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FOREWORD
L

A

This is the final report of the program completed by the Lockheed-California

Company, "Study on Utilization of Advanced Composites in Commercial Aircraft Wing

Structure," which was conducted from August 1977 through April 1978.

The study was performed under the direction of the Structures and Materials

Division of the Lockheed-California Company for the NASA-Langley Research Center,

ACES Program Office, Hampton, Virginia. The study manager for Lockheed was

I. Frank Sakata. He was assisted by Robert B. Ostrom, Plan Development, and

George W. Davis, Conceptual Design.

Other major comtributers were:

S. V. Sorenson Materials and Processes

A. C. Jackson Composite Structures

S. 1. Bocarsly Structures and Materials Laboratory

S. J. Smyth Advanced Design

R. A. Short Manufacturing

B. Mosesian Quality Assurance

D. J. Spangler Product Support
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STUDY ON UTILIZATION OF ADVANCED COMPOSITES
IN COMMERCIAL AIRMUM WING STRUCTURES

by

I. F. Sakats, and R. B. Ostrom
LOC HEED-CALIFORNIA COMPANY

SUMMARY

r

A study was performed to plan the effort required by ccmmerci.al transport

manufacturers to accomplish the transition from current cons ruction materials and

practices to extensive use of composites in wings of aircraft that would enter ser-

vice in the 1990 time period.	 The study defined the technology and'data needed to r

support the introduction of composite materials into the wing primary structure of

future production aircraft, and developed, in detail, the ingredients of a wing i

structure development program.	 In addition, the study delineated the need and

requirements, and a plan for development of a new, improved composite material'

system.

The planned wing structure development program will provide the technology and

data needed:	 (1) to produce a cast-competitive advanced composite wing struct ,. e k

which achieves the fuel-savings goal of NASA's ACEE composite program, (2) to pro-
1

vide Company management confidence to commit to production of such a structure in

the 1985-1990 time period, and (3) t o achieve certification of an aircraft embodying

such a structure.

The	 in
r

material development and evaluation program will result 	 a new material

#4system with improved characteristics that will lead to an optimum wing structure

program. r`

A multi-disciplinary approach was used in the study, including all of the

engineering and manufacturing disciplines which normally participate in the design,

development and production of a new aircraft, to ensure that all of theproduct ^

factors that enter a Company decision to commit to production of a composite wing 1

structure were addressed.
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The study effort was comprised 45f' twc3 parallel -and highly interactive elements:
a conceptual design study, and the plan development. The conceptual design study

provided the framework for identifying and investigating unique design aspects and

problem areas in the use of-composites in commercial transport wing structure, and

catalyzed the idena-ification of technology and data needs and the subsequent planning

for their development and validation. The conceptual design study also provided the

basis for definition of needed development testing, and facility and equipment 	 j

requirements for supporting the development; progr ►= and for subsequent production	 a

of composite wing structure. The plan development, effort defined the technology 	 I

needs, formulated approaches for effecting the required development, and evaluated

and assessed the resultant wing structure and material development plans.

Essential technology development which must be incorporated in the wing struc-

ture development program or addressed in appropriate technology development programs

were defined for the technology areas of design, manufacturing, maintainability and

materials.	 Based on assessment of the technology needs and development approaches, ,.}

and the insight provided by the conceptual design study, a comprehensive wing struc-

ture development	 sdefined.plan wa !. -'

The definition of the material development program is based on the belief' that i

while current composite material systems could be used as the basis for composite

wing development, these systems will be 20 years old by 1986 and improvements to

these systems are both feasible and desirable. 	 The proposed development program is

a joint Government-industry effort, involving all three of the major commercial

transport manufacturers, to define the requirements for an improved material system,

to plan and coordinate its development and evaluation, and to characterize its

behavior.	 The program consists of five tasks: 	 establishment of industry standards

and target specifications for the new material; material development by suppliers,

and screening/ evaluation by the users; material characterization and substantiation;

investigation of material and process variables effects; and design allowable testing.

The program timing provides for phased incorporation of the new material system into

the wing structure development program, and for development of design allowable data

in time for a composite wing production commitment in the 1985--1986 time period.
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The wing structure development program embodies the following ingredients:

engineering and manufacturing studies; manufacturing development; and development
testing to . generate design analysis data, to support concept development, and for
design verification. In addressing these essential ingredients, the development
plan is structured into four tasks: design data testing, design concepts evaluation,

preliminary design, and demonstration article development. The Design Data Testing

task will provide needed supplementary data to the existing T300/5208 graphite epoxy

data base, verifying or determining strength and durability characteristics of the

material under the wing design environment. Under the Design Concepts Evaluation	
t I

task, promising structural approaches for composite wing structure will be identified

through analytical design studies and development fabrication and testing. The

composite wing structure design will be expanded and refined, employing the most

promising structural concepts, under the Preliminary Design task. Design and manu-

facturing parameters will be verified; cost-weight trade studies performed; and

verification tests conducted on a variety of wing sub-components. The improved

material system developed under the proposed material development program will be

incorporated into the wing design. Finally, under the Demonstration Article

Development task, fabrication of a large wing cover segment, and design, manufacture

and testing of a representative wing box structure will be undertaken to demonstrate

the readiness of composite wing structure technology.

In r,:cognition of the current uncertainties concerning the funding and timing

of NASA's planned composite wing development effort, recommendations are trade that
(1) the development of an improved material system be started immediately so as to
provide a firm material base for the application of composite primary wing structure,
and (2) that efforts alco be initiated to develop the design data necessary to

demonstrate the dur°.rility and damage tolerance characteristics of composite wing

structure.
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INTRODUCTION

The National Aeronautics and Space Administration (NASA) Langley Research

Center is pursuing . a research program, the Aircraft Energy ' Efficiency (ACES) Program,

to establish, by 1985 0 the technological basis for the design of subsonic commercial

transport aircraft requiring a minimum of 40 percent less fuel than current designs.

Obtainment of these fuel-savings is being addressed through structural weight reduc-

tion, improved engine efficiency, and improved aerodynamics. The composite strut- 	 ( `

tures element of the ACES program is focused on structural weight reduction, and the

provision to the commercial aircraft manufacturers, the FAA and the airlines of the

experience and confidence in advanced composite structures in future commercial

aircraft.

The program includes development of the technology for composite wing structure.

This effort will exercise and demonstrate composite wing technology to the extent

that aircraft manufacturers can incorporate composite wing structures into new air-

craft in the 1985-1990 time frairse.

As a part of the ACES program to advance the technology for wing structures,

NASA has awarded contracts to three commercial transport manufacturers (Lockheed,

Boeing and McDonnell Douglas) to study and plan the effort required by commercial

transport manufacturers to accomplish the transition from current construction

materials and practices to extensive use of composites in wings of aircraft that will

enter service in the 1990 time period. Specific objectives were the definition

of the technology and data needed to support the introduction of advanced composite

materials into the wing structure of future production aircraft, and development

in detail, of the ingredients for a development program which will provide the needed

technology and data.

The study outlined an appropriate wing structure development plan and defined

the technology and data needed:

(]) to produce acost-competitive advanced composite wing structure which 	 !:s
} k.j

achieves the fuel-saving goal of the ACES composites program, 	 ?

(2) to provide Company management confidence to commit to production of such

a structure in the 1985-1990 time period, .v

(3) to achieve certification of an aircraft embodying such a structure.

In addition, the study delineated the need and requirements for development of

a new, improved material system.

4



A multi-disciplinary approach was used in the study, including all of the
engineezing and manufacturing disciplines which normally participate in the design,

development and. production of a new aircraft product. This approach ensured that

all of the factors that enter into a Company decision to commit to production of a
composite wing structure were addressed. The study was comprised of two parallel and

highly interactive elemenl:s: a conceptual design study, and the plan development

(Figure 1),

The conceptual design study provided the framework for identifying and investi-

gating unique design aspects and problem areas in the use of composites in commercial

aircraft structure. These, in turn, catalyzed the identification of technology needs

and subsequent planning for their development and validation. The conceptual design

also provided the basis for definition of needed design development and verification

testing, and facility and equipment requirements for supporting the technology develop-

ment program, and for subsequent production of composite wing structures.

The plan development effort identified technology needs, formulated plans for

effecting the essential technology development, and formulated a wing development

plan.

CONCEPTUAL DESIGN

s UNIQUE DESIGN ASPECTS

RE-1011

10 *
• DESIGN DEVELOPMENT

 FACI LITIES ANUEQUIPMENT

WING
DEVELOPMENT
PLAN

PLAN DEVELOPMENT

TECHNOLOGY
NEEDS

• ESSENTIAL
TECHNOLOGIES

• EVALUATI6N.
AND ASSESSMENT

• TASKS

• SCHEDULES

• ROM
COSTS

Figure 1. Study Elements for Wing Development Plan
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The plan which resulted from the study defined t0a separate development programs:

(1) A material development program: a,joint gove*=ent-industry effort involving

the throe manufacturers and the material suppliers; and	 ^ 'A r

L2) A wing s-btuctura development program, to be performed by each of the three i 	 .
major commercial transport manufacturers.	 j

The mat rial presented in this report summexixes the study performed by the tK
}

Lockheed Californis. Company. The resultant wing structure and material development 	
t

plans are presented in the bony of the report. Supporting data for the development 	
t

plans are presented in the appendices, including summary discussions of the conceptual

design study, technology needs, and facility and equipment requirements. An execu-

tive summary of the study results is presented in Reference 1.
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COMPOSITE WING DEVELOPMENT

The advancement in airframe design from the 10-15 passenger aircraft of the
1920's to thi current widebody transports has been an evolutionary process. During
the period many material improvements have been implemented in the airframe design

which have enhanced their operational efficiency. The incorporation of extensive

amounts of graphite composites in the next generation of commercial transport air-

craft potentially can lead to further advancement through significant reduction in
structural weight and consequently, substantial fuel savings. However, in order
for the application of composite materials in primary structures such as the wing

box to be economically viabla, a firm technology base for design, analysis, manu-

facture and inspection of composite primary structure must be established. In

addition, the technology and data must be available prior to project go-ahead for the

new aircraft.

Aircraft Development Timing

The point in time when techno l ogy readiness must be established for utilization

of composite materials in primary wing structures depends upon:

(1) what degree of technology advancement is required;

(2) what funding support is to be made available to establish this

technology;

(3) when can a new aircraft that incorporates this technology be produced;

and most importantly,

(4) when-will the marketplace be in a position to accept and employ this

new advanced technology aircraft?

The timing for new long-range advanced technology aircraft needs is shown by

the trends of fleet size of the current widebody aircraft over the next decade on

Figure 2. As displayed on the figure, the fleet size of these subsonic widebodies in

the 1980-1990 time-period are projected to consist of increasing numbers of derivative

aircraft.
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The ability of the airlines to purchase now equipment is related to the
airline debt-to-equity ratio. The trends of this economic indicator also is dis-
played on Figure 2 a4d show the presently iApxev# g gcoApmics of the airline
industry. $owever, the ahtieipute short-to-medium range 200-220 passenger equip-
ment purchase by the 4irli aes to :re:plAcv their eu:rren te marrow body: equipment
(i.e.. 727-100, 707. DC-6) will drive the debt-to,equity ratio back up again (indicated
by the shaded area on the figure). These trends indicate the early 1990 time period
as the earliest date in which the airlines will have the ability to purchase a new
long-range aircraft.

A look at the historical commercial air transport development further indicates
the cyclic nature of the airline industry (Figure 3). Starting with the initial
passenger aircraft of the 1920's, there has been an introduction of an advanced tech-
nology transport approximately every 12 years.

These trends indicate the potential availability of airline resources for new
equipment buys for advanced technology aircraft that will enter service in the early

1990 1 x. Targeting technology readiness for the mid-1980's will provide sufficient
time to pursue a systematic composite wing technology development program.

Development Plan Philosophy

Advancement of the technology for production of composite wing structures

and their extensive application in commercial transport aircraft requires industry-

wide development of a technology base which will support the design, manufacture

and operation of such aircraft. Much of the required technology and experience is

not readily transferred from one company to another. Consequently, each of the

three major commercial transport manufacturers, Lockheed, Boeing and McDonnell

Douglas, will require similar development efforts. The most appropriate form for

NASA's ACES composite wing technology development program, therefore, is one which

assists each of the three manufacturers in developing the technology and data it

feels it needs to commit to production of composite wing structures for future

commercial transport aircraft.

8
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Production Vrpgram Relationsb4p. .. An #.pprtspt fac^ar	 defining e. composite

F	
wing ,devel" ent ry	 .. ^ the :Fq^4#onphip of suet pre 	 P a poorquent newr

{
direr 't pt(iw ui pram . This	 t Qt? {1P . Ire,.34uQtr# d in Fi	 4. in

. -.	 order to ii2Vrb#Fp, a pew qtr aft i	 ' ^^rvice in. the ear, 3:y ..1990 1 s, the radhetion
program must be in##te p the fi$d: tip 1^^e ^.^^Q Is. _ ^^ RrP4uctipp program includes..

f
the normal deli	 eY^;lpent, design yex^ ^c t ap and flight test programs.

ACES and Cmg4te Research and Technology Programs. - NASA ' s current ACES

development pro&ram are already he^pi .ng to ready composites for commercial transport

aircraft. These programs are generating composite design and manufacturing technology

within the three major commercial trsnspor manufacturers, using existing material

systems, to the extent necessary for commitment pf secondary and small and medium

primary structural. components to current subsonic comercial transports. NASA also

has implemented a numbiar of composite research and technology programs addressing

areas of major concern. The current ACEE and composite technology, programs are indi-

cated in Figure 5. The majority of these programs will be completed in the 1981-1985

time period and will contribute significantly to the data and technology required

for composite wing development.

Development Plan Ingredients. - A development program that will lead to exten-

sive use of composite materials in large primary wing structures involves the

establishment, of a technology base through analytical studies, manufacturing develop-

ment and development testing. Development of the data base must include extensive

ground testing of full-scale sub-components. However, flight programs involving

the design, fabrication and certification of a composite wing box or partial wing

box for a commercial transport (or alternative flight options) are not considered a

necessary ingredient of a composite wing technology development program. Of prime

concern is the demonstration to Company management of the technical feasibility and

the cost-effectiveness of incorporating composite wing structure in future aircraft.

Once a sufficient data base exists to convince a company that the benefits of utilizing

composite wings can be achieved with acceptable risk, it can proceed with the

production, certification and marketing of the new aircraft. The attainment of

airlines acceptance and FAA certification will be addressed in the normal fashion

using the procedures associated with the introduction of any new aircraft.

10
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The a e t' a 'tie coiirpcjsite fig development pld it is to define the scope

and ` g t tde ry f t e	 h c i	 kHee -i' e s 3s eeeg ry for it . to achieve

techri^ 6666 i ss; at riri 'it dcegtW6 , lev6i O risk; fdr the	 uee of

composite kteriai.s ift cominercidl d rcra$t sting structure".. Development testing
requirements have Uen defined in de-ba,ii to provide a, realistic basis for defining

the effort rei 4dii6d. ttieigilt hi:to t ,lint ber, size and type of specimen to be
tested has been t.sed an curreiitiy' ' efIii eibned design date,: needs. Based - on these,
manpower, material a,rid tite span regiiiremL-nts have been estimated. it wa.s rec ig-
nized that details ok the planned development testing, as well as details of the

other ehgineeririg said maniiN:ata3.rfiig_ developd^h efforts; might change during the
actual performance 6k the composite wing developfheht program. however, it was felt

that such detailed plashing vas necessary to ensure that a realistic development

program effort w" ottained.

4 ,.

For purposes of prgviiding a basis for the planned development effort, base-

line premises were e'stahi.ished relative to the structural design concept and the

manuthdturi.ng eppro dh. Thkibi Wdkd based od tho result of the study's conceptual
design effort, and included consideration of facility and equipment requirements. The

baseline structural concepts and manufacturing approaches are described in the

following sections.

Structural Design Concept. s A structural design concept was formulated using

the baseline airplane configuration shown on Figure 6. The airplane is an advanced

technology subsonic transport which incorporates three advanced, mixed-flow, turbo-

fan engines, a supercritical wing with reduced leading-edge sweep, active controls,

and the use of composite materials for both primary and secondary structure. The

airplane has a takeoff gross weight of 183,970 kg (405,600 Ibm), can carry 400 passen-

gers and has transcontinental range potential.

2'he planform of the high aspect ratio wing is shown on Figure 7. The -wing has

a semi-span of approximately 28.7 m (94 ft), with a chord of approximately 12.2 m

(40 ft) at the wing-fuselage intersection, and has a planform are a of 300 m2

(3560 ft2)d The structural box is approximately 6.1 m (20 ft) wide at the fVselage

si.dewall, with a box height of approximately 3..5 m (5 ft) ., and approximately 0.9 in

(3 ft) wide near the wing tip, with a theight of approximately 0.3 m (1 ft).

12
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A multi-rib structural arrangement, as shown on Figure 8, is used for the wing

box. It has a manufacturing joint at the wing-fuselage inte section, a location
}	

which is outside the highest, surface load intensity area. provides for easier fuel	 k'

tank sealing, and reflects consideration of mat'l- ing requirements for large components 	 a

fabricated in separate tooling fixtures. A blade-stiffened surface structure is

employed ., with the stringers parallel to the rear beam in the outer wing region.

This stringer orientation permits alignment of the rib normal to rear beam, simplified 	 ;r

access door design, and standardized rib-clip design; requires moderate stiffener 	 ? ;

grist; provides for simplified backup structure design for trailing edge control

surface design; and permits relatively simple part and assembly tooling. The
:i

structure also employs a one-piece spar design ., based on considerations of fail-	 r

safety and tooling complexity. As indicated in the figure, provisions are included

for the man landing gear support structure and fuel tank requirements. Additional

structural interface requi.remnts include the engine pylon attachment structure

and mounting provisions for the leading and trailing edge structure. Systems that

interface with the wing structural boas include the fuel, elects i.cal, hydraulic,

deicing and control systems.

The blade-stiffened panel configuration is illustrated on Figure 9, where

representative cross-sections for the upper and lower surfaces of the inboard

wing region are shown. A constant stiffener spacing of 20.3 cm (8.0 in) is main-

tained for the entire wing. The lower surface skin thickness ranges from a mini-

mum of 0.572 cm (0.225 in) in the outboard region to 1.32 cm. (0.52 in) in the

inboard region. Thicker laminates will be required in high load introduction areas

such as at the main landing gear attachment. The associated laminate layup config-

uration varies over the wing surfaces as illustrated on Figure 10 for the typical

wing panel structure. Agate, structural interface regions and special design aspects

such as access doors will require local modifications to these layups.

Manufacturing Approach. -- The manufacturing approach is based on augmentation

of the Company's existing production facilities. Process develo pment will be per-

formed on prototype equipment not necessarily designed for quantity production of

full-scale wing components. Available facilities will include those developed for

the composite L-1011 vertical fin production, i.e., the automated layup equipment,

ovens and refrigeration capable of supporting the wing development effort, and

Lockheed's existing 6.7 m (22.0 ft) diameter, 18.3 (60.0 ft) long autoclave.

14
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The premised manufacturing breakdown is shown in Figure 1.1. The wing covers	 ^k

are proposed to be laid-up on a master wing tool using a broadgoods dispensing

machine. The stiffeners, doublers and fillers are laid up using the same machine. 	
rN

J

The stiffeners are placed on the inner surface of the skin, caul plates added, the

surface bagged and inserted into the autoclave for curing. An alternative approach

is to use a self- .contained "project tool' s which has an integral heat, vacuum and

pressure application. system.

The wing spar concept is a one-piece integrally molded laminate with caps, webs

and stiffeners cocured. The broadgoods are proposed to be lai d up on a flat table

to form doublers, web stiffeners, etc., cut to size, wrapped and stored in a freezer.

The basic spar configuration, including partial plies, then is laid-up on a flat

tool, transferred to a spar molding tool, doublers and web stiffeners added, and

cocured using a hot platten press or an autoclave.

A similar approach is premised for the wing ribs. In this case, however, the

rib caps are formed in a matched mold tool and attached to the web with mechanical

fasteners. Mechanical fastening of the separately manufactured major wing cover,

spar and rib assemblies are also premised to form the c :onTleted wing box structure.

Required Technology Department

Thez•e are four major areas where development is needed to bring the

technolggy and data base to a level consistent with embarking on a production pro-

gram using composite wing structure. These are material., design, manufacturing

and maintainability. The technology and data in each of these areas must be

developed to the point where composit materials present a viable alternative to

the use of metals in a new aircraft program, i.e., a cost-competitive alternative.

Material Development. - A key factor in any new aircraft production program

will be the selection of materials. While current composite materials could

be used for the wing, these materials will be approximately 20 years old by

1985. The current composite materials are deficient in terms of processing

17
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cost ., 'mechanical property scatters ductility and tougbness ,, as reflected in"impact

and delamination res3stancep flame xezistanee, and environmental durMbilityi, A new

improved materiel system is needed. The major suppliers are developing improved-:

and new class materials. (It is also anticipated that significantly improved metals

will be available . by 1985, which might make i t more difficult for composites tc

compete.)

With readiness to commit targeted at 1985, there is time to develop an improved

material system for design of a new wing. However, a coordinated industry wide,

effort is needed to ensure that the improved material will be ready in time for appli-

cation to primary wing structure of the next generation of commercial transports; and

to prevent duplication and dilution of the material development effort (thereby mini-

mize the development time and cost and, consequently, the subsequent production cost).

There is also a need for multiple material sources which are capable of providing

material which is indistinguishable and interchangeable on a ply-by-ply basis. A 	 ^ >`

proprietary, sole-source material procurement environment represents an intolerable

vulnerability for a company considering embarking on a billion dollar plus aircraft

production program.

Design Technology Development. - Design of an aircraft employing composite wing

structure requires the establishment of appropriate design technology and data

base. This must include development of structural design data (both, basic material

data ' and analysis methods), development and verification of structural concepts

and approaches, and compilation and documentation of the data.

Additional design data is needed on the response of composite laminates, parti-

cularly in terms of their durability and damage tolerance, when subjected to the wing

design environment. The wing ,structure of commercial trautipert aircraft is highly

loaded and subjected to large numbers of loading cycles, including a significant

ground-air-ground cycle. The capability of composite structure to withstand this

loading environment, in conjunction with temperature and moisture, must be

determined. In addition, the effects of foreign object impact on the thick

laminates associated with wing surface structure -mist be determined; such impact

damage in thick laminates may not be visible. Finally, the effects of fuel on

composite mates must be established.

i
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Reliable antlysie methods are essential for.effective application of composite
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Strut 1i la al5proad ie9 for ' composite Ving structure must be developed and evalu-
ated in detail, Major design aspects, e.g., the wring-fuselage interface, the "main

landing gear interface, and fuel tank containment, must be investigated.. The static

and dynamic characteristics of composite wing structure must be assessed, including

Its sensitivity> j .for various structure) approaches. The aeroelastic characteristics

of the wing will be important & Finally, weight and Lost data for the various

approaches must be asaambled. Both ti structural and manufacturing considerations

will have to be included in the evaluations.

Promising structural concepts and approaches will have to be developed and

verified by test. The required testing includes: static and fatigue tests, with

the effects of impact and environment; damage growth tests; and residual strength

tests. Surface panels, including panels With joints or access doors, spa rs, ribs

and structural assemblies must be tested to demonstrate that the structural integrity

and durability requirements for the wing can be met.

Finally, a major objective of the design technology development effort will be

the development of the guidelines, data and handbooks necessary to support the large

production design force which will be required to design and manufacture composite

wing structure. These must include composite structure design handbooks, and compo-

site structure analysis methods manuals such as the Lockheed Stress . Memo snd Struc-

tural Life-Assurance Manuals which are currently used to support the design of

metallic structures.

Manufacturing Technology Development. - Development of the manufacturing data

base reauires the development of, both, manufacturing approaches for composite wing

production, including material and component producibility and tooling, and cost

data for the various approaches. The large components, thick laminates and complex

tooling associated with the manufacture of composite wing structure will hav= signi-

ficant cost impacts. Manufacturing development also must include development of

quality assurance procedures and techniques.	 s
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Manufacturing development is configuration sensitive, and must be performed in

conjunction with the structural design deyel.opm^Ah effort. The manufacturing

development must address realistic composite wing design concepts. The basic problem

is the appreciable manufacturing scale-up required for wing production (,e.g., the

wing semi-span will be approximately 30. 5 m (In0'ft), the wing box root chord

approximately 6.1 m (20 ft), and the box depth approximately 1.5 m (5. 0 ft) at the

root. Fabricatibn approaches need to be developed for the large, complex wing

structures, and - processing data for the thick laminates (with surface panel thick-

nesses greater than 1.27 cm (0.5 in) is needed.	 34

Candidate tooling approaches for wing production must be delineated, and the

tooling and layup development needed to resolve specific manufacturing problems must

be identified. Again, the problems are size, laminate thickness, and the variation

of thickness and cross-section. The wing surface skins and stiffeners, for example,

are tapered, cambered and twisted. These present added complexity in their effects

on thermal expansion, shrinkage and warpage during the manufacturing process.

A major objective of the manufacturing technology development, in addition to

the development of manufacturing approaches, is the development of valid cost numbers

for assessing a production commitment. These must include, both production and tool-

ing cost estimates, and capital facility and equipment requirements, for alternative

manufacturing approaches.

L-
Concurrent and in conjunction with the development of manufacturing approaches

is the need for development of quality assurance methods and data. These must cover

the total manufacturing process, from material acceptance through final assembly

inspection. Standards must be established for quality control of materials, processes

and hardware, and new test methods must be developed. A major need is the develop-

ment of cost-effective non-destructive manufacturing inspection techniques; i.e., the

development of automated inspection techniques which can handle large, variable

thickness, variable cross-section wing structure.

Maintainability Technology Development. - Currently, two NASA composite tech-

-	 nology programs are addressing in-service inspection and in-service repair. Each of

these technologies will require additional effort to verify their applicability to

wing structure. In-service inspection will require NDI techniques. The suitability

and effectiveness of these techniques for inspecting thick laminates will have to be

assessed. In the case of in-service repair techniques, the fatigue and environmental

durability of wing repairs will have to be verified. 	 {
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The 002paite gyring devrelopmLnt program plan developed by this study is
summarized on FiMe 12. The plan reflects the timing factors and the plan philosophy

discussed earl.ierp as well as the essential technology development identified by the 	 !

study. Two separate programs have been defined, a material development program and 	 E;

a wing structure development program.

The material development program is defined as a joint government industry

effort, involving all three of the major commnercial transport manufacturers, to

develop a new material system with inproved characteristics that will lead to a

cost-competitive composite wing stricture.

The wing structure development program defines the scope and magnitude of the

effort which Lockheed feels is necessary for it to achieve technology readiness at

an acceptable level of risk' for the utilization of composite materials in future

transport aircraft. It is believed that each of the other two manufacturers (Boeing

and McDonnell. Douglas) will require similar c=posite wing technology development

programs.

YEAH	 11 918119191198011981119821198511981119851
r
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TESTING
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Figure 12. Composite Wing Development Program Schedule
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PART 1 - MATERIAL DEVELOPMENT PROGRAM

Introdaction

A key factor affecting-the decision to produce major aircraft structural compo-
nents incorporating fibrous c6aposites is the selection of basis construction mate-

rials. These materials must be proven by comprehensive testing and evaluation
within technological and cost constraints to a point where a commitment to produce a

major commercial aircraft component may be undertaken with acceptable risk. An

assessment of the state-of-the-art in composite materials technology indicates that

this technology has not matured and is still rapidly changing. Analysis of trends

shows that materials improvements are i;rtminent which may result in reduced production

costs as wall as increased structural efficiency, integrity, and reliability.

A major area of concern is the proper selection and validation of the base mate-

rial system relative to processing cost together with its service performance in wing

structures. The inherent nature of fibrous composite materials imposes some unique

problems in product design. Those materials may be characterized as "mini-structures"

which may be deliberately designed or tailored to incorporate fibers, fiber forms,

matrices, and spatial configurations to provide an optimum product for a given appli-

cation. An infinite number of such systems can be envisioned. Thus, because of cost

considerations, standard systems must be devised which are near optimum for multiple

applications. Looking at the early history of composite materials development, it

appears that there was no deliberate orchestrated approach to design and development

of optimum materials systems. Selection was based more on what was available at the

time instead of deliberate engineering development. Because of usage beginning with

early military hardware development pr,Dgrams, a large data base has beeen accumulated.

'thus, these early material systems, by uncontrolled evolution, have become industry

standards for structural design. 	 i

These material systems could be used as a basis for development of wing strue- 	
F

tures in commercial transport aircraft. The existing data base would expedite

development to some extent. However, there are certain undefined material character- 	
;

istics (as discussed later) which are considered critical in a commercial aircraft

wing design that have not been evaluated to any extent by quantitative testing.
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Qualitative3,yy these characteristics of current standard composite materials are

judged to be non-optium. The probability of devising design solutions for all

functional or cost problems posed by nondoptiv m Material properties is judged

to be costly. Therefore, a cooperative industry Wide approach to development of

new, optimwsi material systems and standards is proposed as described herein.

The time frame of this program makes this approach feasible. In addition ., such

ari effort. would benefit from concurrent structural design development since

more definitive design criteria would be readily available for guidance.

C,44

The majority of composite hardware development programs in this country have

been focused on applications for military supersonic aircraft. As a result, certain

classes of composite materials in prepreg tape form have been evolved which ostensibly

satisfy design requirements for this type of application. Due to this concentrated

development effort, a considerable amount of quantitative property data has been

accumulated on a class of graphite/epoxy materials typified by specific proprietary

materials such as Narmco 5208/T300, Fiberite 934/T300 and Hercules 3501/AS. This

data base, however, primarily covers static strength and stiffness properties which

may be readily measured by existing semi-standard quantitative tests such as tensile,

compression, flexure, and shear properties.

There are very little data available which _over other critical characteristics 	 A
or properties required for design of commercial traaasport aircraft such as:

(1) chemical stability and resulting durability of composite elements and composites

in hostile chemical, thermal, and stress environments; (2) processing characteristics

of pre-impregnated composite materials as a -`unction of fiber reinforcement form and

resin rheology; (3) undefined mechanical properties of composites which are dependent

on matrix and fiber coupling agent characteristics affecting ductility and toughness

(these properties include strain capability and delamination resistance under impact,

cyclic, or concentrated loading in a production or service environment); and (4)

flammability characteristics of composites including flame propagation rates and

retention of structural integrity after fire exposure.
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One of the prime reasons for the dearth of'deta covering the above characteris-

tics is a lack -of definitive, quantitative standards including design criteria;

specifications, and test methods which cover these particular properties.

Another general safety problem which should be considered in this material

development program is the hazard to ground industrial or transmission electrical

.	 equipment posed by the accidental release and atmospheric transport of electrically

conductive graphite fibers. 	 This problem, pending further definition, has been

flagged as critical by various government agencies. 	 In relation to aircraft struc-

ture, as presently conceived by this contractor, the problem is primarily concerned.;

with release of fibers when an organic matrix in a composite is completely consumed
by fire under crash conditions on the ground in populated areas. 	 This problem may

be approached from two standpoints; 	 (1) determination of the statistical probability

of occurrence of such an event which may be sufficiently low to be negligible, or
(2) modification of the material system to prevent release of fibers into the atmos-

phere in case of fire. ,!

The latter approach may require tradeoffs in structural properties. 	 However,

the approach described herein of using noncrimped fabric with fill fibers of
.A,

meltable glass or char-forming plastic functioning as a binder under fire conditions

appears to offer a possible solution to the problem without undue sacrif'ce of

structural properties. 	 In addition, metal coating of laminates required for other

reasons noted. herein may also solve the fiber release problem if metallic coatings

are properly selected.
e	 y

Pre-impregnated, non-woven, graphite/epoxy tape is predominately used as the

basic building block for current hardware development programs in the aircraft

industry.	 Typical proprietary material systems employed are Narmc.	 2_08 resin on i

Union Carbide Thornel 300 fiber, Fiberite 934 resin on Union Carbide Tnornel 300 4

fiber, and Hercules 3501 resin on Hercules Type AS fiber. 	 These materials are

commonly manufactured by casting a thin film of resin and then pressing collimated

graphite tow or yarn strands into the resin film to form a graphite/resin tape 5 +

to 6 mils thick and 2.54 cm (1.0 in) to 30.48 cm (12.0 in) wide.	 The resins are
usually unmodified, highly cross-linked, epoxy polymers formulated to meet elevated

service temperature requirements for supersonic aircraft. 	 They are designed to have

high flow in order to thoroughly wet fibers during the curing process since

25



w

r

t

'P
it

y ;.

i.lcomplete wetting occurs in the impregnation process. These types of resins

are relatively brittle in nature with associated characteristics of low strain

capability, poor ductility and toughness. A qualitative assessment of the
current material systems indicates that they are not optimum for production
of major structural components on commercial subsonic transport aircraft from

the standpoints of both fabrication cost and service performance as discussed

below:

Y	 The difficulty in handling prepreg non-woven tape combined with high flow
epoxy resins and excess resin content leads to high fabrication costs and

reproducibility problems due to the complex lay-up and curing processes
associated with the tape characteristics.

s	 The relatively poor ductility and toughness of currently used epoxy

resins coupled with questionable fiber-resin bonds leads to poor inter-

laminar cleavage and delamination resistance. This in turn affects
machining, drilling and handling costs in production because of extra

precautions required to prevent delamination damage. Servi:e performance
is also affected by relatively low delamination, resistance leading to

reduced damage tolerance and erratic behavior or laminates under impact
or cyclic loading conditions.

To realistically commit to production of flight hardware, i . must be demon-

strated that composite structure is cost -competitive and has the requireed structural

integrity and reliability. A new approach utilizing nonerimped woven graphite

fabrics, net resin ccatent, and low, controlled flaw ., high viscosity resins as a

basic building block appears to offer several advantages over current material sys-

tem types. It is proposed that such materials be investigated in this program.

The ultimate objectives of the materials development and evaluation task are

to: (1) simplify material processibili ty to reduce fabrication cost and provide

assurance of reproducibility, (2) improve inherent properties of fibers, fiber

finishes, resins and resultant composites which are critical in meeting structural

tegrSty and reliability goals, (3) upgrade the duality level and consistency
prepreg consitituenta and composites to -minimize property scatter caused by

fects, (4) deterudne effects of material, batch variations and process variables



on mechanical. properties of cured laminates, (5) establish industry standards

covering specifications and test methods ., and (6) develop material propeziy
late for design based on ademvate statist cal property data.

Program Summary, Schedule and Resources

The five-task material development and evaluation program encompasses:

establishment of industry standards, material development and screening, material

characterization and substantiation, investigation of material and process variable

effects, and design allowable testing.

The program schedule is presented on Figure 13. The program extends over a

69-month period, with the material selection target date at the end of 1980. This

permits incorporation of the new material system in the wing structure development

program during the Preliminary Design task and also affords sufficient time for

developing design allowable data for a production commitment in the 1985-1986 time

period.

Figure 14 presents a summary schedule of estimated program. expenditures.

Equivalent man-years versus program span are indicated. The total expenditure required

for the three-manufacturer material development program is estimated at approximately

115 equiva?ent man-years.

The technical approach and work to be performed under each task are described

in detail in the following sections.

Establishment of Industry Standards

NASA-Industry-FAA Task Force. - A task force of key personnel representing

the following agencies will be organized:

r The National Aeronautics and Space Administration - Structures and

Materials
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Figure 15. Unidirectional Noncrimped Weave Fabric
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e Fiber suppliers

e Prepreg suppliers

e Airframe manufacturers - Boeing, Lockheed, McDonnell Douglas

e Federal Aviation Administration - Airframe Structures

e Technical advisors - Air Force and university

The purpose of this task force will be to establish industry standards and aid

in the definition and implementation of development and test programs as described

in Table 26 of Appendix B. Appropriate sub-groups wall be organized as required to

perform the detail. tasks.

Other Development Tasks. - The other subtasks include: establishment of

appropriate design requirements and specifications; the development of standardized

test methods; providing coordination with the prepreg suppliers; preparing ancillary

technology development program plans including test methods, inspection methods and

basic material processing; and, development of the material specifications.

Material Development and Screening

Based on target specifications development, material development by suppliers,

user evaluation will be initiated.

Supplier Development. - The approach to the development of improved prepregs

t	 initially will be limited to resins and graphite fabrics that are commercially

i avai:.able. Those which show the most promise to provide solutions for many of the

processing and functional problems encountered with currently used materials will

be selected, A comparison of the characteristics of state-of-the-art material

i	 systems with those of new target material systems to be investigated in this

program is presented in Table 1. Initial development will consist of applying a

state-of-the-art resin (5208) on a unidirectional noncrimped graphite fabric

{	 (Figure 15). Several other candidate resins will also be applied on the same fabric
to provide a basis for comparison. Laminates will then be Fabricated from these
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TABLE 1. COMPARISON OF CHARACTERIST]
NEW TARGET MATERIAL

CHARACTERISTIC

TYPICAL
STATE-OF-ART

5908%T300 TAPE
INTEiINi

TARGET MATMIAL
ULTIMATE

TARGET MATERIAL

Fiber Type, Thornel 300-3K Same Improved Thornel
300 or equivalent

Fiber Finish Union Carbide 309 Same Improved Finish
Epoxy Solution
Coating

Reinforcement Non-Woven Tape Noncrimped Fabric Noncrimped Fabric
Form Unidirectional Unidirectional

5% Fall Fibers 5% Fill Fibers
(See Figure 15) (See Figure 15)

Resin Type 5208 Epoxy Same Improved Resin

Cure Temperature 430 X (350"F) Same <422 K (3000F)

Resin Flow High - 25 Wt% Same Low - 8%

Prepreg Resin Higt - 40 Wt% Net - 34 Wt% Net - 34 Wt%
Content Bleeding Required Air Bleed Only Air Bleed Only

Resin Ductility/ Poor Same High Cleavage/
Toughness/Strain High Impact
Capability Resistance

Flame Resistance Slow Burning Same Self-Extinguishing
FAA 450 Test

prepregs and comparative evaluation tests conducted including tensile, compression,

interlaminsr shear, interlaminar cleavage, and a suitable weight-drop impact test.

The quality of the laminates will be evaluated further by determining resin/fiber

distribution, using suitable chemical tests and micro-analysis methods.

It is anticipated that each of the changes in re-w material characteristics

described in Table 1 will result in reduced production processing costs, and/or

improvement of properties, quality level and consistency of cured laminates. The

anticipated effects resulting from material changes are outlined and discussed

below:
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Effect of Reinforcement Form on Processing Cost: Changing the reinforcement

from tape to nonerimped fabric will result in reduced processing labor and cost due

to the following:

s Elimination of resin film casting: The fabric is adaptable to resin

impregnation by immersion in a resin-solvent solution. Use of the sol-

vent process on fabric eliminates the resin film casting operation com-

monly used for tapes and provides better fiber wetting. It is recognized

that solvent-resin Impregnation imposes some problems concerning 'residual

solvent in the preimpregnated product. Hot melt impregnation may also

be used for fabric. However, since high viscosity resins are envisioned

for this program, it is believed that the solvent impregnation advantages

of better wetting and lower cost outweigh any advantages of the hot

melt process.

• Higher impregnation production rate: Fabric is available in widths up to

152.4 cm {60.0 in: while the tape is normally limited to 30. 48 cm (12.0 in)

in width during impregnation by the resin film method. Accordingly, the

production rates and prepreg widths of solvent -resin impregnated fabric

should be substantially greater than that of tape resulting in a possible

cost saving.

s Simplified lay-up: Graphite /epoxy tape is inherently fragile since fibers

are bonded together by relatively weak uncured resin. The tape is

normelly prepared with a paper backing to prevent fiber sepearation during

shipping and handling up to the point of laminate lay-up. The backing is

removed for lay-up and care must be exercised to prevent fiber separation,

especially where compound shapes or corners are involved. Unlike tape,

noncrimped fabric is composed of unidirectional graphite fibers re-

strained by fill fibers of Dacron, Kevlar 49, or glass. `therefore,

fibers cannot be separated during backing removal or lay-up operation,

resulting in reduced labor and cost.

• Reduced frequency of unacceptable prepreg defects: Due to control problems
currently inherent in tape manufacture, there are usually several unaccept-

able defective areas in every roll of tape. These defects include fiber

gaps, laps, crossovers, etc. In fabric on the other hand, fiber collimation

33

_ ;s



and orientation is controlled by weaving, which potentially eliminates

most of the tape-related defects. Moreover, resin uniformity problems

will be minimized by use of solvent impregnation instead of the resin

film process which is difficult to control.. The use of prepregs with

fewer defects will minimize labor required for inspection and defect
	

i

removal as well as for time consumed during machine shutdown and setup
	 i

in the case of lay-up machines.

Effect of Resin Type and Fiber Finish on Processing Cost: Changes in

type of resin, fiber finish., and prepreg resin content are expected to re-

sult in reduced processing cost as indicated below:

• Elimination of resin bleeding: Use of low-flow resins combined with

elimination of excess resin in preimpregnated material 'will result

in a simplified leiminating process because the prebleeding operation
will not be required. Moreover, net resin content prepregs will

eliminate labor required for fabrication and placement of edge dams,

bleeder materiels, and extra vacuta bags used in the prebleeding

operation. Deletion of prebleeding also saves the cost of bleeder

materials and reduces energy requirements.

® Reduced cure temperature and cure cycle time: Use of a low flow

resin combined with a low cure temperature, say 394 K (2500F) as

opposted to 450 K (3509F), could result in a 50-percent reduction

of overall cure cycle time. 	 The reasons for this are:

( Z	 High flow resins under)	 g	 production conditions require relatively y

slow heat-up rates to stage resin and prevent excessive edge

!	 bleeding of laminates. 	 Low flow resins, on the other hand, `I

will tolerate faster heat-up rates since excessive edge bleeding

is not a problem. s

(2)	 The lower cure temperature requires less heat-up and cool-down ?

times.

Reduction of cure cycle time results in fewer equipment and tool repli-
cates and cost required to meet a given production rate. R saving in a
heat energy cost is also realized.
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d Reduced heat resistance requirements for tool and bagging materials:

Reduced cure temperature, say 394 K (2500F) as opposed to 450 K (3500F),

generally allows the use of less expensive and more easily workable

materials for tools, bag, and bag sealing. In addition, the use of

lower temperatures tends to ibcrease tool and rubber bag Life. These

factors result in substantially overall lower fabrication costs.

• Resistance to delimination during machining and handling: Use of a

tough, ductile resin combined with a fiber finish that produces a

higher strength fiber-resin bond will provide laminates with increased

cleavage and delemination resistance. This will result in lower pro-

duction costs during machining and drilling operations. Additional

cost savings will occur since fewer rejections will result from

damage inflicted during handling and assembly.

Effect of Reinforcement Form and Resin Type on Laminate Properties and

Quality: The use of noneri.mped fabric combined with low flow resin instead of

tape incorporating a high flow resin is expected to provide better control

of fiber spacing, collimation, alignment, and resin distribution resulting in

several potential structural performance benefits such as:

o improved interfiber stress transfer and distribution.

t
• More uniform transverse tensile strength.

r Minimum property scatter resulting in higher statistical design

allowables.
i

Effect of Resin and Fiber Finish Type on Laminate Properties: A tough,

ductile resin system such as an elastomer-modified epoxy coupled with a

fiber finish which produces a good fiber-resin bond has the potential to

produce laminates with a more forgiving matrix and increased interl.a.minar
r:

cleavage/delamination resistance resulting in:

s higher impact resistance and damage tolerance in the delamination

failure mode.
t

a Better fatigue resistance by minimizing premature delamination failures.

c

35

1	 4
5



4 kd' d rbsibta ice td bi dpigiihi- fi dt iiAWA- 1fi Ohbdfided flacis or voids.

a fiighb:^ stiaffi cspabiii k to f ail it it : edddting f` -bbi resin forgiveness.

Stud+ Yii .. d t̂`	 - A bfidifiiii4ij tijbt pJifi ii tr̀e iftted in 'fable 2. This
proposed Pldh- is designed to ihclfide h jbibi t rAmber of test parameters
concerning dkiti.cal properties btit s ufficieintlk comprehensive to provide a valid
basis for trede=ofk stfidles and material selection. The screening tests for
chemical./i idri o4trudtu:'e, processing and inechdhical properties will be based
upon standardized criteria aad test methods developed ih the previous task.

The number of tests given in the tnAtrit tidy be reduced if the program is

refined and revsniped using statistical techiii.ques:

It should be nested that the proposed teat plan (and subsequent plans)

were formulated in sufficient detail to scope the effort and to estimate

resources. The final plans will be developed by the government-industry

task force with the doopekdtive inputs of the participants.

Evaluation.. aid _Sel batioh. - 'When sufficient test data are generated, it is
planned to conduct comptehensive property/cost trade-off studies leading to

selection of material systems worthy of further in-depth testing and structural.

development.

Material Characterization and Substantiation

In order to reduce risk associated with use of new material systems in

primary structure, a comprehensive testing program to prove selected base

materials iri meeting all design and manufacturing conditions i.s mandatory.

Such a program, as presently conceived, is presented in Table 3.

Material and Process Variables Effects

In order to establish tolerable limits on variables in material and process

specifications, the effects of these variables on finished composite properties

must be investigated. Variable limits as established by specification will also

affect establishment of design allowables since property scatter may be increased.

A test plan is presented in Table 4.
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TABLE 2. SUMMARY OF MATERIAL SCREENING TESTS

i

DESCRIPTION NUMBER
TYPEOF MATERIALITEM OF SPECIMEN

ND. EVALUATION MATERIAL VARIATIONS TESTS TYPEOFTEST TESTVARIABLES CONFIGURATION PURPOIEOFTEST

u CHEMICALAND A. FIBERS SFISERTYPES 20 CHEMICALANALYSM, SRANDOMSAMPLEI, &NIA41IFT12AMPLEI DETERMINEMMUIIMFJ,
NiCROBRAIHIC UNFINISHED 3 TYPES OFTESTI EACH OF3TYPES 3000,IMIANO12100 DEGREE DFSRAPJIMFATION,
ANALYSIS UPTON. FILAMENTTDII CHEIRCALANOTHERMAL,

1STOTALSAMPLES STASILTTY

IN MICROANALYSIS; DETERMINEMICROSStlUCTURE
2TVM.- STANDARD, FIXINS	 NIFORMRTV
ELECTRON

L FIBER 2FIIERTYPES iN CHEMICAL ANALYSIS; ARAW""OLES, 3.01lip(JIMIS1WBLES DETERMINECOMPOSITION,
FINISHES IFINMHES 3TYPESOFTESTS EACHOFIITVFES 3MIFILAIIENTTOM CHEIMCALARDTHERNAt

STABILITY

L FASRIC6 STYPESNON•CRD1P M NACROARALYSIB ORANDONSAMPLEB, LIm2(11V112)SIWNLES REU M09WAVING
FABRICS; EACH OF ITYPES PATTERNBINIFURINIV.

FIIERDIRECTIGN
DIITOImON,ETC.

31 MICROAURLYiN DETERMHIEENTENTIF3UIIUIRECTIDNAL6
32101RECTIONAL FINER WEAVING DAMAGE

0. RESINS UTVPES M CNEMICALANALYSIS; 31ATCHES, UNCUREORESIN DETERMINECOW91ITION,
37VPESOFTE&I EACNOFIITVPES CHfMIPALANDTHERMAL

STAI1LTly

E. FAEPRE23 30SYSTEMS: SN CHEMICALANALYSW. 11ATCHEACHOF 41Jm2I51YO21SAIrfLEl DTTERMIN.;, RESIN CONTENT
BRESINS;3FIBE0 3 TYPO OfTESTS 30TYPE9;51AMPLES ANaTOHTREBUTION,
FORMS:2 F11ER j EACH BATCH VOLATILES
FINISHES

IN MICROANALYSIS DETERM14EEKRXTAND
UIIIFDRMTTY OF.RESIM.. -
FINERNETTIND: 	 ;•	 r,

EVALUATION A. PREPRE01 1SSYSTEMS: of THERMAL ANALYSIS: 3 BATCHES, EACH Of 1L7m12IY01)SAMPLES DETERMINE OPTIMUM CURE
OFPRDCEMiNO SRESINS;3FIBER DIFFERENTIAL INTYFEE; CYCLES BASED AN RESIN
CHARACTERISTICS FORMA FIBER ORAVIMETRIC,AND 3 REPLICATES, EACH RHEOLOOY•TIME,

FINIIH MECHANICAL;3TYPIS BATCH TEMPERATURE,VISCOSTTY,
OFTESTS OUTRASSINO,EXOTHERM,

EHOOTHERM,
P _LATIORSHIPS

L CURED iS LANIIIATEFABRICATION 3PMOCESSVARIATIONS 34AS83/518LNcm DEVELOP OPTIMUMLAV40.
LAMINATES TRIALS IIIARI4.IX0.001N.1 SL£EDINB.CLIRIRUTECHNIOOEW

PANEL
45 CHIMICAL:RESIN EVALUATEDUALITY

CONTENT. V0113 OF TRIAL LA>MOIATES

41 MICRO ANALYSIL- VOIDS
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TABLE 3. SUMMARY OF MATERIAL SUBSTANTIATION TESTS

aEICRNTlON NUNOER
ITEM MATERIAL Of SPEC08EN

NO. TYPE Of EVALUATION VARIA-1000 TESTS TYPEOFTEST TESTVAAUASLEO CONFIGURATION PURPOSE OF TEST

&I LAMHIATL STATIC MECHANICAL 4MATERIAL SYSTEMS, 121 I'TEAILE 1.27 X 20.7X0.1! = f11ER TENSILE
1RCPERTIEO 2 REMW, 3I0 K fvWF) C0.I x 10.0 X OJ14 iHJ

ANC 422 K (31NF1;
SERVICE TEMPERATURE,

120 LNX21.7X028cm
[1Ix7e1x1I0iNJ

MATRIX-FINER FINISHSEHAVH)R2 FABRICS: THIN a
THICK

_
uR4x[119PF0R98MF}
DRY AINET;SCONDiTIONS;

in 0411460TENSCLE 1WX20.7XLUm REPRESENTATIVEOTMUCTMRAL6REPLICATEI

11AX10JiX0.11INJ LAY4P

120 000MPREISION 2MX20.7X0.1Iss FIKRCDMPRESSIONINTERLA	 PJI
IIAx11.6X4101N.I TENSIONOFREMMAFISERFINNI

WHO

120 Is1±4000MPRENION IS4X20.TXOA= REPRixENTAT(VEGTRUCTJRAL
t1AX%6X1AEiN3 LAIhNP

120 N 1MRLANUM A04 X IJD: X 1.21 an IIIZAA OF RESIN A FISHER FHCMR
SHEAR [to X 0.0 X SI1IN.) 1000 IHTERLANINAR

121 011f4VINTERLAMMAR t"XIAIXt"co REPRESENTATIVE STRUCTURAL
SHEAR (1.21 X 0.I x 1A1 IRA LAY4JP

121 e1f41P IHTERLAN NAR 2,66 X 116 to DELANINATION RESISTANCE
CLEAVAGE - (LO X12ID.1

20R4PLIES

A 011f4VINPLAKE5HEAR R.T.DRV&WE7; 2CDN- 7,IKt62X021as SHEAR DISTORTION OF FINER
OIA1L) CRIONS; 6REFLICATES 12,xi.OX09110.1 PATTERN At FUNCTION OF MATRIX

A G*I±AV IMPACT WEIGHT 211K C-OPFi. R.T4 i 61.1 X 50.0 an OELAMiNATION REtMANCE
DROP•EOOERF".TRA1NEO
PANEL

12CUb817100
5REPLICATES

(2"X20AILI.
12PLY

80 ±LBQ TENSILE CREEP R.T., 960 K OR 422 K
(111QFOR9104F),ORYA
WET;4 CONDITiOHS;

2.64 X 21 ,7 X 0.20 am
OAK I0.6X Oil UI.1

VERIFY CREEP RESISTANCE

6 REPLICATES

LAMINATE FATIGUE PROPERTIES 4MATERIALSYSTENS; 360 FATIGUE•CONS'TA117 ILAYUPS: FIBETIDOM • 7b6X21.7X0.10cm VERIFY FATIGUE RESISTANCE
2RETIN0:3NX(i@Pf) AMOLTTUOE INANTANDMATAIX (1.0X105 XOAIINJ
AN0422KOWE)
SERVICE TEMPERATURE.

(R--1) DOMINANT

2FA0RICS: THINA
THICK 38TRENLEVELS:40K.

IOK,AND SOKOF ULTi.
1SRERLICATES

1
I

MATE;

^i

b

m

W
W



DESCRH7IDN NUMBER
ITEM
NO.

OF
TESTS TYPE OF TEST TEST VARIABLES

SPECNEN
CONFIGURATION PURPOSE OF TESTTYPE OF EVALUATION

MATERIAL
VARIATIONS

3.1 LAMINATE FLAMMABILITY. SMOKE
TOXICITY

4MATERIALSY01I908,
2RES115:311K119111IF)

III COUPON SCALE FLAME
RESISTANCE FAA 1459

2PRE •CONOITIONS: BEFORE
•AFTERSMULATEO

T.CA30r6cm
13A X 12.0120 COUPON

VERIFY FLAME RESISTANCE

AND 422 K OWFI: METHOD WEATHERING
SERVICE701PERATURE,
2 FABRICS: TKIN•
7HICK 2TEMPERATURES: A.T.,

3359011422(LOBNF OR
31410M8LAV405,
27111r,I(Nmarm
311"U MIS

t!2 BURNINYSAWNE "INOE% 102XILI- IDW DETENIINETOXICITY

ANtI6A5A9NALYSIS (43 SIVS1NaPANEL:

120- FANELSCALEFLAW 2ENEFAIMM---2AAMS I22=3L'1.224 OEM	 E-FLAMEIPWADATIW^

PROPAGAT(OII= WRTTISrTfr 14&jC"FT'PAWGL RATEMTNETOTGNITI IN,
11 RAn1/1NT••FLU11JfEBT

27091110115, VERTICAL
A1RT410R12GNTAL', 2 LAY•
UPfATMCNNOW,
2REPLICAIW

LAMINATE FLUID RESISTANCE tB9B +450 YENSILE 3MRTfMUTATCHE3r zs4w7m%mtaw OEIERMINES°^116M3Tl+EFFE4IL:

SMENGTWAND' SFLUIDTXPGSUREM. (1A3Ct0.5X4GBN:} OFV•LUIQF',t MRVDNMALRM

MOOULUS' FUEL, OIL.HVOAAULIC

FLUIO, AND 3 CLEANING
SOLVEM

t910 1459 TENN ECREEP 3EXPOSURETIMES 2	 X2K7W47tcw-
5REPLiCATES If94Ft0b'XBBBIN3

.12 ENVIRONMENTAL - ACCELERATED AMATERIALSYSTEMS; 554 CHEMICAL AND MICRO- 2EXPMSURECONDITI0N8: TABS , 	SXn.29cm- DETEeMIpmEHOKAL41mile-

WEATHERIND - LABORATORY. 2 REMO: 356 K 1111w F) GRAPHIC ANALYSIS STRESSED ANO UNSTR% 13AX• 124 X0991113 STRUCTLRL•.CHANGEBM SEDITY

LAMINATE PROPERTIES BEFORE Mo 422 K (3100F)
SERVICETEWERATURE,

SEO; 4 EXPOSURE TIMES: E5IYIRGNMENTAUEXP090AE'

ANOAFTEREXPOSURf - 2FABRI CS.THt116 0, 3, B; I2MONTIIS;2lAY-

STRESSED AND UNSTRESSED

i

THICK UPS; 3TYPESOFTEST9;

3 REPLICATES

1290 +450TENSTLE I EXPOSURE CTINOIT10R0:
STRESSED AND 94ISTRES•
SED; 4 EMP83URE TIMES:

.0. 3, B, T2MOKTNS:4 TEST
CON,' 'ION1:21OX-(469FI,
R. T:.355K'GR+4z",
OWFUR3110F)DAY
ANO WET; 10iiEPMATES

2,699[20,TXQ='cw
(I.8SII0.5%OABIN:3

MATRIM&REMONSERFIDND
DEGRAnATION,

t290 ±450 TENSILE CREEP ZSS-X 2t7X0r40cm

11.49810:5 OMINa

i

i.

SV.r

3

4

o
	

TABLE 3. SUMMARY OF MATERIAL SUBSTANTIATION TESTS (Continued)



DESCRIPTION NUMBER

MATERIALITEM OF

NO, TYPE OF EVALUATION VARIATIONS TESTS TYPE I

32 ENVIRONMENTAL-ACCELERATED 4MATERIALSYSTEMS. i268 0°1±45°4

WEATHERING - LABORATORY. 2 RESINS; 358 K 0800FI

LAMINATE PROPERTIES BEFORE AND 422 K (300°Fh;

1210 D°1±4541
fR--Ih

AND AFTER EXPOSURE-

STRESSED AND UNSTRESSLO

SERVICE TEMPERATURE,
2FAVRICS: THIN 6:
t4lc,(

162 0°l±45° 1

ENVIRONMENTAL CYCLING - BB] CHEMICA
LABORATORY GRAPHIC

FATIGUE STRESS HUMIDITY -

TEMPERATURE EXPOSURE

CYCLES

1920 ±45° TEN
LAMINATE PROPERTIES BEFORE

AND AFTER EXPOSURE

1920 ±45° TEN

1920 0°11450 C

21B 011±45°1

120 0°1±45°E

CYCLES?

ENVIRONMENTAL-OUTDOOR 4MATERIALSYSTEMS, 1530 CHEMICA
WEATHERING 2 RESINS: 358 K (IBO°F)

AND 422 K 1300CF)
GRAPHIC

LAMINATE PROPERTIES BEFORE

AND AFTER EXPOSURE -STRESSED

ISERVICE TEMPERAFURE,
2 FABRICS: THIN 6
THICK

AND UNSTRESSED

N

TABLE 3. SUMMARY OF MATERIAL SUBSTANTIATION TESTS (Continued)



DESCRIPTION NUMBER

MATERIALITEM OF SPECIMEN

N0. TYPE OF EVALUATION VARIATIONS TESTS TYPE OF TEST TESTVARIABLES CONFIGURATION PURPOSE OF TEST

.32 ENVIRONMENTAL - OUTDOOR 4 MATERIAL SYSTEMS, 5120 :tl50 TENS1LC 4WEATHERI14GSIMAS 2.54 X 263 X 1120 cm MATRIX AND RESIN FIBER 90110

WEATHERING - LABORATORY.
LAMINATE PROPERTIES BEFORE
AND AFTER EXPOSURE -
STRESSED AND UNSTRESSED

2 RESINS. 355KI1B40 F)
AND 622 K I3000 F1
SEWNCETEWERATURE:
2 FACRICS: THIN AND
THICK

ABOVE
4 EXPOSURE TI ME5:
0 1 3,5 YEARS; 2 CON-
DITIONS. STRESSES AND
UNSTRESSEO;4TEST

IlaXI8.4XO.OBIN} OEGRADATCON

5120 ±450 TENSILE CREEP 2.54 X 25J X 0.211 a0

I1.0 X 105 f4 0.139 IN}

CONDITIONS: 218 Y.
5120 D0/t050 00WRESSION 44660 Ff,R.T.,358908 F1BER.r18ER FINISH, NIATRIX

422K(1810FOR3WF), DEGRADATION; REPRESENTATIVE
5120 001±150 FATIGUE

IR . 4Y

DRY
REPLICATESto

APPLICATION LAY•UP

768 001$450 1MPACT SAW ASABOVE EXCEPT S&A X 60.8 X 020 an OEGRAOATIOY OF DELAMINAMN
USE 2 TEST CONOITIONS: MO X 23A XOA8INJ RESISTANCE
2191K{PFIMOAT.;

REPLICATES
PANEL

i

I

i

r
S?	 N	 TABLE 3. SUMMARY OF MA'T'ERIAL SU13STANTTATION TESTS (Contznied)





Design Allowable Testing

A test plan covering development of mechanical property values to be used for

structural design is presenteti in Table 5.

A total. of 6540 coupon tests are defined, primarily static tests, but including
a small number of fatigue tests.

The static strength teats will provide the data for establishing design allow-

ables for the material. Ply-level lamina tests will be used for determination of
the material strength and stiffness. Laminate tests, on both notched and unnotched

specimens, will be used to verify predicted laminate strength and the notch effects.
Pin bearing tests will be conducted to determine laminate bearing strength. In
addition, a selected set of spectrum fatigue tests are specified for verification of
the design strain level.
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TABLE 5. SUMMARY OF DESIGN ALLOWABLE TESTS

irEM OECCRIPTWN
NUMBER

OF ME OF TEST TEST VARIABLES SPECIMEN
CONFIOURAT#OM PURPOSE OF TEST

NO EPECRIIENi

0.7 DESIGNALLOWABLES A.PLY•LEVELDATA B00 STA°IC STRENGTH: 3 TEST ENVIROMMENTS: DETERMINAIIONOF LAMINA MATERIALSTRENGTH

0e TENSION 215 K -WFL DRY; 1.27 X 20.7 an
FITOl AND (0.5 x 1115 in) X IaLV

O° COdm%=ON ME K {IW0 F},WET 0A4 x 14.0 an
1036 x55 inI X 20PLY

' ! 45° :ENSIOM 2.54 X 20.7 an
0A x IDS IN] X t2PLY

I& TENSION 2.54 X 26.7 cm
11.0 X 10540 X 12PLY

40° COMPRESSION 2.54 X 25.7 an
[SA X 105 inl X 18'LY

B. LAMINATEDATA 00110 STATIC STRENGTH: A LAMINATE CONFIOURA• VERIFICATION OF PREDICTED LAMINATESTRENOTH.,
3TEST iNVIRONMENTS, DETERMINATION OF NOTCH EFFECTS

0° TENSION NOTCHED B UNNOTCHED
2.5441.0 X
it O %10.5.5 

do
In1: VARIOUS PLIES

0° COMPRESSION 2.54 X 28.7 an
11.0 X 7D-8 in]: VARIOUS FLIES

Se TENSION 2.84 X 26.7 cm
I1.0X 10.61nl: VARIGUSPLIES

80° COMPRESSION 2SA X 20.7 an
UA X 105 Wl: VARIOUS PLIES

IN-PLANE SHEAR 7A2 X 152 an
q X S Inl: VARIOUS PLIES

C. BEARINO DATA m STATIC PIN BEARING 4 LAMINATE CGNFIGURA- DOUBLE LAP: 0.0 IN. X ED DETERMINATION OF LAMINATE PIN BEARING STRENGTH
STRENGTH TIONS, 3D EDGE DISTANCE, VARIOUS

3 TEFT ENVIRONMENTS, NUMBERS OF FLIES
7 PIN SIZES

0.^, OESIaN STRAIN LEVEL 20 SPECTRUM FATIGUE, 1 DESIGN STRAIN LEVEL. 244 X 28.7 an VERIFICATION OF DESIGN STRAIN LEVEL
RTO, COMPRESSION - 2 LAMINATE CONFIGURA- 11.0 X 10.5 inl,, VARIOUS
DOMINATED LOADING TIONS, NUMBERSOFPLIES
SPECTRUM, A LIFE- NOTCHED &UNNOTCHED
TIMES

b

1,11
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PART 2 V.MG $TRUC` M I)WMOPM=T PROGRAM

Program Pumpary and Sebedule

The achedjae for the tapir.-oriented v$ng structure development program is
presented on Figure 16, The program ext ends over an eight-year period and

encompasses four tApkp: design data te$timg, design concepts evaluations, pre-

liminary design, and demonstration article development. These tasks are summarized

below and described in detail in the follcW.ng sections.

Design Data Testing, - Supplementary data on the strength and durability

characteristics of T-'00/5208 graphite/epoxy lauinates will be determined over a

testing span appraxim-tely five years, The majority of the testing will be completed

in the first 27 ltQAtbe t with only the moisture tests continuing into 1983.

Design Concepts Evaluation, - The most promising structural approaches for

a large, high aspect ratio wing will be identified through analytical design

studies and development testing. A 33-month technical effort is planned with go-

ahead early in 1979.	 ,^

H ^

Preliminary Design. - The composite wing structure design will be expanded

and refined employing the most promising structural concepts and incorporating

into the wing design the new, improved material system. The design/manufacturing

parameters will be verified; cost weight trade studies performed; and verification

tests conducted on selected subcomponents of the wing structure. The 36 month

analytical and development effort is planned to proceed on January 1981.

remonstration Article Development. - Fabrication of a large wing cover segment,

sign, manufacture and testing of a representative wing box structure will be

.alien to demonstrate the feasibility of designing and fabricating a cost-

Itive composite wing structure. Technology readiness will be demonstrated by

C0 month program.
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STRUCTURAL
INTEGRITY
DEMO/
VALIDATION

Figure 16. Wing Structure Development Program Schedule

Program Resources

The composite wing structure development program will require a Lockheed

effort of approximately 460 man-years of engineering, manufacturing, and testing
effort, extending over an eight-year period from 1978 through mid-1985. It would
be expected that similar efforts would be required by the other major transport

airframe manufacturers.

Table 6 presents the estimatel (ROM) wing structure development program costs
by program task, and by function i.e., engineering, manufacturing, and test).

Manuafacturing, for purposes of this report, includes tooling and quality assurance

as well as the primary manufacturing activities. The estimated costs are presented

in equivalent man-years, where these include both direct labor cost and the equi-

valent labor cost of materials. The development program costs also are summarized

graphically on Figure 17.

Table 7 presents an estimated schedule of labor expenditures for the

development program. Estimated yearly labor expenditures are indicated for each

task. On Figure 18 the labor costs versus program year are presented graphically

by function. The estimated man-years for engineering, manufacturing, and

testing are presented in Tables, 8, 9, and 10, respectively.
j
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TABLE 6• WING STRUCTmE. DEvELop NT PROGRAM COST MATRIX

PROORAM tASK

FUNCTION

TOTAL

ENGR. MFG. TESL

A. DESIGN WA tastma 2.6 0.9 9.8 1312

8. DESIGN CONCEPTS eVALUAMW 40.0 100.5 24.0 174.5

C. PRELIMINAMi unitim 78.0 80.7 47A 206.1

D. L, EMONSTRATION. AhtICI.t DEVE LOOM W 10.0 47.0 8.9 69.9

TOTAL 130.6 229.1 100.1 459.7

(1) INCLUDES EciUiVALVNT MATERIAL COSTS

# a

TASK A — DESIGN DATA TESTING

TASK a — DESIGN CONCEPTS EVALUATION

TASK C — PRELIMINARY DESIGN

TASK D — DEMONSTRATION ARTICLE
1:3DEVELOPMENT

TOTAL PROGRAM ENGR._7,,	 MFG.

0	 50 100 150 200 250 300 358 400 450 600

E(IUIVALENTMAN-YEARS

ructure Development Program Cost Smeary

c^"..j
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TABLE 7. WING STRUCTURE DEVELOPMENT PROGRAM/TASK LABOR SCHEDULE (MAN-YEARS)

YEAR
PROGRAM TASK TOTAL

' 1978 1979 1980 1981 1982 1983 1984 1985

A.	 DESIGN DATATESTING 29 6.7 2.5 0.1 12.1

8.	 DESIGN CONCEPTS
EVALUATION 25.8 105.1 34.2 165.1

C.	 PRELIMINARY DESIGN 55.0 113.7 30.3 199.0

D.	 DEMONSTRATION
ARTICLE DEVELOPMENT 42.0 19.? 1.0 62.0

TOTAL 2.9 32.5 107.6 89.3 113.8 72.4 19.3 1.0 438.8

ORIGINAL PAGE IS
OF POOR QUALITY

I

1978	 1979	 1980	 1981-	 1982	 1983	 1984	 1985
YEAR

Figure 18. Wing Structure Development Program/
Function Labor Schedule
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TABLE 8. WING STRUCTURE DEVELOPM T PROGRAM WGINEERING
LABOR SW=tW (Wk'}

0RO.GRAM TASK
VIrA_ is-	

y
T(1TAl.1^7^f) iii	 1992 19al 99E14 1§95

A. b581Gid DATA USTINCI 5:11 9:11.... 0.5 0,.1	 -	 0.11 0.1 2.5
B. 11 SI03N 1rElNBEPTy

1.11 rtibN 15.0 $0:0 S.#I X0,0

C. PAEL1MiNARY OtSIGN 30.0E	 40.11 8.0 78.0

D. EIEMO)IIlST1iAT O	 ARTIClS
D	 i:!(9	 E T 9A 0.5 0.5 W.0

TOTAL 0.1 16.0 20:5 35.1	 X0:9 17.1 ;.51 0.5 1305

FABLE 9. WING STRUCM MMOPMtNT PROGRAM MANUFACTURING
LAW11 SO MM (MAk-mss )

YEAR
PROGRAM TASK TOTAL

1979 1979 9960 1981 1982 1983 1984 1985

A. DESIGN DATA TESTING 0.7 0.7 0.9

H. DESIGN CONCEPTS 8.3 62.6 21.7 92.6EVALUATION
C. PRELIMINARY DESIGN 17.5 48.7 1	 9.8 76.0
D. DEMONSTRATION ARTICLE 33.0 1Q.8 43.8DEVELOPMENT

TOTAL 0.2 9.0 162.6 39.2 48.7 42.8 10.8 213.3

TABLE I0. W1190 9TRUC 'GRE DEVELOPMENT PROGRAM TEIS)TING
LABOR Wngb LE (MM-YEARS))

PROGRAM TASK

YEAR

TOTAL
1978 1979 1980 1981 1 1982 1983 1984 1985

A. DESIGN DATA TESTING 2.0 5.0 2.0 9.0

B. DESIGN CONCEPTS
EVALUATION

2.5 22.5 7.5 32.5

C. PRELIMINARY DESIGN 7.5 25.0 12.5 45.0

D. DEMONSTRATION ARTICLE
DEVELOPMENT

8.0 0.5 8.5

TOTAL 2.0 7.5 24.5 15.Q 25.0 12.5 8.0 0.5 95.0

50
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DESIGN DATA TESTING

The proposed testing outlined for this task will provide supplementary data

to the existing T300/5208 graphite/epoxy data base. It will verify/determine the

strength and durability characteristics of the T300/5208 material when subjected

to the wing design environment; these data will be used during the subsequent

design concepts evaluation task. Included in the initial testing will be the

characterization of T300/5208 unidirectional (non crimped) fabric. If the equiva-

lence of this material form to the currently used tape is verified, unidirectional 	!	 .

fabric will be used for the remainder of the design data testing and incorporated

in the concept development effort.

The design data tests are summarized in Table 11; a total of 840 individual

tests are specified. These tests are divided into the following sub task areas:

characterization of the unidirectional fabric; assessment of design strain levels,

including the effects of cyclic load and environment, foreign object impact, stack-

ing sequence, and fuel'and hydraulic fluid soak; pin bearing tests; and thick

laminate moisture absorption/desorptior, evaluation. 	 j'

The design data test schedule is presented in Figure 19. The testing spans

a period of five years, with the great majority of the testing completed in the

first 27 months, and only the moisture tests continuing through 1983.

-A

Fabric Characterization

Static strength tests will be conducted on the unidirectional ('non crimped)

fabric to characterize the mechanical properties of this material form. One-

hundred and fifty (150) tests are defined; including 0 0 and 90° tension and com- 1.

pression on unidirectional laminates, and 00 tension on a simple +45 0 laminate.

Material property data will be obtained at three test environments: room tempera- 	 r`

Lure, dry; 279 K (-65°F), dry; and 356 K (1800F), wet (1% moisture content). These
E.

data will determine /Verity the material properties for the basic lamina, and provide

the basis for the prediction of laminate strength properties. 	 j

^	 a

v
7

8

51



TABLE 11, SUMMARY Or, DESIGN DATA TESTS

b ti

0

^hh

NUMBER

NEO. DESCRIPTION OF TYPE OF TEST TEST VARIwoLES
CONFlOURATION

FURPOSEOPTLST
SPECIMENS

A2 FABR4C CHARACTERIZATION t60 STATIC STRENGTH: 37967 1.27,211 .67c- CHARACTERIZATION OF UNDIRECTIONAL
0° TENSION ENVIRONMENT6l E0.5 x 10.5 IN.) x 72 PLY FABRICSTR€NGTH	 -

219 K(-BSOFI, DRY; 0.64 x 13.074m
D°COMPRESSION FITO:ANO 4825 x SS IWI a 20 PLY
+45TENSION 356KITSOOFI . WET ZS4x2SW=

SOO TENSION
41 x 70.5 IN.1 x 12 PLY
Z54 x 2687cm

Elf COMPRESSION 41.0 x 10,51N) x 12 PLY
2 S4 a 2&e7am
I1.Ox10.5IN.]x12PLY

A3 DESIGNSTRAIN A- DESIGN STRAIN 240 SPECTRUMFATIGUE, 3 DESIGN STRAIN 250 t2&07em DETERMINATION OFDESIGNSTRAINLEVELS
LEVEL RTO.4 LIFETIMES LEVELS, 4 LAMINATE ( 1.0 x 10;8 IN.1: VARIOUS
ASSESSMENTS - CONFIGURATIONS. NUMBER OF PLIES -

-NOTCHED & UNNOTCHED,
TENSION DOMINATED
AND CDMPRESSIGN
DOMINATED LOADING -
SPECTRA

B. IMPACT EFFECTS 30 IMPACT UNDER LOAD: 31MPACT CONDITIONS. THICK PLATES: SIZE 790 DETERMINATION OF IMPACT ON DESIGN
SPECTRUM FATIGUE 2 LAMINATE STRAIN ILIFEI
RTD, COMPRESSION CONFIGURATIONS
DOMINATED LOADING
SPECTRUM
4 LIFETIMES

C. STACKING 60 SPECTRUM FATIGUE 4 STACKING SEOUENCES. Z64x25.67c DETERMINATION OF STACKING SEGUENCE
SEQUENCE 4LIFETIMES 2 TEST ENVIRONMENTS, I7Ax 10.E IN.f x 16PIJER, EFFECT ON DE41ON STRAIN(LIFEI
EFFECTS TENSION DOMINATED UNNOTCHED

AND COMPRESSION
DOMINATED LOADING
SPECTRA

O CYCLIC SO SPECTRUM FATIGUE, 4LAMINATE 254x26 .67em DETERMINATION OF CYCLIC ENVIRONMENT
ENVIRONMENT WITH CYCLIC CONFIGURATIONS. 11.Gx10 .5IN.I:VARIOUS EFFECT ON DESIGN STAAINILIFEI
EFFECTS TEMPERATURE AND NOTCHED & UNNOTCHED, NUMSEP.SOPPLIEB

HUMIDITY, 4 TENSION-DOMINATED
LIFETIMES ANDCOMPRESSION

DOMINATED LOADING
SPECTRA

E. FUEL AND HYDRAULIC
FLUID SOAK EFFECTS

Itf SOAK EFFECTS 100 STATICSTRENGTH 35OAKCONDITIDNS 2.54 K2S.57cm DMRMINATION OF FUEL&HYDRAULIC
2 SOAK PERIODS, 2 (1.0 x 1D.61NJ x 12 PLI ES FLUID SOAK EFFECT DN LAMINATE STRENGTH
TEST TEMPERATURES, HOLE NOTCHED
TENSION AHD
COMPRESSION

12] FUELAND 40 SPECTRUM FATIGUE, 2 SOAK CONDITIONS, 2 Z64x26 .67cm DETERM1NATIONOF FUEL &HYDRAULIC
HYDRAULIC FLUIDS WITH CYCLIC SOAK PERIODS, TENSION 41.0 x T4L5 IN. I x 12 PLIES: FLUID SOAK EFFECTON DESIGN STRAIN ILIFEI
CYCLIC TEMPERATUR £ AND DOMINATEDAND HOLE NOTCHED
ENVIRONMENT HUMIDITY, COMPRESSION DOMINATED
EFFECTS 4LIFETIMES LOADING SPECTRA

A4 MECHANICAL FASTENER M IN BEARING] TESTS 120 SIATICSTRENGTH 4 LAMINATE DOUBLE LAP: 20.32 cm CHARACTERIZATION OF LAMINATE PIN
CONFIGURATIONS, ISOmf x50, BEARINGSTRENOTH
3TEST 39) EOGE DISTANrE
£NVIROMENTS 2 PIN
SIZES

AS THICK LAMINATE A. ACCELERATED 12 CONTINUOUS 6 TIME INTERVALS: 1.27m 10.60 IMI DETERMINATION OF MOISTURE DISTRIBUTION
MOISTURE AUSORB1 CONDITIONING TEMPERATURE AND 1, 2.3.4. S, AND THICK PLATE VSTIME IN THICK LAMINATES SUBJECTED TO
DESORS TESTS HUMIDI" EXPOSUR E: 6 MONTHS 0.30 ,. 0.30m ( 1 x 1 FT) ACCELERATED ENVIRONMENTAL EXPOSURE

DISSECTED AND
WEIGHED

B, PRV: CHAMBER 1B CYCLIC TEMPERATURE 6 TIME INTERVALS = 1.27cm 10 .50 [H.I DETERMINATION OF MOISTURE DISTRIBUTION
TESTS AND HUMIDITY 0 MONTHS. 1, 2, 3, THICK PLATE VS TIME IN THICK LAMINATES SUBJECTED TO

EXPOSURE;

l

4 ANDS YEARS 1130 x 0 .30m 11 x t FT1

I

LONG TERM CYCLIC ENVIRONMENTAL EXPOSURE
DISSECTED AND
WEIGHED

S^

. __ ... ^ •za:®is ae..&tX'rl -  .. ^ :iG	 -,y..:r..^ Y	 ! e V	 ^	 ^	 it r	
^°` "t

...-. ̂  :,F'^.r .. ^,r ^,. ,.	
^.- Tr	 'e	 -..,_ -w 	^	 ..^..	 ..,^z,^	 "'r

'^2h1E^^iit^#. 
,° '- 

"u.,rttGlla:":^_ 	...^^.	 y'•	 '`^•,



YEAR

TASK AND

SUBTASK DESCRIPTION	 6AJOR
GO-AHEAD

SPECIMEN
A M .I . 'J I
MECH. FAST.
TESTS

1.0 -=ECIMEN FABRICATION
1.1 ORDER MATERIAL

12 RECEIVED MATERIAL
1.3 FABRICATE SPECIMENS

2.0 FABRIC CHARACTERIZATION

3.0 DESIGN STRAIN LEVEL ASSESSMENT
3.1 DESIGN STRAIN LEVEL
3.2 DESIGN STRAINIIMPACT EFFECTS
3.3 DESIGN STRAIN/CYCLIC ENVIRONMENT

EFFECTS

3.4 DESIGN STRAIN/STACKING SEQUENCE
EFFFCTS

3.5 FUEL & HYDRAULIC FLUID SOAK EFFECTS

o DESIGN STP.A.I N/FUEL / HYDRAULIC
FLUID, CYCLIC ENVIR. EFFECTS

4.0 MECHANICAL FASTENER (PIN BEARING] TESTS

5.0 THICK, LAMINATE MOISTURE ABSORBIDESORB
5.1 ACCELERATED CONDITIONING TESTS
5.2 PRVT CHAMBER TESTS

#_n^_.H. ..- 1? •f W-afd at"^^^—^. .^— 1 1l ^•.a	 ^^,5^^.	 ^e . •^

MECH. PROP.
NON-CHIMP
FABRICv

SPECTRUM FATIGUE/
4 LAMINATE CONFIG. H141I6STONE/TOOL DROP/

2 LAMINA'T'E CONFIG.

SPECTRUM FATIGUE/
4 LAMINATE CONFIG.

_2

I	 4STACKING	 ^.
STATIC STRENGTH/ 	 SEQUENCE/	 -
I LAMINATE CONFIG.	

CONFI
1 LAMINATE

SPL^CTiIUM FATIGUE/	 G. -
1 LAMINATE CONFIG.	 w'

O C	 '' „`'`
STATIC WING. STRENGTH/
4 LAMINATE CONFIG.

MOISTURE DISTURB./ 	 MOISTURE OISTRUB./
1-6 MU. EXPOSURE	 G MO. - 5 YR. EXPOSURE ^+	 ;''•

w	 Figure 19. Design Data Testing Schedule



Durability testing will be conducted to develop the data necessary to establish/

verify the permissible design strain level for the design of composite wing struc-

ture for a commercial transport. These tests will assess the effects of fatigue

loading spectra, and various environmental faetors, on these design strain levels.

Design Strain. - The design strain level will be established by spectrum fatigue

testing four laminate configurations, for both hole notched and unnotched specimens,.

at three design strain. levels. The four laminate configurations will cover the

envelope of probable designs, including both fiber-dominated and matrix-dominated

laminates. The test specimens will be subjected to one of two flight-by-flight 	 a
commercial transport wing fatigue loading spectra: a compression-dominated spectrum

representing upper surface loadings, and a tension-dominated spectrum representing

lower surface loadings. The severity of the loading spectra will be controlled

such that the peak strain applied to the specimen will correspond to the specified

limit design strain level.

Two-hundred and forty (2 1 0) specimens will be tested. The specimens will be

tested in a room temperature, dry, as-fabricated condition. The tests (as well as

the other design strain level fatigue tests described below) will be continued to

failure, or for a maximum of four lifetimes.

Impact Effects. - The effects of foreign object impact on the fatigue life of

thick laminates will be assessed by impacting and spectrum fatigue testing composite

plate specimens. Both as-fabricated and impacted specimens will be-subjected to a

flight-by-flight, compression-dominated, upper surface loading spectrum. The asso-

ciated peak strain level will be based on the results of the design strain level

assessment tests. Two impact conditions will be investigated: hailstone impact, and

tool drop. The energy levels for these conditions will be representative of the

maximums which reasonably can be expected to occur during the lifetime of the air-
craft. The specimens will be impacted under load, at levels consistent with the

I	
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impact environment. Two laminate configurations, representative of different loca-
tions on the upper wing surface, will be tested.

A total of thirty (30) specimens will be tested., in a room temperature, dry,
condition.

Cyclic Environment Effects. - The effects of cyclic environment on fatigue

life will be assessed by repeating the design strain level assessment tests at

one selected design strain and combining a temperature and humidity cycle with the

spectrum fatigue loadings. The temperature and humidity environment will be repre-

sentative of the anticipated operational environment. As before, four laminate
configurations, for both unnotched and hole-notched specimens, will be subjected

to tension-dominated and compression-dominated flight-by-flight spectrum fatigue

loadings. A total of eighty (80) specimens will be tested.

Stacking Sequence Effects. - The effects of stacking sequence on fatigue life

will be assessed by testing four stacking sequences for a single, unnotched, 16-ply

laminate configuration. Both tension-dominated and compression-dominated spectrum

fatigue tests, at one design strain level, will be conducted.. Tests will be con-

ducted, both, in the room temperature, dry, and in the cyclic temperature and

humidity, wet (1% moisture content) environments. Eighty (80) specimens will be

tested for this investigation.

i Fuel and Hydraulic Fluid Effects. - The use of composite materials for trans-

port wing structure requires an assessment of the effects of fuel and hydraulic

fluid soak on the material strength. This assessment is divided into two aspects,

static strength and fatigue stre ith.

Soak Effects on Static Strength: Static tension and compression tests will

be conducted on as-fabricated specimens, and on specimens soaked in fuel or hydraulic

fluid for periods of 30 and 60 da ys. Tests will be conducted at room temperature

and 356 K (1800F); on hole-notched specimens using one, matrix-dominated laminate

configuration. One-hundred (100) specimens will be tested.
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Soak/Cyclic Environment Effects on Fatigue Strength: Spectrum fatigue

tests, with cyclic temperature and humidity, will be conducted on soaked
specimens to assess the effects of these factors, Again, tests will be

conducted on hole-notched specimens soaked in feel or hydraulic fluid for 30-

and 60-day periods. Both tension-dominated and compression-dominated spectrum

fatigue tests will. be conducted. Specimens which survive four lifetimes of

loadings will be residual strength tested for comparison with the static test

results. Forty (40) tests will be conducted.

Pin Bearings Tests

Static strength tests will be conducted on double lap shear specimens to deter-
mine the laminate bearing strength. Tests will be conducted on four laminate con-
figurations for two pin sizes, 3/16 and 1/4 inch diameter. Three test environments

Will be included: room temperature, dry; 219 K (-65°F), dry: 356 K (1$OoF),
wet (1% moisture content). These data will provide the basis for development

of methods for the prediction of laminate bearing strength. One-hundred and

twenty, (120) specimens will be tested.

Thick Laminate Moisture Absorption /Desorption Evaluation

The thick laminates associated with the application of composites for wing

structure require an evaluation of the rate of moisture absorption/desorption and

the resultant moisture distribution in these laminates as a function of time when
they are subjected to temperature and humidity. Two types of exposure will be

investigated: (1) continuous exposure to temperature and humidity, and (2) cyclic
temperature and humidity exposure. The test data will be used to determine the

time required in an operational environment to reach an equilibrium condition in

thick laminates and to evaluate the use of accelerated laboratory conditioning to

simulate the condition in thick laminate testing.
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Accelerated Conditioning Tests. - Twelve 1.27 cm (0.5 in) thick laminate speci-

mens will be subjected to continuous exposure to temperature and humidity. Selected
specimens will be removed from this environment, after exposure for 1, 2, 3, 4, 5 or
6 months. These specimens will then be dissected in thin slabs parallel to the sur-
face and weighed before and after drying to determine the moisture distribution

through the laminate.

PRVT Chamber Pests. - Eighteen 1.27 cm (0.5 in) thick laminate specimens will

•

	

	 be placed in the environment chamber being used for the Advanced Composite Vertical

Fin (NASI-1+000) PRVT (Production Readiness Verification Tests). These specimens

will be used to determine the effects of long-term exposure to cyclic temperature

and humidity representative of the operational environment. Selected specimens

will be removed at time intervals of 6 months, 1, 2, 3, k and 5 years, and the
moisture distribution through the thickness determined.

DESIGN CONCEPTS EVALUATION

The principal objectives of the 33-month Design Concepts Evaluation task are:

to assess the relative merits of various design approaches for primary wing struc-

tures employing significant amounts of composite materials; to select the most

promising structural approach for a high aspect ratio wing with an advanced air-

foil and active controls; and to provide construction details, weight and cost

estimates based on in-depth structural design studies. The effects of the propul-

sion and control systems on the design of the basic wing box will be considered.

In addition, the effect of the key structural/systems interfaces will be identified

and accounted for in the wing design.

Achievement of cost goals will require meticulous attention to develop
cost-competitive fabrication inethods and structural configurations adaptable
to these methods which will result in cost-competitive hardware having adequate
quality and reproducibility.

Studies are proposed to be performed in accordance with the schedule of Fig-
u,e 20 and to the depth required to establish firm guidelines and concepts for the
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OD YEAR	 1979

MONTHS A M J JAS O
TASK AND	 GO-	 FIRST OWE

SUBTASK DESCRIPTION 	 MAJOR	 I
FAHEAD RELEASE

( MILESTONES

1900	 1981

MI J I J I A l S 1 0 1 NJ O J 1r Im	 M J J
FINAL OWG	 FINAL PART
RELEASE	 FABRICATIOfi

e

r0^

^; I	 ^ rd

1.0 C14CEPTS DESIGN AND ANALYSIS

1.1 CONFIGURATION, PERFORMANCE AND
STRUCTURAL DESIGN CRITERIA

1.2 DESIGN CONDITIONS AND LOADS

1.3 MATERIALS EVALUATION AND SELECT.

1.4 PRELIMINARY DESIGN DATA

1.5 DESIGN CONCEPTS DEFINITION
AND EVALUATION

1.6 WING STRUCTURE DEFINITION

1.7 AERDELASTIC ANALYSIS

BASELINE

/
AIRPLANE/
PERF.DATA	 WING

PRELIM.ENVIRO. 	 DESIGN
REGMTS AND DATA CRITERIA

SYM.FLT/ROLL!
/.FLT	 GRD HANDLI Gi

MODIFIED STIFFNESS

6208IT300 FABRICITAPE
DESIGN SPEC&.AND
STANDARDS

DESIGN
DATA

BASIC
ANDIDATE BOX
)NCEPTS DESIGN

UPDATE 1 UPDATE 2

`P9ELIM.4EF.EILGJJ
WTS/AR".ANGEMT/ 	 - FLUTTERDESIGN ASPECTS	 ANALYSIS

MOST

INTERFACE

Figure 20. Design Concepts Evaluation Schedule (Sheet 1 of 7)



YEAR	 1979	 1980	 1981
MONTHS AMJ J ASONDJ FMAMJ J ASON0J FMAMJ JA SQ V

	TASK AND	 GO.	 FIRST DWG	 FINAL DWG	 FINAL PART	 FINAL
SUBTASK DESCRIPTION 	 MAJOR	

AHEAD RELEASE	 RELEASE	 FABRICATION	 RPT

MILESTONES
START HARDWARE	 MOST PROMISING	 TESTS

	

TOOLIFABRICATION 	 STRUC. COI CEPTS	 COMPLETE

1.8 TEST SPECIMEN DEFINITION AND	
1ST OWG 	 FINAL AWn

	

DRAWING RELEASE	
Sz
	 rirrit ms
	

=ff4444.18 4.1C.4.1D	 4AB	 4.48(4)

V•..2A.4.zBX C	
Q

VQ
4.3B 41A //

	

V	 4.3C 4AA
V v

0 4.48 (11
4AB 12)
4AB (5)

CTRITERIA	 R PORT

1.9 DOCUMENTATION	
REPORT

2.0 PRODUCIBIL,ITY AND FABRICATION METHODS 	 PRELIMINARY
DATA FOR	 DESIGN BULLETINS
MFG/QA 	 PROCESS SPECS.

2.1 MANUFACTURING/GA METHODS AND DATA 	 I	CANDIDATE WING	
TOOLING/PROCESSING/OA

	

DESIGN CONCEPTS	 APPROACH FOR SPECIMEN
2.2 MANUFACTURINGIUA CONCEPTS 	 FABRICATION

Figure 20. Design Concepts Evaluation Schedule (Sheet 2 of 7)w

—_.:..^_er.



C^

r'

YEAR 1999 1990 1981

PAONTHS AMJ I JASONIDJ FMAMJ I JASONOJ IFMAMJ I JAS0NO

TASK AND GO-	 FIRST DWG FINAL DWG FINAL PART FINAL
SU87ASK DESCRIPTION MAJOR

AHEAD	 RELEASE RELEASE FABRICATION RPT

MILESTONES
START rfAADWARE	 MOST FR© ISING TESTS
TOOL/FABRICATION	 STRUM CONCEPTS COMPLETE

CANDIDATE WING
DESIGN CONCEPTS

FOR
2.3 MANUFACTURING COST ANALYSIS "'NCEPTS

PRELIM. 
2.4 MANUFACTURING FACILITIES PLAN FOR pRODUCTDUCTICN

PRELIM.
SPECS.

v v

PRELIM.DESIGN
SPECS/BULLETINS

REPORT
2.5 DOCUMENTATION FAMAND

QA METHODS
RE=PORT

3.0 PROCESS DEVELOPMENT AND FABRICATION

3.1 PROCESS OEVZ LOPMENT

PRELIM.

SPECS

THICK LAMINATE/SHRINK, WARP, THICKNESS VARIATIONS/

3.2 SPECIMEN FABRICATION

CARE CYCLE/VACUUM
TOOL MATERIAL /HEAT

BAG/BLEEDER MATERIAL/
UP/DIM CONTROL/ETC.

ITEM NO.	 ITEM	 QUAN. TOOL

4.1A	 SKIN-STIFFENER PANEL	 6
1ST PART
F;

WLAST PART

4.18	 ROOT JOINT SPECIMEN	 1216
TEST

rn
0

Figure 2C
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YEAR 1979 1900 1981
MONTHS AMJ I J I A I -S 1 0 1 N j DfYj FMIAIMJ I J I ASONDJ FMAMJ JA S ON0

TASK AND
SUBTASK DESCRIPTION MAJOR

GO-	 FIRST DWG
AHEAD	 RELEASE

FINAL DWG
RELEASE

FINAL PART	 FINAL
FABRICATION	 RPT.

MILESTONES
START
TOOL

/
FABRICATION
HARDWARE	 MOST PROMISING	 TESTS-

STRUC. CONCEPTS	 COMPLETE
3.2 SPECIMEN FABRICATION (CONT)

ITEM NO.	 ITEM	 QUAN.
TOOL

4.1C	 SURFACE CUTOUT PANEL 	 613 FAB	 TEST

4.1D	 FAIL-SAFE PANEL 	 1018 TEST

&2A	 SPAR WEB AND CUTOUT	 33

,125	 SPAR CAP/WEB JOINT	 916 LV TEST

4.2C	 SPAR CAP	 20
2	 17

4.20	 SPAR WEB FAIT.-SAFE	 613 ® my

VEST

4.3A	 RIB WEB AND CUTOUT	 4 TEST

4.3B	 RIB TO SKIN JOINT	 3516

cc

O

4

.,oryn
V/

G .

	 t

P	 Figure 20. Design Concepts Evaluation Schedule (Sheet 4 of T)
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YEAR 1979 9989 loll
MONTHS A M J J A S O N D J F M A M J J A S O N D J F M A M J :J A

TASK AND
SUBTASK DESCRIPTION MAJDR

GO-	 FIRST DWG
AHEAD	 RELEASE

FINAL DWG
RELEASE

FINAL-PART
FABRICATION

MILESTONES
START HARDWARE	 MOST PROMISING
TOOL/FABRICATION	 STRUC. CONCEPTS

TEWS
COMPLETE

32 SPECIMEN FABRICATION (CONTJ

ITEM NO.	 ITEM	 ►JUAN. TOOL

4.3C	 RIB CAP FAIL-SAFE	 4 FA3	 I .dld

4.4A	 COVER TO SPAR-TANK	 12
1	 .... i

N7 N7
SEALa

4.4B(7),(2)	 ROOT JOINT-UPPER AND	 4
1	 e

54U L.

LOWER

4.49(3)	 MAIN LANDING GEAR
INTERFACE

4AB(4)	 ENGINE PYLON INTERFACE	 1

4.48(5)	 ROOT RIB TO FUSELAGE	 1

rnw

Figure 20. Design Concepts Evaluation Schedule (Sheet 5 of 7)
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YEAR 1979 1998 1981

MONTHS AMJ JASONDJ FMAMJ J ASO OJ FMAMJ JA SONtD
TASK AND GO-	 FIRST DING FINAL DWG FINAL PART FINAL

SIlBTASK DESCRIPTION MAJOR
AHEAD	 RELEASE RELEASE FABRICATION RPT. ,

MILESTONES
START HARDWARE	 MOST PROMISING TESTS
TOOL/FASR[CATION STRUC. CONCEPTS COMPLETE

PRELIM.
PROCESS

© SPECS. REPORT
3.3 DOCUMENTATION

4.0 CONCEPT DEVELOPMENT TESTING

4.1 SPECIMEN TESTING

IT 
9m No.	 ITEM Q11A51 • IST PART FROM FAB 	 TEST

DESIGN AND
4.1A 3 L

COVER CONCEPT X7	 INSTR.

$•10	 DEVELOPMENT 816

4.1C	 AND VERIFICATION
313

REF. TABLE 12)

4.10 516

4.2A 30 .._
SPAR CONCEP

4.26	 DEVELOPMENT 016
AND VERIFICATION

4'2C	 (REF. TABLE 12) 15

4.211 J 313

Figure 20. Design Concepts Evaluation Schedule (Sheet 6 of 7)
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YEAR 1979 1986 1981

MONTHS AMJ I JASONDJ I FMAMJ I J I ASONDJ I FNIAMJ I J JAI SOND
TASK AND GO- FIRST DWG FINAL DWG FINAL PART FINAL

SlI11TASK DESCRIPTION MAJOR
AHEAD RELEASE RELEASE FABRICATION RPT.

MILESTONES "^'
NART
TOOL/FABRICATION

HARDWAR 6 ST PRO
STRUC. CONCEPTS

ISING TESTS
COMPLETE

4.1 SPECIMEN TESTING (CONT.)

ITEM NO.	 ITEM OElAN

'4.3A	 RIB CONCEPT 3
4.311	 DEVELOPMENT	 30!6

AND VERIFICATION

4.3C	 i(REF. TABLE 12) 3

4.4A 9

4.46(1),(2)	
ASSEMBLY CONCEPT 2

U L

4.46(3)	 VERIFICATION 1
(REF. TABLE 12)

4AB(4) i

4.411(5) 1 ^`
4.2 DOCUMENTATION TEST PLAN 0

DEPORT
TEST RESULTSIEVALUAT
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structural design of an advanced technoloo- subsonic transport wing employing com-

composite materials. A description of the various tasks and su'bta,ske of the Design

Concepts Evaluation element of the wing structure development program are presented.

Both analytical and experimental studies are proposed to provide ingredients for the

engineering and manufacturing data bases for composite wing development.

Concepts Design and Analysis

An analytical design study will be conducted to assess the various structural

approaches applicable to a high aspect ratio wing employing active controls. The

most promising concepts for composite wing primary structure will be identified

through design/manufacturing studies of candidate concepts.

Design Criteria. - The baseline airplane and performance data will be selected

for a reduced energy transport with transcontinental range capabilities as a minimum.

Applicable structural design criteria will be formulated early in the task based on

current understanding of requirements and updated as the essential technologies are

developed through on-going military and commercial programs.

Design Conditions and Loads. - Aeroelastic loads will be developed for a limited

number of symmetric and asymmetric flight conditions and ground conditions. This

variety of conditions will provide representative design load envelopes for the wing

box along the span of the wing. The loads data will be utilized to size the struc-

ture and will be repeated as necessary using the appropriate stiffness data,

Material Evaluation and Selection. - The existing T300/5208 graphite/epoxy data

base will be expanded, as appropriate, to reflect the application of unidirectional

fabric. The change in reinforcement from tape to noncrimped fabric is proposed to

reduce processing labor and cost as described in the Materials Development Program.
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Preliminary Design Data. - Fabric characterization results from the Design Data
Testing task will be provided to establish preliminary design data for the noncrimped
fabric form. Static strength vests -rill be performed to provide basic 1,,mi.na data
which win be the basis for prediction of laminate strength properties.

Design Concepts Definition and Evaluation. - Investigations, analyses, design

studies needed to (1) assess the relative merits of various structural arrangements,
concepts, and materials for a high aspect ratio wing of a neu transport aircraft,

and (2) establish design guidelines to cope with the many interactive design param-

eters will be performed. The wing box structural arrangement developed in the

conceptual design study of Appendix A will be revised to incorporP} ° benefits of the

new concepts and changes in configuration, such as beam locations, and rib and

stringer spacing and orientation.

Wing Structure Definition. - The preliminary definition of the wing box, includ-

ing structural arrangement and manufacturing approach will be in accordance with the

conceptual design study results (Appendix A). As a starting point, the stiffness

characteristics will be representative of a multi--rlb wing box employing blade-

stiffened wing surface panels. These properties will be updated as refinements are

made and new concepts identified.

In assessing the various structural concepts and materials for the major wing

components, such factors as ease of 'fabrication and assembly of components, sealing

of fuel tanks, maintenance and servicing, and analytical capability for analysis

and des_.gn of such :omponents consistent with the requirements of Federal Aviation

Regulations - Part 2 (Er, renee 2) will be considered. The. components include the

-sing surfaces, front and rear beams, ribs, wing production joint, landing gear sup-

port structure, engine pylon support structure, and control surface interfaces.

Aeroelastic Analysis. - Aeroelastic loads, control effectiveness and a pre-

liminary flutter analysis will be conducted using the appropriate stiffness data. The

effect of laminate orientation on the design requirements will be assessed. All aero-

elastic analyses will utilize a simplified stick model to reprewent the structural

characteristics of the gyring.
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The approach to producibility and fabrication methods development consists of

analytical studies and operational documentation related to design concepts

t

	

	
Manufacturing/QA Methods and Data. - A composite manufacturing state-of-the-art

survey including material types and forms, fabrication techniques, tooling, facilities,

and quality assurance methods will be made. A report will be prepared which includes

both Lockheed and industry experience and will emphasize those developments with

direct or potential application to the cimpcsite wing.
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Producibility guidelines for optim.iz!ng structural. configurations will be

established and documented as design bulletins and guidelines. This information

will be based on latest material and fabrication technology as determined in the
above survey. Based on the latest technology, preliminary process specifications

to guide devrelopment of detail part and assembly fabrication and quality assur-

ance schemes will be prepared.

Manufacturing Concepts. - As conceptual design studies and preplanning anal-

ysis on the composite wing begin to yield preliminary definitions of component

detail parts, feasible fabrication plans including alternates will be developed

for each configuration concept. These plans will inclyde material types and forms,

molding method and tool concepts, and a sequential list of essential fabrication

operations such as ley-up, curing, and inspection points. These plans will be in 	 y

the form of tooling sketches, and draft operation sheets. Alternate plans will

be developed for the major components or for portions thereof.

As a result of these conceptual tooling and fabrication studies, recommenda-

tions will be made as to which design concepts should be considered candidates for

process development fabrication.

An assembly plan considering a preliminary assembly sequence, assembly elapsed

times and units in process, preliminary manloading and assembly tool requirements

will be developed. These data will be used for facility requirement calculation

and cost and schedule development.

Quality Assurance personnel will also interface directly with concept design

and preplanning personnel. They will review contest design alternates with respect

to inspectability and quality assurance requirements. Particular emphasis will be

directed to the development of cost-effective techniques for performing nondestrue-

tion inspection (NDI) for inspecting structures with variable -hickness and cross

sections. Nev, automated techniques will be dictated by the size of wing
components.

Manufacturing Cost Analysis. - Manufacturing costs are greatly influenced by

method of layup, method of curing and degree of automation for composite structures.

The design is also impacted by cost of manufacture. Cost studies will include:
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• Approximated cost analysis of alternate Fabrication schemes or plans as a

basis for selection of fabrication concepts for each design configuration
concept.

s Detail fabrication cost analysis of each candidate structural configuration

and corresponding fabrication plan as a basis for function/cost trade-offs

studies to select efficient structural configurations and corresponding

fabrication methods.

The manufacturing costs of each component alternate fabrication scheme will be

established based on available configuration description, tooling sketches and draft

operation sheets. These operation sheets will be sequenced to show all manufacturing

operations, and time standards applied against each operation. Estimating factors

for shop realization, appropriate learning curve and expected scrap rates for com-

posite material fabrication will be developed to represent actual Lockheed and avail-

able industry experience with state-of-the-art improvements in tooling, layup and

cure, machining and assembly. Manufacturing Control will work in conjunction with

Value Engineering in the preparation of these estimates and will coordinate the con-

tacts within Manufacturing, such as Time Standards, Tooling, Planning and Production,

as required.

As early in the concept design phasse as can be supported by configuration

description, the estimated cost of wing production will be developed. These data

will be reviewed in an effort to determine the particular components or processes
which are not cost competitive. This analysis, in turn, will be reviewed with

concept design and preplanning personnel for use in the development of alternate

concepts. The production cost targets will be periodically modified through the

development program, and will be compared with extrapolations from actual cost

experience on subcomponents fabricated In process development and in fabrication

of assemblies for test.

Manufacturing Facilities Plan. - Development of facility requirements closely

parallels concept studies in design and manufacturing. The establishment of the

wing sectional breakdown drawing and the tooling and fabrication sequence concepts

for the major wing components will be reviewed by Manufacturing Engineering for

machinery and equipment requirements. This analysis will primarily be directed to

-F'
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the requirements for a production program, but will also consider the machinery and

equipment needs for components to be manufacturea in the process development and

manufacturing verification tasks, and the components to be manufactured for engi-

neering test programs.

Preliminary plans for wing manufacturing facitilies will be made near the end

of the Design Concepts Evaluation task. The facility requirements for the balance of

the development program will also be reviewed et that time. The production facility

plan will be subsequently updated in concert with each revision io the manufactur-

ing cost analysis, particularly at the end of the preliminary design phase. As the

development program progresses through the demonstration article manufacture, pro-

ducti.^.-, facility specifications till be prepared and bids obtained prior to final
presentation of data to management for a decision on wing production go--ahead.

Process Development and Fabrication

A manufacturing bast for fabrication of wing structural components will be

experimentally established. This base will be defined by basic process specifica-

tions, tool drawings, detail -uanufacturing, quality assurance procedures and other

required standards/controls to establish the most efficient fabricat.Lon methods for

the test specimens.

Process Development. - The development of fabrication and process techniques

which would apply to particular elements of the design concepts will be made. These

specimens will be representative of design concepts under consideration and will

be evaluated by visual examination, dissection or dimensional checks, and are not

intended to satisfy particular enGineering structural test requirements. In some

eases, however, development articles may be of the same configuration as will be
required for testing. Quality Assurance will utilize experimental parts in NDI

development activity and .bay, in addition, define certain panels or spar cap seg-
ments to be manufactured with known defects expressly for NDZ development. Some

of the areas to be investigated include:

70



Thick Laminate Behavior: Thick laminates present special problems in layup

and cure. Some kind of debulking scheme or partial curing of incremental laml-

nates must be developed to obtain a satisfactory degree of compaction after layup,

and before final cure. To the greatest extent possible, air must be removed from 	 1►
the layup before the final cure to avoid entrapping it in the cured laminate.

Thick laminates, such as would be found in the wing root area, will generate exo-

thermic reactions (in some types of epoxy resins) in which heat created within the

laminate along with the heat applied during cure could create excessive temperatures

and damage the laminate. Development of cure cycles to conti- ,al heating rates or

I

	

	 to incorporate partial curing of incremental laminates will be undertaken if required.

Sufficient testing and analysis will be accomplished to verify that resin content

of the laminate is uniformly within acceptable limits.

Cure Cycle Development: Cure cycle development will commence with the studies

of candidate resin systems by Materials Engineering. The characteristics of the cure

cycles required by these candidates will be screened to ensure that the system or

systems finally selected can be used in a production environment. Final candidate

systems will be subjected to manufacturing tests which will approximate, to the

extent. possible, the final component. Objectives will be to achieve cure cycles

which will result in: (1) minimum processing time, (2) maximum tolerances on tem-

peratures and times required for all production conditions, and (3) finished parts

of required quality.

Adaptability to Automated Layu-D: In order for the composite wing to be cost

competitive with an equivalent metal wing, the design must permit automated layup

to a very great extent_ Design of the wing skins will be reviewed by Manufacturing

with the object of maximizing the amount of broadgoods that can be laid down on the

tool V an automated dispensing machine. Recommendations will be made regarding

filler plies, doubler plies and short plies which reduce the efficiency of the

machine. Similarly, designs for rib caps, rib webs, spars, blade stiffeners (and

possibly hat-stiffeners as an alternative) will be made from broadgocc,- -aid-up

by the dispensing machine or by some special machine if economically feasible.
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. Shrink. Warp,Thickness. Variation.: The extremely large, size of. a, one-piece'W-:i.ng 

skin and the verylong..,lengths being: cons;idered for ,the sparslIlagnifythe usual 

:problem~encountered ill producing cured laminates 'Which must. meet exacting engi

neering·requirements. Dimensional chartges 'Which occur both as .aresult of the 

temperature excursions during the cure cycle and as a result of thepolym.eI'ization 

of ther,esin are 01' concern because of stresses'Wl;lich may be incorporated :within 
j. ' ' -- -. 

the laminate. i How these d;iJJlensional cllangesinteract with the changes in. tooling 

as the molds expand and contra.ct is also of· concern. At worst, parts may crack, 

;;a.rp, and shrink beyond acceptable ,)nits. Manufacturing will evaluate designs, 

tooling and . cutecyc;Les as a single system so that dif'ficulties can be' uncovered 

and resolved before concepts are fixed. For very thick.laminate sections, small 

and apparently acceptable variations in individual ply thickness can accumulate 

to the point where the tit and tunction are impeded. Limits of acceptable varia

tionwill bedetennined and tests will be performed to see if these 1imi't:, can 

be met. A review of industry experience on curing of thick laminates :will be made. 

Tooling Materials and Designs: It is anticipated that selection of tooling 

materials will be ma!l.e from the conventional list of steel and aluminum alloys and 

high "t'emperature tooling plastics. The Lockheed-California Company has investigated 

graphite llllllinate tools and graphite tools machined from solid block. Graphite 

tools offer the advantage of matching . he thermal coefficient of expansion of the 

graphite laminate to be cured, but have poor heat transfer che.?9.cteristics. In 

general, steel is attractive because of its low thermaJ. expanf JU, and is less 

costly and structural:!.y superior to aluminum. Aluminum will b" used for tools 

which require a large amount of material removal. Plastic is a useful material 

where tools with difficult contours must be made. Since plastic can be cast or 

molded to shape, expensive machining of metal is avoided. However, plastic has 

poor thermal transfer, poor load bearing properties and has limited service life 

when subjected to thermal cycling. Tooling material selection will be made on the 

basis of·the above considerations and representative tools will be built and tested 

to verify the selection. 

Integral Heat/Pressure Tooling: Limitation of facilities to process a large 

number of parts of Significant size will require an analysis to dete't'mine the 
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feasibility of integral heat/pressure tooling. As differentiated from autoclave

k	 processing, these types of tools provide built-in sources of heat and pressure.

Cost is not the only consideration here since very large parts of varying thickne

may require zone heating; that is, different portions of the tool require differe

heat inputs. Integrally heated tools provide a convenient method to accomplish

this. however the cost of tooling is very high, even considering the facility

cost tradeoff, and requires high volume production quantities to ammortize their

cost.

Match Molds and Press Forming: Part configurations such as rib caps and

webs lend themselves to molding in a matched mold. Matched molds give good dimen-

sional control but must be properly designed to include features such as use of

elastomeric plugs or padded mold faces to ensure proper pressure distribution by

compensating -'or laminate thickness variations. With proper processing, this type

of tool yield, an excellent laminate. Prototype tools will be built to evaluate

match mold curing for selected shapes. In general, these molds will be used with

a heated platen hydraulic press to provide the heat and pressure required. Inte-

grally heated tools may also be used in a press. Shapes incorporating very little

draft pose pressure application problems with matched molds.

Hag and Bleeder Materials: Lockheed's experience in developing cure techniques

for composite laminates will be the point of departure in selecting candidate mate-

rials and techniques for bagging and bleeding the laminates. For bags, tests will

be run with both plastic and rubber. A wide choice of bleeder materials is avail-

able and after some initial screening, test will be run to determine which are

suitable fur specific wing application. Preformed, reusable silicone rubber bags

will be investigated to reduce costs or improve gaality.

Machining Drilling: a.rough current government and industry programs suc-

cessful techniques for machining and drilling of composites will have been developed

and engineering process specifications formulated. Process development tests will

be required to extend tL ,ase techniques to thick laminates. Development of holding

fixtures, and locating ievices will be required. It is anticipated that such factors

as &,:ill geometY„ f-eeds, speecs and abrasive sawing techniques will be readily

acq - -table to the wing components.
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Quality Assurance Process Development: Quality Assurance tasks in the pro-

?	 cess development phase will consist of support to Manufacturing and Engineering

t	 in their development work, and will also include specific Quality Assurance pro-
cess development as discussed below.

Non-Destractive Inspection (NDI) Development: The NDI development program

will consist of assessing the capability of available equipment and determining the	 ,F

needs for development of new equipment and methods as follcros:

• Available Equipment Capabilities:

• Manufacture representative wing specimen coupons with flaws

•	 Test coupons by various NDI methods

•

	

	 Determine correlation with mechanical tests and photomicrographic

examination

•	 Document NDI methods

•

	

	 Establish accuracy, limits, etc. and determine adequacy of capabilities

for critical wing structure application.

*New Equipment:

•	 Continue to monitor developments in real-time acquisition and control

(e.g. mini-computer micro processor analysis of ultrasonic data).

•	 Contact test equipment suppliers, materiel suppliers and other aero-

space companies

•	 Conduct literature search

•

	

	 Determine applicability of new equipment and methods to critical wing

components.

Specimen Tooling and Fabrication. - Concept development specimens, as defined

in the test matrices,, will be fabricated using the processes developed during the

manufacturing process development phase of the program. Fooling will be develop-

ment-type tooling, but will havw surface quality and dimensional accuracy of pro-

duction composite tooling. Based on various process development activities, pre-

liminary process specifications will be prepared. Concept development specimens

will be made to these specifications, which are changed as required by development

shop experience and/or Engineering test feedback.

In addition to the process specifications, production design outlines which

describe the detail manufacturing and tooling plan for the specimen will also be

`4
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prepared. The tooling used for these specimens will consist of, to the greatest

degree possible, tooling which was used during process development activities.

Planning will prepare operating sheets which will provide the shop with a detailed

record of the processing of the part. All concept development specimens will be

fabricated in suitable facilities using personnel experienced in composite layup. 	 #i
Prior to release of the specimens to Engineering for test, physical, mechanical
and ultrasonic tests will be used to confirm acceptability.

Concept Development Testing

The concept development tests required for the design concepts evaluation

task are summarized in Table 12. One-hundred and fifty-four (154) structural element
and sub-component tests are defined, covering structural concepts for the wing

covers, the spars and the ribs, and for significant assemblies.

Both static strength and fatigue tests are specified for the concept develop-

ment and verification effort. All fatigue testing will be conducted using appro-

priate flight-by-flight transport wing loading spectra. When fail-safe concepts

are being evaluated, a combination of fatigue and static testing is specified.

All of these development tests will be conducted in a room temperature, dry,

environment.

The concept development testing schedule is presented as subtask 4.0 in Figure

20. The test effort spans a period of two years, extending through October, 1981.

Covers. - Thirty-five (35) cover concept development tests are specified.

These include testing of cover stiffener concepts, surface joint concepts, upper

surface inboard manhole reinforcing concepts, and cover fail-safe concepts. The

stiffener concept tests include the effect of hapact.

pars. - Sixty-three (63) spar concept development tests are specified, includ-

ing tests of spar web and cutout concepts, spar cap ,joint concepts, and spar web
fail-safe concepts, and spar cap .:rippling strength tests.
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cr% TABLE 12. S[3MKARY OF CONCEPT DEVELOPMENT VESTS

10- It

FfEM DESCRIPTION
NUMBER

OF TVPE OF TEST TEST VARIABLES' PURPOSE OF TESTN4
SPECIMENS

CONFIGURATION

411 COVERS A STIFFENER 3 IMPACT UNDER LOAD 3STIFFENER IL91 t 142m 13 R 6 FTI STIFFENER CONCEPTVERIFtCATION; 	 -
CONCEPTS HOPERATINO STRAIN CONFIGURATIONS STIFFENED PANEL COMPRESSIVESTRENOTH

LE V ELI, 2 LOCATION$ WITH 3 STIFFENERS
STATIC COMPRESSION
TO FAILURE

IL JOINT
CONCEPTS

[Tf S STATICTEN&IGNTO 3JOINTCONCEPTS a9litO3Dm43KIFri •JOINTCDNCEPTDEVELOPMENT.STATICSTRENGTH-
FAILURE WITH 1 STIFFENER

t21 E SPECTRUM FATIGUE, 2 HBESTi JOINT 491 a 41.30m 13 w 1 FTI JOINT CONCEPT VERIFICATION. FATIGUE STRENGTH
TENSION DOMINATED CONCEPTS WITH 1 STIFFENER -
LOADINGIVECTRUM.
2 LIFETIMES

C. UPPERSURFACE
INBOARO MANHOLE
REINFORCING
CONCEPTS

III 9 STATICCOtAPRESSION 3MANHOLE t03a1.22mISx4FTI MwNHOLEREINFORCE M ENTCONCEPTDEVELOPMENT.
TO FAILURE REINFORCEMENT STIFFENEOPAFJEL WITII STATICSTRENGTH

CONCEPTS MANHOLE
421 3 SPECTRUM FATIGUE, 1(9ESTIMANHOLE 103 a1421n15KAFT) MANHOLE REINFORCEMENT CONCEPTVERiFICATION:

COMPRESSION REINFORCEMENT STIFFENEDPANEL FATIGUE STRENGTH
I DOMINATED LOADING CONCEPT WtTHMANHOLE

SPL"TRUM: 2 LIFETIMES

O. COVER FAIL-SAFE
CONCEPTS

11I 5 STATIC TENSION TO S FAIL-SAFE CONCEPTS 1.53 it 1.22m IB t 4 FTI COVER FAIL SAFE CONCEPT DEVELOPMENT
LIMIT LOAD: STIFFENED PANEL.
SPECTRUM FATIOUE, WITH B STIFFENERS AND
TENSION DOMINATED. IMM99C OAMAGE
V2 LIFETIME:
STATIC TENSION TO
FAILURE

121 S SPECTRUM FATIGUE, 2I8ESTI FAIL-SAFE 1.83 r 9O1m I6r 4 F11 COVEFFFAILSAFE CONCEPT VERIFICATION
112 LIFETIME. CONCEPTS t.-PPER N4 STIFFEN®PANEL
STATICTENSIONOR LOWERSURFACEI WITHSST[PFENERSANC
COMPRESSION TO TENSION-DOMINATED IMPOSEDDAMAGE
FAILURE ANDCOMPR£SSICN-

OOMINATED LOADING
SPECTRA

4.2 SPARS A WEBS,CUTOUT
CONCEPTS

Alt 12 STATIC SHEAR TO 3 WEB CONCEPTS: WITH 0.51 w 0.91m 13 R 2 FTI SPAR WEB A CUTOUT CONCEPT DEVELOPMENT.
FAILURE ANDWITHOUTCUTOLT PANEL STATICSTRENGTH

!7i f0 SPECTRUM FATIOUL 3 WI I CONCEPTS: WITH 091 n 0.91m [3 n 3 FTI SPAR WEB & CUTOUT CONCEPT DEVELOPMENT. 	 -
SHEAR. 2LIFETIMES AND WITHOUT CUTOUT PANEL FATIGUE STRENGTH

& CAP JOINT CONCEPTS

ITN 6 S[ ATIC TENSION OR 3 JOINT CONCEPTS: 1.221n 14 FTI LONG SPAR CAP JOINT CONCEPT DEVELOPMENT;
COMPR£SSIONTO TENSION AND STATICSTRENGTH
FAILURE COMPRESSION LOADS

121 6 SPECTRUM FATIGUE, 2(RE5T)JONT L22m14FTiLON13 SPAR CAP JOINT CONCEPT VERIFICATION. FATIGUE 	 -
2 LIFETIMES CONCEPTS (UPPER N!a STRENGTH

LOWER SURFACE)'
TENS104DOMINATED
AND COMPR€6310N
AOMINATED LOADING
SPECTRA

C CAPCRIPPLINO 15 STATICCOMPRESSION SCAPCO19FIGURATIONS 0.30mOPTILONG DETERMINATION OF CAP CRIPPLIN12STRENGTH
TO FAILURE
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TABLE 12. SUMMARY OF CONCiPT DEVELOPMENT TESTS (Continued)

ITEM

w

DESCRIPTION
HUMBER

OF TTFEOFTESr TE STVARiABLES
EHBPECISPECIMEN

CLSPECI RATiON
PURFOSEOFTEST

ND. SPECIMENS

Q WEB FAIL-SAFE
CONCEPTS

ITI 3 STATIC SHEAR TO 3FAIL-SAFE CONCEPTS 1.63m16FTISSAM SPAR WEB FAIL-SAFE CONCEPT DEVELOPMENT
LIMIT LOAD:
SPECTRUM FATIGUE,
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Ribs..- Forty-two (42) rib concept tests are specified. These include develop-

ment of rib web and cutout concepts, rib-to-skin attactgnept concepts, and rib web

fail-safe concepts.

Assemblies. - Fourteen (14) tests of assembly concepts are specified. These

include cover-to-spar tank seal concepts, and concepts for the five major struc-

tural interfaces in the wing - the upper and lower surface wing root joint, the

main landing gear attachment, the engine pylon attacheent, and the wing root rib-

to-fuselage interface.

PRELIMINARY DESIGN

The objectives of the proposed Preliminary Design task are: to expand and refine

the most promising structural concepts for primary wing structures (identified in

Design Concepts Evaluation); to incorporate into the wing design the new material
system; to verify the design/manufacturing parameters; to identify and design test

specimens for design verification tests; to update the structural arrangement,

construction details and structural weight estimates; to conduct cost-weight trade
studies; to conduct static, spectrum fatigue, impact, fail-safe, and residual
strength tests to verify sub-components of selected wing structure; and, to further
explore and validate approaches for major structural and system interface designs,

including lightning strike protection and fuel containment. The proposed schedule

for the 36-month Oe sign-manufacturing study is presented in Figure 21. The sub-
tasks which are delineated :hi the following discussion are scoped to provide, at
the completion of this task, the necessary data base for composite wing commitment.

The demonstration and validetic:n of technology readiness are proposed to be performed

in the subsequent task.

Wing Design and Analysis

The preliminary design of an advanced commercial transport wing structure

will be conducted to validate the benefits or advantages of promising concepts
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YEAR	 1981	 --	 1982
MONTHS	 J I FMAMJ! I J I ASONDJ FMAMJ J A^

TASK AND	
FIRST DWG	 START FINAL DWG

GO-AHEAD	 RELEASE	 TEST	 RELEASE
SUBTASK DESCRIPTION	 MAJOR

MILESTONES
MOST PROMISING	 WING STRUCTURAL	 W
DESIGN CONCEPTS	 REQUIREMENTS	 el

D(JCUMENT (SRD)	 RI

1983

NDJFMAMJJA80ND

ENGINEERING	 ALL TESTS
DATA REPORT	 COMPLETE

FIIIIAL R p0 FIT
HT/COST DESIGN BULLETIN
FIT PROCESS SPECS. k1PDATE:
LTS OPERA SHEETSIN'I

RESULTS

1.0 WING DESIGN AND ANALYSIS

WING 7

1.^1 .VYING DESIGN CR! , ERIA AND 	
REQU I

REQUIREMENTS
MOST PROMISING
CONCEPTS

1.2 PRELIMINARY WING DESIGN	 7-.^^
F.E. STRUCTURAL	 FL
MODEL	 Ah

f 1:3 DESIGN METHODOLOGY AND ANALYSIS
INTERNAL
LOADS	 FIRST DWO

1.4- TEST COMPONENT DEFINITION AND	
RELEASE

ENGINEERING RELEASE

1.4.1 COVERS—DRAWING RELEASE	 Y=

1.4.2: SPARS— D RAWING RELEASE

E

FINAL STRUCTURAL
ARRANGEMENT

FER	 WEIGHT/OrkiT
YSIS	 BENEFIT TRADE

FINAL DWG
RELEASE

b

^a
Figure 21. Preliminary Design Schedule (Sheet 1 of 12)
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YEAR 1981 1982 1983
MONTHS FMAMJ J ASONUJ FIIAAMJ J AS ®N'#MjAjMjJjJjASONG

GO
MAJOR

GO-AHEAD
DWG

-AHEAD	 RELEASETASK AND
SUBTASK DESCRIPTION

START	 FINAL DWG	 ENGINEERING	 ALL TESTS
TEST	 RELEASE	 DATA REPORT	 COMPLETE

FINAL REPORTMILESTONES
MOST PROMISING	 WING STRUCTURAL
DESIGN CONCEPTS	 REQUIREMENTS

DOCUMENT (SRDI

WEIGHT/COST	 DESIGN BULLETIN
BENEFIT	 PROCESS SPECS. UPDATE,
RESULTS	 OPERA. SHEETWNDI

RESULTS

1.4.3 RIBS—DRAWING RELEASE

1.5 DOCUMENTATION
WING SRO ENGINEERING

DATA REPORT

2.0 FABRICATION METHODS VERIFICATIA
PRELIM WING PLAN FOR SUB-COMPONENT
STRUCTURE DEFINITION FABRICATION/ INSPECTION

2.1 FABRICATION/QUALITY ASSURANCE PLAN'

COST DATA BASE

2.2 COST STANDARDS

PRODUCTION PLANS

2.3 MANUFACTURING FACILITIES PLAN FABRICATION/
COST STANDARDS

PLAN FOR Si:B-COMPONENT DESIGN BULLETIN/	 REPORT

2.4 DOCUMENTATION
FABRICATION/ INSPECTION PROCESS SPEC

UPDATE

Figure 21. Preliminary Design Schedule (Sheet 2 of 12)
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YEAR 1981 1982 1903

MONT"S J FMAMJJASONfJJ1MAMJJASONDJFMAMJJASONO

MAJOR
GO-AHEAD

FIRST DWG
RELEASE

START	 FINAL DWG	 ENGINEERING	 ALL TeSTS
TEST	 RELEASE	 DATA REPORT	 COMPLETETASK AN D

SUBTASK DESCRIPTION
FINAL REPORTMILESTONES

MOST PROMISING	 WING S7r:'ICTURAL	 WEIGHT/COST	 DESIGN SULLE1ZN
DESIGN CONCEPTS	 REQUIREMaMTS	 BENEFIT	 PROCESS SPEC&. UPDATE;

DOCUMENT (SRD)	 RESULTS	 OPERA. SHEETS/NDI
RESULTS

3.0 SUS-COMPONENT FABRICATION

3.1 COVERS
PAS COMPLETE

I'T'EM NO.	 ITEM	 MAN TOOL ^

4,1A,	 4.10	 UPPER SURFACE	 7 FAB
LAST PART
FAB COMPLETE

4.11,	 4.15	 W/CUTOUT
4.48,

L—.j

4.18	 LOWER SURFACE—	 2 09

OUTBOARD

j
X7	 N7

4.1 C	 ROOT JOINT —	 7
UPPER SURFACE

4.10	 ROOT JOINT —	 7
X7	 X7

LOWER SURFACE

O^

c^
CrJ

co	 Figure 21. Preliminary Design Schedule (Sheet 3 of 12)
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YEAR 1981 1982 1983
MONTHS J 1= MAMJJASONDJFMAMJJASON1lJ1: MAMJJASOND

MAJOR GO
FIRST DING

-AHEAD	 RELEASE
START	 FINAL DWG	 ENGINEERING	 ALL TESTS
TEST	 RELEASE	 DATA REPORT	 COMPLETETASK AND

SUBTASK DESCRIPTION
MILESTONES FINAL REPORT

MOST PROMISING	 WING STRUCTURAL	 WEIGHTIMST
DESIGN CONCEPTS	 RERJIREMENTS	 BENEFIT

DOCUMENT (SRO)	 RESULTS

DESIGN BULLETIN
PROCESS SPECS, UPDATE;
OPERA. SHEETS/NOI
RESULTS

3.1 COVERS (CL IIT.)

ITEM NO.	 I" t6:	 UUAN

TOOLL._..._j

4.1E	 UPPER S-RFACE -	 3
PYLON RIB

FAS

4.1 F	 LOWER SURFACE - 	 3
PYLON RIB

4.1 G, 4.4A	 UPPER SURFACE -	 3
W/O CUTOUT

4.1 H, 4.1K	 LOWER SURFACE -	 3
W/CUTOUT

Figure 21. Preliminary Design Schedule (Sheet 4 of 12)



YEAR	 1981	 T	 1982	 1983
MONTHS	 JI F IM I AMJ I J I A l SON DJ FMAMJ J ASOND,1 FMAMJ J ASOND

TASK AND	
FIRST DWG	 START FINAL DING ENGINEERING ALL TESTS

SUBTASK DESCRIPTION MAJOR	
GO-AHEAD	 RELEASE	 TEST	 RELEASE	 DATA REPORT COMPLETE

MILESTONES	 FINAL RIrPORT
MOST PROMISING	 WING STRUCTURAL	 WEIGHT/COST	 DESIGN BULLETIN
DESIGN CONCEPTS	 REQUIREMENTS	 BENEFIT	 PROCESS SPECS. UPDATE:

DOCUMENT ( SRD)	 RESULTS	 OPERA. SHEETSINDI
RESULTS

C^

i
co 	 21. Preliminary Design Schedule (Sheet 5 of 12)
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3.2 SPARS

ITEM NO.	 ITEM
	

QUAN	 TO L1

4.2A
	

FRONT SPAR -
	 2	 CAB

BOOT END

Lv,
FRONT SPAR - TIP
	

2

REAR SPAR --
	 2

ROOT END

REAR SPAR - TIP
	

2

FRONT SPAR -
	 2	 MY

ROOT END

SPAR WEB WISLAT
TRACK CUTOUT-
INBOARD
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YEAR	 9981	 19BZ	 19113

	

MONTHS	 J IF IM I A I M I J I J I ASON D J IFMAMJ I J I AS I DNDJ FMAMJ J AS flND

TASK AND	
FIRST DWG	 START FINAL DING ENGINEERING ALL TESTS

GO. 4HEAD	 RELEASE	 TEST	 RELEASE	 DATA REPORT COMPLETE
SUBTASK DESCRIPTION	 MAJOR

MILESTONES	 FINAL REPOR T,

MO: T PROMISING	 WING STRUCTURAL	 NIEIGHT/COST	 DESIGN BULLETIN
DES IGN CONCEPTS	 REQUIREMENTS	 BENEFIT	 PROCESS SPECS. UPDATE;

DOCUMENT (SRD)	 RESULTS	 OPERA. SHEETSINDI
RESULTS

3.2 SPARS (CONT.)

ITEM NO.	 ITEM	 O.UAN

4.20(2)	 SPAR WEB WISLAT	 7	 L	 ^_,

TRACK CUTOUT-	 N7 V
O UTBOARD	 FAB

3.3 RIBS

4.3A	 FUEL BULKHEAD RIB	 3

'	 4.36	 FUEL BULKHEAD —	 6
FbSELAGE MATE RIB

4	 1

4.3C	 ENGINE PYLON RIB	 6

4.31)	 KICK RIB	 6

f

OD

R

Figure 21. Preliminary Design Schedule (Sheet 6 of 12)
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YEAR 1981 1982 1983
MONTHS J FMAMJ J ASONDJ FMAMJ J ASQNDJ FMAMJ JASOND

GO
MAJOR

FIRST DWG
-AHEAC	 RELEASE

START	 FINAL DWG	 ENGINEERING	 ALL TESTS
TEST	 RELEASE	 DATA REPORT	 COMPLETETASK AND

SUBTASK DESCRIPTION
MILESTONES FINAL REPORT

MOST PROMISING	 WING STRUCTURAL	 WEIGHT/COST	 DESIGN BULLETIN
DESIGN CONCEPTS	 REQUIREMENTS	 BENEFIT	 PROCESS SPECS. UPDATE;

DOCUMENT ISRDI	 RESULTS	 OPERA. SHEETS/ND1
1	 RESULTS

3.3 RIBS (CCNT.)

ITEM NO.	 ITEM	 QUAN.

4.3E	 INTERMEDIATE RIB	 2

3.4 DOCUMENTATION

4.0 DESIGN VERIFICATION TESTING'

I 4.1 COVERS

4.1A	 STATIC COMPRESSION	 2
TO F,1!;LURE

4.1B	 STATIC COMPRESSION	 1
TO FAILURE

4.1 CM	 STATIC COMPRESSION	 3
TO FAILURE

TOOL J

1	 FAB Id	 PRODUCTION RECORDS,
OPERATING SHEETS;
NDI RESULTS

03
.n

ri

Figure 21. Preliminary Design Schedule (Sheet 7 of 12)
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YEAR	 1981
MONT14S	 J F M A M J J

TASK AND	 GO-AHEAD
SUBTASK DESCRIPTION	 M

MILESTONES
MOST PROMISING
DESIGN CONCEPTS

19B2	 -	 1563
Jrn A IS10I6f1 D I J FT IMIAIM-55

FIRST DWG	 START FINAL DWG	 ENGINEERING	 ALL TESTS
RELEASE	 TEST	 RELEASE	 DATA REPORT COMPLETE

FINAL REPORT

WING STRUCTURAL	 WEIGHT/COST	 DESIGN BULLETIN
REQUIREMENTS	 BENEFIT I	 PROCESS SPECS. UPDATE;
DOCUMENT (SRD)	 RESULTS	 OPERA_SHEETS/NDI

4.1 COVERS (CONT.)

ITEM NO.	 ITEM	 0UAN

4.1C(2)	 SPECTRUM FATIGUE,	 3
COND. CYCLIC

4.1 DO)	 STATIC TENSION TO	 3
FAILURE

4.10(2)	 SPECTRUM FATIGUE, 	 3
CONDITION CYCLE

4.1 EM	 STATIC COMPRESSION	 i
AND SHEAR TO FAILURE

4.1 EM	 SPECTRUM FATIGUE	 1
(WITH SHEAR)

4.1 F(1)	 STATIC TENSION AND	 1
SHEAR TO FAILURE

Figure 21. Preliminary Design Schedule (Sheet 8 of 12)
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YEAR	 1981

MONTHS J FM A M J J

TASK AND	 GO-AHEAD
SUBTASK DESCRIPTION	 MAJOR

MILESTONES
MOST PROMISING
DESIGN CONCEPTS

t

1982	 1983

A S O N D J F M A M J J A S Q N D J F M A M J JASON D

FIRST DWG	 START	 FINAL DV¢..	 ENGINEERING	 ALL TESTS
RELEASE	 TEST	 RELEASE	 DATA REPORT COMPLETE

FINAL REPORT
WING STRUCTURAL	 VVEIGHTICOST	 DESIGN BULLETIN
REQUIREMEN 'T'S	 BENEFIT !!	 PROCESS SPECS. UPDATE;
DOCUMENT (SRD)	 RESULTS I	 OPERA. SHEETSINDI

4.1 COVERS (CUNT.)

ITEM NO.	 ITEM	 QUAN

4.1F(2)	 SPECTRUM FATIGUE	 1
(WITH SHEAR)

RESIDUAL
4.1G	 IMPACT UNDER CUM-	 2 STRENGTH

E	 LOAD/
SPECTRUMM FATIGUEI
RES STR -COMPRESSION

4.1H	 IMPACT UNDER CUM-	 1
PRESSION LOAD/

SPECTRUM FATIGUE/
RES STR = TENSION

4.11	 FAIL-SAFEISPECTR FAT.)	 1
RES STR -COMPRESSION

4.1J	 TAIL-SAFEISPECTR. FAT.)	 1
RES STR -COMPRESSION

4.1K	 FAIL-SAFEISPECTR FAT./	 1
RES STR -TENSION

^	 Figure 21. Preliminary Design Schedule (Sheet 9 of 12)
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YEAR 1981 1982 1983

MONTHS J FMAMJ J ASCNDJ FMAMJ JASQNDJ FMAMJ ,IASQN0

MAJOR	
GO

FIRST DWG
-AHEAD	 RELEASE

START	 FINAL DWG	 ENGINEERING	 ALL TESTS
TEST	 RELEASE	 DATA REPORT	 COMPLETETASK AND

SUBTASK DESCRIPTION
MILESTONES FINAL. REPORT

MOST PROMISING	 WING STRUCTURAL	 WEIGHTICOST	 DESIGN BULLETIN
DESIGN CONCEPTS	 REQUIREMENTS	 BENEFIT	 PROCESS SPECS. UPDATE;

DOCUMENT { SRO}	 RESULTS	 OPERA. SHEETSINDI
RESULTS

4.2 SPARS

ROOT
ITEM NO.	 ITEM	 QUAN CONFIGURATION

4.2A	 STATIC BEAM BENDING	 2
TO FAILURE— FRONT TIPCONFIGURATION_0

SPAR

4.2B	 STATIC BEAM BENDING 	 2

ROOT
COIVFIGURATIONV

TO FAILURE — REAR TIP COINFIGURATION'K7

SPAR

4.2C	 FUEL PRESSURE LOAD-	 1
ING TO FAILURE

4.20(1)	 STATIC SHEAR TO	 6
FAILURE

4.20(2)	 SPECTRUM FATIGUE —	 6
SHEAR

r.

Figure 21. Preliminary Design Schedule (Sheet 10 of 12)



Y EAR	 1 ] 981 1982 1983	 T

MONTHS	 IJ IFIMIAIMIJIJIAISIOINIID J FMAMJ J AS flNDJ 1= MAMJ J AS OND

GO
MAJOR

FIRST DWG
-AHEAD	 RELEASE

START	 FINAL DWG	 ENGINEERING	 ALL TESTS
TEST	 RELEASE	 DATA REPORT	 COMPLETETASK AND

SUBTASK DESCRIPTION
FINAL REPORMILESTONES

MOST PROMISING	 WING STRUCTURAL	 WEIGHT/COST	 DESIGN BULLETIN
DESIGN CONCEPTS	 REQUIREMENTS	 BENEFIT	 PROCESS SPECS. UPDATE;

DOCUMENT (SRD)	 RESULTS	 OPERA. SHEETS/NDI
RESULTS

4.2 SPARS (CONT.)

ITEM NO.	 ITEM	 QUAN

4.2E	 FAIL-SAFEISPECTRUM	 1

FATIGUEIRES STR-
SHEAR

4.3 RIBS

4.3A	 FUEL PRESSURE	 2
LOADING TO FAILURE

4.38(1)	 STATIC SHEAR TO 	 2 #..

FAILURE

4.3B(2)	 SPECTRUM FATIGUE -	 3
SHEAR

4.30)	 STATIC SHEAR TO	 2 f
FAILURE

000

O
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n

w
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Figure 21. Preliminary Design Schedule (Sheet 11 of 12)



YEAR	 1981
MONTHS	 J I F IMIAIMI J J

TASK AND	 GO-AHEAD
SUBTASK DESCRIPTION	 MAJOR

MILESTONES
MOST PROMISING
DESIGN CONCEPTS

G -5	

^DO

-19B2	 1983

A S O N O J I F I MI A I M I J I J I A I S I O N D J I F M A M J JAS 0 N O

FIRST DWG	 START FINAL DWG	 ENGINEERING	 ALL TESTS
RELEASE	 TEST	 RELEASE	 DATA REPORT COMPLETE

FINAL REPORT
WING STRUCTURAL	 WEIGHT/COST	 DESIGN LLILLETIN
REQUIREMENTS	 BENEFIT	 PROCESS SPECS. UPDATE:
DOCUMENT ( SRDI	 RESULTS	 OPERA- SHEETSINDI

I	 I	 RESULTS

O^

^ ro

^ti

4.3 RIBS ( CONT.)

ITEM ND.	 ITEM (IUAN

4.3C(21.	 SPECTRUM FATIGUE - 3
SHEAR

4.313(1)	 STATIC SHEAR TO 2 bm
FAILURE

` 4.30(2)	 SPECTRUM FATIGUE - 3
SHEAR

4.3E	 STATIC RIB COM- 3
PRESSION TO FAILURE

4.4 SYSTEM

Ibm4.4A	 LIGHTNING STRIKE 1

4.46	 LIGHTNING STRIKE 1 Y:m
DELIVER
FOR TEST

4.4C	 LIGHTNING STRIKE 1 Y:m TEST RESULTS
DEPORT

4.5 DOCUMENTATION
^^_^ REPORT OF INDIVIDUAL

TEST UPON COMPLETION

Figure 21. Preliminary Resign Schedule (Sheet 12 of 12)
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identified in the previous task. The design studies will be limited to representa-

tive wing structure considering appropriate design criteria and requirements includ-

ing the asso7iated structure/systems interface requirements.

Wing Design Criteria and Requirements. - The wing criteria and requirements

will be updated to incorporate the results of the design strain level assessment.

The improved characteristics of the new material system will also be accounted for

as appropriate.

Preliminary Wing Design. - Th-- drawings and layouts that defined the most

promising concepts for a high aspect ratio wing design will be refined and expanded.

The applicability of the design/manufacturing parameters developed for the interim

material system (i.e., T300/5208 Gr/E with unidirectional noncrimped fabric) will

be examined and changes to the design made, as appropriate.

The wing box structural arrangement will be revised to include configuration

and sizing changes. Consideration for the lightning protection system will also be

included in the design. Wing basic dimensions and loft drawings will be completed.

The upper and lower surface design will be developed, including chordwise and

spanwise splices, as needed; access door and fuel probe cutouts; and rib attachment.

The front and rear beam design will be selected and problem areas layed-out in detail.

Rib designs will be worked out for each major type rib in the wing. 'These include,

a typical rib, a tank end rib, and control surface and landing gear back-up ribs.

The wing-to-fuselage production joint will also be designed. Layouts will

include the chordwise skin splices, spar splices, and the tension fittings at the

upper and lower caps of the front and rear beams. Layouts will be made of the

landing gear support structure which is attached to the rear beam. The engine

pylon support structural attachments to the front beaux and lower surface will also

be designed. Leading and trailing edge attachment to the box will be developed

as well as control surface interfaces.

The fuel tank sealing design will be completed and fuel system provisions

,gill be accounted for. Electrical and hydraulic system provisions on the front

and rear beam will also be provided.
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Design Methodology and Analysis. - A systemati^ multidisciplinary design-

analysis process will be employed in the structural evaluation of the composite

wing design. The evaluation will encompass in-depth studies involving the inter-

action s between airframe strength and stiffness, static and dynamics loads, flutter,

fatigue and fail-safe design, thermal loads and the effect of active controls on

the wing design. Due to the complex nature of these studies, extensive u:.e will

be made of computerized analysis programs.

A finite elei _art structural analysis model will be employed to obtain internal

loads and displacements for stress analysis, to calculate structural influence

coefficients for aeroelastic loads and deflection analyses, and to determine stiff-

ness and mass matrices to compute vibration modes for flutter analyses.

A more comprehensive aeroelastic analysis including symmetric and anti-

symmetric maneuvers, gust and ground conditions will be conducted using the finite

element model of the structure. Control effectiveness will be evaluated

and more detailed flutter analysis will be performed. Str—tur-al model loads

and aeroelastic analyses will be Lapdated whenever significant stiffness character-

istic changes are introduced into the finite element model. Loads on control sur-

faces, high lift devices, landing gear, and the engine pylon will be determined

for interface with the wing box. Wing surface pressures and miscellaneous loads,

e.g., fuel tank pressures, ruptured ducts, etc., will be establishe.l for inclusion

in the structural analysis wherever they are considered to be significant.

The most promising wing structure design concepts ,rill be subjected to in--

depth structural analyses. Appropriate trade--off studies will be performed to

obtain a least weight and cost-effective design. Analysis will include, not only

the design loads environment, but also, the appropriate protection system for pre-

vention of extensive damage of the airframe due to lightning strike and/or erosion.

Methods of preventing an accidental release of graphite fibers by appropriate

design considerations will be employed.

Test Component Definition. - Design concepts verification tests will be con-

ducted to support the preliminary design of the high aspect ratio king for a new

subsonic commercial transport. A tc.'..: of engineering and manufacturing/Q.A.
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specialists will work together to select appropriate wing cover, spar, ribs and

lightning strike protection system components for test. The engineering drawing

release schedule (Figure 21) will be in accordance with the required fabrication

and testing time-table.

Appropriate engineering drawings will also be released for the manufacture

of a large wing surface panel for full-scale manufacturing feasibility and process

verification tests (to be fabricated in a subsequent task).

Fabrication Methods Verification

Fabrication methods verification will be accomplished by selection of the

tooling approach and processing methods for each component of the selected test

articles. This task will also include updating of facility plans and manufacturing

cost data.

Fabrication/ Quality Assurance Plan. - Fabrication plans including quality

assurance procedures will be developed for each detail part and assembly emanating

from structural design based on latest revision of production design outlines,

drawings, and process specifications. For selected critical components, it is

planned to prove or verify that fabrication methods selected will produce hardware

which meets design drawing requirements by constructing at least one (1) extra uni-

of each subcomponent test article, This article will be evaluated by visual and

dimensional inspection, non destructive test, and sectioning the component for lax-

oratory tests. Any indicated deficiencies will be corrected by modification of

tools or processes before construction of articles designated for engineering tests

is coirfinenced.

Cost Projections. - Following fabrication of the components for engineering

test, an update of the production cost estimates will be made. The new estimate

will be based on a tool plan which will have been partially proven through the

design, manuft.cture, and use of the development tooling, and through the accumula-

tion of actual cost data in the fabrication of the test components. Additional

cost experience from the L-1011 composite fin program and other ongoing ACEE

93



programs 14111 be available in this time frame to provide additional confidence in
forecasting* composite manufacturing costs. Thus, more data will be accumulated

toward establ?shing cost standards necessary for accurately predicting production

costs in the final phase of this program.

Manufacturing Facilities Plan.	 The facilities plan initiated in the concepts

development task covering items such as equipment and space lay-outs will be reviewed.
The plan will be amended to be in accordance with any new requirements imposed by
definitization in structural design.

Sub--Component Tooling and Fabrication

The manufacture of design verification test specimens will be similar to the

manufacture of process development specimens. The com ponents will basically con-

sist of iterations of previous designs. Tools built to produce the earlier speci-

mens are expected to be usable as is or with modifications to produce the components

for these test articles. Minimum type assembly tooling will be built to demonstrate

alignment for the joint and attachment point specimens.

Process specifications for the fabrication of the test components will be in

a released format, and FAA--conformity inspection requirements or their equivalent

will be applied. In addition to the non-destructive tests which will be performed

on all specimens, a single unit of each basic configuration type i.e., skin surface,

root ,joint, spar and rib segments will be fabricated for laboratory evaluation by

sectioning, visual examination, and dimensional inspection,

Design Verification Testing

Design verification tests supporting the preliminary design task are summarized

in Table 13. Sixty-four (64) structural sub-component and component tests are
specifies'., including tests of covers, spars, ribs and the lightning strike protec-

tion system.

w
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TABLE 13. S(3MARY OF DESIGN VERIFICATION TESTS

ITEM DESCRIPTION
NUMUER

OF TYPE OF TEST TEST VARIABLES SPECIMEN PURPOSE OF TESTNO SPFCIMENS CONFIGURATION

4.1 CONFAB Q. UPPER SURFACE 2 STATIC COMPRESSION 1 OCSIGN: 2 TEST
ENVIRONMENTS. RTCI

1.63 : 1.22m 16 x 011 UPPER SURFACE MANHOLE DESIGN
MANHOLE TO FAILURE AND 3561( (1900 F) WITH

STIFFENED PANEL. VERIFICATION: ASSESSMENT OF

6 MO'S CYCLIC TEM-
WITH MANHOLE ENVIRONMENT EFFECT

PERATURE AND
HUMIDITY
PRECONDITIONING

H LOWER SURFACE, 1 STATIC COMPRESSION 1 DESIGN 1 B3 x 0.91m 15 x 310 OUTBOARD LOWER SUIT FACE PANEL
OUTROARD TO FAILURE. STIFFENED PANEL DESIGN VERIFICATION

18D°F WET WITH 2 RIB SUPPORTS

C. UPPER SURFACE
WING ROOT JOINT

(1) 3 STATIC COMPRESSION 1 DESIGN: 3 TEST 1 .22 x 0.30m 14 x 1It) UPPER SURFACE WING HOOT JOINT
TO FAILURE ENV190NMENTS, ATD, STIFFENEDPANEL DESIGN VERIFICATION: STATIC

219K (-650FI DRY, AND WITH ROOT JOINT STRENGTH, ENVIRONMENTAL
356K (1800 F) WET EFFECTS

121 3 SPECTRUM FATIGUE, 1 DESIGN 1 22. 0.30m (4. 111) UPPER SURFACE WING ROOT JOINT
COMPRESSION- STIFFENED PANEL, DESIGN VERIFICATION. FATIGUE
DOMINATED LOADING WITH ROOT JOINT STRENGTH
SPECTRUM. WITH CYCLIC
TEMPERATURE AND
HUMIDITY_ 2 LIFETIMES

D. LOWER SURFACE
WING ROOT JOINT

[SS 3 STATIC TENSION TO 1 DESIGN. 3 TEST 1.22 x 0.30. tit. Vii LOWER SURFACE WING ROOT JOINT
FAILURE ENVIRONMENTS. RTD. STIFFENED PANEL. DESIGN VERIFICATION: STATIC

219K (-650 F1 DAY, AND WITH ROOT JOINT STRENGTH, ENVIRONMENTAL
356K (1300Fl WET EFFECTS

121 3 SPECTRUM FATIGUE, 1 DESIGN 1.22 x 0 . 30m (4 x lft) LOWER SURFACE WING ROOT JOINT
TENSION DOMINATED STIFFENED PANEL, DESIGN VERIFICATION[: FATIGUE
LOADING SPECTRUM, WITH ROOT JOINT STRENGTH
WITH CYCLIC TEM.
PERATURE AND
HUMIDITY, 2 LIFETIMES

E. UPPER SURFACE
PYLON RIB
INTERFACE

111 1 STATIC COMPRESSION 1 DESIGN 122 x 091.14. 310 UPPER SURFACE-PYLON RIB INTERFACE
AND SHEAR TO FAILURE STIFFENEDPANEL. DESIGN VERiFICATION :STATIC STRENGTH

WITH RIB ATTACHMENT

(21 T SPECTRUM FATIGUE. 1 DESIGN 1 . 22 x (1 .91m 14 x 3ft) UPPER SURFACE-PYLON RIB INTERFACE
COMPRESSION STIFFENED PANEL-, DESIGN VERIFICATION: FATIGUE STRENGTH
DOMINATED LCKDING WITH RIB ATTACHMENT
SPECTRUM. WITH SHEAR,
2 LIFETIMES

F. LOWER SURFACE.
PYLON RIB
INTERFACE

I11 1 STATIC TENSION AND 1 DESIGN 1.22x D . Sim [4 x 3ftl LOWER SURFACE-PYLON HIS INTERFACE
SHEAR TO FAILURE STIFFENED PANEL. DESIGN VERIFICATION ; STATIC STRENGTH

WITH RIB ATTACHMENT

\.Ti
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TABLE 13. SMI Y OF DESIGN VERIFICATION TESTS (Continued)

NUMBER
ITEM DESCRIPTION OF TYPE OF TEST TEST VARIABLES SPECIMEN PURPOSE OF TEST
NO. SPECIMENS CONFIGURATION

(2) 1 SPECTRUM FATIGUE, 1 DESIGN 1.22 x 0.91m 14 x 311 LOWER SURFACE-PYLON RIB INTERFACE
TENSION DOMINATED STIFFENED PANEL DESIGN VERIFICATION; FATIGUE
LOADING SPECTRUM. WITH RIB ATTACHMENT STRENGTH
WITH SHEAR,2 LIFETIMES

G. UPPER SURFACE,
IMPACT RESISTANCE

2 IMPACT UNDER LOAD
(OPERATING STRAIN

2 DESIGNS 1.83 x 1.22m 16 x Atli
STIFFENED PANEL

UPPER SURFACE IMPACT RESISTANCE
DESIGN VERIFICATION

LE V E LI, 2 LOCATIONS, WITH AND WITHOUT
SPECTRUM FATIGUE. MANHOLE
COMPRESSION
DOMINATED LOADING
SPECTRUM. 2
LIFETIMES: STATIC
COMPRESSION TO
FAILURE

H. LOWER SURFACE, 1 IMPACT UNDER LOAD 1 DESIGN t.03 x 1-22m (6 x AM LOWER SURFACE IMPACT RESISTANCE
IMPACT RESISTANCE IOPERATING STRAIN STIFFENED PANEL. DESIGN VERIFICATION

LEVELI. 2 LOCATIONS: WITH CUTOUT
SPECTRUM FATIGUE,
TENSION DOMINATED
LOADING SPECTRUM,
2 LIFETIMES: STATIC
TENSION TO FAILURE

I. UPPER SURFACE t I SPECTRUM FATIGUE. 1 DESIGN 1-83 n 1.22m I6 x 411) UPPER SURFACE MANHOLE FAIL-SAFE
MANHOLE COMPRESSION STIFFENED PANEL DESIGN VERIFICATION
FAIL-SAFE DOMINATED LOADING WITH MANHOLE;

SPECTRUM, 112 1 STIFFENER CUT AT
LIFETIME: STATIC EOGE OF MANHOLE
COMPRESSION TO FAILURE

1 UPPER SURFACE t SPECTRUM FATIGUE 1 DESIGN 1.83.122-16. 41tI UPPER SURFACE FAIL-SAFE DESIGN
PANEL COMPRESSION STIFFENED PANEL, VERIFICATION
FAIL-SAFE DOMINATED LOADING CENTER STIFFENER AND

SPECTRUM. 112 LIFETIME; ADJACENT SKIN CUT
STATIC COMPRESSION TO
FAILURE

K. LOWER SURFACE 1 SPECTRUM FATIGUE, i DESIGN 1-63 x . 22m W x 411 LOWER SURFACE FAIL SAFE DESIGN
PANEL WITH TENSION DOMINATED STIFFENED PANEL VERIFICATION
CLITOUT, LOADING SPECTRUM, WITH CUTOUT.
MAIL-SAFE 112 LIFETIME; STATIC 1 STIFFENER CUT AT

TENSION TO FAILURE EDGE OF CUTOUT

4.2 SPARS A. FRONT SPAR, 2 STATIC BEAM BENDING 2 DESIGNS (ROOT END 3.OSm IIWO FRONT SPAR DESIGN VERIFICATION
SENDING TO FAILURE AND TIP CANTILEVER BEAM

CONF IGURATIONSI

S. REAR SPAR, 2 STATIC BEAM BENDING 2 DESIGNS (ROOT END 3.05m 11 D11 REAR SPAR DESIGN VERIFICATION
BENDING TO FAILURE AND TIP CANT,; EVER BEAM

CONFIGURATIONS)

C FRONT SPAR WEB, 1 FUEL PRESSURE 1 DESIGN 1.83. IE*tI SPAR SPARWF.B PRESSURE DESIGN VERIFICATION
PRESSURE LOADING YO FAILURE SEGMENT

All

ATQ
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;'ABLE 13. SUMMARY OF DESIGN VERIFICATION TESTS (Continued)

R
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Y.
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ITEM DESCRIPTION
NUMBER

OF TYPE OF TEST TEST VARIABLES SPECIMEN PURPOSE OF TEST
NO SPECIMENS CONFIGURATION

D. SPAR WEB SLAT
TRACK CUTOUT

(11 6 STATIC SHEAR TO 2 DESIGNS IINBD & 0.91 It 9.91m 13 A 310 SPAR WEB CUTOUT DESIGN VERIFICATION;
FAILURE OUTSD PANEL WITH CUTOUT STATIC STRENGTH, ENVIRONMENTAL

CONFIGURATIONSI: 3 EFFECTS
TEST ENVIRONMENTS.
RTD, 356K 1180°Fl WET,
AND RT AFTER I MO
FOEI_ SOAK

121 6 SPECTRUM FATIGUE. 2 Dc" IGNS i INBD & 0.91 x 0 .01. 13 It 310 SPF-R WEB CUTOUT DESIGN VERIFICATION;
SHEAR. 2 LIFETIMES OUTBO PANELWITH FATIGUE STRENGTH, ENVIRONMENTAL

CONFIGURATIONSI; 3 CUTOUT EFFECTS
TEST ENV IRONMENTS,
RTD, 180 0 F WET, AND
RT AFTER 1 MO FUEL
SOAK

E. SPAR WEB SLAT 1 SPEC 7RUM FATIGUE. 1 DESIGN 0.91 x 0.91 m lax 310 SPAR WEB CUTOUT FAIL-SAFE DESIGN
TRACK CUTOUT. SHEAR WITH CYCLIC PANEL WITH VERIFICATION
FAIL-SAFE TEMPERATURE AND CUTOUTAND

HUMIDITY, 112
LIFETIMES; STATIC
SHEAR TO FAILURE

IMPOSED DAMAGE

4.3 RIBS A. FUEL BULKHEAD 2 FUEL PRESSURE 1 DESIGN; 2 TEST 1.03m (610 RIB SEGMENT FUEL BULKHEAD RIB 1):31r,.N VERIFICATION:
RIB LOADING TO FAILURE ENVIRONMENTS. RTD PRESSURE, ENVIRONMENTAL EFFECTS

AND 366K 11800 F1 WET

B. WING ROOT RIB
WEB

111 2 STATIC SHEAR TO 1 DESIGN 0.91 .0 91m  (3 x 3Ft1 ROOT RIB WEB DESIGN VERIFICATION;
FAILURE PANEL STATIC STRENGTH

121 3 SPECTRUM FATIGUE. 1 DESIGN 0.91 x 0.91m 13. 311) ROOT RIB WEB DESIGN VER IF ICATIDN;
SHEAR.2 LIFETIMES PANEL FATIGUE STRENGTH

C. PYLON RIB WEB

(1) 2 STATIC SHEAR TO 1 DESIGN 0.91 x 0.91-13 It 3Ft1 PYLON RIB WEB DESIGN VERIFICATION:
FAILURE PANEL STATIC STRENGTH

121 3 SPECTRUM FATIGUE, 1 DESIGN 0.91 x 0 . 91m 13 x 3fil PYLON RIB WEB DESIGN VERIFICATION:
SHEAR. 2 LIFETIMES PANEL FATIGUE STRENGTH

D. KICK RIB WEB
111  2 STATIC SHEAR TO 1 DESIGN 0-91 x0 .91m I3 x 3ft1 KICK RIB WEB DESIGN VERIFICATION:

FAILURE PANEL STATIC STRENGTH

(2) 3 SPECTRUM FATIGUE. 1 DESIGN 0.91 x 0 .91.13. 31tl KICK RIB WEB DESIGN VERIFICATION;
SHEAR, 2 LIFETIMES PANEL FATIGUE STRENGTH

E. 1N7 ERMEDIATE RIB
CRUSHING

1 STATIC RIB
COMPRESSION TO
FAILURE

1 DESIGN 0.30. 010 RIB SEGMENT INTERMEDIATERIB OESiGN VER[FICATION

4.4 LIGHTNING A. UPPER SURFACE 1 LIGHTNING STRIKE 1 DESIGN 11,1311 x 0.61m 12 x 2111 SURFACE PANEL LIGHTNING STRIKE PROTECTION
STRIKE
PROTECTION
SYSTEM

PANEL STIFFENEDPANEL SYSTEM DESIGN VERIFICATION

$. ACCESS DOOR 1 LIGHTNING STR IKE IDESIGN 0.91 x 0.91mi3x'ift; ACCESS DOOR LIGHTNING PROTECTION SYSTEM
STIFFENED PANEL, DESIGN VERIFICATION
WITH ACCESS DOOR

C. SKIN SPLICE 1 LIGHTNING STRIKE 1 DESIGN 060 x 0.60m (2. 2fil SPLICE JOINT LIGHTN I NG PROTECTION SYSTEM
STIFFENED PANEL, DESIGN V _RiF1CATION
WITH SPLICE JOINT
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ABoth static strength and flight-by-flight spectrum fatigue testing are proposed

for the design verification. In addition, temperature and humidity are included

in selected tests to assess envircnmental effects on the strength and durability

of built-up, complex composite wing structures. Tests also are included to verify

design approaches for impact resistances fuel pressure loadings, ; pail-safety, and

lightning strike protection.

The design verification testing schedule is shown as subtask 4.0 in the

previously presented Figure 21. The testing extends over a period of two years,

through the end of 1983.

Covers. - Twenty-five (25) wing cover design verification tests are specified.

These tests address the following: upper surface panel with access door cutout; out-

board lower surface panel; upper and lower surface wing root joints; upper and lower

surface pylon rib interfaces; upper and lower surface impact resistance; upper

surface manhole, fail.-safe; upper surface panel, fail-safe; and lower surface panel

with cutout, fail--safe.

Spars. - Eighteen (18) wing spar design verification tests are specified,

including: front and rear spar bending; front spar web, fuel pressure; spar web
slat track cutout; and spar web slat track cutout, fail.-safe.

Ribs. - Eighteen (18) wing rib design verification tests are specified, includ-

ing: fuel bulkhead rib; wing root rib web; pylon rib web; kick rib web; and inter-

mediate rib crushing.

Lightning Strike Protection System. - Three (3) lightning strike protection

system design verification tests are specified: an upper surface panel, an access

door, and a skin splice. It is planned to have these tests conducted at the

.Lightning Test Research Institute (LTRI).
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DEMONSTRATION ARTICLE DEVELOPMENT

The demonstration and validation of (1) manufacturing processes and feasibility

and (2) structural integrity of composite wing designs are proposed to be undertaken

by fabrication of a 27.8 M (300 ft 2 ) wing cover segment, and a wing box test specimen
with approximately 10 m2 (108 ft2 ) of planform area, respectively. The proposed
schedule for this task is presented on Figure 22. Upon satisfactory completion,

this proposed task will demonstrate technology readincss to ti , l) achieve the fuel

savings goal of the ACES Program, and (2) provide Company management confidence to

commit to producing a wing of a new aircraft in the 1985-1990 time-period employing

extensive amounts of composite materials.

An alternative effort encompassing the detailed engineeriing design, fab-

rication and test of a significant portion of the high aspect ratio wing was planned

in sufficient detail to define the schedule and resource needs. The proposed effort,

described in Appendix E for information only, was not considered a viable option in

terms of the high cost weighted against the potential benefits attainable by such an

effort.

Manufacturing Process Demonstration and Validation Article

The proposed validation of the wing design relative to full-scale manufacturing

feasibility and of the manufacturing processes developed previously will be accom-

plished by fabricating a 1.52 x 18.26 in (5 x 60 ft) wing cover segment, Figure 23.

Engineering drawings, including loft drawings prepared during Preliminary Design, will

be made available at go-ahead (Jan. 1983). Production-type tools will be employed

in the fabrication of the surface panel specimens. Shop orders and other controlling

documents will assure full conformance to Engieering and Quality Assurance

requirements.

The wing cover segment will, by its configuration, provide a practical look at

the task of constructing a large composite structure. The segment, which is the

longest continaous span structure which can be accommodated in the existing auto-

clave, will validate such processes as: lay-up of very thick sections, cure cycles

for structures with thick and thin sections, tooling for cocuring stiffeners to

skin, thermal expansion effects between tool and part, and handling problems due to
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size of part. The inspection techniques found applicable to critical wing cover

segments in the previous Preliminary Design task will be employed to verify ade-

quacy of NDI methods and to demonstrate cover integrity.

The completed article will also be evaluated by visual examination, dimen-

sional inspection and mechanical tests of panels cut from the cover. Suspect, areas

may be sectioned and samples subjected to laboratory tests. Determinations such as

fiber-resin ratio, void content, and detection and identification of defects would be

made.

Wing Box Test Specimen

It is proposed that a representative wing box segment as shown in Figure 24

be designed, fabricated, and tested to verify and demonstrate that both Engineering

and Manufacturing/QA requirements can be met when integrating major wing components

into a box assembly.

Design and Analysis. - Layout and detail drawings required to fabricate and

'	 assemble an untapered box section 4.6 m (181.5 in) long with a 2.0 m (78.9 in) chord

and a depth of 0.8 m (31.6 in) will be developed. In order to conserve resources,

the sub-components designed and fabricated for design verification testing will be

employed in the box specimen to the extent possible.

A finite element str'actural analysis model of the box specimen will be devel-

oped to support the design/analysis and test efforts. The applied loads (i.e. shear,

bending moments, torsional moments) for design and test will be consistent with the

designs loads environment for the various components employed in the box. Local loads

(i.e., airloa.ds, fuel pressure) will be included.

Fabrication and Assembly. - The representative wing box will contain covers

(with and without access doors) for the upper and lower surface, the front and

rear spar, and eight fu11 ribs. Major joints and variations of spar and rib con-

cepts can be employed. All components will be fabricated by production personnel in

a production environment. The fabrication of the components and the assembly of

the components into a structure which meets Engineering and Quality Assurance re-

quirements will demonstrate the validity of all tooling and processing concepts

involved.
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18.29 m {60.0 ft}

1.52 m (6.0 ft)

Figure 23. Process Demonstration/Validation Panel

Figure 24. Representative Wing Box Vest Specimen
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Additional detail on typical tooling and fabrication processes involved in

manufacture of wing components are described in Appendix A of this report.	 'N

Testing. - A series of limit load tests, fail-safe tests, damage growth

characteristic tests, repair verification tests and an ultimate load test will be

conducted. in th.- fail-safe tests, major members will be severed and the structure

loaded to demonstrate fail-safe capability. After testing, these imposed damages

will be repaired, and the integrity of the repairs verified in subsequent tests.

Upon completion of the prescribed tests, tear-down inspection will be conducted.

The applied loads will match the design shear, bending moment and torsional

moment loading for the particular area of investigation. The box will be arranged

for testing in a universr.l testing frame and loads applied by hydraulic jacks.

Appropriate instrumente,;ion will be provided to monitor the tests.

The design, fabrication and testing of the wing box specimen will provide

further information on some of the key design factors, including:

Assembly strain control

a Accountability of thermal strains induced by the curing cycle

® Layup considerations for component design

® Metallic interface corrosion protection

• Drilling and machining

Tooling for control of critical dimensions (built-up assemblies,

fit tolerance on secondary bonds)

o Peel and flatwise tension limitations for cover-substructure interface

joints

The demonstration tests will provide the necessary full-scale data to validate

design philosophy, design allowab les, design analysis methods, fabrication tech-

niques, inspection methods and repair techniques, and thereby, provide the confid-

ence needed to proceed with design and manufacture of a production wing.
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CONCLUDING REMARKS

A-plan has been defined for a composite wing development effort which will

assist commercial transport manufacturers in reaching a level of technology readiness

where the utilization of composite wing structure is a cost-competitive option

for a new aircraft production program. The recommended development effort consists

of two programs •: a joint governmen';-industry material development program, and a

wing structure development programs The planned material development program will

result in a improved composite material system that will lead to an efficient wing

structure designs The firing structure development program will provide the technology

and data needed: to produce a cost-competitive advanced composite wing structure,

to provide Company Management confidence to commit to production of such a

structure, and to achieve certification of an aircraft employing such a structure.

The material development program is proposed as a joint effort between the

three manufacturers, the material suppliers, and the Government. Because of its

general applicability to the design of composite aircraft structure, it is suggested

that this effort be funded as a separate program. The goal of the material develop-

ment program is a graphite/epoxy material system with improved characteristics

that will meet engineering and manufacturing requirements, and, at the same time,

will not invalidate the existing graphite/epoxy data base and, thereby, impose

drastic requalification requirements. The material development must include, as

one of many requirements, consideration of modifications which will mitigate the

electrical hazards problem associated with graphite fiber release in event of a

fire. However, means must be found to reduce the electrical hazard without resort-

ing to a completely new material system, or grossly degrading the material's pro-

cessibility, mechanical performance and environmental durability.

The planned wing structure development program encompasses engineering and

manufacturing analytical studies; manufacturing development; and development

testing - to generate composite wing design data, to support concepts development,

and for design verification. The program culminates in a manufacture and test

demonstration of technology readiness using a representative (generic) wing box

structure. The program objective is to develop and demonstrate the technology

needed for design and manufacture of composite wing structure which will meet

durability and damage tolerance requirements.
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The scope and thrust of the wing development program is based on the belief

that such a program should be designed to take each manufacturer R-r far as necessary

towards developing the technology and data needed for production of composite wing

structure, and reducing the associated risks to an acceptable level. It is not

felt, however, that a company, and/or the Government, can afford to fully exercise,

in advance, the manufacturing scale-up efforts associated with building a complete

wing structure. These should, and must, be addressed in the normal Company-funded

production program for the new aircraft. Such a production program would include

the manufacture and test of two full-scale articles (a static test article, and a

fatigue damage growth test article), as well as a flight test article. It is

believed that each of the major manufacturers will require similar composite wing

development programs to achieve technology readiness at acceptable level of

risk. At the same time, it is anticipated that each manufacturer's program will

include some concept-peculiar aspects, reflecting differing philosophies,

approaches, and operating procedures.

The timing of the recommended material development and wing structure develop-

meet programs reflects the goal of achieving technology readiness for production

of composite wing structures in time for the incorporation of such structure into

the design of new aircraft in the 1985-1990 time frame. However, the current con-
cern relative to the hazards of fiber release has resulted in uncertainty concerning

the funding and timing of NASA's planned development effort. In order to minimize

the impact of any major delay in program startup, early initiation of two long

lead-time/high priority technology development efforts is urged. It is recommended

that the development of a new, improved material systems be started immediately

so as to provide a firm material base for the applications of composite primary

wing structure. This material development effort should include the proposed

efforts to alleviate the potential carbon fiber release hazard.. It is also

recommended that efforts be initiated in the near future to develop the data neces-

sary to demonstrate the durability and damage tolerance characteristics of comp-

osite laminates when subjected to the wing design environment. These develop-

ment efforts should include the definition of the wing design environment and

the development of associated design criteria.
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APPENDIX A

CONCEPTUAL, DESIGN

M,
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The conceptual design of a reduced energy advanced transport aircraft (RE-1011)

was conducted to provide the framework for identifying and investigating unique
design aspects and problem areas in the use of composite materials in commercie.l air-

craft wing structures. The aircraft incorporates many advanced technology features

including a high aspect ratio wing with a supercritical airfoil shape, active

controls, and composite materials in both primary and secondary structure of the wing.

The design study was conducted in sufficient depth and detail to (1) provide insight

into defining technology needs for design/analysis of highly loaded composite wings,

(2) aid in the identification of needo for design concepts development and verification

testing, and (3) define facility and equipment requirements.

The results of the conceptual design study are summarized in ti-,e fcllowing text,

which includes: (1) a description of the baseline RE-1011 airplane, (2) an identifi-

cation of the selected flight conditions and the corresponding net wing loads for

these conditions, (3) a description of the detail analysis results of selected point

design regions, (4) a narration of typical manufacturing breakdowns for the multi-

spar and multi-rib structural arrangements, and (5) the identification and investi-

gation of unique or significant design aspects associated with composite Wing

structure.

Baseline Airplane

The general arrangement of the baseline airplane (RE-1011) is shown on Figure 25.

This configuration is an advanced technology transport which incorporates three

advanced, mixed-flow, turbofan engines,.a supercritical wing with a reduced leading-

edge sweep, the use of composite material for both primary and secondary structure,

and active controls. As noted on this figure, this airplane has a wing semispan of

28-74 m (94.3 ft) and a fuselage length of 70.0 m (229.7 ft) .
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CHARACTERISTICS WING I ORI	 JNTAL TAIL VERTICALTAIL
AREA SO. M. [SO. FT.1 330.54 (3559) 71.54 1770.1f 44.51 1479.1)
ASPECT RATIO 10 5 1.6
SPAN	 N. IFT.I 57.49 1188A) 18.93 162.1) 0,12 127.631
ROOT CHORD M. (INA B.85 1340.251 $.821228-061 8.12 1319.541
TIP CHORD	 M. I1N.1 2.651104.47 1-74 WBRIII 2.43 [95.80)
TAPER RATIO 0.30 0.30 430
MACM. RN-1 6.311248.281 4.15 f103.2i 5.72 1225.18]
SWEEP RAD.. IDEG.I 0.5241318 0.524 1301 0.611 [351
TIC ROOT % 12 10 10
TIC TIP	 % 12 10 10

GROSS WEIGHT -183977 KG 4405592 LB M.)
POWER PLANT - ADVANCED MIMED FLOW TURBOFAN
INSTALLED THRUST - 154550 N 134745 LIL F.1
PASSENGERS-400

RANGE - 3,000 N.M.
GEN. ARR. - 3.000 N.M.
400 PAM. ADV. TURROFAN

2. DIMENSIONS IN METERS ( FEETI. OR NOTED

1. CAOAM REF. DWG. CL1337-1 . 1.1, 2, 3

NOTE

fi{H—THin
–57.49 088.61—

17.493
157391

1

F-^

Figure 25. Genera'_ Arrangement - RE-1011 Advanced. Technology Airplane
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The baseline airplane has a 331 m 2 (3558 ft2 ) wing area with a gross weight at

takeoff of 183,970 kg ( 405,590 lbm). This configuration has a payload of 36,290 kg

(80,000 lbm), equivalent to 400 passengers, and a range of 5,560 km (3000 nmi).

Table 14 contains the airplane characteristics and, for comparison pur-	
r

poses, those of an equivalent payload L-1011-1 airplane. Note the approxi-

mate 1000 km (540 nmi) increment in range indicated for the advanced technology

airplane.

An analysis of the center of gravity 1 c.g.) limits and co,respondi.ng tail size

was conducted of the baseline configuration. This analysis revealed that for the

supercritical wing with more negative Cmo , the e.g. range should be located aft to

minimize trim drag, A suitable e.g. range for this airplane is 25-to 50-percent c

for the horizontal tail shown in Figure 25. Assuming that the static margin require-

meet is relaxed to the neutral stability limit and active controls arc em- p loyed, a

tail volume coefficient of approximately 1.0 is adequate for the above e.g. range.

The masses assigned to the various components of the baseline airplane are

listed in Table 15. The two largest structural mass items are the wing and body,

which amounts to 19,650 kg (43,120 lbm) and 2+,940 kg (54,990 lbm), respectively.

This study is focused on the wing which represents 11-percent of the airplane takeoff

weight. A more detailed weight statement of the wing is presented in Table 16 and

indicates that 1+,750 kg (32,530 1bm) is attri;Juted to the wing structural box which

is 75-percent of the total wing mass.

Design Conditions and Loads

A survey of design conditions for the L-1011 aircraft was used as a basis for
selecting representative loading conditions for the study. In general, severe! type7
of loading conditions design the L-1011 wing at various locations. Included are

positive and negative steady maneuvers, roll maneuvers, dynamic gust, dynamic taxi

and ground handling maneuvers. The eventual use of advanced load alleviation

techniques (i.e. maneuver load control, elastic mode suppression and Cust alleviation)

in conjunction with the aerodynamic characteristics of a supercritical eirfoil, will
undoubtedly change the type of critical design loading conditions for various regions

1.08



AIRCRAFT MODEL RE-1011 L-1011-1

WING AREA - m2 (ft2) 330.5 (3 558) 321.0 (3 456)
OVERALL LENGTH - m (ft) 70.0 (229.7) 54.2 (177.7)
WING SPAN - m (ft) 57.5 ('s88.6} 47.3 !165.31
OVERALL HEIGHT - m (ft) '17.5 (57.4) 16.8 (55.3)

OPERATIONAL WEIGHTS- kg (Ibm)

MAXIMUM TAKEOFF 183 970 (405 590) 195 040 (430 000)
MAXIMUM ZERO FUEL 142940 (315 130) 147 420 (325 000)
OPERATING EMPTY 106 650 (235 130) 109 040 (240 400)

PAYLOAD - kg (Ibm) 36 290 (80 000) 36 290 (80 000)

ENGINE MODEL ADVANCED MIXED-FLOW RB.211.2213
TURBOFAN

TAKEO F F THRUST - N (Ibf) 154 560 (34 750) 186 820 (42 000)

RANGE - km (nmi) 5560(3000) 4 520 (2 43$}

s :' It

K:

TABLE 14. AIRPLANE CHARACTERISTICS

TABLE 15. RE-1011 AIRPLANE GROUP WEIGHT STATEMENT

ITEM
MASS

-
(kg) {Ibm}

WING 19 558 43 118
TAI L 2 211 4 875
BODY 24 943 54 991
LANDING GEAR 7 800 17 196
SURFACE CONTROLS 1951 4 301
NACELLE AND ENGINE SECTION 2 644 5 830
PROPULSION 13 254 29 219
AUXILIARY POWER UNIT 506 1 116
INSTRUMENTS 393 867
HYDRAULICS 1 099 2 423
ELECTRICAL 2 651 5 844
AVIONICS 998 2200
FURNISHING AND EQUIPMENT 16 671 36 754
ENVIRONMENTAL CONTROL SYSs EM 3 484 7 682
DE-ICING SYSTEM 181 398
MAN. EMPTY WEIGHT (MEW) 98 345 216 814
STD. AND OPER. EQUIP. 8 307 18 314

OPERATING EMPTY WT. (OEW) 106 652 235 128
PAYLOAD 36 287 80 000

ZERO FUEL WEIGHT (ZFW) 142 939 315 128
FUEL 41 034 90 464

TAKEOFF WEIGHT 183 973 405 592
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of the wing. However, it is believed that analysis rs a few selected symmetric

flight maneuvers provides adequate insight into the general load levels to be 	 r.

experienced by the composite wing.

The three maximum zero fuel weight conditions selected for the design effort

are for an aircraft with a gross weight of 183,970 kg (405,590 lbm). The flight

parameters associated with these conditions are:

(1) 2.59 positive symmetric maneuver Pt VA , Mach 0.80, Ve = 186 m/s (284 kt)

(2) -I..Og negative symmetric maneuver at V C , Mach 0.80, Ve = 1.86 m/s (284 kt)

(3) 2 .59 Positive symmetric maneuver at VD , Mach 0.95, Ve = 212 m/s (412 kt)

The wing airloads for these conditions were generated based on aerodynamic section

coefficient data obtained by using the Jameson-Caughey NYU Transonic Swept Wing

Computer Program - FL022 (Reference 3). Ten degrees per g of outboard aile-ron was
used for maneuver load control to redistribute a portion of the airload from the

outer region to the inner wing. Flexibility effects were included in the composite

wing loads analysis based on L-1011 aeroelastic deformation data. Wing weights were

generated by assuming the same empty wing weight distribution as the L-1011 wing

and ratioing to account for geometry differences. The wing lift was increased by

an increment equal to the balancing tail load for the most forward center of gravity

limit. Although relaxed stability through use of active controls permits an aft

shift in airplane c.g. range, the tail load is still quite large due to the pitching

moment characteristics of a supercritical airfoil.

The net wing loads for the selected conditions are shown in Figures 26 through

28. These figures present the shears, bending moments, and torsional moments about

a reference axis approximating the rear beam of the wing.

Analysis Results

In order to provide a framework for identifying some of the specific design

aspects and problem areas, limited point design studies were undertaken. In general,

these studies concentrated on the multi-rib structural arrangement (comparable to the
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TABLE 16. RE--1011 WING WEIGHT STATEMENT

MASS
ITEM

(k9) (Ibm)

SURFACES 11 903 26 244

SHEAR MATERIAL 1 224 2 699

RIBS 1 544 3 403

MLG SUPPORT 83 483

WING STRUCTURAL BOX 14 754 32 526

SECONDARY STRUCTURE 4 804 10 592

TOTAL WING 49 558 43 148
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current L-1011 design) and investigated several representative panel concepts: hat-

stiffened and blade--stiffened surface panels for the upper and lower surfaces,

respectively. The wing net loads were .4sed to define surface load intensities (axial

and shear). At selected locations on the wing, point design studies of the panel

concepts were performed to determine representative sizes and configurations, and to

identify feasible fabrication approaches. From these studies, design features such

as representative skin laminate and stringer arrangements were defined.

The surface panel loads were defined at selective spanwise locations on the wing

and used as the basis for the detail structural evaluation of the candidate concepts.

Figure 29 presents a series of sketches which describe the location, and physical

dimensions of the wing box cross sections used for defining" the surface panel loads.

Note the nonlinearity in the width of the structural box due to the kick in the rear

beam at OWS 0.0. The surface panel loads were defined for the specified design

conditions using; a computer program which calculates the internal loads of a single

cell bov with variable elastic properties. The average surface load intensities

resulting from this analysis are displayed in Figures :30 an rl 31. The average upper
surface load intensities are presented in Figure 30 for both the maximum tension and

compression conditions. The shear flows associated with these conditions are also

specified. A maximum axial compressive force of 3.2 MN/m (20,000 lbf/in) is

noted at OWS 0.0, where the kick in the rear beam occurs. The corresponding load

intensities for the lower wing surface are shown in Figure 31 and indicate a

maximum tensile force of 4.2 MN/m (23,900 lbf/ ,.n) occurring at OWS 0.0.

Using the maximwn combination of loads (axial and shear) on a given surface,

the Load environment was defined at three point design regions. Table 17 summarizes

the internal load environment at these selected regions. In addition, this table

presents an approximation of the torsional (Gt s ) and extensional (Ft) stiffness

requirements of the individuai surfaces which were based on design data from the

L-1011 airp3 ane .

In order to perform the detail stress analysis of the candidate concepts, an

amplification of certain aspects of the design criteria reported in Appendix D was
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TABLE 17. WING SURFACE LOAD ENVIRONMENT AND STIFFNESS REQUIREMENTS

I WS 122 OWS 0.0 OWS 452
DESIGN DATA

UPPER LOWER UPPER; LOWER UPPER LOWER

LOAD INTENSITIES
MAX. TENSION LOADS

Ny, kNlm 1086 2434 1856 4186 315 1261
Nxy, kNlm 385 595 963 1086 595 420

MAX. COMPRESSION LOADS
Ny, kNlm -2592 -1016 -4133 -1874 -1243 -315
Nxy, kNlm 595 438 893 1068 438 648

STIFFNESS REQUIREMENTS
0.28 0.32 0.18 0.21 0.06 0.10Ts, GNIm

Et,	 GNIm 0.84 0.94 0.52 0.63 0,17 0.29

f

DESIGN DATA
IWS 122 OWS 0.0 OWS 452

UPPER LOWER UPPERI LOWER UPPER LOWER

LOAD INTENSITIES
MAX. TENSION LOADS

Ny,	 lbflin 6200 13900 10600 23900 1800 7200
Nxy,	 Ibflin 2200 3400 5500 6200 3400 2400

MAX, COMPRESSION LOADS
Ny,	 lbflin -14800 -5800 -23600 -10700 -7100 1800
Nxy,	 Ibflin 3400 2500 5100 6100 2500 3700

REQUIREMENTS- STIFFNESS
1.6 1.8 1.0 1.2 0.32 0.55gs,	 Ibflin X 106

Et,	 Ibflin X 106 4.8 5.4 3.0 3.6 0.96 1.65
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required. The major elements of these postulated study criteria are summarized in

Table 18 with a brief discussion of the more important aspects, design material

properties and the fatigue and damage tolerance criteria, presented in the following

text.

The T300/5208 graphite/epoxy material system was premised for this composite

wing design study. Table 19 presents the design properties for this material which

represent the best estimate of conservative design properties from currently available

test data. These allowables were used in a laminate strength characterization program

entitled HYBRID (Reference 4) to predict laminate strengths which have a 90-percent
probability of exceedance with a 95-percent confidence level. The number of specimens
and batches is limited. Howevery these properties are defined as "B basis" even

though it is not possible to meet all the requirements of MIL-HDBK -5 at this time.

This table contains preliminary design input properties for T300/5208 at room

temperature dry (RTD); at 355 K (180oF) with 1-percent absorbed moisture (180W);
and at 219 K (-650F), dry ( -65D). Where possible the values are based upon tabulated
test results, and are supplemented or compared with qualification and acceptance

data. These data are for laminae with fiber volume ranging from 62- to 67-percent.

The moduli are average values and the Poisson ratio is the average of tension

and compression values. The coefficients of thermal expansion were determined by

extrapolating available data at 366 K (2000F) to 450 K (3500F). Then the average

coefficient was calculated from the reference temperature to 450 K (350oF). The

"B" basis strength was calculated, and the design strains were determined from a

typical stress-strain curve.

For fatigue and damage tolerance considerations, the design requirements were

met by limiting the permissible design strain levels for the static ultimate and

normal operation conditions. Design strain levels of graphite epoxy structures are

currently restricted by many considerations including stress concentrations associated

with cutouts, joints and splices; by iolerance for impact damage; by transverse

cracking in the 90-degree fiber-oriented plies; and in wing structures, by compati-

bility with permissible compression strains. Currently, these considerations restrict

design ultimate strains to approximately 50-percent of the composite material failure

strain or about 4,500 to 5,000 µcm/cm anO. practical working strain levels to between
3,000 to 3,500 µcm/cm. At these design strain levels, defects do not appear to
propagate significantly under operational cyclic loadings and environment.
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TABLE 18. STUDY CRITERIA FOR CONCEPTUAL DESIGN

MATERIAL SYSTEM:
	

7300/5208 GRAPHITE EPDXY

LOADING:
	

COMBINED AXIAL AND SHEAR LOADS

FATIGUE AND DAMAGE TOLERANCE: RESTRICT THE MAXIMUM UNIDIRECTIONAL STRAIN

OF ANY LAM I NAE UNDER COMB I NED LOADS TO A

DESIGN LEVEL OF 4500-5000 A cmlcm ( 1, i  nli n)
ULT I MATE.

STRENGTH: 	 COMBINED ULTIMATE STRESSES WILL NOT EXCEED

THE LAMINATE STRENGTH OR THE ABOVE LAMINAE

STRAIN CRITERIA.

BUCKLING:

	

	
NO GENERAL OR LOCAL INSTABILITY FAILURES

AT ULTIMATE LOADS.

Y
N

h



TABLE 19. PRELIMINARY INPUT MATERIAL PROPERTIES FOR HYBRID COMPUTER PROGRAM

SYMBOL	 UNITS T300/6200 T300/5208 T30D/6208
DIRECTION, TYPE 1 D

OF PROPERTY TEMPERATURE "B" BASIS {3) "B" BASIS BASIS"B"13)

L, INITIAL TENSILE EA11NI,1,1) GPa 148.9 148.9 146.2

a L, INITIAL COMPRES. EA1fM , 1,2) GPa 128 .2 124, 1 137.9
W L, SECOND TENSILE EA1(M,2 , 1) G" 148 .9148 .9 148 .9 140.9
=1
US

L. SECOND COMPRES. EA1(M,2,2) GPa 99.28 113.1 114.4

tu o° T, INITIAL TENSILE EB1(M,1,1) GPa 11,03 9.653 '2.27
x T. INITIAL COMPRES. E011M,1,2) GPa 10.76 9.37? 12.07
w T, SECO Nil TENSILE EBI(M,2,1) GPs 11.03 9.653 12.27

T SECOND COMPRES. EB1(M 2 2) GPa 9.791 6.619 1124

W ° LT, INITIAL SHEAR G1(M,1) GPa 6.516 4,137 5.930
xgH LT, SECOND SHEAR GI(M,2) GPa 2.068 0.621 4,20&

LT MAJOR POISSON 'S MU (M -- .30 31 3

w x I. COEF.OF EXP. ALA(M,1) 1tm/m1K

_-	

43 .50 .36
F w T, COEF, OF EXP, ALA(M ,2) Nm/mIK 29 , 2 33.8 27.2

m cm/cm 8.5 {1269) 7.8 (1168) 6.1 (889)1 L, YIELD TENSILE EPT(M.1,T)
v, T, YIELD TENSILE EPT(M ,1,2) m cm/cm 3 .6 (39.7) 3.0 (28 .9) 4.2 (61.7)
,x L, ULTIMATE TENSILE EFT ( M,2,1) m cm/cm 8.5 (1269) 7.8 [11581 6. 1 (889)
}- T ULTIMATE TENSILE EPT (M	 ) m cm/cm 3.6 {39 .7) 3.0 (28.9) 4.2 (51.7)an

a d
L, YIELD COMPRES. EPC(M , 1,1) m cm/cm 5 ,4 (689) 5.0 (621) 4.0 (552)

m T, YIELD COMPRES. EPC(M ,1,2) m cm/cm eA (86.2) 8 .0 (75.2) 10.0 1120.7)
L, ULTIMATE COMPRES. EPC(M ,2,1) m cm/cm 10.6(1207) 9.7 (1151) 9.811214)
T ULTIMATE COMPRES. EPCIM 2 ) m cmlcm 16.0 (154) 13 . 0 (1081 14 .01155)

w LT, YIELD SHEAR EPS(M ,1) m cm/cm 10.0 (56) 10.0 (41) 8.6151)
x LT, ULTIMATE SHEAR EPS (M,2) m c - cm 23.0 (82 .1) 44.0 ( 62) 14.5 (76)

."^, y a FIBER VOLUME % 6267 62.67 6267
x era DENSITY kglm' 1,605 1.505 1.605
a a o PLY THICKNESS am 013 .013 .013

NOTES: (11 VALUES IN PARENTHESIS ARE STRENGTHS IN GPa,
(2) COEFFICIENTS OF EXPANSION ARE EXTRAPOLATED AVERAGES FROM THE REFERENCE TEMPERATURE TO 450K.
(3) WHERE STATISTICAL BASE IS LIMITED, MINIMUM PROPERTIES ARE ESTIMATED,

SYMBOL	 UNITS 7390/5208 T39015208 T39U15208
O)RECTION,IYPE RTO 180W •650

OF PROPERTY TEMPERATURE "B" BASIS ( 3) "8" BASIS ( 3) "B" BASIS (3)

L, INITIAL TENSILE EA11M,1,11 psi 21 600 000 21 600 000 21 200 000
L, INITIAL COMPRES. EA1{M,10 psi 18600000 10 000 000 20 000 000

x _ L, SECOND TENSILE EAl i M,2,1) psi 21 500 000 21 600 080 21 200 000

L,6EI:DND COMPRES. EAIIM,2,2) psi 14400 000 16400 000 16 600 000
m.7 0

T, INITIAL TENSILE EB1(M,1,1) psi 1 600 000 1490000 1 780 000
x T, INII IAL COMPRES. EB1(M,1,2) psi 1 590 000 1 36D 009 1 750 900

T, SECOND 1'GNSILE EB1(M,2,1) psi 1 690 000
(

1 490 009 1 780 080
T, SECOND kOMPRES. EB1(M,2,2) psi 1 420 000 960000 1 639 900

o LT, INITIAL SHEAR G1(M,1) psi 80D 000 600 000 869 000
x^ LT, SECO NO SH EAR G11M,2) psi 300000 90000 619000

LT, MAJOR POISSON'S MU (M) .30 .31 .33

CC x L, COEF . OF EXP. ALA(M , 1) IWe inlinla F . 24 .28 [	 20

x LU T. COEF. OF EXP. ALA(M.2) 16.2 78.0 15.1

wa L, YIELD TENSILE EPT(M,1,1) 10	 inlin 8.51184) 7.8 [166) 8.1 (129)

w T, YIELD TENSILE EPT(14,1,2) 10'3 inlin 3.6 (5.76) 3.9 (4.21 4.2 (7.51
x L, ULTIMATE TENSILE EPT(M,2,1) 10'3 inlin 8,5 (154) 7.8 (i68) 5.1029)
r T, ULTIMATE TENSILE EPT (M,2,2) 10 '3 inlin 3 ,6 (5.76) 3,0(4.2) 4.217.51

? a L, YIELD COMPRES. EPC(M,1,1) 1O.3 inlin 5.4000) 5.0(90) 4.0180)
T. YIELD COMPRES. EPC(M,1,2) 10'3 in/in 8.0 (12.6) B.0 (10.9) 10.0 (117.51,

o L, ULTIMATE COMPRES. EPC(M ,2,1) 70 inlin 10.6 (175) 9.7067) 9.91176)

T ULTIMATE COMPRES. EPC(M ,2,2) 10 ' 3 inlin 16.0 (22.4) 13.0 (15.7) 14.0 (24)

LT, YIELD SHEAR EPS (M,1) 10'3 inlin 10, 0 (8) 10(6) 8.6 (7.4)

z LT, ULTIMATE SHEAR EPS(M,2) 10'3 inlin 23,0 (11.9) 44(9) 14,5 (11)

î 	 q FIBER VOLUME %
Ihslin3

62.67
.058

62.67
.058

62.67
.058x cc

a
DENSITY
PLY THICKNESS in 005 .995 .005

NOTES: (1) VALUES IN PARENTHESIS ARE STRENGTHS I N Irsi,
12) COEFFICIENTS OF EXPANSION ARE EXTRAPOLATED AVERAGES FROM THE REFERENCE TEMPERATURE TO 359°F.
(3) WHERE STATISTICAL BASE IS LIMITED, MINIMUM PROPERTIES ARE ESTIMATED.
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A preliminary study was undertaken to investigate the mass trend, associated with

varying the configuration of the wing surface panels. The unstiffened skin, hat-

stiffened and blade-stiffened panel configurations were the candidate concepts inclu-

ded in this investigation which was conducted at the upper wing surface of IWS 122.

A summary of the results of this analysis is presented in Table 20 and contains a
1

description of the load intensities, rib or spar spacing and the equivalent flat

plate thickness (a.,a/pitch) for each configuration. The corresponding cross-sectional

dimensions and the general class of the material layup for the structural elements are de-

fined in Figure 32. It is noted that the layups are grouped as a general family of cross-

plied laminates (4 5i,/901 /0k/901 /+45i ). Stacking sequence optimization was not attempted.

These results indicate that the blade-and hat-stiffened concepts are appreciably

lighter than the unstiffened panel configuration, i.e., both stiffened concepts are

approximately 50-percent light l :r than the unstiffened concept. Care should be

exercised in interpreting these results since no attempt was made to optimize the rib

or spar spacing or to include the effect of substructure weight. However, this

limited trend study did provide some guidance in the decision to concentrate any

r	 further analytical studies on the stiffened skin concepts, i.e., the blade- and hat--

stiffened concepts.

Using these concepts and tine T300/5208 graphite/epo xy material system, a more

comprehensive point design analysis was conducted on the upper and lower surfaces

at three wing stations (IWS 122, OWS 0.0 and OWS 45P). The location of these

stations and their corresponding load environment were previously shown in

Figure 20 and Table 17, respectively.

Basically, a series of three computer programs were used for the structural

analysis of the blade- and hat-stiffened concepts; these programs and their general

use are as follows: (1) the 'HYBRID' program (Reference 4) to characterize the

strength and elastic properties of the material, (2) the minimum weight synthesis

programs 'BLADE' and 'HAT' (Reference 5), and (3) the general purpose buckling program

'VIPASA' (Reference 6 and 7) to verify the structural adequacy of the final designs.

Analyses of the blade-stiffened panel configurations were conducted for a

variety of stringer spacing; but all designs were constrained to a 76.2 cm (30.0 in)

rib spacing. The resulting upper and lower panel thicknesses for this stringer

spacing study are shown in Figure 33. Typical panel cross sectional data for the
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ruN TABLE 20. PRELIMINARY DESIGN DATA FOR UPPER SURFACE PANELS AT IWS 122

STRUCTURAL ARRANGEMENT MULTI-SPAR MULTI-RIB MULTI-RIB

SURFACE UPPER UPPER UPPER

CONCEPT UNSTIFFENED HAT-ST IFFrNF I.) LADE-STIFFENED
SKIN

LOAD INTENSITIES
MAXIMUM TENS ION COND

NY,	 kNlm (Ibf lin) 1086 (6200) 1086 (6200) 1086 (6200)
Nxy,	 kNlm (Ibflin) 385 (2200) 385 (2200) 385 (2200)

MAXIMUM COMPRESS' 101v

NY,	 kNlm 4lbflin) -2592 (-14800) -2592 (-14800) -2592 (-14800)
Nxy,	 kNlm (I bfli n) 595 (3400) 595 (3400) 595 (3400)

S PARIR I B SPACING m 0 n) 1.42 (56.0) 0.76 (30.0) 0.76 (34}.0)

EQUIVALENT THICK.  c m2lc m (i n2 li n)(1) 2.84(l.12) 1.37 (0.54) 1.35 (0.53)

(1) EQUIVALENT THICKNESS (t) = AREAWITCH



2.54 am

ij	 (1.00 in)
5.08 cm
(2.00 In)	 .254 cm	 .508 cm

1	 (.10 in)	 (0.20 In)

WEB	 (±452/901/05)AND	 S
FLANGE

ORIGINAL PAGE IS
OF POOR QUALITY	 ; I

1.422 m (56.0 In)^
	 / (*4544/9021043)S

q

SPAR SPACING
1.422 m (56.0 [n)

(A) UNSTI FFENED CONCEPT, MULTI-SPAR ARRANGEMENT
.254 cm	 2.19 cmI	 S KIN (±4515/902/075)S
(.201n)	 (0.47 In)

	

--	 CROWN (452/901/a15)
S

3.81 cm _
(1.50 In)	 I

35.6 cm
(24.0 In)

i(B) HAT-STIFFENED CONCEPT, MULTI-RIB ARRANGEMENT

1.19 cm	 /SKIN 445i5/902/015)S
(0.47 In)

STIFFENER (±4521030)
S

Jf	 30.5

(c] BLADE -STIFFENED CONCEPT, MULTI- RIB ARRANGEMENT

Figure 32, Preliminary Upper Surface Panel Design Data at IWS 122
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L
0

I	 1	 I	 I	 j,	 I	 j	 f	 I	 I	 I	 I
500	 1000

REAR BEAM BUTT LINE, in

Figure 33. Variation in Panel Thickness with Stringer Spacing,
Blade-Stiffened Concept

124



w

20.3 cm (8.0 in) stringer spacing designs are shown in Figure 34. Skin thicknesses

vary from approximately 1.27 cm (0.50 in) to 0.635 cm (0.25 in) for the inboard and

outboard wing 6tations respectively. The correspon d ing thicknesses for the blades

are 1.15 cm (0.45 in) to 0.41 cm (0.16 in), respectively.	 I

An example of the type of design data resulting from the analysis of the blade-

stiffened concept is shown in Table 21. These data reflect the 20.3 cm (8.0 in)

stiffener spacing design for the wing upper surface at the three point design regions.

Applied loads/strains and the corresponding allowables values for the complete cross

section and the individual structural elements are pres ,:.nted. In addition, the

stiffnesses and equivalent thickness of each panel are included in this table.

Using representative thickness data defined from the detail panel analysis,

typical wing bending (FI) and torsional. (GJ) stiffness data were calculated and are

presented in Figure 35. The corresponding wing stiffness data for the L-1011--1

airplane are included or this figure for comparison purposes.

The hat-stiffened panel configuration was subjected to point design analysis in

a manner similar in scope to that conduced on the blade--stiffened panel configuration.

The T300/5208 graphite/epoxy material system was also premised for these designs with

the analyses being conducted on the upper and lower panels at the three point design

regions.

Panel configuraticns were defined at each point design region for stiffener

spacings of 20.3 cm (8.0 in), 25.4 cm (10.0 in) and 30.5 cm (12.0 in). These resulto

are presented in Figure 36 which displays the pane]. equivalent thickness as a function

of wing span (defined by the rear beam butt line) for each stringer spacing. The upper

plot of this figure presents the data for the upper surface panels. In general, the

designs with 20.3 cm (8.0 in) stringer spacing design display the smallest thicknesses

(i.e., least weight) at each of the three point design regions, the exception being

those at IWS 122. At TWS 122 all designs have approximately the same thickness.

For the lower surface panels, an insignificant variation in thickness is noted

when the stringer spacing is varied.

Typical panel cross sectional data that reflect the 20.3 cm (8.0 in) spacing

designs are shown in Figure 37 for the hat-stiffened configuration. This figure

presents the thickness and width of each structural element of the cross section

and includes the general class of layup for each laminate. A summary
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WING
STA IWS 122 OWS 0.0 OWS 452

SURFACE

SKIN (145151014 1905 )s  SKIN 045g/0 14 1905 ) S SKIN (±4'5310221903)s

1.2
1 .24 cm

..940 cm .787 cm

in} (.370 in) {.310 in}

UPPER

5.00 cm I 9.27 cm	 cm.965
4.50 cm	 t	 483 cm
(1.77 in)

11.97 in}	 .749 cm
in)

{3.&5 in)	 {.380 in)
 X90 in

{.295

.

i8lBLADE
BLADE DE

( 16410191905 )s
1±4510/0141904 }$ 4452/01319021

1.13 cm
1.445 in)

•762 cm
(.300 in)

.394 cm
^`` 1.155 ire)

LOWER

6.55 cm	 BLADE
(2.58 in)	 0454	 -2'7)/909)

'	 EiLADE
7.62 cm	 (±457/012/904 )S

-----I

'	
BLADE

3.73 cmS

1yr

(3 .00 in)
(152/010/903)$(1.47 in)

SKIN 04511 /0 12/905) SKIN
1.32 cm	 SKIN (=45.1$1070/906)5 .991 cm	 S .572 cm

	 (-t458/04'905)  
(.520 in) (.390 in) in)(.225  	 S

NOTE: Blades symetrical about q_; all designs reflect a 20.3 cm (8.0 in.) blade spacing.

Figure 34. Cross-Sectional Data for Blade-Stiffened Panel Configuration
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TABLE 21. SUMMARY OF DESIGN DATA FOR UPPER SURFACE PANELS -

BL + DE-STIFFEIIED CONFIGURATION

LOAD INTENSITIES (hNlm)ITEM IWS 122 OW5 0,0 OWS 452

APPLIED LOADS
COMPRESSION

AXIAL LOAD, Nx -2592 •4133 -1245
SHEAR LOAD, Nxy 595 886 443

TENSION
AXIAL LOAD, N X 1066 1862 312
SHEAR LOAD, Nxy 385 958 597

GENERAL INSTABILITY AFPL IED ALLOWABLE APPLIED ALLOWABLE APPLIED ALLOWABLE

AXIAL LOAD, Nx -2592 2974 -4133 11051 -1245 1245
SHEAR LOAD, Nxy 595 595 886 886 443 443

SKIN STRENGTH/BUCKLING APPLIED ALLOWABLE APPLIED I ALLOWABLE APPLIED ALLOWABLE

COMPRESSIVF STRENGTH
AXIAL LOAD, Nx •2261 •3382 •2946 3019 -1223 -1975
SHEAR LOAD, Nxy 595 891 1186 9DB 443 715

TENSILE STRENGTH
AXIAL LOAD, Nx 865 3758 1277 2112 275 4017
SHEAR LOAD, Nxy 305 1874 9513 1505 597 HIGH

BUCKLING )LOCAL}
AXIAL LOAD, N X .2261 8208 2945 -3294 .17:3 -1290
SHEAR LOAD, Nxy 595 2161 886 941 443 468

SLADE STRENGTHIBUCK LING APPLIED ALLOWABLE APPLIED ALLOWABLE APPLIED ALLOWABLE

COMPRESSIVE STRENGTH
AXIAL LOAD, Nx 2499	 I .3436 •3042 •3047	 .900 -2310

TENSILE STRENGYH
AXIAL LOAD, Nx B98 3921 1282 3394	 165 2639

BUCKLING (LOCAL)
AXIAL LOAD, Nx ?499 -3942 -3042 .3240	 •900 -1113

STIFFNESS DATA•

TORSIONAL (G:1 ), GNhn 280.0 175.0 65.8
BENDING (Etl, GNIm 641.0 876.0 876,0
EXTENSIONAL (EA), GN 171.0 179.0 176.0

PANEL EQUIVALENT THK (Ucm 1.43 1138 01894

1. BLADE SPACING • 20.3 cm

LOAD INTENSITIES flbflinlITEM IWS 122 OWS 0.0 OWS 452

APPLIED LOADS
COMPRESSION

AXIAL LOAD, Nx 14800 .23600 7110
SHEAR LOAD, Nxy 3400 5060 2530

TENSION
AXIAL LOAD, Nx 6200 10630 1780
SHCAR LOAD,NKy 2200 5470 3410

GENERAL INSTABILITY _APPLIED
14800

ALLOWABLE APPLIED ALLOVABLE APPLIED_ ALLOWABLE

AXIAL LOAD. N X 16480 23680 .63160 -7110 7110
SHEAR LOAD, N X y 3400 3400 5060 6D60 2530 2530

SKIN STRENGTH/BUCKLING APPLIED ALLOWABLE APPLIED ALLOWABLE APPLIED ALLOWABLE

COMPRESSIVE STRENGTH
AXIAL, N X •12910 19310 5620 17240 6985 11280
SHEAR, Nxy 3400 5095 5060 5185 2530 4085

TENSILE STRENGTH
AXIAL, Nx 4940 21460 7290 12060 1570 22940
SHEAR, N Xy 2200 9550 5478 9050 3410 iI	 HIGH

BUCKLING (LOCAL)
AXIAL, N x •12910 46870 16820 1B610 •5985 .730b
SHEAR, N Ky 3408 12340 5060 5860 2530 2670

SLADE STRENGTH/BUCKLING APPLIED ALLOWABLE APPLIED ALLOWABLE APPLIEO ALLOWABLE

COMPRESSIVE STRENGTH
AXIAL LOAD, Nx -14270 19620 -17370 -17400 5140 13190

TENSILE STRENGTH
AXIAL LOAD, Nx 5130 t 22390 7320 19360 940 15070

BUCKLING (LOCAL)
AXIAL LOAD, N X •14270 21940 •17370 16500 5140 -6355

STIFFNESS DATA

TORSIONAL tGt1), (Ibflin) 1B X 106 1.0 X 10 6 0.49 X 106
BENDING (Efl. flbf/in) 4.6 X 106 5.0 X 106 5,0 X 105
EXTENSIONAL (EA) flbfl 38.4 X 10 6 40.2 Y. 106 40.0 X 106

PANEL EQUIVALENT THK. (41 in 0,563 0.643 8.352

1. BLADE SPACING = 6.00 in
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of the design data for the upper wing hat-stiffened panel designs, that correspond

the previously discussed panel cross sectional data, is shown in Table 22. This

table presents the applied and allowable loads for the total cross section and each
structural element of that cross section. The allowable loads corresponding to the
basic strength (tension and compression) and buckling failure modes of the respective

structural element are defined. Additionally, the related stiffnesses (i.e., tor-

sional, bending and extensional) and equivalent thickness of each panel are specified.

The overall wing bending and torsional stiffnesses for a typical hat-stiffened

configuration are presented in Figure 38. Appreciably greater stiffnesses are indi-

cated at the inboard wing station for the composite wing design RE-1011 as compared

to the corresponding data for the L-1011-1 wing design.

Structural Arrangments

The wing configuration for the baseline airplane is presented in Figure 39. The

figure depicts a planform view of the wing with respect to the wing reference plane

and shows the front and rear spar locations and configurations. In addition, wing

cuts were obtained and are shown to illustrate the wing box geometry. The location

of some of the major structural components; such as, the wing engine pylon, main

landing gear, and control surfaces are shown in Figure 40. These components impose

boundary constraints which were incorporated in the structural box definition,

e.g., the main landing gear, in association with the leading edge surface require-

ments, limit the width of the inboard structural box. A more detailed description

of the structural interface requirements is contained in Appendix D, Wing Design

Criteria and Structural Requirements Considerations.

In addition to the above requirements, the wing box must meet the interface

requirements imposed by the fuel, electrical, hydraulic, environmental, propulsion
and control systems. These requirements can be both environmental (load, temperature)

and mechanical (mountings, holes). A general documentation of the systems interface

requirements is presented iaa the aforementioned appendix.

To maintain impartiality in the identification of significant problems

associated with composite wing structure, conceptual design drawings of both the
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TABLE 22. SUMMARY OF DESIGN DATA FOR UPPER SURFACE PANELS -
HAT--STIFFENED CONFIGURATION
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122 OWS 0 .0 OWS452
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CO	 p	 IUN
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multi-rib and multi-spar structural arrangements were developed. Figure 41 presents

an isometric drawing of the L-1011 airplane with views depicting the generalized

structure for these structural arrangements. The wing structural arrangements

for the multi-spar and multi-rib designs are shown in Figures 42 and 43 respectively.

Incorporated in the arrangements are some of the specific design features uncovered

during the detail analysis and design aspect study. A few of the more significant

features are:

• The production joint at the wing/fuselage intersection,

• The wing surface panel stiffener orientation for the multi-rib design are

parallel to the rear beam of the outer wing (i.e., from OWS 0.0 to the tip),

• The location of the support/carry-through structure for the main landing

gear, and

• The identification of special ribs (e.g., surge, intermediate and divider

ribs) that are required by the fuel system.

Some of these design features imposed modifications on the structural arrange-

ment drawings. For example, the third design feature necessitated redefining the

trailing edge concept. In addition to these above design features, ample, strate-

gically located access doors were incorporated in the wing surface design for

assembly and maintainability purposes.

Manufacturing Breakdowns

The manufacturing breakdown of the major components of the wing are based on a

series of decisions which occur in parallel with progress of the engineering design.

The breakdown of the ribs, spars and skins are considered with respect to the design

o! the entire wing box. While an engineering design of a one-piece wing box extending

from the fuselage joint to the tip may be a minimum weight design, practical manu-

facturing considerations of tooling, facilities, uncured material aging limitations

and manloading in a limited area often dictate alternatives. The manufacturing input

to design development is an iterative one which continues until an optimum con-

figuration consistent with feasible and. economic manufacture is achieved.

i	
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A wing extending from the side of the fuselage to the tip without spanwMse or

chordwise ,joints may not prove to be feasible; however, for the purposes of this

preliminary study, such a design was postulated. Figure 44 shows a proposed manu-

facturing breaktowr for a wing of multi-rib arrangement. The following text

describes typical methods of fabricating the major components of the wing box, as

illustrated in the referenced x'igure, and the corresponding tooling requirements to

accomplish this task.

Wing Covers.- The stiffeners are proposed to be fabricated with the wing

skins to form a complete covet. A typical fabrication ^-equer.ce for the blade-

stiffened wing cover is as follows:

(1) Layul, broadgooda into orientations and thicknesses required for doublers,

fillers, stiffener components. Cut to size, wrap and store in freezer.

(2) Lay wing skin, including partial plies, on taol. As rsquired during and

after skin layup, add details described in item (1).

(3) Remove blade-stiffener details from freezer, thaw, and form as shown on

the cover drawing of Figure 44. These are to be completed when item (2)

is completed.

(4) Place properly supported blade-stiffened details on inner surface of skin

and corure to form a complete cover. Tram for assembly.

For the alternate hat-stiffened wing cover design, the hat stiffeners are either

cured and adhesively bonded to the skin or cocured using an internal bladder-type

mandrel to support the hat during cure.

In order to fabricate the wing skin in one piece, full-size tools approximately

6.4 x 32.6 m(21 x 107 ft) are required. To achieve the proper contour for the layup

and cure tools, master models (Figure 45) of the left and right hand, upper and lower,

outside surfaces are required. The four master models will define the outer mold

lines of the wing contours. The models will be constructed by attaching numerical

control (N/C) cut templates (which define the contour at various butt lines) to a

steel frame which rests on a reinforced concrete level Dad. The master is faced

with plaster or plastic.
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Several approaches can be taken in the construction of the skin layup and cure

tools. One such approach could use graphite surfaces to define the wing contour on

the skin in the following manner:

(1) Layup a.-id cure a graphite face plate directly on the master model. The

initial cure of this face plate will be at a sufficiently low temperature

to set the resin, but not affect the material of the master model.

(2) Buildup a female layup and curing tool less the face plate. This tool
must be capable of withstanding the pressure,/temperature environment of the

autoclave cycle. The frame will be of truss beam construction to allow for

circulation and even heating of the underside of the surface.

(3) Invert the frame on the graphite face plate which is on the master mode..

Attach the face plate to the frame, remov- the now completed tool from

the master model and post cure the graphite face (Figure 46). This tool

will have built-in vacuum and the thermocouple systems and will be mounted on

wheels that have compatible spacing as the rails in the autoclave. Four tools

are required - one each for the upper and lower, left and right, wing

covers (Figure 47).

An alternative to the above tooling approach is one in which has an integral heat,

vacuum and pressure application system, and includes provisions for matched molding and/or

diaphragms for fluid pressure application. This would eliminate the requirements of

a very large autoclave. This tool could be built of steel face sheets welded to

N/C cut header boards for contour. The upper half would be removable while the lower

half is fixed. Rest pads would be required to store the upper half when it is not

in use (Figure 48).

Actual layup of the wing skins will be done using a broadgoods dispensing

machine such as shown in Figure 49. This machine contains roll(s) of tape in a

movable rotating head. The head moves across the gantry which in turn moves length-

wise, thus crosswise oriented (90-degrees) and lengthwise oriented (0-degrees) layers

can be rude. Angular layers can be made by vector runs (i.e., head moves laterally

while the gantry is moving lengthwise). All movements are numerically controlled.

pressure roller on the head compacts the layers during operation. Machines similar

to the one illustrated in the aforementioned figure are currently in use at major fabrkcator
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Figure 47. Skin Lay-up Tool
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of graphite laminates. Although this illustration shows a contoured mold in place,

a flat table car, also be used to make basic broadgoods. A cutting head would also

be installed to cut or trim parts and basic layups.

Laminate material for the blade-stiffeners will be laid up using a broadgoods

dispensing machine. The laminate will be slit to the developed width and laid up

on tools to form the desired channel shape. The filler plies between the channels,

will also be slit from laminate material.

As an alternative to the blade-stiffened design, a hat-stiffened design was also

considered for the wing covers. Due to the extreme length of the enclosed hat

sections, hats and skins will be separately cured and then adhesively bonded in a

subsequent autoclave operation. Possible cocuring methods exists for this concept.

One cocuring possibility would be to support the hat during cure by means of a

rubber bladder which allows autoclave pressure to enter the hat and counterbalance

the external autoclave pressure.

Several automatic methods of forming both the blade-- and hat--stiffened concepts

can be developed. One is the continuous roll form machine shown in Figure 50. This

machine makes continuous constant section hat-stiffeners or U-channel sections for

blade-stiffeners. Rolls of oriented pre-preg tape are held in the rack. Tapes from

these rolls are fed through a series of powered rolls that progressively form the

layers of tape to the desired form. This operation is similar to the roll forming of

mFtal. The form continues through a teflon draw-type die and progresses to the heat-

cure section. The stiffener emerges fully formed and cured at the end of this cycle,

after which it continues across the cutoff table and is cut to the required length.

A powered pull-through at the output is synchroniz^_i to the movement of the rolling

section of the machine.

Another automatic method is the wet method shown in Figure 51. Fibers from

rolls are drawn through a bath of resin. Upon exiting from the bath, excess resin is

wiped from the unshaped mass whijch is then fed through a teflon draw-type: die. This

die has a developed wedge which °orms the stiffener cross section at its output end.

The formed shape then goes throuj;h a heat-care section to emerge a fully formed and

cured stiffener of a constant section. Caterpillar treads pull the stiffener through

the above stages and out onto the cutoff table, where they are cut to the desired

lengths. As an alternative to this method, rolls of prepreg tape could be inserted

into the process, in place of the rolls of fiber, and the resin bath elimina,ced.

.144



POWERED
CATERPILLAR
TREADS

CUTTER

^c

RESIN BATH

DRAW-TYPE DIE

HEAT CURE SECTION

ORIGINAL PAGE IS
OF POOR. QUALITY

TAPE

r

POWERED ROILS

CUTTER,,

DRAW-TYPE DIE

HEAT CURE SECTION

Figure 50. Stiffener boll Forming Machine

TAPE

f^

j3

Figure 51. Stiffener Prepreg and Forming Machine

145



A final method, using a roll and pulform tool machine, is shown in Figure 52.

Oriented prepreg tape is fed through forming rolls to the table. The table top

contains the inner mold line (IML) fora of the stiffener configuration coated with

nonstick material (teflon); whereas, the tread mills contain the outer mole. line

(OML)of the stiffener. The treadmill, which contains the OML stiffener, is

powered to give movement to the operation. The heat-cure element is located

between the wheels. The stiffener exits from the tread mill onto the cutoff area

and is cut to the required length.

Spars. - The spar concept displayed in the typical manufacturing breakdown of

Figure 44 is a one-piece integrally molded laminate with caps, web and stiffeners

cocured. The manufacturing approach is shown in Figure 53 with the fabrication

sequence as follows:

(1) Layup broadgoods on flat tool to form doublers, web stiffeners, etc.

Cut to size, wrap and store in freezer.

(2) Layup basic spar configuration, including partial plies on flat tool.

(3) Trausfer spar layup to spar molding tool., add doublers and web stiffeners

and cocure to'form web. Trim for assembly.

An alternative to the one-piece molded spar approach is to include the spar caps

into the wing cover fabrication process, and form the web separately. The stiffened

web would be mechanically attached to the spar caps in assembly.

Two tooling methods are available for molding the one--piece spars. The first

method is to use a trapped rubber-system where heating the restrained rubber causes

it to exert pressure against the laminate (Figure 54). Another method uses a heater

press to apply pressure with rubber blocks included to distribute the pressure

(Figure 55)•

Ribs. - The general design of the ribs provides for an integrally stiffened web

with separate upper and lower caps. The manufacturing sequence is as follows:

(1) Layup broadgoods necessary for the design of the rib web. Include design

details: such as, doublers and stiffeners.

(2) Layup material for rib caps r..;d trim to size.
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Figure 54, Elastomeri.c Tool for Molding One-Piece Spars
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Figure 55. Heated Press Tool for Molding One--Piece Spars
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(3) Mold web with stiffeners in place to form cocured structure.

(4) Cure rib caps in matched mold tool.

(5) Assemble caps to web with mechanical fasteners and trim for assembly.

Alternate configurations include truss ribs and solid web ribs with rein-

forced access holes. The tooling for fabricating the integrally stiffened web is

similar to that described for the spars.

Rib caps Will be molded in matched dies using a heated platen hydraulic press.

To fabricate the tool and handling equipment for the large rib caps, a modular

system is proposed. The tool will be divided into segments of 1.2 m (4.0 ft) to

1.8 m (6.0 ft). The segments are indexed to an incremental tool hole pattern in

the platen of the press. The tool shown in Figure 56 has a base plate, wedge

activated side plate and a cover plate. The closing pressure of the mold activates

the side details for lateral pressure. Caps for truss type ribs required two molds,

whereas caps for the solid web ribs require only one mold each. heft and right hand

ribs require separate tools.

Design Aspects

Design aspects considered essential for inclusion in a composite wing structure

development program were conceptually evaluated. This investigation was conducted

in sufficient depth to provide viable approaches for design. The advantages and

disadvantages of the candidate concepts for each design aspect are presented to

highlight the problem areas requiring resolution by further analytical and experi-

mental evaluations.

This study was focused on wing box structure compatible with a multi-rib

structural arrangement. However, some design aspects, such as, access doors and

substructure components are in general applicable to both multi-rib and multi-spar

structural arrangements.

Wing Sur-'aces. - The skins and stringers of the surfaces for the wing structural,
box were addressed considering the application of composite materials to this struc-

ture. The design aspects included in this investigation were: the basic material
layup for the surfaces, the orientation of the stiffeners s d the provisions for

access doors in these surfaces. In addition to these aspects, a general discussion
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on wing joints is provided. The wing production joint, because of its extreme

importance in the design of the wing box, is described separately in a later section.

Basic Material Layup: the multi-rib structural arrangement requires stiffened

skin covers with closely spaced ribs to sustain the flight an y landing loads during

the service life of the airplane. The basic skin is a relatively thick laminate com-

prised of multi-layers of 0, 45 and 90 degree plies which is tapered, to some extent,

from the wing root to the tip. The stiffeners, which are cocured with the skin, are

tapered in width and height.

This spanwise tailoring of the cover material severely complicates the fabrica-

tion of the surfaces, but it is nccessary in order to achieve a viable weight and

operating cost for the airplane. This design aspect was investigated using the

results of the previously reported detail analysis. More specifically, the thick-

nesses and ply orientations defined for the blade-stiffened,-surfaces at the three

point design regions were used to inter^polate the material layup for the entire

wing. Figures 57 and 58 present examples of the layup sequencing required for the

upper and lower covers. The number and orientations of the unidirectional plies

were adjusted during this process but the minimum requirements as dictated by the

theoretical strength/stiffness analysis were maintained. These figures show the

proposed method of adding or deleting the plies.

In both figures the general family of crossplied laminates are indicated;

however, a later analysis may dictate a different method of interspersal to gave

a more efficient final layup. In areas of high stress, ?dditional reinforcing plies

will be required. The method of reinforcing the stricture adjacent to the access

holes is illustrated in Figure 58.

Stiffener Orientation: Another design aspect investigated was that of the

orientation of the stiffener on the wing surfaces. Candidate stiffener orientations

were defined and subjected to a conceptual evaluation. A description of the

candidate concepts and the results of the evaluation are presented in Figure 59 and
Table 23, respectively. In summary, the candidate concepts included wing skin with

(1) stringers on percent chord, (2) stringers parallel to the front beam, and (3)

stringers parallel to the rear beam of the outer wing. The results indicated that

r
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TABU 23. CONSIDERATIONS FOR STIFFENER ORIENTATION

DESIGN FABRICATION

STRINGER STRINGER STRINGER RIB CLIP RIB ACCESS MANDREL
CANDIDATE RUNOUT JOIN'S TWIST DESIGN ORIENTATION COONS REMOVAL CURE

NONE AT FRONT REQUIRED AT MINIMUM TWIST; COMPLICATED; NORMAL TO(L CONVERGING DIFFICULT/IMPOSSIBLE DIFFICULT
AND REAR MOST HIGHLY STRINGERSON VARYING ANGLE STRINGER IN STRINGERS IF STRINGERS ARE FOR SIN•
BEAM; HOW- LOADED REGION; PERCENT LINE, OF STRINGERS OUTER WING; MAKE OIFFI - TAPERED. GLE STAGE
EVER, MUST INDUCED KICK WITH RIBS NORMAL TO RD CULT DOUBLER/ CURE;A
DROP LOAD, ATINBRD DOOR SECONDARY
STRINGERS WING, CONFIGURATION BOND,
PROGRESSIVELY
OUTDO.

1480 IN.; REAR NOT REQUIRED MODERATE FOR STANDARDIZED NORMAL TO PARALLEL STIFF MODERATE TWIST OF SINGLE
BEAM, INBRD EXCEPT TO PRO- UPPER STRINGERS; RIB•10-COVER FRONTBEAM. ENERS AND CON- UPPER SURFACE STAGE
AND OUTBRD. VICE VARIATION LOWER STRINGERS CLIPS; STRINGER . STANT SPACING STRINGERS WILL CURE
WING. IN GEOMETRY UP TO APPROX. TO-RIB CLIP RESULTS IN LESS ENHANCE REMOVAL. POTENTIAL.

8 {STEPPED OR 26 DEG, REQUIRED COMPLEX DOOR DIFFICULT IF HATS
TAPERED) WITH FOR BLADE . AND DOUBLER USED FOR LOWER
LOAD FOR MINI- STIFFENED DUE ARRANGEMENT. SURF. DESIGN DUE TO
MUM MASS TO TWIST. TWIST.
DESIGN.

MAXIMUM; NOT REQUIRED MODERATE FOR STANDARDIZED NORMAL TO PARALLEL STIFF• MODERATE TWIST OF SINGLE
ENTIRE FRONT EXCEPT TO PRO- UPPER STRINGERS; RIB-TO-COVER REAR BEAM ENERS AND CON- UPPER SURFACE STAGE
BEAM AND AEA VIDE VARIATION LOWER STRINGER CLIP.: STRINGER . EXCEPT AT STANT SPACING STRINGERSWILL CURE
BEAM, INBD, IN GEOMETRY UP TO APPROX. TO-RIB CLIP INBOARD WING RESULTS IN LESS ENHANCE REMOVAL. POTENTIAL.

C WING. 1STEPPED OR 10 DEG. REQUIRED FOR COMPLEX DOOR DIFFICULT IF HATS
TAPERED) WITH BLADE, AND DOUBLER USED FOR LOWER
LOAD FOR MINI- STIFFENED DUE ARRANGEMENT. SURF, DESIGN DUE TO
MUM MASS TO TWIST, TWIST,
DESIGN.

FABRICATION

TOOLING/ STRUCTURAL CONTROLSURFACE
CANDIDATE FABRICATION EFFICIENCY INTERFACE COMMENTS PREPERENCE

SIMPLE PART TOOLING; POTENTIALLY HEAVIER; SIMPLIFIED BACK UP APPEARS TO BE A MORE COMPLEX DESIGN THAT IS POTEN•
COMPLEX ASSEMBLY SIC IN THICKENING AS FITTING DESIGNS AT TIALLY HEAVIER. SOME OF THE PROBLEMS CAN BE MINE
TOOLS, LESS COMMON STRINGERS ARE FRONT AND REAR MIZED BY HAVING STRINGERS ON PERCENT LINE OUT-

p' PARTS. DROPPED. STRINGER REAMS. BOARD AND CONTINUING THEM INBRD. WITHOUT A
3

'JOINT AT KICK. HEAVY BREAK,
RIB AT KICK,

MODERATE TWIST STRINGERS INTERSECT SIMPLIFIED BACK UP THE FEATURES OF THIS CONCEPT IS GENERALLY GOOD.
MAKE RELATIVELY REAR BEAM CAUSING FITTING DESIGN REAR SPAR DOG-LEG PLUS STRINGER RUN OUT AT REP!',
SIMPLE PART TOOL; KICK I.UADS ALONG FOR SLATS BECAUSE BEAM ONLY INDUCE HIGH RIB CAP REQUIREMENTS. NEED
PARALLEL STRINGERS, ENTIRE LENGTH OF STRINGERS DO NOT FURTHER ASSESSMENT.

B AT. ANGLES, CON . BEAM, DOUBLER, CLIPS RUN OUT AT BEAM. 2
STANT ANGLES REQUIRED IN HIGHLY
RESULTS IN RELA• LOADED REAR BEAM
TIVELY SIMPLE ASSY. REGION,
TOOLS.

MODERATE TWIST WING BENDING INDUCED SIMPLIFIED BACK UP MOST FAVORABLE BASED ON DESIGN REQUIREMENT$.
MAKE RELATIVELY LOADS GREATER NEAR FITTING DESIGN MINIMUM STRINGER TWIST AND PROVIDES FOR STRUC.
SIMPLE PART TOOL: THE REAR BEAM. PRO- FOR OUTBOARD TURAL EFFICIENCY (POTENTIALLY LEAST Wrtr,HTI. REAR
PARALLEL STRINGERS, V IDES FOR STRUr, WING TRAILING SPAR 000-LEG POTENTIAL PROBLEM.

C AT. ANGLES, CON . TURAL EFFICIENCY. EDGE DEVICES. 1
STANT ANGLES
RESULTS IN RELA.
TIVELY SIMPLE ASSY.
TOOLS

I
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the preferred candidate was the latter concept, stringers parallel to the rear beam,

(outboard region), because of iZs relatively high structural efficiency and its

potential ease of manufacture.
i

Provisions for Access Doors: Access into the wing box structure is provided in

both the upper and lower surfaces for assembly and inspection purposes. Figures 42

and 43 show typical locations of these doors for both a multi-spar and multi-rib

wing structural arrangement. These drawings depict a wing which is compartmentized

into two fuel tanks and contains twenty-one access doors into these tanks. The

majority of these openings are approximately 29.2 x 40.6 cm (11.5 x 16.0 in;. in

each tank, upper surface access is provided to the fuel _level control valves and

the vent-system openings. Each lower surface access door is secured by an external

clamp ring which is fastened to the door by flush mounted screws as shown in

Figure 60. The doors have integral stiffeners and bosses which house self-locking

floating insert nuts. A molded bona--U rubber seal is cemented in a groove around

the edge of the door. A phenolic chaffing strip or ring is bonded outside the seal

groove around the edge of the door to prevent arcing and fretting of the door on the

surface panel seat. The faying suu rfaces of the clamp ring, access door, and surface

panel will be coated to provide electrical continuity between the access door

and the surface panel.

Wing Joints: The upper and lower skins are considered as one-piece panels over

the entire box surface. If this is not feasible from a manufacturing standpoint,

either a chordwise or spanwise joint with its added weight and cost may be necessary.

A chordwise joint located near the break in the rear beam could be nearly as heavy

as the production joint at the side of the fuselage due to the high :load intensities.

A spanwise joint would be considerably simpler, but would nevertheless add many

fasteners and additional complexity to the design.

Spars. - Three design candidates were investigated for the composite spar con-

figuration. These candidates included: (1) a single-piece spar with the stiffener

integral with the web, (2) a one--piece molded spar with totally integrated stiffeners,

(3) a three-piece spar were the spar caps are integral with the surface covers and

the web is a separate component with integral stiffeners. The basic design features

r

a. ^

156



t.

of these candidate concepts are presented in the following mext, while the possible

methods of fabricating these spars and the tooling requirements were previously

discussed in the section entitled Manufacturing Breakdowns.

An example of a single-piece molded spar with an integrally stiffenee web is

shown in Figure 61. The concept is t,-n ical for both front and rear spars. After

the upper surface, front and rear spars, and ribs are assembled in the wing ,jig,

the lower surface is added. Shims will be required to provide dimensional control

of the depth of the spar. Stiffeners will be provided on the eyternal faces of the

spars for interfacing with the leading edge ' and trailing edge ribs.

A one-piece molded spar with the stiffeners integral with both the web and

spar caps is shown in Figure 62. The advantages of one-piece construction appear to

be offset by the many possible disadvantages. Working of the surfaces will most

.likely induce cracks in the structure at the intersection of the stiffener with the

raps. In addition, this spar concept is more costly, to manufacture and heavier in

weight without any appreciable increase in strength. Dimensional control of the spar

depth will most likely require the use of shims during assembly.

The third candidate spar concept is shown in Figure 63. This concept has spar

caps that are integral with their respective wing surfaces and a separate integrally

stiffened web. The web is mechanically attached to the inner flanges of the spar

caps and provides for dimensional control of the wing depth during assembly.

Disadvantages of this design include a greater number of fasteners required to attach

the web to the caps and the basic lack of fail-safeness of the monolithic spar/cover

assembly. Additional problem areas such as the peel strength of the integral caps

can most likely be resolved by increasing the radius at the cover to the flange

intersection. An advantage of this type of assembly is the greater dimensional con-

trol over the spar depth.

Ribs. - The internal ribs in the wing box structure can be generally classified

in two categories. The first is closed or solid and is typical, of the fuel tank

bulkhead rib, tank divider and backup rib, MLG bac ..ip and fuel surge rib, and

inboard tank bulkhead. The other category includes ribs that are open or have

penetrations between bays. In this category are backup ribs, intermediate ribs,

flap actuator ribs, MLG backup ribs, and rear spar kick ribs.

0
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Two closed rib designs were evaluated during this study. The first design, 	 w^

shown in Figure 64, is a typical skin stiffener configuration. The other configura-

tion utilizes a beaded web for stiffening (Figure 65). Both of these designs would

include the cocuring of the web, caps and stiffeners (for the first design) into an

assembly to reduce the amount of mechanical fasteners required. The method of sealing

the fuel tank bulkhead ribs and maintaining dimensional control of the wing box during

assembly are problem areas requiring additional study. The dimensions of the stiff-

eners on the web and the design of the rib cap will have to be predicated on the

applied fuel pressure and crushing loads, For the skin/stiffener rib, Figure 64,

alternate integral design approaches could be taken to alleviate the peeling prob-

lem due to fuel pressure.

The majority of the ribs are required to be of the opened web variety to provide

for the unrestricted flow of fuel in each tank and to allow for accessibility for

manufacturing and maintenance purposes. An illustration of an open rib is shown in

Figure 66; the rib web, caps, stiffeners, and cutou t - doublers are cocured. An

alternate open rib with more and larger cutouts is shown in Figure 67. A typical

open truss rib is presented in Figure 6$. The rib caps and trusses would be com-

posite material. The trusses of constant cross-section would be pultrusions or

other mass production method. Similar to the closed web designs, the detail design

of specific regions (e.g., flange to web intersection and the :-^;Iaforcement of holes)

would reflect the actual load environment experienced during service. The dimensional

control of the wing thickness will most likely require the addition of shims for all

she web designs. To alleviate this problem, especially in the case of the truss-type

rib, one of the rib caps could be mechanically fastened to the truss members.

Wind; Manufacturing Joint. - The location and the design of the wing production

joint are two design aspects that can greatly influence the weight and cost of the

wing . Factors that should be considered during the design process are: the surface

load intensity, fuel tank sealing requirements, the basic geometry of the structural

box, and the mating of large subcomponents fabricated in separate tooling fixtu-res.

Four spanwise locations were investigated to the wing production joint. The

locations of these joints are shown in Figure 69 and can be described as follows:
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Figure 66. Typical Open Rib Concept

Figure 67. Alternate Open Rib Ccncept

Figure 6$. Truss Rib Concept

a
a.

1.

162



el	CAND IDATE N0. 3	 1e^
CANDI DATE NO. 4

• JO I NTS AT FU SELAGE

SIDE AND OUTER WIN

FUSELAGE

SIDE

CAND I DATE NO. 1

® JO I NT AT FU SELAGE S I DE

B
	 FUSELAGE

CAND I DATE NO. 2
i

® JO  NT AT FUSELAGE

C

rn	 Figure 69. Candidate Manufacturing Joints
w



.i
^i

candidate 1 has the joint at the fuselage side, candidate 2 at the fuselage center-

line, candidate 3 in the outer wing, and candidate b has joints at the fuselage side

and in the outer wing. Advantages and disadvantages of these candidate joint locations

are presented in Table 24. Candidate 1 is the preferred location. It results in 	 N

simplified structural attachment at the Front and rear beams, requires less floor

space in final assembly, and permits the outer wing to be completely tank sealed 	 i

prior to fina.L assembly. These design features potentially provide for the lowest

cost and lightest weight joints with the most favorable manufacturing options.

The design of the production joint at the preferred location was the next design

aspect investigated. The major effort in the joint design study was in conceptualiz-

ing shear-type joints. All current large aircraft have shear joints at the side of

the fuselage because of the weight advantage over tension joints; however, the

shear-type joint tends to be more complicated and costly to produce. Therefore,

alternate wing--to--fuselage production joints employing tension-type of interface

were investigated.

An example of an upper surface shear joint at the side of the fuselage is shown

in Figure 70. The hat-stiffeners are carried across the joint by attaching the crown

and webs of the stiffener to the rib cap through angle clips and a channel section.

All fasteners are installed in the outer wing box and the box completely tank sealed

prior to mating with the center section in final assembly. The tank bulkhead at the

joint is part of the outer wing. During wing mate, tapered chordwise shims are

installed between the center section skins and the outside splice plate to account

f,3r tolerances and variation in contours between these large assemblies. The rib

cap, outer splice plate, tapered shim, and fuselage spanwise skate angle are

titanium. The angle clips and charnel sections also are titanium:

Figure 71 illustrates an alternate upper surface shear joint. Continuity of

the hat-stiffeners across the joint is provided by bringing the crown of the hat--

stiffener down to the surface by phasing out the side wall and local skin thickening.

The crown and flange of the hat-stiffener and wing skin then fit between the titanium

rib cap and wing splice plate. Tapered chordwise shims are again provided for align-

ment purposes and to avoid preloading.
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TABLE 24. ASSESSMENT OF MANUFACTURING JOINT LOCATION

N`

CANDIDATE DESCRIPTION ADVANTAGE DISADVANTAGE COMMENTS

NO. 1 JOINT AT FUSELAGE ® WING STRUCTURAL ATTACH- QC	 OUTER WING [SIN EXCESS IN LENGTH TO CUR- PREFERRED CAND1
SIDE- MENT TO THIS FUSELAGE RENTLY AVAILABLE AUTOCLAVES ADD[ DATE, POTEN-

SIMPLIFIED WITH FUSELAGE TIONAL FACILITY REQUIREMENTS. TIALLY LOWEST
FRAMES IN THE SAME PLANE COST AND PRD-
AS THE FRONT AND REAR VIDES THE MOST
BEAM. FAVORABLE

MANUFACTURING
- CENTER SECTION IS PART OF OPTIONS

THE FUSELAGE ASSEMBLY
REQUIRING LESS FLOOR SPACE
IN FINAL ASSEMBLY; FUSE.
LAGE ,'RESSU RE TESTS CAN BE
PERFORMED IN FUSELAGE
ASSEMBLY STATION.

- © OUTER WING CAN BB COM-
PLETELY TANK SEALED PRIOR
TO FINAL. ASSEMBLY.

NO.2 JOINT AT FUSELAGE ® SINGLE MANUFACTURING JOINT. Q	 HIGH KICK LOADS AT THE (L OF THE AIRPLANE. MANUFACTURING
CENTER LINE. MUST BE REACTED AT FUSELAGE SIDE. COMPLEXITY;

REQUIRES MORE
©	 FUSELAGE CANNOT BE PRESSURE TESTED FLOOR SPACE IN

UNTIL WING IS ATTACHED OR A SPECIAL TEST THE ASSEMBLY
JIG IS INSTALLED AND LATER REMOVED. BUILDING; ADDI-

TIONAL. FACILITIES
®, ® WING MUST BE JOINTED TO THE FUSELAGE REQUIREMENT.

SOONER ON ASSEMBLY LINE, REQUIRING
MORE FLOOR SPACE AND MORE DETAIL WORK
LATER ON THE FINAL ASSEMBLY LINE.

NCL 3 JOINT AT OUTER ® FUSELAGE CAN BE PRESSURE C	 O WING TO FUSELAGE ATTAYHMENT MUST BE MANUFACTURING
WING LOCATION. TESTED IN FUSELAGE ASSEM- COMPLETED EARLIER ON ASSEMBLY LINE COMPLEXITY;

BLY STATION. REQUIRING MORE FLOOR SPACE THAN NO. 1. REQUIRES MORE
MORE DETAIL WORK MUST BE PERFORMED FLOOR SPACE
LATER ON THE FINAL ASSEMBLY LINE. THAN NO, I BUT

L CSS THAN NO. 2.

QB	 OUTBOARD JOINT 1S AN ADDED SOURCE OF
DRAG.

O	 THE CHANGE IN DIRECTION OF SURFACE
PANEL STIFFENING AND FRONTIREAR BEAMS
REQUIRE A JOINT.

NO. a JOINT AT FUSELAGE SIMILAR ADVANTAGES AS O	 ® FOUR WI MANUFACTURING JOINTS; SOURCE OF NO ADVANTAGE
SIDE AND OUTER NO. 1. ADDED WEIGHT, TOOLING AND COST. OVER NO. 1 AND
WING. SHOULD NOT BE

OUTBOARD JOINT IS AN ALOU) SOURCE OF CONSIDERED
DRAG. UNLESS OUTER

WING PANEL IS
' TOO LARGE TO

HANDLE OR
TRANSPORT.

Y
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SECTION A-A

Figure 70. Composite Wing Production Joint Concept - BL118,
Upper, for Hat-Stiffened Covers

UPPER SURFACE

y9

ORIGINAL PAGE IS
,' NOR QUALITY

Figure 71. Composite Wing Production Joint Concept - BL118,
Upper, Alternate for Hat--Stiffened Covers
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If the stiffener design is altered a simpler upper surface shear joint is 

possible. Figure 72 presents a typical shear joint for a blade-stiffened panel concept 

with the stiffeners carried through the wing-body interface. This joint requires 

fewer parts with mo~e accessible fasteners. 

A design concept for a lower surface production shear joint at the ~ling-to

fuselage intersection is shown in Figure 73. The blade-stiffeners ~lhich are an 

integral part of the lpwersurface assembly run out before the skin splice. Align

ment of the stiffeners in the outer wing and center section assemblies are maintained. 

The induced kick-loads resulting i'rom the change in direction oi' the structural 

members are reacted by the rib structure. 

A tension-type joint applicable to both upper and lower surfaces is conceptulized 

in Figure 74. The layout suggests the separate construction of a joint assembly in 

the fonn of a long tapered composite unit. The uuit includes a load distribution 

bar of titanium through which, in equal chordwise spacings, alloy steel bolts are 

used to attach the wing to a mating joint assembly on the center section. The 

bolts are positioned through slots in the outer surface of the skins. The tension 

strap is vll'apped around the load dietributbr bar to taper away on the end of the 

joint assembly. The finished joint assembly is finally laid up with the surface 

skin and the outer laminates of that skin interleaved at the oater edge before final 

cure • 

Wing Box/Main Landing Gear Interface.- The mein landing gear support structure, 

see Figure 75, is a torque box cantil.evered from the rear sp!l.r, and landing loads 

are transferred via this box into the wing through a combination shear-tension joint • 

Large tension bolts 

to the backup ribs. 

penetrate the spar and tra~sfer 

Thus, the main landing gear is 

load into internal 

located aft of th~ 

fittings attached 

fuel tanks and 

is attached to its supporting structure in a manner that provides for a controlled 

breakaway in the event of a crash landing. The main landing gear trunnion fitting 

is a high heat treat steel forging. The landing gear torque box structure is 

planned as a composite assembly, but will require considerably design effort to 

arrive at a final configuration. The upper and lower surfaces of the wing box, 

in the vicinity of the landing gear, VTill be cO:Dpl'ised of relatively thick laminates 

to meet the strength and stiffness requirements. 
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Figure 72. Composite Wing Production Joint Concept, - BL118,
Upper, for Blade-Stiffened Covers

OF

Figure 73. Composite Wing Production Joint Concept - BL118,
Lower, for Blade--Stiffened Covers
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CHORDWISE ~OAD D'STR"BUl"'OH OAFIS" 

UCTIOHAA 

Figure 14. Tension-type Composite Wing Production Joint Concept - BLLl8, 
Upper, for Blade-Stiffened Covers 

HIGH AXIAL lOADS AND 
TORSIONAL STIFFNESS 
REOUIREMENTS· THICK 

MlG "~';"'.'JP 

"- "( 
MLG TRUNNION 
FITTING - HIGH 
HEAT TREAT STEel 

HIGH CONCENTRATEOI . ' 

"~'~~m\-J ~ 
~ AUXILIARY BEAMS 

Figure 75. Wing Box/lI'.ain Landing Gear Interface 
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Wing Leading and Trailing Edge Interface. w Both fixed and movable (slats)

leading edge surfaces and their associated internal structure require support in 	 .i

some manner from the front 'beam of the wing box structure. This internal structure

includes such items as track assemblies, snubber rib assemblies, A-frame supports,

and access doors. Rib assemblies will be provided for supporting the basic surfaces

and the majority of this structure. It is envisioned that these assemblies will be

attached to extensions of the wing box covers and the vertical stiffeners on the

beam structure.

The trailing edge of each wing consists of both upper and lower fixed surface

panels with their associated supporting structure, spoilers, inboard and outboard

ailerons, and flaps. The trailing edge fixed panels will be attached in a manner

similar to that described for the leading edge structure. The outboard ailerons

require hinge points and actuators. Support for those components can be provided by

ribs which are mounted.on the rear beam. The trailing edge flaps can be

attached to the wing by torque box support assemblies fixed to the rear beam.

Fuel Tank Sealing.-- The fuel system consists of four integral wing tanks, two

per side, with the inboard tank supplying the wing pylon mounted engines and the

two outboard tanks collectively supply the center engine through a flow e gaalizer.

These integral wing tanks must be sealed to prevent fuel leaks and the composite

structure must be coated with a protective film (e.g. polyurethane) to prevent

moisture absozption and material property degradation.

Regardless of the method selected for tank sealing, all , fasteners will be in-

stalled with wet sealant to provide a tightly sealed joint and protection for dis-

similar metals. The primary method of sealing is shmm in Figure 76a. In this

method all joining surfaces in the integral wing box are faying surface sealed, fillet

sealed, and the fastener :xeads covered with sealant. This combined with the fasteners

being wet installed gives a double protections to prevent fuel leaks. An alternative

method, Figure 76b, is groove sealing. This requires the machining of a groove in

one of the joining members of each mechanical fastener joint in the wing tank.
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FAYING SURFACE
SEALING

GROOVE SEALING
IN SPAR CAP

WET SIDE
WET SIDE
	

FAYING SURFACE
	

FASTENER
SEALING
	

SEALING

FILLET SEA

a. PRIMARY
	

b. ALTERNATE

Figure 76. Fuel Tank Sealing Concepts
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APPENDIX B

TECHNOLOGY NEEDS

.An important part of the study program was the identification of technology

and data needed to support the introduction of advanced composite materials into the

wing structure of future production aircraft, ar,u the definition of approaches for

their development. The identification of these technology needs was based on an

P.ssesstr.ent of current technology and its applicability to composite wing structure,

and the desf.gn aspects and requirements unique to the use of composites in commercial

aircraft wine- stricture, some of which were identified during the conceptual des'_gn

investigations (Appendix A).

Development Needs and Anticipated Advances

Initially, the identification of technology needs was addressed in terms of

five technology areas: design/analysis, materials and producibility, manufacturinE,

quality assurance, and product support. Significant technology deficiencies or

problems were identified for each of these areas and grouped in terms of types (or

categories) of needs. Table 25 presents a summary of the results of this effort.

Included are brief descriptions of: the technical problems or state--of-the-art,

and the development needed for solution; and, in some instances, the anticipated

technical advances by 1985, and the rationale or basis for this expectation.

Essential Technology Development

The development needs and anticipated advances which were identified by the

technology areas were then integrated into a unified definition of technology de-

velopments considered essential for the application of composites in prir-,ry wing

structure. Tn addition, the general approaches necessary "o effect the development

of these technologies were identified. These essential technology developments are

summarized in Table 26. The development needs and approaches are defined in terms

of the following categories:
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~ Design analysis methods and data 

o Preliminary design 

• Design development and verification 

o Composite materials, processes, testing and control 

c Producibility/fabrication methods 

e Manufacturing plans 

o Quality assurance methods 

• Non-destructive manufacturing inspection 

e In-service repair 

',,' , 

In general, the need for engineering/manufacturing studies; manufacturing de

velopment; development testing, which includes design/analysis data, concept de

velopment, and design verification; and material development was indicated. These 

data provide the basis for the formulation of a detailed plan for the composite 

wing development program. 
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TABLE 25. SUMMARY OF DEVELOPMENT NEEDS AND ANTICIPATED ADVANCES

PRJBLEMICURRENT
TECHNOLOGY AREA/CATE:GORY	 STATE OF THE ART

DEVELOPMENT NEEDED FOR
SOLUTION

RATIONALE OR BASIS FOR
ANTICIPATED ADVANCES 	 I	 EXPECTATION

L

U

DESIGN ANALYSIS TECHNOLOGY

DESIGN CRITERIA AND
REQUIREMENTS

• COMPOSITE MATERIAL STRUC-
TURES REQUIRE ADDITIONAL
DESIGN CRITERIA:

o MOISTURE, TEMPERATURE,
AND ULTRAVIOLET RADIA-
TION SENSITIVITY; COM-
MERCIAL AIRCRAFTOPER
ATE IN ALL PARTS OF THE
WORLD IN A WIDE RANGE
OF ENVIRONMENTAL CON-
DITIONS. ESTABLISHMENT
OF A REASONABLE DESIGN
CRITERIA FOR ENVIRON
MENTAL FACTOR:; IS
REQUIRED.

a FOREIGN OBJECT DAMAGE
SENSITIVITY; DESIGN
STRAIN LEVELS ARE BEING
LIMITED TO APPROXI
MATELY 56 .PERCENT OF
THE COMPOSITE MATERIAL
FAILURE STRAIN,

• DAMAGE TOLERANCE DESIGN
UNLIKE METAL STRUCTURES.
DAMAGED, OMPOSITE STRUC
TURE IS PROBABLY MORE
CRITICAL UNDER COMPRES-
SIVE LOADItJG THAN UNDER
TENSION LOADING- ALSO
COMPOSITE STRUCTURES
MUST BE DESIGNED TO
MINIMIZE INTERLAMINAR
STRESSES IN THE DAMAGED
CONDITION. RESTRICTION
OF DESIGN STRAI LVELS
AND ENCORPORATiON Gr
MEC14ANICALFASTENERS
I HROUGH THE COMPOSITE
ELEMENT S AT CRITICAL LOCA-
TIONS ARE CURRENTLY BEING
USED TO MEET THIS NEED.

• REVIEWICOMPILE APPLICABLE
CRITERIA AND REQUIRE-
MENTS FOR COMPOSITE AIR-
CRAFT STRUCTURES. DIRECT
ONGOING ACEECOMPOSITE
S CRUCTURES AND TECH-
NOLOGY PROGRAMS AT
COMMERCIAL AIRCRAFT
APPLICATION OF GR/E.

• ADDITIONAL CLIMATOLOG-
ICAL DATA COLLECTION AND
EVALUATION; LONGTERM
DURABILITY TESTS AND
ACCELERATED ENVIRON.
MENTAL TESTS ARE RE-
QUIRED TO ESTABLISH DATA
BASE AND BETTER UNDER-
STANDING TO FORMULATE
CRITERIA FOR COMPOSITE
MATERIALS APPLICATIONS
TO PRIMARY WING

j	 STRUCTURE-

o DEFINITION OF HAZARDS;
j	 CRITERIA [FREQUENCY OF

OCCURRENCE, SIZE. IMPACT
VELOCITY[. VULNERABLE
AREAS AND LOADING CON.
DITION AT IMPACT. ESTAB
LISHMENT OF LEVEL OF
INSPECTABILITY REQUIRED
TO DETECT DAMAGE AND

i ASSESS EFFECTS ON
STRENGTH AND DURABILITY.

• IT IS MANDATORY THAT ADE
QUATE DAMAGE TOLE RANCE
PROVISIONS BE INCORPO-
RATED IN DESIGN. ADD1
TIONAL DATA ARE REQUIRED,
BOTH ANALYTICAL AND EX
PERIMENTAL. INCLUDING THE
EFFECT OF SPLICES AND
MECHANICALLY FASTENED
JOINTS TO PROVIDE DAMAGE
TOLERANCE CAPABILITY
WITHOUT SIGNIFICANT
WEIGHT PENALTY-

• ADDITIONAL DATA PROVID-
ING CORRELATION OF REAL
TIME AND ACCELERATED
ENVIRONMENTAL TESTS.
ADDITIONAL CLIMATO.
LOGICAL DATA
GATHERING.

• NUMEROUSGOVERNMENT
AND INDUSTRY PROGRAMS
ARE FORMULATING DESIGN
CRITERIA FOR COMPOSITE
WING BOX STRUCTURES.
ADDITIONAL TEST DATA
ON THICK LAMINATES REP
RESENTATIVE OF WING
COVE RS. ID ENTI F ICATION
OF DAMAGE MECHANISMS,
IMPACT DAMAGE: TESTS. AND
DURABILITY TESTING UNDER
STATIC AND CYCLIC LOAD-
ING AND ENVIRONMENT
WILL PROVIDE AN EXPANDED
DATA BASE.

• THE DATA BASE IS CONTIN
UALLY BEING EXPANDED
THROUGH GOVERNMENT AND
INDUSTRY R&D PROGRAMS.
HOWEVER, ADDITIONAL PRO.

I GRAMS DIRECTED TOWARDS
REPRESENTATIVE WING
PANEL DESIGNS, SPLICES AND
JOINTS ARE NEEDED TO
ESTABLISH CRITERIA AND
REQUIREMENTS FOR THE
INFLUENCE OF BOTH DURA-
BILITY AND DAMAGETOL-
ERANCE ON THE DESIGN
PROCESS OF WING PRIMARY
STRUCTURE.

! • CURRENTLY CONSIDERABLE
INDUSTRY ACTIVITY 1NCLUD.
ING NASA PROGRAM.
ENVIRONMENTAL EXPOSURE
EFFECTS ON COMPOSITE
MATERIALS FOR COMMERCIAL
A]RCRAFT; WILL PROVIDE
DATA FOR CURRENT
GRAPHITE-EPDXY MATERIAL
SYSTEMS.

• A NASA PROGHf%M HAS BEEN
INITIATED FOR THE EVALUA,
TION OF THE OURABILI fY
AND DAMAGE TOLERANCE
OF COMPOSITE STRUCTURES
SUITABLE FOR COMMERCIAL
TR.INSPORT AIRCRAFT.
SUCCESSFUL EXECUTION
WILL PROVIDE DATA BASE
FOR CURRENT GRAPHITE.
EPDXY MATERIAL SYSTEM.

• CURRENTLY CONSIDERABLE
ACTIVITY BY BOTH GOVERN-
MENT AND INDUSTRY.
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TABLE 25. SUMMARY OF DEVELOPMENT NEEDS AND ANTICIPATED ADVANCES (Continued)

^h

TECHNOLOGY AREAICATEGORY

ANALYSIS METHODS

PRELIMINARY DESIGN

PROBLEM/CURRENT

STATE OF THE ART

• POOR Atli ALYSISfTESTCOR-
RELATION - HIGH TEST
SCATTER. UNKNOWN SCALE
EFFECTS.

• INAOEOUATE TEST DATA AND
ANALYTICAL METHODS FOR
RATIONALLY OESIGNING FOR
DURA814ITY AND DAMAGE
TOLERANCE.

• POOR UNDERSTANDING OF
EFFECTS OF NORMAL TENSION
AND SHEAR. AND TRANS-
VERSE SHEAR DEFORMATION.

• SEMI-EMPIRICAL JOINT DESIGN
APPROACHES ARE INADE-
QUATE, BOTH FOR LOAD
DISTRIBUTION AND FAILURE
STRENGTH.

• SHOULD THE WING CONSIST
OF MONOLITHIC COMPOSITE
STRUCTURE, OR BUILT UP
COMPOSITE SECTIONS?

.:iOV, CAN WING SURFACE
SKINS AND STIFFENERS BE
DESIGNED TO TAPER SPAN-
WISE TO REALIZE THE FULL
WEIGHT SAVING FROM
COMPOSITES. At 0 STILL
REFLECT REASONABLE PRO
DUCTtON METHODS AND
COSTS?

• WILL ADHESIVE BONDING OR
SINGLE -STAGE CURE BEADE-
QUATE FOR ASSEMBLY OF
%'!NG ROX SPARS, RIBS AND
SURFACES OR WILL MECHAN-
ICAL FASTENERS BE
REQUIRED AS A BACKUP?

• WHAT SPECIAL DESIGN PROB-
LEMS WILL COMPOSITE STRUC-
TUR ES "AVE IN DISTRIBUTING
THE CONCENTRATED LOADS
FROM THE MAIN LANDING
GEAR AND NACELLE PYLON?

DEVELOPMENT NEEDED FOR
SOLUTION

• TEST PROGRAMS DESIGNED TO
EXPAND SPECIFIC DATABASES
AND SUPPORT DEVELOPMENT
AND CORRELATION OF
IMPROVED ANALYSIS
METHODS - INCLUDING
STATIC STRENGTH, BUCKLING
AND POST-BUCKLING,
FATIGUE, AND FAIL -SAFETY.
IDENTIFICATION OF FACTORS
THAT RESULT IN TEST
SCATTER.

• FUNDAMENTAL TEST DATA,
INCLUDING DEFINITION OF
MATERIAL PROPERTIES IN
THE THIRD DIMENSION.
DEVELPMENT OF IMPROVED
TEST METHODS.

• DEVE LOPMENT OF IMPROVED
ANALYSIS METHODS COR-
ROBORATED BY TEST DATA,
FOR BOTH BONDED AND
MECHANICAL JOINTS.

• ADDITIONAL DESIGN AND
ANALYSIS OF LARGE HIGH
ASPECT RATIO COMPOSITE
WINGS. THESE DESIGN
PROBLEMS WILL REQUIRE A
GREAT DEAL OF CONCEPTUAL
DESIGN, CREATIVE IDEAS,
AND NEW THOUGHT ON HOW
TO PRODUCE INEXPENSIVE
TAPERED AND CONSTANT
SECTIONS IN COMPOSITES.
MANY ALTERNATIVE DESIGNS
WILL HAVE TO BE LAVED OUT.
ANALYZED, FABRICATED. AND
TESTED TO DETERMINE THE
MOST COST-EFFECTIVE
CONFIGURATION -

• EFFICIENT AND INEXPENSIVE
METHODS FOR LOAD
TRANSFER THROUGH JOINTS
AND HARD-POINTS- AND
AROUND HOLES AND CUT.
OUTS ARE REQUIRED.

ANTICIPATED ADVANCES

• THE TEST DATA BASE IS BEING
CONTINUALLY EXPANDED BY
GOVERNMENT AND INDUSTR;
TEST PROGRAMS: BOTH R&D
AND DESIGN PROJECT TEST.
ING. HOWEVER, ADDITIONAL
PROGRAMS SPECIFICALLY
DIRECTED TOWARDS DEVEL-
OPMENT AND CORRELATION
OF IMPROVED ANALYSIS
METHODSARENEEDED -

• MAJOR ADVANCES ARE
EXPECTED IN THE DESIGN OF
MULTI SPAR. LOW ASPECT
RATIO, SMALL COMPOSITE
WINGS. TO ACHIEVE THE
DESIRED ADVANCES FOR
TRANSPORT AIRCRAFT
REQUIRES CONCENTRATION
ON THE LARGE. HIGH ASPECT
RAT 10. COMPOSITE WING BOX
AND ITS ASSOCIATED
PROBLEMS.

RATIONALE OR BASIS FOR
EXPECTATION

• THERE ARE MANY GOVERN-
MENT AND INDUSTRY
SPONSORED TEST PROGRAMS

I
I

• AN AIR FORCE PROGRAM ON
THIS SUBJECT IS IMMINENT.

• COMPOSITE DESIGN TECH.
NOLOGY HAS BEEN STEADILY
ADVANCING FOR SEVERAL
YEARS BECAUSE OF A CON.
TINUING SIZABLE EFFORT
SUPPORTED BY BOTH
INDUSTRY IN-HOUSE AND
GOVERNMENT FUNDED
PROGRAMS.
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I
I • MAJOR ADVANCES IN MATE RI

ALS TECHNOLOGY ARE EX-
PECTED IN THE NEXT 5 YEARS.
HOWEVER, IT ISBELIEVED
THAT NORM OL MATERIAL
SUPPLIER RESEARCH MUST
BE ACCELERATED THROUGH
INCREASED GUIDANCE AND
FUNDING BY INDUSTRY USERS
AND GOVERNMENT AGENCIES_

t
• MATERIAL SUPPLIERS HAVE

CONTINUING RESEARCH PR(
GRAMS- IMPROVED FIBERS
SUCH AS THE `CELION" TYPE
HAVE RECENTLY BEEP, DEVEL-
OPEO AND ARE AVAILABLE
FOR EVALUATION. THERC
ARE MANY CURRENT INDUS
TRY AND GOVE RNMENT
SPONSORED DEVELOPMENT
PROGRAMS IN THE MATE:iF	 j
ALS AREAS.

^.J

rn TABLE 25. S1,1MIARY OF DEVELOPMENT NEEDS AND ANTICIPATED ADVANCES (Continued)

4 .^

TECHNOLOGY AREAICATEGCRY

PRODUCTION DESIGN
(DETAIL DESIGN DATAI

PROSLEMICUHRENT
STATE OF THE ART

• TO START A FULL SCALE
DESIGN EFFORT ON A COM
POSITE WING BOX, A COM-
PREHENSIVE COMPOSITE
DESIGN HANDBOOK MUST
BE AVAILABLE. IT MUST
INCLUDE SUCH DESIGN AIDS .
AS- EDGE DISTANCE AND
SPACING FOR FASTENERS,
BEND RADII FOR LAYUPS,
TOOL CLEARANCE, MACHIN-
ING PRACTICES, TANK SEAL-
ING, AND METHODS OF PAARK-
ING PARTS,'. u NAME JUST A
FEW

DEVELOPMENT NEEDED FOR
SILUTION

• A DESIGN, ANALYSIS. FASPI
CATION. AND TES T PROGRAM
WILL BE REOUIREL TO DETER
MINE SAT ISFACTOFY DETAIL
DESIGN REQUIREMENTS

ANTICIPATED ADVANCES

• MUCH DATA WILL BE AVAIL-
ABLE FROM NUMIFROUS GOV
kRNMENT AND INDUSTRY
PROGRAMS. SPLCIALPROB
LEMS ASSOCIATED WITH
LARGE. HIGH ASPECT RATIO
COMPOSITE WINGS WILL
REOUIRE SPECIAL
ATTENTION.

RATIONALE OR BASIS FOR	 I
EXPECTATION	 +

• USAF IS DEVELOPING COM
POSTE HANDBOOKS — DESIGI
GUIDE [ROCKWELL
INTERNATfONALI. AND FAB
F&,CATION GUIDE ( LOCKHEED
GEORGtAI.

 MATERIALS AND PRODUCT-
RtLITYTECHNOLOGY

COMPOSITE MATERIALS	 • EXCESSIVE PROPERTY s UPGRADE INHERENT PROP
SCATTER - LOW DESIGN ERTIES AND OUALITY OF
ALLOWABLES, COMPOSITk ELEMENTS:

FIBERS, FIBER FINISH,
YARN. RESIN MATRIX, FIBER

i FORM.PPEPREG.

♦ ENVIRONMENTAL RESISTANCE • IMPROVE CHEMICAL AND
- DEGRADATION OF STRUC THERMAL STABILITY OF
It SAL PROPERTIES- :_ 	 RESINS AND FIBER-RESIN

i	 BONDS IN HOSTILE
ENVIRONMENTS.

i	 s POOR IMPACTIDELAMINATION
E
! v DEVELOP OR EVALUATE MOD,

RESISTANCE AND DAMAGE i	 FIEO EPDXY OR OTHER TYPE
+	 TOLERANCE. RESINS TO INCREASE DUCTIL

j	 ITY AND TOUGHNESS OF

{
MATRIX.

f • LOW FIRE RESISTANCEIHIGH • DEVELOP NEW POLYMERS OR
I	 SMOKE EMISSIONTTOXIC17Y OF I	 ADAPTIMODIFY EXISTING

RESIN MATRICES. f	 RESINS TO MEET FUTURE
II	FAA FIRE REQUIREMENTS.

i	
If s COMPLEXIHIGH COST • INCREASE SCOPE OF CURRENT

MATERIAI PROCESSING ff	 DEVELOPMENT ONGRAPY'TE
CHARACTERISTICS- NON CRIMPED FABRICS, LOsV

I FLOW RESINS AND ZERO
E	 I I	 BLEED PREPREGS.

Î 	 f s UNRELIABLE, NON-STANDARD f • DEVELOPIMODIFY/STANDARD
f	 MATERIAL TEST METHODS. 1ZE RELIABt.E CHEMICAL,
` MECHANICAL AND ENh'.RON

I

f	 MENTAL TEST METHODS-

A
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TABLE 25. SUMMARY OF DEVELOPMENT NEEDS ANL ANTICIPATED ADVANCES (Continued)

TECHNOLOGY AREAICATEGORY
PROBLEM/CURRENT
STATE OF THE ART

OE"ELOPMENT NEEOED FOR
SOLUT ON ANTICIPATED ADVANCES

RATIONALE OR BASIS FOR
EXPECTATION

COMPOSITE MATERIALS o PROCESS CO.'TROL METHODS. • IMPROVE METHODS FOR CON.
ICOPITINUED> MATERIAL

	
OCESS -

NGAOA
	

OF
MANUFACTURE.

E	 PRODUCIBILITYI o HIGH COST L LACK OF COM- • DESIGN AND PROTOTYPE • MAJOR ADVANCES ARE • MANUFACTURING TECHNOL-
FABRICATION METHODS PATIBILITY 0, STRUCTURAL FABRICATION TRADE -OFF EXPECTED IN MANUFACTURING 013Y HAS BEEN STEADILY

SHAPE. SHEE T AND ASSEM- STUDIES TO INNOVATE AND TECHNOLOGY IN THE NEAR ADVANCING FOR SEVERAL
BLY CONFIGUh. T10NS WITH OPTIMIZE STRUCTURAL CON . FUTURE, HOWEVER. CONTIN- YEARS BECAUSE OF A
UNIQUE COMPOS TE FABRI- FIGURATIONS RELATIVE TO UOUS DESIGNIPRODUCIBILITYI CONTINUING VERY SIZABLE
CATION METHOC;RELATIVE FUNCTIONIPRODUCIBILITYI MANUFACTURING INTERFACE EFFORT SUPPORTED BY BOTH
TO PROCESSITO( LING COST. IS REQUIRED FOR OPTIMUM INDUSTRY IN-HOUSE AND
COMPLEXITY. STRUCTURES AND FABRICA. GOVERNMENT FUNDED

TION METHODS DEVELOP . PROGRAMS.
MENT. DEVELOPMENT TO BE
IN CONSONANCE WITH DEVEL.
OPMENTOF NEW MATERIALS
SUCH AS GRAPHITE FABRICS
AND LOW FLOW RESIN
SYSTEMS.

m EXCESSIVE LABORIHIGHC 13ST • DEVELOPIMODIFYANNOVATE s DEVELOPMENT AND APPLICA- • MAY RESULT IN SOME WEIGHT
OF FABRICATION AND QUAL- AUTOMATED LAi UP AND TION OF PREPLIED LAYUPS PENALTY. BUT WOULD RESULT
ITY LEVEL TO ACHIEVE PREFORM MET HODS. TOOLS AND STANDARD SHAPES. 	 I IN SIGNIFICANTLY REDUCED
STRUCTURAL EFFICIENCY AND MACHINES. I COST AND IMPROVED STRUC-
OF COMPOSITE HARDWARE. TURAL RELIABILITY.

^ • OEVELDP1MODiFY11NNOVATE
MOLDING METHODS AND
TOOLS.

• UPGRADE MACHINING
METHODS AND TOOLS ADAPT-
ABLE TO UNIQUE CHARACTER-
ISTICS OF COMPOSITES.

o DEVELOP FASTENER TECH-
NOLOGY - TYPESIHOLE FITS/
MATERIALS ADAPTABLE TO
UNIQUE CHARACTERISTICS

i

OF COMPOSITES.

• DEVELOP ADHESIVE BONDING
TECHNOLOGY - SURFACE
PREPARATIONIADHESIVE
SELECTION/BONDING
METHODS ADAPTABLE TO
COMPOSITES.

i
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~ TABLE 25. SUMMARY OF DEVELOPMENT NEEDS AND ANTICIPATED ADVANCES (Continued) il' 
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T ~udL.EM/CURRENT 
GVAREAlCATE~ "TATE Of THE ART 

'SIGN PROBLEMS • LIGHTNING pnOTECTIONI 
COPl-1POSITE IjLECTRICAL BONDING AnD 
~ DISSIPATION 

TECHNOlQ 

• FIRE PROTIlCTlDN 

• FlJ':=L CONTAINMENT 

JJJING TECHNOLOGY MANUFACTU 

RA\"'MA' rERIAl FORM • RESIN CONTENT - PREPREG 
MATERIAL AS RECEIVED 
FROM SUPPLIER CONTAINS 
EXCESS RESIN NECESSITATING 
A PREBLEED CVClE IN 
FABRICATION, 

• PREPlIEO MATERIAl_ PRE· 
PAEG NOW AVAILABLE IN 
UNIDIRECTIONAL TAPE OR 
CLOTH IN WIDTHS UPTO 
72 IN. 

• VENDOR QUALITY CONTROL-
PREPREG SUPPLIERS CONCERN 
OF PROPRIETARY PROCESSES 
RESULTS IN MATERIAL OF 
UNKtlOWN QUALITY WITH 
"FLAGGED" DEFECTS 
DELIVERED. 

. 

QEVC:lOPMENT NEEDED FOR 
SOLUTION 

• DEVELOP IMPROVED AND 
INNOVATiVE MATERIAL AND 
FABRICATION SYSTEMS AND 
BONDING METHODS WITH 
REQUIRED SERVICE 
DURABILITY. 

.DEVELOPDESIGN,MATEP.IAl 
TEST CRITERIA,. DETECTIONI 
SUPPRESSION SYSTEMS AND 
METHODS TO PRESERVE 
STRUCTURAL INTEGRITY 'N 
FIRE ZONES,. 

• DEVELOP DESIGN. CON':;EPTS. 
SEALING MEniOD5 AND MA· 
TERIALSCQMPATlelEWlrn 
COMPOSITE STRUCTURE, AND 
REQUIRED SERVICE 
DURADILlTV, 

• CONTINUE DEVELOPMENT OF 
IMPREGNATING TECHNIOUES 
TO PRODUCE LOW RESIN 
CONTENT MATERIA '.S. 

• PREPREG VENDORS SHOULD 
ESTABLISH CAPABILITY TO 
OFFER MATERIAL pnEPLIED 
AND PRECUT FOR DIRECT 
APPLiCATION INTO FABRI. 
CATION MOLDING TOOLS, 

• IN,PROCESS CONTROlS AT 
VENDOR, AND TESTING OF 
LAMINATES FOR PROPERTY 
DEGRADATION BASED ON 
DEFECT TYPE AND 
SEVERITY. 

AN'T'CIPATEDADVANCES 
RATIONALE on OASIS FOR 

EXPECTATION 

• SEVERAL TYPES OF SYSTEMS • A CONSIDERABLE AMOUNT OF HAVE BEEN INVESTIGATED IN INDUSTRY EFFORT IS CUR· THEINQUSTRV. FURTHER RENTLY UNDER \YAY IN THIS PROGRESS IS EXPECTED BUT AREA. 
EFFORT REQUIRESMQRE 
IMPETUS. 

• NO OREAT ADVANCES • VeRY LITTLE WORK DONE TO EXPECTED WITHOUT spECIAL DATEINTHEAREAOF 
ATTENTION AND INCEfITlVES. PRIMARY STRUCTURE. 

• SOME ADVANCES EXPECTED • SOMEWORKHASBEENDONE BUT SPECIAL EMPHASIS IN THIS AREA. 
REQUIReD TO SPUR 
INNOVATION. 

• EXPECT SUPPLIERS TO OFFER • SMALL QUANTITIES OF LOW RESIN CONTENT MATE· HIGHL V IMPROVED MATERIAL RIAL WITHIN 2-3 YEARS. AnE ALREADY AVAILABLE 
ON SPECIAL ORDER BASIS. 

• HERCULES NOW HAS CAPABIL· Q INCREASE!) PROFIT POTEN· lTV. NARMCOPROMISING TIAl FOR SUPPLIER. AND DEVELOPMENT OF CAPABIL· POSSIDt. Y ~RE COST EFFEC. lTV IN NEAR TERM. TIVE T~i\N PREPLYINa AT 
USERS f~C.ILITY. 

• NON·DISCLOSURE AGREE· • INSISTENCE fiN CONTINUOUS MENTSWITH VENDOASAND QUALn'l SURVEILLANCE 
SOURCE INSPECTION. FRO", FIBER MANUFA.o:T\JRE 

THP.OUGH IMPREGNATION 
WILL ULTIMATELY RESULT 
IN ACcESSTO VENDOR 
FACILITIES. 

I 
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COMPONVTTASSEMBLY 	 • MANUFACTURING COST=
ASSEMBLY'.rF COMPONENTS -

' ALTERNATIVES ARE MECH-

i
ANICAL FASTENERS,
ADHESIVE BONDING, STITCH-
ING, SINGLE STAGE CURE.

TABLE 25. SUMMARY OF DEVELOPMENT NEEDS AND AiiTICIPATED ADVANCES (Continued)

f

RATIONALE OR BASIS  FOR
EXPECTATION

• COMPOSITES WILL NOT BE
COST COMPETITIVE WITH
CONVENTIONAL STRUCTURE
USING HAND LAV IP.

• PRODUCIBILITY CONSIDERA
TIONS WILL DICTATE AUTO-
MATED TECHNIOUES AND
VETO DESIGNS WHICH
REOUIRE EXCESSIVE HAND
LAYUP.

• PROBLEM IS COMMON TO ALL
MANUFACTURERS. AND ALL
ARE ACTIVELY SEEKING
SOLUTIONS.

TECHNOLOGY AREAICATEGORY

FABRICATION TECHNIQUES

PROBLEM/CURRENT
STATE OF THE ART

s MANUFACTURING COST OF
FLAT LAYUPS- PRESENTLY
ALL HAND LAYUP WORK-

♦ MA. jFACTURING COST OF
FORMED SHAPES- PRE&

I ENTLY LAID U P PLY BYPLY
1 INTO CONTOURED MOLDING

FIXTURES.

1 • MANUFACTURING COST OF
TRIMMING - CUTTING TECH-
NIQUES FOR TRIMMING BOTH
UNCURRED MATERIAL AND
CURED PARTS ARE TOO
EXPENSIVE.

DEVELOPMENT NEEDED FOR
SOLUTION

a AUTOMATICTYPE LAYING
EQUIPMENT ESSENTIAL TO
REDUCE MANHOUR CONTENT.

r. METHOD OF SHAPING PRE
PLIED BLANKS INTO STRUC-
TURAL SHAPES. ALSO
REQUIRES DESIGN UNDER-
STANDING OF PRODUCIMLITY
FEATURES OF MATERIAL.

• )EVELOi l MENT PROGRAMS
EVALUATING FEASIBILITY
AND COST EFFECTIVENESS
OF ALTERNATES ARE
REQUIRED.

f • ROLE QUALITY INVESTIGA
TION REQUIRED FOR
MECHANICAL, ADHESIVE
EVALUATION FOR BONDING,
STRUCTURAL TESTING FOR

l STITCHING, AND TOOLING
I AiJD PROCESS POTENTIAL-

FOR OPTIMIZING SINGLE
STAGE CURE APPLICABILITY.

ANTICIPATED ADVANCES

• DISCUSSIONS WITH MACHINE
TOOL INDUSTRY EXPECTED
TO RESULT IN SPECIFICATIONS
AND BIDS FOR EQUIPMENT.

a PRESS FORMING AND ROLL
FORMING METHODS OF PRO-
DUCING SOME SHAPES SHOW
NEAR-TERM PROMISE -

• SEVERAL IMPROVED TECH
NIQUES ARE IN DEVELOP-
MENT, SUCH AS WATER JET
OR GERBER KNIFE FOR UN-
CURED MATERIAL, AND
ABRASIVE DISCS FOR CURED
LAMINATES.

• EXPECT THAT AUTOCLAVE
CURE WILL CONTINUE TO BE
MOST COST EFFECTIVE,
FOLLOWED BY HEATED
PLATTEN PRESS.

• ALTERNATES TO MECHANICAL
FASTENING AND ADHESIVE
BONDING WILL BE DEVELOPED
VIGOROUSLY IN NEXT FEW
YEARS- IN ADDITION, MORE
ASSEMBLIES WILL BE DE
SIGNED FOR CO-CURE OR
SINGLE STAGE CURE.

• PRODUCTION QUANTITIES
OF AEROSPACE COMPOSITE
COMPONENTS ARE NOT
EXPECTED TO BE SUFFI-
CIENT TO AMORTIZE COSTS
OF INTEGRAL HEAT AND
PRESSURE TOOLING.

• MANUFACTURING COSTS CAN
BE MINIMIZED IF MULTIPLE
DETAIL PARTS CAN BE COM-
BINED INTOSINGLE LAMIN-
ATES, OR IF TWO OR MORE
LAMINATES CAN BE JOINED
BY IMPROVED METHODS.

LAMINATE CURING 	 j a MANUFACTURING COST; CUR . ', • COST TRAOE-OFF STUDIES
ING - ALMOL: ALL PARTS I	 BETWEEN AUTOCLAVE CUR
ARE NOW AUTOCLAVE CURED. ING. INTEGRALLY HEATED
LARGEST AUTOCLAVE IS TOOLS. AND HEATED
22 X 69 FEET.. FLATTEN PRESSES ARE

REQUIRED.
I

C
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o	 TABLE 25. SUMMARY OF DEVELOPMENT NEEDS AND ANTICIPATED ADVANCES (Continued)

.^	

PAOBLEMlCURRENT	 pEVELOPMENT NEEDED FOR	 RATIONALE OR BASIS FOR
TECHNOLOGY AREAICATECORY	 STATE OF THE ART	 SOLUTION	 ANTICIPATED ADVANCES	 EXPECTATION

QUALITY ASSURANCE
TECHNOLOGY

MATERIAL AND PROCESSES
QUALITY

• COMPOSITE DURABILITY IS
AFFECTED PRIMARILY BY
RESIN, INFRAREDANALY-
MS USED IN PAST IS NOT
SUFFICIENTLY SENSITIVE.
FIBER SIZING MAY BE CRITI-
CAL FOR PROPERTIES
AFFECTED BY FIBER RESIN
BOND. GRAPHITE FIBERS
OFTEN HAVE SODIUM IM
PURITY, RESIDUAL ORGANICS,
AND VARIATIONS IN DEGREE
Of GRAPHITIZATION.

• BATCHES FROM UNION
CARBIDE ARE NOT TRACE.
ABLE TO SPECIFIC PRODUC.
TION RUNS AT THE MANU-
FACTURING FACILITY. UNION
CARBIDE USES FIBERS
PRODUCED IN JAPAN.

• DEVELOPMENT OF ADEQUATE
ANALYTICAL PROCEDURES TO
DETECT BATCH TO BATCH
VARIATIONS IN N_SIN CHEM-
ISTRY, FIBER C :AM=R Y.
FIBER S:ZtNG; DETECTION
AND CONTROL OF DEGRE E
OF GRAPHITIZATION: AND IN
STORAGE EFFECTS ON RESIN.
IMPROVEMENTS IN INHERENT
CHEMICAL AND MECHANICAL
PROPERTIESOF FIBERS.
FIBER FINISHES, AND RESINS
ARE NEEDED.

• IMPROVED BATCH CONTROL
AND TRACEABILITY OF
GRAPHITE FIBERS ARE
NEEDED.

• LIQUID CHROMATOGRAPHY -
HIGHLY SENSITIVE TO TRACE
ORGANIC CONSTITUENTS
CURRENTLY BEING USED BY
LOCKHEED, AND FURTHER
REFINEMENTS ARE
ANTICIPATED.

• FULL DISCLOSURE AND
TRACEABILITY FOR FIBERS.

• CURRENT DEVELOPMENT OF 	 i
LIQUID CHROMATOGRAPHY	 I
SUFFICIENTLY ADVANCED	 j
TO USE IN Q.A PROCEDURES 	 I

• UNION CARBIDE AWARE OF
PROBLEM; COMPETITION WITH
CELANESE SHOULD PROVIDE
INCENTIVE.	 7

DIFFICULTY IN PERFORMING
ENVIRONMENTAL CONDITION
ING AND DURABILITY TESTS
WITHIN TIME LIMITS OF AC
CEPTANCE TESTS MAKES IT
DIFFICULT TO SIMULATE
LONGTERM ENVIRONMENTAL
EFFECTS.

o INADEQUATE DATA TO COR
RELATE PRE-PREG DEFECTS
ILE.. GAPS, OVER LAPS, MIS.
ALIGNED FIBERS, ETC.) WITH
MECHANICAL PROPERTIES
AND TO PROVIDE SPECIFICA
TION 7ADELINES.

CORRELATION Of LABORA-
TORY CONDITIONING WITH
LONGTERM DURABILITY
IN FLIGHT SPHVICE.

• TEST DATA TO PROVIDE
GUIDE'-INES ON ACCEPTABLE
LIMITS FOR PRE-PREG
DEFECTS.

• ADDITIONAL TEST D.-.TA
PROVIDING CORRELATION
OF ACCELERATED AND REAL-
TIME CONDITIONING.

• ADDITIONAL DEFECT TOLER-
i ANCE STUDIES PROVIDING

CORRELATION OF DEFECT
TYPES AND SIZES WITH
MECHANICAL PROPERTIES.

1

• CONSIDERABLE CURRENT
INDUSTRY ACTIVITY IN COM-
POSITE DURABILITY.

• CUAREN? INDUSTRY ACTIV.
ITY IN EHIS TYPE OF DAMAGE
TOLCRANCE TEST.
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TABLE 25. SUMMARY OF DEVELOPMENT NEEDS AND ANTICIPATED ADVANCES (Cont~nued) 

TECHNOLOGY AREA/CATEGORY 
PRQBI..EM/CURRENT DEVELOPMENT NEEDED FOR RATIONALE OR BASIS FOR STATEOFTHEART SOLUTION ANTICIPATED ADVANCES EXPECTATION MATERIAL AND PROCESSES • THE EFFECTSQF RESIN VAAl. e eSTABLISH OPTIMUM CURE • BASIC TECHNIQUES EXIST; • seVERAL GOVERNMENT 

QUALITy (CONT'NUED) ABLES SUCH AS COMPOSITION, CYCLE AND LIMITS BY DE· MORE REFINEMENT AND PROGRAMS ARE IN PRO· STORAGE TIME, ETC. ON CURE TERMINING RESIN RHEOLOGY INCREASED USAGE EXPECTED. GREss. MORE SOPHISTI· CYCLE LIMITS HAVE NOT BEEN - TIME, TEMPERATURE, VIS- CATED PROCESS CONTROL FULLY ESTABLISHED FOR COSITY, OUTGASSING, REQUIRED FOR PRIMARY CURRENTLY USED EXOTHERM,ENDOTHERM STRUCTURE Will ACCElER· MATERIALS. RELATIONSH IPS; DETERMINE ATE DEVELOPMENT. BY TECHNIQUES SUCH AS 01· 
ELECTRIC ANALYSIS IAUDREI 
AND/OR THERMAL ANALYSIS 
(DIFfERENTIAL. GRAVI· 
METRIC.MECHANICALI. 

• QUALITY VARIATION OF CI DEVELOPMENT OF ADEQUATE G IMPROVED CONmOLS AND CI NARMCO REPORTSCONTIN· ROLLS WITHIN BATCHES. SAMPLING PLANS ADAPTABLE UNIFORMITY BY PRE· UING IMPROVEMENTS IN ACCEPTANCE TESTS,IN MANY TO COMPOSITES. PREGGERS. THEIR TAPE OPERATION INSTANCES, ARE RUN ON ONE 
INCLUDING CONTROLS OF ROLL ONLY. THIS PROVIDES FIBER ,:::!IISIONING, ALIGN· NO INFORMATION ON VARIA· 
MENT, PAPER COMPATlBIL· TIONS BETWEEN ROLLS. 100· 
ITY, SLITTING, ETC. PERCENT INSPECTION OF 

ROLLS FOR UNREPORTED 
DEFECT::> IS NOT POSSIBLE; 
THIS COULD BE CRITICAL 
FOR AUTOMATED LAYUP. 

~~~~g¥ToR~'CT!YE • HANO·HELD AND SEMI· • RAPID NONDESTRUCTIVE • REAL·TIMEDATAACQUISI· • CURRENT DEVELOPMENT AUTOMATIC NONDESTRUC· INSPEcnnN SYSTEMS: nON: DATA ACQUISITION, WORK IN THESE AREAS HAS TIVE INSPECTION SYSTEMS STORAGE AND PLOTTING SHOWN PROMISE ANO PRO· ARE NOT PRACTICAL FOR o CAPABILITY OF ADAPTING SYSTEM; PHASE ARRAY JECTING DEVELOPMENT APPLICATION ON COMPOSITE TO CROSSSECTIONAL TRANSDUCER SYSTEMS; ADVANCEf' rHROUGH THE STRUCTURES HAVING .... ARV. CHANGES WITHOUT OPER· REAL·TIME COMPUTER CON· 1980 - 1990 TIME PERIOD ING THICKNESS AND ATOR INPUT. TROLLED INTERACTIVE WOULD INDICATE SUCCESS CONFIGURATION. SYSTEMS. IN MEETING THE TECHNOl· o CAPABILITY OF NON· OGY NEEDS. DESTRUCTIVE INSPECTION 
OFSMALlDETAILSAS 
WELL AS LARGE AREA 
STRUCTURES. 

• THERE IS NO PRACTICAL NON· G ROUGH RESIN CONTENT/fiBER • NONOESTRUCTIVE INSPEC- • CURRENT R&D INTHISAREA DESTRUCTIVE INSPECTION VOLUME DATA IN AREAS TION TECHNIQUES FOR HAS SHOWN SOME PROMISE. PRODUCTION TECHNIQUES WHERE COUPONS CANNOT BE DETERMINATION OF PHYSICAL DUE TO THE LIMITED BASE FOR DETERMINING PHYSICAL REMOVED IS NEEDED TO IN· PROPERTIES. THESE TECHNIQUES HAVE PROPERTIES. SURE PHYSICAL PROPERTIES. NOT BEEN APPLIED TO MOISTURE CONTENT ANO PRODUCTION. . 
OTHER PHYSICAL PROPERTIES 
MAY BE REQUIRED ALSO. 

-
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ro TABLE 25 • SUMMARY OF DEVELOPMENT NEEDS AND ANTICIPATED ADVANCES (Continued) 

PROBlEM/CURRENT DEVELOPMENT NEEDED FOR RATIONALE OR BASIS FOR 

I 
TECHNOLOGY AREA/CATEGORY Sf ATE OF THE ART SOLUTION ANTICIPATED ADVANCES EXPECTAnOO 

, 

PRODUCT SUPPORT TECHNOLOGY 

IN-SERVICE INSPECTION • NEED RELIABLE AND Eeo. • DEVELOPMENT AND DEMON· • A NUMBER OF NEW TECH. ,.'BOTH DOD AIIlD NASA HAVE 
NOMrCAL IN·SERVICE. IN· STRATION OF INSPECTION NIOUESAND IMPROVEMENTS R.~D PRO.GR~S.IN THISAREA. 
PLACE NOI MAINTENANCE PROCEDURES, METHODS AND ARE CURRENTLY IN THE NASAPROGRAM·- "EVA,LVA· 
INSPECTION CAPABILITY FOR INSTRUMENTATION so AS TO. DEVELo.PMENT,STAGE. THESE -TION·AND.DEVElo.P},1ENTOF 
COMPOSITE MATERIAL STRUe- PROVIDE A HIGH DEGREE OF WILLREOUIRE FURTHER ~N.SEfJVICE·INSPECTION 
TURE COMPARABLE TO. CUR· CONFIDENCE IN OUR ABILIlY DEVElOPMENT,AND. DEMON· ,METHODS FOR GRAPHITE! 
RENT CAPABILITY FOR TO. DETECT OAMA~E. LEVELS STRATION OFTHEIR:RELI· .EPOXY COMPOSITE $TRUe-
METALLIC STRUCTURE. ~ijXl~~~:~I?s~EE~~~~ING ABiliTY. flEW TECHNIaUES TURES.ON·CO,"MERCIAL 

AR&P.ARTICl.ILAnlY NEEDED TffAN.SP.ORT·A:ijCRAFT" 
P..REP.nQOUCT!ON·PURABtLITY fORfI~l TIME IMAGING ~O 'W!.IJ.,;P,.ffllVJQ.E_loE.;O TO. 
.AffO:Q~GE·r.QlEFlAf:jPE :iJ~(;Q~DING,A~D THREE· ~DEV,E~OP·IN.SrECllo.N 
TESTlr(G;.AN:O tti. ERGBV.P.ft0. :DIM.ENSI.ON~L:CAP.AIlILITY. ..f!8.QCJ;lDUn!;%",f.OR:l,N. 
V!DE:AN,Etl~lJRANQE·OF ;.~EIJV'GE.AIR.lINE;MAINl:EN. 
SAF&TY-DF:F.LIGHT COM!?ARA· -..ARC_E.OF;GRI\RHIIEIEppXV 
,BLE-.TO,MET.AlLIC·.STR.UCTUflE ·~OMPOSlre:STRUCTURE:S. 

I "AND·~QUALLV·qgST. 
.EEE~OTI\{E·.··'ttlI;~E.NDI 1I;CH· 

I .tJ1.q!JI;S.-M~SlHlRo.VJ.QE 
DET.ECT8~llIiYFQR 

;g~r1EE~~~r~~'t~~:~~I~~ 
I Aqq§..~m.Lie·.f.9R:e~RF~gE 

IN.~E.CT!QN. 

IN·SERVICE REPAIR • NEED Co.ST·EFFECTIVE • o.EVElOP~ENT,.tWD·DEMON. ~."'f"IIew..f!.Ep.AIR1l.0tLC.EPTSAN.D .1.t·:BOTRC.QD.AND,NASA.HAV.E 
, 

REPAIR TECHNiQUES SUIT· srRATlON:OF REPAIR CON· ·Te;C~Nlqu~S:4\13E-,aE;ING.DE· .:R.~D PBO(lnlWs.IN 'l'.J:US AREA. 
ABLE FOR PRo.O'UClNGHIGH CEPTS.l\r--J.O·re;CI1NI.QVES \{J;l,PP§D • ..ijO.W.EVER.:MEANS ·IN:APOlT{o.~ ... flEPA!R.y..;l.L!OA. 

I 

DUALITY, eFFICIENT STRUe- WHICHWILLPR.oVIQE TI--JE T.o .1,OW,ERI~E;QUlnj:;D REPAiK t{o.N T~.SA"E:INC.L.J.lDE:D 
TURAl REPAIRS UNDER ReaUIRED STRENGTH AND CURE-TEMPERATURES,AND IN-TI:!EACEE~COMeoNENT 
AIRLINE MAINTENANCE DURABILITY, ARE APPLI· i~~~~~aSii~~{~~qUIP. ~aOGRAMs. ,NASA'PRQGRAM 
Co.NDITIONS. CABLE TO. Co.MPLEX STRUCo - '~OEV!;L-{]p.M.Ern, 

TURE IN LIMITED ACCESS MENTcARE.NEEDEO. IN QEMo./'IISTRATlo.N.A~D 

I Lo.CATIONS, AND MINIMIZE ADDITlo.N, FURTHER DEM.DN· VERIFICATJDN-QF.-REPAIR 
MATERIAL AND FABRICATION STRAT,IDN-QF TI1E INTEGRITY re_CHN'Q~GSAND;P.R.Q~ES$E;~ 
Co.MPLEXITY COSTS. o.F THEsaREPAIRS IN.HIGtllY ·~9RJ3.RAPJin:~fflP,OXY.$TRUC. 

LOAD§DJ!~Ir-,fARY STRUC· -TUJ\t;~F.OR:caW~"EI3C'P..L 
I TURE l5.fH;:OUlREO. ·tflAN$IIPRT;:A19CRAFT" 

~WH,!L:P6o..v!Qe I,i~D:"'(O 
·PWEL.o.P1N.-G'REPAIR PRO-
~epUI\ES:J:o.fI:-IN:ltERV.lqE 
:'!\I6LINE·MJ.\INTE.N~CEo.F 
GRAPJ;iITEfflPOXYC.OMPQ131rE . ST.RI)CTURE;~ • 

- _. -
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TABLE 26, ESSENTIAL TECHNOLOGY DEVELOPMENT

ORIGINAL PAGE IS
OF POOR QUALITY

S

4(
DEVELOPMENT NEEDS

DESIGN ANALYSIS METHODS AND DATA

s DESIGN INFORMATION RELATIVE TO STRENGTH, DURABILITY
AND DAMAGE TOLERANCE OF COMPOSITE MATERIAL WING
STRUCTURES. DATA ON COMPOSITE MATERIAL RESPONSE TO
STATIC AND CYCLIC LOAD AND ENVIRONMENT SPECTRA ASSOCI-
ATED WITH HIGHLY LOADED PRIMARY WP 1 3 STRUCTURE,
INCLUDING TEMPERATURE, MOISTURE, FOREIGN OBJECT IMPACT,
AND OTHER ENVIRONMENTAL CONSIDERATIONS (E. G„ FUEL,
HYDRAULIC OIL, LIGHTNING, ETC.), DESIGN CRITERIA (E. G.,
DESIGN STRAIN LEVELS) FOR DURABILITY AND DAMAGE
TOLERANCE.

• DESIGN ANALYSIS METHODS DEVELOPMENT AND SUBSTANTI-
ATION, INCLUDING:

• STATIC STRENGTH UNDER COMBINED LOADS

• EFFECTS OF NORMAL TENSION AND SHEAR, AND TRANS,
VERSE SHEAR DEFORMATION.

• DUCKLING AND POST•BUCKLING STRENGTH.

• FATIGUE LIFE PREDICTION.

n DAMAGE TOLERANCE AND RSSIDUAL STRENGTH.

• DESIGN AND ANALYSIS GUIDELINES, DATA AND HANDBOOKS,
INCLUDING:

• PRELIMINARY DESIGN CHARTS.

• COMPREHENSIVE COMPOSITE DESIGN HANDBOOK IFOR
PRODUCTION DESIGN), COVERING: DETAIL DESIGN,
DESIGN STANDARDS. FABRICATION METHODS, LONGLIFE
REQUIREMENTS, TANK SEAL REOUIREMENTS, LIGHTNING
PROTECTION, DAMAGE TOLERANCE DESIGN, AND SYSTEM
INTEGRATION.

• STRESS MEMO MANUAL COVERING ANALYSIS METHODS AND
DATA FOR HIGHLY LOADED PRIMARY STRUCTURE OF
COMPOSITE WINGS,

• STRUCTURAL LIFE ASSURANCE MANUAL COVERING ANALY-
SIS METHODS AND DATA FOR EVALUATING DURABILITY
AND DAMAGE TOLERANCE OF COMPOSITE WING STRUCTURE.

APPROACHES TO EFFECT

• ANALYTICAL AND EXPERIMENTAL INVESTIGATIONS.

o DEFINITION OF DESIGN ENVIRONMENTS; E. G., FOD DESIGN
ENVIRONMENT (HAIL, TOOL DROP AND OTHER IMPACT
SOURCES).

o EXPERIMENTAL EVALUATION OF EFFECTS; E. G., MATERIAL
PERFORMANCE TESTING USING CYCLIC LOAD, TEMPERATURE
AND MOISTURE SPECTRA; AND EXPERIMENTAL EVALUATION
OF IMPACT DAMAGE EFFECTS ON STATIC AND FATIGUE
STRENGTH.

o DOCUMENTATION, AND DEFINITION OF DESIGN CRITERIA.

• ANALYTICAL STUDIES AND TESTING TO DEVELOP AND VERIFY THE
ANALYSIS METHODS. STRENGTH, STABILITY AND FATIGUE TESTING
OF STRUCTURAL ELEMENTS, JOINTS AND SUBCOMPONENTS IN SUF-
FICIENT QUANTITIES FOR STATISTICAL ANALYSIS. A THOROUGH
UNDERSTANDING OF THE PROPERTIES AND FAILURE MODES IN THE
THIRD DIMENSION OF THE LAMINATE IS ESSENTIAL, AND DEVELOP.
MENT OF NEW TEST TECHNIQUES WILL BE REQUIRED.

• SURVEY, EVALUATE, AND COMPILE DESIGN INFORMATION, FABRI-
CATION METHODS, AND TEST DATA FROM ALL CURRENT AND
FUTURE COMPOSITE STUDIES; EVALUATE PERFORMANCE AND
SERVICE LIFE EXPERIENCE OF CURRENT HARDWARE.

• DESIGN, FABRICATE, AND TEST COMPONENTS AND SUBASSEMBLIES
TO FILL VOIDS IN THE DATA NEEDED TO COMPLETE THE DESIGN AND
ANALYSIS HANDBOOKS AND TO START DETAIL DESIGN OF A COM.
MERCIAL TRANSPORT COMPOSITE WING BOX.

r
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TABLE 26. ESSENTIAL TECHNOLOGY DEVELOPMENT (Continued)

DEVELOPMENT NEEDS

PRELIMINARY DESIGN

• DESIGN AND ANALYSISOF HIGH ASPECT RATIOCOMMERCIAI.
TRANSPORT WINGS WITH EXTENSIVE USE OF COMPOSI7 E
MATERIALS,

DESIGN DEVELOPMENT AND VERIFICATION

• ASSESS THE VALIDITY OF PROMISING STRUCTURAL DESIGN
CONCEPTS FOR PRIMARY WING STRUCTURE APPLICATION.

• DESIGN, ANALYSIS, FABRICATION AND TEST VERIFICATION
OF SIGNIFICANT OR UNIQUE DESIGN PROBLEMS; E, G., WING-
FUSELAGE, WING-MAIN LANDING SEAR, AND WING-PYLON
INTERFACES, AND THE FUEL TANK LIGHTNING PROTECTION
SYSTEM.

COMPOSITE MATERIALS, PROCESSES, TESTING AND CONTROL

• NEW IMPROVED MATERIAL SYSTEMS INCORPORATING NEW
FIBERS, FIBER FINISHES, LOW FLOW RESINS, NONCRIMPED
FABRICS AND ZERO-13LEED PREPREGS. MATERIALS SHOULD
BE TAILORED TO HAVE AN OPTIMUM BALANCE OF PROPER.
TIESMEETING ENGINEERING, MANUFACTURING AND MAIN-
TAINABILITY NEEDS AS FOLLOWS:

• LOW SCATTER IN STATIC AND FATIGUE MECHANICAL
PROPERTIES.

• ADEQUATE DUCTILITY AND TOUGHNESSOF RESIN
MATRICES AND COMPOSITE IMPACT RESISTANCE.

• ADEQUATE PERFORMANCE AND DURABILITY IN INTER-
ACTING STRESS, THERMAL AND CHEMICAL ENVIRON-
MENTS.

APPROACHES TO EFFECT

p IN-DEPTH DESIGN CONCEPT STUDIES TO ASSESS THE RELATIVE
MERITS OF VARIOUS STRUCTURAL ARRANGEMENTS- TO SELECT
THE STRUCTURAL APPROACHES BEST SUITED FOR THE DESIGN
ENVIRONMENT, AND TO PROVIDE CONSTRUCTION DETAILS AND
STRUCTURAL MASS ESTIMATES.

• CONDUCT ANALYTICAL AND EXPERIMENTAL INVESTIGATIONS
OF PROMISING STRUCTURAL CONCEPTS AND VALIDATE THE MORE
PROMISING CONCEPTS THROUGH SUBCOMPONENT AND COMPONENT
TESTS, RESULTS OF THE COMPONENT TESTS WILL BE COMPARED
WITH PREDICTED VALUES TO DETERMINE THE DEGREE TO WHICH
CONCEPT PERFORMANCE CAN BE PREDICTED IN A REALISTIC
STRUCTURAL APPLICATION.

s DESIGN, BUILD AND TEST MAJOR PORTIONS OF WING STRUCTURE,
INCLUDING STATIC, CYCLIC LOAD/ENVIRONMENT AND SYSTEM
TESTS.

• INITIATE SECOND GENERATION MATERIAL DEVELOPMENT
PROGRAMS.

• ESTABLISH INDUSTRY STANDARD MATERIAL SYSTEMS AND
TARGET SPECIFICATIONS BY TASK FORCE ACTION.

• DEFINE PROGRAMS REQUIRED IN LINE WITH STANDARDS AND
AND TARGET SPECIFICATIONS,

• PLACE DEVELOPMENT PROGRAMS WITH USER-SUPPLIER TEAMS,
INCLUDING AIRFRAME, FIBER, WEAVING, RESIN, AND PREPREG
MANUFACTURERS.

• EVALUATE RESULTANT MATERIAL SYSTEM CANDIDATES AND
SELECT MATERIAL SYSTEM PROVIDING BEST COMBINATION OF 	 j
PROPERTIES.	 j

^a
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FABLE 26. ESSENTIAL TECHN01.0GY DEVELOPMENT (Continued)

DEVELOPMENT NEEDS

COMPOSITE MATERIALS, PROCESSES, TESTING AND CONTROL ICONT'D1

• ADE .lUATE FLAME RESISTANCE AND LOW SMOKE EMISSION
AND TOXICITY UNDER FIRE EXPOSURE CONDITIONS.

• CONSISTENT QUALITY Of FIBERS, RESINS, AND PREPREGS.

• LOW COST/LESS COMPLEX PROCESSING CHARACTERISTICS.

• INDUSTRY STANDARDS FOR MATERIALS, PROCESSES AND TEST
METHOD& THESE STANDARDS SHOULD INCLUDE A MINIMUM
NUMBER OF MATERIAL SYSTEM TYPES TO SATISFY DESIGN
SELECTION NEEDS TOGETHER WITH RELATED DETAIL MATE-
RIAL AND PROCESS SPECIFICATIONS, AND TEST METHODS.
THESE ARE NECESSARY TO DEFINE MATERIAL CHARACTER-
ISTICS AND CONTROL ALL MANUFACTURING VARIABLES TO
ASSURE A HIGH QUALITY END PRODUCT. STANDARDS ARE
REQUIRED TO PREVENT DILUTION OR DUPLICATK7 P OF
DEVELOPMENT EFFORT BY MATERIAL SUPPLIERS AND USERS
WITH AN END OBJECTIVE OF REDUCING DEVELOPMENT COST
AND TIME AS WELL AS EVENTUAL PRODUCTION COSTS.

• NEW OR MODIFIED, RELIABLE MATERIAL TEST METHODS,
COVERING: MECHANICAL STRENGTH, STIFFNESS AND IMPACT
TESTS; CHEMICAL TESTS SUCH AS RESIN AND FIBER ANALY•
SIS AND FIBER - RESIN CONTENT OF COMPOSITES; ENVIRON.
MENTAL TESTS INCLUDING HUMIDITY EXPOSURE, MOISTURE
ABSORPTION, HOT AND COLD TEMPERATURE EXPOSURE, ETC.

• NEW LOW COST PROCESSING PROCEDURES COVERING OPTIMUM
CURE CYCLES (TEMPERATURE, TIME, PRESSUREI, LIMITS ON
CRITICAL PROCESS VARIABLES, LAY-UP AND BAGGING MATERI-
ALS AND PROCEDURES, AND METHODS FOR CONTROLLING
CRITICAL PROCESS VARIABLES WITHIN LIMITS SUCH AS CURE
TEMPERATURE, TIME AND PRESSURE.

APPROACHES TO EFFECT

• ORGANIZE A NASA 4 NDUSTRY - FAA STEERING TASK FORCE WITH
NECESSARY SUBCOMMITTEES AND FUNDING TO ESTABLISH
MATERIAL STANDARDS FOR SUBSONIC COMMERCIAL TRANSPORT
AIRCRAFT AS FOLLOWS:

• DESIGN GUIDELINES COVERING ITEMS SUCH AS TEMPERATURE
REGIMES, LIFE, FIRE RESISTANCE AND SMOKE EMISSION.

• MATERIAL SYSTEM TYPES REQUIRED; SUCH AS GENERAL PUR.
POSE, HEAT RESISTANT, FLAME RESISTANT, AND HIGH MODULUS.

• DETAIL TARGET MATERIAL SPECIFICATIONS TO BE USED AS
BASIS FOR MATERIAL DEVELOPMENT. INCLUDE MANUFAC.
TURING PROCESS REOUIREMZINTS.

• TES' METHODS - CHEMICAL, MECHANICAL AND ENVIRONMENTAL.

o FINAL MAT ERIALSPECIFICATIONS COVERING ALL COMPOSITE
ELEMENTS - FIBERS, FIBER FINISHES, FABRICS, RESINS AND
PREPP,EGS,

NOTE; RESPONSIBLE GROUPS WILL PROVIDE GUIDANCE FOR DEVELOP.
MENT, AND COORDINATE ROUND -ROBIN TESTING EFFORTS IN
APPLICABLE TECHNOLOGY AREA.

• INITIATE TEST METHOD DEVELOPMENT PROGRAMS.

• DEFINE PROGRAMS REQUIRED IN LINE WITH INDUSTRY TASK
FORCE RECOMMENDATIONS AND THIS STUDY,

• PLACE DEVELOPMENT PROGRAMS WITH MATERIAL USERS AND/OR
SUPPLIERS COVERING FIXTURES, SPECIMEN CONFIGURATIONS,
PROCEDURES, PROVING TESTS AND ROUND-ROBIN VERIFICATION
TESTING,

• INITIATE PROCESS DEVELOPMENT PROGRAMS,

0 DEFINE PROGRAMS REQUIRED IN CONSONANCE WITH MATERIAL
DEVELOPMENT AND IN LINE WITH COMMITTEE RECOMMENDATIONS.

1
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TABLE 26. ESSENTIAL TECHNOLOGY DEVELOPMENT (Continued)

DEVELOPMENT NEEDS	 I	 APPROACHES TO EFFECT

COMPOSITE MATERIALS, PROCESSES, TESTING AND CONTROL ( CONT-D)

o PLACE DEVELOPMENT PROGRAMS WITH MATERIAL USER-
SUPPLIER TEAMS COVERING OPTIMIZATION OF PROCESS PRO-
CEDURES, PROCESS CONTROL METHODS AND PROCESS CON.
TROL TESTING. THIS WORK WILL PROVIDE A BASIS FOR
ESTABLISHING PROCESS SPECIFICATION LIMITS ON PROCESS
VARIABLES AND METHODS TO CONTROL VARIABLES I VITHIN
LIMITS.

^ • cr+i!

PRODUCIBILITY/FABRICATION METHODS

• DESIGN AND FABRICATION PRODUCIBILITY STUDIES TO INNO-
VATE AND OPTIMIZE STRUCTURAL CONFIGURATIONS,
MATERIAL TYPES AND FORMS, TOOLING CONCEPTS, AND
FABRICATION METHODS RELATIVE TO FUNCTION/PRODUCI-
BILITYICOSTIWEIGHT. CONFIGURATIONS MUST BE
ADAPTABLE TO UNIOUE COMPOSITE FABRICATION METHODS
INCORPORATING A MINIMUM NUMBER OF OPERATIONS, AND
MINIMUM COMPLEXITY OF TOOLS AND PROCEDURES.

ADVANCE STATE - OF-THE - ART IN SPECIFIC FABRICATION
TECHNOLOGY AREAS: AUTOMATED LAY -UP AND PREFORMING
METHODSIEQUIPMENT; MOLDING METHODS AND TOOLS, IN,
CLUDING BAG AND BLADDER MOLDING, AND AUTOMATED
SHAPE FORMING; MACHINING METHODS AND 70OLS, INCLUD-
ING CUTTING OF PREPREG AND TRIMMING OF CURED PARTS;
AND FASTENING TECHNIQUES ( MECHANICAL AND BONDING).
DEVELOPMENT PROGRAMS ARE REQUIRED TO MODIFY, EXPAND
OR REFINE EXISTING TECHNOLOGY OR DEVELOP NEW TECH•
NIOUES. THIS DEVELOPMENT MUST BE CARRIED TO A STAGE
WHERE PRODUCTION PROGRAMS MAYBE INITIATED WITH
ASSURAN 4 THAT COST AND REPRODUCIBILITY GOALS WILL
BE MET.

MANUFACTURING PLAN

• DEVELOP MANUFACTURING PLAN (SI FOR COMPOSITE WING
DESIGN CONCEPTS; INCLUDING DEFINITION OF COMPONENT
BREAKDOWN, DEVELOPMENT OF ALTERNATE MANUFACTURING
APPROACHES FOR MAJOR WING COMPONENTS, AND ESTABLISH-
MENT OF FACILITY AND EQUIPMENT REQUIREMENTS FOR
TOOLS AND FACILITIES FOR CURING OUTSIZED COMPONENTS.
AND CONTAMINATION CONTROL REQUIREMENTS.

UL;AL!TY ASSURANCE METHODS

• DEVELOP 4ND ESTABLISH STANDARD SPECIFICATIONS ENCOM.
PASSING INSPECTION METHODS, TEST METHODS, PROCESS CON.
TROL METHODS, AND ACCEPTANCE CRITERIA FOR QUALITY
CONTROL OF MATERIALS, PROCESSES AND HARDWARE.

• STUDIES AND DEVELOPMENT OF STRUCTURAL DESIGN CONCEPTS
COUPLED WITH CORRESPONDING FABRICATION CONCEPTS. THESE
PROGRAMS SHOULD COVER BOTH DESIGN DEVELOPMENT AND
TRADEOFF STUDIES, AND EXPERIMENTAL FABRICATION AND
EVALUATION OF SELECTED PROTOTYPE STRUCTURAL CONFIGURA-
TIONS.

ASOESIGN AND MANUFACTURING CONCEPTS EVOLVE INTO PRE.
FERRED CONFIGURATIONS FOR INDIVIDUAL COMPONENTS.SPE.
CIFIC REQUIREMENTS FOR FABRICATION TECHNOLOGY DEVELOP.
MENT WILL BE IDENTIFIED. DEFINE AND IMPLEMENT PROGRAMS
FOR DEVELOPMENT AND PROVE -OUT OF LEAST-COST APPROACHES
TO TOOLING AND FABRICATION OF THESE COMPONENTS. THE
PROGRAMS INITIALLY SHOULD ADDRESS THE MOST CRITICAL
DESIGN AND MANUFACTURING AREA>, AND ULTIMATELY BE EX.
PANDER TO INCLUDE VIRTUALLY THE COMPLETE WING, IN MANY
INSTANCES, DEVELOPMENT OF AUTOMATED EQUIPMENT IN CO
OPERATION WITH EQUIPMENT MANUFACTURERS WILL BE REQUIRED.

MANUFACTURING STUDIES OF COMPOSITE WING PRODUCTION, IN
CLUDING JOINT ENGINEERING AND MANUFACTURING CONCEPT
EVALUATION TO DETERMINE COMPONENT BREAKDOWN, DEFINI
TION OF TOOLING AND PROCESSING SEQUENCES BASED ON PRO
DUCIBILITY AND FABRICATION METHODS DEVELOPMENT, AND
DEVELOPMENT OF TOOLING AND PRODUCTION COST ESTIMATES
OF ALTERNATIVE MANUFACTURING APPROACHES, DEVELOP
COMPONENT FABRICATION AND ASSEMBLY PLANS AND SCHEDULES,
AND DEFINE CORRESPONDING REQUIRED FACILITIES AND EOWP.
MENT.

• ESTABLISH STANDARD DEVELOPMENT GUIDELINES AND DEVELOP
NECESSARY BACKUP DATA AND PROCEDURES AS OUTLINED ABOVE
FOR MATERIALS AND PROCESSES.
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TABLE 26, ESSENTIAL TECHNOLOGY DEVELOPMENT (Continued)

(

DEVELOPMENT NEEDS	 I	 APr'OACHESTO EFFECT

QUALITY ASSURANCE METHODS (CONT'D)

0 MATERIAL ACCEPTANCE CRITERIA FOR FIBERS, RESINS,
PREPREGS AND CURED COMPOSITES, INCLUDING DEFECT
LIMITS, STRENGTH, ETC.

0 INSPECTION METHODS FOR DIMENSIONAL CONTROL. VISUAL
AND NONDESTRUCTIVE METHODS FOR DETECTING PHYSICAL
DEFECTS IN RAW MATERIALS AND HARDWARE, AUTOMATED
MONITORING SYSTEMS FOR INSPECTION DURING LAYUP,

o TEST METHODS— CHEMICAL ANALYSIS OF RESINS, FIBERS,
FIBER FINISHES, PREPREGS AND CURED COMPOSITES,
MEC,IANICAL TEST METHODS, COMBINED WITH HEAT AND
MOTS-,'URE EXPOSURE, TO DETERMINE TENSI LE, COMPR ES-
SIGNAND OTHER PROPERTIES OF CURED COMPOSITES,

0 PROCESS SPECIFICATIONS — PROCESS CONTROL AND ACCEPT-
ANCE CRITERIA FOR FABR ICAT ED PARTS; INCLUDES AUTO-
MATED MONITORING METHODS FOR CURE CYCLES,

NONDESTRUCTIVE MANUFACTURING INSPECTION

• COST EFFECTIVE TECHNIQUES (AUTOMATED) FOR INSPECTING
VARIABLE THICKNESS AND CROSS-SECTION STRUCTURES,

• NASA PFIOGRAM ON "DEVELOPMENT QUALITY ASSURANCE
PROCEDURES FOR EPDXY-GRAPHITE PREPREG" WILL COVER
SOME OF THE DEVELOPMENT REQUIRED FOR RESIN ANALYSIS
SUCH AS LIQUID CHROMOTOGRAPHY.

• DAMAGE TOLERANCE TESTING NOW UNDERWAY IN NASA PRO
GRAMS AND OTHER GOVERNMCNT-FU OED PROGRAMS WILL
EVALUATE THE EFFECT OFMATERIR DEFECTS ONMECHANI.
CAL PROPERTIES AS AN AID TO EST, ,LISHING ACCEPTANCE
CRITERIA.

NOTE: ALL DEVELOPMENT OF QUALITY ASSURANCE METHODS
—. SHOULD BE IN CONSONANCE WITH MATERIAL AND FASRI.

CATION DEVELOPMENT.

• NASA HARDWARE DEVELOPMENT PROGRAMS,SUCH AS THE ACVF
AND THE COMPOSITE AILERON PROGRAMS, WILL INVOLVE DETER.
MINATION OF NDI EFFECTIVENESS AND ADAPTABILITY UNDER

f	

PRODUCTION SITUATIONS.

• SUPPLEMENTAL ACTIVITIES NEEDED INCLUDE SURVEY OF EXIST.
ING NDI METHODS AND STATUS OF NEW DEVELOPMENTS; EVALU.
ATION OF PROMISING METHODS FOR IN PLANT INSPECTION BY
FABRICATION OF SPECIMENS INCORPORATING KNO'"iN DEFECTS;
AND CORRELATION OF NDI RESULTS WITH PHYSIC„L AND MECH-
ANICAL PROPERTIES OBTAINED FR',M MECHANICAL TESTS AND
PHOTOMICROGRAPHIC EXAMINATION. THIS SHOULD BE DONE
INITIALLY WITH COUPON SPECIMENS; THEN WITH SUBELEMENTS
INCORPORATING CONSTRUCTIONS SUCH AS HONEYCOMB, HYBRID.
000URED ELEMENTS, BONDED DOUBLERS, FLAME SPRAY, ETC.
FINALLY, VERIFICATION OF SELECTED PROCEDURES ON FULL
SCALE COMPONENTS.

• IN CONJUNCTION WITH ABOVE ACTIVITY, CONTINUOUS MONITOR.
ING IS REQUIRED ON DEVELOPMENTS IN REALTIME DATA ACQUI.
SITION AND CONTROL, MIN ICOMPUTERIM ICROPROC ESSOR ANALY.
SIS OF ULTRASONIC DATA, AND OTHE^ NEW TECHNIQUES TO
ENSURE INCORPORATION OF PROMISING TECHNIQUES INTO THE
EVALUATION PROGRAM.

I

187



TABLE 26. ESSENTIAL TECHNOLOGY DEVELOPMENT (Continued)

DEVELOPMENT NEEDS	 I	 APPROACHES TO EFFECT

ij

j
A

NONDESTRUCTIVE MANUFACTURING INSPECTION (CONT'DI

♦ PRODUCTION ."CHNIQUES FOR DETECTING PHYSICAL PRO.
PERTY VARIAT:61%!S WHICH RESULT IN MECHANICAL
PROPERTY DEGRADATION.	 Y

• DEFINE AND IMPLEMENT DEVELOPMENT PROGRAMS FOR NON-
DESTRUCTIVE INSPECTION INDI) DETERMINATION OF SUCH
VARIABLES AS RESIN CONTENT, MOISTURE.-POROSITY, DELA.
MINATIONS, PLY ORIENTATION, MICROCRACKS, DEGREE OF
CURE, AND RESIN-FIBER BOND. PRELIMINARY WORK HAS BEEN
DONE BY INDUSTRY ON SUCH PROCEDURES AS DYNAMIC MECH-
ANICAL TESTING, THERMO•MECHANICAL ANALYSIS, DIELECTRIC
MEASUREMENTS OF MOISTURE, IMPROVED ULTRASONIC AND
X-RAY PROCEDURES.

• SUPPLEMENTAL ACTIVITIES ARE NEEDED TO IDENTIFY AND
CATEGORIZE COMMONLY OCCURRING DEFECTS AND TO ESTAB.
LISH SIGNIFICANCE, CRITICALITY AND NEED FOR DETECTION.
SURVEY NDI AND ANALYTICAL PROCEDURES BEING USED OR
DEVELOPED, AND EVALUATE SELECTEE) PROCEDURES ON COUPON
AND SUBELEMENT SPECIMENS INCORPORATING VARIOUS CON.
STRUCTIONS USED IN ACTUAL PARTS. THIS EVALUATION WOULD
REQUIRE CORRELATION WITH MECHANICAL PROPERTIES AND
MICROGRAPHIC EXAMINATION OF CROSS-SECTIONS. A FINAL
STEP WOULD VERIFY SELECTED TECHNIQUES ON FULL-SCALE
COMPONENTS.

INSERVICE NONDESTRUCTIVE INSPECTION

e RELIABLE AND COST-EFFECTIVE NDI SYSTEM{S) FOR IN.
PLACE DETECTION OF SERVICE-INDUCED DAMAGE, DOCU•
MENTATION OF iN-SERVICE INSPECTION METHODS.

NASWS PROGRAM, "EVALUATION AND DEVELOPMENT OF IN-
SERVICE INSPECTION METHODS FOR GRAPHITE/EPDXY COMPO
SITE STRUCTURES ON COMMERCIAL TRANSPORT AIRCRAFT,"
WILL ADDRESS THE FOLLOWING: STATE-OF-THE-ART SURVEY,
ADAPTABILITY AND CAPABILITY OF CURRENT NDI SYSTEMS,
ADAPTABILITY IMPROVEMENTS. IN .PLACE SIMULATED NDI ON
PROMISING METHODS, AND EQUIPMENTISYSTEM IMPROVEMENTS.
FOLLOW-ON PROGRAM(S) WILL BE REQUIRED TO DEVELOP
PROMISING METHODOLOCV AND TECHNOLOGY.

• VERIFICATION OF THE RELIABILITY AND SUITABILITY OF THE
DEVELOPED METHODS AND EQUIPMENT THROUGH APPLICA
TION ON COMPONENT MANUFACTURING AND TEST PROGRAMS.

IN-SERVICE REPAIR

• REPAIR PROCEDURES SUITABLE FOR CUSTOMER FIELD 	 • NASA PROGRAM ON "DEVELOPMENT, DEMONSTRATION, AND VERI.
MAINTENANCE WHICH PROVIDE RESTORATION OF 	 FICATION OF REPAIR TECHNIQUES FOR GRAPHITE/EPDXY STRUC
STRENGTH AND STIFFNESSOF DAMAGED STRUCTURE. 	 TURF FOR COMMERCIAL TRANSPORTAIRCRAPT," WILL INCLUDE

SURVEYS ON DEFECT SFNS!TIVITY AND AIRLINE DAMAGE EXPERI,
ENCE, AND WILL CATEGORIZE DEFECTS AND DEVELOP REPAIR
CRITERIA. DEPOT AND FIELD LEVEL REPAIRS WILL BE EVALUATED
ON COUPONS, SUBELEMENTS, AND LARGE AREA COMPONENTS. OTHER
GOVERNMENT PROGRAMS ALSO COVER EVALUATION OF SMALL-AREA
AND LARGE-AREA REPAIRS,

• FOLLOW-ON PROGRAMS WILL BE REQUIRED TO IMPLEMENT REPAIRS
ON PRODUCTION COMPONENTS, AND TO MORE FULLY EVALUATE
FATIGUE AND DURABILITY CHARACTER IMTICSOF REPAIRED
COMPONENTS.

AGE
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APPENDIX C

.FACILITY AND EQUIPMENT REQUIREMENTS

The various facets of planning and designing a composite wing fabrication

facility, the facility requirements for the development program and the corres-

ponding requirements for a production program are described.

Facility Planning and Design

The principal factors to be considered in planning and design of a fabrication

facility are: (1) types of equipment, (2) equipment sizes, (3) equipment quanti-

ties or replicates governed by production rates, and (4) space requirement s

including environmental control, work sequence, and flow. The aspects of composite

wing fabrication which affect each of these factors in facility planning are dis-

cussed as follows:

Types of Equipment. - Elements of the overall process as established in the

process development phases of this program will govern the selection of equipment

types. Some of these processes with corresponding equipment considerations as

presently conceived are described.

Material Storage and Handling: Perishable prepreg materials and adhesives

will require refrigerators of various sizes to store materials prior to use. Refrig-

eration is also required during the manufacturing cycle where excessive time delays

between lay-up and final cure are unavoidable.

Cutting of Prepregs: In cases where automated lay-up machines cannot be used,

cutting of prepreg stock into required lay-up patterns may be required. Also some

trimming of uncured, laid-up laminates is envisioned. This operat- on requires

special cutting equipment such as water- ,het or laser beam types for production

conditions.

Lay-up and Preforming of Laminates: Cost consideration dictate the use of

various types of automated lay-up and preforming equipment. Large lay-up machines

for near-flat skin laminates or pre-plying of laminates prior to forming of shapes

are envisioned. Preforming equipment for structural shapes such as pultrusion or

roll--forming may be required.
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Molding of Structural Configurations: In general, molding requires the

applica4ion of heat and pressure in a specified manner to a shape controlled by a

molding tool. Various basic methods currently exist, the selection of which depends

on the structural configuration to-be molded. Some of these basic methods and

implementation equipment are: (1) bag molding where spaceheated autoclaves are

normally employed; (2) the matched mold method which requires heated platen,

hydraulic presses; (3) the pultrusion method adaptable to molding of structural

stiffener shapes which requires special machines; (4) specially designed integral

heat/pressure tooling which requires equipment to provide sources of heat and

pressure, the nature of which depends on the media employed.

During the course of the program any new developments in resin curing technol-

ogy such as use of microwave, infra-red or other types of radiant energy to achieve

rapid polymerization will be investigated. They will be implemented in the facil-

ities plan if the state-of-the-art has progressed to production status. These

advanced techniques normally require parallel development in resin catalysis systems

which may affect base resin properties.

Trimming and Machining of Cured Laminates: Conventional type equipment is

envisioned for this operation employing special cutting and drilling tools. Some

advanced cutting equipment such as the water-,jet type will be considered.

Assembly: Assembly equipment selected depends on assembly methods established

in the process development phase. The mechanical assembly method employing current

fastener technology and equipment offers the simplest approach. Assembly of cured

components by adhesive bonding or of uncured components by single-stage curing

would most likely be done by a pressure bag method requiring autocalve type

equipment.

ITDI Inspection: This operation imposes a requirement for specialized

equipment to facilitate a minimum cost operation.

Equipment Sizes. - Sizes of lay-up and curing equipment will depend on maximum

wing component sizes to be accommodated. There are structural design and manufac-

turing trade-offs involved here which will be evaluated during structural concept

development.
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Equipment Replicates. - Production rates for specific components determine

this requirement.

Building Space Requirements and Environmental Control. -- Prepreg preparation

and lay-up operations require control of air contamination, temperature and

humidity. The ideal facility would be housed in one integrated facility. However,

this concept may be modified depending on assembly methods selected. Where assembly

methods involving adhesive bc;nding or single-stage curing are involved, it is

mandatory that lay-up and assembly curing facilities by integrated. This require-

ment will prevent contamination and/or o*rer-aging of adhesives and resins caused

by excessive handling and transportation.

Development Program Facilities

Facilities acquisitions for the development program will consist of aug-

mentation of existing production development facilities. Process development can

be performed on prototype equipment not necessarily engineered or scaled for

quantity production of full-scale wing components. The development facility will

include capability of the following types:

• Autoclave

• Programmable Pultrusion equipment

• Prepreging Equipment

• Infrared Curing Source

• RF Source

• Hydraulic Pressure Source

• Laser Energy Source

• Programmable Automatic Layup Equipment

• Fabric Weaving Equipment

• Ultrasonic Welding Equipment

• Microwave Energy Source

I
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• Associated Vacuum and other Shop Aides 	 1

As the development program progresses, and preferred design and fabrication"

concepts are defined, analysis of production program requirements will be

made. Cost and schedule estimates will be developed for tooling and equipment

required for wing production.

Composite fabrication facilities required for test specimen fabrication and

demonstration article layup will be provided by shared utilization of facilities

available from other composite work. The production go-ahead on the L-loll

composite fin program is anticipated late in 1981. As a result, automated tape
laying equipment, ovens, and refrigeration capable of supporting the wing develop-

ment program will be available, Lockheed's existing 6.7 m (22.0 ft) diameter,
1$.3 m (6o.o ft) length autoclave will accommodate the largest of the components
planned in the wing development program.

Production Program Facilities

Manufacturing Engineering personnel will, as a result of their participation

in the development program, develop a detailed facilities plan for wing production.

Initial estimates of the types, quantities and cost of required facilities will be

available near the end of the Design Concept Evaluation phase.

The facilities plan will include the results of the following effort:

s Coordinate development of the assembly breakdown to assure economical

manufacture.

s Develop the Major Assembly Sequence Chart for the production program.

• Provide parametric requirements for elapsed time spread application to the

first airplane.

9 Develop material handling }flan to evaluate process and flow requirements of

assembly operations both in-plant and between plants.

s Compose narrative material describing requirements and activities of the

manufacturing program.
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• Assist the assigned planning personnel in organization and implementation

of a f^mctional mockup plan.

• Plan detail factory layout requirements - evaluate manufacturing space needs,

coordinate with space available and forecast utilization plans.

• Prepare a packaging plan, and a transportation plan to ensure safe shipment.

Facilities for the production program will include area for th- following items:

a Tape laying machine with multi-axis dispensing head with a series of

heads on the same gantry, numerically controlled and programmed.

s Compression mold press, with steam heated platens to 480 K (400 Fo).

• Pultrusion layup machine with motorized material unwind dispensing and

orientation racks, progressive preforming and final forming rolls, prebleed

heating chamber, cutoff device and self-stacking rack. Used primarily in

fabrication of hat sections.

e Deep freeze facility capable of maintaining 230 K (-40 0F) under product load.

Mul.-i--level storage system and automated retrieval, system. Area to be capable
of storage of raw broadgoods and parts in-proceEz in a prebled state.

• Central dust collecting systems with service distribution lines.

• Localized area dust collecting systems.

• Cutting tables - glass topped with roll dispensing racks. Prebutting of

fillers, blanks, and patterns with automated knives.,

• Flame spray equipment and acres-ories.

• Water jet trimming systems.

• Carbide saw cutting systems.

• Freezer chests, top loading, 230 K (-400F NJ , with product load,

• Autoclave - 9.0 m (30.0 #`t) diameter x 38.0 m (125.0 ft) long, 590 K (6000F),

1.7 MN m2 ( 250 psi), internal vacuum manifold system, inert gas generating

system, CO2 auxiliary storage tank system and programmed instrumentation.

• Oven-Prebleed, 7.6 m (25.0 ft) x 38.0 m (125.0 ft) long, 590 K (600 0F), with

vacuum system and internal vacuum manifold and ther.aocouple connection points.

Class 1 oven instrumentation
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• Ultrasonic test equipment.

• Cantilever storage racks.

a Standard work benches and special width work benches.

Automated tape laying equipment is essential for cost-competitive fabri-

cation. The specifications for such equipment will be developed only after inten-

s,.ve investigation of available equipment and analysis of equipment manufacturing

proposals in conjunction with the specific requirements of wing component fabri-

cation. Table 27 contairs a summary of graphite tape laying equipment now in use

or under development in the industry.

Facility i•equirements for production wing assembly are expected to be similar
to metallic wing assembly facilities. Areas will be provided within the confines
of the building to isolate dust producing processes such as trimming, drilling,
and routing. In addition, special contaminate free areas will be designated fog

such areas as aluminum Flame spraying.

Assembly facility will also contain the following:

• Air conditioning system for beating, cooling and air filtration.

• Central vacuum pump system and service distribution lines.

a Convenience electrical outlet distribution.

a Monorail conveyor system.

• Stabilized bridge crane systems, radio controlled.

Flame spray facility including flame spray booth enclosure, localized
exhaust hood and ducting, fume scrubber and bag house.

a Tank seal facility.

The production facilities and cost plan will be updated as the development

program progresses.
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TABLE 27. - GRAPHITE TAPELAYING EQUIPMENT OF AEROSPACE: MAATiFi'A( TUR r H:' -• ! 077

OWNER/OPERATOR MANUFACTURER 'DESCRIPTION

Boeing - Vertol Goldsworthy 6-Axis N/C Optical follower
(U.S. Army) Head and N/C to generate N/C tape, 1.68 x

Positioner 15.25 m (5.5 x 50.0 ft) bed
Atlas Chassis

General Dynamics General Dynamics/ 3--Axis N/C 1.22 x 9.14 m
Fort Worth Air Force/Conrac (4.0 x 30.0 ft) bed; 7.62 cm

(3.0 in.) tape

LVT LVT design and 3-Axis N/C real time QA
built devices, 1.22 x 9.14 m

(4.0 x 3.0 ft) bed (used on
A-7 wing)

Grumman Grumman and Flat 2--Axis, mylar and l ply
Bethpage L.I. Goldsworthy graphite N/C, 7.62 to

30.48 cm (3.0 to 12.0 in.)
tape (part of the Grumman
automated line)

Rockwell RI and Goldsworthy 7.62 to 30, 1+8 cm (3.0 to
International Head 12.0 in.) tapes, 3.66 x

4.88 m (12.0 x 16.0 ft) bed,
no N/C

Northrop Goldsworthy Head Moving table, 2.44 m (8.0 ft)
dia. photo electric cell
cutoff, no N/C, fixed gantry

Bell Helicopter Bell Helicopter Makes wrapped spars (not
laid), fiber placement

MDAC, Long Beach Goldsworthy 6-Axis (XYZ, ABC) Model
Head plus MDA" TDH-3000 (SME Paper

EM 74-735)

Overhead broadgoods dispenser
(portable) used on ACER
DC-10 rudder program

Lockheed Calif. Co Goldsworthy Head/ 3-Axis N/C 1,22 x 3.05 m
Calac design and (4 x 10 ft) table; 7.62 cm
built (3.0 in.) width tape

broadgoods dispensing
machine; 6-Axis 3.05 x 22.0 m
(10 x 72 ft) bed

Hercules Hercules Automatic broadgoods
preplying machine; continuous
length; 1.22 m (4.0 ft)
width;	 to 6 ply thickness;
Oo , +45	 900 ply orientation

i
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APPENDIX D
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WINO DESIGN CRITERIA AND STRUCTURAL REQUIREMENTS CONSIDERATIONS

Federal Aviation Regulations, Part 25 entitled "Airworthiness Standards;

Transport-Category Airplanes" (Reference 2) provides guidelines for the estab-

lishment of structural design criteria for transport aircreft. Compliance to

the design requirements of FAR, Part 25 is necEssary to c'otain certification of

the airplane by the FAA.

The same structural design requirements are applicable to the proposed

composite wing for which further acceptable guidelines are being evolved by

both the industry and the FAA as new data on composite materials become avail-

able. Work on the composite wing will reflect both the current and the evolving

requirements in its design and manufacture.

The intent of this document is to provide a general outline of the policies

and type of data required to establish the design criteria and structural require-

ments for the design of a composite wing. In areas where ^riteria are nonexist-

ent or are currently being evolved, a discussion is presented to indicate the

general policy and type of substantiation data required. As with any document

of this type, development and verification tests must be carried out to provide

data for establishing the criteria and to demonstrate that the structure can

attain the service life while meeting all the strength, durability and flight

safety requirements as defined by the criteria.

General Structural Requirements

This section presents some general structural requirements that must 'be

considered in the design of a composite wing.

Systems Interface Requirements. - The wing interfaces with the fuel system,

hydraulic system, de-icing system, and the control system. All of these systems

can impose constraints on the structural box which range from the minor environ-

mental and mounting provision required by systems such as the de-icing system to

major design considerations such as those imposed by the fuel and propulsion systems.

..._,. 	 -.Y C•:^^.r^:.X.^ .^^:.aa9LZ.	 _}^i.^	 ^•X_s'.saFr.•-. r.__ -_,..
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Fuel System: Provisions must be made in the structural box Lo account• for the

following fuel subsystems: fill and feed, measurement, venting and drain.

For the fill and feed system, penetrations of both the covers and substructure

are required for routing the tubing and providing entry to the fuel tank for the

valves and pumps. Mounting provisions are required for these component:. Provisions

for drain valves at the lower portions of each tank are required to minimize residual

fuel and drain free water.

Fuel measurement requirements include penetrations in the structure for fuel

probes and their associated electrical lines. In addition to these probes, which

are generally mounted from the upper surface and may or may not be removable, holes

are required in the lower surface for installation of sight gages.

The fuel venting system provides a continuous pathway from the fuel tanks to

the wing tip to vent the fuel fumes during ascent (or while heating up on the ground)

and to relieve the negative pressure created during descent. Penetrations through

the substructure are required to provide for passage •Df a continuous duct to the wing

tip vent box. The wing vent box contains a vent scoop which includes a flame arrestor

and stand pipe.

Electrical System: The electrical power system imposes design constraints on

the structural box to provide for the routing and mounting of the various power sup-

ply lines. Examples of these lines are: engine power supply and control lines; tip

lights; control system servos; and system indicators such as cortrol position over-

heat, etc. In ac'd'Ltion, all components must be grounded and the wing box must be

provided with a continuous electrical path (e.g., bonded aluminum strip) for the

transmittal and discharge of static electricity as well as lightning strikes.

Hydraulic System and Control System: Currently control surfaces (leading and

trailing edge devices) are af.ther operated by individual hydraulic actuators or by

mechanical means (screw ,jack) connected through gear boxes and torque tubes to a

central hydraulic motor. In either case, mounting provisions and the introduction

of concentrated loads will be imposed on the front and rear beams of the structural

box. In addition, support must also be provided for the hydraulic supply lines from

the wing engines and main landing gear. Present high pressure hydraulic lines oper-

ate in the range of 3000 psi (20.7 MPa); higher pressures are foreseen for the
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1985 technology period. The wing box must be protected from, or designed to with-
stand, the shrapnel from ruptured hydraulic lines as well as the environmental effects

of hydraulic fluid spills and seepage.

Propulsion System: Provision will have to be trade in the wing structure and

pylon to accommodate the routing of engine control and indicator lines, hydraulic

power supply lines, pneumatic power supply and the electrical power supply lines. 	 j

The engine pylon should provide a fire wall, but the wing must be designed to with-

stand overheating due to an engine fire. The wing must have a vapor barrier on the

lower surface in, the pylon area to prevent any seepage or leaking of fuel into the

engine nacelle.

Structural Interface Requirements. - The major structural components, such as:

the fuselage/wing interface, engine pylon, MLG support structure, etc., may pose

structural requirements that could greatly impact the design of a, composite wing box

structure. Some of the general requirements and considerations associated with these

components are dis,;ussed in the following text.

Fuselage Interface: The wing fuselage interface structure must provide the

load paths for the transfer of the wing shear (vertical and horizontal) and pitch-

ing moment. For a conventional low V ying design, additional constraints are imposed on

the interface structure to maintain the continuity of the pressure vessel at the inter-

section of the fuselage skin with the wing as well as below the pressure deck.

All of the above considerations will influence the design: of the composite wing

box in this region. At the fuselage skin to wing intersection, the combined effect

of highly concentrated applied loads, and the need for compatible deformations under

both temperature and load conditions, will probably require metal components and/or

inserts incorporated in the design. Special attention to the laminae orientation in

this region is required to control the anisotropy of the laminate.

Main Landing Gear Interface: The MLG imposes higi, concentrated forces and

moments on the wing box structure. This load environment will most likely require

reinforcement rib(s) and thick covers for the wing box to redistribute these loads.
In addition, the use of metal components/inserts are most likely required to intro-

duce the landing loads into the MLG support structure and wing box.
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Engine Pylon Interface: The main attachments of the pylon, in adliticn to any

other support linkage (e.g., drag link), impose concentrated forces and moments on

the basic wing box. This condition requires special design considerations which most

likely would include such items as: embedding metal fittings into the design of the 	 t r

front and rear beam designs, providing one or more internal reinforcement ribs and 	 +:

incorporating skate angles on the lower surface. These above considerations would

be in addition to the more general requirements for routing the many engine supply

lines and providing for accessibility for inspection and maintenance. The design of

a firewall and vapor barrier could provide additional constraints on the design.

Control Surface Interface: Provisions must be made in the design of the wing

box +o Accommodate the loads and designs of the control surfaces themselves or their

aux."A ary support structure. Among other considerations, the design of the wing box

(mainly in the front and rear beam areas) must include local design provisions to

accommodate such items as actuators, slat tracks and their attachments.

Quality_ Control. -- In order to ensure that structure will meet the design

objectives, a comprehensive quality control plan should be established and im-

plemented. The plan should be responsive to special engineering requirements that

arise in individuai parts or areas as a result of potential failure modes, damage

tolerance and defect growth requirements, loadings and local configuration, inspect-

ability and as a result of local sensitivities to Manufacture and assembly.

Rehr. - It should be demonstrated by analysis and/or test that methods and

techniques of repair will restore the structure to the condition required by

FAR 43.13b.

Fabrication Methods. - Specifications covering material, material processing,

and fabrication procedures must be developed to ensure a basis for fabricating

reproducible and reliable structure. Additionally, manufacturing producibility

considerations will be applied to alternate design concepts to ensure that costCD

weight tradeoffs are optimized.

Flammability. - The existing requirement for flammability protection of the,

aircraft is to minimize the hazards in the event ignition of flammable fluids or

vapors occur. In addition, components readily affected by heat, flames, or sparks

most withstand these effects.
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The use of composite structure should retain this existing level of safety.

Compliance may be shown by analysis or tests that aircraft structure subjected

to these hazards that are critical to safety of flight can withstand fire and heat

in accordance with the definition of "fire resistance" in FAR paragraph 1.1.

Environmental Definitions and Effects

The sensitivity of composite materials to certain environmental considerations

impose problems that arE generally insignificant in the design of conventional

metal aircraft. Some of the more important environmental considerations are:

temperature/humidity, lightning, hail, ozone, and ultraviolet radiation. The follow-

ing test discusses the first three of these environmental conditions and contains

a general statement on some other important considerations.

Temperature/Humidity. - Temperature and humidity histories to which an aircraft

will be exposed must be considered in depth. Climatological data has been collected

from many areas of the world and should be used to help in the establishment of the

design criteria. The interpretation of the data, however, presents some problems.

These problems include the reasonableness of using extreme in temperature and humidity

data or average data. Temperature and humidity profiles for individual airplanes

may vary considerably depending on the route structures. Accordingly, some airplanes

may be exposed to severe temperature and humidity conditions more often than other

airplanes in the fleet. This difference in exposure must be accounted for in a

rational manner in the establishment of design criteria.

The climatological data., once established, must be used in conjunction with the

composite material emissivity and absorption qualities to establish the temperature

and humidity levels which must be used in determining the composite material strength

levels and allowables to be used for design.

Other factors that must be considered include the effects of prolonger exposure

to direct sunlight and high humidity while the aircraft is sitting on the ground in

still air. Certain areas of the structure will attain higher temperatures than

others, such as the upper surface of the wing versus the lower surface. The presence

of reflective surfaces or other external heat sources in the proximity of the wing

must also be considered. The method for accounting for these phenomenon in design

criteria must be determined.
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A sample analysis was conducted to assess the effects of solar heating on the

structural temperature of the wing box structure defined during the conceptual design

study (Appendix A). The wing box geometry and the material distributions of the T300/

5208 graphite/epoxy surfaces as defined for the baseline RE-1011 airplane during the

subject study were used for this investigation. Structural elements at an inboard

(IWS 122) and outboard (OWS 452) wing station were examined for fuel loading condi-

tions of empty, half-full and full fuel tanks. Both upper and lower surfaces were

assumed to have a sprayed aluminum coating with a solar absorptivity of 0.5 and a

emissivity of 0.20. Figure 77 presents the maximum temperatures attained on the wing
upper surface after an hour exposure to sunlight on the ground at an ambient tempera-
ture of 318 K (1120P).

The data show that a steady state wing upper surface temperature of 353 K (1750F)
is reached when the fuel tanks are full, Conversely, with empty tanks the upper sur-

face wing temperatures have not yet attained their steady state value with a minimum

temperature of 369 K (2040F) indicated. The time-temperature histories of the blade-

stiffened surfaces after ground soak are presented in Figure 78. The temperature

variations start after a one-hour ground soak and then proceed through taxi, takeoff,

and climb to an altitude of 3050 km (10,000 ft). The average temperature for the

lower surface is also indicated. Significant reduction in lower surface temperatures

are realized for the condition with fuel in the tanks.

Lightning Protection Considerations. - The application of composite structures

reduces the inherent electromagnetic shielding and lightning current carrying capa-

bilities achieved with electrically continuous aluminum, Most composite structures
have some electrical conductivity but can be damaged structurally by high current

flow through the fibers. The protection design concept must prevent Lightning cur-

rent from attaching to or transferring through the composite structures.

Lightning protection methods that will be considered are aluminum diverter

strips, aluminum wire mesh and aluminum flame spray, Knowledge gained through the

ACVF program, other Lockheed programs, Industry, NASA, Air Force and Navy research

programs will be utilized in the overall lightning protection configuration.

The fuel system lightning development program will be one of the most important

aspects of the entire protection program not only because of safety, belt also be-
cause of the difficulty in arriving at designs which will Meet thr rre: : cn li severe

FAA and CAA lightning protection requirements. 	
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Fuel tank component installations such as access doors, fuci qua-it it .y probes,	 iy

fuel pump assemblies, and other items mounted in the internal structure must be tested

with artificial lightning discharges to assure that no internal sparking occurs from 	
,

asEa a of lightning currents. Composite testp ^ g	 g	 g	 p	 panels must also be tested to verify

the lightning protection design. 	 IL

Since the entire aircraft becomes a radiating antenna at some frequencies, spe-

cial considerations will be given to electrical bonding and noise interference from

precipitation static charging during the design of the lightning protection system. 	 j

1

Hail. - A likely source of objects that can cause damage to the wing box rovers
i

is hail. Figure 79 presents the terminal velocity of free-falling hail at sea level

conditions (date, from reference (8)). Damage from this source could occur on the 	
Iground o:i the upper surface or in flight on the upper surface and the forward porticn 	 !•

'I
of the lower surface.

In addition to the size and terminal velocity, the number of hailstones im . xng-

ing on a composite wing structure of an airplane per unit area as a function of

duration may also be of importance for both ground and flight operations. Fox

instance, a single impact from a large size hail may produce nondetectable local-

ized damage for which, on a one time basis, the reduced stren gth could be toler-CD

ated until the next inspection period. However, the impingement of small size

hail on the damage area may cause further strength loss 'which cannot be tolerated.

The work to be performed in this area toward finalizing hail impact criteria will

consist of determining a representation of the number and size hailstone per unit

area as a function of time from available existing data. These data will be used

in a test program to determine the resulting panel deterioration, if any, from

multiple impacts of small size hail, after initial damage.

Also to be investigated in finalizing hail impact criteria is the Froba,bility

of encountering a given size hailstone, taking into conaideratzon the random opera-

tion of various fleet sizes. The effects that can influence the probability of en--

countering a given size hailstone on the ground are the variation in number a•zd dura-

tion of hailstorms with geographical location, ani inflight, the length and location

of the route.

Figure 80 is an example of a method for presenting hail criteria for on-the-

ground and in-flight conditions.
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General. - Weathering, abrasion, erosion, ultraviolet radiation, and chemical

environment (glycol, hydraulic fluid, fuel, cleaning agents, etc.) may cause deteriora-

tion in a composite structure and must be considered in the design.

Material Properties

To provide an adequate design data base, environmental effects on the design 	 ,

properties of the material system should be established..

Experimental evidence should be provided to demonstrate that the material allow-

ables are attained with a high degree of confidence in the most critical environ-

mental exposures, including moisture and temperature, to be expected in service. The

effect of moisture absorption on static strength, fatigue and stiffness properties,

for the operational temperature range, should be determined for the material system

through tests. The impact of moisture absorption and temperature cycling on the

material system properties should be evaluated. Existing test data may be tised where

it can be shown directly applicable to the material system. Where existing data

demonstrate that no significant temperature and moisture effects exist for the mater-

ial system and construction details, within the bounds of moisture and temperature

being considered, moisture and temperature studies need not be considered.

Foreign Object Damage

There are three categories of damage which must be considered to establish a

criterion. The first type is concerned with impact by large objects such as might

occur from a thrown turbine or fan blade or damage from some other external source.

The nature of the damage from these sources is of a severity that the pilot will be

immediately aware of the situation and will then cautiously operate the airplane

until such time that the airplane can be landed for detailed inspection and repairs.

The second type is concerned with impact by objects having energy levels sufficient
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to cause l amage that would not be obvious, resulting in the damage remaining uncle-

tecteu 4 `.il a planned inspection. This category could include damage due to a blow

from a heavy object such as might be sustained during a servicing operation in which 	 a,

personnel drop or accidentally strike the structure with a drill motor, fuel hose nozzle, 	 {^

fork lift, trucks and workstands. A related type of damage occurs when objects such
s

as stones or bolts are thrown up from the runway during landing or takeoff or when

parts of tires impact the wing as a result of rupture or thread shedding. Included

in this category are runway ice and hail while on the ground or airborne. A third

type of damage is that which occurs during the manufacture. This includes flaws such

as voids, porosity, overlaps, gaps, resin rich, or resin starved area:.

Criteria for the above types of damage will differ depending on the length of

the time period for which an airplane must be capable of safe operation with —%--ge.

Currently, FAA regulations concerning these types of damage are being revised.

Table 28 shows, in principle, the variations of time and load levels associated with

each type of damage. A more detailed discussion of damage types, their sources and

related criteria is given in subsections that follow.

Starting with criteria already its use has the advantage of providing comparative

data with tests already performed. Lockheed has been primarily concerned with test-

ing for impact with both dropped objects and gun propelled pellets. The anvil weight

used in the Lockheed tests is 1.22 kg (2.68 lbm) with a maximum drop height of 119 cm

(47 in). The measured velocity at impact is 4.S7-4.88 m/s (15-16 ft/s). Small

diameter ice spheres, 2.5 cm (1.0 in), have been propelled at velocities up to

250 m/s (820 ft/s) to simulate inflight hail impact. Ice spheres of 2.5 cm (1.0 in)

and 6.1 cm (2.4 in) diameters at lower velocities have been used to simulate on-the-

ground hail impact.

A source of objects which can impact the bottom of the wing is debris from the

runway. Bolts, nuts, pebbles, and ice are picked up by the wheels and thrown into

the air. The location of the main wheels relative to the wing box makes it unlikely

that objects thrown by `he wheels will impact the box. A possible exception is the

infrequent loss of tire thread and parts of the tire from rupture which can assume

any trajectory and which does cause damage to the lighter structure of a metal airplane

and conc.:ivably could damage a composite structure without leaving a visible external

sign other than a possibility of black marks from the rubber.
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TABLE 28. DAMAGE TOLERANCE REQUIREMENTS (In Principle)

TYPE OF DAMAGE SAFE OPERATION INTERVAL SAFE LOAD LEVELS

Obvious in-flight Remainder of flight Reasonable expected loads
during prudent operation
for remainder of flight

Detectable during Inspection interval or Limit loads
planned time for positive
inspections detection

Initial defects Expected service life of Ultimate loads
the aircraft

Reverse thrust on the engines applied during the landing run tends to kick up

debris from the runway. To the best of Lockheed's knowledge, damage from this source

has not occurred on the bottom surface of the wing box. However, it is a possibility

which should be explored further in the establishment of design criteria.

A more likely source of damage, and one which occurs ocassionally, is caused by

parts of the power plant, such as blades and discs, flying off and striking the sur-

face. A strike of this nature would probably penetratF the surface causing a fuel

leak and thus is a readily detectable type of damage.

Other sources of damage result from collision with equipment or objects around

the aircraft. These collisions occur on the ground and. can be inspected and repaired

before flight. A similar type of damage can occur from workmen who drop tools on the

top surface or strike either top or bottom surfaces with tools, This type of damage

may be undetected and/or unreported; accordingly, structure subjected to this type

damage must be fail-safe.

Table 29 presents a potential format for presenting criteria for various hazards

that are likely to be encountered by the wing in-service and some preliminary values

for illustration purposes. The following discussion and that contained in the section

on environmental effects, provide some examples of the approach necessary to finalize

a criterion.
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a	 TABLE 29. PROPOSED FORMAT FOR PRESENTING A SUMMARY OIL HAZARDS TO THE WING BOX
co

I

PRELIMINARY CRITERIA

VULNEiABLE LOADING CONDITION IMPACT
HAZARD AREAS AT IMPACT t)Z-7CTABLF OCCURRENCES WT, OR SIZE VELOCITY COMMENT

Inflight gusts No Q Q1 249 m/s Impact angle _024 rad
(82Q 45) (14 deg) to wing surface

Hall Upper surface
On ground No Q Q 46 m/s Impact angle .157 rad

(150 fps) (90 deg) to wing surface

Runway Under surface Landing nose No _ 1.36 kg Max 70.1 m/s Impact angle relative

Debris wheel touchdown (3.0 lbm) (230 fps), to wing surface .052
0.11 kg rad (30 deg)
(0.25 Ihm)

Nose Under surface Takeoff and No 1 in every 2.72 kg Max 76.2 m/s Impact angle .009 to
Wheels landing 1.4E5 (6.o ibm) (250 fps) .052 rad (5 to 30 deg)

flights to wing surface
Tire
Tread

Main Under surface Takeoff and No 1 in every 2.72 kg Max 76.2 m/s Impact angle .034 to
Wheels landing 5.9E3 (6.0 lbm) (250 fps) .157 rad (20 to 90 deg)

flights to wing surface

Nose Under surface Takeoff and No 1 in every 2.72 kg Q1 Impact angle 0 to .026 rad
Wheels landing 1.9 E7 (6.0 lbm) (0 to 15 deg) to ving'surface

flights

Tire
Tread

Main Under surface Takeoff and No I in every 2.72 kg Q Impact angle .034 to .157 rad)

Wheels landing 2.OE5 (6.0 lbm) (20 to 90 deg) to wing surface
flights

Tools Upper surface On ground Ito - 0.11 kg h.6 mis lmpact angle .157 rad (90 deg)
{0.25 lbm) (15 fps) to wing surface

Servicing Upper and On ground Yes - -
Equipment un.er surface i

Rng4.ne Under --urface In flight Yes 1 in every 1/3 Turbine 146 m/s Impact angle .017 to .122 rad

parts 5.OE8 disc h5 kg 080 fps) (10 to 70 deg) to wing surface
(100 lbm) plus

i 560 rad/sec

Value to be determine,



Runway Debris. - From tests performed on gravel runways (Reference 0) 1 , the

only time that gravel was thrown high enough to impact the airfranc was dar-

ing wheel spinup at landing impact. In this condition the spray pattern of

the main gear is such that debris will not contact the wing boat. Accordingly, only

debris thrown by the nose gear at wheel spinup must be considered in finalizing

criteria for runway debris.

Thread Separation and Rupture Shrapnel. - Tire thread loss and rupture occurs

during periods of high tire stress which is associated with takeoff and landing opera-

tions. If thread is lost or the tire ruptures prior to takeoff rotation, the takeoff

is usually aborted. Because the tire shrapnel leaves black marks on surfaces that

are contacted, inspections can be readily made and repairs effected if necessary.

As part of the program the probability of becoming airborne with damage from tire

shrapnel will be investigated in order to ascertain if a criterion requiring that the

wing structure be capable of meeting limit operating conditions to the next inspec-

tion period is needed.

Tire shrapnel from thread separation and from rupture can vary considerably in

size. The variatinn in shrapnel size was not included in the determination of the

probabilities presented in Table 29. The probabilities and the size of shrapnel

will be finalized using airplane operators' and tire manufacturers' data, including

qualitative as well as quantitative information.

A representative value for the shrapnel impact velocity resulting from tire

rupture will be determined from experience, if sufficient data are available, or by

calculation using analysis of a similar nature such as assoc^atei with bomb bursts.

Included in both the rupture and thread separation will be a representative rotational

velocity to be combined with the translational velocity to provide the most criticsll

condition considering the trajectory impact angle.

Tools. - Although a typical drop height and, hence, the impact velocity can be

readily determined, there are numerous combinations of weights and shapes of probable

contact points for tools. A matrix of contact points, represented by radii, and

weights will be assembled using typical tools. Tests will be per r3fn nr3 to obtain

data to supplement available test data. These data will be used to establish some

empirical relationship between parameters such as weight and radius of the contact

point. Wherein damage to the wing upper swface could have occurred f e-o;ri a. tool
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impact, but not be visible, the empirical data will be used to determine whether

the structure is to be replaced or ape.^ations can continue to the next inspection

period.

Servicing Eq4 went. - This equipment is the mobile units used to replenish and

load the airplanes. Impacts will occur mostly on the leading and trailing edge of

the wing and, in addition, would be immediately known such that proper inspections can

be performed. Accordingly, no criterion will be established for this condition.

Engine Parts. -- Uncontained shrapnel from an engine can vary in size from less

than one-half kilogram up to one--third segments of turbine discs weighting over 45.5 kg

(100 lbm). Most parts will have sharp edges which will cause them to cut and/or scratch

surfaces impacted. This cutting action is enhanced by the rotational velocity imparted

along with the translational velocity. For example, a one-third rotor disc (a classi-

cal failure) weighting over 45.4 kg (100 lbm) can have a rotational velocity of 560

radians per second along with a translational velocity of 346.3 m/s (480 ft/sec) after

cutting through an engine nacelle. Engine failures of this nature are immediately

known to the crew and because the extent of damage to tue primary structure is not

known, care is normally exercised to minimize loads for the remainder of the flight.

Inspections after an occurrence of this nature are extensive.

Fatigue and Damage Tolerance

A fatigue and fail-safe policy for a composite wing must be established to pro-

vide a structure which has unlimited life in service while meeting all the strength,

durability and flight safety requirements of its mission.

The fatigue and fail-safe design policies must meet or exceed the current re-

quirements defined in FAR 25, (Reference 2). Examples of specific policies applicable

to composite wing structure are given in the following sections.

Fatigue. - The basic fatigue policy for a composite wing is that the structure

shall not be life limited in operational service. This means that with normal

operation, inspection, maintenance, and repair, it is intended that the ulti-

mate retirement of the structure, when it occurs, would be for reasons other than

t
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structural fatigue, economic obsolescence, accidental damage, or other unpre-

dictable causes. An unlimited life structure can be achieved by the proper

choice of materials and processes, design stress levels, detail design quality,

and adequate protection against corrosion, lightning, and foreign object damage.

Fatigue Loads and Environment: Fatigue loadings and environments will be de-

fined for the airplane. The fatigue loads must include a representation of the

operational loads for the conditions specified in Sections 25.321 through Sec-

tion 25.511 of FAR 25 and for other loading conditions that are likely to occur during

the life of the aircraft, Special emergency loading conditions, loading conditions

resulting from a prior readily detectable failure, and other loading conditions will.

be reviewed and if warranted will be considered as part of the fatigue loading. In

addition, the loads induced from deflections and thermal expansion in adjacent con-

nected structure shall. be considered. The design environment will be representative

of the most severe humidity and temperature profiles to which the aircraft can be

expected to be exposed in operational service.

Material and Processes: The basic material system(s) selected for the compo-

site tiring structure will be fabricated to applicable material and process specifica-

tions. Where d.ata are not available for these specific materials and processes,

fatigue tests, including spectra tests, will be conducted to determine the suit-

ability of the material or process for this application. The effects of environment

on the strength and durability of the composite material will be fully evaluated

by testing and allowed for in the design.

Test Requiremeni:s: Development tests must be carried out to provide data for

design and to demonstrate the attainment of the design requirements. Fatigue testing

of material coupons, structural elements, subcomponents, and large-scale wing compo-

nents must be conducted.

Fail-Safe.	 A fail-safe policy will be established to ensure that flight safety

is maintained in the event of structural damage of reasonable magnitude. Such dam-

age may arise from unreported accidental impact, minor collision, turbine disk pene-

tration, small arms fire, or other sources as well as fatigue. A detailed discussion

of the possible damage conditions is presented in the Foreign Object Damage section.

,g
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Fail-Safe Loads: A composite wing structure shall be designed such that for

any specified type and level of fail-safe damage, it will sustain 100 percent limit

load of certain conditions.

Damage Tolerance Requirements: Fail-safe structures shall be designed for sev-

eral types of assumed damage. Examples of the types of damage to be considered are:

s Any single member in the substructure completely severed. For fail-safe

pu.rpo_s e^=, a single member is Pny redundant structural member or that part

of any member of several elements where the remaining part can be shown to

have a high probability of remaining intact in the event of the assumed

failure. It must be demonstrated that the damage to the assumed severed

part must be readily discoverable by normal inspection methods.

e A delamination between any two separately cured composite members which are

adhesively bonded together. The extent of delamination shall be between

either effective delamination stoppers (such as mechanical fasteners of

,points) or the maximum extent of delamination that could occur before being

detected by normal inspection procedures.

• Delamination between individual plies at the midplane of skin surfaces and

shear webs. The extent of delamination shall be assumed equal to a circular

area with a diameter equal to the distance between effective delamination

barriers or the maximum extent of delamination that could occur before being

detected by normal inspection procedures. Delamination barriers are con-

sidered to be mechanical splices or a row of fasteners spaced so as to pre-

vent extensive delamination. A reinforcing member either integral or bonded

to the skin is not considered an effective delamination barrier.

e At any location in external skin surfaces, a 30 cm (12 in) long cut through

the skin and any members integral with or oonded to the skin.

e At a cutout, a cut through the skin or web extended from the edge of the cut-

out to an effective damage barrier. The direction of cut for each case

should be based on a rational mode of damage initiation and growth. An

"M
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effective damage barrier in this case is considered to be a separately cured

composite member either mechanically fastened to the skin or adhesively bonded

and mechanically fastened to the skin with sufficient fasteners to prevent

extensive delamination. The effectiveness of other types of barriers must be

demonstrated by testing.

All fail-safe mechanical joints and skin splices shall be designed to have

sufficient shear lag to distribute loads from the failed section. This can

generally be achieved by designing the ,joint to be bearing critical. Suf-

ficient strength and ductility shall be provided by the fasteners to prevent

progressive shear failure or progressive tension pullout of the fasteners.

s For local areas of the structure not meeting any of the above damage criteria,

it must be shown by tests that the maximum extent of damage that is likely

to be missed by a specified-in--service inspection technique must not grow to

a critical size for the fail-safe loading condition within a given check

inspection period.

For all damage cases it must be demonstrated by analysis and/or test that de-

tectable damage will propagate slowly under normal operational loads so that detec-

tion and repair are ensured before reaching the fail-safe damage size. Also the

occurrence of any single damage case will not result in flutter divergence, uncon-

trollable vibration, or loss of control ati speeds up to the V D boundary.

Test Requirements

To accomplish the transition from current material and practicer to use of

composite in wing primary structure, extensive developmental and verification

testing will be required. The scope of these tests must be such as to provide the

confidence that there are no technological factors inhibiting the use of VOr".Pcsite

structure in commercial transport design. These tests must provide the necessary

data to completely characterize the material system as well as to verify the ade-

quacy of the basic design.

The orderly development of this technology base requires a test program that

progresses from small coupons to subcomponents and finally to large full-size

components. Guidelines for these tests are presented in the following text with

some examples of specific test requirements stated.
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Material Characterization Test. - The characterization of the basic nut',erial 	 ^ v,;
system(s) must be conducted initiallf in any test program to provide the data base

1

for the design effort. In addition to strength and stiffness, some other considera-

tions that must be identified early in the test program include: moisture absorption, 	
i

hygro-thermal expansion, the influence of hygro-thermal cycling on properties, en-

vironmental degradation of properties, free-edge delamination, the effects of inter-

laminar shear and hole size effects.

Proof of Structure (Static), - The static strength of the composite design should

be demonstrated through a program of component ultimate load tests, in the appropriate

environment, unless experience with similar designs, material systems, and loadings

is available to demonstrate the adequacy of the analysis supported by subcomponent

tests. The component ultimate load testa may be performed in an ambient atmosphere

if the effects of the environment are reliably predicted by coupon and/or subcompo-

nent tests and are accounted for in the static test results.

Structural static testing of a component may be conducted on either new struc-

ture or structure previously subjected to repeated loads. If new structure is used

to determine proof of compliance, coupon tests should be conducted to assess the

possible material property degradation of static strength after the application of

repeated loads and should be accounted for in the results of the static test of the

new structure.

Composite designs that have low operational stresses relative to ultimate

strength, or designed by fatigue, may be substantiated by analysts supported by

coupon and/or subcomponent testing.

Proof of Structure (Fatigue/Damage Tolerance). - The evaluation o f rnmFosite

structure should be based on achieving a level of safety at least as high as that

currently required for metal structure.

All structure covered by FAR PART 25.571 and 29.571 should be evaluated in

accordance with the following sections:

Fatigue (Safe-Life) Evaluation: The fatigue substantiation of components

should be accomplished by full-scale component fatigue tests accounting for the

effects of the appropriate environment. Sufficient component, subcomponent, or

coupon tests should be performed to establish the fatigue scatter and environmental
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^	 effects. The scatter factor determined should provide equivalent safety to that of 	
•wi

conventional metal components. It should be demonstrated during the fatigue tests 	
a

that the component stiffness has not changed to the extent that safety of the air-

craft would be impaired.

Damage Tolerance (Fail-Safe) Evaluation: The nature and extent of tests on

complete structures and/or portions of the primary structure will depend upon appli -

cable previous damage tolerant design, construction, test, and service experience

on similar structures.

Experience with FAA-approved designs must be available in the long team to

demonstrate the adequacy of th,_ damage tolerant approach.

In the absence of experience with similar designs, FAA.-approved structural

development tests of components and subcomponents should be performed. These tests

should demonstrate that the residual strength of the structure can withstand the

specified limit loads (considered as ultimate) and be consistent with initial detecta-

bility and subsequent growth of the damage under repeated loads, including the effects

of temperature and humidity. Crack growth rate data should be used in establishing

a recommended inspection program. These tests must be completed to establish the

damage tolerance base for future certification of primary advanced composite structures.

The effects of moisutre and temperature should be accounted for by adjustment

of the test load spectrum or damage growth time from the results of separate re-

peated load tests of coupons of subcomponents.

The residual strength tests to the specified limit loads should be , performed

on the development test component with appropriate damage simulation. The structure

must be able to withstand static loads (considered as ultimate ''oa.ds) which are

reasonably expected during completion of the flight on which damage resulting from

obvious discrete sources occur (i.e., uncontained engine failures, hail stones, etc.).

The extent of damage must be based on rational assessment of service mission and

potential damage relating to each discrete source.

Sonic Fatigue

Wing structures such as the area aft of the rear spar, the ailerons,

flaps, vanes, slats, and main undercarriage doors are subjected to a high noise
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environment during landing and takeoff. The high noise levels may occur in conjunei -irn,

with high surface temperature and humidity. These structures are also subjected to 	 r'

impact from hail, debris throvn up by the tires or by tools dropped on the structure	 ,,j

during routine service or even during fabrication, The impacts may produce fiber

damage and./or delaminations not visible by surface inspection and difficult to

detect by non-destructive testing.

The sonic fatigue design criteria is that the structure must be designed to

withstand the acoustic loading without fatigue failure throughout the design life

of the aircraft. In the event that strict adherence to this policy leads to undue

complexities and/or weight penalties, the aircraft structure is to be designed

to meet the fail-safe requirements. The object of the fail-safe policy is to ensure

that flight safety is maintained in the event of structural damage of reasonable

magnitude. The impact sensitivity of graphite .fiber composites requires that

impact damaged structures which are simultaneously subjected to high acoustic environ-

ment must meet the fail-safe requirement.

The general sonic fatigue design criteria can be met by any of the following

methods:

e Sonic fatigue analyses, based on empirical random fatigue data for critical

structural components, which indicate an adequate margin on stress level for

a mean life equal to the design life.

• Sonic fatigue analyses substantiated by existing test data on similar struc-

tural configurations which indicate a mean life twice that of a design life.

• Analysis of test data on the actual structural component (multi -bay type)

which indicates a mean life greater than the design life.

The empirical random fatigue and structural response data employed in the above

procedures must include effects of adverse environments such as humidity and

temperature.

In the past, crack growth due to random acoustic loading has not been included

in the sonic fatigue criteria. However, the poor impact strength of graphite fiber

composites raises the possibilities of structures with undetected fiber damage. Thus,

the sonic fatigue resistance of damaged structure may form the basis for the future

design criteria of composite structures. Analysis procedures are available to pre-

diet the response of cracked panel type structures. However, the analysis pro-

cedures are dependent on empirical random crack growth data.
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The difficulty of' inspecting internal structure requires that the sor.ic i'L.tig! e

resistance and also impact resistance of the internal structure should be better than

the surface skins.

The relative fluid state of current structural design concepts has prevented the 	
ai

acquisition.of empirical data suitable for design purposes. The very limited avail-

able random fatigue data is only applicable to a single fiber and resin system now

out of favor, a single fiber orientation, and fabrication which is not cost effec-

tive. The current trend, for cost reduction purposes, is towards single--stage cure

integrally stiffened composite structural fabrication. Sonic fatigue capability is

highly dependent on the detailed design. In the integrally stiffened panels, the

panel-stiffener junction is . the critical location in the design. Potential failure

modes at this location are interlaminar shear, delamination from peel type loads in-

troduced by face sheet bending and fiber fracture. It is necessary to develop

random fe.tigue data for the critical locations prior to the final design stage in

order to optimize the design, The improved sonic fatigue capability of the graphite

fiber composites over aluminum alloy requires optimum structures to be used in the

nonlinear response region. No analysis method is currently available to predict

nonlinear stiffened composite panel response to random acoustic excitation. This

analysis capability needs to be developed.

No data is currently available on the response of cracked composite panels.

No random crack growth data is available for composite panels. Crack growth or flaw

growth in composites can be adversely affected by the higher random stress levels

(nonlinear) in sonic fatigue optimized panels. The most critical damage or crack

location, together with its subsequent behavior and growth rate, remains to be

established by testing.

Damping studies conducted on free-free graphite fiber bealas indicate material

damping comparable to aluminum. The majority of damping in ..ring and fuselage is

assumed to come from the structural ,joints of riveted construction. Integrally

stiffened one-piece machined aluminum panels exhibit very low structural damping.

The implication on integrally stiffened graphite fiber construction or even bonded

stiffener construction is that the structural damping could be much less than for

riveted metal wings. Damping could be added artificially using uniaxial high

modulus graphite fiber constraining layer damping treatment. This has been tested

at Lockheed on a 163 cm (64 in) long, 15.2 cm (6 in) deep aluminum channel section
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beam. Added damping would, however, result in some reduction in the rtructural

efficiency.

Flutter Criteria	 'i

The design of the wing box, control surfaces and major component support struc-

ture must meet the minimum stiffness levels necessary to meet the flutter require-

rents of no less t % .n 3-percent damping up to Vg and 20--percent speed margin above

V'g . Component supr,ort structure includes leading and trailing edge control surface

attachment and actuation backup structure as well as propulsion system support

structure. The approach to the design and analysis of composite material structures,

to provide flutter safety, is basically identical to that for metal structures. In

fact, a more optimum structure, in terms of minimum weight, can be realized as a re-

sult of the greater capability of tailoring the structure, for example, to meet

specific levels of bending and torsional stiffness. In general, it is expected that

methods and procedures will follow those established for metal structures.

Crashworthiness

The present approach to crw3hworthiness of the airframe is to assure that

occupants have every reasonable chance of escaping serious injury under realistic

and survivable crash conditions. The use of composite structure in areas where

failure would create a hazard to occupants should be shown to. have Crashworthiness

capability equivalent to conventional structure materials in dimensions appropriate

for the purpose for which they are used. In general, this equivalency would be

shown by comparative analysis supported by tests as required,
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APPENDIX E	
+:i

DEMONSTRATION ARTICLE DEVELOPMENT OPTION

The selected articles to demonstrate and validate technology readiness are

presented as the last task of the Wing Structure Development Program plan. A

major engineering and manufacturing effort was also proposed as a wing structure

development program option and presented here for planning information only. The

proposed plan encompasses the detailed engineering design of a significant portion

of a high aspect ratio commercial transport wing shown in Figure 81. The wing box

demonstration article, which is represented by the shaded area of the figure, con-

sists cif approximately 40 m2 (500 ft 2 ) of planform area. This region of the wing
is highly loaded; contains fuel; interfaces with the main landing gear, propul-

sion system and control surfaces; and includes the wing--to-fuselage major pro-

duction ,joint.

The option was planned in sufficient detail to define the scope of the task, to

develop engineering, manufacturing and :vesting schedules, and to estimate the re-

sources required to perform the various subtasks. Consideration for facilities and

equipment needs to build the demonstration article was also made. The detailed

schedule and significant milestones are shown in Figure 82.

Detail Design and Analysis

Layout aril detail drawings required to fabricate the demons- F ra l inn Rrtictle
(Figure 83) will be developed. The project will operate as for R p-rot,:type model,

thus eliminating the massive drawing system required for a prod±i^ti f n ai.rplrnne. T_si

addition, it is postulated that the majority of layouts, assembly, and detail drawings
will be drawn using the Lockheed-California Company CADAM (Computer Augmented Design

and Manufacturing) interactive computer graphics system. Significant reduction of

time span, manhours, and cost of drawing the composite wing structure is projected.

A more detailed finite element structural analysis model. will be developed to

support t"le design--analysis effort. The design loads produced in the preliminary

design will be reviewed for completeness and supplemented as required. The effects

of local loads from the landing gear, engine pylon, and control surfaces will be

included in the design.
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The key factors that must be addressed in the decision process will be verified 	 •I
and documented. These include.	 ij

e Assembly strain control

• Accountability of thermal strains

• Layup considerations for component design: (1) static strength and stiff-

ness, (2) fatigue and notch sensitivity, (3) buckling, (4) resi-
dual, strains and stacking sequence, (5) crack propagation/ softening strips,

(6) impact, (7) multiple groups - cost vs. interiaminar shear, (8) tape vs.
fabric, (9) tapering technique - cost vs. weight.

• Metallic interface corrosion protection

e Bonded joints - step lap vs. scarf

s Mechanical joints - pitch/ED vs. layup

• Drilling and machining

e Tooling for control of critical dimensions (built-up assemblies, fit toler-

ance on secondary bonds)

• Peel and flatwise tension limitations for cover-substructure interface joint,,,

• Test plans for demonstration tests

* Analysis reports substantiating the design

Wing Box Fabrication

The proposed demonstration article will consist of a complete wing box extend-

ing 13.4 m (525 in) outboard from the root joint. The box will include the upper

and lower skin covers, the front and rear spar and sixteen full-size ribs. Fig-

ure $3 depicts this assembly. All components will be fabricated on production-type

tooling by production personnel in a production environment. The fabrication of

the components and the assembly of the components into a stmicture which meets
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Engineering and Quality Assurance requiremenms will demonstrate the validity of all

tooling and processing concepts involved. Further, it will demonstrate that all

contributing organizations have the understanding and ability to proceed with a

composite wing production program.

Additior.al detail on typical tooling and fabrication processes involved in

manufacture of wing components are described in Appendix A.

Demonstration Tests

A series of static tests will be conducted on the full-scale demonstration

article. The test article represents a major portion of the primary wing box, ex-

tending from the wing root joint outboard to the break in the rear spar. It in-

eludes the support structure for the main landing gear, the engine pylon, and con-

trol surfaces.

The wing box structure will be subjected to limit load tests for selected cri-

tical conditions, fail-safe tests, and an ultimate load test for the most critical

condition. Included will be tests of specific local structure, e.g., the landing

gear and pylon support structures. In the fail-safe tests, major members such as

spar caps will be severed and the structure loaded to demonstrate fail--safe capa-

bility. After testing, these imposed damages will be repaired and the integrity

of the repairs verified in subsequent tests.

The applied loads will match the design sl , ear, moment and tension loadings for

the selected conditions. The struct+4re will be supported and the tests loads re-

acted as in the actual aircraft installation. Loadings will be applied to the wing

surfaces through multiple hydraulic actuators pushing on wing loading pads. Other

loadings produced by control surfaces, landing gear structure and engine pylon

structure will be applied by hydraulic actuators acting on simulated hardware

attached to the wing structure as in the actual installation.

The test article includes all of the major design features and the high load

introduction and redistribution areas. The demonstration tests will provide all of

the necessary data to validate design philosophy, design allowabies, analysis

methods, fabrication techniques, inspection methods and repair techniques, and,
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thereby, provide the confidence needed to proceed with the design and manufacture

of production wings.

Fabrication Facilities Requirements

Composite fabrication facilities required for the demonstration article fabrica-

tion was premised to be provided by shared utilization of facilities available from

other composite work. The production go-ahead on the L-1011 composite fin program is

anticipated late in 1981. As a result, automated tape laying equipment, ovens, and
refrigeration capable of supporting the wing development program will be available.

Lockheed's existing 6.7 m (22.0 ft) diameter, 18.3 m (60.0 ft) length autoclave will
accommodate the Largest of the components planned in the wing development program.

A composite assembly area will be activated at Factory B-1 to assemble the wing

box demonstration article. Table 30 includes the details on this area. An area lay-

out of the planned location in the n-1 factory is shown in Figure 84.

Resources

The development option will require approximately 500 equivalent nta,n-years of
engineering, manufacturing and testing effort over a 4--year period from 1983 through
1986. The equivalept mart-years include both direct labor cost and the equivalent

labor cost of materials.

Table 31 presents an estimated equivalent labor expenditure schedule over the

4-year period for the development option.

The engineering effort premises a continual build--up of personnel from the pre-

liminary design task to the prototype development activity with a peals occurring in

1983. The overall peak manpower needs for this development option occurs in 1984

with the large work force required to manufacture the large demonstration article.

A limited ground test of the demonstration article is premised. Expanding the scope

of this effort to include spectrum fatigue testing would tend to increase the re-

source needs for testing by approximately 50--percent and the testing schedule by

approximately 10-months,
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ASSEMBLY SIZE FLOOR
SIZE INCL..ADJAC, AREA

W x L WORK- AREA REQUIRED

QTY. m (ft) m2 (ft2)

Major Assembly Area

Box Assembly Pickup and 6..1 x 13.h . 12.2 x 19.5
Installation 1 (20 x 44) (40 x 64) 238 (2560)

Box Assembly Jig 1.5 x:13.4 7.6 x 19.5
1 (5 x 44.) (25 x 64) 149 (1600)

Component Preassembly Fixture 0.9 x 13.4 4.6 x 18.0
2 (	 3 x 44) ' (15 x 59) 164 (1770)

Area Contingency 55 (593)

Total. 606 ..(6523)

Bench Assembly Area

Work Bench 0,9 x 2.4 1.8 x 2.7
8 (	 3 x 8) (	 6 x 9) 40 (432)

In-Process . Package 0.9 x 1.8 1.5 x 1.8
6 (	 3 x 6) (	 5 x 6). 17 (180)

Floor Stock 1.2 x 1.8 1.5 x 2.5

13 ( 4 x 6) (	 5 x 7) 10 (105)

Peripheral Machinery 0.9 x 2.4 1.5 x 1.5
6 (	 3x 4) {	 5x5) 14 (150)

Area Contingency 8 (86)

Total 89 (953)

Incoming In-Process :.-)ld Area 0.9 x 9.1 1.5 x lO, 4
1 (	 3 x_ 30) (	 5 x	 3 11 ) 15 (170)

Stockroom Area Not required

I1et Area Required 710 (7646)

Unusable (electric Panels,
stairwells, etc.) 71 (761)

Plant Aisles e5 (91't)

TOTAL GROSS AREA 866 (9327)
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mote: Tne area will contain a cenmrai vacuum sys^em in aucu:Uiuti 4U a .UJUL ,

factory utility installations, work benches, hand equipment, stock
racks, work stands, access platforms, and a labor hour input terminal.

TABLE 31. DEVELOPMENT PROGRAM OPTION COST MATRIX (EQUIVALENT MAN-YEAF{S) i.

FUNCTION 1983 1984 1985 1986 TOTAL

Engineering 105 71 23 11 210

Mauufacturing 25 105 6o - 190

Test - -- 68 32 100

Total 125 176 l61 43 500
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