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ABSTRACT. In a number of cases (in parti-
cular when conducting a controlled space experi-
ment), the problem of detecting and isolating
signals in a background of noise should be solved
in several stages. To start with, the information
is processed with the help of less laborious algo-
rithms, and then on the basis of such processing,
a part of the information is subjected to further
processing with the help of more precise algo-
rithms. In this paper, such a system of algo-
rithms is studied, a comparative evaluation of a
series of lower level algorithms is given, and

r	 the corresponding algorithms of higher level are
^-	 characterized.

4	 1. Statement of the Problem

An experiment in outer space, in particular a controlled expert- /3*

ment, is a complex system with many levels of hierarchies from many

aspects. As is well-known, three types of hierarchies are distin-

guished ['1]: strata (levels of description and abstraction), layers

(levels of complexity of the given solutions), and echelons (organi-

zational levels). Let us consider one stratum — the statistical

' processing of information. It consists of several layers and eche-

lons; moreover, the levels are not independent with regard to these

aspects. We are only interested in the layers.

*Numbers in the margin indicate pagination in the foreign text.



Assume that in the spacecraft, results from the measurement of

a random process are obtained which are an additive mixture of signal

and noise./; These results are processed onboard by means of a specific

algorithm, and then the processed materials are transmitted for sub-

sequent processing on the ground by means of other algorithms. The

purpose of the processing is to detect and isolate the signal with

maximum accuracy and reliability. Here it is necessary to take into

account the limitations on the high-speed response of the electronic

computers onboard and on the ground and the carrying capacity of the

telemetric channels.	 The development of a multilevel system of algo-

rithms for the solution of this problem is required.
7

The establishment of such a system ofalgorithms is subdivided

into several stages. a

1)	 Various models of the signals and.noise are considered. 	 To
Ik

work out the methodology, the simplest model is chosen.

2)	 Various algorithms for working out the lower level are
r

'	 considered.	 Their characteristics (reliability of detection, the

time for realization on an electronic computer) in the assumed models

of the signals and the noise are studied. 	 It turns out that even in

the simplest cases such an investigation can be onlyp	 g	 y partially com-

pleted analytically.	 Therefore, the universal method of statistical

modeling is applied (even though it is very laborious).
c

%?}

The characteristics obtained depend on certain selected para-

meters of the tuning (threshold values). 	 These parameters are

selected during the solution of the system problem, i.e., at one of

the later stages; therefore, at the first stages it is desirable for
y

-'	 the characteristics to achieve independence from the parameters.

This increases the volume of the calculations investigated., as well

-	 as the volume of fixed results.

3)	 All this is repeated for the algorithms of higher level —

`	 only more precisely and more laboriously.

2
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4) A concrete physical problem is considered. Based on the

processing of the first results of the measurements, conclusions are

drawn concerning the adequacy of the models of the signal and the

noise which were considered. If necessary, stages 1) 	 3) are

repeated for models which are in better agreement with the physical

problem.

5) On the basis of all of the preceding, a concrete system of

algorithms for the given physical problem is developed, including a

determination of the tuning parameters, etc.

In the present paper, we discuss the first results obtained

during the completion of stages 1),, 2), and in part 3).

'	 2. Models of the Signal and the Noise

In connection with the discrete character of the measurements

}	 and the finite length of the realization, the following form of

representation is convenient. Given the values:

i - f (xXd +t i _ si +^ i	 ^1)

on the segment t - i,	 , IV , where S 
=Y(Xj);1 

is the signal, and i

is the noise. For various models of the signal and the noise, it is

convenient to introduce provisional notation. The model. (xJ
is a triangular splash, i.e.,

E

s^ =0 when (2)

si =C (I -	 ) when

' =N(a Qi ) are independent, normally-distributed random quan
tities, where:

Qt = Gt o.x2+ C1 x + a2 (3J
F ^s b ox + bi x + 62

O

^"	
$x	

J

a



Let us consider the following particular cases of the model Al.

``11	
_ 2	

2
^` — ati =0 ; Ut =C3' ; ^ are known, i o is unknown but
determinate.	 G1t` XL vOtti	 a^ l+L

	

2	 OF tW

^

A 
t2- Ch Ct X + a x + a 2 , the rest similarly. Here

G2o,g11a2 are determinate but unknown.

2 2
A, Qt 0;	 =CY ; It is known, C and i are unknown, but

determinate.

A14 — the same as in A^ 3 ; only k is also unknown. All, Ai3,

A'— the same as A ll , A13 ,,A1 respectively, but the14

unknowns (io; 
1  and C; k, i o and C)	 have given laws of dis-

tribution and unknown parameters.

The set of particular cases of the model Ai may be increased.

,The general characteristic feature is the uncorrelatedness of the

noise. For the present we shall consider a2 to'be known

'	 The model A2.	 In contrast to the model A1, the noise ^i is a

-	 normally distributed random vector with mathematical expectation

;.	 A _ (Qi , ... ,aN	 and covariant matrix:
i

B=
f

}	 Here, a	 can be determined in accordance with (3). /6

In the particular case (stationary random process), we obtain

the model A2

^	 Q

For the present we shall assume that the function (5) is known.

The presence of a prime or a second subscript in the designation of

the model A2 (e.,g., A' 23 ) has the same meaning as in the case of the

model Al.



i
3. Algorithms of the Lower Level

A) The algorithm of moving summation. Let us introduce here

the average:

t►U^' ^^	
^.	

i+A
Y.

4	 ,`

Dy,T	 J=:_!c

for the models	
if A l2 A13 A EI ,	 as k assumes its known value.

The question as to the models A i4 , A 14 ,	 we shall not consider at
present for the given algorithm. It is clear that	 is determined

i
for h +	 N— A

To determine the acceptance of the solution concerning the

presence of the signal or its absence, one of the following decision

rules can be applied.

Decision rule A l Let

Yr»a r = max y..
-	 k•.^c icll^ifr t

Let us introduce two decision functions (for the models A l and A2);

^.	 _	
Ct

4 C 2 a(g)
F2 

3-rn" — VXV-+-17'

where C' > C, , i.e.,  F, > F2, , and the cases F.	 FAD are impossible.

The decision rule has the form:

F,4 p f'	 there is no signal
i

:` ^' > p Y.
	

--- there is a signal	 (9)

F> O, eF2 O 	 the situation is
indeterminate

i	 5
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Its is possible to write analytic expressions for the charac-

teristic of this algorithm. Henceforth we shall consider groups of

N, < AT points, i.e., in formula (7) 'the limits of variation of i
will be still narrower. For the probability of a false alarm, we havei

!	 N+^ fz
ai = 1— 2 6 !+2 exp °^ 26 d tl^ ... cz►t 1+2	 (lo)

where the region Q in the space

system of inequalities:

t1;2*•

Iti Cz 2/k + I

ti+z is defined by the
^•

i

6	 j=112, ... ,N i* -	 (ll)

The formulas for the probability of the admission of the signal and

for the situation of indeterminacy are obtained by algorithms. Since

the computation of integrals of high multiplicity reduces, one way or

another, to statistical modeling, it is more convenient to apply

statistical modeling to the direct calculation of the characteristics

of interest to us. The results of such calculations will be dis-

cussed below.

Decision rule A 2 . In place of (8), we introduce two functions

of the number of the point j:

	

F	 e" Cr

	

i	 1	 2 +1

F2 (j) cz a
J	 2 I

^	

(lz)

Let us designate two further whole numbers nl and n2 . The

decision rule has the following form:

- if the number vl of points of the group for which

is less than or equal to nl, there is no signal;

6



- if the number v 2 of points of the group for which 	 /8

is greater than or equal to n 2 , there is a signal;

- in all the remaining cases, the situation is indeterminate.

For this rule it is difficult to obtain analytically the proba-

bility of a false alarm or the admission of a signal. However, we

shall present some estimate, or more precisely, the mathematical

expectation of the numbers v 1 and v 2 for various groups of points

(containing or not containing the signal). Let p denote a number

which equals 1 or 2. Then in the case of the model A 11 where there

is no signal, the probability of the event F, Q) ' Q is:

Cil 

_ 7' dt,- i- el---(c )

In connection with the fact that the theorem about the mathe-

matical expectation of the sum is also valid for the independent random

variable, we have:

MV =IV,	 (D(C' -	 (14)

If there is a signal and it is (has a maximum) at the point numbered
i o , then we have for y (; O)

_ j-; C
t

-"

o
	

2	 2 +	 f + ,...,2k

O	 j >2A.

Ia



Let 0  denote the set of

lies in the group, of Ni

number of points of Qi.

signal we have:

AV 
V = (All- Wd

value ±j for which the point numbered z *

points under consideration, and let w  be the

Then for the model A 11 in case there is a

I	 ^t	 or1	 (17)

Decision rule A3. Thi' rule differs from rule A 2 in that the

numbers X 1 and X2 replace v1 and v 2 , respectively, where Xp is the

maximum length of the series of events F^L (j) > O for the group of
points N1 . It is natural that for rule A 3 the values cu and nu must

be selected differently than for rule A2.

For decision rule A3 also, it is possible to obtain analytic

expressions for some estimate of the characteristics (for the charac-

teristics themselves, this is difficult). We shall present some of

them.

In order to estimate the mathematical expectation of a number of
a

series (in the present case we also include a series consisting of a

single point), note that each series begins with a jump in the corre-

sponding level, i.e., for example, F	 < O; F ' > Or:	 µ t J - ) 

Let us find the probability of a jump at the given point j in

case there is no signal. When the value C'u is `given, we have for

the desired probability:

2	 ^.	 1

I_ 	 ^2 +1
P^ 

= 1:2-W
2 (7 CEc - 2 ^^ t - u2'(-Cµ ^'	 dam, (18

ir:
where, as usual,

9
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For the mathematical expectation of the number of series in the

group of Nl points, we obtain the value N 1Pj . Since the total number
of points above the given level in the absence of a signal is fur-

nished by the formula (14), then according to a familiar theorem

of the theory of restoration, for the provisional mathematical
h	 expectation m of the length of a series (provided the series occurs)

we have:	 /10
E

(20)

Thus, when C^ ^.^, calculation gives P = C , C2C5, i.e.,
Y	

1?? = ! ia95: Hence the provisional probability of obtaining a series
of length greater than unity is very small. This is confirmed by

experimental results. Note, however, that formula (20) is imprecise.

The reason for the imprecision of formula (20) lies in the fact that
r	 the random variables which appear in the application of the theorem

``
	 from the theory of restoration do not satisfy the condition of

I	 independence.	 j

` 	 l

The probability of obtaining a series of length X, beginning at

the point numbered j, is given by the following formula:

6	

x	
j	

2	 (21)

^ ^12JL	 ^• ^ 	 A

where the region 0 is defined by the inequalities:

vc'2j►

(22)V_1•

As regards formula (21), we may repeat the same reasoning which was

S	 stated above regarding formula (10)

a<
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Using the decision rules introduced, it is possible to draw the

following conclusion relative to a data array N: if there is a signal

and a situation of indeterminacy arises in, say, even one of the

groups of N1	 information is transmitted to a higher level.. So far

we have considered the model All . If it is necessary to evaluate

the quantity C (in the model A 13 ), then, depending on which rule is

applied, we proceed in the appropriate manner. For example, for rule

Al we may assume that:

i

+ 	 ORIGMAC PAGE T423)
Li	 i' 

7
	 OF POOR QUALITY

In the case of the model A l21 before applying the algorithm 	 /11

described, it is necessary to eliminate the trend (3) by the usual
methods, after which we obtain the model without trend, e.g., A11'

Let us call such a procedure the algorithm of moving summation for a

model. with a trend. By contrast, we shall call the following algo-

rithm the more precise algorithm of moving summation for a model

with a trend.

a) Let us apply the usual algorithm of moving summation for a

model with a trend: i.e., as a preliminary measure we exclude the

trend.

b) If we have obtained the solution "no signal" or "indeter-

minate", the calculation ends.

C) If we have obtained the solution "there is a signal" — we
estimate the parameters of the s' 	 n	 's	 p	 signal and subtract the signal from the

initial process with the trend and repeat the calculation. The new

solution is definitive-

B) The algorithm "forward-backward". This algorithm was worked

out and used to solve another problem concerning the subject, and it

is discussed in [2]. It consists of the following. For each value

,

	

	 of i from A +j < <— , let us draw two straight lines of

regression, forward and backward, through the W-4-1 points:



+ b"'

As a statistic, on the basis of which the decision rule is constructed,

let us take:

2
For the dispersion O^^ of the random quantity 0 ( -), we have [cf.

[2]):

22
ilk--70664 .2}

We shall construct the decision rule by analogy with the algorithm,A),

only we shall replace y i by Atli) and 	 ^ by the expression (26).

Decision rule B1 . Let:

lamar wx Ada)	 (27)
A•l_<Z4JV

Let us introduce two decision functions ('J =1,2):

ca tt	 i^' +I)^yc+ 2 	(28)

and apply the decision rule (9)

Decision rule B2,.	 The same as A 21 except that in place of (12),

we write:

FtI(j)=A(j)-C 'ak	 Od;

z

Decision rule B3 .	 Analogous to A 3 , except that the function

(29) is used.

R	 ^

r

(25)

/12

(26)



The advantage of the algorithm B is that in the case of the

model Al21 the preliminary elimination of a trend is not required.

C) An optimal filter. It is easy to see that the algorithms

discussed above are linear filters. If k is known exactly, then

it is possible to use an optimal filter, giving the maximum signal to''
F

noise ratio at the output. It is easy to show that it has the formal
t	

y

P	

i AA

	
F

jai-k•1	 ^ .
where	

F

(31)

Here in formulas (8) and (12) we must write CK^ 	 3 instead

of  .	 k

Formula (15)„ is replaced by the following:

C 
2 z	 -	 -^

	

i
-- b	 4 2 +3

(2-k -j) (2 k-,j 1) (2
I ,GO-

r

k
For the algorithm A) the signal to noise ratio is ^  	 , and for	 /13

the algorithm C) it is	 ?	 , i.e., we obtain an increase of

(2T- +11(2k+	 times, which equals 1.21 times when k	 6. This3.
insignificant increase does not compensate for the substantial

increase in the labor of calculating with C) in comparison to A).

Moreover, for C) it is mandatory to know the parameter k. Therefore

we did not consider the algorithm C) in more detail.

r
12
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Note that for the algorithm B), the signal to noise ratio

e-juals:	 3

at ROM
I

When k _ 6, this is 4.5% loss than for the algorithm A).	 However,

we consider this algorithm, since when k increases, it improves,in

comparison to the algorithm A)	 (when: lc = 2, it is already 1.25 tames

better).	 Moreover, as was pointed out above, it does not require

the exclusion of a trend.	 The final concludions will be presented

" below.	 Finally, note that some increase in the signal to noise ratio

for the smoothing algorithm can be obtained without an increase in
F

the labor involved, due to the proper choice of the width of the

smoothing interval.	 In formula (6) we shall take k 	 in place of k.

(assuming it is known); it also replaces 1: in Formulas (3) - (12), 	 {'

etc.	 In formula (15), when j = Q, we obtain:

0 1

Here the signal to noise ratio equals; 	 /14

k^	 L	 /	 \\(	
t

Il l+(41

`	 a,'+1
is

` Let us find the maximum of expression (34), assuming that k l is

continuous and ranging over the interval (1, 1c). 	 Thus, we obtain:f
+{(2 ^) 3_ _5lcl.opt -	 3	

(35)

In our example when ]c = 6,, we must take k1 = 4.	 This improves

the signal to noise indicator by 10%.

13



4 . Upper Level_ Algorithms

Various realizations of methods for detecting and separating

signals from the noise (with precision with respect to optimization,

the number of iterations, etc.) based on the study of probability

functions, which are familiar from the literature (cf., 3.g•, 13, 41)

may be taken as upper level algorithms. For the model A l , we have

the following expressions for the probability functions C0 in the
case of a null hypothesis (there is no signal), and ( j in the case

a signal is present:

Al 
WE k

iz—	,^	 p
±N

	

- -i -8 'i - C4 iA
 aE	 6:_
	

(37)

Note that these formulas are not applicable to the model A'. In the

case A'
1 	equally for the case A 21 it is possible to obtain other

expressions for t^ and 	 , in which event the following discussion

is to be changed somewhat.

First of all, by whatever means the problem of detection is

solved, it is necessary to estimate the parameters, i.e., in essence,

to solve the problem of isolating the signal. This has led to a large

set of algorithias. Let Lts consider the method of maximum plausibility
only, which reduces for constant a to the method of least squares.

The maximum plausibility ^ q corresponds to the maximum of the
i

quantity:

Depending on the model assumed, the quantity S is a function

of the following parameters: 3

14



= Q^ C.;

S --	 (aQ,(Cto,Cli,QQ},
S f_ (C ' Zo

	
ORIGINAL PAGE

- in the model
3!

- in the model
12

- in the modelA.
L3

- in the model A 14

and also possible is the variant Al2.4, where

L' Y°O

To minimize.S it is possible to apply arbitrary algorithms. The

choice of the best of them depends on the number of unknown para-

meters: for one parameter (case A 11 ) the "golden section" method may

be used; for two parameters, the Gauss-Seidel method may be used, etc.

We shall make only two comments.

In the first place, the problem of minimizing S may turn out to

be multi-extremal, in which case one of the methods of global optimi-

zation which is described in C51 may be employed.

Secondly, in connection with the fact that estimating the para-

meters - is subordinate to the general problem of detection, the

requisite precision of the estimation algorithm depends on the results

of com aring the hypotheses. Here we have our own hierarchy of algo-

rithms: after having estimated the unknown parameters in the first

	

a >>
	 approximation, we solve the detection problem with the help of two 	 116

de g-ision functions Fo and Fl as this was done at the lower level, and

onl" in the event of indeterminacy do we proceed to a more precise

	

`	 estimate of the parameters. When performing the last-mentioned esti-

mate it was possible to have used only one decision rule (excluding

the possibility of indeterminacy), provided we did not have in view a

further type of hierarchy (e.g.., with respect to the number of

 realizations to be used).	 #

Let us proceed to the solution of the detection problem, assuming

	

s
	 that the parameters are known. As is well known in the case of a

single decision function, this ,problem is solved as follows: let us

- a<

15



find the plausibility ratio:

tc	
(39)

and let us assign a certain threshold c. A solution concerning the

presence of a signal is assumed if:

(40)

In the contrary case, we shall assume that there is no signal. As

regards the choice of the threshold c, this depends on the solution

of a system of problems as a whole: the criteria, the limitations, and

the available information.

M,
k'

In the case of two decision functions (at the lower or inter-

mediate stages of the hierarchy) let us assign two thresholds c  and

c 2 (CQ >C 1 ) , and let us define:

Everything that follows corresponds to what was discussed above.

For systematic calculations, it is necessary to know the proba- 	 /171
bility characteristics of the algorithms obtained. In the simplest

cases they can be written out in explicit form in terms of the

quantity Z. Taking into account, however, the fact that the true

values of these characteristics still depend on the accuracy of the

preliminary parameter estimates, we shall not write down these

formulas. The method of statistical modeling is successful in the

case of various models and concrete algorithms in obtaining the

characteristics, taking into account all the decisive circumstances.

5. The Results of Statistical Modeling

Statistical modeling was carried out on the model Al2 with the
number of points N = 100. All together, there were 100 realizations

16



with a constant value for a 2 and a random trend (3), the coefficients

a0 , al and a 2 in the expression

t
being chosen uniformly distributed on the intervals:

o^ (--0,0005; 0.0005);	 aq - (-0,05; 0,05); cue—(0;5).

The signal was formed in accordance with (2) for 
v" 

50 k=6 9
the coefficient C assumed three values, depending on the version of

the calculation: C 3 Cr	 C a and C 0,.33 C^ .

Next, when using the moving summation algorithm, the trend was

excluded in advance with the aid of the least,squares method. The

trend was not excluded when the "forward-backward" method was used.

Then portions of length N 1 = 25 were processed, using various

decision rules. Here when there was a signal each of the versions

represented 100 realizations, and when there was no signal --- 200
	

/18

realizations (since in the general interval N = 100, a central por-

tion with a signal, and two extremes without signal, were selected).

On each portion in each realization, the values of ymax (correspond-

ing to Amax for the "forward-backward" algorithm), the number of

rejections vu and the maximum length of the series X  of the criteria

y (or, correspondingly, Q) for the levels C equal to the following

set of values: 2 Cr *'	 2.5 Cr# ; 3,0 e; 3.5 a and A C' , were fixed,
where by a' is meant ay for moving summation, and c ,, for the

"forward-backward" algorithm.

In Table 1 14 below are given the estimates of the proba

bilities

^ may y) ► (Orndx >̂ 'tOl P(v µ^ v^ 
p(x `X/^

for various versions. Versions which have no interest from the point

;T	of view of obtaining conclusions are not presented.

17



Since the smaller values of C u turned out to, be more effective,

the versions C =0,33 lj^ and C =;3 6 were calculated for y when

Cµ = 6 and C µ A,5 0^. The corresponding results are presented
t

in Tables 15 - 18

The following experiment was performed regarding the upper

level algorithm. In the model with a trend which was previously

f

	

	
described, the trend was eliminated. Next, by the method of maximum

plausibility i o and C were estimated and the detection problem was

solved according to the criterion of the plausibility ratio (40). The

distribution of the plausibility ratio k for the cases when the signal

was present or absent with respect to the 100 realizations ( as well

as for the signals 0.33 a, a and 3a) was outstanding for the choice

of the threshold C.

The results obtained are presented in Tables 19- 20.
t

ll
	 The distribution 1 Zo-5Oi (the true value of i o is 50) is pre
f	 sented in Table 19 when there is a signal for the versions C = cr 	 /19
k	 and C = 36.

In Table 20, the distribution of Q is given in the absence of a

signal and for three versions when it is present.

Besides the results presented in the tables, the required

computing time was estimated. An analysis of the results obtained

and some preliminary conclusions are presented in section 6.

6. Analysis of the Results Obtained and Conclusions
t
is

r Before analyzing the results obtained, it is necessary to

comment on accuracy. As is well known, when estimating some probes-

?	 bility p concerning an empirical frequency which was obtained as

the result of N trials, 5% of the confidence interval equals
r,

x,96 ^'̂'L.1̂ `' .	 (42)

.	 i.,	 1
8

r



e

In our case, when there is no signal, i.e., when N = 200, for
probabilities of a false alarm which are nearly zero, the estimate

turns out quite crude; thus, for example, for p = 0.10 we obtain an 	 k

error of + 0.025. However, account must be taken of the fact that

when two estimates . obtained by different algorithms are compared,

the situation turns out more favorable because the trials, on the

basis of which these estimates are obtained, are dependent, since

all the algorithms are subjected to exactly the same realizations.

The basis for this position is. in [6] (and in earlier works of Yu. G.
Polyak).

Further, if the results obtained by statistical modeling are

compared with certain theoretical results presented in section 3,

it must be kept in mind that the former are obtained on a model with

a trend, and the latter — on a model without a trend. Therefore,

the degree of their coincidence makes it possible to judge the

quality and the influence of the trend exclusion.

Finally, it must not be forgotten that the results obtained 	 /20

pertain to a case of uncorrelated noise and a concrete value of the

number k.	 Here we are limited by the preliminary analysis, making

it possible to obtain some conclusions with regard to the investi-

gation of a concrete system.

The difficulty of the preliminary analysis consists in the fact

that the comparison must take a number of criteria into account:

the time required to realize the algorithms on an electronic com-

puter, the probability of a flase alarm al, and the probability of

the admission of a signal a 2 . However, in individual cases, the

realization times for version- being compared are practically iden-

tical. In the first place, realization occurs during the comparison

of various decision rules and. various threshold values for one and
the same Lower level algorithm. Moreover, it occurs with sufficient`

accuracy in practice even for different algorithms of lower level,

since the operation of trend exclusion turns out not to effect cal-	 A
culation time significantly. Therefore, the preliminary analysis	

r

of lower level algorithms can be performed without taking the time
R
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criterion into account. 	 As regards the criteria a l and a 2 , for

the preliminary analysis, one of them could be fixed and compared with

the other.	 Unfortunately,	 this approach is 'impractical in view of
the fact that usually the values of al and a 2 do not agree for the

versions to be compared (cf. the tables). 	 This difficulty may be

# avoided as follows.	 Suppose for one of the versions we have the

values al and a 2 , and for another, the values ai and a2. 	 Let us

consider an hypothetical system such that for the first version m

independent detection channels are used, and the signal is assumed

k
-to be detected if it is detected in at least one of tae: channels;
_

for the second version, let the corresponding number of channels be 	 /21

M I .	 Then the probability of a false alarm is ma l for the first

system, and m'a' l_for the second.	 Let us select m and m' from the

condition;r

Incy'j - TnCxk	 (43)

Now it is possible to compare the systems with respect to the general
x

F:
probability of the admission of a signal': 	 the first system is

preferable if:

rn

F

-.	
U4

F i.e., 	 MOINAL PAGE 13

CLZ	 2
or

y

aG„ 4 n 	 ( 44)

Thus, for example, for the decision rule A2 1 let us compare

the threshold levels Cam. (5,g (Table 15) and Cµ = 2 6, (Table 2)

when a weak signal C =0,336` is detected. In the first case (for
.	 4=7 ) we obtain al= 0.08 , and in the second case (for ^;V = . )

20



OC 1 0,05. The correspondin' values of a2 are 1 = 0.26 = 0.74
and 1 - 0.14 = 0.86. Comparison according to formula (44) shows

that the first version is to be preferred.

As the result of a similar analysis, the following conclusions

are obtained.

1. The best of the lower level algorithms is the algorithm A)

with decision rule A2 and C =C,-

Here the choice of the number Z. is determined by the solution

of the network problem.

2. The previous conclusion may be changed in favor of algorithm /22
C) in case

a) the noise is correlated;

b) of smaller values of the number k;

c) a trend has been eliminated in advance.

In each of these cases additional investigation is required,

analogous to that discussed above.

L

	

	 3. According to all the indicators, except for the calculation

time, the upper level algorithm is better than the best of the lower

level algorithms. In terms of calculation time, it is only half as

good.

4

	

	 4. Except for the preliminary conclusions mentioned, when a
physical problem is to be solved, the results presented in Tables-

1 - 20 may be used.

ISORIGINAL AGE
OF POOR QU'ITY'

k

:.
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X23.1

-0,2 I100 I100 1900 "t,00,

x —0,I 0,99
I,00

1 900 I,00.

0,0 01,98 1900 1900 1900' 
!^` 0 9 I 0091 0996 I900 , I,00

0 92 0,71 0,82- 0,97 1,00

0,8 0.45 0,59 0988 I900

0.4 0,23 0936 0,70 - 1900.

i	 0,5 O,LO 0,I8 0947 1900

1	 0,6 0, ..,+,+ 0909 0926 1 900

0,7 00 0.0 0.12 0199

g

098 0,05 0,91

0 1,9 - — 090 0978
k

I90 _ _ _' 0,63
a

I , I
_ _ _

0,'SY a

e: I ' S - - _ p,I4

1 9 4 0907

I5 — -. - 090

i =- *Translator's note. Commas in numbers represent decimal points.''_

22

.	 v
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TABLE 2 . DISTRIBUTION P ^r^ > 	 FOR C I , _ ^ 6 *	 /24

No signal C	 04 33 6 C= 5
f	 ,

C =56

0 1,00 1,00 1 100 1,00
x 0,05 0,14 0,33 I,00

3 	 2	 0,0 0108 0,26 0,99

3	 — 0005 0,20 0999

4	
_ 0.02,.... 0,14. 0999

5 , 	_ 0-101 0111 0,99
r,?

E'
6 0101 0908 0999

?'	 - 0,01 01, 06 0,94

8	 _
O,OI Q,05 0192

Ia 0, 0I 0,.04: 0, 81

10	 — 10101 0,02 0,68

II	 _ 0,0 0,0 0141, f

12 0, 24

-"-'I3	 - - - 0111

e I4	 — — - 0901

15	 — — — 0901

16	 - — _ 000

*Translator's note.. Commas in numbers represent decimal points.
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.:	 0 1,00
I

0,05

2 0,0

3_ -
c 4

5 -

6 -

^8^ -
9

IO -

II -

12 -

13 -

I4 -

15

16 -

1,00 I,00 I900 .

0,14 0,33 1900 

0,06 0,24 0,99

0, 03 0,I8 .0099

0, 02 AN 0,.99

0,0I 0,09 09,99

0,0I 0907 0996	 .

0 9 0I 0,06 0,92

-	 0,01 0905 00, 89

0,0I 0,02 0977

0,0 0,02 0,68

- 0,0 0,41

- - 0,24
O , I I

- 0,0I

y ' _ 0,0I

0,0

b

V ^^

TABLE 3. DISTRIBUTION P C r y Q	 FOR ^h = 2 ^y
	

/25

1 No signal	 t C= 0 ,336 1 C= 6 t C 031
e y7	 1	 t	 1	 f



TABLE	 DISTRIBUTION 	 FOR C = 2, 5 5	 /2'6



	

TABLE 5. DISTRIBUTION P(^r:	 FOR C^ 2 0 5 ^-- *	 /27

IGINAL PAGE,

	

D	 S

No signal	 C 0,336 ! C= G ! C= 3.6'
th ^	 t	 r

	

0	 11 00	 I,00	 I,00	 1,00 ..

	

I	 010	 090I	 O,I2	 0999

	2	 -	 010	 0,09	 0997

	

3	 _	
-	 0,05	 0,93

	

4	 0,02	 0988
.4

c

	

5	 -	 0102	 6,81

	

6	 -	 ..	 0,02	 0; 75
i	 —

i 0,01	 0973

	

g	 _	 -	 0,01	 0,65

	

g	 _	 _	 0901	 0,5I

	

IO	 -	 090	 0936

O,I7	 i

	

12	 -	 -	 _	 0,07

	

I3	 0,0I

	

Y4	 -	 -	 -	 090

'Translator's note. Commas in numbers representent decimal points

2.6
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TABLE 6 . DISTRIBUTION P C^'^ = Q v, FOR C j , r 3 G^
	

/28

k
I:
I^

( No sIig al
C	 3U1 C-^  JJ . ,	 ^	 C = ^	 ^

V	 s r	 r	 t

0	 1,00 I.00	 7,00 I,00

I	 0,0 0,0	 0,04 0,90

2	 - -	 O,OI 0,85

3	 - -	 O,OI 0,78

4 -	 0,0 0,70

5 -	 - 0,64

6	 - -	 - 0,58

7	 - -	 - 0,48	 r

8	 - _ 0,29	 !l

6	 !M6

0, 07
7A	 - -	 - 0,04

1 2 ._ 0, 0T

,

I4



TABLE 7 .

1

nxsrrr7.ruTxON P

No Signal	 1 C= 0,33 6

t	 ^

r

C

^

C

0. 1.00	 1 '00 1 .00 1'00 
I

0,0	 0,0 0,04 0,90

2 -	 — 0•QI 0, 83

3 _	 — O,OI 0,76

4

l
—	 — 0,0 0,67

5
_	 _ — 0,60 

6
_	 _ _ 0,54

7 _ _ 0, 42 

8 s _ 0,26 	 1

10 —
0,07 

11
— 0 , 01

12 _ — 0, OT

13
_ — 010I

I4 — —
0,0

X29
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i
/30	 'J

1 ;No signal 4 C=O,33 ^ 9 C » ^ ^ C .:3 1^
y t

4 Y ^ 1

d 9 2 1,00 19 00 I'm

O's 0,98 0,97 0,98 1,00

0,4 0,88 0,86 0,94 1100

0,1 5 066 0,61 0977 1,00

x d, '47 0,44 0,60 0,81

099 0,22 0,23- - ` 0,35
f

0,94
` 0,8 0909 O,II 0,2Y 0989

k	 , 0, 91 0,03 0,07 0,09 0,7T-

^ I,0 0,()I 003 ^	 0,04.
ti

0i6I

I,I 09.0 010 - . 0902 0 ,49

I`

f

1 ,2
-. _ 0,0I 0,34'

^j

I '8 ` _ _ 0,0 0922

OJ3

5 - - - 0,06

0,02
0,02

,8 - 0901
-. -

0,0I

0,0

*Translator's note..	 Commas in numbers represent decimal points.
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s C=:0,336 C= 6 C . 3.^

I,00 I,00 1,00
0,59 0,66 0,99
0,35 0,41 0,97
0,03 0,2I 0,89
0,06 0,10 0.79
0,02° 0,04 0,46
0,00 000 O, 14
- - 0,0I.

_ 0,0

^'

J

t	 No signal`

^

0,}' 1, 00
L; 0,55

2 0,29
. /3 O,II
/J 4 -	 0,25

!j	 5 0701
6 0,05
7 0,0
8 -

r

/I

TABLE 9. DISTRIBUTION P(^^, >- ^,^) FOR 1. = 2A
	 /31

TABLE 10. DISTRIBUTION {- ( `'^ >, E ^,)FOR C t,., 
,L b a

 No signal	 t C=O, 33	 C- 6	 f - C--= 3

0 1,00 1,00 11,00 =-I,Oa
I 0,55 0,55 0,68 0,99

`	 2 0,19 0,25 0,35 0,94
3 0, U3 0.07 O,I4 0,35

4 0,05 0,01 0,04 0,75

5 0,0 0,0 0,01 0., 4.2

Ci 4
0.0 1,02

*Translator's note.	 Commas in numbers represent decimal points.



V

No .signal ( 4	 C- 0 9 336, 1 C	 6 C= S 5
q ( 'i f

0 1.00 1,00 1,00 1,00
1 0,28 0,30 0,47 0,97

2 0,08 0,14 0, I9 ' 0,90
3 0,03 0,03 0,07, 0,73

4 0,05 0,0I 0,02 0,53

5 0,005 0,0 000 0,20
0 , 0 0,20

7 - _ - 0,0
Y

4

t.e

k'

t`
l

E

S

i

I'

^► FOR	 = 2TABLE 11.	 ^,DISTRIBUTION p^ti 	C	 o	 /32

F

TABLE 12. DISTRIBUTION }-f 	 > ^ 	 FOR C	 2. 5 >^.

_ No signal	 ! C=0
t	

,33 6 r C=G t C

0 _ 1.00 1,00 1,00 I,00
R 1 0,28 0,29 0,47 0,97

2
0.05 0,06 0,T6 0,87

3 0,01 0'10I 0,06 ,; 0,73i,
4 0,0 '0 00I 0,50
5 - 00 ;'0.16

T 0,0

a

*Translator's note.	 Commas in numbers ,represent decimal points.-
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f No signali
f C^ 33 6

'

C =^	 f C=3

1' T

0 1,00 1,00 1900` 1,00
r 0, 095	

`r;
0, 11 0920 0, PA

z 0,01 0,01 0,07 0,68
3 0, 005 0,01 O, of 0,40
4 0,0 0,0 090 0,2-4.

5 _ - 0, 02
6 - 0,0
—^ -	 rr

1a

TABLE 13 . DISTRIBUTION P v^+ QV 1 FOR

1
No signal	 ! Cì -0, 33	 C"-	 1	 C z: 3

0 1'00 1,00 1900 1, r;. .
1 -	 0,095 0911 0920- 0, 86 .
2 0, 015 09101 0,07 a, lx
3 0005 0,or°

-
0,02 0, ,17

4
_	

0,0 090 0,0 0,25
5 0, 02
6 000

TABLE 14. DISTRIBUTION P { r > Q^^ FOR C lk = 3/ 6 0

f'

/33

V

*Translator's note. Commas in numbers represent decimal points
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TAGA%E 15.	 DISTRIBUTION  ^vr >. Q V )FOR C^,, = 6	 /34
OlaGs $ QZJIJATY.

} No signal	 1	 _ 09336!	 C_ 6	 C= 3 v

p	 I,00	 1'00	 I,00	 I,00
_	 0,52	

0,60	 0,86	 I,00

2	 0, 38 .	 0,54	 0,81	 I 00-,
(	 3 0,30 0,44 0,75 I,OO ='

4 0,21 0,41 0,66 I'00
5

s
0,17 0, 37 0,59 I'00 

6 O,I3 0,31 0,57 I,00 { e
? 0,08 0,26 0,53 I,00

8' 0,06 0,20 0,46 1900 

0,04 O,I8 0,35 I,00 t

I0 0,03 O, I2 0,29 , 0,99

!iI 0,02 0,09 0,24 0,98

12 0,0I 0,06 0,70 0,94

I3 0,005 _	 0,03 0,16
.

0,72
3

14 0,0 0,0 O, I O 0,40
F

15 - - 0,05 0,24

I6 - - 0.02 O,II
17 _ _ 0907 0902'

0 0,0

*Translator's note.	 Commas in numbers represent decimal points.
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TABLE 16 . DISTRIBUTION	 C^^- Q^ FOR
	

/35

! No signal	 4 G.O, 33 G C	 C = 3 S

0 '1,00 1,00 1.00 1,00
I 0.52 0,60 0,86 1,00

2 0,36 0,48 0.79 1,00
3 0,24 .0, 41 0,70 1,00 
4 0;^I6 0936 0.59 1,00 
5 0,I2 0,27 0,54 1.00
6 0,I0 0,22 0,50 1,0t;

`	 7 0.07 0.17 0,44 1,00

8 0.04 O,IO _0,36 1,03 

9 ^ . 02 0,08 0,29 i3O0 

^.	
T O

i
0. 005 0, 06 0.22 0,99

t
II G,005 0,05 O,I8 0,97

12 0,005 0, 04 O J6 0,94

I3 0,005 0,03 0,I4 0.72

R I4 0,0 0,0 0,07 0,39

15 0,04 0,23

16 - - 0902 0,10

17 - - 0,01 0,02

18 oto 0.0

*Translator's note.	 Commas in numbers represent decimal points.
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TABLE 17. DISTRIBUTION P ^^r,^^^ FOR C14 	 136

A

t	 No signal-	 1 C-O 336 t C = 6	C'=36

rJ.

	

0	 _ r	 I,00	 , I,00	 I100	 1,00

	

I	 . r	 0,L,9 	 0,35	 0,67	 L,00

2 ^f'	 .0 13 	 0,23	 0,52	 1'00,

x	 S`	 ,08	 O,I5	 0,45	 L,00

	

},^4	 00,05	 O II	 0,39	 1'00

	

5	 0.04	 O,IO	 0,34	 1,00 7
a

6` 	 0.02	 0,08	 0,31	 1'00

z

	

0,01	 0.08	 0, 23 	 0, 99
s	 8	 0,005	 0,06	 O,I6	 0,99

	

9	 0,0	 0904	 0,12	 0,97

	

10	 -	 0,02	 0,08	 0,94

	

zI	 0.02	 0,08	 0,83

.	 F	12	 0,0	 0,03	 0,58

t

	

13	 0.02	 0.32

	

14	 _	 0901 	 O,I7

	

IS	 0,0	 0,03

	

L6	 -	 0,0

*Translator's note. Comma, in numbers represent decimal points.	
yy{

pp
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18. DISTRIBUTION (^ > Qy^ )FOR 	 ^., bj `^	 /37

^ti



cu	 t	 C^36
b	 f	 1

0	 I,0	 I,0
I	 0080	 09

20.50	 E	 0912f.

S;'	 0929	 0901

n 1 ^
TABLE 19.,- - 	 P( jCol	^3 ^/	 /3$

a



v

TABLE 20. DISTRIBUTION P < > ^,^ 	 /39

F

t

3

t	 No signal t C0,W6  ,^ 1 C 6.

f

0 I,00 I,00 1,00 i9oo
2 0,92 0.94 0,99 1,00 
4 0,66 0,75 0,97 1,00

6 0,46 0,GI 0,93 1,00
8 0 30 0,45 0,81 1,00  _

I0 OJ5 0,35 0,66 I,00
I2 0,Io 0,26 0,53 1,00

I4 0,07 0,I7 0,43 I'm

I6 0,02 0,13 0935 1,00 
I8 0,0I 0,07 0,23 O sa
20 0,01 0,04 0,14 0, T7
22 010 0901 0,e6 ot-19

24 0,0 0,04 6j,59	 --

26 0,0I 0940

28 _ 0, o 09 22

30 O, I5

32 0,0

*Translator's note. Commas in numbers represent decimal points.
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