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SUMMARY

During a design study, we examined to what extent the applica-

tion of well-known design concepts with the combined use of thick

transonic profiles would lead to solutions which are optimized in

terms of weight and operational costs. From the point of view of

optimizing the overall functions of the wing, we felt that the usual

design criteria and concepts were too restricted, and did not suffi-

ciently represent the physical processes over the wing. Suggestions

have been made for improving this situation, and a design example was

worked out. Compared with a wing designed according to previously-

used criteria, the new design is found to be superior in the most

important functions. We have drawn the conclusion that an isobar

concept adjusted to the plan form in conjunction with an "organically"

designed wing will lead to the weight optimum solutions of wing pro-

files.

KEY WORDS: Transonic wing, isobar concepts, wing desi,,Sn criteria,

"organic design".
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1. INThODUCTION	 /1

Technical concepts must be examined for the further developments

of the air bus, (A 300) within the framework of an aircraft family, and

future new designs of commercial aircraft. These concepts must lead to

a clear improvement of the overall economy of an aircraft.

Extensive market studies and ingi}iries from airlines regarding

their ideas about fleet composition, have shown that there is a require-

ment for short and medium range aircraft tykes. A sufficiently fine

graduation of the passenger capacity is required. The commonality of

components, service, and maintenance is another side condition. This

means that aircraft manufacturers must restrict themselves to family

concepts. Compared with previous requirements, this requires a larger

design flexibility. This is especially true for a mission spectrum and

the required aerodynamic design. It can be assumed that the economy of

a commercial aircraft (a single design) is essentially determined direc-

tly by takeoff weight, payload weight, fuel consumption, complexity of

maintenance, reliability, procurement costs, capital costs, etc. In

the following, we cannot clarify the sensitivity of aircraft economy

to any of these variables. Instead, we will discuss the relationships 12

between aerodynamic wing design and the structural and project require-

ments, and side conditions which have a direct influence on economy.

Design criteria and a simple design procedure will be developed for a

base wing design, which allow a check of the aerodynamic design itera-

tions with respect to the design requirements.

2. THE DESIGN PROBLEM

We can assume that increasing the payload fraction (savings in

dead weight) and/or reducing the drag for a specified takeoff weight,

range, and Mach number will remain the main goal of a design optimi-

zation for future commercial aircraft. In this sense, a design aero-

dynamicist is required to find a wing/aircraft geometry having an aero-

dynamically "optimum" pressure distribution (force distribution) within

the constraints of the design requirements. In addition, it must satis-

fy the minimum aerodynamic properties (construction principle).

When this problem is solved, this does not necessarily mean that

the wing design is optimized in the overall economic sense. Increases /3
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in the payload fraction require an optimization of the design weight

for any specified force distribution over the wing (aircraft). The

optimum combinations of geometric design parameters (aspect ratio,

thickness distribution, sweepback, engine configuration, etc.) usually

do not coincide for the aerodynamic and weight (structural) optimiza-

tion processes. For the overall economic cptimization, only an opera-

tional cost calculation can give the necessary information about the

most important design parameters, and their optimal combination.

During an iteration optimization, the important design restric-

tions are defined by the aerodynamic performance limits of the wing,

and the design aerodynamics and project aerodynamics, which leads to

the desirable optimum combinations of design parameters. In the pre-

sent design situation, we expect substantial improvements in the over-

all economy using a transonically-profiled wing (increase in the area

loading, thickness increases). A transonically-profiled wing with

favorable aerodynamic properties has already been built for the A 300 B
[1]. The calculation procedures and the experimental results have

led to much new information about transonically-profiled wings. We

have gained more information about the useful performance range. We

are certain that a further and new development of commercial aircraft

will take place during the beginning of the 1980's, and will result
in a substantial expansion of previously-specified or unclear perfor- /4

mance limits.

2.1 Preliminary Optimization of Aspect Ratio and Thickness

2.1.1 Results of a Project Design Variation

The dependences between economy and aerodynamic functioning of

a wing are the points of departure for all of the design work, which

is specified by the overall project.

Here there is a direct connection between economy, wing aspect

ratio and wing thickness, and quantitatively this has not yet been

sufficiently clarified for the transonically-profiled wings of dif-

fering thicknesses. During a project parameter study, we carried out

a preliminary optimization of wing aspect ratio and profile thickness

for a current aircraft type ((Airbus B 10-type), in order to obtain

information about a cost optimum parameter combination [2, 31.
Starting with the basic design, we investigated the influence

''
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of aspect ratio and profiling of different wings on the resulting; de-

sign. In addition to the engine position and the designed mission,

we also fixed the takeoff and landing path requirements, so that dif-

ferent aircraft result depending on size and payload capacity. The

corresponding design weights and fuel consumption rates were related

to the number of passengers. T_n this way, we obtained information

about favorable and unfavorable wing concepts. By connecting the two /5

cost factors in an overall operational cost calculation, we can obtain

information about economy. When transonically-profiled wings are used

and which therefore results in possible average wing thicknesses of

(D/L) = 15%, one finds that economic wing aspect ratios are between

A = 10-11. Thinner profiles are less economical because for the spe-

cified sweeprack (here, F S = 25 0 ) and area loading, cruise Mach numbers

are possible which are not required here. The important results for

aerodynamic design can be found in Figures 1-3. Figure 2 shows a sum-

mary of the results of this investigation for the present design case

with the aspect ratio ,& = 9.5 and a sweepback of 
T2S = 

25 0 . We find

from this that even if one assumes the same gains in operating costs,

there is a savings in the operating empty weight/passenger ratio for

large profile thicknesses for a wing with an average thickness of

(D/L) > 0.135 using relatively conservative assumptions rega^ding the

structural weight advantages.

For equal or slightly-increasing fuel consumption ratios per

passenger, however, this maximum "economic" average wing thickness is

between (D/L) = .15 (1200 nm) - .16 (500 nm) depending on range, which

seems to be realistic if one considers the operational empty weight

which can be used for large wing thicknesses.

2.1.2 Structural Weight and Wing Geometry

The operational cost calculation of the previous section re-

sulted in relationships between the wing aspect ratio and the average /6

wing thickness. However, this data is not sufficient for establishing

differentiating geometric side conditions (for example, thickness dis-

tribution) for a weight-optimum wing design. We are still missing in-

formation forthe determination of the average wing thickness. The l'e-

quired information is obtained for strength investigations for the spe-

cified wing geometry using the load cases which determine the dimensions.

5
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Figures 3-5 give the results of a strength analysis for a specified

wing type which corresponds to the present design case.

Figure 3 [2] very clearly shows the strong dependence of wing

weight on wing aspect ratio on average wing thickness. We can see

the weight-optimum limiting thicknesses here. From strength calcu-

lations, and for a specified wing geometry, we can define an average

wing thickness, which is composed of wing segments which are repre-

sentative of the structural complexity and have the corresponding

weighting factors. For the wing planned form geometry of interest

here, and for a representative load case, we have found that the fol-

lowing definition of an average wing thickness (equivalent thickness)

151, is a useful one:

(D/L = 4 6 (-*/Z^R^T '^` 0.3 091Z)^
riNk 

'F 0 7 (^/G
r
	(1)
/P

For a specified "economic" wing thickness, the relationship (1) can

be used as a first requirement for the thickness distribution as a	 /7

function of the span over the wing. From the weighting distribution

of the representative wing thicknesses, it becomes clear that the

weight savings is determined almost exclusively from the thickness

distribution of the inner wing, because of the large height. The outer

part of the wing has only a small influence, and also has the represen-

tative aerodynamic profile. Substantial weight savings from the outer

wing (sheared wing) will more likely come about by increasing the area

loading there, by increasing the lift load of the profiles installed

there, in conjunction with a reduction of the wing area. However, one

mus t, 3ecjrl- :•.:,ether to exploit this possibility using the present wing

d.Lan form and the selected design lift distribution. Up to now, we have

discussed the average wing thickness. Here, we mean a thickness which

is representative structurally for the entire wing. In addition to the

thickness steps in the span direction, we also consider a distribution

in the chord of the wing direction, which corresponds to the average

spar height of the supporting wing box structure.

If the wing box structure position is known for a specified wing

plan form geometry, by using the thicknesses to be determined as a

function of span according to (1), one obtains a first impression lbout

the distribution about the weight optimum box structure cross-sections.

6



However, one must have an idea about the aerodynamically-feasible limi-

ting thicknesses (drop thicknesses).

The selection of suitable profile drops (profiles) for the spe-

cified wing plan form must consider at least the feasibility of the main

dimensions of the wing box structure cross-section (average spar height,

box structure depth). At least in the wing areas which are most sensi-

tive to structural weight (inner wing) when carrying out a weight opti-

mization.

Wing cross-sections or profiles which do not conform to this	 /8

must be looked upon as non-"weight optimum" (Figure 6), as far as

their thickness is concerned, even if they satisfy the desired largest

profile thickness requirements.

Additional structural advantages result from this in addition

to a direct influencing of the wing box structure weight by selecting

a thickness distribution which is matched to the structure. This

leads to further savings in structural weight of the wjng.

Figure 4 shows the most important structural advantages of a

thick and transonically-designed wing. A table of the wing structure

weights is given for a design example (B 10 X) with the various wing

thicknesses which can be realized. Figure 5 shows various thickness

distributions (D/L (n)) over the span for the design example already

mentioned. The lowest curve assumes the first project assumptions.

The top curve considers the structural recommendations for saving

weight. The broken curve indicates the compromise based on aerody-

namic and other design limitations.

2.2 Aerodynamic Considerations for Realization of Thick Wings (Profiles

We can roughly formulate the tasks of the design aerodynamicists

resulting from the previous discussion as follows: for a specified

lift requirement, a :wing must be designed with consideration of its

flow-physical limiting regions and a realistic maximum thickness must

be determined. This means a "thickness/lift optimizatiori'for the wing

as far as the structural weight advantage is concerned (increase of

the net lift equals payload increase) with the side conditions of the

smallest possible drag. For the transonically-profiled wing, there is

not yet sufficient quantitative information, and therefore the design

aerodynamicist must base his work on empirical and intuitive methods.

7



In order to obtain an idea about a wing design, it is useful to

consider the basic relationships between wing thickness, pressure dis-

tribution, and the fluid dynamic limitations.

For the wing having an average or large aspect ratio, and for

an overcritical profiling, we assume here again that the aerodynamic

wing characteristics can be reduced to characteristic profile flows,

for the most part.

The basic ideas about the influencing of thickness profiles by /10

an appropriate selection of the design pressure distribution are also

applicable to the wing discussed here.

2.2.1 Orientation Aids for Thickness Limitations

According to [9], it has been found practical to associate the

suction side pressure distribution with a special transonic drop geo-

metry, which also makes sense in regard to the usual isobar concepts

[10, 11].

By locally changing the thickness of the profile underside, using

conventional design techniques of subsonic profile theory, we can real-

ize the desired lift requirements 171.
The problem of influencing the thickness of a transonically-

designed profile can be approximately reduced to the design of a pro-

file drop and a skeleton line [9, 12]. This clearly facilitates the

definition of a suitable design pressure distribution in our design

task.

The association of a drop pressure distribution and a suction	 "

side pressure distribution over the wing means a substantial influence r

on the thickness distribution of the wing. Also, there is a strong

influence of this drop pressure distribution type on the fluid mecha-

nical limiting loads on the wing (subsonic separation tendency, C Amax 
/11	 M

without flaps, shock/boundary layer, separation tendency, etc.)

In order to achieve the desired profile thicknesses or to evalu-

ate the selected pressure distribution type regarding its influence on

	

	 --r'

the thickness distribution and the achievable limiting thicknesses,'

information is required about the influence of the individual pressure

distribution parameters on these target values.

According to Figure 7, the most interesting pressure distribution
types of transonic profiles can be described roughly using four charac-

teristic ranges:

8



the level of the pressure minimum, cpmin

the setback of the point of beginninj; of recompression, xR/L

-- the size of the local supersonic region cps, 
xsl' xs2

the trailing edge pressure cPHK

It can be assumed that these pressure distribution parameters

will give a. good description of the drop thickness of the type of thick-

ness distribution which depends on the chord. Incollaboration with the

DFVL,R [lj, 141, we were able to evaluate the results shown in Figure 8

for simple transonic drop pressure distributions and a simple case with

lift. However, these are only the first rough relationships and can

be used for selecting a suitable design pressure distribution. Addi-

tional boundary layer variations for transonic profiles have been estab-

lished by Boerstoel 1151, and are shown in Figure 9.

2.2.2 Aerodynamic Profile Load and Profile Thickness 	 112 1

The requirement for a large profile thickness and a large pro-

file lift means a substantial load on the suction side, which is re-

stricted essentially by the required working range limit (off-design

behavior).	 The design pressure distribution which is important is the

one for the maximum speed design (MME ), which in the final analysis

also determines the base profile of the wing. 	 In a study on optimum

recompression, Sonnleitner [16] pointed to the basic research of A.

M.	 0.	 Smith [17],	 etc..	 He	 found a type of pressure distribution which

is favorable for this range (as far as recompression and lift for the

off-design behavior is concerned), which leads to a modified isobar

concept when applied to the wing. t

The analysis essentially proceeds from an aerodynamic optimi- ^;.,

zation	 of the glide coefficient for the profiles or the wing. 	 However,

this is probably not sufficient for a consequent optimization with re-

gard to economy (net lift). 	 In order to obtain a realistic evaluation

of the "glide coefficient"	 (for payload),	 in any case structural modi-

fications which are required for improving aerodynamic performance of

the wing should be taken into account in the calculation of the useful

lift to total drag calculation.	 This is not so true for the high-speed

range using a "clean wing", but is more true for a "low speed wing"

with its typJcal high lift 	 ai_;.	 Bielefeldt	 [18-20] systematically i

evaluated a large number of high-lift measurements using wings with

q
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flaps. He found a substantial dependence between the thickness of the /13

fast flight profile and the useful additional lift caused by a certain

flap system (Figure 10, 11).

It was found that by selecting the profile thickness (thickness

distribution) and the high lift aids (single, double, triple slotted

flaps) the useful additional lift values become optimum in the direction

of increasing profile thickness. Also, one can count on a substantial

reduction in the weight of the flap installations. Our own measurements

with a 17% thick transonic profile have confirmed this tendency [20].

For the high-speed range, we can dispense with minimizing the profile

drag for optimum recompression, if the profile thickness distribution

leads to better weight values.

The thickness distribution of a profile can be contrasted to the

complexity of installing high-lift devices.

The additional weight in the payload weight is a factor propor-

tional to the induced drag (square of the weight) in the calculation

of the drag. The increase in the drag due to the thickness increase

is linear, according to Truckenbrodt [21].

We define the following simple relationship between the lift

and the drag as the "effective" glide coefficient:

Aeff	
CA

W y	 CW? ^'1 f ^(o ^/ ) f Wr (CA f	 f4z t1(aCd)	 (64CA)2 .	
(2)

where ACA is a. aerodynamically-required additional weigjit* (high lift /14

system), then we have not yet found a quantitative description of the

problem, but we dan derive a design for the aerodynamicists: the aero-

dynamic possibilities of a thick profiling must be exploited completely

over the entire working range of the wing, in other words, an "organic"

wing must be optimized [22].

2.2.3 Design Check of a Profile Thickness

Once certain design criteria have been decided upon for a de-

sign pressure distribution, the base profile geometry can be determined

using well-known transonic design procedures [23, 241.

In the applications of the profile and in order to maintain the

profile thickness, it is important to ensure that the required working

*Translator's note: mehrgewicht equals "additional weight".

10
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limits of the profile are satisfied (wing). We will examine this for

the design example presented using a suitable recalculation method

[25, 261 with a coupled boundary layer calculation. If the working

limits are not reached, it is necessary to influence the variation of

the recompression over the profile in the positive direction (pressure

gradient, trailing edge pressure, trailing edge angle, profile thickness).

The profile can be modified in the trailing edge re gion, during

an iteration. When calculating; the limiting working range, a contour

correction is derived from the variation of the boundary layer displace-

ment thickness extended beyond the separation point on the profile upper

side and its linear continuation to the downstream base point of the 	 X15
sonic line. After smoothing it is applied to profile contours on the

top side and the bottom side.

X ^ XR

A Z Ck) = S, (k) - & wu N

with	 S, (x)L 	 (S4 )" ` 
s,̂ XR `x- '^

zoo c 22o +4 -2-

.24 = See - k-Li Z-	 - it ^- L< <-

When the trailing edge is redefined, with consideration of the

contour filling, Az, one then uses the extension of a skeleton line.

2.3 Winp 'once pt
During an operational optimization of a wing, the design aero-

dynamicists must consider structural weight gains during wing design;

more than previously. The classical problem formulations for wing de-

sign for fast flight such as maximum s peed, "drag rise" limit, mission

range, "buffet" limits, etc., are expanded here by the optimization

parameter "wing thickness distribution". It may be advantageous during

the first design steps to specify certain wing areas for positive gains

in thickness, and to ar • .ume a realistic maximum value for the thickness

distribution during wing preliminary design. The possibilities of de-

veloping a weight-optimum high lift system from the specified wing should

11
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be ,just as important as the purely structural weight gains brought

about by modifying the height in the wing box structure. This is very 116

important because the wing area is an important parameter which deter-

mines the weight and is already specified by the given takeoff perfor-

mance values. The special geometry of thick transonic profiles offers

new possibilities compared with conventional and more slender profiles.

Considering the high lift investigations of Bielefeldt [18-20], we see

that an optimum adjustment of the fast-flight profile to the desired

high lift performances can be achieved by curving the top side of the

profile. By matching; the fast flight performance and the low speed

performance of a profile design, we can bring about an organic develop-

ment of a high-lift system from a high-speed wing. This design possi-

bility should be used always in transonic wing design; even subsonic.

Unfortunately, this ha3 not been done as much as for the fast flight per-

formances. Assuming a "linear" development of the wing, from base pro-

files, the basic requirements mentioned above will become involved in

the basic profile design.

The following are areas of "potential" weight savings:

- the entire inner wing*, in the chord and span direction (height

at the wing root, tank volume, landing gear storage, high-lift system,

etc.)

- the wing box structure region has an important supporting mem-

ber over the entire span

- the rear box structure in the flap field region

- the nose box structure In the wing; topside region.

At this stare of development, we have consciously accepted dis-

advantages in regard to the expected aerodynamic performances of the

preliminary wing; design. By exploiting; geometric reserves, these can

be equalized with only a slight modification to the wing design (pri-

marily changes in the local thickness distribution in the front and

rear box structure region).

For a weight optimum matching; of the wing to specified working

ranges or performances, It is recommended to first specify the wing
	 A

design from the "thickness", rather than to provide for high aerody-

namic reserves to begin with, which later on could not be used.

- isobar concept

The isobar concept used as the basis for wing design is very

12



important for the expected aerodynamic performances of the wing and the

weight,	 considering the relationships discusoed above. 	 Sonnleitner

proved that a consequent application of the "straight isobar" concept

to a pointed swept wing does not represent an optimum solution; espe-

cially when good "off-design" properties are required. 	 /18

This is especially true for the case where aerodynamic perfor-

mances are required for a given wing planfurm and a specified lift dis-

tribution, which in addition are to bring about a low-weight thickness

distribution of the wing.	 The working range of the wing is then limited

by flow separations which can no longer be controlled, cr can only be

controlled to a limited extent.	 Large changes in the equilibrium state

of the flow forces (inertia forces,	 friction forces, pressure forces)

in the wing boundary layer will start a pressure increase if there are

delays in the flow.	 Using the selected isobar concept, and for a spe-

cified wing plan form, we can control the operating limits of the wing

in the design stage with consideration of the three dimensional effects

during recompression and boundary layer development.

Sudden separation phenomena are undesirable, which are associated

with large changes in forces and moments, and will therefore lead to a

strong reduction in aircraft stability and controllability. 	 As is well

known,	 the outer wing "tip" region is an especially critical area. 	 It

is only possible to influence the separation phenomena during the design

in the recompression region of the wing.	 These can come about, either

from a continuous development of the boundary layer or from a shock/

boundary layer interaction.	 The type of boundary layer development over

the wing, the development of the pressure distribution as a function of

span (first occurrence of shocks, changes in the shccks in the chord	 /19

direction and physically-possible trailing edge pressure 	 (see Figure 14))

can therefore be directly influenced through the selected design pres-

sure distribution and its characteristic behavior over a specified wing

plan form.	 Wing plan forms of the type of interest , here,	 (commercial or

transport aircraft with medium and large aspect ratios) are characterized

by a trapezoid plan form with sweepback and a bend in the trailing edge

(also leading edge).	 If one uses the previously-used "straight isobar"

concept, which essentially assumes an aerodynamically-representative

pressure distribution at the "sheared part" of the wing [8,	 11,	 27],
the aerodynamic limiting load on the wing is then determined by the

flow processes along the outer wing. 	 The pressure gradients become more

13
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steep with increasing span in proportion to Vie change in the chord.

There is also an increased tendency for separation in the boundary

layer (small local Re-numbers, boundary layer migration). Due to

the flow around the wing tip, there is a modification to the isobars

at the outer wing. This leads to a flow collapse which is not repre-

sentative for most of the wing. If one uses the "straight isobar"

concept this limiting behavior will, of necessity, be a consequence

of the selected design pressure distribution and therefore the expected

wing profile (especially thickness distri-bution), if one conforms with

specified operating limits. This then leads to a non-weight-optimized

wing profiling. The isobar concept should then be designed so that the

special characteristics of the variations of recompression in the span

direction are completely exploited in conjunction with the permissible

boundary layer load and shock development in order to achieve the

operating limits of the wing, and to favorably exploit the thickness

characteristics.	 Measures for influencing the pressure variation 	 120

in the trailing edge region include the following: adaptation of the

Cpmin. [161, setback of the subsonic recompression beginning point, and

matching of the trailing edge pressure (downflow angle, cutoff trailing

edges, etc.) In order to improve the flow behavior in the region of

reduced isobar sweep and to counteract a separation tendency induced

by shocks, higher effective design Mach numbers (for shockless recom-

pression) can be used for the profiles, compared to the regions which

are not endangered. Figure 15 shows the basic possibilities for buil-

ding up an isobar distribution matched with a profile plan form. By

using the various possibilities for influencing the operational limits,

and by exploiting recompression variations, matched to the wing plan

form, as well as exploiting the correct set of parameters for the

pressure distribution type (Cp,y;n Xle ^ CJ4 ) KS4 KSz ^Cp fK ) , there is

sufficient leeway to maximize the thickness over the wing span, and

also satisfy the aerodynamic requirements.

3. AERODYNAMIC DESIGN

Satisfactory calculation methods are one of the most important

tools for aerodynamic wing; design. Also, another important tool is

the wind tunnel. The frequency of using these tools during a project

14



_7_ It

design iteration will point out design uncertainties and gaps.

If calculation methods are not available, which would represent

a clear cost savings during the design work, it is recommended to re-

strict oneself to cost-saving standard methods, or simplified methods.

This for the most part will eliminate parameter adjustments which could

lead to a falsification of the design result. The calculation methods

shown in Figure 16 are adapted to the design of transonically profiled

wings. We have checked their forecasting performance using our own

tests. We feel that they are satisfactory. Figures 17-21 show the

results of our own recalculations. Here we will not give a detailed

account of the design cycle and the relationships between computer pro-

grams and correction methods. Figure 17-21 shows a "linear" design pro-

cess. It will be easy to notice the basic ideas. 	 122

3.1 Design Example

For an actual design case, (Airbus B10) we attempted to use the

design concept discussed above. In addition, to the project requirements

given in Figure 31, and the design requirements, we wanted to carry out

a consequent thickness optimization within the constraints. The pro-

filing of the inner wing was examined with great care and we investi-

gated the contribution of this profiling to the high lift characteristic.

Figures 26 and 27 showed the example of a sheared wing profile used here.

and gives the results of a thickness/lift optimization.

Because of the fixed wing connection, the shortened air frame

and the defined control surface (family concept, commonality), we had

to pay especial attention to the minimization of the longitudinal. moment.

The only solution we could find was.a drastic reduction in the "rear

loading" of the inner wing and in the wing tip reg{on. The required

lift values frcm the wing profile regions were equalized by higher over-

critical contributions on the suction side, and by flattening the pro-

file underside in the nose region (Figure 26). This led to a clear

reduction in the longitudinal moment (Figure 28).

Even though we theoretically-determined the required operational

limits (boundary of linear lift increase), the outer wing requires im-

provement in its separation behavior in the range of low design Mach

numbers. At high angle of attack angles, a "pitch-up" tendency is

5
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recorded (Figures 25 and 30), which is not desirable. The only re- 	 /23

maining solutions were "Kuechemann-Tips" [11] or a further unloading

of the wing tip from overcritical width contributions (reduction in

width Cpmin' design of a tip profile for even higher Mach numbers).

3.2 Comparison of: B 10 - Design - A 300 B.

Figure 31 shows a planform comparison of the two aircraft, and

shows the important design data. Compared with the A 300 B, the B 10

has an increased aspect ratio and a clearly higher lift load.

Figure 32 shows the thickness distributions 	 „^Qx j (.D/L)KASTEN)
[kasten = box] of both aircraft. The B 10 has a thickness of -'D7T ti .15,
and this results in a very large improvement (42%), compared with the

A 300 B (D7E_ _ .105). Operating limits can be compared using Figure

33. We find that for about the same standard of the "sheared wing"

profile of both aircraft, (Figure 34), substantially higher limiting

lift values are achieved for the B 10 in the mission range of interest.

This was only possible by using a profiling which is matched with the

flow in the span direction, that is, by introducing an isobar concept

which is matched to the plan form. Figures 35 and 36 show the theo-

retical pressure distributions and isobar variations for both wings.

From the dashed "critical" isobars (Cp*), we can see how the "straight

isobar" concept was used for the A 300 B, with a subtantial overcritical

unloading (thickness reductions) of the inner wing (Figure 35). Figure

36, on the other hand, gives the B 10 design, and shows an isobar varia-

tion adapted to the wing plan form with a strong overcritical load on

the inner wing.

Figures 37-40 show the development of the pressure fields along

both wings when approaching the operational limits (I + , Hof ).. The comparison
of the wing was based on comparison of only a few important design charac-
teristics for the high-speed range. We can expect a clear improvement

in the sense of higher economy for the "thick" transonic wing.

We assume that the increased design thickness will not only re-

sult in more favorable weight characteristics compared with the high-

speed design (wing box structure weight, Figure 4), but also by saving

the weight of the additional high -lift devices, we will then achieve

a "organically"-designed wing (Figure 13).

16
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4. SUMMARY	 /25

In an actual design we examine to what extent the use of well-

known design concepts could lead to weight-optimum and operating cost

optimum solutions, exploiting the possibilities of thick transonic

profiles. The usual design criteria concepts used for optimizing the

overall function of the wing were considered to be too restricted and

not sufficiently appropriate for the physical processes over the wing.

Suggestions have been made for improving the situation, and these have

been examined on an actual design. Compared to previously designed

wings according to conventional criteria, we find that the new design

is superior in several aspects. We reached the conclusion that an iso-

bar concept matched to the plan form in conjunction with a "organic"

design will lead to a flight profiling resulting in optimum weight

characteristics.
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Figure 2: Project Preliminary Optimization. Selection of "Most
Economic" Profile Thickness.
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Figure 3: Dependence of Wing Weight on Relative Thickness and Wing
Aspect Ratio. [2]
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STRUCTURAL ADVANTAGES OF THICK TRANSONIC WINGS

Room	 for connecting wheels

storing flaps	 therefore simp ler conc,

lift	 gaining weight

Stiffness	 increase with height.

more flutter safety margin

reduced bending

Bending stiffness, EA B -- k •H2

H = average spar box
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Greater aspect ratio ,-,ithout

additional weight

m 2) flight weight
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if a structural investigation of the transonically
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RELATIVE THICKNESS DISTRIBUTION 	 90
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w	 Figure 5: Preliminary Design of the Limitations on Wing Thicknesses
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Figure 6: Explanation of the Structural Exploitation of the Box Region from Profiles having
equal thickness.
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Figure 7: Simplified Description of a Transonic Pressure Distribution
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Figure 11: Explanation of the Various Topside Curvature Component of
the Flap Wing System, Main wing-simple slotted flap [18].
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"Organic" Development of the High-Lift
Skeleton from the "Topside" Curvature
of the Fast Flight Profile.

I

EXPECTED: BARGE SUCTION SIDE

LIFT. AERODYNAMICALLY-EFFECTIVE

HIGH LIFT SKELETON. FAVORABLE

FLOW SEPARATION. LARGE HEIGHT

CONTROLLABLE LONGITUDINAL MOMENT
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HIGH EFFECTIVE GLIDE COEFFICIENT.
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Figure 13: Explanation of a "organically"-designed wing profile.
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rn	 Figure 16	 SUMMARY OF CALCULATION METHODS

BOUNDARY LAYER
SUBSONIC VERSIONS	 TRANSONIC VERSIONS	 SIMPLIFICATIONS

Design	 Postcal-	 Design	 Postcal-
culation	 culations

Weber me- Weber method Hodograph Garabedian/Korn Integral method.
thod. compressible method, ac- method, DFVLR Walz II in the
"Semiinv- with boun- coring to version. Thiede/Otte ver-
verse panel dary layer. Ebe2le sion.
method

Panel method. Transonic, Difference method Compressible,
Multibody subsonic, according to Murman/ laminar, and
configuration analogy with Krupp coupled with turbulent boundary

iteration G.	 S.	 and coupled layer.	 Extension
control using subsonic approximate beyond separation E
transonic dif- calculation: for in- point for simula-
ferential fluence of thickness ting weight with
method and starting solution. simple semiempirical --

relationship for
turbulent boundary --^-
layer c f = 0.

.r=

3-D	 Extended Reversal of Subsonic ana- Transonic difference Integral method ac-
wing theory design with logy method method	 (small distri- cording to Cumpsty-
(vortex- fuselage

Iteration
butions).	 Expansion Head.	 Compressible

lattice) and engine coupling of of the program version version acc.	 to
fuselage in- fairing

subsonic de- of Dornier. Redeker turbine,
fluence ac-

sign and de- compressible boun-
cording to

sign transonic dary layer up to
Koerner and

postcalcula-
separation point,

(unknown) varied extension to
tion method
with checking wings in sense of a

of boundary simple strip method

layer devel- (consideration of —

opment. average span - depen-
dent isobar sweep and
wing chord).
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Figure 17: Example of surface discretization for the design and post-
calculation according to 130, 311.
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DESIGN PROCEDURE

PROJECT REQUIREMENTS

CA
design range

working limits

Na? CA = Const.
F^j	 H-35.000 {t.

i
j	 H-30,000{t.
i

Mc-i' Mcmox	 Ma

basic mission

MMC ' M C NI1\I0

G/F S1'ART GR/F i

A,
	

Wing plan form • D/L
 NI I\'

Engine position, fuselage geometry DR , L 

Required Fuel Tank Volume

Required Design Volume (fuel tank, landing gear, etc)

SELECTION OF BASIC PRESSURE DISTRIBUTIONS FOR TOPSIDE ISOBARS

SELECTION CRITERIA FOR: MAXIMUM THICKNESS
TOP SIDE CURVATURE
TRANSONIC OPERATION
TENDENCY TO SEPARATE AS A FUNCTION OF SPAN
LOW SPEED
HIGH SPEED

Figure 22: Design Procedure - Step 1
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DESIGN PRESSURE DISTRIBUTION

SUBSONIC ANALOGY: OVERCRITICAL

WORKING IaINGS ('A!i BE DEVELOPED LINEARLY FROM PROFILE FLOWS, JUST LIKE
WINGS IN PURE SUBSONIC FLOW

5

I - III	 BASE PROFILES
J - 5	 Design Steps

INSTALLATION OF BASE PROFILES INTO THE WING CROSS-SECTION

LINEAR STRAKE AND INTERPOLATION OF SECTIONS PARALLEL TO THE FLOW

POST CALCULATION OF THIS WING WITH SPECIFIED TWIST FOR DETERMINING THE
DESIGN PRESSURE DISTRIBUTION

SPECIFICATION OF THE TOP SIDE GEOMETRY AND THE WING SECTIONS IN SPE-
CIFIED CONTROL SEGMENTS.

Zo(X,lt) FIXED

Figure 23: Design Procedure - Step II.
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Ca(7) I C4, Cxz

coC

v

DESIGN CALCULATION WITH A METHOD EQUIVALENT THEORETICALLY AND NUMERICALLY
TO THE POST CALCULATION.

TWIST	 p(,j (ij)

CURVATURE	 ZS (x,-I)

DEFINITION OF WING UNDERSIDE

Zu ( x .-I) = - 7o ( -x 	 + 2 Zs (X,J)

TRANSONIC POSTCALCULATION OF THE GEOMETRY FOUND

TEST OF THE DESIGN GOALS. POST CORRECTION

Co' (J) TRANSSON.

( Goal and Result of

1 Linear Subsonic Design

I

POST CORRECTION OF THE TWIST DISTRIBUTION OF
USING LOCAL LIFT INCREASES FOR THE TRANSONIC
CALCULATION.

Figure 24: Design Procedure - Step III
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Figure 25: Design Procedure - Step IV
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