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CHAPTER 1 

INTRODUCTION



This work is part of the pro3ect, "Microwave Landing System 

(MLS), undertaken by the Communication Systems Laboratory, Department of 

Electrical Engineering, University of Virginia, under Grant NSG 1128. 

Current work in progress is concerned with the reduced-order receiver 

(suboptimal receiver) analysis in multipath environments. In this chap


ter the origin and objective of MLS will be described briefly. Chapter 2



and Chapter 3 will be the review of signal nodelang in MLS, the optimum



receiver structure, and its performance. Readers are requested to refer
 


to the prior reports submitted by the Communication Systems Laboratory



[1-4]. Chapter 4 will be a stunary of the derivation of the suboptimal



receiver. Chapter 5 is the description of a computer-oriented technique



which we used in the simulation study of the suboptimal receiver.
 


Chapters 6 and 7 present the results and conclusion obtained from the



research for the suboptimal receiver.



Background



Since man learned how to fly, there has existed a need for a land


ing guidance system to aid the pilot during periods of restricted visi


bility. The Instrument Landing System (ILS), which was adopted by the



International Civil Aviation Organization (ICAO) in 1949, is presently



the international standard. The limitation to ILS, such as
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susceptability to interference and weather degradation. shortage of fre


quency channels, large size of antennas, and the restriction to one nar


row approach path has raised the need of a new universal approach and



landing system. In 1970 the Radio Technical Commission for Aeronautics



recommended the development of a universal microwave landing system in



1971. At this time, the United States selected the Time Reference



Scanning Beam (TRSB) as its choice for the ICAO program.



In this report MLS will be referred to as the MLS System, i.e. TRSB



system which has been selected by the United States.



Objectives



The Microwave Landing System provides an electronic guidance in an 

air terminal area for an approaching aircraft to compute its position in 

space relative to a fixed ground reference. The required information is 

derived by the aircraft's receiver from ground-transmitted microwave sig

nals. The goal of the project is to develop an aircraft receiver which 

can give optimal performance in the multipath environments found in air 

terminal areas. 



CHAPTER 2



STATE-SPACE APPROACH



State-space approach is the focus of modern tontrol theory. Sev


eral factors influence the development of modern control theory:



a. 	 The necessity of dealing with a more realistic model of



the system.



b. 	 The shift in emphasis towards optimal control and optimal



system design.



c. 	 The continuing developments in digital computer



technology.



d. 	 The shortcomings of previous approaches.



State variables consist of a minimum set of variables which are



essential for completely describing the internal status, i.e. state of



the system. Conventional input-output equations, or the transfer func


tions for linear systems, do not give us any information about the



internal properties of the system. Optimal control makes it even more



difficult to avoid dealing with unsatisfactory nonlinearities, which are



very difficult to represent in conventional input-output equations. The



development of modern digital computers makes possible the solution of



problems which were previously insolvable. Since computers work in the



time domain, at is more efficient for a computer to directly integrate



differential equations than to use transform-inverse transformation
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methods that were usually used in conventional control systems. These



factors thus 3ustify the use of the state-space approach of modern con


trol theory -- particularly, as it applies to IALS.



Signal Modeling



The whole system is modeled by the state-space approach. The angu


lar coordinate [l] to be estimated and other relevant quantities that



evolve are assembled into an N-dimensional state vector modeled as



the solution of a suitable linear difference equation evolving in dis


crete time, from scan to scan, and excited by a white zero-mean random



process,fz(k.) = - -

X9 , 13 a 9 @2 ;£~ (2.1) 

where ) denotes rranspose and C) denotes ddt and 

=o (k) = direct path signal-to-noise ratio (SNR) (2.2)



a = e(k) = angular coordinate of own A/C (2.3)



o4'R = R(k) = multipath SNR (2.4) 

= 0R(k) = angular coordinate of reflector specular point (2.5)



S=2P(k) = direct-path to multipath phase difference at the


(2.6)



beginning of the scan



PCk7-) =:: ) i-,-- TK (2.7) 
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where Tk = time interval



C)sc = the scalloping rate (2.8)



The system difference equation can be expressed as



1.W/hK?2) (2.9) 

where u(k) is the observation, n(k) is receiver noise. 
th 

The 3 component of u, u , can be expressed more specifically as 

U ~ CAt) + 04j.P Ie- -(P)JccCG ± C cYO fJ*i 
(2.10)



ILj 

in terms of a discrete-time variable, T3 , local to the scan and, assuming 

the presence of a direct-path component, a single multapath component and



receiver noise where 

)SA ( - = the transmitting antenna-scanning function (2.11) 

p[.] = the transmitting antenna selectivity function (2.12)



and



n ], ns = independent Gaussian random variables with mean-zero 
va3nc .(2.13)


variance 0.5





CHAPTER 3



THE OPTIMAL RECEIVER 

This chapter contains the summary of the optimal receiver struc


ture, operation, and performance. Readers are referred to [2] for



details. Theory and results in this chapter were used in the next chap


ter for the derivation of the suboptimal receiver.



Receiver Structure



The ob3ective of the desired MLS angle receiver is to produce an



estimate of the A/C angular coordxnate,Q , which is minimally affected by



multipath interference. Recursive state estimation was used in the



receiver system. If we define



fl{%)4 u.[r, k= -- = the sequence of observations from 
2 "(3.1) 

some initial time through the present2



and



= estimate of x(k), given U(k) (3.2) 

then the estimation evolution is described as follows.



6(3.3)



6





7 

where



(3.4) 

estimate of the error in , given u)-" (3.5) 

This is complicated to compute. In our research we assume is small in 

some sense and use the following equation with good results. 

411 it) f E (3.6) 

where 

G&'- ,i estimate of the error in r. ;s -'I in the neighborhood of zero 
(3.7)


error, given u(k)-

KG,) a gain matrix, depending on I-, ,Q/"Q, and statistics of 
I(3.8)



1910 Q1 Q3; Q,, Q','Oz OJ (3.9) 

(Diag. means Diagonal)



The calculation of is based on the Locally Optimum



Estimation (LOE) criterion of Murphy [5]. LOE, as well as the recursive



estimation Kalman filter, constitutes the following structure of our



receiver.
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KALMAN FILTER



SIGNAL 
ENVELOPE LOE>->- ESTIMATE 

IN 

I _ _ _DELAY 

OUT 

EXTRAPOLATION 

Fig. 3.1 

As shown in Fig. 3.1, a Locally Optimum Estimator (LOE) used the 

last estimate and extracts all usable information from the new scan data. 

A Kalman filter integrates the output of the LOE with the past to produce 

an optimal estimate, given all data through the present. 

Generally, the Kalman filter uses the following formulas recur

sively to achieve the optimum estimate. 

Irv-U (3.10) 

wiFwrG -sJ (3.11) 

) ./ CH U (3.12) 

, - , - -(3.13) 



P(,) = p0k<-' - K'x) MH? W-,) 

OPUGINATI ?W IS 9 

(3.14) 

where eis 

follows:


a "pre-estimate" of parameter vector fusing the LOE, e, as 

Y (KilO 

G is as 

q6 >.. 

- .49(H 

defined in 

+ " 

I, C ](3,17) 

prior work [2]. 

" ". = ' , . 2 - " 

(3.16) 

(3.18) 

• .) _ - /[,.(3.19)c,

where



H N masking matrix associated with the choice of " (3.20)



and, finally, the LOE estimation error is



VU ) PC( - if K (3.21) 

Following Murphy's concept [5] in LOE, assuming locally optimum



estimation, and using LOE pre-estimate, "Y,we could simplify the algori


thm of the Kalman filter. Equation (3.1-3) could he rewritten as [2]



V A
AA 
 

e (3.22) 

where 



,0=T AI PAM 0S 10 

PB ROOR QUA ( .3P1(R) -- P(RI'-) H'r 3u49,J (3.23) 

and&A_4,a)is a vector with 1th component, as followst 

tA(Iq() if XN/ 0 (3.24) 

L 0 ) 4hke rw' e 

in which )vQ4Il)is the likelihood ration [3] and 

(1W Fg/n_ <JJ P (3.25) 

(3.14) could also be written as



(3.26) 

LOB,> and -A-

The concept and development of LOE was expounded by Murphy (5] in



1968 and summarized in [1] and applied to the A/C angular coordinate



estimate problem in MLS.
 


The LOE first assembled a selected subset of the state vector into



a parameter vector tand then processed the observations u to obtain an



estimate e of the error in the current'Y- estimate.



,r (3.27) 

where



r (3.28) 



: C(3.29) 

a <~y) U/ncj =r"" h-Y Uj is given by (2.10) (3.30) 

where



- O(3.31) 
( -/ -. r as a6CYV 

, ;L, Z "] .. ,-'T , (3.32) 

and is the likelihood ratio, as follows, for J samples/scan:


I 

-- -(3.32a)



and 10 ( ) is the modified Bessel function of the first kind, zeroth



order.



Following [2], we can write



-4- 7 (3.33) 

5- (3.34) 

where PAGE 

POOR QUAWY 
L3 (t-- . -TIX 

-.. ,r_ -ST/ (3.35) 
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W~~tfI tz M!. r/i,~te? 1 (3. 36) 

in which 

Mi (2o - o (3.37) 

q(3.38) 

and 

" / ' " it,: (3.39) 

.(3.40) 

where 

L, "L " , , ' o; hctot .O Y r (3-4 1) 

3.42)
1+ 2 

3t h 
 (3.36) , above, wasAn approximation for the component of w(ulq) an 

described in [4), as follows: 
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(3.43) 

ORIGIN A UJ!J 
LQU'4fA I. 



CHAPTER 4



INTRODUCTION TO THE SUBOPTIMAL RECEIVER



The optimal receiver generally outperformed the threshold receiver


at the expense of complexity. Five parameters,, , ,p , 9p , and P, had 

to be acquired before the multipath signal could be tracked in the Kalman


filter and LOE system. The difficulty in acquiring 6 has. in fact, pre

vented the application of the optimal receiver. Consequently, we


designed a reduced-order receiver, also called the suboptimal receiver,



which resolved this difficulty while simplifying the receiver structure.



Derivation of the Suboptimal Receiver



In the optimal receiver the likelihood ratio, , involving the 

quantities A and F, was used for the LOE system. In the suboptimal 

receiver we were concerned with a likelihood ratio obtained by averaging 

out of A. The parameter vector estimate,Y, became a four-dimensional



vector



Y: zA T RFSWAVPAGEINS (4. 1) 

Following the derivations in [5], the likelihood ratio, A , in which is 

averaged out, can be written as 

(4.2)
74 
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>K (Y.tLQ)f3 (A.3) 

J) 

The structure of the suboptimal receiver is similar to that of the



optimal receiver, except for the following:



1. 	 The dimension of the state vector of LOE and Kalman



filter are less in the suboptimal receiver.



2. 	 The computation of _/and , which were used in LOE, are



different, since y is a function averaged over 
 P.



Formulas for the computing of Ahand F were in [5] and are summar


ized in the following:



J- Y"-!. 	 (4.4) 

ar 	 7%(4.5)



ORAWA PAGE IsP4rc1 

QF 	 POOR QUALITyj 

where ,iis defined in (3.32a)



If we define



%~ T; b ;..(4.7)
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Gb i+ g~CZf)(4.8) 

where 

(49)7 (61'09z) + 

($9 Q-jT -j 4 .) (4.10)., 

is' 

Then, /ujcan be written as 

(4.11) 

. P ¢. , (4.12) 

So, we 

- , 

can then write 

L - ,' = Oil;,'JAV/ 

where 

9(4.13) 
ORIGnAUPAGEY 

OF POOR QUAUMA 

DA t(4.14) 

and 
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wA 2 - -, . .-	 ( Ye, - - ) (4.15) 

and



I-l~j(4.16) 

Also, 	 it follows that



S--(4.18)



9'A-A'4 	 OA 8 	 cu.=-Dr1AB S 	 (4.19)AP	 - 

where



)D 	 -OOR Q 
r' 	 -L r.A ", :iA . - - k , 	 IT .20) 

HWA J7>, 	P k(h . , 	 L /si- - (4.21) 

Chereiag. means diaonal) -(4a22) 

(where Diag. means diagonal) and 

http:S--(4.18
http:I-l~j(4.16
http:si--(4.21


'Cw~j- >(4.23)<k/ Z 

I Y ' (4.24) 

- (4.25) 

The functions "A , wE HwA , HwB , and HWAB, resulting from the aver

aging, are extremely complicated. The computation of these functions was 

done by using numerial approximation on a digital computer. The table 

lookup technique was used in computing HwA HwB and is discussed in the, , 
 

next chapter.
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CHAPTER 5



TABLE LOOKUP TECHNIQUE



In the development of the suboptamal receiver we need to calculate 

the values of the functions HwA , HwB , and HwAB , which were defined in 

(4.20), (4.21), and (4.22). Their complex nature is such that they



cannot be calculated in real time because of the excessive length of the



required calculation; for example, it requires 16 minutes to calculate a



set of three functions for a specific set of qA3 and B on the PDP-11



minicomputer and 24 seconds on a CDC 6400 computer. In a complete simu


lataon run the values of these functions for 6,500 different sets of qA3



and B are required. The required time spent limits the practical value
J



of this approach at present.



Two approaches were considered to solve this problem. One method



is to use simple functions which can be computed quickly to approximate



these complicated functions; the second one is the use of a table lookup



technique.



Both approaches need the values of the functions themselves to pro


ceed. We first chose some even-spaced values of qA and B to generate the



values of those functions and plot them. Here, it was necessary to use



smooth interpolation to complete the plots; the interpolation was also



used in the table lookup procedure. Six plots, HwA vs. qA' HwB vs. B,



HwAB vs. q AA
HWAB vs. B, HwB vs. qA and HwB vs. B, were made. 
 From
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these approximate plots, i.e. plots of equally chosen increments, the



reference values of qA and B were then determined more specifically to



build more accurate plots. The plots were used to find the approximation



functions, if any, and to decide the reference coordinate intervals for



the table lookup technique.
 


It was seen, from the plots, that these functions were too com


plicated and irregular to be approximated by simple functions. At this



point, approximation functions were investigated for their potential.



While they were often found to be close to the real functions, they still



did not satisfactorily reflect the characteristics of the real functions.



Several things had to be considered in employing the table lookup



technique:



1. 	 Would linear interpolation, polynomial interpolation, or



other kinds of interpolation be used?



2. 	 Would some modification of the true functions, e.g.



square root values, logarithmic values, or exponential



values, be better in interpolation than the true values?



3. How would the reference points be chosen?



In this case it is necessary to extend the one-dimensional interpolation



to the two-dimensional interpolation, since the functions were of two



variables.



It was desired to find the simplest interpolation method whose



deviation was tolerable. Linear interpolation of logarithmic values of



HwA and 11w and of actual values of
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AL- (5.0) 

were shown to provide deviations generally less than ten percent.



In defining reference points for the interpolation intervals the



standard procedure demands large intervals in slowly varying ranges and



small intervals for rapidly varying ranges. The range and reference



points finally chosen were



q 4 9 99 (5.1) 

If : I (5.2) 

and 11 intervals for B with reference points 0.01, 0.02, 0.04, 0.06,



0.01, 0.02, 0.03, 0.05, 0.07, 0.09, 0.95, and 0.99. Also chosen were 24



intervals for qA with reference points 0.1, 0.1778, 0.3162, 0.5623, 1,



1-778, 3.162, 5.623, 10, 17.78, 31.62, 56.23, 100, 177.8, 316.2, 562.3,



A 5 6 7 81000, 1778, 3162, 5623, 10-, 10 , 10 , 10 , and 108. A table of 300



values was then constructed as the first step in the table lookup



procedure.



The next step concerned the search problem. Whenever a set of qA



and B was obtained, it was necessary to determine in what interval it



belonged. Two search methods were tried. The binary search was the



first. Assuming there was no correlation among different q, and B



values, the binary search was conducted by successfully dividing the



range into two equal parts. Another method, which was termed "the
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presearch method," assumes a positive correlation between successive



values of qA and B. The current search started with the previous inter


val and was then followed by a linear search-. Since qA and B were gener


ated randomly, experiments were necessary to determine which method



proved most efficient in our simulation runs. The results showed that



the "presearch method" was the fastest- thus, this method was used in the



table lookup subroutine.



The final step was to follow the linear interpolation formula



2Y,--Xe - :d". 


(5.3)



to obtain the desired values.



ci 
 



CHAPTER 6



SIMULATION STUDIES FOR THE SUBOPTIMAL RECEIVER
 


Components of the simulation are:



1. 	 The environment and baseband receiver signal.



2. 	 The LOE/Kalman filter recursive receiver structure and,



specifically, both multipath-adaptive and non-adaptive
 


variants.



3. 	 A representation of the Phase III MLS receiver denoted



the threshold receiver.



Simulation studies conducted, which focused on the suboptimal



receiver, included the following:



A. 	 Crossing multipath interference and comparison for all



receivers.



B. 	 RMS error versus OR and comparison for all 

receivers. 

C. Acquisition scenario for the suboptimal receiver.



Simulation models are discussed first and then results presented.



Simulation Models



Environment and Baseband Receiver Signal



Basically, the environmental dynamics are simulated with a state



model of the form (2.8), without the random excitation, using the state
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vector, x, (2.1); however, the observations are generated in absolute


amplitude form. So, the full model is



A ) F(N O (6.1) 

v(kI FY'f,, (6.2) 

where 

X = the initial state at the start of the simulation (6.3)
0 

/ 
ii 0 0 0 VD 

0 o c C, i 

(6.4) 

'0 0 7C) C7 00 

a- = rms value of receiver noise at a point in the I-P channel having the 
(6.5) 

same signal amplitude as the demodulator output.



The parameteri-s assumed known, being a receiver characteristic.



a matrix-valued function of its arguments, which compiles the J



vector v(k) as one with a representative element "%-=) <-6.6) 
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67 

where r IJ PAGE

vGC) PE ROOR QUJAL' (6.7) 

and u is as given in (2.9).

J



Signal data samples are generated only during sampling windows of



J/2 samples each, located in the TO and FRO scans, respectively, and cen


tered where the centroid of the receiver signal pulses are expected. For



all runs to date



T 130 (6.8) 

corresponding to window width of eight degrees in each semiscan.



The Optimal Receiver Simulation



The optimal receiver simulation consists basically of the



following:



1. Extrapolation of i to the present, via (3.10). (6.9) 

2. Scan data processor calculation ofj.,via (3.33), and ,


(6.10)



via (3.34).



3. Kalman filter calculation as follows


a. P(k iW-, ) , via (3.11) (6.11) 

b. Gain matrix, M(k), via )3.23). (6.12)



A 
c. via (3.22). (6.13) 

d. *)via (3.26). (6.14)



The Suboptimal Receiver Simulation
 


The suboptimal receiver used the same procedure as the optimal
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receiver, but the calculations ofJiand I were different. Calculation of



-A- follows (4.13), and that of Ifollows (4.19).



The Antenna Selectivity Function



The following antenna selectivity function, Pi) , and its deriva

tive (t )were used in both the optimal and the suboptimal simulation 

runs;


b e (6.15) 

__________S Ise '4A Se -

and



piRuGnTAf PAGE 13 

_F POOR QUALMTY 

j. (6.16) 

.j.. _ 6P _ 64 -- ') 

in which B, the 3 dB'beam width in degrees, was given the value of one



degree.



Threshold Receiver



Performance of the threshold receiver was included in the data for



comparison. Reference about the threshold receiver can be found in the
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paper by R. J. Kelly [6].



Simulation Runs and Results



The following four parameters are important to the performance of



an MLS receiver.



/ Direct-path signal-to-noise ratio (dB) (6.17)



A Multipath to direct-path signal amplitude ratio (6.18) 

r 'Scalloping frequency (Hz) (6.19)



Sthe separation angle between multipath and


(6.20) 

direct-path direction



The MLS receivers are expected to operate with S/N ratio of 8 dB or



higher. Values in the range 8 to 20 dB were used in the simulation



study.



Another parameter, 0: the initial r-f phase difference between 

direct-path and multipath signals, also affected the results. 

Crossing Multipath Studies



This scenario began with



- -j. " _r LU-I1Af PAGE IS (6.21)S00QHOR QUALITY 

I -/ (6.22) 

and ran for 100 scans (approximately 7.4 seconds). Runs corresponding to
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different values of parameters S/NP , and fsc were made. In this scen


aria we assumed all runs were intitialized in the track mode, i.e. all



estimated variables produced by each receiver were intitialazed to true



value. Figures 6.1 through 6.9 show the angle estimation errors of the sub


optimal, optimal, and threshold receivers and the composite SNR as func


tions of time and separation angle. It should be remembered that the 

separation angle rf -2 7-C J., 

ORIGINAL PAGE 1 

QFU PQ-Q2. QUALITyX 

The key parameters S/N, (RHO),P (BETA), fsc(FSC) and the rms errors are



on the bottom of each plot. Figure 6.1 presents time histories of error



for S/N = 20 dB, ( 0, i.e. no multipath interference. Figure 6.2 shows 


the same case, with the multipath signal half as large as the direct-path 


signal. Note that the performance is better for the suboptimal and opti


mal receivers in the case of multipath interference. Figures 6.3, 6.4, 


and 6.5 present the time histories for = 180', fsc = 500 under differ


ent SNR and? . Figures 6.6 through 6.9 present the cases with 


fsc = 51.3 Hz, ' = -168', which produce maximum enhancement by the multi


path on the TO scan and maximum cancellatioh on the FRO scan [7]. It is 


clear that the optimal receiver generally performed the best and the sub


optimal outperformed the threshold receiver. 


Tables 1 and 2 summarize some interesting features from Figs. 6.2



through 6.9.
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Crossing Multipath Scenario. Reference Case: High SIN; No Interference.
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Crossing Multipath Scenario; High SIN,


Moderate Interference, Low Scalloping Rate
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Fig. 6.3 

Crossing multipath Scenario; High SIN,


Moderate Interference, High Scalloping Rate
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Crossing Multipath Scenario; High SIN,
 


Heavy Interference, High SCalloplng Rate
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Fig. 6.5



Crossing Multipath Scenario; Low S/N,


Heavy Interference, High Scalloping Rate





34 

SIM. JC9 NLSSUOG 'ILE NO- 113211d1I5 BITE 05'24178 
RLSO 3 1122t1UflS 0.2/78 
HLSTN1< 1I1100J1 5 05'23,78 

PLOT JOB LIPLO2L PROW&It" PC&MtI ORTE' O'22170 

Q" 

o"9 

r 

8 

.J 

IL. 
o mm 

DRIIWAEU PAGE 13 
OD0F MOR .QUALITY 

O0 0 89 1 60 2AJ 3.20 4.10 4.83 5'.9 G 7
9 '20 3.00
 
MEH SI4CE STRM OF iRST scON (SFO% ~) 

-2 7s 19! -1 G3 -1-07 -' St D' 05 0G ! 1:17 1'73 2.23 2 85 
SFPtlRqT!CR q',C-E LOEG.} 

S/N= 20 0 9, k9HO= 50, 9FTR--O8 O FG, FSC= 1 3 HZ, KK= 100 SCMS1,SMub= 1.03, PMA-b 

SU3jPT" 109PTlY', UNTETM9. P'PTI, BKVR =1XO bT[G., FPNSt .12'45-E-01 VCg.

OPTIML QPTI , N'TETW)3, P PT1, 81-- 09 -Pf-{ FINS= 81,194IF-02 OFG.


THRHLO -3 03 , dW.ETHRO, 9.03 V S qNS ORTED, ER4S= AqG40E-0l DEV



rig. 6.6 

Crosslng Multipath Scenario; High SIN,


Moderate Interference, Moderate Scalloping Rate
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Crossing Multipath Scenario; Moderate SIN



Moderate Interference, Moderate Scalloping Rate
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Crossing Multlpath Scenario, High SIN,


Heavy Interference, Moderate Scalloping Rate
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Fig. 6.9 

Crossing Multipath Scenario; Low SIN,


Heavy Interference, Moderate Scalloping Rate
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TABLE 1 

RMS Error



SNR fsc p



Thr. Opt. Sub.



.8 .243 .026 .039 

-168 51.3 .5 .035 .0085 .012 

20 dB .8 .51 .019 .035 

-180 500 .5 .083 .013 .035 

0 2OOLQUAIY 
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TABLE 2



RMS Error



S fsc p SNR



Thr. Opt. Sub.



20 .035 .0085 .034



14 .043 .016 .040


-168 51.3 20 .24 .0076 .014



.8 8 .77 .0265 .039



20 .51 .019 .035 

-180 500 .8 8 J.439 .045 .054 

DPOGTQiD PGE IS 
QE POOR QUALITY 
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From Table 1, we saw that the performance of the threshold receiver



is more sensitive to the multipath to direct-path ratio than the subopti


mal and optimal receivers. From Table 2,we noticed that higher SNR gen


erally gave better performance and that the SNR affected each receiver to



about the same extent.



RMS Error Studies



These data are sample RMS values calculated for the 0 error pro

cesses of the three receivers by taking averages over 100 scans of simu

lation results run in environments that are stationary, except the phase 

angler. The scalloping rate used swept eover a 27{interval during the 

100 scans, thus rendering the averages taken as sample means with respect 

to both noise and L. The first ten scans in each run were excluded from 

the averaging to miminize transient effects in the computation. The 

results are presented as functions of V , parameterized by S/N and 

as indicated on the various figures. 

The comparative performances elicited by these tests were not



entirely satisfying in view of the striking contrasts produced by the
 


crossing multipath studies. This outcome may be due, in part, to the way



aborts are processed in the threshold receiver simulation (immediate



reset of the state estimate to the true state on abort), but the data
 


clearly indicates some performance deficiencies in this environment of



the optimal and suboptimal receivers, as currently structured. Subse


quent re-examination of the results of these runs and others indicate the



optimal and suboptimal receivers, at small separation angles,



PQUA 
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occasionally, at some point in the 100-scan averaging interval, would



shift to a false-lock null or lose track completely. This is believed to



be correlated with the sweeping of over a 2Cainterval during the 100


scan averaging process. The performance results, given in Figs. 6.10



through 6.15, appear to be representative of the optimal and suboptimal



receivers, as presently structured. Elimination of the problems noted



may require some restructuring of the receiver, possibly reverting zo the
 


"nonadaptive' design when an interference pulse is not both present and



distinct from the direct-path pulse. This problem is under consideracion



presently.



Acquisition Scenario MR QUALMT 

There are five parameters,& , , , and 2 , in the parameter 

vector'r which is to be estimated in the optimal receiver. If the multi

path signal occurs while the receiver is tracking the direct-path signal, 

acquisition of the multipath signal may not occur. The acquisition of 

the parameter3, still unmanageable. prompted us to eliminate by averag

ing (,out ofT; however, in the suboptimal receiver (,9 9 ,, 

can be acquired. We studied the acquisition scenario for the suboptimal 

receiver and presented the results in Figs. 6.16 through 6.19. 

All figures present the estimation error time histories, respec


tively, inY%,g c4' and 6, with the bottom trace on each, showing the



time history of the ratio alHl,. Fig. 6.16 in which the receiver was ini

tially tracking both the direct path and multipath signals with 9 ;ep 

tog was used for comparison. Fig. 6.17 in which the multipath 

signal did not occur until the 26th scan presented similar estimation 
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RI'S Error Studies; Low S/N, Moderate Interference
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RMS Error Studies; Moderate S/N, Moderate Interference
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RMS Error Studies; High S/N, Moderate Interference
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RMS Error Studies; Low S/N, Heavy Interference
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RMS Error Studies; Moderate S/N, Heavy Interference
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Fig. 6.15



PMS Error Studies; High S/N, Heavy Interference
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Acquisition Scenario.


Reference Case: Steady-State Tracking; 0sep - 1.880
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Acquisition Scenario.


interference Acquston when Intal OR Error = 00 and 6sep = 1.88'
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Acquisition Scenario.


Interference Acquisition when Initial OR Error = 0.380 and esep = 1.88'
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after the 26th scan, as in Fig. 6.16. It showed that the suboptimal



receiver acquired the multipath signal successfully from an initial



error of 00. Figure 6.18 shows another successful acquisition for



, , even when the initial 6 R error is -0.380. Fig. 6.19 shows



an acquisition failure attributable to the reduction of O5C in this run



to 1.0g. The loss of acquisition capability with diminishing separation



angle is believed to be related to the steady-state tracking difficulty



noted in the RMS error studies above. Solution of the acquisition pro


blem should accompany the solution of the prior problem.
 


, VNGV"AS 



CHAPTER 7 O -pAGBIS 

•~~ Q T 

CONCLUSION 
1 Q0A)?9Y 

Previous results had shown that the optimal receiver was generally



superior to the threshold receiver by a factor of about 20:1; however,



its complexity was a distinct disadvantage. The order of the state



vector and the inclusion of in the state vector caused an acquisition



problem. The ob3ective in developing the suboptimal receiver was to



reduce the complexity of the algorithm in exchange for an acceptable



decrease in performance.



The results obtained in zhis study can be summarized in three



sections.



Crossing Multipath Study



The integrated LOE/Kalman filter suboptimal receiver algorithm



tested in simulation was generally superior to the threshold receiver



but, as expected, inferior to the optimal receiver. The reduction of the



order of state vector and parameter vector simplified the structure of



the receiver itself. The employment of the table lookup technique did



speed up the computation required in the suboptimal receiver; however,



the length of the computation time still limited the capability of the



suboptimal receiver, because we used a general-purpose minicomputer. By



adequate usage of special-purpose microprocessors or good approximation



functions, this problem may be eliminated.
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RMS Error Study



Difficulties in steady-state tracking were noted that appear to be



analogous to the difficulties in resolving two closely spaced radar tar


gets ith a finite aperture antenna. "To resolve, or not" is a question



that needs to be answered (dynamically, as a function of ) iss
in the MLS



receiver problem, and an answer in the negative cannot be immediately



ruled out as second best in this case. The problem is being studied.



Acquisition Scenario Study



The difficulty in acquiring 0 was solved by averaging out of the



parameter vector in the suboptimal receiver. The simulation study



revealed both success and failure in acquisition. A more thorough study



of the acquisition problem is in progress to establish that the subopti


mal receiver can acquire when it can track.
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