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A COMPUTER GRAPHICS PROGRAM FOR GENERAL FINITE ELEMENT ANALYSES

. By

Earl A. Thornton1 and Lynn M. Sawyer2

SUMMARY

Documentation for a computer graphics program for displays from general

finite element analyses is presented. A general description of display

options and detailed user instructions are given. Several plots made in

structural, thermal and fluid finite element analyses are included to

illustrate program options. Sample data files are given to illustrate use

of the program.

INTRODUCTION

The widespread acceptance of the finite element method has led to a

recognition of the importance of computer graphics in engineering analysis.

Application of finite element computer programs to realistic structural,

thermal, or fluid mechanics problems involves generation of large data

arrays to specify the analytical model and its behavior. One of the

advantages of the finite element method is that the analytical model and

its calculated response can readily be displayed utilizing computer

graphics. Several computer graphics computer programs, both passive and

interactive (see refs. 1 and 2), have been developed particularly for

applications to structural analysis. However, there still exists a need

for well-documented, versatile, computer graphics programs which can be

utilized for a variety of finite element analyses.

In a recent finite element thermal analysis study (ref. 3) a NASA-

developed, passive, graphics program was utilized. The program (ref. 4),

called GARYPLOT by users at NASA/LaRC, has a number of desirable features

1 Associate' Professor, Department of Mechanical Engineering .and Mechanics,
Old Dominion University, Norfolk, Virginia 23508.

2 Undergraduate Research Assistant, Department of Mechanical Engineering
and Mechanics, Old Dominion University, Norfolk, Virginia 23508.



such as several plotting options and a flexible format for accepting input

data. GARYPLOT, however, has two significant limitations: (1) the program

is restricted to lineal (rod) elements with two nodes and triangular or

quadrilateral two-dimensional elements with three or four nodes; and (2)

the program is limited to static response displacement plots. The element

limitations are restrictive because finite element analyses frequently use

higher order two-dimensional elements with more than four nodes and three-

dimensional elements. The static response limitation is restrictive

because of growing interest in finite element structural, thermal and

fluid transient analyses.

The purpose of this report is to present a new,- passive, computer

graphics program (ELPLOT) which can be utilized for displays from general

finite element analyses, including structural, thermal, and fluid appli-

cations. The program is based upon GARYPLOT, but extensive revisions and

additions have been made to remove GARYPLOT1s limitations and to increase

ELPLOT's capabilities.

In the main body of the report, several feature's of ELPLOT are

discussed: (1) display capabilities including view selection, cutting

planes, exploded plots, symmetry options, etc., (2) alternative methods

of data input, (3) one-, two-, and three-dimensional element types, and

(4) static and dynamic response display capabilities. Plots generated by

the program in structural, thermal, and fluid applications will be

presented to illustrate the display features. User instructions and

sample input data for the plots are presented in Appendixes A and B.

DISPLAY FEATURES

View Specification

Oblique orthographic projections are used to allow the analytical

model to be viewed in any selected orientation. An example of oblique

orthographic projection of a finite element structural model is shown in

figure 1. The model was used in a NASA design study of the wing structure

shown.

In the oblique orthographic projection approach, Euler angle transfor-

mations are used to specify orientation of the model relative to a projec-



tion (viewing) plane. The Euler transformation projects the coordinate

system of the model onto a viewing plane. Figure 2 shows the coordinate

systems and Euler angles.utilized. The model coordinates are expressed in

the x, y, z coordinate system, and the x , y , z coordinate system repre-

sents the fixed viewing planes. The model is rotated about the x, y, z

axes to a selected orientation by the Euler angles (\l>, 0, <j>). Model

coordinates are then computed (transformation equations are given in ref. 4)

by the program in a user-specified viewing plane such as the x - y plane

shown in figure 2. The order of the Euler angle rotations in the program is

4>, 6, and <{>. The user as an option may select either x - y , y - z ,

or y - z as the viewing plane.

Element Display

The program includes options to plot the complete undeformed model

annotated with node or element numbers. Portions of the model can be

isolated for closer examination by either: (1) sectioning (cutting) of

planes parallel to the viewing planes (x - y » y - z , y -z), (2)
o o o • o o o

specification of maximum and minimum node numbers to be included in a

plot, or (3) inclusion of maximum and minimum element numbers in a plot.

Also, exploded views can be generated which separate the elements in a

model to aid in detecting the absence or presence of elements. For

example, a rod element coincident with the edge of a quadrilateral

element cannot easily be detected in an unexploded plot, but an exploded

view will clearly display both elements. Another feature is the capa-

bility to plot a complete figure from a finite element model based on

symmetry about one or more of the coordinate planes. For example, this

is a useful option to aid in viewing the deflected shape of a symmetrical

structure when only a portion of the structure is actually modeled in the

analysis. Symmetry plotting can be performed about all three viewing

planes.

Element Types

One-, two-, and three-dimensional finite element families with an

arbitrary number of nodes may be plotted. Elements are drawn by consecu-

tive straight lines between nodes, and element node numbers must follow

patterns similar to those displayed in figure 3. Three-dimensional



elements must have an even number of nodes. Alternative numbering schemes

which arise in finite element analysis programs can easily be accomodated

by renumbering the finite element nodes during input of the element data to

ELPLOT (see "Finite Element Input Data Options" for further details).

Response Displays

Display options are available for plotting static and dynamic responses.

In the static response option, nodal-dependent variables such as displace-

ments or temperatures from a particular analysis can be superimposed on

nodal coordinates of the model to display a deformed structure or spatial

temperature distribution. Nodal-dependent variables can also be represented

as vectors extending from the nodes. Spatial plots of nodal-dependent

variables can be generated for an arbitrary number of displacement cases.

For example, the deformed shape of a structure at selected instants of time

or an arbitrary number of vibration mode shapes may be displayed.

In the dynamic response option, x - y plots are made of a nodal-

dependent variable such as a displacement component,'temperature versus

time, or a timelike parameter. Dynamic response plots can be made at an

arbitrary number of user-specified nodes.

PROGRAM EXECUTION

Control Commands

Three basic control commands are utilized to control program execution.

These commands are standard FORTRAN NAMELIST statements. The control

commands are

$OPTION ... $

$PICT ... $

$HIST ... $

Each of these commands has a set of input parameters to provide program and

plot control (see Appendix A). All of the parameters, however, have

default values so that only a minimum number of control parameters actually

must be specified.

NAMELIST OPTION is used to establish basic control values for a plot

problem. The basic control values consist of parameters for allocating

4



dynamic storage or selecting the output device (e.g. Calcomp or VARIAN at

NASA/LaRC), paper size, the input mode for the finite element data, etc.

NAMELIST PICT is used to specify the desired plot display features.

Options such as viewing planes, Euler angles, exploded views, cutting

planes, and annotation can be selected and given desired values. NAMELIST

PICT is used to control display features for undeformed, exploded, and

static response plots.

NAMELIST HIST is used to specify display features for dynamic response

plots. Options such as titles, scales, axes labels, and plot symbols can

be selected and specified.

Execution Options

The basic execution options are shown in figure 4. Each new problem

begins with a title card followed by a NAMELIST OPTION to specify the

basic plot control parameters. Next, a NAMELIST PICT is used to specify

display parameters for the first plot and set the value of the flow

control parameter KODE. The first plot must be an undeformed plot of the

finite element model.

The subsequent flow- of the program is determined by the value specified

for KODE on NAMELIST PICT. A value of KODE = 0 (the default value) on the

first NAMELIST PICT causes the program to terminate after a single plot.

A specified value of KODE = 1 will cause the program to read a $PICT for a

second plot of the model. Alternatively, KODE = 2 or 3 will cause the

program to read a $PICT or a $HIST for static or dynamic response plots,

respectively. A value of KODE = 4 causes the program to read a title card

for a new problem. A large number of plot options can be specified on a

single ELPLOT execution since there is no limitation on looping within

the program by using the optional values of KODE in NAMELIST PICT and HIST.

A single NAMELIST PICT or HIST will generate several cases of static or

dynamic response plots.

Finite Element Data Input Options

Three options are available to input the finite element model geometry

and displacement data. These options permit ELPLOT to be compatible with

a variety of finite element analysis programs. The options are (1) input



data may be read from cards or files containing card images utilizing

a user-specified format, (2) input data may be -read from unformatted

binary files according to ELPLOT specifications, and (3) user-supplied

subroutines.

The first option, is .typically useful when a complete data deck

describing a finite element model exists. Nodal coordinates and element

connections can be read with user-specified formats, and the analytical

model can be displayed by ELPLOT for data verification. Displacement

data sets can also be input from cards or card images for response plots

in a similar manner. The second option is useful when it is desired that

ELPLOT serve as a postprocessor to a finite element analysis program.

Typically, binary geometry and displacement data files are generated

during execution of an analysis program, and ELPLOT subsequently reads

these data as input. To use ELPLOT in this manner, the binary data files

must be generated by unformatted write statements on tapes 8 and 20 in the

analysis program. Geometry data is written on tape 8, and displacement

data is written on tape 20. Sample subroutines illustrating these write

statements are presented in Appendix A. The third option of user-supplied

subroutines is facilitated by ELPLOT "dummy" subroutines in which a user

may insert any desired FORTRAN statements to read input data.

The parameters KGEOM and KDATA specified in NAMELIST OPTION are used

to select the finite element input data options. Proper sequences of

NAMELISTS, geometry and displacement data are presented for option one in

figure 5(a); proper sequences of NAMELISTS are presented for option two in

figure 5(b).

APPLICATIONS

Computer plots obtained utilizing ELPLOT will be presented for five

finite element models. Applications are presented for structural, thermal

and fluid finite element analyses. The applications were selected to

demonstrate several display features and the versatility of the program.

Wing Box Structural Optimization Model

A wing box utilized in a structural optimization study (ref. 5) is

shown schematically in figure 6(a). The finite element model consists of

30 nodes connected by 68 rod elements and 8 triangular elements. The



triangular elements have six nodes. The finite element data for the optimi-

zation program were prepared in card image form and were read into ELPLOT

using finite element input data option one (KGEOM = 1). The input data file

for the ELPLOT execution of the wing box is given in Appendix B.

Three plots of the finite element model are presented in figure 6

(b to d). Figure 6(b) shows an oblique view of the complete model annotated

with node numbers. Figure 6(c) shows the top face of the model isolated by

two cutting planes parallel to the x - y plane. An exploded view of the

top face is shown in figure 6(d). The exploded view clearly shows the nodes

to be connected by rods and triangles. The presence of the triangles is

not obvious from the displays shown in figure 6(b and c) since rod elements

alone could have generated the figures.

Bolted-Joint Specimen

A finite element structural model of a composite material, bolted-

joint specimen is presented in figure 7. The bolted joint is symmetrical

about the x - z plane, and only one-half of the specimen is modeled. The

specimen is modeled with 15 three-dimensional finite elements. Each element

has 16 nodes. Figure 7(a) shows the finite element model annotated with

element numbers. The coordinate axes are offset from the model for clarity.

Figure 7(b) shows an exploded view of the model.with the symmetrical

portion of the model plotted utilizing the symmetry option of ELPLOT. Figure

7(a and b) shows, that two nodes connected to element 7 have erroneous

coordinates.

Oceanographic Instrument Truss

The finite element model and static response (deformation) shapes of

an oceanographic instrument truss are presented in figure 8(a to d). The

model consists of 21 nodes connected by 51 rod elements. The structure

was statically analyzed for two static load cases using the truss analysis

program STAP (ref. 6). During the STAP execution, two binary data files

were created and saved as plot-input files. Using input data option two

(KGEOM = 2.and KDATA = 2), these data were subsequently read by ELPLOT. A

separate file containing the plot control commands was used to execute

ELPLOT; the control command file is given in Appendix B.



This example illustrates the use of ELPLOT as a postprocessor to a

finite element analysis program. Most of the geometry data (nodal

coordinates and elements) were generated internally by STAP. Since the

geometry data and displacements were saved on permanent files, several

executions of ELPLOT could be made without reexecution of STAP.

The plots shown illustrate the plotting of'more than one displacement

case with a single NAMELIST PICT. The static response option has also

been executed twice to give two different views of the deformed truss.

The displacements have been exaggerated by a magnification factor (DMAGS)

for clarity. Coordinate axes are offset, and the y axis has been

extended to serve as a vertical reference.

Scramjet Fuel-Injection Strut

Plots from a transient finite .element thermal analysis of a scramjet

fuel-injection strut are presented in figure 9(a to e). Figure 9(a) shows

the engine schematically, and figure 9(b) shows the finite element model

of the fuel-injection strut cross section. The finite element thermal

model has 122 nodes and 118 elements. Element types include rods,

triangles and quadrilateral elements with four and six nodes. Several

plots of the finite element model shown'in figure 9(b) have been made using

ELPLOT as a postprocessor to the thermal analysis program. A typical

section of the model is shown in figure 9(c); this plot was generated by

specifying minimum and maximum node numbers. A transient temperature

response of a typical node selected from figure 9(c) is shown in figure

9(d), which illustrates some of the available options for dynamic response

plots such as plot scales, axes labels, and symbols. The plot control

data file for the plots shown in figure 9(b to d) is given in Appendix B.

Fluid Flow About a Cylinder

Plots obtained from a finite element analysis of incompressible,

inviscid flow about a cylinder are shown in figure 10.(a to c). The flow

was analyzed using the stream function program presented in reference 7.

ELPLOT was executed as a postprocessor using finite element data files

created by the fluid analysis program. The plot.control data file used

to generate the plots is given in Appendix B. Figure 10(a) presents the

finite element model with the coordinate axes offset for clarity. Figure



10(b) shows an exploded view of the triangular elements. Figure 10(c)

displays the finite element model with fluid velocity vectors plotted at

the nodes. Vectors can be used in ELPLOT to represent any static response.

The vectors can be scaled by an arbitrary magnification factor (DMAGS).

PROGRAM DESCRIPTION '

Computer Requirements

The program ELPLOT 'is written in FORTRAN IV for the CDC 6600 series of

computers. The program in its original form is operational on the NASA/LaRC

Network Operating System. The program makes use of ten subroutines from the

Langley graphics library. The program is also operational on the Old Dominion

University DEC 10 computer system. Equivalent ODU graphics routines were

substituted for the Langley subroutines. Where feasible, the program has

been written to accomodate convenient transfer to other computer systems.

For example, Hollerith fields are used in all FORMAT statements.

Dynamic storage allocation is used to accomodate problems of varying

size. All large arrays are stacked in a blank COMMON designed ZZZ in the

main program. The amount of blank COMMON required for model display and

static response is determined by the total -number of nodal points,

the number of displacement components, and the maximum number of element

nodes. The amount of blank COMMON required for.dynamic response plots is

determined by the number of x - y data points per plot and the number of

plot cases. Dynamic storage is automatically allocated in the program.

The storage requirements for model display and static response plots are

included as part of the printed output.

Internal Documentation

The program is internally documented with pertinent comments. In

addition, a subroutine DOCMNT is included to facilitate conversion to

other systems. DOCMNT contains: (1) a complete description of all

graphics subroutines, their purpose and definitions of parameters in the

CALL statement, (2) a complete set of user instructions, (.3) sample

subroutines for creating binary finite element data files, and (A) a list

of modifications required to transfer the program from the Langley

computer system to the ODU system.
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CONCLUDING REMARKS

A passive computer graphics program (ELPLOT) for displays from general

finite element analyses has been presented; The program generates oblique

orthographic projection plots of a finite model with several view and

annotation options. General families of one-, two-, and three-dimensional

finite elements are permitted. Display options are'available for plotting

static and dynamic responses. Three options for finite element data input

are available to permit compatibility with a variety of finite element

analysis programs. Several plots made in structural, thermal, and fluid

finite element applications are presented to illustrate various program

options. User instructions and sample input data are included in the

.Appendices.
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PLOT CONTROL DATA
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PLOT CONTROL DATA

Input Data

Input deck sequences for ELPLOT are shown schematically in figure 5.

The data must be input in the order shown and is described in detail in

this section. Some basic NAMELIST rules are summarized at the end of
L

Appendix A.

Title Card.- This card contains any desired alphanumeric information

in columns 1 through 80. The title will appear in the first plot frame and

on the printed output.

NAMELIST OPTION.- This NAMELIST contains values to allocate storage

in blank common and to specify control values needed by the program.

The following values are included:

NNDEST = Estimated number of node points to be used. Value must be greater

than or equal to the actual number of node points.

** Default = 200 **

MAXNDS = Maximum number of nodes on any element.

** Default = 8 **

NUDISP = 0 for no displacement data in x-direction.

= 1 for data including displacements in x-direction.

** Default o 0 **

NVDISP = 0 for no displacement data in y-direction.

= 1 for data including displacements in y-direction.

** Default = 0 **

NWDISP = 0 for no displacement data in z-direction.

= 1 for data including displacements in z-direction.

** Default = 0 **

KGEOM specifies subroutine and corresponding method of input for model geometry.

KGEOM = 1 node points and elements read from cards with user-specified format

by subroutine GEOM1.

= 2 node points and elements read as binary records from TAPE 8 by

subroutine GEOM2.

= 3 user-supplied subroutine - GEOM3.

** Default = 2 **
12



KDATA specifies subroutine and corresponding method of input for displacement

data.

KDATA = 1 displacement data read from cards with user-specified format

by subroutine DATA1.

= 2 displacement data read as binary records from TAPE 20 by

subroutine DATA2.

= 3 user-supplied subroutine - DATA3.

** Default = 2 **

NCASES = the number of cases of displacements to be read from TAPE 20.

** Default = 1 **

IRESEQ = .0 for no resequencing of node point numbers.

= 1 to resequence node point numbers in same order as they are input.

** Default = 1 **

KPLOT specifies the type of output device to be used.

KPLOT = 1 for Calcomp.

= 2 for Calcomp with plotting speed reduced 'to use Leroy pens.

= 3 for VARIAN.

** Default = 3 **

XSPACE = space between plots in x-direction, in inches.

** Default = 10.0 **

PSIZE = paper size in y-direction in inches, used in scaling of plots to

insure this dimension is not exceeded.

** Default = 13.0 **

NAXES = 1 for coordinate axes

= 0 for no coordinate axes

** Default = 1 **

Finite element geometry.- The finite element model geometry is input

in one of the following forms, depending on the value of KGEOM specified in

NAMELIST OPTION:

KGEOM = 1

(A) A single card containing the word FORMAT in columns 1 through 6 and a

variable format corresponding to the format of the node point cards with

left parenthesis starting in column 11 and up to 80 columns may be used.

13



(B) Deck of node point cards. Each card contains 4 values, node point

number (integer), x-coordinate (real), y-coordinate (real) and z-

coordinate (real). The format is specified in (A) above.

(C) A single card containing the word ENDNODE in columns 1 through 7.

(D) A single card containing the word TYPE in columns 1 through 4 and the

values for the word KTYPE and NEND in colums 11 through 20 and 21

through 30, respectively. KTYPE (integer) should have the value 1,

2, or 3 to indicate a one-, two-, or three-dimensional element. NEND

(integer) is the number of element nodes.

(E) A single card containing the word FORMAT in columns 1 through 6 and

a variable format corresponding to the format of the element cards

with left parenthesis starting in column 11 and up to 80 columns may

be used.'

(F) Deck of element cards. Each card contains the element number and the

node connections. The format is specified in (E) above.

(G) A single card containing the word ENDGROUP in columns 1 through 7.

(An arbitrary number of element groups may be used.)

(H) A single card containing the word ENDGEOM in columns 1 through 7.

KGEOM = 2

The finite element nodal and connection data are read from binary

records on TAPE 8. Sample subroutines to generate these files are given

in Appendix B.

Nodal displacement data.- Displacement data to be plotted is input in

one of the following forms, depending on the value of KDATA specified in

NAMELIST OPTION:

KDATA = 1

(A) A single card containing the word FORMAT in columns 1 through 6 and a

variable format for the data cards with left parenthesis starting in

column 11 and up to 80 columns may be used. If displacements are

included for more than one node point per card, the number of node

points per card must be entered as an integer in column 8.

(B) Deck of displacement sets. There can be multiple displacement sets

per card or the set can extend to more than one card (often the case
14



with NASTRAN punched output) which can be handled with a format for

reading multiple cards. A displacement set for each node point is

defined to contain from 2 to 4 values, a node point number and

displacements corresponding to NUDISP, NVDISP, or NWDISP equal to 1.

(C) Blank card or cards to end data deck. The number of blank cards must

correspond to the number of cards read at one time by the specified

variable format.

KDATA = 2

The nodal displacement data are read from binary records on TAPE 20.

Sample subroutines to generate these files are given in Appendix B.

NAMELIST PICT.- This NAMELIST contains values to specify the plot

desired and Che information to be included on the plot.

The following values are included:

KHORZ = integer designating horizontal axis of viewing plane,

where l = x , 2 = y , 3 = z . • '

** Default = 1 **

KVERT = integer designating vertical axis of view plane,

where l = x , 2 = y , 3 = z .

** Default = 2 **

XOFF = real number designating origin of x-coordinate axis

** Default = 0.0 **

YOFF = real number designating origin of y-coordinate axis

** Default = 0.0 **

ZOFF = real number designating origin of z-coordinate axis

** Default = 0.0 **

XLNTH = length of x-axis

** Default = 15% of PSIZE **

YLNTH = length of y-axis

** Default = 15% of PSIZE **

ZLNTH = length of z-axis

** Default = 15% of PSIZE **

. 15



PHI = angular rotation of model about its x-axis, in degrees (must be taken

third).

** Default = 0.0 **

THETA = angular rotation of model about its y-axis, in degrees (must be

taken second).

** Default = 0.0 **

PSI = angular rotation of model about its z-axis, in degrees (must be

taken first).

** Default = 0.0 **

NEWFR = 1 for frame change before plot is made. (A frame change resets the

x-origin past previous plot by XSPACE and the y-origin at 0.0.)

NEWFR. NE. 1 for no frame change before plotting.

** Default = 1 **

ISCALE = 1 for internal origin location and scaling.

= 2 for user-specified origin and scaling.

** Default = 1 ** •

PLOTSZ = maximum dimension desired on completed plot. (Used for scaling if

ISCALE = l ' . ) "

** Default = 13.0 **

XORGN = x-location of plot origin (used if ISCALE = 2) . . .

** Default = 0.0 **

YORGN = y-location of plot origin (used if ISCALE = 2).

** Default = 0.0 **

PSCALE = model size reduction factor, PSCALE = actual model size/desired

plot size (used if ISCALE = 2).

** Default = 1.0 **

NOTAT = 0 for no numbering on plots.

= 1 for numbering of node points.

= 2 for numbering of elements.

** Default = 0 **

XLHT = height of integers specified by NOTAT, in inches.

** Default = 0.15 **

16



KDISP = 0 for undeformed plot.

= 1 for deformed plot.

= 2 for exploded plot.

= 3 for displacements represented by vectors.

** Default = 0 **

IDMAG = 1 for direct scaling of data by DMAGS.

= 2 for scaling of data to a maximum value of DMAGS.

** Default = 2 **

DMAGS = magnification of displacements (if KDISP = 1).

= reduction factor of elements (if KDISP = 2).

** Default = 1.0 **

KSYMXY = 1 for symmetry about x-y plane.

** Default = 0 **

KSYMXZ = 1 for symmetry about x-z plane.

** Default = 0 **

KSYMYZ = 1 for symmetry about y-z plane. . •

** Default = 0 **

XXMAX, YYMAX, ZZMAX, XXMIN, YYMIN, ZZMIN locate cutting planes parallel to

principal (x-y, x-z, y-z) planes to limit plot.

** Default XXMAX = YYMAX = ZZMAX = l.OE + 20 **

** Default XXMIN = YYMIN = ZZMIN = -l.OE + 20 **

NDMAX = maximum node point to be included in plot.

** Default = 9999999999 **

NDMIN = minimum node point to be included in plot.

** Default = 0 **

NELMAX = maximum element number to be included in plot.

** Default = 9999999999 **

NELMIN = minimum element number to be included in plot.

** Default = 0 **

17



KODE = 0 last plot, exit from program.

= 1 read another NAMELIST PICT.

= 2 read a NAMELIST PICT for deformed plot.

= 3 read a NAMELIST HIST for history plot.

** Default = 1 **

One undeformed plot must be made before plotting displacement data.

On the NAMELIST $PICT which describes the first or any subsequent

$PICT for undeformed plots a value of KODE equal to two or three

will cause the program to read $PICT for a deformed plot or a

history plot, respectively.

The last NAMELIST PICT or HIST must have KODE = 0 in order to exit

from the program.

NAMELIST HIST.- This NAMELIST contains values to specify the nodes

and displacement component for dynamic response plots and information to

appear on the plots. The following values are included:

NODES = number of displacement history plots.

** Default = 1 **

IDISP = 1 x-displacement to be plotted.

= 2 y-displacement to be plotted.

= 3 z-displacement to be plotted.

** Default = 3 **

XPG = length of x-axis in inches .

** Default = 9.0" **

YPG = length of y-axis in inches

** Default = 9.0" **

XTIC = distance in inches for x-axis major tic marks.

** Default = 1.0" **

YTIC = distance in inches for y-axis major tic marks.

** Default = 1.0" **

XDIV = number of minor tic mark divisions per inch for x-axis.

** Default = 10.0 **

YDIV = number of minor tic mark divisions per inch for y-axis.

** Default = 10.0 **

18



YLHT = height of-letter.in inches.

** Default = 0 . 1 5 " ' * * ' : •

NOCHAR = number of characters in axes labels.

** Default = 25 ** .

JLINE specifies how the data points .are to be plotted.

JUNE = -1 symbol only. ;

= 0 line plot.

= +1 line and symbol plot.

** Default = 1 **

ISYM = integer number designating standard NASA symbol

** Default = 2 ** square symbol

ISIZE = integer number designating size of'symbol.

= 1 small.

= 2 medium.

= 3 large.

** Default = 2 **

LSCALE = 1 scaling of plot by program..

= 2 user-specified scaling by input values for XMIN, XMAX,

YMIN, YMAX.

XMIN = minimum value for x-axis

** Default = 0.0 **

YMIN = minimum value for y-axis

** Default = 0.0 ** .

XMAX = maximum value for x-axis

** Default = 1000.0 **

YMAX = maximum value for y-axis

** Default = 1000.0 **

KODE = 0 last plot, exit from program.

= 1 read another NAMELIST PICT.

= 2 read a NAMELIST PICT for deformed plot.

= 3 read a NAMELIST HIST for history plot.

** Default = 1 **

One undeformed plot must be made before plotting displacement data.

On the NAMELIST $PICT which describes the first or any subsequent

19



$PICT.for undeformed plots a value of KOBE equal to two or three

will cause the program to read a $P1CT for a deformed plot or a

history plot, respectively.

The last NAMELIST PICT or HIST must have KODE = 0 in order to exit

from the program. If a NAMELIST HIST appears, the following two

card sets must appear next. .

Node list for dynamic response plots.- A card set containing the node

numbers is required for dynamic response plots. The program reads a list

of nodes utilizing a free-field format, i.e. a list-directed read statement.

The list must contain a number of nodes equal to the parameter NODES

specified on the NAMELIST HIST. The default value of NODES is one, so at

least one node number must be specified.

Axis labels for dynamic response plots.- Two cards must appear in this

set: (1) the first card contains the x-axis label, and (2) the second card

contains the y-axis label. The number of alphanumeric characters appearing

in the axes' labels is specified by the parameter NOCHAR in the NAMELIST HIST.

NAMELIST Rules

The following NAMELIST rules are standard on many FORTRAN compilers:

1. NAMELISTS begin in column 2 with a dollar sign.

Example: 12345678910 .80
$OPTION . '

2. NAMELIST parameters are separated by a comma after the last

constant.

Example: $OPTION NNDEST = 300, NAXES = 1,

3. NAMELISTS end with a blank and then a dollar sign, no final

comma.

Example: $OPTION NNDEST = 300, NAXES = 1, MAXNDS = 10 $

20



APPENDIX. B

SAMPLE INPUT DATA
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SAMPLE INPUT DATA ; •

Input data files for four applications of ELPLOT are presented. The

data demonstrate utilization of the NAMELISTS and specification of the plot

control parameters (Appendix A) which were used to generate the plots in

figures 6 through 10. -.'•'..'.

Plot Control Files .

Wing'box structural optimization model.-, in this application all of

the data were entered in card image form. The complete data file is given

below. The plots generated by ELPLOT from this data; file are presented in

figure 6. •



.. .FINITE ELEMENT MODEL OF A W I N G B O X
SQPTION K G E O M - l , K D A T A « l , N N D E S T « 3 0 , X S P A C E « 5 . 0 > K P L O T » 2 > P S I Z E - i b . b $

F O R M A
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

T (
0. 0
40.0
80.0
80.0

40.0
0.0
0.0
40.0
80.0
80.0
40.0
0.0
0.0
40.0
80.0
80.0
40.0
0.0
0.0

I 5 , 3 F 6
0.0
0.0

0.0
0.0

0.0
0.0

40.0
40.0
40.0

40.0
40.0

40.0
80.0
80.0

* 80.0
80.0
80.0

80.0
120.0

.1 )
4 4 . 5
44 .5

44.5
Q.O

0.0
0.0

44 .5
4 4 . 5
44 .5

0.0
0.0

0,0
44. 5
44 .5
4 4 . 5
0.0
0.0

0.0
44.5

20 40.0 120.0 44 .5
21 80.0 120.0 44 .5
22 80.0 120.0 0.0
23
24
25
26
27
28
29
30

40.0
0.0
0.0

40.0
80.0
80.0
40.0
0.0

120.0
120.0
160.0
160.0
160.0
160.0
160.0
160.0

0.0
0.0
44.5
44.5
44.5
d.o
0.0
0.0

ENDNODE
TYPE
FORMAT

1
2
3
4
5

6
7

" 8
9
10
11
12
13

(3
1
2
3
2
2
6
5

' 2
3
7
8
9
8

1
15)
6
5
4
6
4
5
4
1
2

12
11
10
12

23



14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32 >
33
34
35
36
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

8
12
11
7
8

13
14
15
14
14
18
17
13
14
19
20
21
20
20
24
23
19
20
1
7

13
19
7

13
19
25
6

12
18
24
2
8

14
20
5

11
17
23
3
9

15
21
4

10

10
11
10
8
9
18
17
16
18
16
17
16
14
15
24
23
22
24
22
23
22
20
21
7

13
19
25
6
12
18
24
12
18
24
30
8
14
20
26
11
17
23
29
9

15
21
27
9

15

24



27 16 21
28 22 27
29 4 10
30 10 16
31 16 22
32 22 28

ENDGROUP
TYPE
FORMAT

1
2
3
4
5
6
7
8

ENDGROUP
ENDGEOM

SPICT K V E R T » 3 > K H O R Z » 2 , N O T A T » l » X O F F « - 1 0 . , Y a F F » - 1 0 . > Z O F F « - 1 0 . ,
X L N T H » 5 . » Y L N T H » 5 . » Z L N T H » 5 . » T H E T A « - 1 5 . » PS 1 = 15. S

SPICT X O F F » - 1 0 . , Z O F F » 4 3 . 5 , Z Z M I N « 4 3 . 5 , Z Z M A X « 4 5 . 5 , K H O R Z - 1 »
K V E R T « 2 » T H E T A » 0 . , P S I » 0 . $

S P I C T K D I S P » 2 » D M A G S - . 7 , K O D F _ = 0 S

2 6
(715)

13
13
1
1

18
18
6
6

20
14
8
2
23
17
11
5

27
15
15
3

28
16
16
4

26
21
14
9
29
22
17
10

25
27
13
15
30
28
.18
16

19
20
7

. 8
24
23
12
11

25



Oceanographic instrument truss.- The plot control data file for the

truss plots presented in figure 8 is given below. The finite element data

were read from binary files generated by the finite element analysis:

program STAP. Sample subroutines utilized in STAP to generate the binary

files are presented in the next section of this appendix.

TRUSS PROBLEM SOLVED BY STAP
*OPTION NNDEST=30» NCASES"2> NUDISP»1 yNVDISP=l rNWDISP^l *
*PICT NQTAT-1 r KQDE=2 > YLNTH=A5 » t XLNTH=12 , * XOFF=-2 . f YOFF=-2 . r ZOFF~-2 *

$PICT NOTAT=OrKDISP=lfDMAGS=7.yKODE=l *
*PICT

*PICT

Scramjet fuel-injection strut.- The plot control data file for the

thermal analysis plots presented in figure 9 is given below. The finite

element data were read from binary files generated by a thermal analysis

program (TAP) . Plot routines used in TAP are presented in the next section

of this appendix.

S C R A M J E T FUEL INJECTION STRUT AUGUST 16> 1978 .
$OPTION NNDEST»122* NWDISP-1* KPLOT«3> NAXES-0* NCASES»51 $
SPICT KDISP»2> DMAGS«0.7»NDMIN«107»NDMAX-122»NQTAT»1»KODE«»3 $
SHIST L S C A L E » 2 ^ YMAX»2000.> XMAX-10 . * NQDES«2* KODc-0 $

111 112
T I M E ( S E C )

. . . . . . TEMPERATURE (F)

Fluid flow about a cylinder.- The plot data file for the plots of .the

finite element flow analysis in figure 10 is given below. The finite element

data were read from binary files generated in the fluid analysis program.

THORNTON
SOPTIQN NUDlSPal f NVDlSPaj ,KGEQMs2, KDATA82 S __'____^__ - • •
SPICT KODEal,NOfAtat,XLHT=0.a75,XOFF*-.5,YOFFs-.5fXLNTH»3.,YLNTH»3,
$PICT NOTATS2,KDISP=2,DMAGS».7,KODE*2 $ . x

SPICT KDISPat3,NpTAtsg,KODE»0 $ x_ ' - ' •'"• • '• "
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Creation of Binary Finite Element Data Files

Node and element data.- The subroutines listed below illustrate the

form of the input data read by ELPLOT subroutine GEOM2. These subroutines

may be used in a finite element program to generate the binary records

read in subroutine GEOM2. The nodal data should appear first on TAPE 8 in

the form shown in sample subroutine NDPLOT. The element data should follow

in the form shown by subroutine ELPLOT. An end of file (EOF) should be

written on TAPE 8 after the element data.

Subroutine NDPLOT.-

c . .. -—"•-
SUBROUTINE N D P I O T ( N U M N P , X , Y , Z )

C™ CENERATfOlOT FILE
C NOPE LIST AND NODAL COORDINATES

DIMENSION Jt(i),YU),Z(i)
WRITE(8) NUMNP

W P I T E t B ) C X C n , l P l , N U M N P )
V.PJTEC8) {^(I) , !»! ,NUMNP)

) ( 2 ( I ) , I » 1 , N U H N P )

PETUPN

Subroutine ELPLOT.'-
c . •
c ... • . .• • .

SUBROUTINE ELPlOlCXO*£^MJlMEIijLNENB*ltOJl!a
C . . . . ' . . ' . • .
C GREATS PLOT Till FOR SUBROUTINE GEOM2 IN PLOT PROGRAM

c KTIPE«*»ELEMENT TYPE
C ,EQ.l ONE DIMENSIONAL

C .EQ.J THREE
c .:,
C NUMg][...»«ffrgMfNT NUMBER
C- • :'. . ' . . ' ' .
C NEND —NUMBER OF ELEMENT NODES

-C
C NODE —NODE NUMBERS LIST
C . . .

—: 41IMENSI01L

WRITE(B) KTYPE,NUMEL,NEND,(NODE(I),I»1,NEND)

PETUPN
:END

__ _' . ... 27



Nodal displacement data.- The subroutines given below illustrate two

forms of displacement data that are read by ELPLOT subroutine DATA2. The

subroutine TPLOT has been used in a finite element thermal analysis program.

The temperature is to be plotted as the w displacement. Note that in

this case NWDISP must be set equal to one in $OPTION. The subroutine DPLOT

has been used in a finite element structural analysis program. The displace

ments are U, V, and W. Note that in this case NUDISP, NVDISP, and
* ' • • - ' " / ' •

NWDISP must be set equal to one in $OPTION.

Subroutine TPLOT, - . .

c
C

c
cc

._. ;c

SUBROUTINE

GENERATES
DAT A 2 IN

TPLOT(TIME,NUMNP,T) \

PLOT FILE FOP TEMPERATURE PLOTS • JWPuT 'TO 8uB*6u'rW
PLOT PROGRAM

DIMENSION TU)
HRITEC20) HME
DO is JjUiJOI!»»f.._
HRITEC20) t(I),I

15 CONTINUE

'" ...... ™ ......
END
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Subroutine WRITE.-

-

— ...... _ ____....._...._.___,.... ; _**.***_.. ******
C * P R 0 G JR_A H """" " ' ~ »

Jl"W'?B^"f

*jfJ****J^^_ _ . " / : "
_ COMMg~OlAPI S/~ ifLMNT* I LOAD* I IN/I OUT
.DIMENSION bISP[NM)?IDCj'i.NUMNjPJ| 1__
piMENsiON_pT3T77777.7.' 77...777..Z_77 _7

~c CRlAT'E~~DI'S'PL'ATEHENt TLOT~P
_ c " " ' ~ '

'_ . _
_c ' 7 '_"_7__""" "
_C PRINT JDISPUCEFfENTS

"c _777~ 77""7 77_"~"7
" WRI TjrjTQUfJZpOOT"

IC-A; 2"^ "• '"" __

c' "'"__ _2 "_""""' ™"
DTIr~roo~n•T7NUHNp
i"c-ic" *ji ™7"""'
R '(1C.LT.S6I GO TO

_
ic

IPS DO _ _
110 gTTT^O. " __"__ "'J"_ • __~~~ " ~ ~~

D 0~T2 6 !'•'!»T~ • _ "
!<H"ioIirit"r 77 __7!7 ~^ "

\ " H«I7 _7 7 - - • - • — T ;

126~IF TKK.NE'. 0 F DTIL)'•51"STTRK)" " "~~~-^ .- — -_.. - .-.

WRlTgT^OT"Tl7l) '~~~~ ~'—~~";7~~ ~"7
100 ~W'RITE (Ib'u'tV2016) I I » D . " • " " .

C _____ '' "
"c •

R E T U R N 77" 1 7 L " ]c 7 ~ 7" 7'" " . • ~ ;
2000 FORMAT (///»'"26H~D~l'"S"P_L_' A C E "tf _E N_t7S__//_7H NODE »9X,

lUHX-DISPLACEHENT^X>14HY»DISTUCEHENT»<tX»14HZ»
2010 F OR MA T" (1X > I 3*JI Xi 3 E18 . 6 )

c " " • ""''" "
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2 ' .

(a) Family of one-dimensional elements.

1 2

(b) Family of two-dimensional elements.

16
10

(c) Family of three-dimensional elements.

Figure 3. Finite element types.
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KODE = 4
c START PROGRAMD

KODE = 1

{READ TITLE CARD )

READ $OPTION )

( READ $PICT )

FINITE ELEMENT
MODEL PLOTS

STATIC RESPONSE
PLOTS

( . READ $HIST )

DYNAMIC RESPONSE
PLOTS

END- PROGRAM J

KODE ACTION

0

. 1

2

3

4

Terminates problem

Reads a NAMELIST PICT for
finite element model plots

Reads a NAMELIST PICT for
static response plots

Reads a NAMELIST HIST for
dynamic response plots

Reads a title card for
a new problem

DISPLACEMENT
CASE LOOP

NODE CASE

LOOP

Figure 4. ELPLOT flow chart showing execution options specified
by the parameter KODE.
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END OF FILEo
©

( NAMELIST HIST

NAMELIST PICT

(DISPLACEMENT DATA

GEOMETRY DATA.

^NAMELIST- OPTION

/TITLE CARD ""

(a) Input data with user-specified formatted card images
for KGEOM = 1, and KDATA = 1 in NAMELIST OPTION.

END OF FILE

Geometry data to be
read from file 8.
Displacement data to
be read from file
20.

/ NAMELIST HIST

/ NAMELIST PICT

. /NAMELIST OPTION

/TITLE CARD

(b) Input data with unformatted card images for KGEOM
and KDATA = 2 in NAMELIST OPTION.

= 2

Figure 5. Proper sequences of ELPLOT input data.
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(.a) Schematic of wing box.

(b) Oblique view of wing box finite element model annotated with node number^.

Figure 6. Wing box and plots of finite element model.
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FUEL INJECTION STRUT

(a) Schematic of hypersonic aircraft scramjet
engine.

SCRAMJET
ENGINE
STRUCTURE

(b) Finite element thermal model of fuel-injection
strut cross section.

Figure 9. Schematic of hypersonic aircraft scramjet engine and
plots from finite element thermal analysis.
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HISTORY PLOT FOR NODE 111
COMPONENT 3

\

.2 3 4 5 6 1 8 3 10
TIMEtSECI

(d) Plot of transient temperature response.

Figure 9. (Concluded).
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M 4* V*

(a) Finite element model annotated with node numbers.

(b) Exploded finite element model annotated with element numbers.

Figure 10. Plots of a finite element analysis of fluid flow about
a cylinder.
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CASE

(c) Vector plots of fluid velocities.

Figure 10. (Concluded).
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