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ABSTRACT

For the optimal use of high precigsion Lunar Laser Ranging (LLR), an .
investigation regarding a clear definition of the underlying coordinate systems,
identification of estimable quantities, favorable station geometry and optimal
observation schedule is given.

In Section 2, the least squares adjustment formulation for range-
differencing is presented, Taking advantage of the earth-moon geometry, this
procedure determines the coordinate differences of the stations particularly
well. The body-fixed motions of the celestial pole (polar motion) and the earth
rotation parameter are derived from an orthogonal transformation relative to a
standard epoch. This is accomplished by a second least squares solution which
utilizes the estimable parameters of the first adjustment as new "observations.
A separation between earth rotation variations and ephemeris errors in lunar
right ascension is not possible, Various station distributions are analyzed. A
station geometry consisting of two north;south lines, being separated in longi-
tude by 90°, and one east-west line determine the three orientation parameters
virtually independent of ephemeris errors in declination, However, they
include the common motions of the stations due to crustal motions. -

The third section presents various analyses of variance models and
numerical results. The simplifications consist of neglecting the earth rotation
during the travel time of the pulse. In some models, the tefms of the charac~
teristic order of 1/60, i.e., those terms depending on the ratio of geocentric
station distance {0 geocentric reflector distance, are neglected and the declina-
tion is taken constant during one interval. The analysis shows that for the
given station distribution and an adequate observation schedule, the orientation
parameters can be given daily with at least the measurement accuracy.

iii



ACKNOWLEDGEMENTS

The author wishes to thank Professor Ivan I, Mueller, the supervisor
of this work, for the encouragement, patience and confidence he generously
offered continually, His readiness to discuss all pertinent problems gt any
time is especially appreciated.

To Professors Richard Rapp and Urho A. Uotila of the Department of
Geodetic Science, and Professor G. Newsom of the Department of Astronomy,
sincere appreciation for their time and comments offered, is extended,

Financial support in the form of a One~Year Fellowship given jointly
by NASA and ESRC (European Space Research Organization), a Three-
Quarter Fellowship from the Federation of German-American Clubs, The
Wild Heerbrugg 1974 Geodetic Fellowship, and The Ohio State University
Graduate Research Associateship is gratefully ackmowledged.

It bas been a pleasure and an honor to study at The Ohio State
University Department of Geodetic Science. In particular the series of
advanced courses greatly deepened the author's understanding of Geodesy.

Finally, a special thanks is given to Maura Taaffe and Trene Tesfai

for typing this worlk,

iv



TABLE OF CONTENTS

PREFACE ., . .. it ittt e et v e sn s e st s e e

ABSTRACT ....... J e e © i

ACKNOWLEDGEMENTS . ... . .. . ittt e it i it nan
LISTOF TABLES . .. .. ittt it ittt tteeiaan e sessnns
LIBTOF FIGURES . . . .. it ittt it i bt cn e s e s e s "
LISTOF SYMBOLS ... . i it e it it ie o in e enes
1. INTRODUCTION ... ... i it imeneaenenann e e

2. MODELLING RANGE OBSERVATIONS.......... P

2.1 Time Delay Computation . ... ...... ... .o
2.2 BasicObservationEquation . ... ...... ... ... . ...

2.2.1 Single StationObservations . ............ ...
2.2.2 Range Differencing. .. .. .. ... ...

2.3 -Aspects of Implementation, ... ... .... .. ... . ...

2.3.1 EphemerisModelling . .. ......... ... ....
2.3.2 Timing ., .. ... i v nnnn e e
2.3.3 Coordinate System Definition . . . ... .........

3. ANALYSIS OF VARIANCE . ...... ... .ttt invcannnn

3.1 Model SImplfication. . . .o oo vt ir ee e
3.2 Station GeometIY . . v v i vt v v st e e e "
3.3 Numerical Analysis .. ... .. ... i vttt vnon

3.3.1 Incremeting the Normal Matrix ............ .
3.3.2 Design Characteristics . ... ... ... ..., ... ...
3.3,3 APriori Weighting. .. ................ ...
3.3.4 Graphical Representations. ................



4. SUMMARY AND RECOMMENDATIONS . ... ............. 91

REFERENCES............... e e e e e e e e e e e 95

APPENDIX A: Generalized Inverse Solutions and Estimability , ... 97

APPENDIX B: Ephemeris Errors Vs. Corrections in Nutation . ... 107



3.1

3.2

3.8

LIST OF TABLES

Page
Design Characteristics . . .. .. ... i cnonn 48
Station Variation for East-West Line
(Variation in Latitude) ............ . ... .o 84
Conceivable Real Station Distribution . ........... ... 84

vii



2]
[

W W W W W W W

Pogowmmwww
O o =1 o A = W

W W W W W

A1
L2
.13
14

.15
.16
.17
.18
.19
.20
.21

LIST OF FIGURES

Page
Farth-Moon Geometry . ... ... ... v iiecr oo 10
Resolution of Reflector Position . ... .......:..:.... 27
Station Numbering for Three-Line (NS—EW;NS) -
and Two-Line (NS-EW) Design . . . .. .. ... oot vn 49
Observation Schedule , .. .... .. .. ... .. 50
Variation in Declination . ......... ... .. ... ... 51
The Coordinate Systems (U)and (U”) .. ... ... ... 54
Phree-Line Design with Observation Schedule A ... .. ... 56
Observation Density (TwoLines) ... .... . ... 60
Three-Line Design with Observation Schedule B . ....... 62
Eigenvalues for the Three-Line Design . ............. 65
Orthogonal Transformation with Uncorrelated
Observations (Three Lines) , . . . . .. v v ot ot o v v v un 66
Separation in Longitude for Two North-South Lines ... ... 69
Two-Line Design with Observation Schedule A . ... ..... 70
Two-Line Design with Observation Schedule B .. ....... 72
Eigenvalues for Two-Tine Design . . ... ............. T4

" Orthogonal Transformation with Uncorrelated

Observations {Two-Line Design) . . .. ... .. ... .. ... 75
A Priori Weighting of Wits & v v v vt vr e oo e ean o 76
Variation in Length of North-South Line . . . .. ... ... .., 78
Variation in Azimuth of North-South Line. . ... ... ..., 80
Variation in Length of Equatorial Line. ... ........... 82
Variation in Tatitude of East-WestLine. ............. 83
Variation in Azimuth of East-West Line. . ... ......... 86
Experiment with Realistic Station Distribution ......... 88

viii



LIST OF SYMBOLS

THis list of symbols contains only those symbols which are used '
throughout the text.

T

() = (U, V, W)

P, @, A

U=, v, W

p, 2, A

(Ulf) - (.U!I’ _V[!, Wﬂ )

Return travel time of the laser pulse.
Angular velocity of the earth rotfation.
Greenwich apparent sidereal time,

Polar motion coordinates, y is positive westward.

* Celestial pole.

Geocentric coordinate system whose body-fixed motion is
due only to the common crustal motions of the participating
stations,

Spherical coordinates in the system (U); p is the geocentric
station distance; ® and A are the station latitude and longi~
tude. ’

Geocentric coordinate system whose third axis coincides
with the celestial pole (C); U’ axis is along the Greenwich
mean astronomic meridian,

Spherical coordinates in the system (U’); A’ =0 is in the
Greenwich mean astronomic meridian,

Geocentric coordinate system whose third axis coincides
with the celestial pole (C). The U’-axis is nearly body-
fixed, Its body-fixed position is a function of an error in
Greenwich apparent sidereal time © and right ascension of
the lunar reflector as used in the computations.



X = X,Y,2)

Geocentric coordinate system whose third axis coincides
with the celestial pole (C). The X-axis is along the direc-
tion of the true vernal equinox.

Geocentric reflector distance,

Right ascension and declination of the reflector.

Set of estimable parameter combinations,

Design matrix for estimable parameter.

Design matrix in analysis of variance models.

Set of all parameters (estimable and non-estimable).

Degign matrix corresponding to parameter set [Y].

Matrix which transforms non-estimable parameters to
estimable ones.

Epoch of the initial interval.



1, INTRODUCTION

Lunpar laser ranging (LLR) is on the verge of becoming. a widely
used tool in high precision geodesy. Observations have been success-
fully carried out at the McDonald Observatory at Austin, Texas for
about six years. ‘Ranging occurs regularly to the reflectors placed on
the moon by Apollo 11, 14 and 15 and to the reflector on Lunakhod II,

The Apollo 15 reflector is the most favorable o acquire since it is
the largest among the lunar reflectors and it is located :in close‘vicin—
ity to distinctive surface features which make easy guiding of the laser
possible. The accuracy of ranging has been increased already during
its time of operation. A typical accuracy at this time is about 15 em
and better [Mulholland, 1975]. This measure is based on several re-
turns which form a normal point [Abbot et al., 1973]. I is basically
the laser pulse width, the electronic calii)ration, and the finite size

of the reflectors which limit the ranging accuracy. A large number of
parameters have reportedly been improved using lunar laser ranging
data. Because the presently available observations are being made at
the sarhe observatory, one cannot solve yet Tor all parameters which
are of scientific interest. mn the near future, stations in Hawali,
Australia, Japan, France and pogsibly West Germany are expected

to start 'a lunar laser ranging program.

Besides the stations mentioned above, which are all of the obser-
vatory type, i.e., fixed to their respective locations, mobile laser
stations maybecome’ available shortly. In ordér to ensure the optimal
use of range observations, it is necessary to design an optimal sta-
tion distribution for the mobile lasers to fulfill the objective of the
observation campaign. The analysis presented by Silverbeig et:al'.
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[1976] already indicates a possible function of the transportable laser
station as a means for densification of accurately determined geo-
centric station positions: ThHé positiohs of the fiXed c¢bservatoFies are
regarded as fundamental points and the mobile stations can be set up

in geophysically interesting areas. This procedure requires good earth
orientation parameters (polar motion and earth rotation variation)..

This information is supposed to be provided by the fixed observatories.
However, the fixed observatories are also likely to be engaged in pro- .
grams designed to improve the models about the Iunar orbital motion
and lunar rotation (libration). Such an observational program includes
‘systematic ranging to all reflectors and is not necessarily the best.
Jprogram to give the earth orientation parameters frequently. I is,
therefore, desirable to establish an earth orientation service indepen-
denily. of the fixed observatories. It is the subject of this study .to
investigate the feasibility of mobile laser stations to provide such an
earth orientation- service.

. The method to be investigated is that of range-differenci_ng where-
by a mew observable is formed by differencing the range measurements
of two widely separated stations.  These two co-observing stations -
congtitute one observational unit. As for terminology, the two sta-
tions form the end points of a "line." In this study, the influence
of the length, location and orientation of a line on the recoverable
accuracy of the orientation parameters will be investigated. = For the
ideal case of simultaneous observations (same reflection time of the
two pulses at the reflector) the range difference is very insensitive
to changes In the. geocentric reflector distance because of the small
angle subtendéd by the paths of the two pulses. A change in declina-
tion. or right ascension, on the contrary, has a strong effect on the
range difference depending on the orientation of the line. @t is -
assumed ;hx:c;ughout this study that a good lunar ephemeris- is available.
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It may be a numerically integrated ephemeris or an analytical ephem-
eris. Since the primary objective of this study is the design of a
method to determine the earth orientation and not the motion charac-
teristic of the moon, no attempt will be made fo separate the lunar
orbital motion from the rotational motion (libration). I ig therefore
sufficient to carry out the range observations to only one reflector,
say, the Apollo 15 reflector. The spatial position of the reflector will‘
he parametrised by its geocentric distance, its declination and right
ascension. The approximate values of' these positional elements are
computed from the available ephemeris and libration model. Constant
corrections to the declination and right ascension of the reflector will
be solved for daily. For nearly simultaneous observations, range-differ-
ehcing occul"s between those two obser;fations whose reflection times
are closest. In such cases, the requirements on the lunar ephemeris
are more stringent as is explained in Section 2.3.1.

The coordinates qf the stations will be transformed to their dif-
ferences and sums. Range differences allow for the accurate determi-
nation of coordinate differences, ﬁowever, coordinaie differences
completely determine the orientation of the earth. I is-pointed ouiz
that lunar laser ranging gives the orientation of the earth only,rela-
tive to the lunar motion. If the results of lunar laser ranging are.to
be related to a frame defined by quasars, complementary observations
such as differential VLBI (very long base line interferometry) obser-
vations of the Apollo lunar surface experiment packages (ALSEP s)
and quasars are nesded.

The earth orientation parameters will be solved for each interval.
Since the progressive Chandler motion is smaller oxr equal to 10 cm
per day, it is natural to limit the length of the interval to one day
for which the orientation parameters can be taken as a constant.
Actually, the length of one interval depends on the station Qistribui:ion.
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Each interval includes only one lundr transit. The interval begins
~withwthe:-epoch- of the first ~ob§ervat—ion ‘at the most -eastern—station-
pair and ends with the last observation at the most western station
pair. The shorter the interval, the simpler is the mathematical
model of the adjustment and the number of solution paranleters is’
minimized., However, a short interval requires a favorable station
distribution and an é.dequaﬁte observation &chedule in ordér to provide
sufficient geometrical strerlgiéh and enough observations for the param-
eters to be deter'ﬁlined‘ ;',ccurateiér in sach interval. ‘

In the subsequent section, the observation equai:ions for range-
differencing are set up assuming that thé range ;3bservations are al-
rea:dy corrected fdr influences of atmosphere and solid bodjr earth -
tides. Fortunately, the a'tmos-pheric correction can be computed ac-
curately to +1 cm for the wave length of the lunar lasers [Mulholiland,
1975]. The solid body earth tides can reach an a}ni)litude for the ver-
tgcal displabement of 30 to 40 em. It will be necessary to éompute
these displacements as accurately as possible using elaborate geo-
physical ‘models. The complete description of the observation equa-
tions also requires relativistié considerations. Withoilt faking recourse
in great detail to relativistic theory, the pertinent procedure is given
fc;r cémputing'the exact time delay. The mathematical formulation
us'ed: in this study is such that not only chords and angles between the
stations a:c:e estixrfated but also the orientation ‘angles relative to an
epoch T, which is the zero point of counting. This procedure is dis—
tinétly different from what is usually referred to as Iner Constraint
in which case the resulting "orientation parameters" do not allow a
simple interpretation. Dué to the lack of real observations, an analy-
sis of variance is made to investigafe the capabilities of thé proposed

' Mmethod as a fubction of the number of stations, their distribution and
the observation schedule. The analysis of variance model is derived
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from the rigorous model by making certain simplifications. One of
the simplifications is to neglect the earth rotation during the travel
time of the pulse, or equivalently, an infinitely large velocity of
light is assumed so that the instants of transmission, reflection and
reception are the same. In other analysis Ipodels, the terms of the’
characteristic order 1/60, i.e., those terms which are a function of
the ratio of the geocentric station distance ic the geoceniric reflector
distance are neglected, and the declination is taken constant during
one interval. Special attention is given to the minimum number of
stations required in order to uniquely determine the earth orientation
and to the difficulties introduced by crus;:al motions. Any data ioss
due to weather conditions is not taken into account. If for a particu-
lar interval no defermination of the orientation parameters can be_
made because of loss of data due to adverse weat}xer conditions, the
paramefers can be interpolated from their values in the adjacent in-

fervals.



2. MODELLING RANGE OBSERVATIONS

The diréci_:ion of the celes;;ial pole {C)is best suited as a refer-
ence .direction for the third axis of the coordinate system in which
range equations are forr_aulated. In fact, the body m(.)tions of the ce~
lestial pole (C)are directly estimable from laser ranges. In Leick
[1978],l an extensgive discussion on the implications; of the differences
between the instantaneous rotation axis an_cl the celestial pole is given.
The prinecipal pro;;erty of the celestial pole is that its direction has
nejther body-fixed nor space-fixed periodic diurnal motions. In this
section, t‘l‘le rigorous least squares formulation for range-differencing
is given.)' The estimable parameters are id.[enti;‘:‘ied,_ and the earth

orientation parameters are specified on the basis of an orthogonal

transformation (over determined case).

2.1 Time Delay Computation

Processing range data requires the precise computation of time
delay, i.e., computing the elapsed round trip time for the pulse from
the approximate parameters. Such a computation makes relativistic
corrections necessary. The corrections to be considered here are
undisputed in relativity theory. Although there are several competing
relativities theories, each gives the same corrections, at least to
the accuracy which is needed for laser ranging within the solar
system. The following time scales need to be distinguished:

a) coordinate time i
b) proper time 7
Coordinate time is the time argument in the ephemerides of the
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planets, the earth-moon bary-center and the moon in the heliocen-
tric coordinate system. These ephemerides are, of course, based
on the relativistic equations of motion which are obtained from the
Newtonian equations by amending relativistic perturbative accelera-
tions. For the purpose of this discussion, one can consider the time
scale of the atomic clock on the earth as a realization of the proper
.time scale.

In relativity- the ratio of the intervals of the coordinate and .
proper time scale is not constant. The proper time scale is a fun-
ction of the total potential U at the position of the clock and of the
solar system barycentric velocity s of the clock. The relativistic
corrections for laser ranging in the solar system are developed in
great detail in Moyer [1976] from where the following differential

equation is taken which relates proper time and coordinate time:

ar_, U _1fsF
dt -~ ¢ 2\¢ 2.1-1)

This is an approximate expression in which terms of order 1/c* are
ignored. c¢ is the light velocity. Since U is positive, it is seen that
for a fixed atomic clock on earth dT < dt, proper time 7 falls behind
coordinate time. Since

N

dr= =

where dN is the number of observed cycles and n'is. the number of cy-
cles per second atomic time (conversion factor), one can make the in-
terval of proper time agree on the-average with coordinate time by
selecting the appropriate n. This procedure was, in fact, followed
when the TAI (International Atomic Time) second was defined. The
remaining periodic variation between proper and coordinate time is
derived by integrating equation (2.1-1). Moyer [1976] gives the

following expression:



t - T1=AT
+1.658 x 107> sin E
¥ 318 %10 peos F sinT(UTT + A)
+ .. ; - Co(2.152)
The first term is the constant of integration. - The IAU (1977) adopted
AT= 32,184 s )
It basically represents the constant shift between atomic time TAI and
ephemeris time ET at the initial epoch ‘of atomic time. The second
term is the largest periodic term. Its magnitude is about 2. ms. E
is the eccentric anomaly of the heliocentric orbit of the earth-moon
barycenter. The third term has a magnitude of about 2 4s. pcos @
denotes the spin axis distance of the clock in kilometers, UT 1 stands
for universal time, and A for the station longitude. The complete ex-
pression contains many more teérms including terms which are a -
funection of the position of Jupiter and Saturn.

Given the (t - T) correction of equatibn (2.1-2) coordinate time
can ‘be transformed to proper time at any epoch and vice versa. The
' compuiation of the travel time of the pulse is complicated bjr énother
relativistic phenomenon, which is called "rada'r" time delay." This de-
lay is a fur‘llction of the li;;ht propagation characteristics as the light
travels through the potential field of the sun. .The theoretical back-
ground of this phenomenon is given in [Misner et al.,- 1973, p. 1103].
Computationally, the radar time delay is expre'ssed by -the so-called
"Light - time equation (LTEq.)." Moyer [1976] gives

ry; 2GS h + Tyt Iy
Tl'- T, = - *TE In Tt T - Ty 2.1-3)
with
r, = 151 @y -7 @l
r, =% @)
ry = 5 (T |



The superscript s denotes heliocentric position. GS is the heliocen-
tric gravitafional constant. The light fime equation thus relates the
coordinates of two points, k and 1, to the coordinate time t for light_
to travel from one of the pofnts to the other. This eq.uation has to .be
solved by iteration. TIn case of LLR, the up'and down legs have to
be solved separately. ‘

In summary, the computed range observable 1-0' is arrived at

according to the following scheme:

LTEq ) LTEq
Ts . >- et -IEEIEK Jl >Ta——L’>T1
t - '7')1:3 |
and 7, =T, - T, - (t - T)ta + (t.—,:;:)tl (2.1-4)

The subscripts 1, 2, and 3 denote the instants of transmission, re-
flection and reception of the laser .pulse. Thus, Ts is the observed
reception time of the pulse. It is converted via equation (2.1-2) to
coordinate time T,, which is used together with an estimate of T, in
order to solve the light time equation (2.1-8). The solution gives an
improved value for T, so that the solution of (2.1-3) can be repeated
until no significant change in T, occurs. The same iteration is done
for the downward leg. The light time equation has to be solved twice
because the upward and downward path of the laser pulse is at a dif-
ferent position within the gravitational field of the sun, The third and
fourth terms in equation (2.1-4) convert the round-trip light time from
an interval of coordinate time to an interval of proper time at the

epoch of observation. Finally, the computed time delay, 7., and

observed time delay on the atomic cleck, Ty = T3z — Ti, can be

compared.



2.2 Basic Observation Equation

2.2,1 Single Station QObservations

Two solutions of the light time equation (2. 1-3) and the relativistic cor-
rections (2.1-2) have resulted in heliocentric positions of the reflector, the
geocenter, the lase; station and in the computed time delay 7., This computa-
tion is, of course, based upon the approximate values of reflector position,
earth orientatfion parameters and laser station position. On the basis of the
observed time delay, some of the parameters, particularly those for earth
orientation, can be improved. '

In Figure 2.1 the symbols C and R denote the celestial pole and the
lunar reflector, respectively. The numbers 1, 2, and 3 denote the instants of
transmission, reflection, and reception of the laser ﬁulse. The observation
equation will be expressed in a geocentric frame whose third axis coincides
with the celestial pole (C). It is readily derivable from the light time equation
as applied to the up and down leg. Denoting the second term on the right~hand
side of equation (2.1-3), which is the contribution to the light time from gen~

eral relativity, by Ay, the observation equation becomes

Figure 2.1 = Earth-Moon Geometry
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[Zez -Xall + 1 Zz-Fa] -cf —cw = 0 (2.2-1)
where . .
L T T () LI G T

is a small but computable term. 7 is the time delay. The coordinates refer
to the system (X), the first axis being located along the true vernal equihox.
" The light velocity ¢ determines the scale of the configuration, By dividing
equation (2.2-1)by c, each coordinate is expressed in units of light
velbcity, so that any changes in the adopted light velocity result in a
.computa,ble change in the coordinate length (scaling).

The station position at the instants of transmission and reception

are related by‘a rotation around the third axis -as follows:

Xs = Rs (0%
where w is the angular velocity of the earth rotation. The rotational
position of the earth is introduced by

-}_’Cl = Ry (-®i1) U’

where O is the apparent Greenwich sidereal time at the instant of
transmission and (U") is the coordinate system whose third axis still
coincides with the celestial pole but whose first axis is fixed to the
Greenwich mean astronomic meridian. Substituting these equations

in equation (2.2-1) gives the basic mathematical model:

F(L,, X,) = IX,, ~Rs(-0,) T" l+ [|Xea ~Re(@T =@ U] =T =cw =0
(2.2-2)

This is the standard model in adjustment theory for the case where
observed quantities and unknown parameters are-in the same equation.

With the notation of Uotila [1967], the linearized -form of.(2.2-2) is ‘

11



2B,V WAy X F Wy =0 (2.2-3)

where

and W = F(Lb, XO)

r denotes the number of equations and u is the number of parameters.
The weight matrix is the inverse of the variance-covariance matrix

of observations wmultiplied by the variance of unit weight,

_ .25t
1.)—‘0‘@ EL-

b
As usual, the subscripts a, b, and o refer to adjusted, observed and
approximate values, respectively. The partial derivatives in B and A
are evaluated for the approximate and observed values. V denotes the
residuals. X is the set of solution parameters; they are corrections
to the approximate values. In order to avoid confusion, the parameters
will sometimes be denoted by [X]. The usual minimization of

v/ pv

gives the least squares estimate for the parameters [X]

~

X = -(ATM*A)* ATMW C(2.2-4).
with
M=BP' B
The adjusted variance of unit weight is
' ‘ g2 = LBV
° r-u (2.2-5)

Finally, the variance~covariance matrix of the adjusted parameter is
T.= 82 (ATMA)” (2.2-6)
b4

The partial derivatives of the function F will be given below for
spherical and Cartesian coordinates. Both systems are, of course,
strictly related, but in some cases of analysis of variance, one or
the other system is more convenient to interpret.

The subscript "2" on the lunar positional elements is subsequently

omitted. TUnless otherwise stated, its position is always evaluated at
12



reflection time. Similarly, the subscript "' on the symbol @ is de-
leted, remembering that the apparent Greenwich sidereal time has to
be evaluated at transmission time. Denoting the spherical coordinates
of the station in the (U’) system by (@, A, @') the partial derivatives

in the design matrix A are computed from equation (2,2-2) as followg_a

1
A = — [A- pcos &' cos 5 cos (A' + O - @) - Psin & sin §}

A 1y
+ —1—; {A - peos @ cos 8 cos(A - wr+ @~ ) - psin o' 'sin 6}
Aa=- %3— cos @ cos 5 sin(A + © - o)
- ‘033 cos g'cos § sin (A - wr+t @~ @
A5 = ﬁf;“{cos &' sin § cos(A' + @ - e) -sin &’ .cos 5}

PA :
+ _ {cos &' sin § cos(A’ - wr+ O~ o) - sin &’ cos 6}&(2,2-7)

33
A = -J;-{ - Acos &’ cos f cos(Af + © - ‘
R T (P 01)}
+ 1 “’
f-—_{ P - Acos & cos & cos (A - wr+ © - o)}
33
A = pA = i 7 2 ?
& = ! sin &’ cos § cos (A+e—a)—sm5cosq)}
12
+ B2 fsing cos §oos (A'- wr+ ©- o) ~ 5in 6 cos & |
- FA p . :
AA’+@ » cos &' cos § sin (A’ + ®- &)
+ pA cos @' cos § sin A - wrt e ~w)

Tsz )
Note that A’ + @ - & is the hour angle of reflector, The symbol r

stands -for the distance between the observation station and reflector,

13



in particular

‘I‘J.e = “5—%92 - 3—4)1 ”
Tz= = ”X’RQ - %3 ”

It is seen that the coefficients Aa and A are linearly dependent.

A+8
Thus, only the linear combination A’ + © - @, i.e., the hour angle of
the reflector, is estimable so that the list of parameters contains five

estimable quantities

[X] = [dA,dS, dp, d®’, dA'+ © - a) 1. (2.2-8)

1\ITote that parameters or linear combinations of them are called estim-
able if the corresponding design matrix A is non-singular.

The Matrix B is diagonal since each equation of (2.2-3) contains
only one observation. The diagonal term is

.-—O . .
B = —-—L-\--wcos@' cos 6sin (A’ ~wT+®-w)-c
T Yso

Each observation from the same station adds one eqliation to the
system (2.2-3) and three parameters, concerning the reflector position
and the earth rotation, to the list of (2.2-8). For k observations, the

complete parameter list is
X]=[dA, d§ ... dz5, d6% dp, d®, d*(A + ©- ), A" + © -
o df A O - ]

A least squares solution becomes possible by imposing the constraints

an” = aa
m_
as’ = as 2.2-9)
dol = do
adl'= a0

for m = 1...k. These constraints make it necessary that a good lupar

ephemeris and station clock are available in order for such simple
14



modelling to be permissible. A detailed discussion on these c;mstraints
follows in Section 2.3.1. H one incorporates the constraints, there
J;ier_nain five parameters which can be solved by least squares

Xl =[dA, a5 dp, d&, A"+ @ - a) 1. . (2.2-10)

.The station positions in (2.2-10) can be interpreted as referring
to a system (U") which differs from (U') by a small .rotation around
the thi;r'd axis. "The rotation is due to errors in the clock, d ®, and
}:unar right ascension do, Since the station coordinates in the (U')-system
are a function of time due to polar motion, a reformulation Qif the mathe-
matical model is given in ferms of station coordinates in a conven-
tional geocentric terrestrial sﬁrstem (U), which coincides with the (U”)-

system at some standard epoch,
(U) = (UM at epoch To .

The relation between these systems is given by the polar ‘motion co-
ordinates (%, y). The same representation as found in [Mueller, 1967,
p. 82] is chosen; i.z., the origin of the polar motion coordinate sys~
tem is at the pole of ’the (U)-system, the x-axis is along the direc-
tion of the zero longitude, and y points westward. The latitude and
Iongitude in the (U)-system, ® and A, are related to those in the
(U'-system by [Mueller, 1967, p. 87]

d(®- &) = ysinA - xcos A
dA- Ay = —(xsin A + ycosA)tan @

The partial derivatives for latitude and longitude in the observation
equation (2,2-83) now become

A & + A

/
A +@—osz

= A@: [d® - ysin A + x cos A} +'AA,+ _'a [d(A':'@:~0!) +

©
+ (x sinA + y cos A) tan ]

15



=A_,dP- A(@ry sin A+ A@r X cos A+ AA’+®~0£ dA

@ (2.2-11)

+ A_A'+®— a® sinA tan &+ AA'+®—01Y cos Atan @

The coefficients (2.2-7) are evaluated with ® and A’ , i.e., with the
approximate station coordinates in the (U')-system. If those latitudes
and longitudes are replaced by € and A then one formally obtains the
partials which one would have obtained if the station position in equa-
tions (2,2-2) had been expressed in the (U)-system, and the partials
had been evaluated with x =y = 0. No further changes are needed in
the coefficients (2.2-7). '

The parameters of equation (2.2-11) together with those of (2.2-8)

give the foliowing list of estimable parameter combinations:
X] = [dA, d§, dp, pu, V] (2.2-12)

with

d® =deé-ysin A+ xcos A

=
I

v=A(A"+ @- ) =d(AT O~ g)+ xsin Atan S+ ycos A tan &

The coefficients of the last two parameters are

A, = Ay

Ay = AA+®- o

There exist an alternative set of estimable parameters. From
equation (2.2-11) the éoefficients for polar motion are

A =A_.cosA+ A sin A tan @
x ¢ A+O-a 2.2-13)

Ay —A@sinA+ AA+@-0: cos Atan &

Incorporating the inverse relations of (2.2-13),
16



A
@

N

A cos A- AV sin A

Il

AA+®—01 cot(I?(A; sin A+ AY cos A )

in the general observation equation gives the following set of estimable

parameters:
[X] = [d A, d8, dp,p’, V'] O @.2-18)
with
B =x+ cosAdd+ cot@sinA d(A+ © - @)
v =y - sin Ad®+ cot® cosA d(A+O- &)
and
A“.' = A.x Aul = A}’

It is emphasized again that all coefficients have to be evaluated with
" the approximate station coordinates in the (U)-system.
Analogous expressions to (2.2-7) for Cartesian station coordinates

are:

1

Ay -lj—"{ ~U’ cosd cos (@-a) + V' cosdsin (O- ) -Wsind+ A}
1z
+ 1 ’ 7 %,
I'—s; -U cosd cos(~w T+ © - )+ V cosd sin(-tr+ 9H-09)
- W sing+ A}

As = %—— {U’ sind cos (©- @) - V' sin b sin (@~ &) - W’ cos 6}
12

+ %S-E{U' sind cos (~w T+ @ - dz) - V' sing sin(-wr+ ©- o)

- W cos 5}

17



A = ..A,‘_. {-—U" cos & sin(@~ 8 - V' cos cos (@ - ) }
Ct—@ rlg

+ 'fé—[_U, cos § sin(-wT + 0 - o) —Vl cos O cos(—WwT + - (x)}
. Tag

| L.
A, = 1 {U' - Acosbd cos (@ -a)} + .I__{U" - Acosb cos{(-wT +0-a)}
- T2 Tga’
Ay = -}——{V’ + Acosé sin B- o)} * 1 [Vv' + Acos 6 sin (-wT + ©-0)}
Tp : . Too .
1 o o 1 _
Al = fWw'- Asind}+ =— W - Asind }
iz Taa
The diagonal element of the B-matrix is
B_= Aw

=7 {-U’ cosd sin(-wT + & -0) - v’ cos § cos(-wT+ O - a)}- ¢
32

Combining the linearly dependent coefficients Aoz— @,Au! , and Ay,

A, o= U Aw + V' Aw

one finds again a list of five estimable gquantities

X] = XiXa] = [dA, d&% dU”, aV', awW’ ]

(2.2-16)
with

dU' + v da- 9)

i’

dU

/"

dv’' =dv’ - U’ dea- ©

I

d Wﬂ' d W!

and the coefficients

Awr = Ayr, Ave = Ay

The constraints (2.2-9) have been incorporated in the list (2.2-16).
18



The expressions are transformed to those of the (U)-system by
introducing polar motion coordinates as follows (only terms of first
order are retained):

U'=U-xWw
Vi=sV+yWw (2. 2-17)
W =xU-yV+W

Differentiating equations '(2.2-17) and combining them with the param-

eters (2.2-16) gives another set of estimable quantites:

[X] = [%iXa] = [dA, d&i dU", dV’, dW'] (2.2-18)

with
au” au 0 dia~ ©) -x U
ave | = dav | + |di@ - ©) 0 y V](2.2-19)
aw’ aw| X -y 0 4

The coefficients are

A = Ay, Aww = A, Aw = Ay

Note that the coordinates (U} of the coefficients (2.2-15) have to be

replaced by (0} - The partials for polar motion, A,, and A,, ‘are not
needed explicitly although they can be derived in 2 similar manner as
was done for the case of spherical coordinates (2.2-11). For reasons

of abbreviation, the rotation parameter in (2.2-19) is denoted by o, thus
da = dia - ©)

The quantities dU”, dV” and d W* can be interpreted as coordinate cor-
rections in the estimable frame of reference. The third axis of this
frame coincides with the direction of the celestial pole (C), whereas the

first axis deviates from that of the (U '}-system by an angle da.

19



Equation (2.2-19) can equivalently be written as
_>ﬂ — o - . B - . =
4Y =dU+ ReWda)Rly) Re(x) ~I]U

The derivatives so far have resulted in a set of estimable param-
eters for laser observations at one station. The columns of the de-
sign matrix A were checked for linear dependencies and the corres-
ponding parameters combined in order ito yield egtimable parameters.
This concept is identical to that of rank factorization. For the sake
of subsequent discussions, the identities between both approaches are
pointed out. ILet [Y] be the vector of all the m parameters which

have entered the formulation
[Y] = [XpiYeiY,] = [dA, d& =, y, daidU,dV, dW]
The corresponding singular design matrix A of size (r x m) is
AL = (At As t Ag)
The rank is
RA)=m-s=u

with rank deficiency s = 3 for the present case. [Yg], which denotes
the parameters of the earth orientatic-m, still contains the combina-
tion of right ascension and Gr.eenwich sidere?,I tims. Both could, of
course, also be separated, and thus increase the rank deficiency to
four. In linear algebra it ig proven that the matrix A can be fac-

torized such that
rf-'i_m = .D, Hy with r >u, m >u
and
RD) =u

Thus,

e
!
il

DX
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and

X =HY

gives the estimable parameters [X]. The following three identifica-
tions can be made:

1) The set of estimable parameters is the same as in (2.2-18),

2) The design matrix for the estimablé parameters is D = (A1~§A3),

3) The non-estimable parameters are _transformed to estimable

quantities by the matrix

6 0o ¢ o0 o0
I 0 0 0 0
0 W o0 VvV 1
0 0
0 0

0
0
0
0 W -U 1
0

- -

g -v 0

1

0
H=1{0
0

0

The H matrix is written for abbreviation as

I O O
H =
o F I
Evaluating
A = DH
I 18] O
= (A Aj)

o F' 1

A, F A, F & Ag)
yields the linear relation between the coefficients:

Ap = AF’
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2.2.2 Range Differencing

The adjustment model for range-differencing is feadiljr derived '
from the basic model (2.2-3) and its set of estimable parameters of
equation (2.2-18). Denoting the two co-observing stations by i and j,
the linearized form of the adjustment model is

ByV, + A, X, + W, =0
(2. 2-20)
BV, + A, X, + W, =0
Since these equations included the constraints (2.2-9), there are 2r
equations for u = 8 estimable parameters, i.e., the parameters
dA, da, do_z are common to both sets. Subtracting the first equation

from the second in (2.2-20) gives the new sei of equations,

vy Xy ‘
(-B; By) { } (~AA,) [ } Wy =0 (2.2-21)

with
W” = WJ = Wi

It is understood that in (2.2-21) those terms are differenced
which correspond to the observation equations for simultaneous or near
simultaneous range observations at the stations i and j. This is
automatically achieved if the equations in (2.2-20) are ordered suc-
cessively in time. The parameters are conveniently transformed

to their sums and differences as follows:

Xy
A=Ky + X X, + X
(A Ay = (A1+A'j) [—Lz——'!']"' Ay - Ay E—’Lz—i"]
X, .
With the notation
X, -X X, + X
- i i = 23 4
Xyt 2 0 Xy 5 (2.2-22)



the equation (2.2-21) now becomes

Vi ) - Xj—i

M1

Vs

The list of estimable parameters in the above equé.tion is
[X] = [Xl Xa]
= [dA, d6 AUz, dVimry AWit, AU, AVt WD
{2.2-23)
and the design matrix consists of the differences and sums of the

original coefficients,
(A) = (Al Ap
= (A - A A - Ags Ag+ Ay, Ay T Ay, Agyt Ay
Ay Ay, Ay ~ Ap, Ay ~ Agy)
(2.2-24)

Note that the geocentric reflector distance and the declinaition in
(2.2~24) are not split up into thelr sums and dlfferences because
dA,; - dA; = 0 and d§ ~ d§, = "0 is valid throughout the interval
according to constraints (2.2~9). The last six parameters in (2.2-23)
are the corrections to the sums and differences of the station
coordinates in_the (U”)-sysj:em. ~ They are.related to the corres-
ponding parameters in the conventional terrestrial system (U) by
the three orientation angles x, y and do . With'equétions

(2.2-19) and (2.2-22) one gets the following expressions:

AU, dUy, 0 do -x| U,

1dV - "= [dVes + f-do 0 y Vi1

de;'_g_ AWy ;. < oy of lw
2. 2-25)
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and

- dv“.H—“i“ = [dVoypee [+ 4-d & O y| TV {272-26)Y —
AW y44 dWi,, x oy O} | Wy

To the first order of the orientation parameters these equations can

be written as:

- - . .
dU ;.= dU,, + [Re(d¥ ) Ry (y)Ra (x) - 0T,

_ . ->
ATy, + [Re (de) Ry () Ra () - I] Ugey

Il

.
dU sy
1 is-the identity matrizx. The least squares estimates according to the
general equations (2.2-4) to {2.2-6) are, with
M= (By v BI + sz..ha B;)s

A .. AiMta,  AlmaA, (¢ |Alm?
[X] = [X1» X4

T <1 v Wij
AsM™A, AZM*A, AT M’

Taking the inverse analytically j.rields

-~

X1 = GiWy (2. 2-27)
where
Gr = -{AIM™ A1~ ATMA, (A4 M*Ay) Y AL M?A, JPAM?

+ (AT MYA;)ATM?A,Q, Al M?
“ a3

X; = .Qc (AIM*AAIMA) AT M? - A] MW, 2.2-28)
3 .

with .
Qy = {ATM?A, - AIM A (A] M?A))™ AT M s}

3

and ; G
~ AB
Exa = 0"0 Q Xa (2.2—29)

whereby 0o is computed from (2.2-5).

24



As for rank factorization, the necessary identifications are

readily available. Let [Y] include all the parameters

[Y] = [X, : Y2 : Ya]

i

[dA, d6 | x, y,da i dU,,, AV, dW,_,
2.2-30)
dUJ-!—i’ dvj{-i’ dW.‘H-I}

with design matrix

A= (A, i Ay Ag
which has a rank deficiency of three, then the rank factorization is

AY = DHY
X

DX
HY,

The design matrix D for the estimable parameters [X] is
D= (A; : Ay,

where

R(D) = u,

The non-estimable parameters are transformed to a set of estimable

parameters by

T 0. 0 0 0 .0 0 0 0 0 0]
LS SR ORI IO SO OO JOUON SO SO
0 0 Wy, 0 Vi 1 0 ¢ 0 o0 o0
e |0 0§ 0 Wi -Uj_ié o 1 o0 0 0 o0
0 0: Upy -V, 0 :0 0 1 0o o0 0
0 o Wy, 0 Vet 0 0 0 1 0 o0
0 0: 0 Wees -Ugyi 0 0 0 0 1 0
0 0: Uy Vg 00 o0 0o 0 o 1]

For abbreviation H is writien as

g= 11T 0 O
0O F' I (2.2-3h)
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‘ The estimable parameters [X]} are those of equation (2.2-23). Further,

A= DH

I O O
Ay Ag) l;) 7! I:l

A; P AsFT i Ag)

]

yield again a relation between the coefficients

Ag = A3 FT.

2.3 Aspects of Implementation

2.3.1 Epheme‘ris Modelling

The ‘adjustment formulation includes the constraints (2.2-9).
The first three constraints imply that for the length of an interval
the corrections to the reflector position.are modelled by three con-
stant parameters. Siuch 2 constraint makes simultaneoug observa-
tions superfluous, at first sight. I requires that a good lunar ephem-
eris be used to compute the reflector positions at the instant of reflec-
tion of the laser pulse. This simplified modelling seems justified in
view of the smooth motion of the moon due to its large moment of
inertia. The shortest libration terin is 13.6 days. Even the presence
of shoft periodic terms does not invalidate the above consgtraints as
long as the coefficients of these terms are correct.’ Since the lunar
orbit is quite accurately derived from rigid body theory, the author is
not aware of any frequencies, say, analogous to the critical frequen-
cies in the nutations of the earth as a result of core motion, that are
significantly wrong in the available conventional ephemerides.

The constraints appear even more reasonable if one accounts
for the fact that a given range accuracy is capable of resolving the

26



reflector position to only a certain level. Figure 2.2 displays the
geometry of the reflector and stations i and j. The earth rotation
during the travel time of the pulse is neglected for simplicity.

Figure 2.2 is valid for either a north-south or an east-west line.

Figure 2.2 Resolution of Reflector Position
The expressions for the topocentric distances

° = p2 + A% - 2pAcos ¢

e )

P = &+ 8 -20Acos m~ &)

can be expanded in terms of L. in order to give the range difference

A

as follows:

ry—r, S pfcos £- cosm- 9]

Differentiating this equation with respect to the lunar position £

results in the error estimate
[d@y - ro] s 2pdé&
In tetms of the linear distance at the moon, this estimate becomes

1
dir. - <=4
| d(zs - Ts5) 30 ‘ﬁun

If a range difference accuracy of Sﬁ em is assumed, then the
linear reflector position can be determined at best with an accuracy
of £1.3 m. In actual computation, several parameters are solved
simultaneously. The existing correlations between the parameters
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tend to increase the uncertainty even more as compared to the simple
calculation above. From this point of view, the modelling of dd and
“de as ‘a consfant per interval seems adequate. The modelling of the °
geocentric reflector range error d A is more critical if strictly simul-
taneous observations are not possible. For near simultaneous obser-
vations,the condition d A; = d A: = d A requires that the change in
geocentric reflector distance between the two reflection epochs is

computable at least with measurement accuracy since the ecomputed

range difference observable will directly depend on such an error. For-

tunately this error can be decreased, theoretically, even completely
eliminated, by scheduling the observations "as simultaneous as prac-
tically possible.! I the analysis of actual observations indicates that
the modelling of the reflector position in the manner described here

is not sufficient, one can attempt to create artificial simultaneous
observations by interpolating single station ranges at certain epochs.

In fact, the simplified interpolation method which leads to the construe-
tion of the "normal points" [Abbot et al. 1973] might still be sufficiently
accurate. In any case, the investigation on the proper interpolation
method should be carried out with real data and not with simulated

observations.

2.3.2 Timing

The condition d &= d © .in (2.2-9) expresses a perfect synchroni-
zation between the two co-observing station clocks. Through frequent
comparison with transportable clocks, this condition can be fulfilled
quite accurately. If both stations are capable of utilizing LORAN C
trangmissions, it is possible to maintain a long term clock synchroni-
zation .of 1,8 (ground waves), This corresponds to an equatorial
rotational motion of the earth of less than a millimeter. Time syn-

chronization errors are, therefore, virtually negligible and the
’ 28



parameter 1&, indeed, contains only irregularities of the earth rota-

tion and errors of the lunar right ascension.

2.3.8 Coordinate System Definition

The estimable quantities of (2.2-28) are the corrections fo co-
ordinates in the (U ”)-system, whose third axis coincides with the -
celestial pole(C), and who.se X%axis differs from the Greenwich mean
astronomical meridian by da. Range observations give coordinates,
whereas for range differences, the paramefer set is preferably t{rans-
formed to coordinate differences and sums. The origin of the (U")-
system is at the instantaneous center of mass. This'is so because
the earth rotates around its center of mass. Both requirements,
i.e., origin at the instantaneous center of mass and alignment of the

third axis with the celestial pole, are operationally achieved by ex-

pressing the station positions as follows:
cos ®’ cos A’
= Bs (-O)p cos ® gsin A

. I
sin ®

N X

where P is the geocentric distance and @', A'r are the latitude and
longitude of the station in‘ the (U ')—system. This formulation was used
when setting up the mathematical model.

The problem of measuring the orientation in space can be regarded
as solved as soon as the estimable parameters of the participating
observatories become available, say, in the form of a table to be
issued every day. The reference direction is the "mean' instantaneous
north celestial pole for that particular interval; the word "mean' refers
to the Chandler motion of approximately 10 ecm or less per day. An
equivalent way of representing the orientation of the earth is to issue
daily a list of polar motion coordinates of the terrestrial position of
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the celestial pole relative to a conventional pole. This list should also
contain the rotation parameter da., It is emphasized that both methods
of representation. are..strictly -equivalent. - Both -are- merely related by

an orthogonal transformation (3 rotations) which leaves the angles

and distances between stations invariant, The adjusted differences and
sums of the coordinates in the (U ”)-system and their variance-—covariance
mairix serve as input for a "second" adjustment (transformation) which

determines the orientation parameters
Y21 =[x, vy, do] 2.3-1)
The "observations! are according to (2.2-23)

L, =X = [dUfy, dViy, AWy, dUfy, Ve dWhe]
2

The variance—-covariance matrix of observations is given by equation

(2.2-29)

ELb = Exn

2 3
We note that this covariance matrix is a submatrix. of Z} {-; it is gen—
F |

erally a full matrix. The mathematica;l model for the second adjust-
ment is readily given by equations (2.2-25) and (2.2-26) which, with
the help of submatrix F in (2.2-31) and equation (2.3-1) is written as:

Ys = -FTY, + X (2.3~ 2)

This is the linearized form of the adjustment model with observation
equations. The residuals are [Yz], i.e., the corrections to the
coordinate differences and sums in the (U)~system. The least squares

estimate of the parameters [Y,] are obtained by minimizing
a3
Note that the minimization is hased on a full weight matrix, . The

least squares estimate is given by the standard formula. Substituting
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expression (2.2-28) for }Ea, one obtains
Yz = Ge Wy

] [F Q‘;‘ FT ]'l F[A; M-l Al (A']:'l M-l Al)‘lA{ M'l - A"gf M-]-]Wj_:_ (2. 3"'3)
3

~

The variance-covariance matrix of the adjusted parameters [Y, ] is
Ty =0, (FEY F)?
2 8

the adjusted variance of unit weight being

Y Eﬁl
o~ - T
Coz Y3 DF Y3

DF denotes the degree of freedom. It is a function of the number of
participating stations. The residuals, [Ys],which are the corrections

to the coordinates in the (U)-system,are

Ya = G, Wy,

- - . -1 3
-FT [F Qg FT1'F + Q) BT MTAATM AN ATM - AIMYW,

The variance-covarinnce matrix of the adjusted residuals is given by

the standard formula in least squares

A = ‘N T ~
B, = 5 -F Iy F

The implied condition of the second least squares solution is
A
FL{Ys=0

Combining (2.2-27), (2.2-28), (2.3-3), and (2.3-4), the least square's

estimates of all parameters are
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oA . - — -

0O [~
X &1 1 %,
Wt = G| Wy =fo [FDFFTF R [ [ @39
3 3 ~
- T i Ty <L 1 X3
- i
‘Ys_ L._G:i. L.O I-F(FZ g\a °F E%& |

It is a characteristic of the solution (2.3~ 5) that [X;] does not depend
on any minimization which occurs on [Y5]. The effects of the off-diagonal
terms in Egs on the adjusted parameters, [ Yz} and [Y,], depend on the
magnitude of the correlations between the observations. Magness and

MecGuire [1962] derived the following limits:
A-min Z;1.1(: = 2\’2 = Kmx Euc (2'3_6)

where %, is the variance-covariance matrix of the adjusted parameters

[¥] if only the diagonal elements (uncorrelated observations)
Py = (Egs w)? (2.8-7)

are used. A gny and Am, ave the minimum and maximum eigenvalues

of the correlation matrix , S, of the observation noise,
1

S = P& Ig, P%:;

The procedure discussed above yields polar motion coordinates,
i.e., the daily mean position of the celestial i)ole (CYwith respect
to the pole of the conventional terrestrial system (U) whose position
coincided at the zero epoch, T,, with the celestial pole. The defini-
tion of the system (U) depends initially on the coordinate differences
in the (U ”)—csystem of the participating stations during the interval T,.
Subsequently only crustal motion of the defining stations can change
the terrestrial position of the coordinate axis. Since the residuals
of the second adjustment, [Ys], are the coordinate corrections in the
(U)-system, it is possible to monitor station motions by analyzing
the residuals over a longer period of time. It is very important to
note that common gtation motions will be absorbed in the orientation
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parameters (polar motion and earth rotation). This property is implied in the
set-up of the second adjustment.

The station coordinates to be used for evaluating the partial derivatives
in the first adjustment of each interval are always the same adopted. coordi-
nates of the system (U). Equations (2. 3-3) and (2. 3-4) express.an orthogonal
transformation between the systems (U) and (U”), whereby the covariance
matrix of the "observed™ coordinates in the system (U) is taken as zero
(adopted coordinates without error). This is a special case of the more gen-
eral transformaﬁon where a non-zero covariance matrix is assigned to each
set of coordinates. One could, of course, consider‘ass.igning the covariance
matrix of the adjusted coordinates at interval To to the adopted set which
defines the system (U). In that case the coordinates in both systems (U) and
(U”) would receive residuals {corrections), However, in the event of crustal
motion the‘ adopted covariance matrix would become increasingly inaccurate
lead?'.ng to distorted residualg. Itis, therefore, reasonable to proceed with a
Zero cova;'iance ma,tx;ix for the coordinates in the (U)-system, and thus con-
sider the adopted coordinates as uncorrelated and having no error, and perform
the compqtations as discussed aboveg . Strictly speaking one should interpret
S?a in this case as a correction to the observed coordinateé in'the system (U”) .
Buf such an inferpretation does not diminish the value of ‘5?3 as an indiecator for

crustal motions,
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3. ANALYSIS OF VARIANCE

A_ aumerical study is carried‘ out in order to investigai:é the
expected accuracy obtainable from range-differencing, The basic
time span is one interval (one day). The study is a classical covari-
" ance analysis using hypothetical observations to increment the normal
matrix,

The normal matrix is formed for a simplified model (analysis
of variance model). Arnold [1974] also discusses simplification leading
to a somewhat different analysis of variance model. Numerical inves-
tigations were previously reported by Fajemirokun [1971], Kaula [1973],
and Stolz and Larden f1977]. All three studies are concerned with
single ranges. Their assumptions and parametrization vary widely.
The first two inve'stigations carry out the adjustment over a longer
period of time. Kaula models polar motion by four frequencies having
periods between half a month and one month, Stolz and Larden assume

a perfectly known lunar ephemeris, They find that the orientation param-

eters are usually obtainable to better than measurement accuracy if

the averaging interval is two days.

3.1 Model Simplification

As a first approximation, the rotation of the earth which occurs
during the travel time of the pulse is neglected. The basic model (2.2-2)

simplified as
r= [Xe-X]| (3.1-1)
The simple adjustment model for observation equation
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L, = FX,)
can be used. The linearized form is
VvV =AX+ L’

V denotes again the residuals. I, is the difference between the com-
puted and "observed" time delay. In the. present case, only the inz.

verse of the normal matrix
Nt = @afpay? (3.1-2)
is analyzed due to lack of real observations. P is the weight matrix

of the observations. The coefficients of the design matrix A are ob-

tained from those of the ryigorous model, (2. 2-7),‘by setting
Tip = Tgp = T

deleting wr in the arguments, and by dividing the resultant coefficient
by 2. With these approximations, the coefficients of the estimable

parameters of (2.2-12) are (spherical station coordinates):

v N ".\
K&= %{/_\. - pcos® cos § cos(A+ ® -a) - psin® sind }
K5= —;LA {cos® sind cos (A+ @ - ) -sin® cos 8}
1 > (3.1-3)
Ap= ~i_-[p - Neos® cos 6 cos (A+ © - @) }
Ag= %é_ { cos 6 sin® cos(A+ ® ~ ) -sind cos® }
KA+®—05= -—I-‘—A-cosﬁ cos ® sin(A +. O - @) )

The polar motion coefficients are according to equation (2.2-13):
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Ay = £pe {sin® cos & cos(@ - @) ~cosPcos Asind }

3.1-4)

g B

K'., == {sin®coss sin(©® ~ o) + cos® sinAsins }
For the 'case of Cartesian station coordinates the coefficients of
the estimable parameter (2.2:-18) are N
KA= —i_-—[—U cos cos{(®-0) + Vcosd sin(® - a) ~-Wsind + A}
Ag= -‘%—{ U sind cos(®- &) -Vgind sin (® - 6) ~-Weos b}
Ay ——r—[U-Acosﬁ cos (O®-a) } (3.1-5)

Kv = —i‘-—{V+ Acosf sin(®- o) } )

¥

S

In the case of range~differencing, the coefficients of the parameters (2.2-23)

A, = ~i— {W - Asing }

are, according to (2.2-24) and (3.1-5), as follows:

XA—-—-—f-{—-UJ_i cos 8 cos(O-0) + Vy_y cosd sin(®-o) - Wiy siné} 0

= order 1/60 > (3.1-6)
% =28 ! i i cos
Ay = - { -1 Sind cos(®@ -0@) -V, ,; sind sin@ -0 - W, ) }_/

2 ~N

Zu - .;_"{UJ-]--I + Acos§ cos(® - ) }

[k !
K"d-i 5%{‘73,_; + Acos b sin@® -q) } > . (3.1-7)
~ 2 .
A, =—{W,, - Asing }

o T Y,
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.
Ay = - Us_y. = order 1/60

s
X =2y -1 = order 1/60 :
o T (3.1-8)
e S 2
A, =-—W, = order 1/60
»tF

-

The expressions above are valid for simulfaﬁeous observations, The coeffi-
cients of the station coordinates are of either of two characteristic magni-
tudes, i.e., order 1 or order 1/60, because of the earth-moon geometry for
which r/A ~ 1 and p/A ~ 1/80. The coefficients to the coordinate sums
belong to the latter group as well as A A- The respective parameters cannot
be determined accurately from range difference observables. The coordinate
difference along the third axis is also determined very weakly because its
coefficient'EKNJ_1 is of order 1/60 for = 0, Moreover, Ay ,-y 18 independent
of the hour angle of the moon so that its change in magnitude during one inter-
val is very small, Depending on tﬁe location of the two stations, there will
be a more or less strong correlation between dd and dWi_;. Therefore, range
difference observables are capable of determining only two parameters accu-
rately during the time of one interval; they are according to equation (2, 2-25)
AUL: = -Wg1 X + Vg A€ + dUsy
. (3.1-9)
dVis = Wy y ~ Upy d@ + dVyy
There is no disadvantage in having some coefficients only. weakly determined.
Their significance is found by statistical testing, and, if insignificant, they
are deleted altogether or their approximate values can l;e weighted., In the
latter case, there will be no numerical problems when inverting the normal
matrix. Good approximate station coordinates are easily available. The

accuracy of Doppler positioning, say +1 m, will be shown to be sufficient.
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The coefficients (3. 1-8) change their order of magnitude if the obser-

vations are not simultaneous, TFor example,

- 1 - - - .
A, = —;—-{UJ - Aj cosb, cos(®y - oy )}
144 .

_%‘_ {U, - A, cosb; cos(®, - &) }
1

Using the approximations

H
R
o
1
H

this coefficient becomes

il

Au,‘j—l—i —-i—{UJ_1 - Acosb [cos(®, - &) -cos(@, - a) ] }

~ 2cont o (220 o) am Sz O oft)

The first term exceeds the order of 1/60 if the difference in the epochs

of observations s

®.1 = @1 > 4 min.

The same limit is found for the coefficients of V et and Wﬁ_iin (3.1-8).
Therefore, in order to keep the coefficients (3.1-8) at order 1/60 or
less, the range observations, which form the range difference observable,
should occur within 4 minutes. ‘

Another analysis of variance model is arrived at if we neglect

terms of the order 1/60 and assume a constant declination during one

inferval. Such a model allows us to study the effect of changes in
declination on the parameter separation. In case of spherical station

coordinates, the coefficients (3.1-3) are
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AA= 1 N
EB= pcos®sing cosA+ ® - &) ~ p sind cos §
Kp= ~cos P cos b cos(A+ O~ ) >(3.1—10)

K@= pPsin® cos§ cos(A+ ® - &) - psind cosd

~

Aj\+®-oz = p cosd cos® sinA+ ©- o) S

The coefficients for polar motion are, according to equations (3.1-4),

Kx = psin® cos § cos (@ - @) - cos¥ cos A sin b
(3.1-11)
Ay = psin® cos Ssin (® -o) + cos® sin A sind
In order to make interpretation easier, the polar motion coordinates
x, ¥) are transformed into along-meridian and across~meridian
components (x', y') by

x’ = xcosA - ysinA

'3

y

xsinA+ ycos A
Their respective coefficients are derived with the help of (3.1-11) as

le = psin® cos§ cos(A+ ©-a) - pcos® sind
{3.1-12)

Ay, = psin® cos§ sin(A+ © -q)

Since § is assumed constant, equations (3.1-10) and (8.1-12) make some
additional linear combinations possible. The part of the observation

equation which pertains to the geocentric distance p and to the latitude
@ can be rewritten so as to contain the spin axis distance, p cos$,

explicitly. Using the expressions of (3.1-10), one gets

Kp dpo + A‘pd@ = A d(p cos®) - psind cos @ aP
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where the coefficient Ag; of the spin axis distance is
Ko = -cosd cos (A+0O ~-a) (8.1-13)

Combining equations (3.1-10) to (3. 1-13) gives, together with equafion

(2.2-12), the following estimable parameters

X1 = [&, N, €]

where
£ = A-psinbcos®dd -x'psind cos® - p sin® cosd db
n = d(p cos®) - p cos® tand d6 - x' P sin @ (8.1-14)
£ = GqA+O®-0)+ytan @

The respective coefficients are

@A) = (1, Ko KA +0 —o) (3.1-15)

The number of estimable parameters has been reduced to three as compared
to five (equation {2.2-12)) when 6 is varying.
The estimable parameters for the case of range differencing are

readily obtained. For a north-south line with stations i and j symmetric fo

the equator and for which p; = p;, the coefficients of (3.1-15) are identical for
both stations. The estimable parameters are, therefore, afier differencing

the observation equations:

X1 = [&3-C, M~Mw &= &]

with
L, -8 = -2psin® cos dd
Ny- Mt = (P cos @)y - d(p cos P); -~ 2x"p sin @ (3.1-16)
E, - & = d(A; - Ay + gy’tan‘I?

© ig the latitude of the station in the northern hemisphere. Analyzing the
coefficients (3.1-15), it is seen that the separation of all three parameters is
only possible if the observations cover a wide range of the lunar hour angle.

TFor observations within a small range of the lunar hour angle one can set
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cos (A +© -0y = 1
sin (A +® -0y = A+0O -«

and the coefficient Asa becomes a constant. Thus, the parameters d6 and x’
cannot be separated. Because of the geometric observability conditions, the
useable range of the Iunar houx: angle will be limited. It is, therefore,
expected that the along-meridian polar motion component x’ and the-difference
in spin axis distance (the latter parameter is equivalent to dU;-; if the U-axis
is located in the meridian of the two stations) will be more affected by ephem-
eris errors in lunar declination than the across-meridian polar motion

component.

The estimable parameters of the east-west line are generally in-
fluenced by ephemeris errors in declination. Deleting terms of the
order 1/60 and taking 6 constant reduces the coefficients in (3.1-6)
and (3.1-7) to

Ay =20, sind cos(®@-0)2Vy, sinb sin (@ -0)
‘ th‘j-‘-i = Zcqsé cos (@ - o)
K = y 3 F -
Ms 2cos§ sin (© ~@)

Combining these three coefficients and taking the relations (2.2-25)

into account gives the parameters

with
8y = Vyda + dU,_,+ U, , tan5d 5
) _ ) (3.1-17)
Myt = =Uy_ydo + dV,_; - V,_;tan dé.
The coefficients are

Ay =&, , K
@ (ta—; LR
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Equations (3.1-17) show that the estimates of {34 and 7;-; will strongly
depend on ephemeris errors in declination. In actual computation, these
two parameters correspond. to de;-i -and tor -dV{_i. " The expréssions in

(3.1-17) can be simplified by introducing a new coordinate system (DY,

- (é__:f}_s_)ﬁ

il

2

whose first axis lays in‘the "instantaneous" meridian which goes through the
center of the points of the east-west line. Equations (3.1-17) then
become

€t = Vs d@ + d0p

(3.1-18)
M1 = dVy-y - Vy-r1an b dd
According to the first equation in (3.1-18), the estimation of

the earth rofation parameter does not depend significantly on the
ephemeris uncertainty in declination, The estimates of the earth
rotation parameter and the across ~meridian component of polar
motion are, therefore, expected to be of the same accuracy.
However, this equation does not imply that the rotation parameter
d@ is obtained independently of crustal motions. The common east-
west crustal motions of the stations will be absorbed in d@. The
second equation determines the chord length of the east-west line,

Its estimate depends on that of the declination,

3.2 Station Geomeiry

From the previous analysis of estimable parameiers, we see
that each line, consisting of two co-observing stations, yields only two

accurately determined station parameters. In order to determine all
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three- orientation parameters at least two lines are needed. Inspect~
ing the coefficients of equations (3.1-9), it is clear that two stations
located along the meridian determine polar motion completely, assum-
ing that there is no crustal motion between them. I they are, in
addition, located symmetrically with respect to the equator, the
polar motion estimates are virtually independent of an error in the
earth rotation parameter dee. ¥ the two stations are, however, lo-
cated on the same parallel, the range difference determines the rota-
tion parameter de and not polar motion. Lines of north-south and
east-west directions give the most favorable station geometry since
the normal matrix of the second adjustment is diagonal for such cases,
and thus minimizes the estimated correlations between the parameters.
In view of crustal motion, a clear definition of the terresirial coor-
dinate system requires that a third line be added if the other stations
are located along meridians and parallels. One north-south and one
east-west line give no over determination for polar motion.
Thereiore, a second north-south line is needed to make polar motion
free from the effect of individual station motions. Of course, the
common station motions. are still inseparable from the orientation
parameters.

For an ideal station distribution,approximate formulas can be
'given for the variance propagation. The configuration consisting of

two north-south lines of equal lengths, symmetric with respect to the

equator, and separated in longitude by 90 degrees, is considered
first. For simplicity, a diagonal variance-covariance matrix of obser-
vations is assumed in the second adjustment. Under those conditions,

the normal matrix in equation (2.3-3) is (compare also equations (3.1~

9)):
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Wii Wik
_ i i T

The parameters are the polar moticn coordinates x and y. The station
pairs i,j and k,1 are co-observing respectively. Because of the sym-
metry with respect to the equator, the coordinate differences of the

third coordinates are equal,
Wit = Wiy

Since the two lines are 90 degrees apart, there is a symmetry in the

coefficient KU and Kv in (3.1-7) for the respective parameters of
=" §~1

the two lines, which, resulis in

1, L _ 1, 1
OB =2

4 f F/a ¥/

Yies %y Oa"s—i oa”l—k

Substituting the two equations abhove in (3.2-1) and taking the square

root of the inverse elements gives the standard deviation

oy v
O 2 Gur e P w1 S (3.2-2)
2= My = Wj—'i VU’@ + o2y
1 Uik

I the U-axis is chosen in the meridian of the north-south station pair

i, j, then the variances in equation (3.2-2) are those of the along-meri-
dian and across-meridian component of the estimable parameters. But
these iwo variances are characteristically different because the esti-
mate of the along-meridian component is strongly effected by ephemer-
is errors in declination. One may, therefore, neglect across-meri-

dian variance in the denominator of (3.2-2). In doing so, and
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evaluating the factor p/W;.;, the expressions for the error propagation

become

4
o~ fo -k .
*E=WE B (3.2-3)

where @ is the station latitude. Consequently, two north-south lines
which are separated in longitude by 90 degrees yield the most accurate
estimates of polar motion., The accuracy is the same in all directions

(circular error ellipse).
For a gingle north-south line, symmetric with respect to the equa-

tor, the variances are largest and smallest for the along and the across-

meridian component, respectively. With the U-axis again located in the

meridian, their accuracies are

T, w
u’j_.i

sin®

Oy 3.2~4
o, (3.2-4)

sin®

1

Oy

Tyr =

Similarly, an approximate relation for the variance of the rotfation

parameter can be obtained from equation (3.1-18) (east-west line):

o .
€oes (3. 2-5)
.cos P sin(ﬁ.’_;__é_i)

0';—

The latter relation holds because the estimate of i-fj_i is insenéif:ive
to errors in lunar declination.

It is emphasized that in the subseqguent numerical experiment the
variance of dUj-1 and dV -, (equations 3.1-9) will be given instead of '—fj—i and
Ts-1 (equations 3.1-18) since the numerical results are not transformed to the

special coordinate system (U) and the declination is varied.
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All these approximate expressions depend on the variance of the
estimable parameters [X;] of the first adjustment, whieh, in turn, are
a function of the number of observations and their distribution over the
hour angle of the moon. These dependencies are the subject of sub-
sequent numerical calculation,

The chords and angles between stations can be computed from the
estimable coordinate difference in the (U”)—system or from the trans-
formed coordinates in the (U)-system. Both procedures give the same
results since the orthogonal transformation leaves chords. and angles in-
variant. Generally, the third coordinate (W-parameter) will set the
limit to the achievable accuracy. As special cases, the azimuth of a
north-south line and the chord length of an east-west line are determin-

able with high accuracy.

3.3 Numerical Analysis

3.3.1 Incrementing the Normal Matrix

The analysis consists of incrementing the normal matrix based on

hypothetical observations. The normal matrix of (3.1-2)

T T
_ [Al PA.]_ Al PAS] (3-3_1)
Ny =

AZPA, Al PA,

is formed from the coefficients (3.1-6) to {3.1-8). The respective
parameters are
[X] = [¥1} X] = [dA,d5 | aUily, aVyly, dWis, dUS, dVits, dWh ...

whereby each new line consisting of two stations adds six parameters

to the set [ X3]. The inverge of the normal matrix is the variance-
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covariance matrix of the adjusted parameters
@ = N*

Particularly, the variance-covariance matrix of the subset [X;] is

Q, = A2 PA; - AJPA, (A1PA;)* AlPAs)” (3.3-2),

The a priori and a posteriori variance of unit weight is set equal to unity.

P is the weight matrix of the range difference observables

1
T 3/

P I (3.3-3)

corresponding to a single range accuracy of 3 cm. I is the unit matrix.

Next, the normal matrix (2.3-3) of the second adjustment

- T L - -
Nva ¥ Qx, F (3.3-4)
is set up and inverted. The orientation parameters [Y,] are
[Y.] = (% ¥ dO)
Finally, the variances of the residuals (2.3- 2) are computed by

Qr = Qy -~-F Q _F (3.3-5)
3 3 2

3.3.2 Design Characteristics

Each of the experiments is distinguished by the following design
characteristics: o
a) pumber of lines
b) orientation of lines
¢) length of the lines
d) observation schedule
In Table 3.1, column 2, the station configuration for the various
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Table 3.1

Design Characteristics

Flgure | Lines/ObservationSchednle® Station Posltion Modification
3.5 NS -~ EW ~ N3/A NS:Ag-g~Ap1=90° EW:A3=80°, A,=20°
a (65 - 43 - 21) @9—5=¢3-1=80n ¢3=‘I’4=0
3.6 as above as above observation density
NS - EW ~ N§/B
3.7 (65 - 43 - 21) as above
3.10 a8 above as abhove 50°S AgugwAp 1 590°
a 11 NS ~ EW/A NS:d; -9, =80" EW:A,=80°, A,=20°
: {43 - 21) P, =0, =0
NS - EW/B
3.12 (43 - 21) as above
3.15 as above as above {0.1m)= O‘ﬁg{_is (L. 4m)®
3.16 as above ag above 80°= @, =%, = 40°
azimuth of NS
3.17 as above as above 0 S azimuth € 42°
NS - EW - N3/B NS:Aa-As=00" EW:iA,=80% A;=20° o A = a0
8.18 (65 - 43 - 21 Dog=Py1280° By=By =0 2075 Ay= 60
3.19 as above Table 3, 2 ®zand P,
2 20 NS - EW/B NS:$3-F,=80° EW:A1=80", Ay=20° azimuth of BW
i (42 ~ 21) -2, = 0 90° = azimuth > 48°
3.21 conceivable real station distribution (Table 3. 3)

* NS: Stationa are located on the meridian,

EW: Stations are located on the parallel,




experiments and observation schedules is given. The letters NS and EW
denote a north-south and east-west line, respectively. The first symbol in
this notation denotes the most western line. It is always a north-south line

and defines the zero longitude. An exception to this convention is the case of

Figure 3. 21 where the longitude is zero at Greenwich, Figure 3.1 shows the
system of station numbering for the three- and two-line design. Thus, the

lines 56 or 34 define zero longitude, respectively.

6 2 4

Figure 3.1 Station Numbering for Three-Line (NS-EW-N3}
and Two-Line (NS-EW) Design

Two observation schedules, A and B, were used. In each schedule the
observation spacing is ten minutes. This fime limit was selected for practical
reasons since it allows one fo compute normal points of a certain epoch in
case of near simulianeous observations, ' It schedule A, the observations are
equally spaced throughout the hunar hour angle, The only additional limitation
i's that the altitude of the moon has to be larger than 20 degrees in order to
avoid disturbing effects of the atmosphere. Schedule B used three hours of
observations, whereby after the first and third hour there is an interruption of
one hour. The observation time is arranged symmetrically with respect to
the Iunar transit, i.e., the observations start 2.5 hours before transit and
finish 2.5 hours after transit., The moon, therefore, has to stay at least five

hours above an altitude of 20 degrees.
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0 1O 20 Time [h]

Figure 3.2 Observation Schedule
(The observation spacing is ten minutes
within the dotted area.)

There are two modifications of the station geomeiry:

(2)

(b)

Basic Design: The stations are located exactly along meridians

(symmetric to equator) and parallels. 'In case of the three-line
design, the two north-south lines are 90 degrees apart. In
order to demonstrate the influence of the Tunar declinational
position on the variances, the computations are carried out

for 14 successive intervals, each interval lasting one day.

In interval 1, the declination is approximately ’-17 .5 degrees,
between the intervals 5 and 6 it passes zero, and at interval
13 the maximal declination is reached (Figure 3.3).

Modified Design: One of the lines changes its position in

azimuth, length, etc. In all variations the lunar declination

of interval 1 (-17.5 degrees) is used.
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Figure 3.3 Variation in Declination

3.3.3 A Priori Weighting

Some consideration has to be given fo the a priori weights of the param-
eters of the first adjustment. Since the coefficients of the parameters dU§'+ is
deH, and dW3"+1 (see coefficients 3,1-8) are of order 1/60, these parameters
are noi expected to be of any significance in view of the good approximate.
coordinates which are available. An initial adjustment was carried out which
included these parameters. The normal matrix was ill-conditioned. A numer-
ical inversion with double precision arithmetic on the computer failed, As a

next step, these parameters were weighted with

M

O‘II =_-_]:1m

GU”.;. = O W i

/
1 J+1

Also the geocentric reflector distance, A, and the third coordinate difference,
dW'i-5, were weighted constraint with0x=+ 100 m and 0y _ =+ 1m. This

a priori weighting of the station parameters is in accordance with what can be
expected from present day Doppler positioning. The variances, for the param-
eter dUJ”H, deH, and dWQﬂ. i, after inversion of the normal matrix, corres-
ponded very closely to those in the a priori weights. This, of course, confirms

that the range difference observables in LLR do not improve these parameters.
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A final adjustment was made deleting these parameters entirely. The
resultant variances of the remaining parameters, as well as the variance of
wnit weight, which was based on simulated observations with Gaussidn noise
superimposed, did not differ from the case which included the weighted
parameters dUsy s, dVie: and AWj,y, thus making any further stafistical
testing unnecessary,

The parameter dWy; plays a special role. In all numerical studies
the a priori weight is based on T W = im. The estimated accuracy of the
declination depends very much on the knowledge of Wi;. The coefficients

Ay  and A for the north-south line are according to equations (3.1-6)

Ay = cos b

Since the declination does not change very much during one interval, both
parameters will be strongly correlated. The numerical effect of the :a priori
weight of Wi—; on the declination is shown in Figure 3.15. The weighting of
Wi, creates another but minor problem. Since Wy-; is a coordinate difference
in the (U”)—system, it is a time varying quantity. The use of the same a priori
"weight and the same approximate coordin.ate‘s, e.g., those of the initial epoch
Ts, will introduce distortions fo the adjustment (too optimistic weight). As
polar motion increases, the once adapted approximate values become increas-
ingly worse. This problem can be avoided by introducing the adjusted coordi-
nates of the first adjustment of the prévious interval as approximate coordi-

nates in the subsequent interval,

52



3.3.4 Graphical Representatioﬁs

All figures represent the square root of the diagonal element of the
inverse of the normal matrix (standard deviations). According to exl?ression
(3. 3-3), the accuracy for one range difference is 3\/?2‘ cm. For other accu-
racies the graphs change proportionately. For the purpose of checking the
programming, artificial observations were simulated with a Gaussian noise
superimposed, The variance of unit weight a posteriori thus obtained fluc-
tuated around one. But this value is of no real use since it only reflects the
"randomness'’ of the random number generator on the 'computer. It is under-
stood that with real data, the a posteriori variance of unit weight of the first
adjustment becomes the a priori variance of ulnit weight of the second
adjustment,

The accuracies of the polar motion coordinates as well as the station
coordinates are given in centimeters, whereas the 0g and T are given in one

one~thousandth of an arcsec. All stations are located on a sphere with radius
R = 6370 km

The scale of the plots varies among the figures. " For each experiment,
the secale of (Ox, Oy), (qu_x, crvH, qu;_ e cufg_ 1), and (U“H’ qui_i) are,
respectively, the same. In each case, there is a strong resemblance between
the standard deviations of the coordinate differences in the (U)-system and
the (U ”)-system. This is to be expected because of the small degree'of
freedom in the second adjustment, Figure 3.4 reviews the geometric meaning

of various parameters and related coordinate systems.
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Tigure 3.4 The Coordinate Systems (U) and (U")

The common o‘rigin of the coordinate system (U) and (U”) is at the
instantaneous center gf mass. For the initial intefvé,l at To, the two
coordinate systems coincide per definition, If there were no crustal’
motions, the (U)-system would be fixed to the crust. The body-fixed
direction of the U-axis is deter:mlned by the Greenmch apparent sidereal
time © and the reflector rlght ascension @ which were used as approx-
imate (adopted) values in the calculations during the interval Ts. Note
that there is no second adjustment for the initial interval To. The
system (U”) is not body-fixed. The third coordinate axis W' coincides
with the direction of the north celestial pole, and the position of 1':he
first axis U“is a function of the €@ and @ which are used as approximate
values in the calculations during a particular interval Ti. In (;a.s'e c;f,
crustal motions, the (U)-system is not body-fixed any'more but 'rotates
slowly by the amount of the common crustal motion component of all
participating stations. It is exactly the same motion which, as- m_entioned
earlier, is included in polar motion and earth rotation parameters.
There is no way of separating this motion from laser ranging ai the
surface only.

Figure 3.5 shows the basic three-line configuration for observa-
tion schedule A. Generally, the best estimates are obtained for § =
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which occurs between intervals 5 and 6. At that instant, the variation in b is
largest; therefore, best parameter geparation is possible, and the number of
observations is largest (longest visibility). The polar motion accuracy is the
same in both directions. There is a dependence on the declination, but the
total variation is very small, The standard deviations of the along-meridian
components dv4, and dUs s show the expected strong dependence on: the
declinations, whereas the across-meridian components dUg -1 and dve.-s do
not show such a dependence. The same dependence is reflected inCv,_,»

c andcrue_l, Ovg_g» respectively. The sudden jump in 0y%_. and

Us-5 2-1

Oul results from a change in sign of the correlation coefficient T & as the
moon. passes zero declination. Remembering that the a priori variance of the
Wﬁ-i parameters is 1 m?, it is seen %hat only a minor improvement takes
place. The accuracy estimates of the coordinate differences for the east-west

expectedly depend very much on the accuracy of the

line Ty and 0“4—'

4-3 3

declination, There is, of course, a strong correla’tion between dVy-5 and
dU,-s sinee, in the case of only one east-west line, they directly depend on
the estimated rotation parameter d&. If the variance~covariance matrix of
observations for the second adjustment were taken fo be diagonal, the corre-
lation between dVi-s and dUs—z would be identically 1. Anocther example of
the effect of the full variance-covariance matrix of observation is reflected in
the estimate 05. Based on the corresponding estimable quantities dU;-s and
) dVi-s, one could again set up an approximate error propagation for a
diagonal variance-covariance matrix of observation. The geometry is given
by equations {3.1-9). But such an approximate error estimation resulfs in
estimates of 0g which are too pessimistic since the correlation between the
observations (estimable parameter of first adjustment) are neglected. .A

numerical example follows later.
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Figure 3.6 shows the estimated accuracies as a function of the
number of observations. The basic observation schedule A, which
included an observation every ten minutes as long as the zenith distance
of the moon is smaller than 70 degrees, is m‘odifie‘d by deleting up to
80% of the possible observations: Multiplying the number on the horizon-
tal axis in the graphs by 5 gives the percentage of deleted observations
from the basic schedule A. The deleted observations are selected randomly
by use of the random number generator in order to eliminate the
effect of observation geometry as much as possible. Each computation
‘is made for the same lunar declination (-17.5 degrees). The graphs
show that a significant deterioration in accuracy occurs after deleting
50%, and more, of the cbhservations. The accuracy of the across-meridian
polar motion component 0, remains unchanged, even for a deletion of 80%.
The results of this experiment justify éhe adoption of observation
schedule B as the standard schedule, -

Figure 3.7 shows the three-line configuration basgac} on observation
schedule B. There are no new features. detectable. Generally, the accu-
racy still improves for zero declination, but not as much as in Figure
3.5 because of the deletion of observations at the extreme hour angle

in '‘schedule B,
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'Figure 3.8 FEigenvalues for the Three-ILine Design

Figure 3.8 shows the eigenvalues for the correlation matrix of the
obs ervations for the'previeue three-line configuration. Since the maximum
and mlmmum elgenvalues differ appreclably from umty, one expects the
correlatlons of the a.dJusted estlmable parameters [Xa] to have a strong
‘influence on the accuracy of the orientation parameters according to the
inequality (2. 3—6) . The eigenvalues are slightly affected.by the lunar
declmatlon In F1gure 3.9 the accuracy estimates of the parameters of the
second adgustment are given for the three-line. de51gn usmg a diagonal
variance—~covariance matrix of chservations. The 0y, 0,, and 0g have all
increased. The figures do not include tﬁe'estimable peremeters of the first
adjustment since they do not change by this operation., M‘oreover, the shape
of the curves has changed signifieantly. In case of polar motion, one now
gets a. decreased accuracy for zero declmatlon as opposed to an increase as
in Flgure 3.7. The largest decrease in aceuracy occurs for d®, I fact,
og is now solely dete rmined from the estimable parameters dUs-s and dVi-s,
which, accordlng fo equatlons (3 1-17), strongly depend on the -ephemeris
errors in declination. But this apparent dependence betweenca and 05 is a
fadlacy. It appears only because the correlations between [Xs] were neglected.
Ae".;rae shown in equatlon (3.1-18), the rotation parameter depends only
insignificantly on declination errors. It is therefore 'mandatory‘ to base the
second adjustment on the full variance-covariance matrix Z% 3 , not only
because the variances increase but equally important because th-e' adjusted
orientation parameters lose their geometric meaning otherwise.
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In Figure 3.10 the results of varying the separation in longitude
between two north-south lines. are shown. The basic three-line design is
u'sed.— The line 6-—5;, which defines the zero meridian, remains fixed,
whereas line 2-1 changes its longitudinal position from 90 degrees to 50
degrees in steps of five degrees. In the figure, only those parameters
are given which are sensitive to such a change. The y-polar motion
component, i.e., mainly the across-meridian component of the line 6-5
does not change significantly since this line is held fixed. The x-component,
on the contrary, changes, although not significantly. Therefore, the two
north-south lines have to be separated only approximately by 90 degrees.

Figures 8.11 and 3, 12 show the result of the two-line design for
observation schedules A and B, respectively. The only significant difference
is in the along-meridian polar motion, where schedule B gives worse
accuracy for § = 0 because of the neglect of observations at the extreme
hour angle. The 0, of the across~meridian component indicates only an

insignificant variation.
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Figure 3.13 Eigenvalues for Two-Line Design

In Figure 3.13 the eigenvalues of the correlation matrix of [}Es] are
shown for the two-line design. The maximum eigenvalue is increasing as the
moon moves from minimum to maximum declinations. Figure 3.14 displays
the two-line design if the correlation between the observations is neglected.
"All conclusions Whmh were drawn for the three—hne case.are also valid here,

The effect of weighting the third coordlnate dlﬁerence W3 4 on
the obtainable accuracy in declination is demonstrated in Figure 3.15.

The following a priori weights are used:

1, 1 .. 1
(. 1m)® o® " T (1.4 m)?
- Wy~ .

og is neariy directly proportional to the 4 priori 0' » « Polar motion
i 1 3 i - -

and rotation accuracies are essentidlly independent of the weighting.

- This is imporf:ant since it 'confirmg that the orientation paraﬁeters can
be obtained accurately even if the thirEi station coordinate is known to
only +1m (accuracy of Doppler positioning). Figure 3.16 shows the
effect of variation in length for a north-south line symmetric w'ith
respect to the equator. The five experiments are based on the following

latitude separation of the stations

80° = &, - & =40°
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The length is decreased in steps of 10 degrees. A long north-south
line gives obviously a better accuracy in declination and in polar motion.
According to the approximate formula (3.2-4), ¢, and oy is inversely

proportional to the sine of the station latitude. As a whole, the

deterioriation in polar motion .accuracy as a function of the latitude
separation is not very critical. Any separation between 80 and 60 de-
grees in latitude is acceptable.

The effect of the variation in azimuth of the north—south line is
shown in Figure 3.17. The azimuth is changed from 0 degrees to 42
degrees, in steps of 3 degrees. It is clear from the figures that
the requirement for an exact north-south line is not very strong. Any
line, running approximately north-south (+15 degrees) will be sufficient,

In the next three experiments, the variations of the east-west
line regarding length, latitude and orientation are investigated. Figure

3.18 shows the resulis of an equatorial line with lengths
60° = Ag - A, = 20°

The variation oecurs in steps of 10 degrees. Only the graphs for

the east-west line and the rotation parameter are given. Station 3 is

held fixed at As = 80° and station 4 moves toward station 3. The
accuracy of the rotation parameter decreases as expected from the ap-
proximate expression (3.2-5), Generally, a variation in length

between the limits 60 degrees and 40 degrees is tolerable, In Figure

3.19 the latitude of the east-west line is varied. Because of the geometri-
cal constraint imposed by schedule B, i.e., useful visibility of at

least 5 hours daily throughout the month, the length of the line has to

be decreased as the latitude increases. The following positions are

used:
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Table 3. 2-

Station Variation for East-West Line
(Variation in Latitude)

Experiment ® M Az
1 0 80 20
2 10 30 30
3 20 30 40
4 30 80 50
5 40 80 65

- The yariatio;rx O q agrees with that px"edicted by the approximafte formula
‘ (3.. 2~5). A latitudinal position up to 20 degrees (-20 degrees) for the
east-west line appears acceptable, _ )

‘ - Finally, Figuré 3.20 shows the variation in azimuth of the east-west
line. The azimuth is varied from 90 degrees to 48 degrees in steps of three
degrees. Any azimuth up fo approximately 20 degrees has an insignificant
effect on the rotational parameter,

Figure 3.21 displays the accuracies obiainable for a conceivable real

station distribution as a function of the lunar declination.

Table 3.3
Conceivable Real Station Distribution
Station Latitude | Longitude
(1) Texas (McDonald) 30° 256°
(2) Hawaii 20° 204°
(3) Japan 35° 138°
(4) Australia -35° 149°
(5) Southern Europe 38° 15°
(6) Southern Africa -34° 20°
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The first four stations are expected to be in operation soon, In this
experiment, the zero Iongituc_ig!is at Greenwich. The only new feature in these
figures is that 0g remains small for high Iunar declination because ‘the

effective east-west line,' i.e,, McDonald-Hawaii, is in the northern

1 3
hemispheré..
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4. SUMMARY AND RECOMMENDATIONS

In this study the least squares formulation is given for range
difference observables. The necessary relativistic considerations as
they relate to high precision lunar laser ranging are given. K is
pointecli out that the earth orientation with respect to the lunar position
can be parameirized in two equivalent ways. The first method is
based on the estimable parameters, which are obtained by forming pa-
rameter combinations (re-parametrizaiion) such that the remalning de-
sign matrix is non-singular. They are shown fo be the coordinates in
a system (U“) whose third axis coincides with the celestial pole and
whose origin is at the instantzneous center of mass. The first axis of
this system is not strictly fixed to the crust but depends on errors of
the station clock and the lunar ephemeris. No separate deter-
mination of the corrections to longitude, time, and right ascension of
the reflector is possible. The second method uses the estimable quanti-
ties mentioned above and performs an orthogonal transformation (over
determined case) soastoresultin actual polar motion coordinates and
in an earth rotation parameter which relate the system (U”) and (U).

It is necessary to agree upon a standard epoch for which these two
gystems coincide. Although these orientation parameters are sometimes
referred to as unestimable, they will in no way be inferior to the
estimable quantities when a standard epoch is fixed. Still, the earth
rotation parameter is linearly dependent on the correction to lunar

right ascension. The parameters of the station coordinates appearing
in the range difference observation equation have been transformed into
their differences and sums. Because of the earth-moon geometry, the
coefficients of the coordinate sums are characteristically of the order

1/60. They were found to be insignificant on the basis of the available
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approximate station coordinates. The range difference observable will,
therefore, only determine the coordinate differences, which, however,
determine the orientation parameters completely. Strictly” simultaneous
observations are the best since they reduce the significance of ephemeris
errors. Processing near simultaneous observations requires a good
ephemeris in order to compute the change in lunar position between

the two epochs of reflection. It is possible to create artificially si-
multaneous observations using powerful interpolation tools. But such
investigations should be carried out on real dafa..

An analysis of variance has been based on two types of approximate
models. The numerical computations have been carried out with a
model in which the earth rotation during the travel time of the pulse
was neglected. The accuracy for ‘the range difference was assumed-to
be £3./2 ecm. A second type of approximate model has been .set up by
neglecting terms of the order 1/60 and taking the declination constant
for the time of one interval, To the approximation of this model it
has been shown that the across-meridian polar motion component and
the earth rotation parameter are independent of errors in declination
wheréas the along-meridian component strongly depends on such errors.
The analysis was based on ideal station distributions in the form of --
north-south and east-west lines. Such a design reduces the correlations
between the parameters., As a basic observation schedule, one observa-
tion every ten minutes to one and the same reflector was assumed for
a period of three hours per day. The first and last observations were
placed 2.5 hours before and after lunar transiié. After one full hour of
observations, an interruption of one hour was assumed so that the total
observation span was five hours a day. This condition and the require-
ment that observations are only made at zenith distances smaller than
70 degrees put a limit on the station separation., Common visibility

during the whole month is possible for the following station separations:
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north-south line (symmetric to equator): Ad < 80°

east-west line: & = 0° A A< 60°
® = 10° A A< 60° ‘
¢ = 20° A A< 50°
¢ = 30° A A< 305

Each line gives only two estimable parameters accurate ez}ough to
be useful in determining the orientation parameters. Usually, the
accuracy of the third coordinate is modestly accurate at best, because
of the small change in declination during one day. Therefore, at least
two lines are necessary. A three-line configuration is preferable be-
cause it allows the elimination of individual station motions due to crus-
tal motion, although the common crustal motion component is absorbed
by the orientation parameters. For a design which includes two north-
soutil lines and one equatorial east-west line, the orieniation paramefers,
i.e., polar motion and earth rotation variations, can be obtained at
least with the measurement accuracy. The numerical analysis showed
that the requirement for lines to rum exactly north-south or east-west
is not very siringent. X is quite sufficient if these two principal
directions are approximately realized, say, within 10 or 15 degrees.
Consequently, there is a large degree of freedom for the practical
realization of such a network., Besides the station geomeiry, the
weather conditions are very important indeed. The final selection of
station sites should give due ;:onsiderations to the local climate. Some
of the stations, which arepresently available, already fulfill the geo-
metric requirements. The stations in Australia and Japan are located
very ideally to form a north-south line, whereas the McDonald Observa-
tory in Texas and the station in Hawaii can form the east-west line. &

is suggested that the method of range-differencing be tesied as soon as
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all of these stations become operational, The missing north-south line can
be established by mobile laser staticns,

-Onee accurate orientation parameters become available, they can be
used as known parameters in long-term single station solutions which will
provide geoceniric coordinates and significant improvements in the lunar
ephemeris, At that time, it will definitely be possible to reach an aceuracy
level in the ephemeris which allows the analysis of earth core motions
[Leick, 1978]. Yet, an inseparability between the nutations and ephemeris
corrections exists {Appendix B). This simply demonsirates that the orienta-
tion of the celestial pole in'space can only be given relative tothe motion of

the moon in case of lunar laser ranging.
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APPENDIX A

Generalized Inverse Solutions and Estimability

The two step procedure to solve for polar motion and earth rota-
tion described in the previous sections can also be formulated as a
one step procedure. Such a re-formulation cannot effect the outcome
of the adjustment, but it helps in demonstrating commonly used termin-
ology.

Congider the equation_ (2.2-30) and the following equation which

gives the general model for range differences as

X
BV + (A, A Ap) Y, + W =20
Y

and which includes all thé parameters explicitly, This adjustment
model, in which each equation contains two range observations together
with the parameters, had to be used because of the finite velocity of
the light. For the purpose of this appendix, we can limit ourselves to
the simplified model expressed by equations (3.1-6) to (3.1-8) where
the earth rotation during the travel time of the pulse is neglected.

These simplifications led to the model with observation equations

Xl
V= (& A, &) Y, |+ L (A.1)
Ys
where
K =&, &)
A, = @&,, &,, g )



V are the residuals and L are the cbservations.

The equation (A.1) is written as

V=AY + L (A.2)

with
A=A, A A,). (A.3)

The design mairix A has a r;d.nk deficiency of three. .The weight

matx:ix of the observai:ions L is

P= 1 1 ' (A.4)

The most general solution to this over determined system is the unique
minimum norm least-gquares solution [Rao and Mitra, 1971, p. 51]

which satisfied the conditions

VT PV = minimum (A.5)

~and .
Y' QY = minimum (A.6).

The solution is
Y = A% L. (A7)

+ - .
A pq is called the minimum Q-norm P-least squares inverse. It fulfills
the following fouxv' conditions [Rao and Mitra, 1971, p. 52] if P and Q

are positive definite (p.d.) matrices:

+
AAL A=A
+ + +
AL AA,, =A%,

R (A.8)

(AA, ) P = PAA ,q
+ ' +
(A PQA)TQ = QA A
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If @ is positive semi-definite (p.s.d.), the first two conditions in(A.8)

are replaced by

+
PAA , A = PA A.9)

e + +
QA QAA ; = QA
The minimum norm least squares inverse A+pq is given by the- G-maftrix
of equation (2.3-5) if we replace the matrix M™ by P of (A.4) in the
expressions (2.2-27), (2.3-3) and (2.3-4). Denoting the thus obtained

matrix by a’ gives

Gl
A, =|as (A.10)
Ga
with
0O 0 O
Q= |lo o o (A.11)

] A
0 o Z.
3

That the generalized inverse indeed fulfills all conditions in (A.8) and
(A.9) can be verified by straightforwdrd matrix multiplication. & is,
therefore,: formally established that the two step solution is identical
to a minimum norm least squares solution.

In the main body of this study, we called the parameters [X;,X5],
which are the ephemeris corrections and the coordinates in the (U ”)—
system, estimable parameters. This was done in order fo underline
that the corresponding design matrix was of full rank. According to
Rao [1965, p. 224], all linear parametric functions are estimable, if
and only if the rank of the design matrix is full, i.e., if the rank is
equal to the number of parameters to be solved., & is, therefore,
always possible to find estimable parameters simply by inspecting the

coefficients of the design matrix for linear dependencies and combining
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the corresponding parameters to form new but estimable parameter

combinations. If one does not change the design matrix, i.e., leaves

the linear depehdent columns included, there is the following condition
for unbiased estimation [Rao and Mitra, 1971, p. 139]: A parametric
function p'Y is unbiasedly estimable by a linear function of L {the

observations) if and only if

pP A A=p" (A.12)

or

pT(ATA) ATA =p' (A.13)

where A is any generalized inverse which fulfills

AA A =A (A.14)

From (A.12) and (A.14) it is clear that for

pT = A A

the linear parametric function p'Y is unbiasedly estimable. & was

+ .
shown that A ;o fulfills the condition (A.14) which is a special case of
the first condition in (A .8). With equations (A.3) and (A.10), one

obtains the estimable.parameiric function as

I‘ 0 b O - X 1

pTY = A, AY=|0 I (FE'} FT)'IFZ}; Ya
3 L 31 ,
0 O I-F(FLy FH*FT-
3 xal| Ya
Using the expression (2.3-2) for [Ysl, i.e.,

YS ="FT Yz + X3

the equations (A.15) can be rewritten as
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1 0
X1
(FX; F)" FIp (A.16)
3 XS

i
O

PY

T A T,.4 a1
0 I—F(FE%F) szs

These equations express fhe parametric fumetion pTY in terms. of the
estimable parameters [Xi, Xal. Comparing (A.16) with the least

squares estimates in eguation (2.3-5), the parametric function becomes

N

X

pPY = Yz

ol

Ya

It is recognized that both procedures, i.e., findingthe estimable linear
parameter combinations and performing a second adjustment, or using

the formalism of generalized inverses, leads to the same result.

Finally, the present solution is compared with what is sometimes
referred fo as inner constraint or "pseudo inverse solution.'" Ai the
outset, it is underlined that so far only the subset [Y;] takes part in
the minimization of the second adjustment. The parameters {X;],

i.e., the lunar declination and the geoceniric reflector distance, are
entirely independent of the definition of the coordinate system (U). The
declination refers to the (U”)-system., Therefore the parameters [X;]
a.ré not 2 subject of any constraint whatsoever in determining polar
motion.

Pope [1971] discusses the use of the Null space in solving singu-
lar geodetic- systems. It is understood that polar motion is assumed to
be known in that context. The singularity results from a lack of defini-

tion in shift, possibly in scale, and in a single rotation. The
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singularities are eliminated by incorporating a similarity transformation
on the approximate station coordinates in the form of a constTaint, He
points out that any basis E of the design matrix is suitable in order

to obtain an inner constraint solution. Adding the constraint
E'Y = 0O (A.17)

where E fulfills the condition
AE =0 (A.18)

to the normal equations gives an augmented non-singular normal matrix

whose inverse is

T A
N E _ |N E(E" E) A.19)

E' 0 ETE)*ET o)
+
N is the pseudo inverse. I fulfills the conditions (A.8) with

P=TIand Q =1, The parameters are
_ At = (AT T AT
Y=NA"PL=(A"PA) A"PL .
. ,
= Apy L
The Ia,tte_r equality is readily proven by use of the properties (A.8).

Since the norm mairix, @ = I, is an identity matrix, all

parameters participate in the minimization, i.e.,
Y'Y= X]X + Y, Y, + Yi Y, = minimum

The matrix E is readily derived from our previous work. This is most
eagily seen by looking at the relations involved in the rank factorization
theorem which was used repeatedly in Section 2. Graybill [1961, sec~
tion 11.2.3], in what he refers to as re-parametrization, gives the
following relations. Congsider the model of observation equations as
in (A.2)

V=AY + L
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with an m X m normal matrix
aNa = (AT A)
of less than full rank
R(N)‘= m-s=u

The weight matrix of observations is assumed to be egual to the identi-
ty matrix for the present purpose, which can always be accomplished
by transformation. According fo well-known theorem in linear algebra,

there exists non-singular matrix
mMm = (mSu EEG)
such that

STATA)S, O

MTAT A M = (A.20)
o) 0

where the non-zero submatrix in (A .20) is of size and rank u. The
relation (A.20) implies

E(ATA)E = O
which in turn implies

AE=0 (A.21)

Equation (A.20) also implies that R(AS) = u, i.e., the product is of
full rank. E spans the Null space of the design matrix. The original

observation equation (A.2) can be rewriiten as
V=AY+ L=AMM Y+ L

Partitioning the inverse of M by

leads to
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V =ASHY + AEHY + L
=ASHY + L ' (A.22)

The last equality follows from (A-21). Denoting the product of A and
S by D,
D = AS (A.23)

one obtains the rank factorization theorem by comparing (A.22) and
(A.2) as
A =DH : (A.24)

where D hag full rank, The estimable parameters result from the

non-estimable parameters by the transformation
X = HY (A. 25)

According to (A.22), the matrix E is now readily obtained. The desigh

matrix (D) of the estimable parameters [X] was given in Section 2.2,2 by
D=AS=(A14A2A3) S = (&4 Az) (A.26)

Equation (A.26) determines the matrix S as

I 0O
S=10 O
O I

Since o
MM®* = SH+ EH = I

substitution of (2.2-31) for the matrix H gives

I O 0O {fo O O
EH=I-|l0 O of=]lo 1I o}
O FT 1 0O -F' 0O

which leads fo the following identities:
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E =11 (A.27)

and

H = (O 1 0)

The matrix E, which spans the basis of the Null space of the design
matrix, can be easily found directly by solving the équation (A.21).
The identity (A.27) can be verified using the coefficients (3.1-6) to
(3.1-8).

It is concluded that the procedure of finding the basis of the de-
sign matrix and applying it straightforwardly as a constraint EY = 0
leads to an equally weighted minimization of the squares of all param-
eters. This is an undesirable procedure for the case of range differ-
ences to the moon, First, the [X;] parameters (geoceniric reflector
distance and declination) should not be included in the minimization.
Second, the parameters [Ysz], i.e., the station coordinate differences
and sums, should not be minimized based on equal weights, because
some of those parameters are weakly determined. Third, the inclu-
sion of the orientation parameters, in partict;lar polar motion, in the -
minimization adds a {ime varyving component to the station coordinates.
The resultant station coordinates are neither crustal fixed (even if no
crustal motions occur) nor are they components in the celestial system.
Since the primary concern of this study is not only the determination
of chords and angles, buf also of finding unique orientation parameters,

the pseudo inverse solution is not pursued any further.
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APPENDIX B

Ephemeris Errors Vs. Corrections in Nutation

Polar motion modelling refers to the celestial pole (C). E was
modelled as a constant per day, i.e., the mean of the progressive
Chandler motion per day. The celestial pole, per definition, has no
periodic diurnal motion relative to the crust. The adjusted parameters
in declination and right ascension (the laiter is linearly dependent on
correction to time) will give the corrections to the lunar ephemeris in
the celestial system (X). These corrections contain two types of errors
which are not separable immediately. One error source is that the
adopted set of nutations, whichever set one uses, is unlikely to describe
the celestial pole (C) in space accurately, since any nutation set is de-
rived from a hypothetical earth model. The adopted pole (adopted
nutations) will have a nearly diurnal periodic body-fixed motion. The
second type of error denotes actual ephemeris errors. FEphemeris
errors can have several origins, such as errors due to truncation,
errors in the constants, or even programming errors. The latter
error source is pa.rtic;ﬂarly suitable {o demonstrate the conéequences
of the non-separability of the two errors. Assume that during the
programming of the dephemeris one term was forgotten. Not knowing
this, one interprets the adjusted corrections in declination or right
ascension as an ervor of the adopted set of nutations. If this set of
nutations is compared with another experimental set as derived from,
say, VLBI, there will be a discrepency just equal to the forgotten

ephemeris term.
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The polar motion which refers to the pole as defined by the adopted

set of nutations is decomposed as

il

X % + x(t)

1
ye + yit) .1

y

xc and ye are constant for the time of one interval, They are the components
of the celestial pole which have always been referred to in Section 2. The
diurnal components are modelled with the same frequencies as have the nuta-
tHons' I is assumed that the diurnal component can be totally accounted for
by changing the coefficients of the adoptied set-of nutations.

Equation (2,3-18) in [Leick, 1978] gives for the diurnal polar motion

terms the expression

r

B +iyd) = "iza i, o MGMST + Aay)

= Z [-A; sin (GMST + Aay) - iA; cos (GMST + Aa)]
J -

where A; is the coefficient, A the nutation argument for the nutation j, and
GMST stands for Greenwich mean sidereal time, The y-axis is taken positive
along A = 90°, whereas in the preceding part of this report y was taken positive
along A = 270°, Changing the sign of y in the above equation, the residual

diurnal polar motion is modelled as

x(t) +iy(t) = S [-dA, sin (GMST + Aay) + idA; cos (GMST + Aay)
T ‘ (B.2)
In [Leick, 19'?8_, Section‘ 2 4], expressions for the change in declination and
right ascension were given aé a fm;lction of the nutation coefficients and fre-

quencies., With & being the right ascension, the change in declination is
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_i(AaJ + o)

Bagoptt - Oc = -Re (iTA e )
3

= E—AJ sin (Awy + 0)
5

Thus, the change in declination due to an errorin the nutation coefficients

is
d6) = T -dA, sin(Aa, + o) (B.3)
]

The change in right ascension is given by the same reference

~i{Aoy + o)

O sopteq — X = Im(i?ﬁje } tan ¢ = Eﬁ, cos(Aoe+ o) tan §
3

Thus
det) = Zj}dljcos (Ao, + o) tan (B.4)

Note that the sign ;n (B.3) and (B.4) is always in the sense '"adopted
minus C."

The coefficients for polar motion, declination and right ascension
are given by equations (3,1-3) and (3.1-4). After some lengthy alge-

braic manipulations, we find the following relations
A, x(t) + &, y@&) + X5 d6(t) + &, def) = 0, (B.5)

with

AQ=KA+ O-a

The first two terms are identified as those terms in the observation
equation which relate to diurnal polar motion. They are not included
in the models discussed in the main body of this study. The linear
relation (B.5) shows that errors in the nutations, i.e., the adopted set
of nutations does not describe the direction of the celestial pole (C),will
be absorbed in the daily adjusted declination and right ascension parain—
eters. The nutation errors will be inseparable from any errors in lunar
ephemeris. It is important fo realize that the actual polar motion

coordinates, that is, the constant part (neglecting the progressive
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Chandler motion) is obtained uniquely. The adjustment station positions
are independent of the rela:.tion in (B.5). If one were to compare the
path of the ;:elestial podle C with respect to the crust as obtained

from LLR and, say, VLBI, there should be full agreement regardless
of whether a "programming error' occurred during ephemeris imple-
mentation, or whether no such error occurred. The comparison can

be made with the respective polar motion coordinates provided both

parties select the same ''zero point" for counting polar mction.
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