0-85). The experiment on number size consisted of
matching a run that detected the fawlt at random with a run containing a
fault that was not detected. For each pair the numbers executina at the time
detection occurred were recorded for the detected run and its undetecting
companion. Run by run differences across the pairs were then computed and.
this set of differences formed the basic sample. This same procedure was
followed for the A&S proaram except that for each iteration two independent
numbers are involived in the computation instead of one. Thus the differences
were taken between the averaces of the two numbers executing at the time of
detection for the detected run and its paired partner.

It was then hypothesized that if number size was a significant factor
in detection the mean value of these differences should shift away from zero.
A statistical "t" test was conducted on this mean for each program testing for
zero versus non zero, Neither test showed a significant difference from zero.
It can therefore be concluded that there is no significant difference in runs
that were detected and those that were not with respect to number size.

1



For FIB, number size 1s a function of the size of ihe two randem initial
inputs and therefore a stiahtly Jifferent experiment was defined. First the
averages were sorted by whether detection occurred, creating a sample from
gagh pf two populations, fost was conducted for equality of the two means
versus fnequality as aexin 1% was hypothesized that if detection depended
on number size there should be a shift away from equality., The tost showed
no sianificapt difference between them. The density for each sample is
plottaed buelow.
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Branching and Program Length

The $&C program contains 3 distinct branches that can be ranked short,
medium and Tong as the average number of executed statements fs 42.3, 113.9
and 305.3 respectively. This provides a means of testing if the branch effect
is gignificant, The detected and nondetected vups wevre categorized by brapch
to form a 2X3 contingency tanle. A test for independence was conducted and
Failed to reject thereby implying that there is no strong evidence supporting
the hypothesis that detection depends on branch in this case.

Another test was conducted on this data to see 1f there was any dependence
of detection on the humber of statements actually executed during the running
of the program, The number of executed statements ranged from 14 to 432. The
data was divided into 100's and a probability of detection calculated for each.

The results are given below.

No. of Statements  No. of Samples  No. Detected Probability

My

0 -~ 99 | 56 27 482
100 - 199 22 15 682
200 - 299 15 1 733
300 - 399 19 10 526

Program Length vs. Detection - S&C Program

The four data points over 399 were omitted from consideration. It was
hypothesized that if there was no dependence of detection on the number of
executed statements these probabilities should all be statistically equal.
fi.chi-square test conducted on these four proportions assuming equality
against all alternatives failed to reject. Thug at these sample sizes there
is no evidence to support the contention that the detection is dependent on

13
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the numbor of executed statewents.  This 4s further substantiated when it s
noted that the data from 200 on s all from branch 11T so that oven though
computational discrepancy is mintwal, the propovtions, though di Fferent, arp
gonbrary to expectabions,

When other proqeams are considored with respect to the number of statemants
executed the same confusion is evident. The F& program takes about hal? as
many executions as FIN to detect 8 as wany faults, A&S, on the other bhand,
takes about 7 as many execytions as TR to detect 1.2 times as many Ffaults,

Betoctton Time

The sfunal coming trom the numher of statements oexecuted 1s confounded
with the signal coming from the watuee of the statements being executed,  Thus
1t may be move reasonable to treat the entive progeam as an ehtity and attompt
bo predict 1ty parformance as a whole, '

When proportion of dotection {s plotted auaingt the number of times the
program has repeated Ttsedf at the time of detection it 1s apparent that theve
is a dependence.  The three progeams ASS, IR and F&S arve pepotitive or nearly
vepetitive and provide -a weans for pvaluating the nature of this dependency.

The following table wives the number of failures for sach of these progvams as
a Function of which ropetition the promean was oxeeuting when detection vegurred,

L
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Detection as o BFuietion of the Numbor ot [ ooks

Severat models have boon fovestigated inoan attempt 20 chavacterise the
effictency of doteetion with redard to repeated looks at o fault,  only the
tvo of thom Jisewssod bolow appear to adequatoly explain the bahavior displavedd
I the above table trom both a numerival and intuftive point of view, 1he
Flest 5 based on a model propesed in CA8L TD prefy 30 4) that time to doeteet,
for the comparatorvater operating vont fnueus iy, ts exponent fad iy distribdutod
with a constant st iplier donoting the overall prebability of dotection,  The
socond utilizes an analowy of balbs fnan urn to model he way in which
programn deteets a el whore generating a fault is oquivalent t veaching inte
the urn amd mavking a ball,  Still another phonemenon refatod o this qeneval
question is cited in the section on the contimat fon pradam.

Eaxponent fal Moudel

L

Modifving the assumpt ions of the CARE T moded stiabt iy to roflect that
Ehy pronvams weese torminatod atter anty vivht iterations, toads to the
foltowing strwture on the dosity fotion of

in



y = min {&,T)

whore t s the time of detection measwred in vepetitions and T s the
truncation time of the test, in this case eiaht:

L3

PQ\G v T

ftvtad b oo VT o .

v )es Par 1 Qu yeoT (an],po)
0 elsewhoero

b

Therg are two reasons why Q fault way not he detectod under the assumptions of
this wodel: wvne, bovause the Fault may not be detectable by the program in
quostion (denoted by w) o twa, becawse sufficient bime has not elapsed for the
fault to be seen (donoted by &), Q measwres o, the probability of a fault
remaintng undetectad For all time, Pun“\T measures g, the prabability of aning
undetected because of ionsutfFicient time o attention by the program, and PQ

1s the stand alone detection prabability,

Maxtmuw Tikelihoad ostimators For the parameters PG and v of this model
veduce to sulving the fallowing patr of sfmultaneous transcendental equations:

Py (e T ey

u n Te\T
by v 1o
{1=07 ")
whare o2 pumber of runs termfoating In a detection,
N = numbor of vruns _
and tf = Jeteetion time in terms of vepatitions.
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Frequency of Detection (%)

By solving the second equation fteratively for \ and substituting into the

first the following table was comptted,

program  Po A VPo
A&S 568 577 1.0
FIB 474 401 - 1.
Fis 371 3908 1.07

e b
A32 006
26 009
620 15

MLE Estiwates - Exponential Mode)

It is interesting to note that even though there is wide variation in the individu
estimates of P0 and A there is remarkable stability in their vatio. The

final two columns give estimates for the prabability that the fanlt will remain
permanently undetected by the program and the probability that the fault is

not detected due to test truncation, respectively.

Plots of this function

superimposed on histograms of the detection data for each of the three

programs appear below.
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Time to Detect (Repetitions)

Exponential Model
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Urn Model

Thougli the previous madel explains much of the variation in detection
time, 1t only provides infoymation on the vate of detection and not on the
meéhaqism of detection. For this reason a new wodel is proposed in this
section which axploves, by means of an analogy with balls in an wm, the
question of what a program experiences while it is executing in a faulty processor
and, once detevmined, provides a method of furntast1ng a program's detection
efficiency as a function of time,

Let S be the set of all yate states for a given processor, For this
example then, § s the set of all triplets of the form {xy, Xa, X3) where X
is the gate, x; desiunates fts use as an input or an output pate and Xi
denotes Tts value. Let A be the subset of all gate states in § that are
encountered during repeated use of a given progam, I, by analogy, the set
S 's a set of balls in an urn consisting of two colors, say red and blue,
vepresenting the sets A and A, respectively, then nenerating a vandom Fault
is equivalent to reaching into the urn and marking a ball, The probability
that the ball {s ved is simply the stand alane probability of detection for
that program designated PO in the exponential model.

To complete the analogy it will be assumed that executing a program 1s
equivalent to reaching into the urn and withdrawing a handful of red balls,
since the program only exercises gate states in its detectable set. Each
succassive repetition of the proqram is modeled by assuming that the with-
drawn balls are rveplaced in the urn after every draw, and the sizes of the
draws are statistically the sawme, Instead of beino entively independent, how=
pver, the draws share some balls in common. That is, from repetition to repetition
the assumption is that some gate states are comnon to every computation
parformad on that program and some are nat,

These assumptions lead to the following wodel for the probability of
detecting a fault on the kth draw, Py:

Py = PP, k =
Ko p .
Pl»: = (\ - PY(1 - o) a k >l

18



where P is as befare, the stand alone probability of detection, P is the
grobability of detection on the First draw given that the draws are from the

red balis, and » represents a probabiiistic measure of the unshared nate
states. Thus the probability of detection on the first draw is the probability
of withdrawing the marked ball given that the ball is red, times the probability
that a red ball is marked. The probability that the marked ball is withdrawn
on the second draw i (M’)n Po' where the (I-P)0 Tfactor now represents the
conditional probability that the mavked ball is not withdvawn on the first

draw, times the probability that 1t is selected on the second in that part of
the draw unshared by the first, qiven that the marked ball is red.

Modifying this distribution slightly to accomnt for the fact that the
test was truncated at k=8, the distribution for y, where y=min (k,8) and
k is the time of observed detection, bacomes

'y

PP, | y =1

h{y) = (=P)O-)¥"F p L 2syes
[ Eg (1-P) (1=} 172 s Q, ¥=8 Q= 1P,
Q elsewhere

1Y

fa . , ‘
By assuming that PQ ) (1-P)(1=p) ""ais zero, approximate MLE estimates

1
for Py, P and » can be obtained for each of the three programs A&S, FIB and
F&S by solving the equatiuns

FD = n/N

Fo= m/n
nN=m

B ot om
R by ]

where n, N and t, are defined as in the exponential model and

ny = number of runs terminating in a detection
during the initial rvepetition.

19
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Results of these computations ave found in the table bolow:

h 3 P N W it
ARS 563 MR KU K ¥ AN\ T
» FIb ik 110 B 1 B R (O )
F&S +3hi RN IO R () 1 I A R

MLE Estimates « (hen Mogdel

Plots  of this wodel appear as dashed cueves in bhe graphs that follow,
Though the function and the observed data plotted with it are both discrete,
the points have been conectod with steajuht Vines for bottor visahility.

It should be noted that the ostimate for Pn Forges the madel to cofnetde with

the data at the Fest vepotition.  Since, too, thore arp theee free pavameters

to estimate in this model instead of anly two in the exponential wmodel, the
it 15 appreciably bettow,
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The quality of the fit, however particularly with regard to explaining the fal
off at t = 2 {s consistent and appears to provide an explanation for detection
not contained in the exponential model.

It is premature to predict the performance of the parameters of the model
in any,definitive way except to note certain broad features. In particular it
is interesting that P {s a fairly stable parameter over all three programs
and that the variation between programs, in addition to that alveady discussed
earlier with regard to the differences in overall performance as measured by
PO, is also evident in p. In particular A&S and FIB are the two programs which
have been run at sample sizes large enough to nearly stabilize the estimate of

Po‘ For these programs

Po(ASS)  o(A8S)
POFTEY = S(FEY = 2

)

That is the p's are in the same ratio as the Po's correct to two decimal
places. This fact is not true, however, when these programs are compared

to F&S and attributing this to the remaining instability ip the estimates of
F&S can only be conjectured.

Confirmation Program

After data on the first five programs had been collected and a preliminary
mode] formulated, it became apparent that the data for the S&C and LC programs
did not entirely support the model with redard to rate of detection. If the
model on rate was correct, subsequent repetitions of these programs should
detect more faults and thus increase their overall probability of detection.

At the same time, however, the estimated overall probabkility of detection was
already at the predicted level based on the first repetition of these programs
only and hence under this prediction subsequent repetitions should detect very
1ittle. Since, too, both of these programs are much more complicated than those
previously analysed, it is conceivable that neither model is correct and that
further explanation is in order. Because of restrictions on the number of
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cyeles for the VSP, it was not practical to extend eoither of these two ARSI

to more repetitions, Thus, to resalve this apparent contradiction a sixth program
QUAD was written and simulated as an example of a more complicated ARVIVRTG

running in vepetition,

Sineg the OUAD proagream uses all of the tfive previously defined instrue-
tions, the data from the AXS, S and LC praarams were combined te form o poing
estimate of (864 as a forecast for the behavior of QUAD,  The averall detectien
probabitity of QUAD based on a sample size of 99 35 K270 Not only is this value
close to the prodicted value but 1t is alsoe cluse b0 the point estimate Jhed
for ARS thouah ASS is a hiahly time dependent detector, When the data for QUAD
wias sorted by vepetition, B} of the 86 detected rans Jdetected on the first
repetition, three detectod on the thivd and one detected on the fourth based
on a test truneation time of 40 That is, almost all of the faults causing
faulty output Jdid s the fivst time the prooram Tooked at the fault; a
phenomenon confirming previows resulds obtained from the B0 and S3C proarams,
Thus, though the overall fevel of detection is pradictable, there is Tittle
or no Jdependonce of deteetion on Fulure Tooks at the same fault when proveams
get complicated,

Though at first ~hounht these vesalts are surprising, they peceme Teds s
when the complexity of the programs are studied with the assumpiions of the
rate madel in mind, that is, when thev are interpretod by the <ame madel they
appear to violate, A structurs comman to the S&C, LO and QUAD proaram s thee
repetitive use of comparison amd wultiplivation Toops to do much or the
Ccomputation.  Since both of these instruction sets involve the use of atl Tive
of the Instructions under consideration, their use I8 repetitive tut o milde
the program.  As a result the cupmglative offeet of doteclion s sopsed by the
program but is only tapped atter sany repetitions for epach of fho st t tons
have been excercised.  Thus it i the intoural that is observed and nat the
pepetition, In effoct, this Taads to a now model of datection hased ot only
an the instruction set but on the froguency with which a aiven insteuetion s
used during compuration recounizing that detection is a4 decaving vunction ot
frequaney but with nearly constant rate.
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Suggestions for Continued Experimentation

Several issues have been raised in the preceding discussion that could
be validated somewhat more completely if additional experimentation was
conducted. Whether they should be continued on the VSP or await a more realistic
computer model is difficult to assess in that it depends on the credibility
of the small computer. In any event the following 1ist contains suggestions for
continued experimentation.

1,

*

The prediction method for predicting stand alone probability
is severely hampered.due to the statistical error in the
estimated probability. Therefore several programs nead

to be run to large sample sizes in order to sharpen the
forecasting tool,

Farecasting the parameters of the urn model requires new
programs run to larger sample sizes as suggested in 1.
These would provide data for predicting the level and
stability of P and the dependence of p on PO.

The interactive model for more compiex programs invelving
the dependence of detection on instruction set and their
frequency of use during computation is not definitive. A
series of controlled experiments could be designed to
investigate this dependence.

When the interactive model is completed it could be tested
for its prediction capability by varying the fault injection
time.

The emulator now has a memory with fault injection capability,
Though it is expected that the degree of modeling complexity
is no way near as complicated as that for the processor,
simulations could be conducted to determine if this is so.

When a processor is used as a component in a fault
tolerant flight computer, tasks will be run back to back

23



e R =T

A=

- 7 o
i s £ ek e ok TR 8 bk TR T b

with repetitions of one program interspersed with ropetitions
of others., As a result 1t is not sufficient to study a

program in isolation but in tandem with other programs,
As a first step this fssue could be explored using two
programs in tandem that have already been studied in
isolation.

7. Recent information has indicated that pin failure instead
of gate failure {s a movre realistic wodel of I failure,
Some of these experiments should be repeated to explore the
consequences of this information.

CONCLUSTON

The intent of this investigation has been to propose methods of modeling
the duration and extent of latent faults by exploring the way a computer
detects faults in a computational mode. In particular the desire was to account
for as many variables as possible affecting detection and to use them in fore-
casting a given program's detecting ability prior to computation.

This investigation has shown that relative to the simplified version of
a microprocessor used in these experiments, detecting capacity of a program
Targely depends on the instruction subset used in computation and the fraquency
of its use and has little dependence, if any, on such variables as fault mode,
number size, branching and program langth.

For simple programs that control the use of a given instruction or instruc-
tion set, two models are explored that show a decaying dependence of detection
on repetitive use of the program. The most interesting of the two models
emplioys a simple analogy with balls in an urn, to explain both the mechanism
of detection and the rate at which subsequent repetitions of the program detect
a given fault. For more complicated programs, the data supports the contention
that where repatitive use of an instruction is excercised during computation,
detection is equivalent to sensing the cummulative effect of repeated exposure
to the fault. Thus camplex programs detect more the first time they see a
Fatlt and repeated looks provide Tittle additional information.



Though these results should be regarded as exploratory in part because
of the computational environment and in part because there is still a consider-
able amount of statistical error in the data, nevertheless they should be
considered with some seriousness, The picture they provide of the computing
process is both reasonable and self consistent and it is conceivable that with
a larger facility emulating a realistic processor, the methods and results
presented here can provide insight into a more general theory of computation
based detection,

Vought Corporation Hampton Technical Center
Hampton, Virginia 23666
June 15, 1978
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