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CHAPTER 1

TINTRODUCTION

Thais work 1s part of the project, "Microwave Landing System "
(MLS) , undertaken by the Communication Systems Laboratory, Department of
Electrical Engineering, University of Virginita, undexr Grant NSG 1128.
Current work an progress is concerned with the reduced-order receiver
(suboptimal receiver) analysis in multipath environments. In this chap-
ter the origin and objective of MLS will be described briefly. Chapter 2
and Chapter 3 will be the review of signal nodeling in MLS, the optimum
receiver structure, and its pexformance. Readers are requested to refer
to the prior reports submitted by the Communication Systems Laboratory
[1-4]. Chapter 4 will be a summaxy of the derivation of the suboptimal -
receiver. Chapter 5 15 the description of a computer-oriented technigque
which we used in the simulation study of the suboptimal receiver.
Chapters 6 and 7 present the results and conclusion obtained £rom the

research for the suboptimal receiver.

Background
Since man learned how to fly, there has existed a need for a land-
1ng guidance system to aid the pilot during periods of restricted wvisi-
bilaty. The Instrument Landing System (ILS), which was adopted by the
International Civil Aviation Organization {(ICAQ) in 1949, 1s presently

the international standard. The limitation to ILS, such as



susceptabilaity to 1n£erference and weather degradation. shortage of fre-
quency channels, large size of antennas, and the restriction to one nar-
row approach path has raised the need of a new universal approach and
landing system. In 1970 the Radio Technical Commission for AReronautics
recommended the development of a universal microwave landing system in
1973. At this tame, the United States selected the Tame Reference
Scanning Beam (TRSB)} as its choice for the ICAO program.

In this report MLS will be referred to as the MLS System, 1.&, TRSE

system which has been selected by the United States.

Objectives
The Microwave Landing System provides an electronic guidance 1n an
alr terminal area for an approaching aircrait to compute its position in
space relative to a fixed ground reference. The required anformation is
derived by the arrcrafit's receiver from ground-transmitted microwave sig—
nals. The goal of the ﬁro;ect 15 to develop an aircraft receiver which
can give cptimal performance in the multipath environments found in aixr

terminal areas.



CHAPTER 2

STATE-SPACE APPROACH

State-space approach i1s the focus of modern tontrol theory. Sev-—
eral factors influence the development of modern control theory:

a. The necessity of dealing with a more realistic model of

the systemn.

b. The shift in emphasis towards optimal control and optimal

system deasign.

¢. The continuing developments in digital computer

technology.

d. The shortcomings of previous approaches.

State variables consist of a minimum set of variables which are
essential for completely describing the internal status, 1.e. state of
the system. Conventional input-output equations, or the transfer func-
tions for linear systems, do not give us any ainformation about the
internal properties of the system. Optimal control makes 1t even more
difficult to avord dealing with unsatisfactory nonlinearities, which are
very difficult to represent in conventional input-output equations. The
development of modern digital computers makes possible the sclution of
problems which were previously insolvable. Since computers work in the
time domain, 1t is moxre efficient for a computer to directly antegrate

differential equations than to use transform-inverse transformation



methods that were usually used in conventional control systems. These
factors thus jJustaify the use of the state-space approach of modern con-

trol theory -- particularly, as it applies to MLS,

Signal Modeling

The whole system 1s modeled by the state-space approach. The angu-
lar coordinate [1] to be estimated and other relevant quantities that
evolve are assembled intoc an N-dimensional state vector modeled as
the solution of a suitable linear difference eguation evolving in dis-

crete time, from scan to scan, and excited by a white zero-mean random

process,fZ(.’"ﬁ, K=o9 i, ---- }

y 2 (0}91"’5'} Ao  8p b2, B ,(,J,r,c} (2.1)
where ( )T denotes transpose and (") denotes dét) and

o =o' (k) = direct path signal-to-noise ratio (SNR) {(2.2)

8 = &(k) = angular coordinate of own A/C {2.3)
ch =c7£(k) = multipath SNR - (2.4)
GR.= ek(k) = gngular coordinate of reflector speculax point (2.5)

ﬁ.==§(k) = direct-path to multipath phase drfference at the

(2.6)

beginning of the scan

BOKTI) = BIK} + e T (2.7)



.

where T, = time interval
ajsc = the sg¢alloping rate (2.8)
The system difference equation can be expressed as
y(K+1) = FK)x(K) + Gar) 2(K)
(2.9)

w (wr = A{nfxd nixl)

wvhere u(k) i1s the cbservation, n{k) is receiver nolise.

t
The 3 h compcnent of u, uj, can bhe expressed more specifically as

( , s 3 ’
i = fcf-if‘:ﬁw:‘,«(‘f})} +olppl8a-0a(DafccsiB + s

E , - ‘_':(_ .y
F 9olp P~ D0 TISIN[3 2 nise 7Y Lo g
i L - o B )i

in terms of a discrete-time variable, Tj, local to the scan and, assuming

the presence of a direct-path component, a single multipath component and

receliver noise where

‘3A(‘) = the transmitting antenna-scanning function (2.11)

pl+] = the transmittaing antenna selectivity function (2.12)
and

ncg’ ns:) = 1ndependent Gaussian random varlables with mea.n—‘zero (2.13)

variance 0.5



CHAPTER 3

THE CPTIMAL RECELVER

This chapter contains the summary of the optimal receiver struc-

ture, operation, and performance. Readers are referred to [2] for

details. Theory and resulits in this chapter were used in the anext chap-

ter for the derivation of the subeoptimal receiver.

Recelver Structure

The cbjective of the desived MLS angle receiver is to produce an
estimate of the A/C angular coordinate,B , which i1s minimally affected by
multipath interference. Recursive state estimation was used in the

receilver system. If we define

{ hY
UQQ §$ujgjzi{=-gi;..-- P‘; = the sequence of observations from
[ 4 {3.1)
some initial time through the present,
and
'X{Hjx} z estimate of x(k), given U(k} (3.2}

then the estimation evolution 1s described as follows.

q‘\\'
PN

(3.3)

£

A . A . N
Xeriby = ¥fRix—) 4

Ny



(3.4)

g{”?ﬁj= estimate of the error in 6?{#;“*{3 ., gaven {I{K) (3.5)

&

This 1s complicated to compute. In our research we assume [ 1s small in

it

some sense and use the following equation with good results.

> lea . R r’)" ‘i
g(elle) = 1w €k (3.6)

where

e(kh)? estimate of the error in §§{}{f?—i}1n the neighborhood of zero
(3.7}

erxor, given ulk):

V(IC) Z a gain matrix, depending on Q{,’—( H——i) ’ G‘f’:\’;:', and statistics of
) {3.8)

e(dx}

Pal ~ 1, R ¥ —~ g - %
Q) = {7:(--}'::"*'}/ = D'OS/ !,@111013,9:: D Ve ) (3.9)

(Drag. means Dragonal)

The calculation of eﬁﬂi) 1s based on the Locally Optaimum
BEstimation (LOE) criterion of Murphy [5]. LOE, as well as the recursive

estimation Kalman filter, constitutes the following structure of our

recelver.



KALMAN FILTER

S1GNAL
FuveLore—>+ LOE - >  UPDATE =~ ESTIMATE
In ; , : Cut
UNIT
DELAY
5
EXTRAPOLATION

Fag. 3.1
As shown in Fig. 3.1, a Locally Optimum Estimator (LOE) used the
last estamate and extracts all usable information from the new scan data.
A Kalman filter integrates the output of the LOE with the past to produce
an optamal estimate, given all data through the present.
Generally, the Kalman filtex uses the following formulas recur-

sively to achieve the optimum estimate.

ey N

X{R1=1) = Fe-d S vt (3.10)
S e d Ve T - Sy YT B b

Fievin-r) = FUR=-D FON-1TK-1 2 (v} ¢ CLg-D G 1) 7 (et ) (3.11)
: el

Krwd = PORIS-DRT APCRER-G HT = 500 (3.12)
it R I x‘-

- S 1 [ H A et L
T b 2 R wiheJdd Kowriy ete - HE (R ‘. . (3.13)



9
OF POOR QUALITY
PirIR) = Plrik-13 = Kl HPrik-1 (3.14)
. A Y, e paly ¥ fed
=1 R POIE= [Tk Hf & RIORES & O (3-15)
A A
where ¥ 1s 2 "pre-estimate" of parameter vector ¥ using the LOE, €, as
follows:
o a o~ v &-
Fo(riky = Y K- 8 B K (3.16)
= HS{vin- 1w &7y (3.17)
G 1s as defined in prior woxrk [2].
?\ - '7 PR 1
¥ o= frika e S5 ANy (3.18)
9 -
- BxlEi e 2] (3.19)
where
H » masking matrix associated with the choice of i {(3.20}
and, finally, the LOE estaimation error 1s
+ A
vk} 2 B{KI - al¥) (3.21)
Following Murphy's concept [5] in LOE, assuming locally optimum
i
estimation, and using LOE pre-estimate, ¥, we could simplify the algori-
thm of the Kalman filter. Equation (3.12) could be rewritten as [2]
S = ehen) LMY () )
XAfpe} = U b (3.22)

wnere

ORIGINAT PAGH B
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ORIGINAY} PAGE i$

\ OF POOR QUALITY
M{R) = PCKIK-} HT{T + T HPHT) (3.23)
B th
and‘_/\‘_(u,é\} 1s a vector with 1 component, as follows:
L 2. | 4 i
Ao {u;i;:j‘ [ £ FAlwlse) if ANF£ 0 (3.24)
i 0 5 gtherwlss
in which }\(HJ?}ls the likelihood ration [3] and
T . ;T 3 e a3 Fal
¢ = -{_J...__.L. ’g‘uc RIS N ({Z-’ (3.25)
(3.14) could alsc be written as
oy -
. LY are Pt il gl N
P ()4 :j{l‘—i“ﬁfr'j f’(;erh—s;;}..?“ig;;j‘ ¢ PEEMT (3.26)

LOE, ¥ , and. /o

The concept and development of LOE was expounded by Murphy [5] in

1968 and summarized in [l] and applied to the A/C angular coordinate

estimate problem in MLS.

The LOE first assembled a selected subset of the state vector into

a parameter vector 7Y and then processed the observations u to obtain an

estimate e of the erxror in the current’” - estimate.

(3.27)

A (3.28)
T
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P T
= T j .

PR Tec) WU .29
%j(\(} = U.j;ncj :?t.;_; =g, (2hivd U 1s given by (2.10) (3.30)
where

oz 9 - 1 {3.31)
AQuiy = {Sn A ezl o~ a5 elbove
Wi e V= ft-'i‘ L Jc-:|2‘ . "R s ;(; :; (3.32)

and )&('l: 1s the lakelihood ratio, as follows, for J samples/scan:

(3.32a)

and IO( } 22 the modified Bessel function of the first kind, zeroth
order.

Followaing [2], we can write

A= U (3.33)
F = prwDT (3.34)
where ’ZFE[GNA-E PA@E i
OF POOR quaLiry
a3 G- T - ~
D ._(.5-‘: T - /r } A MaATAIX (3.35)



1z

i
!
™, -
\/\/(u.f%_) = ‘f“u_:;{._;’:.fs«‘afta}ii‘)-»; \} a T weres (3.36)
7o y~
f
]
'
ian which
M (2) = d Mofz) (3.37)
4
T A
Mo (F) = T, (=) (3.38)
and
e 3 - T PR S :—q H i . e
I—!V/ ;) - {i-\/(‘{;i": {',‘f"'—:';’_, g";: th i1s DJllﬂal)f‘ Lrrp > (3.39)
s - ¥ -2 7
= ”’”fksfz} (50, - -= ha{3)j (3.40)
§ Z7, 7 2
where
- S _'.7._ s gy C‘\ ! , o - 2 ey > 4
b, (9 2w (v Tl b s (oithoolT Lrrow (3.41)
1 ¢ 2o .DRIG]N@PA
{ ses veh {2} 3 o)) G

An approximation for the jth component of w(u|q) in (3.36), above, was

described in [4], as follows:



13

(3.43)



CHAPTER 4

INTRODUCTION TO THE SUBOPTIMAL RECEIVER

The optimal receiver generally outperformed the threshold receiver
at the expense of complexity. Five parameters,g ,{ 1031: + Pa s and ‘9,, had
to be acquired before the multipath signal could be tracked in the Kalman
filter and LOE system. The difficulty in acquiring B has. in fact, pre-
vented the application of the optimal receiver. Consequently, we
designed a reduced-order receiver, also called the suboptimal receiver,

which resclved this difficulty while simplifying the receiver structure.

Derivation of the Suboptimal Receiver

In the optimal receiver the likelihood ratio, % , involving the
quantities A and ¥, was used for the LOE system. In the suboptimal
receliver we were concerned with a likelihood ratio obtained by averaging
E out of . The parameter vector estimate, Y , became a four-dimensional
vector

DRIGINAL PAGE 15 (4.1)

Y= (e, 9 5":;’-2,{‘:',“:..i
/ OF POOR QUALITY

Following the derivations an [5], the likeliahood rat;o,j{, in whach [£ 15

averaged out, can be written as

14
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4

—

7
NG W) = . AjOcs vy, 8;) 48] (4.3)

.3
7
The structure of the suboptimal receiver is similar to that of the
optimal receiver, except for the following:
1. The &imension of the state vector of LOE and Kalman
filter are less in the suboptimal receiver.
2. The computation of J\..and_'_‘éz' , which wexe used in LOE, are
dirfferent, since 'i' is a function averaged over B

Formulas for the computing of A and & were in [5] and are summar-

1zed 1n the following:

~-€L‘:{‘ L oa N 17~
My =R RN, £ S (4.4)
.}:I \)}\ ’f - ~ '\’J -~
- -2 31 . L"'_} s !“3 7 E;?j

(4.5)

ORIGINAT PAGE 13
OE POOR QUALITY;

where ), 1s defined an (3.32a)
2 T

Xy

ta
aedd

3 2

P

(p)r 2aclaf (2 (Bedepaf) +ofn £7(0D= 2505 )(4-6)
If we define

2 = Lar * g8; <7 (4.7)
A

[T



or

where
REpile) v gt (6s]
G4 = L7pj g oens
g8y = 200008 O '8) & fee)
. B s .
£y = k= v 5., =
L - 7’-’ [
. A ‘o
[
Then,_ﬁﬂjcan be written as
z Ay N ¥
Ay oz Ta [Tk g
- i wrt oy g — 'g__
iy Py
SN c{‘*
J
So, we can then write
A A A a4 A4 ¥ 4
L= Ay Ly = Pe YWin Ve w3
where
A
L0025, \
; P -t
f SAC D
Pa = A } B
o
- - . N
l i a‘AJ /
R /

and

16

(4.8)
5 A 4.9
(-2 = %852 22} ) (4.10)
3 (4.11)
(;45{ _4_ I/ o
7= 33 v, o 4,12
358 Jo o mgiAE 4P
° jomAJ AE]
{4.13)
ORIGINADy
PaG
E [N
- 5 (4.14)
( . \ -:j;;-; E F_‘: . s \/j
1 ‘ /
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7 .
Wi = (- - sy - 2) We Vep -~ ) (4a.15)
and
PESI P
A .
A 3% am 1 ~-
22 =y SR
g, = J_"i“‘m— IR, i (4.17)
4;-./” .:LHJ
Also, 1t follows that
g ={( A A Iviay > (4.18)
T 3 1 TET. o o
= DabhwaDa’ + Daburs D' = (Do daas Dn'j 5 Pabwels (4.19)
where
DRy .
= . 0% Roog 428 15
r]tm = P’m::ﬂ{_;‘ o 3":-;13} ;—L“z,*:-) N QUALIT@JO)
Use = Diaa (o . by e ) (4.21)
vy = P (‘lé:'r, FRRPY S =3 f\‘_{.,,'{;g_‘ Y,
K .
{ i Lo, ’fL'.v;;s;J) (4.22)

HWAB =

(where Diag. means diagonal) and


http:S--(4.18
http:I-l~j(4.16
http:si--(4.21

18

. 2N
wag = {"‘/EJ ’ =Y, (4.23)
L2 o
}rurf:?} = (""”:‘ ! Ve =Y > (4.24)
)'LWM:’} by <‘:‘{f¢sj W) }Y‘»i ==?:‘;; (4.25)

The functions WA, WB' HWA’ HWB, and HWAB’ resulting from the aver-
aging, are extremely complicated. The computation of these functions was
done by using numerial approxaimation on a digital computer. The table

lookup technigque was used in compuiing HWA, HwB, and is discussed in the

next chapter.

PEGINAL PAGE 18
OF POOR QUALKTY



CHAPTER 5

TABLE LOOKUP TECHNIQUE

In the development of the suboptimal receiver we need to calculate
the values of the functions HWA, HWB, and HWAB, which were defined in
{4.20}, (4.21), and (4.22). Therr complex nature i1s such that they
cannot be calculated in real time because of the excessive length of the
required calculation; for example, 1t requires 16 minutes to calculate a
set of three Ffunctions for a specifaic set of qu and B:| on the PDP-11
minicomputer and 24 seconds on a CDC 6400 computer. In a complete simu-
lation run the values of these functions for 6,500 different sets of qu
and BJ are required. The regquired time spent limits the practical value
of this approach at present.

Two approaches were considered to solve this problem. One method
s to use simple functions which can be computed quickly to approximate
these complicated functions; the second one is the use of a table lookup
technigque.

Both approaches need the values of the functions themselves to pro-
ceed. We first chose some even-spaced values of qp and B to generate the
values of those functions and plot them. Here, 1t was necessary to use
smooth i1nterpolation to complete the plots; the interpolation was also

used in the table lockup procedure. Six plots, Hw, vs. d

A a7 HWB vs. B,

HWAB vs. qA, HWAB vs. B, HwB vs. qA, and HwB vs. B, were made. From

19
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1

these approximate plots, 1.e. plots of equally chosen increments, the
reference values of qA and B were then determined more speciifically to
build more accurate plots. The plots were used to find the approximation
functions, 1f any, and to decaide the reference coordinate intervals for
the table lookup technique.

It was seen, from the plots, that these functions were too com-
plicated and irregular to be approximated by simple functions. At this
point, approximation functions werxe investigated for their potential.
While they were often found to be close to the real functions, they stall
did not sataisfactorxrily reflect the characteristics of the real functioms.

Several things had to be considered in employing the table lookup
technique:

1. Would lainear interpolation, polynomial interpolation, or

other kinds of anterpolation be used?

2. Would some modification of the true functions, e.g.

square root values, logarithmic values, oy exponential
values, be better in interpolation than the true values?

3. How would the reference points be chosen?

In thls case 1t 1s necessary to extend the one-dimensional interpolataion
to the two-dimensional interpolation, since the functions were of two
variables.

It was desired to faind the simplest interpolation method whose
deviation was tolerable. Linear interpolation of logarithmic values of

HWA and HwB and of actual values of
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4 Hwap

/ Hw,q ng

were shown to provide deviations generally less than ten percent.

Fag (5.0)

In defining reference points for the interpolation intervals the
standard procedure demands large intervals in slowly varying ranges and
small intervals for rapidly varyving ranges. The range and reference

points fanally chosen were

-0
D

< 3

HS

. 99 (5.1)

T

(5.2)

Eay
o

4 =1

A

.
-f =

e,

and 11 intervals for B with reference peoants 0.0, 0.02, 0.04, 0.06,
0.01, 0.02, 0.03, 0.05, 0.07, 0.08, 0.95, and 0.99. Also chosen were 24
intervals forxr qA with reference points 0.1, 0.1778, 0.3162, 0.5623, 1,
1.778, 3.162, 5.623, 10, 17.78, 31.62, 56.23, 100, 177.8, 316.2, 562.3,
1000, 1778, 3162, 5623, 104r 105, 106, 107, and 108. A table of 300
values was then constructed as the first step in the table lookup
procedure.

The next step concerned the_search problem. Whenever a set of =
and B was obtained, 1t was necessary to determine in what interval it
belonged. Two search methods were tried. The binarv search was the
first. BAssuming there was no correlation among different qA ané B

values, the binary search was conducted by successfully dividing the

range into two equal parts. Another methced, which was termed "the
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rresearch method," assumes a positive correlation between successive
values of qA and B. The current search started with the previous inter—
val and was then followed by a linear search. Since 9p and B were gener-—
ated randomly, experiments were necessary to detexmine which method
proved most efficirent in our simulation runs. The results showed that
the "presearch method” was the fastest- thus, this method was used ain the

table locokup subroutine.

The £inal step was to follow the linear interpolation formula
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CHAPTER 6

SIMULATION STUDIES FOR THE SUBOPTIMAL RECEIVER

Components of the simulation are:

1. The environment and baseband receiver signal.

2. The ILOE/Kalman filter recursive receilver structure and,
specifically, both multipath-adaptive and non~adaptive
variants.

3. A representation of the Phase IIT MLS receilver denoted
the threshold receiver.

Simulation studies conducted, which focused on the suboptimal

receiver, included the following:

&. Crossing multipath interference and compariscn for all
recelvers.

]
B. RMS error versus @ﬁp,: B-805 ana comparison for ail

recelvers.
C. Acquisition scenario for the suboptimal receiver.

Simulation models are discussed first and then results presented.

Simulation Models

Environment and Baseband Receiver Signal

Basically, the environmental dynamics are simulated with z state

model of the form (2.8), without the random excitation, using the state

23



vector, x, (2.1); however, the observations are generated in absolute-

the full model is

amplitude form. So,
~ T ‘ 3 -
X(K+1) = FX(x},  X(o)= 1, (6.1)
v(H} = ‘L‘V (-g[h’))c-') VL(H)) (6.2)
where
¥ = the 1nitial state at the start of the simulation {(6.3)
[e]
/
ft o o 9 6 2 b ¢\
/ - \
j o ! K & o g 0 0 i
=2 s €t oz o o o© f
! o o o \ ad ) o o i’
Pa e a o b ke s ]
3 o £ \9 " o ]
b oo o boeoe (6.4)
5 ¢ ¢ 2 & & 1 T¢
\\O LT S & o 0 '/‘f

rms value of receiver noise at a point in the I~F channel having the
{6.5)

o=
same signal amplitude as the demodulator output.

The parameter S 1s assumed known, being a receaver characteristic.

hv(}= 2 matrix-valued function of 1ts arguments, which compiles the J

vector v({k) as one with a representative element\éﬁﬁ,j:hz--1(6.6)
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where ‘ TRIGINAL PAGE >
\{:j'[i-{ 3= C}_',\f:‘;,{j (6.7)

and uJ 1s as gaiven in (2.9).

Signal data samples are generated only during sampling windows of
J/2 samples each, located in the TO and FRO scans, respectively, and cen-
tered where the centroid of the receiver signal pulses are expected. For

2ll runs to date

T =138 (6.8)

corresponding to window width ©f eight degrees in each semiscan.

The Optimal Receiver Simulation

The optimal receiver simulation consists basically of the
following:
1. Extrapolation of ¥ to the present, via (3.10). (6.9)

2. Scan data processor calculation of /4, via (3.33), and &,

(6.10)
via (3.34).
3. Xalman filter calculation as follows- !
a. Py ;K“ 1) . via (3.11) (6.11)
b. Gain matrix, M{k), via )3.23). {(6.12)
c. Q/(;\JIK}, via (3.22). (6.13)
a. F{k“) , via {3.26). {(6.14)

The Suboptimal Receiver Simulaticn

The suboptimal receiver used the same procedure as the optimal
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receiver, but the calculations of _/\and § were different. Calculation of

L follows (4.13), and that of % follows (4.19).

The Antenna Selectivity Function

The following antenna selectivity function, ?(9) , and 1ts deriva-

tive F{G}vmre used in both the optimal and the suboptimal samulation

runs;
y .
hY x4, — 2
ple) = T‘ /4 6 = Bl (6.15)
{&ﬂ(F:)zﬁfé ekewafrﬁ
V(208 fz )"
and
ORIGINAL PAGE B
‘OF POOR QUALITY
r/‘
o 0.37 \ P I v
J e 525- NP g = I ERRIA
."‘fﬁ“}g =
r-._,j‘ . g e’,ﬁ_’.{) {6.16)
.7 . { iy
{} &2 3L {m?; (_:.:‘_4_‘) — ﬂ‘ 2 iy e{gé‘hth’&“E,
2 } z rjﬁfz R
é‘_- &
T b
. (;,{P'.f. ;-;_If-:-?_' -’-:} _ LAt -.:- ;:__ [rs f}J
[ '"’ —
(/e )3 1)
—_— ——— - - = ”?Q
= T T

7’:/:2‘. f-r':z— "'f_) i =
in whach B, the 3 dB beam width 1in degrees, was given the value of one

degree.

Threshold Receiver

Performance of the threshold receiver was inclunded in the data for

comparigon. Reference about the threshold receiver can be found in the



paper by R. J. Kelly [6].

Simulation Runs and Results

The following four parameters are rmportant to the performance of

an MLS receiver.

27

5??{ & Direct-path signal-to-noise ratio (dg) (6.17)

? i Multipath to direct-path signal amplitude ratio (6.18)
TE"S:; ;—‘ Scallopaing fregquency (HZ) (6.19)
sty -g B-'Gﬁ’ the separation angle between multipath and . 20

direct-path direction

The MLS receivers are expected to operate with S/N ratio of 8 dB ox

higher. Values in the range 8 to 20 dB were used in the simulation

study.

Another parameter, {7, the initial r—-f phase difference between

direct-path and multipath signals, alse affected the results.

Crossing Multaipath Studies

This scenario began with

dosep 5o

s j@eﬁ

and ran for 100 scans (approximately 7.4 seconds).

ORIGINAD PAGE 18
OF POOR QUALITY.

(6.21)

(6.22)

Runs corresponding to
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-

drfferent values of parameters S/N,? ; and fsc were made. In this scen-
ario we assumed all runs were intatialized in the track mode, i.e. all
estimated variables produced by each receiver were intitialized to true
value. Figures 6.1 through 6.9 show the angle estimation erroxs of the sub-
optaimal, optimal, and threshold receivers and thg composite SNR as func-
tions of taime and separation angle. It should be remembered that the

5 Sy .
separation angle Bregy = - 2 74 [ TP Ll

ORIGINAL PAGE IS
OF ECOR QUALITY,

The key parameters S/, f(RHO),pg(BETA), fsc(FSC), and the rms errors are
on the bottom of sach plot. Figure 6.1 presents time histories of exror
for 8/N = 20 4B, €== 0, 1.e. no multipath anterference. Figure 6.2 shows
the same case, with the multipath signal half as large as the direct-path
signal. ©Note that the performance i1s better for the suboptimal and opti-
mal receivers in the case of multipath interference. Figures 6.3, 6.4,
and 6.5 present the time histories for e = 180°, fsc = 500 under differ-
ent SNR ande - Fagures 6.6 through 6.9 present the cases with
fsc = 51.3 Hz,gg = —-168°, which produce maximum enhancement by the multi-
path on the TO scan and maximum cancellatioh on the FRO scan [7]. It 1is
clear that the optamal receiver generally performed the best and the sub-
optimal outperformed the threshold receiver.

Tables 1 and 2 summarize some interesting features from Figs. 6.2

through 6.9.
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http:R110=0.00

30

SIM. 108 M SSu0t FILE NG 113211u114 D47E 05724778
MLSTPTH 1122t O0n/24770
KusTHYX 111110011y On/23778

PLOT JO3  CRPLO2Y PR PCANPL Qg desee/70

WAAWWW“

I

D0l

SUBSgl'{ RECEIVER

PEAX YA
t2

.04S DEG,
RFLFIVER
0 i 0.12

WWM”\/\

-

i

ORIGINAL PAGE g
Q8 BOOR QUALITY

M

T T ]
G.490 7.20 8.00

FERK VRLUE
GATINL
- o

- 12

0,12

117 DEG.
RFCFIVER
6 o1

PERY YALUE =
THRHLO
-, 04

-2

20 20

CSNR (TU-8CRN)
10 09

5,08
o
[&=]

ol

0.60 1.60 240 321 490 U.63  5E0
TINE SINCE START OF FIRST SCON {SECORIS)

06l L7 173 229 265

-2.75 218 -L.e3 -L.07 -5 605
SEPRIATION AWGLE (CEG )

&M= 20,008 RYPz 50 SFIA= 0 @ OFE FSC= 5 0 HZ. KY= 100 SCRNS. BMi 5= 1.00, PY S
SSBEPT  ADePTTY. JNETHSD. POPil. 8RuvR=1 83 0°6, FRMS=  186343E-01 OFC

GrPTIML:  ADAPTEIY, JNIETHE),  POGPTYL, DALM-1 00 076, ERMS= L 128325E-01 OFC,
THAHLD -3 02 , QL. O 00 O SORANS RICRTED. FRMb=  {OGOOSE-OL EEC,

Fig. 6.2

Crossing Multipath Scenario; High S/N,
Moderate Interference, Low Scalloping Rate
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Crossing Multipath Scenario; High S/N.
Moderate Interference, High Scalloping Rate
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Crossing Multipath Scenario, High S/N,
Heavy Interference, Moderate Scalloping Rate
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Crossing Multipath Scenario; Low S/N,
Heavy Interference, Moderate Scalloping Rate
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TABLE 2

RMS Erroxr
B fsc P SHR

Thr. Opt. Sub.
20 .035 .0085 .034
-5 12 043 | .016 . 040
-168 | 51.3 20 | .24 | .0076 | .014
-8 ™3 .77 | .0265 | .039
20 .51 .019 -035
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From Table 1, we saw that the performance of the threshold receiver
25 more sensitive to.the multipath to dirxect-path ratio than the subopti-
mal and optimal receivers. From Table 2,,we noticed that higher SNR gen-
erally gave better performance and that the SNR affected each receiver to

about the same extent.

RMS Error Studies

These data are sample RMS values calculated for the § error pro-
cesses of the three receivers by taking averages over 100 scans of simu-
lation results run in environments that are stationary, except the phase
anglegz. The scalloping rate used swept 5 over a 27 interval during the
100 scans, thus rendering the averages taken as sample means with respect
to both noise and%%- The first ten scans in each run were excluded from
the averaging to miminize transient effects in the computation. The
results are presented as functions of Ei?f' parameterized by S/N and.f,
as indicated on the various figures.

The comparative performances elicited by these tests were not
entirely satisfying in view of the straiking contrasts produced by the
crossing raultipath studies. This outcome may be due, 1n part, to the way
aborts are processed in the threshold receiver 51mulét10n {1mmediate
reset of the state estimate to the true state on abort}, but the data
clearly indicates some performance defaciencies in this environment of
the optimal and suboptimal receivers, as currently structured, Subse-
quent re-examination of the results of these runs and others indicate the

optaimal and suboptimal recelvers, at small geparation angles,

D8 ROOR Quaryr
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occasionally, at some point in the 100-scan averaging interval, would
shift to a false-lock null or lose track completely. This is believed to
be correlated with the sweeplng'of:@ over a 2% interval during the 100~
scan averading process. The performance resulis, given in Figs. 6.10
through 6.15, appear to be representative of the optimal and suboptimal
Yeceivers, as presently structured. Elimination of the problems noted
may reguire some restructuring of the receiver, possibly reverting to the
"nonadaptive ' design when an interference pulse 1s not both present and
distinct fxom the direct-path pulse. Thas problem 1s under consideration

presently.
‘ RIGINAL 1A
- &5 BOOR QUALITY

Acquisition Scenario

There are five parameters,of , 2 roﬁzraﬁ r andk,, in the parameter
vector Y whach 1s to be estimated i1n the optimal receiver. If the multa-
path signal occurs while the recerver i1s tracking the direct-path signal,
acquisition of the multipath signal may not occur. The acquisition of
the parameterjz, still unmanageable. prompted us to eliminate by averag-
ing (-_‘, out of Y'; however, in the suboptimal receiver Y = (d,©, dr, 8:2_}
can be acquired. We studied the acqguisition scenario for the suboptimal
receiver and presented the results in Figs. 6.16 through 6.19.

All fagures present the estimation error tame histories, respec-
tavely, iny', B /g, and By, with the bottom trace on each, showing the
time history of the ratloifﬂéi. Fig. 6.16 i1in whach the receiver was ini-
tially tracking both the direct path arnd multipath signals with Sguaf

— ;“ggil was used for comparison. Fig. 6.17 in vhich the multipath

signal did not occur until the 26th scan presented similar estimation
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Fig. 6.10

RMS Error Studies; Low S/N, Moderate Interference
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RMS Error Studies; Moderate S/N, Moderate Interference
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RMS Error Studies; High S/N, Moderxrate Interference
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RMS Error Studies; Low S/N, Heavy Interference
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RMS Error Studies; Moderate S/N, Heavy Interference
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RMS Error Studies; High S/N, Beavy Interference
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Acguisition Scenario.
Reference Case: Steady-State Tracking; Ogep = 1.88°
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Acqursiticn Scenario.
Interference Acquisition when Initial 8p Erxor = 0° and Bsep = 1.88°
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after the 26th scan, as in Fig. 6.16. It showed that the suboptimal
receiver acquired the multapath signal successfully from an initial
error of 0°, Figure 6.18 shows another successful acquisition for

@se? = E.Eﬂg, even when the inmitial &g error is -0.38°. Fig. 6.19 shows
an acquasition failure attrabutable to the reductaion of 9_;@;; in this run
to 1.0°. The loss of acquisition capability with diminashing separation
angle 1s believed to be related to the steady-state tracking drffaiculty
noted i1n the RMS erxror studies above. Solution of the acquisition pro-

blem should accompany the solution of the prior problem.



CHAPTER 7 AL PAGE 18

CONCLUSION e

Previous resulis had shown that the optimal receiver was generally
superior to the threshold receiver by a factor of about 20:1; however,
its complexity was a distanct disadvantage. The oxder of the state
vector and the inclusion of in the state vector caused an acquisition
problem. ‘The objective in developing the suboptimal receiver was Lo
reduce the complexity of the algorithm in exchange for an acceptable
decrease 1n performance.

The results obtained in this study can be summarized in three

sections.

Crossing Multipath Study

The i1ntegrated LOE/Kalman filter suboptimal recesiver algorithm
tested 1n simulation was generally superiror to the threshold receiver
but, as expected, inferior to the optimal recerver. The reduction of the
order of state vector and parameter vector simplified the structure of
the recerver itself. 7The employment of the table lookup technique dad
speed up the computation reguired in the suboptimal recelver; however,
the length of the computation time still limited the capability of the
suboptimal receiver, because we used a general-purpose minicomputer. By
adequate usage of speciral-purpose microprocessors or good approximation

functions, this problem may be eliminated.
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RMS Error Study

Drfficulties in steady-state tracking were noted that appear to be
analogous to the difficulties in resol;lng two closely spaced radar tar-
gets with a finite aperture antenna. "To resolve, or not” 15 a guestion
that needs to be answered {(dynamically, as a function of stf’) in the MLS

receiver problem, and an answer in the negative cannot be i1mmediately

ruled out as second best in this case. The problem i1s being studied.

Acquaisition Scenario Study

The drfficulty 1in acguixring \Q was solved by averaglng@ out of the
parameter vector in the suboptimal receiver. The samulation study
revealed bhoth success and failure in acguisition. A more thorough study
of the acquisition problem 1s i1n progress to establish that the subopti-

mal receiver can acguire when 1t can track.
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