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5.2 Design of the Analog ASPS Through Decoupling And Pole Placement 	 I,.

5,1	 Introduction
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V. DESIGN OF THE ANALOG ASPS THROUGH DECOUPLING 	 k

h'

Bi

3

AND POLE PLACEMENT

5.1	 Introduction

In Chapter II the analog controllers of the ASPS are designed for the control

of the x, $ 1 and 
^2 dynamics. The eight elgenvalues of the system are assigned

so that the overall system has an equivalent bandwidth of 2 Hz. We shall see

later that this is not an accurate description of the bandwidth requirements of

the system.

The analog controllers consist of eight state-feedback gains with no coupling

between x, $ 1 and $ 2 ,	 In other words, the input u l of the x component is affected

only by feedbacks from x and x, the input u 2 of the $ l component is affected only

by feedbacks from I$ i , $ 1 and 	 . Similarly, the input u 3 of the $ 2 component

is realized by feedback from the states J$
21 $2 and $ 2 . Therefore, the three

!ndependent controllers are essentially PID controllers.

The values of the eight feedback gains are determined by using the Brown's

method for pole-placement. The sampled-data version of the x, $ l and $2 dynamics

of the ASPS was obtained by inserting sample-and-hold devices in the three input

channels.	 It was shown in Chapter III that using the feedback gains designed

for the analog system, the sampled-data system is stable for sampling periods

less than or equal to 0.0075 seconds. However, this sampling period is still

considered to be too small to be economical and practical for the ASPS.

5.2 Design of the Analog ASPS Through Decoupling And Pole Placement

As it turns out the desired bandwidths requirement of the ASPS is as

follows:

x  dynamics
	

0.04 Hz

$ 1 dynamics
	

10	 Hz

1	 "
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Since the 
01 

dynamics is 250 times faster than the x dynamics, it is	 f

virtually Impossible to find an equivalent bandwidth of the overall system and

h dynamics

,	 'i	 ^'

where

(5-2)X(t) _

x

X

f^1

$i

f^2

$2

x1

x2

x3

N
x5

x6

x7
x8

establish a general elgenvalue requirement for the system. Therefore, it is

necessary to decouple the x, ^
i
 and ¢2 dynamics through state feedback and

simultaneously place the poles to realize the desired bandwidths for all three

system components. The problem is stated as:

Given the system	 ORIGINAL PAGE IS

	

x(t) = Ax(t) + Bu(t) OF POOR QUALI7.'Y 	 (5-1)

u1(tI

U(t) _	 U 2
 (t)
	

(5-3)

u3(t)

A is the 8x8 coefficient matrix and B is the 8x3 input matrix. The state feedback

is defined by
u(t) _ -Gx(t)	 (5-4)

where G is the 3x8 feedback matrix. The elements of G are to be selected so that

the coefficient matrix of the closed-loop system, A - BG, has the following form:



1	 ^l'

1	

M__

l^l

4

^In
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	A l 1	 0	 1 0

	

I	 I

	

0 1	 A2	 i 0	 (5-5)

	

- 0 1	 0	 1 -A3 iF
1-

	where	 A 1 is a 2x2 matrix for x

A2 is a 3x3 matrix for 
01

A3 is a 3x3 matrix for $2.

The eigenvalues of A l , A2 and A3 are so selected that the bandwidths requirements

are satlsfied.

Referring to Fig. 2-1 the A matrix of the ASPS has the following form;

0	 1	 0	 0	 0	 0	 0	 0

a 21	 0	 0	 a24 0	 0	
a 2 

0

0	 0	 0	 1	 0	 0	 0	 0

0	 0	 0	 0	 1	 0	 0	 0

	

A =	 (5-6)
a 51	 0	 0	 a54	 0	 0	 a57	 0

0	 0	 0	 0	 0	 0	 1	 0

0	 0	 0	 0	 0	 0	 0	 1

a8l	
0	 0	 a84	 0	 0	 a87	 0

The B matrix is written as

0	 0	 0	 Y,

b 21	 b 22	 b23

0	 0	 0

Y

0	 0	 0	 ^
B	

(5-7)

b 51	 b52	 b53

0	 0	 0

0	 0	 0

b 81	 b 82	 b83
i
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where the a id 's and b ij 's In the A and 8 matrices are given as

4

a21 = -0.61207568

a24 = -1.4844272 x 10-3

a 2 = 1.4844272 x 10 -3 = -a 24

a51 - -0.31202659

a54 = -7.589096 x 10-4

a
57 = 7.589096 x10 -4 = -a 54

a	 =
81	

0.31202659

a 84 - 7.589096 x 10-4

f	 a87 - -7.6884996 x 10-4

1'21	 0.58237458

b22 = 0.29688544

b 23 = -0.29688544

{	 b51 = 0.29688544

b52 = 0.15178192

b
53 ° -0.15178192	 -b52

b 81	 -0.29688544

b 82	 -0.15178192

b82 = 0.15376999

It is simple to show that 8 has full rank (rank 	 3).

Let the feedback matrix be represented by

gll g 12 g 13 g 14 9 15 g 16 g 17 918

G 921 g22 g23 g 24 g25 g 26 g 27 g28

g 31 9 32 g 33 g 34 9 35 g 36 g 37 g38

(5-8)

Then 8G becomes

i'

I

_^ Ji
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— 0	 0	 0	 0	 0	 0	 0	 0

(BG)21	 (
B G) 22	(BG) 23

 (13G) 24(BG)25
	

(13G) 26
	 (13G) 27(BG)28

	

0	 0	 0	 0	 0	 0	 0	 0

BG =
	 0	 0	 0	 0	 0	 0	 0	 0

(13G) 51(BG)52
	 (so) 53(BG)54	

(13G) 
55	 (BG )56 (13G) 57(BG)58

	

0	 0	 0	 0	 0	 0	 0	 0

	

0	 0	 0	 0	 0	 0	 0	 0

(BG )81
	 (BG )82(BG)83 (13G) 84 (BG)85 (BG) 86 (BG) 87 (BG)88

where	
3

(BG) if = ki l b Ikg kj
	 i=1,2,...,8, J=1,2,...,8

(5-9)

In order for A - BG to be a diagonal matrix, the following relations must

nuld:

(BG) 23 = a23 = 0

(BG)24 = a24

(BG)25 = a
25 = 0

(13G) 26= a26 = 0

(BG) 27 = a27

(BG) 28 — 
a28 = 0

(BG)51 = a51

( B G) 52 = a52 = 0

(BG) 56 = a
56 = 0

(8G) 57
= a57

(BG) 58 = a
58 = 0

(BG) 81 = a81

(BG)82	
a82 = 0

(BG) 8,3 = a 83 = 0

(13G) 84
= a84

.Jrn.....r.. 
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(BG) 85 ' a85	 0

These equations represent 16 equations with 24 variables in the feedback gains

giJ 
(1°1, 2 ,3; J°1,2,...,8).

For the present design, the x dynamics is specified to have a bandwidth of

L	 0.04 Hz. Since the x dynamics are represented by a second-order system, the
^

	

	 w

bandwidth of the system is given by

BW = wn ( 1 - 242 + 
4^4 _ 4 ^2 + 2	

(5-11)

If we choose the damping ratio i to be 0.707, then

BW = wn	 ( 5 -12)

where wn is the natural undamped frequency.

Therefore, for the x dynamics, the eigenvalues are selected to be at

where	
0.04 x 21r

a l = -	 -0.178	 (5-14)

The ^l and ^2 dynamics are of the third order. However, we can use second-

order approximations by placing the real root far to the left on the real axis

In the s-plane. For this case we let the real root of the ^l dynamics be placed

at

P3 
= b2	 -200	 (5-15)

Then, the complex roots are:

P4, P5 = 0 2 + ja 2	(5-16)

where	 a2 = _ 27r x 10 = _44.436	 (5-17)

Similarly, for the ^2 dynamics, we let

P6 = b3 = -20	 (5-18)

i
sir

ii

F ,^
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P7 1 Pa '° a 3 Y Jai	 O7 IJ)

t	 wherea = - 27r x 1	
_4,4436	3 T	 (5-20)

The characteristic equations of the three decoupled subsystems are as

follows:

i	 x component:	 (s - a l - Ja l )(s + a l + Jai)

',	 = $2 -2a i s + 2a^ = 0	 (5-21)

t,
	 $l component:	 (s - b2 )(s - a 2 -Ja2 )(5 - a2 + Ja2)

l

= (s - b 2)(s
2 

- 2a 2   + 2a2)

= s 3 - (2a2 + b 2 )s 2 + (2a2+ 	 2a 2 b 2 )s - 2a2b 2	 0 (5-22)

I	 $2 componwnt:	 is - b 3 )is - a 3 - Ja 3 )(s - a 3 + Ja3)

= is - b 3 )(s 2 - 2a 3 s + 2a 3)

j	 = 5 3 - (2a 3 + b 3)s 2 + (2a3 + 2a 3 b 3 )s - 2a2b 3	0 (5-23)

If there exists a set of feedback gains such that the decoupling of the

subsystems x, 
i 
and ¢ can be accomplished, then the decoupled closed-loop

system will have the independent characteristic equations of Eqs. (5-21), (5-22)

and (5-23)•

Let the matrix A of Eq. (5-6) be written as

1

A111 X - 1 X—
A =

I

X	 ! A22 I X	 (5-24)

X r X	 I Ai	 i	 33

where A 11 denotes a 2x2 matrix, A 22 and A33 are 3x3 matrices. The submatrices

denoted by X contain elements which are unimportant for the immediate development.

In view of Eqs. (5-5) and (5-9), t he decoupled x dynamics with state feedback

can be expressed as

„
A

f

'i

I
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x1 - n 1

[ x,

	(5-25)

x2	x2

where

00	 0	 1
A 1 = A ll -	 -	 (5-26)

(BG)21	 (BG) 22	 a21 - (BG)21	 -(BG)22
1 BG) 

21	
(BG)

The characteristic equation of A l is

s	 -1

Isl - A,I _

a21 - (BG)21	
s + (13G) 22

= s2 + (BG)22s	
- a

21	 +	 (BG)21	
= 0 (5-27)

Similarly,	 the decoupled ^1 dynamics with state feedback Is described by

x 3 x3

x 4 A2 x4 (5-28)

5-
x5

where
0 0	 0

A2 = A22 - 0 0	 0

(BG)53
(BG)54
	 (BG)55

0 1	 0

= 0 0	 1 (5-29)

-(BG) 53 a 54 -	 (BG)54	
(13G) 55

The characteristic equation of A2	is

s -1 0

Isl	 -A2 1	 = 0 s -1

(BG) 53 -a 54 +	 (BG) 54	
s + (BG)55



. r

n
a

F

•y

y	 109

j	
. $3 + (BG)55s2 + ((RG)

54
 - a 54)s + (BG)53 

n 0	
(5-30)

For the $2 component, the decoupled closed-loop state equations are

x6 	x6

X7 	 o A3 x7	(5-31)

x8	X8

where

0	 0	 0

A3 = A33	
0	 0	 0

(BG)86	 (BG)87	 (BG)88

0	 1	 0

=	 0	 0	 1	 (5-32)

- ( BG )86	 a 87 - (BG)87	 -(BG)88

The characteristic equation of A3 is

s	 -1	 0

Isl - A3
1
	 0	 s	 -1

(BG)86
	 -a 

87 + (BG) 87 	s + (BG)88

= s3 + (BG)8852 + ((
B G)

87
 - a 87)s + (BG)86 = 0	 (5-33)

For pole placement^in order to meet the bandwidth requirements, the corresponding

coefficients of the characteristic equations in Eqs. (5-27), (5-30) and (5-33)

must match those of Eqs. (5-21), (5-22) and (5-23), respectively.

Thus, for pole-placement,

s 2 - 2a s + 2a 2 = s 2 + (BG) s + (BG)	 - a	 (5-34)
1	 1	 22	 21	 21

S3 - (2a 2 + b 2)s 2 + (2a2 + 2a 2 b 2)s - 2a2b2	
^pp

	

= s 3 + (SG) S5 s 2 + (( BG)
5
4 - a 54)s + (BG)

53
	(5-35)

1r
a

I

V	 .I

A
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s 3 - (2a 3 + b3)s2 + (2a3 + 2a3b3 )s - 2a2b3

5 3 + (BG) 88s 2 + ((BG) 87 - a 87)s + (DG)86
	 (5-36)

Equating the like coefficients in the above three equations, we have

(BG) 22 w b 21 g 12 + 6229 22 +
b^3g32 ' -2al

(BG) 21	0 621 9 11	 + 6 229 21	 + 623931	
2a

1	+ a21

(BG)55 " 651 9 15 + 652 9 25 +
953935 a -(2a2 + b2)

(BG) 54 W 651 9 14 + 652924 + b53g 34 ' 2a2 + 2a 2b 2
 + a54

(BG)S3 6 51 9 13 +
6 529 ^3 + 6

539 33 ^ -2a 262

(5-37)

(BG) 88 6 81 9 18 + 6829 28 + 6839 38 ° -(2a
3 + b3)

(BG)87
681917 + 682927 + 6839 37 = 2a

3 + 2a 3 b 3 + a87

(BG)
86

b	 ,a.,	 +
8, b	 g	 +8. 26

b	 g	 d -2a 2 b
83 36	 3 3

Notice t =,at	 the 16 constraint equations on	 the feedback gains	 in Eq.	 (5-10)

Nre conditions on decoupling of the three subsystems, whereas 	 the 8 constraint

equations	 in Eq.	 (5-37) are	 the conditions	 for pole placement. 	 The 24 constraint

equations contain 24 unknowns in the elements of the feedback matrix G,	 g lj ,	 i=I,

2 ,3,	 j-1,2,...,8.

The 24 constraint equations	 in Eqs.	 (5-10)	 and	 (5-37)	 can be written as

WG = C
(5-38)

where

621 622	 623

6 51 652	 653

6 81 682	 683

E'

l^

I

I

r

{
I

G is the feedback matrix given in Eq. (5-8), and C is a 3x8 matrix whose elements
	

tiI
,

are composed of a l , a 2 , a 3 , b l , b21 b 3 , and a ij , 1=1,2,...,8, J= 1,2,...,8.
The feedback gain matrix G can be solved form Eq. (5-38) if W is nonsingular.



t	 !^

ire

	
_	 T

j

Then,	 0	 W-1 C 	 (5-39)

For W to be nonsingular, it is necessary and sufficient for B to have full rank.

For the system parameters given for the ASPS, the feedback matrix is solved

from Eq. (5-39), and the results are given as follows;

911 ° 36.449

g 12 = 212.4

9
13 = -9.256981248 x lob

g
14 = -2,5471626624 x lo7

9 15 = -3.3892568 x 105

916=0

9 17 = 0

9 18 = 0

g21 = -73.35	
,

g22 = -415.4544

9
23 - 2.2126125552 x 109

g
24 = 6.0882526771 x 107

g 25 = 8.1012732 x 105

g 26 = 3.96750304 x 105

9
27 = 1.091703152 x 105

9
28 = 1.452664 x 104

9 31 = 0

g32=0

9
33 - 3,96750304 x lo 

934	
1.091703152 x 107

9
35 = 1.452664 x 105

g16 = 3.96750304 x 105

a
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9
37 = 1.091703102 x 105

i

9
38 = 1.452664 x 104

Substituting G into Eq. (5-5), the elements of the closed-loop A - BG matrix

are obtained as follows;,

0	 1
_ —

AI	 -6.25xi0-2
	

-3.5x10

-

 I

0	 I	 0

A2 	0	 0	 1

-7.88768x105 -2.170384xio4 -2.888x102

0	 1	 0

A3	 0	 0	 1

-788.768	 -217.0384	 -28.88

Thus, the three components of the x, ^I and ^2 dynamics are completely

decoupled, and they have bandwidths of 0.04, 10 and I Hz, respectively.

ORIGINAL PAGE IS
OF POOR QUALITY
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VI DESIGN OF THE DIGITAL ASPS THROUGH DECOUPLING

AND POLE PLACEMENT

In this chapter the digital ASPS is to be designed through decoupling and

pole placement. In Chapter IV the digital ASPS was realized by placing sample-

and-hold units at the three inputs to the x, r, and ^2 components. The feedback

gains were the same as those of the analog ASPS.

The dynamics of the system are still described by

x(t) = Ax(t) + Bu(t)
	

(6-1)

where A, B, x(t) are as defined in Chapter V. The control vector u(t) is given

by	 u(t) = -Gx(kT)	 kT < t < (k+l)T	 (6-2)

The solution of Eq. (6-1) over the interval kT < t < (k+l)T is

t
x(t) _ ^(t - kT)xW) + f	 c (t - T)Bu(T)dT

kT

t
(^(t - kT) - f ^(t - T)dTBG)x(kT) 	 (6-3)

kT

where
D(t) = At

e 	
(6-4)

t

Substituting t = (k+l)T into Eq. (6-3), we get

T
x((k+l)T) _ (^(T) - f 	 ¢,(T - T)dTBG)x(kT)	 (6-5)

0

Let	 T
O(T) = f	 (T - T)d[B	 (6-6)

0

Then Eq. (6-5) is simplified to
r

x((k+l)T) = (^(T) - B(T)G)x(kT)	 (6-7)
1

Equation (6-7) now represents the difference state equations of the closed-loop

state-feedback ASPS.

l

1	
1	 ,
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The design objectives are to select the elements of the 3x8 feedback matrix

G so that the coefficient matrix of the closed-loop digital system, ^(T) - e(T)G,

has the following form:

Al	 0	 0

^(T) - 9(T)G	 0	 A 2	0	 (6-8)

0	 0	 A3

where A i is 2x2, A2 and A3 are 3x3 matrices, and the elgenvalues of A l , A2 and

A3 are to be placed so that the bar.3wldth requirements described earlier are

satisfied.

Before the design can be carried out, one difficulty remains. It is necessary

to first calculate the matrices O(T) and e(T), knowing A, B and the sampling period

T. Since A is 8x8 in the present case, the I.aplace transform method becomes a

tedious task. The method chosen here is that of approximating ¢(T) by a truncated

power series; i.e., 	 N

$(T) = E AnTn/n
	

(6 -9)
n=0

where N is some positive integer.

The matrix B(T) is written

T
e(T) = J ^(T - t)dTB

0
JT £	 An (t -T)n dTB	 (6-10)

n!
0 n=0

If the function e(T) is uniformly convergent, the integral and the summation in

the last equation can be interchanged. Also, truncating the infinite series at

}	 r

s	 ',

r	 ^

i

I

I

r
i

i

l	 i

n=N, we have

1	 e(T) _ ( NN ANTn+i/(n+l):^8
n=0	 JJJ

:i
$l	

For T	 0.02 sec, the results of (T) and e(T) are given as follows:

(6-11)
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`I III	
9,998x10`1	 1.999x10 -2 0 -2.968x10 -7 -1,979x10 -9 0 2.968x10 -7 1.979xI0-9

g
5

1
w

•1.224x10
-2

9.998x10 -1 0 -2.968x10 -5 -2.968x10 -7 0 2.968x10 -5 2.968x10-7

-4.160x10 -7 -2.080x10-9 1 1.999x10 -2 1.999x10 -4 0 1.011x10 -9 5.059x10-12

-6.24oxio-5 -4,160x10 -7 0 9.993x10 -1 1.999xlo-2 0 1.517x10 -7 1.011x10-9
^(o.o2)=

-6.24oxio-3 -6.24oxlo-5 0 -1.517x10 -5 9.999x10
-1

0 1.517x10 -5 1.517x10-7

4.160x10 -7 2.080x10-9 0 1,011x10 -9 5.059x10-12 1 1.999x10 -2 1.999x10-4

6.240x10 -5 4.160x10 -7 0 1.517x10 -7 1.011x10 -9 0 9.999x10 -1 1.999x10-2

6.240x10 -3 6.240x10 -5 0 1.517x10 -5 1.517x10 -7 0 -1.537x10 -5 9.999x10-1

(6-12)

e(0.02) =

1.164x10 -4 5.937x10 -5 -5.937x10-5

1.164x10- 2 5.937x10 -3 -5-937x10-3

3.958x10
-7 2.023x10 -7 -2.023x10-7

5.937x10 -5 3.035x10 -5 -3.035x10-5

5.937x10 -3 3.035x10 -3 -3.035x10-3

-3.958x10 -7 -2.023x10 -7 2.050x10-7

-5.937x10 -5 -3.035x10-5 3.075x10-5

-5.937x10 -3 -3.035x10-3 3.075x10-3

(6-13)

For the same bandwidth requirements described in Chapter 5, the following

eigenvalues are selected in the s-plane:

x component: (0.04 Hz bandwidth)

Pit P 2 = -0.178 + j0.178

component: (10 Hz bandwidth)

P3 = -200
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p i; , P5 = -44.436 + j44.436

^2 component: (1 Hz bandwidth)

P6 - -20

p7 , P8 = —4,4436 + j4.4436

Using the transformation z = eTs , these elgenvalues are transformed into

the z-plane. The corresponding z-plane elgenvalues are:

	

x:	 zl, z2 = 0.9964457 + JO.0035417

	

0 1 :	 z3 = 0.01831564

z 4 , z 5 = 0.2592945 + JO.3191948

	

^2 :	 z6 = 0.67032

r	 z7, z8 = 0.911366 + jO.096987

The condition of decoupling of the closed-loop digital system given in Eq.

(6-8) results in 42 constraint equations. This is due to the fact that Eq. (6-8)

represents 64 scalar equations, but there are 42 zero elements in the matrix.

The pole placements of the eighth-order system would produce 8 more constraint

equations, so there are only 24 unknowns In the feedback matrix G. Therefore, in

general, there would not be a set of solutions with more equations than unknowns.

	

1	 However,	 a closer look at the elements of ¢(T) and O(T) reveals that some of the

{{	 elements are extremely small so that a good approximation can be obtained by

assuming that these small elements are zeros. In other words, the state transition

matrix V0.02) given in Eq. (6-12) can be approximated by the following matrix.

i

X11

l

ti



f.lI

t	 •A	 1	 ^	 ^ l 1 4	 ;	 Yj ^ r	

.'u	 .rT.

l	 117

f

9.998x10-i 1.999x10
-2

10 0 0	 1(0 0 0
k

-1.224x10-2 9.998x10-1
1
0 -2.968x10 -5 -2 968x10 -7 io 2_968x10-5 2.968x10-7-----

0

----

0 ^1 1.999x10 -2

-r-
1.999x10 -4

 
10 0 0

x(0.02)= 0 0 i0 9.9'99x10 -1

I

1.999x10
-2
 10 0 0

-6.240x10
-5

-4.160x10
-7.^0

-1.547x10
-5

r
9.999x10 -)	^0 1.517x10

-5
1.517x10-7

- - o _ - - -o 	 - i o - - o - _ -	 0	 I 1.999x10
-2
- I .999x10-4

0 0

I
0 0

1
0	 1 0 9.999x10 -1 1.999x10-2

6.240x10-3 6.240x10
-5

I
10 1.517x10

-5
I

1.517x10 -7 1	 0 -1.537x10 -5 9.999x10-1	

)

f

(6-14) I

Similarly, we can approximate e(0.02) by the following matrix;

0	 0
	

0

1.164x10-2 5.937x10 -3 -5.937x10-3

0	 0	 0

0	 0
	

0
e(0.02)=

5.937x10 -3 3.035x10 -3 -3.035x10-3

0	 0	 0

OF PO()R Quay

(6-15)

0	 0
	

0

-5.937x10 -3 -3.035x10 -3	3.075x10-3

Then, the matrix 9(0.02)G becomes



4

i

bl^,

y
Nl4

s	

'^

.^, a	 ........_,.

A(0.02)G =

0	 0	 j	 0	 0	 0	 j	 0	 0	 0

(N)zl	 (6G )z 2 j(ec) 23
 (ec) 24 (eG) 2 5

 ^(eG)
26
 (AG ) 27 (N)2 8

0	 0	 0	 0	 0	 0	 0	 0

0	 0	 i	 0	 0	 0	 0	 0	 0

(6G)51	
(ec) 5^ i (AG)

s3_
(eG) 54_ (AG)

55 I (bc)56 (ec)
57 (ec)5 8

0	 0	 i	 o	 0	 0 r 0	 0	 0

0	 o	 i	 0	 0	 0	 1	 0	 0	 0
I

(66)81	 (86) 82 j WG)83 (eG) 84 (6G)
85 

I (eG) 86 (eG) 87 (eG)88

,^	 s

.v

(6-16)

Based on Eqs. (6-14), (6-15) and (6-16), the following 16 equations are

obtained for decoupling the	 - eG matrix:

011IGINAL PAGE IS
OF POOR QUALMI(eG) 23 ° 6 21 9 13 + 822923 + 6239 33 = X23 = 0

(eG)24
= 621914 + 6229 24 + 6239 34 = X

24 = -2.968xio-5

(66) 25 = 621 9 15 + 6229 25 + 623935 = X25 = -2.968x10-7

(6G) 26 =	 6 21 9 16 + 622 9 26 + 623 9 36 = X26 = 0

(eG)27 = e 21 9 17 + 6229 27 + 623937 = X
27 = 2.968x10-5

(6G)28
- 621 9 18 + 622 9 28 + 623 9 38

= ^28 = 2.968x10-7

(eG)51 =	 6 51 9 11	 + 6 52 9 21 +
6 53 9 31

= X51	
= —6.240x10-5

(6G) 52 = 651 9 12 + 652922 + 6539 32 = X52 
= —4.160x10-7

(eG)
56

= 851 9 16 + 6529 26 + 653936 = X56 = o

I'

i
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d, 9	 6.24oxio-5	 ORIGINAL PAGE IS( 6G) 82
	 881 8 11 + 8$2 22 + 8839 	 $

32 °	 82 =
OF POOR QUALITY

k (6G)83 = 681 9 13 + 882923 + 683 g 33	 ^83 ° 0

k 1
(")	

- e81914 + 082924 + 083g34 -	 - 1.517x10-584 	 84

t i{
! =	 =	 1.517xlo-7(IG)

85
 - e

81 g15 + 
e
82 g25 + e83 g 3S	 85 

v The eight additional	 constraint equations 	 for	 the solution of	 the 24	 {

r
1 elements of the feedback gain matrix G come from the pole placement requirements

on	 the submatrices,	 A 1 ,	 A2 and A3.

After the matrix 0 -	 eG has	 been decoupled,	 it can be written as

f

f	 n	 I	 o	 I	 o

x(0.02)	 -	 9(G.02)G =	 0	 I	 A2	 1	 0	 (6-18)

0	 I	 0	 '	A 
I	 I	 3	 ')	 ,

1

'

where	 '
i ll	 ^12	

0	 0	 ^

Al

-

^21	 ^22	 (6G)21
	 (eG)22

d)11

	 X12
= (6-19) 

i
X21	 -	 (eG)21	 X22 -	 (20G)22

?I4 X33	 X34	 X35	
0	 0	 0

A2 =	 X 43	 X44	 X45	 -	
0	 0	 0

X53	 054	 X55	 L	
(eG)

53
	(eG)

54
	(eG) 55 	f,

X 33	 034	 X35

r
j _(S	 -	 X43;	 X44	 X45	 6-20)

^	 -	 (66)53
	 X 54 -	

(eG)54
	 X55 -	

(H)55	
ti

S3

rl-



J

^t

r

4	 4	 t	 A	 t"
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466	 467	 468	
0	 0	 0

PAGE	A3	 0	 0	 0
= 476	 477	 478	

OgiGTNAE

	

4 86	 4g7	 488	 (eG)86 (6G) 87 (6G)88	 OF pOpn DU	 X

	

4 66	 467	 468

	

4 76	 477	 478	
(6-21)

486 - (eG)S6 487 - (eG)87 4 88 - (6G)88 {

The characteristic equation of the decoupled x dynamics Is

z - 
4 11	 - 4 12	 i

Izl - All 	
+ (e G){

- 421 
+ (eG) 21 z - 422	 22

= z2 + ((eG) 22 - 
411 - 

422)z + 411422 - 4 i1
(eG)

22 + 012((es)21 - 421)

= (z + a l + Jbl)(z + a l - Jb i )	 (6422)

where	 al = -0.9964457	 and b  = -0.0035417.

Now solving for the unknowns in Eq. (6-22), we have

(eG)21 = e 2l g ll + e 22g 2i + 623'31

= 1
	

(a l + b l + 411 + 2ai4il + 412421) 	
(6-23)

412

	

(6G)22 = 621'12 + 622'22 + 023'32 = 411 + 412 + 24
1	(6-24)

For the 4i dynamics, the characteristic equation of fl2 is

z - 433	 - 434
	

- 435

	

Uz i- n2 I =	 - 44 3 	 z - 444	 - 445

453 + (6G)
53 - 454 + (6G)54	 z - 455 + (eG)55

= z3 + ((eG) 55 - 455 - 444 - 433 ) z2 + (-(444 + 433)(06) 55 + 445(eG)54

A



1

IR

u

€ 1 t4

1 .

^	

!4	

Y	 AS	 ^	 ^ e
	 ^	 ,	 E

a

121

ORIGINAL PAGI: IS
OF POOR QUALI'T'Y

+ 35	 53 - $54$45 + $33$55 + $33$44 - $43 $34 - $35$53 + $44$45'

+ 
(($33 $44 - $43 034

)(6G )
55 + ($35 $43 - $33$45)(86)54

+ (`634 `045 - $3044
)(()G )

53 - $33 $44$55 + $33$54 $45 + $43$34$55

- 003054 - $304053 + 03504053	
(6-25)

The desired characteristic equation is written as

(z	 a 2 + Jb 2 )(z + a 2 - Jb 2)(z + c 2) = 0	 (6 - 26)

where	
c2 = -0.01831564

a 2 = -0.2592945

13 2 = -0.3191948

Equating Eqs. (6-25) and (6-26), we get

(6G)55 - 851915 + 
e 529 25 + e539 35 = $55 + $

44 + 1 + 20 2 + c 2	(6-27)

/ 

(6G)54 ° 651 9 14 + 652924 + 653934

-$35(1 + 2a 2 + a2 + b2) (1 + c2)
+ 1
- ((	 I^

$45 $35 + $34$45 - $35$44	 $45	

$	 +
44 + 1)($55	 $44

r

+ 1 + 20 2 + c 2 ) - $44 $45 + $45$54 " $55 " $44 + 2a
2c2 + a2 + 62^ (6-28)

I	 (ec)53 = 
e 51 9 13 + 8 52923 + 8 53933	 4 1

(1 + 20 2 + a2 + b2)(I + c2)
(6-29)

j	 $35 + $34$45 - $35$44

For the $2 dynamics, the characteristic equation of A 3 is

4

z - 
$66	 - $67	 - $68

i't	 Izl - A3
1
	 $76	 - 

$77	 - $78

- $86 + (0G) 86 - $87 + (eG)87	 z - $88 + (86)88
1^	 J



h

j	 1

I1	 .

I'
i

1
I	 '
I
i

t

I
e

J.

i

122	
r

ORIGINAL PAGE IS

OF POOR QUALI'T'Y

Z3 
+ ((eG)88 - 088 - X77 - ^ 66)z 2 + (-477 + 066 )(eG) 88 + ^78(eG)87

+ `668 (()G) 86 - OW78 + 066 `688 + `666077 - `676067 - 068 `686 + (677`678)z
+ ( N077 - 07067 ) (eG)88 

4' 	 - '6661678) (6G)87

+ (06 7078 - `668077) (eG)86 - %077 088 + %087 078 + `670WH

- 07068087 - X6707086 + h8 077hd	 (6-30)

The desired characteristic equation is written as

(z + a 3 + Jb3 )(z + a3 -J63 )(z + c 3 ) d 0	 (6-31)

where	 c3 0 -0.67032

a3 m -0. 911366

b3 m -0.096987

Equating Eqs. (6-30) and (6-31), we get

(eG)86	 8 81'16 + 8 82926 + 683936

( I + 2a 3 + a3+ 	 b3) (1 + 
°3)

	

X68 + 06778 - X68077	
(6-32)

(eG) 87	 8017 + e
82g^ 7 

+ e83937

_ - X68(1 + 2a
3 + a3 + b3)(I + 

c 3 )	 I

078 068 + 067 `678 - X68077	
+ T78((677 + 1)($ 88 + 077 + 1 +2a3+c3)

- X77$78 + X7087 - $88 - X77 + 2a
3c 3 + a3 + b3)	 (6-33)

(6G) 88 - 8 81 9 18 + 8 82928 + 683938

X88 + 077 + 1 + 2a 3 + c3	 (6-34)

Equations (6-23), (6-24), (6-27), (6-28), (6-29), (6-32), (6-33) and (6-34)

form the additional eight constraint equations, together with the 16 equations

in Eq. (6- 17) are adequate for the solution of the 24 unknown feedback gains in G.
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The solution of the 24 constraint equations gives the following results;

9 11 " 35.4325135959049859 12 - 209551461847387285 	
pOIIIGiNAU^UI'LI^`Yg 13 - -9.368484250209332x10 7 	POOIt

9 14 - -8511397701621271032xlo69 15 - -154453443216549823x105
9 16 4 g 17 - 

g18 - 09 21 - -71.3617442598859019 22 - -4095.84846384061196
9 23 - 2.2392641102247482x108	

(6-35)

924 = 1.9394105849068884x107

925 - 3.454675889387745x1059 26 - 3.578272520216161x105927 - 1.3239693135355619x)06g 28 - 1.2749737170875715x104
g3) = 932 = 0g 33 - 4.015292755500438x1079 34 - 3.4776162570406019x1069 35 - 6.194684677849835x104
9 36 = 3.578272527392904x105

937 - 1.323969309412944x106
9 38 = 1.2749737129324844x104

1 ,.

	
sI 	 I

t^

f ;
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