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V. DESIGN OF THE AMALOG ASPS THROUGH DECOUPLING
AND POLE PLACEMENT

5.1 Introduction

In Chapter Il the analog controlliers of the ASPS are designed for the control
of the X, ¢] and ¢2 dynamics., The elght eigenvalues of the system are assligned
so that the overall system has an equivalent bandwidth of 2 Hz, We shall see
later that this Is not an accurate description of the bandwidth requirements of
the system.

The analog controllers consist of elght state-feedback galns with no coupling
between x, ¢| and ¢y In other words, the input u; of the x component is affected
only by feedbacks from x and Q, the input u, of the ¢] comporient Is affected only
by feedbacks from f¢], ¢] and éi . Similarly, the input u3 of the ¢2 component
is reallzed by feedback from the states /¢,, ¢, and éz. Therefore, the three
Independent controllers are essentially PID controllers.

The values of the eight feedback gains are determined by using the Brown's
method for pole-placement. The sampled-data version of the x, ¢] and ¢2 dynamics
of the ASPS was obtained by Inserting sample-and-hold devices in the three input
channels. It was shown in Chapter Il| that using the feedback gains designed
for the analog system, the sampled-data system is stable for sampling periods
less than or equal to 0.0075 seconds. However, this sampling period s stil]l

considered to be too small to be economical and practical for the ASPS.
5.2 Design of the Analog ASPS Through Decoupling And Pole Placement

As it turns out the desired bandwidths requirement of the ASPS is as
follows:
X dynamics 0.04 Hz

¢1 dynamics 10 Hz
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%y dynamlcs ! Hz

Since the ¢| dynamics {s 250 times faster than the x dynamics, It |s
virtually Impossible to find an equivalent bandwidth of the overall system and
establish a general elgenvalue requirement for the system. Therefore, It is
necessary to decouple the x, ¢1 and ¢2 dynamics through state feedback and
simul taneously place the poles to realize the desired bandwldths for all three
system components. The problem s stated as:

Given the system ' ORIGINAL PAGE IS

x(t) = Ax(t) + Bu(t) OF POOR QUALITY (5-1)
where - _x]_
% X,
/9, ®q
x(t) = = | (5-2)
) q.b] "5
¢] XG
e, Koy
A
b, L8
2
uy (eT]
ult) = | u,(t) (5-3)
us(t)

A iIs the 8x8 coefficient matrix and B is the 8x3 input matrix. The state feedback

is defined by

ult) = -Gx(t) (5-4)

where G is the 3x8 feadback matrix. The elements of G are to be salected so that

the coefficient matrix of the closed-loop system, A - BG, has the following form:

R T L RIE. |




where

A -

Y

A
2

BG =

Al { 0

o !
M2

-~ -

0 1 0
H

Is5 a 2x2 matrix for x

s a 3x3 matrix for ¢]

A
3 s a 3x3 matrix for ¢2.

ORIGINAL PAGE IS
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(5-5)

The elgenvalues of Al’ A, and AB are so selected that the bandwidths requlrements

are satisfied.

Referring to Fig. 2-) the A matrix of the ASPS has the following form:

o |
51 0
0 0
0 0
A =
aSI 0
0 0
0 0
38! 0

0

0

0

0 0 0
] 0 0
0 | 0
0 0 0
0 0 0
a84 0 0
0 0 0
by;  byy By
0 0 0
0 0 0
bgy  bgy by
0 0 0
0 0 0
“81 P2 bgj |

0
37
0
0

a

0

0

0

-

(5-6)

(5-7)




where the a[J's

a9
4y
327
a o

51
54

a =

a

agy =

o
il

o
It

i

and bljls In the A and B matrlices are given as

= -0,61207568

-1.4844272 x 1073

. 3 e
1.4844272 x 10 a,,

~0.31202659
-7.589096 x 107

-4
0.31202659
7.589096 x 107"

~7.6884996 x 10~

0.58237458
0.29688544
-0.29688544
0.29688544
0.15178192
-0.15178192 = -b
-0.29688544

52

-0.15178192
0.15376993

It I's simple to show that 8 has full rank (rank = 3).

Let the Feedback matrix be represented by

G=1 91 95 933 931 935 936 9Ip7 928

Then BG becomes

I 913 9 Y5 S Y7 98

931 932 933 Y934 935 936 937 93

(5-8)

04
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(86),) (86),,
0 0

0 0

(86)g, (86)
0

BG =

52
0

0
(8G) g, (B0)g,

0

where
(Be)

1o
In order for A

nwid:

(86) )3

(86,

(86) 55

(88),54

O

(B¢) g

(Ba) )

52
56

(BG)
(BG)

(88) ¢

(86) gq

(88)g,

(8¢) g,

(B&) g
(86) g,

!

3
)
k=1

BG

0

0

0

105

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 (5-9)
0 0 0 0 0
0 0 0 0 0
(BG)83 (BG)BQ (BG)85 (BG)BGI (86)87 (36)88._
b1 19 I=1,2,...,8, J=1,2,...,8
to be a diagonal matrix, the following relations must
= 0
4
= 0
=
= 0
= 0
= 0
= 0
= 0
= 0
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(86)85 = 3gp = 0
These equatlons represent 16 esquations with 24 varlables In the feedback gains
glj (i=1,2,3; j=1,2,...,8),
For the present design, the x dynamlcs s specified to have a bandwidth of
0,04 Hz. Since the x dynamics are represented by a second-order system, the

bandwidth of the system Is gliven by

B =w (1 - 22 + g - b + 2 )¥ (5-11)

| f we choose the damping ratlo g to be 0,707, then
BW = w , (5-12)

where ©, is the natural undamped frequency.

Therefore, for the x dynamics, the eigenvalues are selected to be at

P], Pz = a] i'_Ja] (5"']3)
where
ay = - 0.04 x 21 -0.178 (5-14)
v

The ¢] and ¢2 dynamics are of the third order. However, we can use second-
order approximations by placing the real root far to the left on the real axis
in the s-plane. For this case we let the real root of the ¢I dynamlics be placed

at
Py = by = ~200 (5-15)

Then, the complex roots are:

Pys» Pg = 8y £ Jay | (5-16)
where 8y = - 2r x 10 oy 436 (5-17)
YZ

Similarly, for the ¢2 dynamics, we let

¢ pg = by = -20 _ (5-18)
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Then,
p7' pa m 33 ija3 (5"]9)
where ag = - Egii.L m -l 1436 (5-20)

The characteristic equations of the three decoupled subsystems are as
follows:
X component: (s - ay - Jai)(s *ay * ja])

= 5 -2a;s + 2af =0 (5-21)

¢, component: (s = by)(s = a, ~Ja,) (s - a, + ja,)

= (5 = bz)(s2 - 2a25 + 2a§) |
A (Za2 + b2)52 + (2a§ + Zazbz)s - Zagb2 =0 (5-22)
¢, componwnt: (s = by) (s - az = Jag)(s - a5 + JaB)
= - 2 - 2
(s b3)(s 2a35 + 233)
L3 2 2 L2 )
5 (2a3 + b3)s + (2a3 + 2a3b3)s 233b3 , 0 (5-23)

If there exists a set of feedback gains such that the decoupling of the
subsystems X, ¢l and 4& can be accomplished, then the decoupled ¢losed-loop
system will have the independent character!stic equations of Egs., (5-21), (5-22)
and (5-23).

Let the matrix A of Eq. (5-6) be written as

Allj X i X

A= | X : Ay : X (5-24)
L2
£ | A33

where A]] denotes a 2x2 matrix, Az2 and A33 are 3Ix3 matrices. The submatrices
denoted by X contaln elements which are unimportant for the Immediate develcpment.
In view of Egqs. (5~5) and {£-9), the decoupled x dynamics with state feedback

can be expressed as




|08
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X, x, OF POOR QUALITY
- ﬂ] (5'25)
;2 o)
where
0 0 0 1
Ay = Ay - n (5-26)
(Ba),, (BC),, ay; - (B8)y,  -(BG),,

The characterlstic equation of A] is

5 -]
|st - All =

a, - {BG),, s+ (8G),,
= 5% 4 (86),,5 - 3y + (8G),, = 0 (5-27)

Similarly, the decouplad ¢I dynamics with state feedback is described by

%3 *3
*q = AZ X& (5“28)
"5 ] %5 ]
where _
0 0 0
Ay = Ayp = 0 0 0
(B8)g;  (BG)gy  (BO)5g
0 ] 0
= 0 0 ] (5-29)

~(88) 53 agy, - (BG)g, -(BG) g,

The characteristic equation of Az is
s =1 0
|s1 -A,] = 0 5

(B6)gq  -agy + (BB)g, s + (BG)gg




m 5?4 (80) s+ ((BG) g, - ag,)s + (B6)gy = O (5-30)

For the ¢, component, the decoupled closed=loop state equatlons are

X g
Xy | = Agl Xy {5-31)
where
0 0 0
Ay = Ayz - 0 0 0
(Belge (BG)g, (BG)gg
0 | 0
= 0 0 1| (5-32)

-(BG)gs  agy - (BG)g, =(BG)gg
The characteristic equation of A3 Is

5 -1 0
st - A;] = 0 s -1
(BG)86 4a87 + (BG)87 s + (BG)88

= 57 + (80)ggs” + ((86)gy - agy)s + (BG)gg = O (5-33)

For pole placement, in order to meet the bandwidth requirements, the corresponding

coefficients of the characteristic equations in Egs. (5-27), (5-30) and (5-33)
must match those of Egs. (5-21), (5-22) and (5-23), respectively.
Thus, for polie-placement,

2 2 2 _ )
2a;s + 23" = 5" (BG)ZZS + (BG)zI 3y (5-34)

g3

2 2 2
(?.a2 + pz)s + (Za2 + 2a2b2)s - 2a2b2

g3 (BG)SSSZ + ((BG)SA - 354)5 + (BG)S3 (5-35)

!

109
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3 2 2 .2
5 (2a3 + b3)s + (2a3 + 2a3b3)s 2a3b3

= 5 + (80) ggs? + ((e6) g, -

Equating the |lke coefflclents

(B6) 25 = by)9yz + byp9gp * by,
(BG)a1 = byy9y) + byp9ay * byssy,
(BG) g5 = bgy9)5 * bgy9ys + 95594
(BG) gy = bgyg)y + bsygay * brygy,
(BG)g3 = bgygyy * bgydys + bygags
(BG)gg = bgy9)g * bgy9pg + bysasg

(BG) gy = bgy9y; + bgyg,, + bgsaas
(BG)gg = bgy@re + bgygyg + byyay,

LY

887)5 + (BG)86 (5-36)

in the above three equatlons, we have

--2aI

2
2a) + ay,

-(Za2 + bz)

2
2a2 + 2a2b2 + aSh

(5-37)

2
-2a2b2

-(Za3 + b3)
o 9.2
Za3 + 233b3 + a87

2
n -2a3b3

Notlce that the 16 constralnt equations on the feedback gains in Eq. (5-10)

4re copditions on decoupling of the

three subsystems, whereas the 8 constraint

equatlons in Eq. {5-37) are the conditions for pole placement, The 24 constralnt

equations contain 24 unknowns in the elements of the feedback matrix G, gij' i=],

2:3: j"]rzy'-':a‘

The 24 constralnt equations in

WG = ¢

where [—bZI

W= | bg

B
G Is the feedback matrix given In Eq
are composed of a1y 8y, a3, b], bz,

The feedback gain matrix G can

L — T — &

Egs. (5-10) and (5-37) can be wrltten as

(5-38)
2y by
by bes
b82 b83_

. (5-8), and C is a 3x8 matrix whose elements
b3s and aiJ’ [=I!2|"'?81 Jj=1,2,...,8.

be soived form Eq. (5-38) If W is nonsingular.



Then,

1

G=W 'C

(5-39)

For W to be nonsingular, it is nevessary and sufficlent for B to have full rank,

" For the system parameters given for the ASPS, the feedback matrix is solved

from Eq. (5-39), and the results are given as fol lows:

M
912
913
9y
95
916
N7y
918

w

=

36. 449

212.4

~9,256981248 x 108
-2,5471626624 x 107
-3,3892568 x 10°

0

0

0

-73.35

-415,h5kk
2.2126125552 x 10°
60882526771 x 107
8.1012732 x 10°
3.96750304 x 10°
1.091703152 x 107
452664 x 10”
0

0

3.96750304 x 10°
1,091703152 x 107
1.452664 x 10°

3.96750304 x 10°
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= 1.091703102 x 10°
4

937
935 = 1.452664 x 10

Substituting G into Eq. (5-5), the elements of the closed-loop A ~ BG matrlx

are obtained as follows:

0 i
A = -2 -1
| -6.25x10 -3,5x10
~ 0 ] 0 ]
Ay = 0 0 1
-7.88768x10° ~2.170384x10" -2.888x102_
[~ 0 } 0 N
Ay = 0 0 ]
-788.768 -217.0384 -28,88

Thus, the three components of the x, ¢] and ¢2 dynamics are completely

decoupled, and they have bandwidths of 0.04, 10 and ! Hz, respectively.

ORIGINAL PAGE IS
OF POOR. QUALITY



g

VI DESIGHN OF THE DIGITAL ASPS THROUGH DECOUPLING

AND POLE PLACEMENT

113

In this chapter the digital ASPS is to be designed through decoupling and

pole placement, In Chapter IV the digital ASPS was realized by placing sample~

and-hold unlts at the three inputs to the x, ¢] and ¢2 components.

gains were the same as those of the analog ASPS.

The dynamics of the system are sti)l described by

x(t) = Ax{t) + Bu(t)

where A, B, x(t) are as defined in Chapter V. The control vector u(t)
by =
u(t) = -Gx(kT) kT < £ < (k+D)T

The solution of Eq. (6-1) over the interval kT < t < (k+])T is

t
x(t) = ¢{t = kT)x(kT) + [ ¢(t - ©)Bu(r)dt
kT

t
= ($(t = kT) - Ik d(t - 7)drBa)x(kT)
T

where At

$(t) = e
Substituting t = (k+1)T into Eq. (6-3), we get

T
x((k+1)T) = (p(T) - Io o(T ~ T)dt8G)x(KT)

Let T
o(T) = [ o(T - 1)dTB
0

Then Eq. (6-5) is simplified to

(1) T) = ((T) - 8(T)6)x(kT)

The feedback

(6-1)
Is given

(6-2)

(6-3)

(6-4)

16-5)

(6-6)

(6-7)

Equation (6-7) now represents the difference state equations of the closed-loop

state~feedback ASPS.

E
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The deslign objectives are to select the elements of the 3x8 feedback matrix
G so that the coefficlent matrix of the closed-loop dlgital system, ¢(T) - 8(T)G,

has the following form:

Ay 0 0
o{T) - 8(T)6= |0 A, O (6-8)
0 0 A3

where Al is 2x2, A, and A3 are 3x3 matrices, and the eigenvalues of Al’ Az and
A3 are to be placed so that the baniwidth requirements described earlier are
satisfled.

Before the desfgn can be carried out, one difficulty remains. It Is necessary
to first calculate the matrices ¢(T) and 8(T), knowing A, B and the sampling period
T. Since A is 8x8 In the present case, the Laplace transform method becomes a
tedious task. The method chosen here is that of approximating ¢(T).by a truncated

power series; fl.e., N

o(Ty = [ A"1"/n! (6-9)
n=0

where N |s some positive integer.

The matrix 6(T) is written

A a0
ALt 1) g  (6-10)

|f the function 8(T) is uniformly convergent, the integral and the summation in
the last equation can be Interchanged. Also, truncating the {nfinite series at

n=N, we have

N
8(T) = (z A“T”+‘/(n+;)s]a e

n=0

For T = 0.02 sec, the results of ¢(T) and 8(T) are given as follows:



9,998x10" 1.999x1072

2 ]

1.224x107° 9,998x10°
-4.160x10"7 -2.080x10™°
~6.240x10"% =4,160x10"7
$(0,02)=
-6.240x10"3 -6.240x10"5
5.160x10"7 2.080x10™°
6.240x10™° 4.160x10"7

6.240x10™2 6.240x10"7

4

1. 16ux10”
1.164x10"2
3.958x1077
5.937x107

8(0.02) =
5.937x1073

0 -2.968x10°7 -1.979x10"7

0 -2.968x10

I 1.999x10°

0 9.9%xl10"
0 -1.517x10"

0 1.,011x10°

0 1.517x10°
0 1.517xt0"
5,937x107°
5.937x1073
2,023x10”7
3.035x107°

3.035x10“3

-3.958x10"7
-5,937x107>

-5.937x10 73

-2.023x10"7

-3.035x10"°

~3.036x107>

5

2

1

5

9

7

5

-2.968x10"7
1.999x10'“
1.999x10"2
9.999x10"""
5.059x10™ ! 2
1.011x1077
1.517x1077
-5.937x10™°
-5.937x107
~2.023x107/
-3.035x107°
-3.035x10"°
2.050x1077
3.075x10™°

3.075x1073

0

2.968x10”7
2.968x107°
1.011x1077
1.517%1077
1.517x107°
1.999x1072
9.999x10™"

~1.537x107°

(6-13)

15

1.979x107°

2,968x10"7
5.059x10" 12
1.011x10™
1.517x1077
1.999x10™".
1,999x10"2

9.999x10"]

e

(6-12)

For the same bandwidth requirements described in Chapter 5, the following

eigenvalues are selected in the s-plane:

x component: (0.04 Hz bandwidth)

Pys Py = ~0.178 + j0.178

$; component: (10 Hz bandwidth)

Py = -200

t



e

Pyr Pg = ~hh4 436 + jh4.436

¢, component: (1 Hz bandwldth)
P6 = =20
p7. 98 = "1*-1"'}36 i 14-4436

Ts

Using the transformation z = e'”, these elgenvalues are transformed [nto

the z=plane, The corresponding z-plane eigenvalues are:

X: 2|y 2y = 0.9964457 + j0.0035417
¢|: 2y = 0.01831564

zy: 25 = 0.2592945 + jO.3191948
¢2: zp = 0.67032

24, 2g = 0.911366 + j0.096987

The condition of decoupling of the closed-loop digital system given In Eq.
(6-8) results in 42 constraint equations. Thls is dHe to the fact that Eq. (6-8)
represents 64 scalar equations, but there are 42 zero elements in the matrix.

The pole placements of the eighth-order system would produce 8 more constraint
equations, so there are only 24 unknowns In the feedback matrix G. Therefore, in
general, there would not be a set of solutions with more equations than unknowns.
However, a closer look at the elements of ¢(T) and 8(T) reveals that some of the
elements are extremely small so that a good approximation can be obtained by
assuming that these small elements are zeros. |In other words, the state transition

matrix $(0.02) given in Eq. (6~12) can be approximated by the following matrix.



o

$(0.02)=

0

0

-6.240x10™2 -4,160x10°7 "

— s m—— TS b Mm A S

6.240x10">  6.240%107°

0

0 0 0 0

-5 -y |
0 -1.517x10"°  9.999x10”" | 0

- - |
9.998x10™!  1.999x10"2 :o 0 0 10 0
-2 -1 -5 -7 |
-1.224x10 ©  9.998x10 l0 -2.968x10 © -2,968x10 / {0
T T T T T T esae? resmant o o
.999x10 1.999x10™" | 0 0
} L
0 0 0 9.999x10”!  1,999xi07% |0 0

0 1.517x10™°  1.517x10°7 1 0 ~1.537x10°

Similarly, we can approximate 8(0.02) by the following matrix:

8(0.02) =

B 0 0 0 T
1. 16hx1072 5,937x107 -5.937x107>
-.—0 ————— o 0——-
0 0 0

5.937x10"3  3.035x10"3 -3.035x1073

e mmm mrm mem ehm A Emmm pam o emm mee  mam e e smeer

0 0 0

0 0 0

3

-5.937x1075 -3,035x107°  3.075x10 -

Then, the matrix 6(0.02)G becomes

— — m—

|1 1.999x107% 1.998x10"

10 9.999x107" 1,999x10

117

0

2.968x107°  2.968x10"/

— — p— e e

0

0

4

2

1

—

5 5.999x10

(6-14)

B IS
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8(0.02)G =

Based on Egs

obtained for decoupling the ¢ - 6G matrix:

(68)
(86),
(86) 55
(66) ¢
(66)
(66) 5
(eG)SI
(e6) g,
(86) ¢
(66) 7
(86) 5

(66) g,

=

n

n

i}

(86) g,

(66} gy | (88)gy (8G)g, (0B)gs | (8G) gy (8G)g, (8G)gq |

¢

iy e ppe —

0

—— e w— m— g —

)
l

0 : 0 0 0
0 : 0 0 0
l .
(aa)53 (BG)Sh (96)55 ,(96)56 (96)57 (es)58
0 0 0 0

0

0

0

0

0

0

0

f

I

!

|

|

| T e T = X S S A
| T
|

|

)

l

o 0 0

I
o | 0 0 0
I
|
|

. (6=14), (6~15) and (6-16), the following 16 equations are

821913'* 922953 * 853933 = 853

%1914
%1915
921916
921917
921918
8191
851912
851916
851917
851918

Bg191

+

+

+

+

+

+

+

+

+

g

8

8

&

8

8

®

8

8

8

8

22924
22925
22926
22927
22928
52921
52922
52926
52927
52928

82921

4

93934 =

93935 =

953936

823937 =
953938 =
= 95

95395

85393, =
853934 =

853937 =

953938

883937 =

Pa

¢25

= 09

)7

P28

¢’52
4’56

b57

=¢,58

bg;

Ll

n

]

It

n

u
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-2.968x1072
-2,968x10™7
0
2.968x10"2
2.968x10"7
-6.240x10™°
-4.160x10°7
0
1.517x1072

1.517x10~7

6.240x103

118
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(ers)82 =
(eG)83 =

(BG)Bh =

(90)85

98191 * B899 T 8395, = dg,

931913 + Ogp9p3 * 03935 = 9g3 = 0

= " -5
88191y * BgaTpy * Og393y = dgy = 1.517x10

931915 * 833955 + Og3935 = dgs

= 6.240x10™7

1.517x10~7
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The elght additional constraint equatlons for the solution of the 24

119

elements of the feedback gain matrix G come from the pole placement requirements

on the submatrices, A], Az and A,.

3

After the matrix ¢ -~ OG has been decoupled, it can be written as

$(0.

where

1O 1o
R I AR
0z) - 6(0.02)G = 0 | Ay 10
L
| |
|00 Ay
o P 0
A = -
b2 %22 (06),,
. b %12
by = (88),) ¢y, - (88),,
b33 gy by [ [0 0
- 0 0

(6-18)

(6~19)

(6-20)



d66 P67 P68 0 0 0
Ay= |07 ¢77  b78 | " | ° 0 0
S Y tgg _(86)86 (pG) g, (8G)gg
P66 %67 P68
= | 976 77 %78

dgg - (08)gg g7 - (8C)g; dgg - (6G)gg

The characterlstlic equatlion of the decoupled x dynamics is

120

ORIGIY

KL'PB-T3IS
OF ROOR Q

(6-21)

(6422)

274 kP!
|21 - A|| =
= 9y * (86), z = ¢y, + (86)y,
2
=z" + ((88),y5 = &y - byp)2 * Oyyhgp = by (86),5y * ¢]2((95)2] -
= (z +a + Jb])(z +a - jb])
where a, = -0.9964457  and b, = -0,0035417.

|
Now solving for the unknowns in Eg. (6-22), we have

(8G) 5y = 8919 *+ €33951 * 83393

1l

2 2, 2
b 1 BT T Bt T ¢12927)

(88) 5 = 851915 * 822922 * 823932 = ¢y * dyp ¥ 23

For the $y dynamics, the characteristic equation of Ay Is

1
'
-
J =
wl
N
1
©
S
N -
1
-
=
wn

217 Byl
S g3t (00)55 - og + (86)g, 2 - agy (06

H
[
+
C e Y
-
<D
[rp )
o™
i
v
=
U
AV 1
-5
g
)
<
AWE ]
LS )
S
N

+ (~lyy *+ #33) (06 g5

(6-23)

(6-24)  ~

* 4y5(08) g
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* b35(08) 5 = Ggubyg + dyabog + Gyabyy " By3byy T d35803 * Pyydys

o+

((9g38yy = 9y3034) (80) g5 + (935043 = dy5dyc) (80D,

¥ (bypbys = O3504,) (80) 53 = dyabydog + Byaboydys + bya03,05s

The

where

Equating

(06) g5 =

(86) 5y, =

(66)

For

|zl - A3| =

53

P3tastsy = 3uPustss * P35huydss)
desired characterlstic equation Is written as

(2 » a, + jbz)(z ta, - jbz)(z + cz) = 0

c, = =0.01831564
a, = -0.2592945

b, = -0.3191948

Eqs. (6~25) and (6~26), we get

851915 +'852925 ¥ 853935 = ¢55 + ¢hh S 2a2 *+ <,

85191 * B5p954 * 85395y

(1 + 2a, + ag + bg)(l + ¢

" 935 2 2

g (B35 * Pyybyc = P3cbyy) Dy

[}

+

b4 28, ¥ cp) - byt dysboy - g5 < By + 28,

851913 * O50923 * 953933

2
(1 + 2a, + a;

935 * 934045 ~ 93500

+ B2 (1 + ¢,)

the ¢, dynamics, the characteristic equation of Ay is

z = dgg iy - g8

b " %77 " %8

- g + (9)gg = 4gy * (0)g; 2 - dgq + (C)gg

-i-a2

2

(6-25)

(6-26)

(6-27)

* g oy + 1) (g5 + 0y

+ bg] (6-28)

(6-29)
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il ((66)88 = ¢88 - ¢77 - ¢66J22 + (-(¢77 + ¢66)(BG)88 * ¢78(BG)87

* 065(00) gg = Pgy078 * Bssbag * Begbry = brgdsy = Bgabyg + by79g) 2

+

((Begt77 = 07067 (801 gg + (9ggag = t5qb7g) (86) g,

* {97978 = 96g077) (88) gg = dgedyndgg + dgebgrbng * bogdstgg

" Pr6%68%7  P67%78%86 * 968%77%86) (6-30)
The desired characteristic equation Is written as

(

N

+ ag + Jb3)(z + 3 ~Jb3)(z + c3) = 0 {6-31)

whare ¢, = =0,67032
a, = =0.911366
b, = -0.096987

Equating Eqs. (6-30) and (6-31), we get

(86)gg = 051915 + 85,926 * Bg395¢

2 .2
. (I + 233 + 33 + b3)(l + C3) (6-32)
%68 * Ps7P78 = 948d7y

(86) gy = 83191 + 83,9, + 8459,

+
¢78(¢68 + ¢67¢78 - ¢68¢77) ¢78

,
(77 * Dlbgg + 9. + 1 42a54c,)

) o 2 2 )
77878 * 978887 = 9gg ~ ¢yy * 2agcy +ay + b7) (6-33)

(96)gg = 831918 * Bgp9,5 + Og593g
= dgg * ¢77 + 1 + 2a3 * ey (6-34)

Equations (6-23)p (6-24): (6_27)} (6"28): (6-29): (6-32)1 (6-33) and (6"3&)
form the additiqnal efght constraint equations, together with the 16 equations

in Eq. (6-17) are adequate for the solution of the 24 unknown feedback gains in G.
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The solutlon of the 24 constraint equations gives the following results:

In -
92
913 ©
Iy =
95 *
916 "~

= 209,57461847387285

35.432513595904985

-9, 368484250209332x107 or POOR QU
~8.11397701621271032x10
-1, 4h5344321654982310°
917" 9180
~71,361744259885901

= «409.94846384061196

2.2392641 102247482108

1.9394105849068884x] 07

= 3.454675889387745x10°

3.578272520216161x10°

= 1.3239693135355619x} 0°

1.2749737170875715x10°

939 = 0

4.015292755500438x107

3.4776162570406019x1 0°

6.194684677845835x10"

= 3.57827252779 2904x10°

I.323969309h|29hhx|06

.27497371293248kk4x1 0

(6-35)
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