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ABSTRACT
 

'This document is Volume II of a three volume.report issued as
 

MITRE/METREK Technical Report, MTR-7519.- The three volumes cover.
 

the following principal subjects:
 

Volume I contains a synthesis of the results of two
 

- previous NITRE/NETREK studies {1,2} and an update of
 
the information contained in them. The update was
 
made during the Summer and Fall of 1977. These studies
 
deal with a comprehensive review of stratospheric
 
trace constituent measurement requirements. The
 

scope of the study was restricted to-those constit­

uents which fall into the general category of "air
 
pollutants."
 

Volume II separates stratospheric trace constitutent
 

measurement requirements into two somewhat overlapping
 

areas. In the first area, it is assumed that the only
 
problem of interest is ozone; its chemistry chain, en­

vironmental effects and measurement requirements. In
 

like manner, in the second area it-is assumed that the
 

only problem of interest is stratospheric aerosols;
 

their chemistry, effects and measurement requirements.
 

Volume III contains material of a supportive nature
 

not considered to be of sufficient importance to be
 

included in the other two voldmes. This material is
 

of two types:
 

* 	Information and numerical evaluations used in the
 

development of mission evaluations for strato­
spheric trace constituent measurement.
 

* 	Various spatial and temporal distributions for
 

those stratospheric trace species having sufficient
 

measurements available to warrant their presentation.
 

The reader is advised to note that the results and conclusiohs pre­

sented here are based on the specific combination of remote sensors,
 

Shuttle orbits and analysis values selected to exemplify the tech­

nique presented. Although these sensors and orbit--are--tyical,
 
.extension of the study to include all available sensors and many
 

orbits, or to another specific small combination could result in
 

different results and conclusions.
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1.0 INTRODUCTION AND CONCLUSIONS
 

1.1 General Objectives
 

Planned Shuttle missions- provide another opportunity for
 

NASA to evaluate and utilize stratospheric remote sensors. This
 

unique platform will allow larger payloads than have been .possible
 

while permitting the man-machine interface which has been lacking.
 

The key goals of any remote sensing experiment are the optimization
 

of sensors to the mission and the timely communication of the results
 

to the intended users.
 

In 	recent studies [1,2] for NASA/LaRC, MITRE/METREK has examined
 

the sensor/constitutent/platform problems for the case of multi-purpose
 

space missions. In the first of these, an assessment of the capabil­

ities of specific NASA remote sensing systems to provide appropriate
 

measurements of stratospheric parameters was made. This study empha­

sized the roles of the aerosol, the nitrogen oxide/ozone chemistry
 

cycle and the chlorine/ozone chemistry cycle in the stratsophere. It
 

also evaluated the capabilities of six specific instruments to
 

provide required measurements of stratospheric constituents.
 

In the second study a more comprehensive view of all stratos­

pheric trace constituents was taken. This included:
 

" development of a prioritized list of requirements for
 
stratospheric trace constituent measurement;
 

* 	a comprehensive summary of present knowledge of stratospheric
 

trace constituents;
 

* 	development of a detailed structured constituent/instru­
ment/mission evaluation technique;,and
 

3-1
 



• 	application of the technique to a specific set of instrument/
 
orbit combinations.
 

Since the completion of the two original studies a need has
 

been recognized to synthesize the previous studies and combine this
 

synthesis with additional updated information to produce a single
 

document having the following principal objectives:
 

* 	providing,the scientific community with a concise view
 

of the current status of knowledge of stratospheric trace
 

constituents and generating the impetus for frank and in­

depth discussions of future requirements;
 

" 	providing the instrument development community-with an
 

information set which would guide them in selecting optimum
 
directions for new instrument development based on the
 

combination of scientific needs and instrument capabilities.
 

Volume I of this document presents the results of this synthesis
 

and updating.
 

In the current volume the fact is recognized that for a variety
 

of reasons concern may focus on one particular aspect of the strat­

osphere such as the ozone cycle or the role of aerosols. The reasons
 

.for this specific concern may be political, scientific, economic or
 

involve public concern over current issues such as supersonic aircraft
 

or chlorofluoromethanes. These basic nontechnical concerns may
 

result in limiting the scope of any stratospheric measurement program.
 

Two such logical limitations would involve studies restricted to:
 

* 	the ozone chemistry cycle
 

* 	the role of aerosols in the stratosphere
 

It is these two limited measurement programs which are of
 

concern in the present study. Each significant component of the
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chemistry chains for both ozone and aerosols is identified and
 

prio-ritized. The approach to this prioritization will be similar to
 

that used'in Volume I for the overall stratospheric study. This will
 

yield two separate prioritized lists of constituents with some
 

species appearing on both lists. From this point the analysis will
 

proceed as in the previous study. The same instrument and orbit
 

combinations will be used but evaluations will be limited to those
 

species involved in either the ozone or aerosol chains. Two sets of
 

results will be produc6d one giving the optimum instrument/orbit
 

combinations for ozone chemistry and the other the optimum instrument/
 

orbit combinations for measuring aerosols.
 

In most areas covered by this study, considerable effort has
 

already been expended by many groups, not only within NASA but
 

also among other government agencies, the private sector and in the
 

two previous MITRE studies. MITRE's principle role in the present
 

study was to integrate and reconcile these sometimes disparate
 

sources and to provide informed opinions in the areas where either
 

no data existed or a concensus was absent. The following subsections
 

summarize the major sections of this report.
 

1.1.1. The "Natural" and "Perturbed" Stratosphere 

The purpose of this section (2.0) is threefold. The first is
 

to provide a readily available short summary of the general charac­

teristics of the stratosphere. The temperature regime and circulation
 

are discussed in terms of the general- dynamic processes to illustrate
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the formation of the unperturbed stratosphere. This leads to a
 

summary of the stratospheric con~tituents and their roie in atmos­

pheric chemistry. The later two parts of the section present
 

summaries of ozone chemistry and the role of stratospheric aerosols.
 

This section is intended only as a supporting base of information for
 

understanding the various topics covered later.
 

1.1.2 User Requirements for Stratospheric Measurements
 

In volume I of this report the results of an extensive user
 

requirements study arepresented. That presentation discussed some
 

general features of NASA's interaction with users of stratospheric
 

data and presented the two major examples (ultraviolent radiation*
 

and climate) of pressing atmospheric pollution problems which demand
 

of NASA a careful and effective program of development. The
 

emphasis was placed on who uses the data and how they use it
 

in order to develop the specifics of the measurement requirements.
 

In the present section (3.0) this work is summarized with emphasis
 

placed on the distinction in requirements to satify users concerned
 

with ultraviolet radiation (UV) and those concerned with climate.
 

The general assumption is made that ozone chemistry primarily affects
 

- UV while aerosols primarily affect climate. 

**Biologists divide the ultraVidlet spectrum into three wavelength
 

regions: UV-A: 0.32 t6 0.4 ILm; UV-B: 0.28 to 0.32 m; UV-C: less
 
than 0.28 yim. Unless specifically stated the term UV when used
 
in this report refers to all three regions.
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1.1.3 Science Requirements
 

In this section (4.0) the analysis of user needs and general
 

measurement requirements developed in the previous setion (3.0)
 

are used in combination with present knowledge of stratospheric
 

chemistry and with the results of many other recent studies to
 

develop two sets of prioritized scientific requirements for
 

stratospheric trace constituent measurements. The first set
 

focuses on ozone chemistry and the second on aerosols.
 

1.1.4 Mission Evaluations
 

This section (5.0) presents the results of the application
 

of a method for the evaluation of various stratospheric species
 

measurement missions. The method itself was developed during
 

previous MITRE effort [21 and is presented in detail as Appendix
 

A in both Volumes I and II of this report. Much of the support­

ing data used in these evaluations has been assembled in several
 

of the appendices of Volume III of this report. Separate
 

evaluations are made for ozone and aerosol applications. The
 

evaluations include all possible combinations of three-orbits
 

(a 	300 shuttle type, a 560 shuttle type and a polar type) with
 

one or more of four remote instruments,
 

* 	Limb IR Monitor for the Stratosphere .(LIMS)
 

* 	Stratospheric Aerosoland Gas Experiment (SAGE)
 

* 	Correlation Interferometer for the Measurement of
 
Atmospheric Trace Species (CIMATS)
 

.	 Halogen Occultation Experiment (HALOE)
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1.2 	Conclusions
 

Many of the generalized conclusions contained in-Volume I of
 

this report apply equally well to specific ozone or aerosol missions.
 

The following sections will present the more significant of these
 

conclusions along with specific points relating to the ozone and
 

aerosol mission evaluations.
 

1.2.1 Current and Projected Measurement Capability
 

Analysis of the material presented here and in Volume I
 

indicates three key conclusions:
 

(1) 	The performance of current remote stratospheric
 
sensors, in some cases, compares quite well with
 
identified measurement requirements. Their ability
 

to measure other species has not been demonstrated.
 
A number of in-situ methods also exist with com­
parable sensitivity and accuracy but whose
 

measurements are of a limited utility, given their
 
spatial and temporal sampling characteristics.
 

(2) 	None of the current, in-situ methods have the
 
capability to satisfy the requirements for global
 
monitoring and the temporal constraints derived
 
from the users needs portion of the study.
 

(3) 	Existing, non-remote techniques will continue to play
 
an important role in stratospheric investigations for
 
both corroboration of remotely collected data and in
 
the evolutionary development of future remote
 
sensors.
 

All of the measurment techniques discussed have their strengths
 

and weaknesses. The in-situ methods are extremely sensitive and
 

.accurate but suffer from limited coverage and local contamination
 

problems. Remote sensing techniques offer wide area coverage and
 

relatively long mission lifetimes. Their disadvantages lie in the
 

1-6
 



reduced senstivity to low concentration levels and the requirements for
 

auxiliary data to invert the integrated path measurements which most
 

- utilize. Indeed, the masses of data which must be processed in order 

to yield the desired information is at least a temporary disadvantage 

of remote sensing methods. The development of better models and im­

proved data handiing techniques is expected to minimize the~e problems. 

The general features of remote sensors of the stratosphere aboard
 

a satellite platform reveal two key features:
 

(1) 	nadir-viewing instrumentation provides superior performance
 
in the areas of horizontal resolution and measurement time
 
per orbit
 

(2) 	limb-viewing instrumentation provides superior sensitivity,
 
and vertical resolution
 

In most other areas, the two basic monitoring methods are equally
 

capable. The science requirements include the need for vertical pro­

files and data of fairly high quality. Limb-viewing instrumentation
 

appears to satisfy these needs but provides limited temporal sampling
 

for solar occultation when certain orbits are used. As a result,
 

instrumentation of the limb emission type represents the optimum
 

choice. In general, this type of instrument has the potential of satis­

fying scientific requirements for vertical profiles as well as those
 

for spatial and temporal sampling.
 

Orbital considerations emerge as a key element in the appiicability
 

of variofis sensor systems to specific measurement-roles. Sunsynchronous
 

orbits provide optimum coverage for nadir-viewing, thermal source sensors
 

and limb-viewing emission source sensors. High angle non-sunsynchronous
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orbits are preferred to nadir-viewing reflected solar source or limb­

viewing solar occultation sensors, if geographical coverage is to be
 

maximized.
 

1.2.2 Requirements for Stratospheric Measurements
 

Material utilized in the selection of re4uirements for stiato­

spheric monitoring has been derived from the user needs survey as
 

well as the detailed-inyestigation of data needed for a better
 

understanding of stratospheric chemistry. In addition, a review of
 

current measurement methods examined the quality of data currently
 

available for a variety of gases of interest. The proposed accuracy
 

requirements reflect improvements, where required, over current
 

limitations.
 

In many cases no specific requirements have been expressed for
 

spatial or temporal sampling. In view of the generally infrequent
 

and localized nature of current measurements, any satellite moni­

toring system will represent an improvement in these categories. It
 

is anticipated that the need will exist for global coverage at a rate
 

which provides data on diurnal and seasonal variations as well as
 

longer term trends.
 

Based on the measurement requirements expressed by various cate­

gories of users and numerous other specific studies, prioritized lists
 

of properties and species have'been developed for ozone and aerosol
 

oriented missions (Tables 4-11 and 4-111 respectively). Both lists
 

give the highest priority for measurement of three basic properties:
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.o stratospheric temperature
 

a solar irradiance
 

* earth radiance
 

In addition the ozone oriented list stresses measurements in the
 

following categories:
 

* pure oxygen forms, 0x 

* hydrogen oxides, HO
 

* nitrogen oxides, NO
 

a chlorine oxides, C10 X 

The aerosol related list places the highest priority on measurements of: 

* total aerosols
 

* total sulfate aerosols
 

* sulfuric acid aerosols
 

" ammonium sulfate, and
 

* major sulfate aerosol precursor gases
 

It must be remembered that these lists have been developed on a purely
 

scientific basis, without regard to present knowledge or potential
 

measurment capability. Later in the report application of the evalua­

tion methodology presented indicates that many of the high priority
 

properties and species do not receive the highest priority for planned
 

satellite missions since their distributions are much more understood
 

than most of the other important stratospheric species. Those species.­

which show high priority for satellite missions are typically the
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components of the basic reactions involving the direct production
 

or depletion of ozone or the formation of sulfuric acid or ammonium­

sulfate aerosols.
 

As our understanding of the stratosphere matures, various
 

constituents will-receive more or less emphasiks with respect to,
 

sampling and data quality. While these lists are presently current,
 

changes should be anticipated, particularly when measurements exceed
 

the current minimum requirements.
 

It should be noted that these requirements have been generated
 

independently of any instrument considerations. Therefore, this
 

material represents a set of performance goals for contact or remote
 

sensors placed on airborne, orbiting, or terrestrial platforms. In
 

the case of those species not yet measured, airborne measurements
 

should receive considerable attention in order to establish back­

ground levels and to corroborate proposed remote sensing techniques.
 

1.2.3 Selected Instrument/Orbit Evaluntions
 

Within the constraints imposed by the sensor complement examined
 

and the choice of three orbits selected, the various sensor-orbit
 

combinations were evaluated for each species of interest. For
 

stratospheric study, the limb-scanners scored significantly higher
 

than either the nadir-viewing or the solar occultation class of
 

instruments. This is attributable to- the direct vertical -profiles
 

which the limb-scanners provide.
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Among the three orbits investigated, the polar orbit does
 

hot automatically give the best coverage. This tends to be a func­

tion of instrument type. For limb emission instruments, the higher
 

the inclination angle the greater the global coverage. However, the
 

poorest latitudinal coverage of all the combinations examined is
 

obtained in the case of solar occultation from polar orbits.
 

It must be emphasized that the present evaluation was performed
 

for a limited number of instruments and orbits. The methodology is
 

sufficiently flexible to allow new instruments to be included in
 

subsequent analyses of this type. If any of the instruments con­

sidered should prove incapable of all the measurements for which they
 

are credited, their relative standing in a later analysis would
 

suffer proportionately.
 

Evaluation of the various instrument/orbit combinations for
 

an ozone related mission does not yield as clear a distinction among
 

the combinations as in the evaluation of the total stratospheric
 

program done in Volume I. The results (Table 5-XXII) indicate some
 

preference for the three instrument mission containing the LIMS,
 

CIMATS and HALOE. In addition a two instrument mission which con­

tains LIMS and CIMATS scores favorably. The reasons for the super­

iority of these missions lies primarily in the number of species
 

measured and secondarily in the relative importance of those measure­

ments. For all of the eleven ozone mission combinations examined,
 

the 560 orbit is seen to be capable of satisfying the greatest number
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of scientific requirements. This is due- to the preponderance of
 

solar occultation measurements in these ozone missions.
 

In contrast-with the ozone results, orbit selection for com­

binations of instruments for aerosol missions does not consistently
 

show the 560 orbit to score the highest. The polar orbit teidi to
 

prevail in combinations containing the LIMS instrument while the 560
 

orbit is superior when it is absent. In no case is the 300 orbit
 

shown to be superior.
 

As with the ozone results aerosol missions tend to score
 

higher based on the number of species measured with the LIMS, CIMATS,
 

HALOE combination and the LIMS, CIMATS combination prevailing. The
 

relatiVe distinction between the various combinations is somewhat
 

clearer thdn in the ozone case. Those instruments (i.e., LIMS and
 

CIMATS) measuring the high priority sulfate precursor gases, ammonia
 

and water vapor, give the best evaluation results.
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2.0 THE "NATURAL" AND "PERTURBED" STRATOSPHERE
 

Many recent studies refer to .the stratosphere-in one of two
 

ways, namely, "natural" or "perturbed". In general the exact meaning
 

of these terms is assumed to be known rather than defined. -In this
 

report the term 'natural" refers to the long term average character­

istics of the stratosphere which existed before any significant
 

anthropogenic activities. The term "perturbed" is used when refering
 

to any significant change in the natural state whether temporary
 

(months to years) or quasi-permanent. Stratospheric perturbations
 

can be caused in several ways:
 

" natural disturbances such as volcanic eruptions
 

" direct anthropogenic disturbances such as chlorofluoro­
carbon releases, fossil fuel burning or high altitude
 
aircraft operation
 

* indirect anthropogenic activities such as massive changes
 
in land use or the ordinary growth and progress of the human
 
race
 

The purpose of the following subsections is to acquaint the
 

reader with the object of satellite remote sensor measurements--the
 

stratosphere. The temperature regime and circulation are discussed
 

in terms of the general dynamic processes to illustrate the formation
 

of the unperturbed stratosphere. This leads- to a summary of the
 

stratospheric constituents and their role in atmospheric chemistry.
 

The two major reasons for observing or monitoring the sttatos­

phere are to gain a more complete understanding of the subject and to
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be able to predict changes in the environment. Inadvertent modifica­

tions of the atmosphere by pollutants can have far-reaching effects
 

upon man's activities. Chemical and physical processes, in terms of
 

both ozone destruction and aerosol formation, will be summarized
 

below to provide a background for later discussions contained in this
 

report.
 

2.1 The "Natural" Stratosphere
 

2.1.1 Physical Formation of the Tropopause
 

The earth's atmosphere may be divided into layers which are
 

characterized by the average vertical temperature structure. The
 

three layers closest to the earth's surface are:
 

" Troposphere,
 

" Stratosphere, and
 

" Mesosphere.
 

Averaged over reasonably long-periods of time, the temperature
 

of the troposphere decreases regularly with altitude. At an elevation
 

that varies systematically with latitude and seasons, the temperature
 

becomes isothermal. This property defines the tropopause, which lies
 

between 8 and 16 km. The stratosphere is the region above the tropo­

pause and below the stratopause. In this region, the temperature is
 

typically constant or increasing with altitude. This increase is
 

reversed at an altitude of about 45 to 50 km--the stratopause. The
 

region immediately above the stratopause is the mesophere.
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SAMPLE TEMPERATURE PROFILES:IN TROPICAL AND POLAR ZONES [3]
 

'(Troposphere, stratosphere, stratopause, and mesosphere
 
-defined in terms of vertical temperature profiles)
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The vertical distribution of temperature in the tropical and­

the polar zones is shown in Figure 2-1 [3]. The two temperature 

profiles of Figure 2-1 show substantial differences between polar and
 

tropical regions.
 

. The special properties of the stratosphere--its temperature
 

inversion and the resulting slow vertical mixing--are a consequence
 

of the presence of 03J which is formed rapidly in the upper stratos­

phere. The formation of 03 occurs at an altitude of 30 to 50 km by
 

the photolysis of 02' producing 0, which in turn recombines with 02
 

Some of the physical reasons behind the temperature
to form 03• 


inversions at the tropopause are discussed below.
 

If heat from the ground were the only source of energy in
 

the atmosphere, the vertical temperature at a given location would
 

In contrast, measurement of
decrease monotonically with altitude. 


the vertical temperature profiles shows that beyond the tropopause,
 

to a height of about 50 km, the temperature increases. At this
 

height, the stratopause, the temperature undergoes an inversion and
 

again starts to decrease.
 

One to three percent of the incoming solar radiation is absorbed
 

by the 03 layer in the stratosphere. The absorbed energy heats
 

adjacent layers. The model now contains two sources of energy in the.
 

atmosphere, one at the surface and the other at an altitude of about
 

30 to 50 km. From this simplified picture, it is evident that a
 

temperature inversion should occur at a height between the two
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sources. The region where the-inversion occurs defines the tropo­

pause, which lies between 8 and 16 km depending on the season,
 

latitude, and synoptic weather situation.
 

2.1.2 Transport Phenomena
 

Clouds, rain, and thunderstorms are strong evidence for the
 

considerable vertical motion characteristic of the troposphere. In
 

thunderstorms vertical velocities, which are generally 10 cm/sec in
 

normal latitude cyclones and anticyclones, may reach 10 to 20 m/sec.
 

In the stratosphere, however, the temperature increases with height
 

providing an equilibrium condition. For this reason, the vertical
 

motions rarely exceed a few centimeters per second and are often much
 

smaller. In other words, an air parcel moves up or down more slowly
 

in the stratosphere than it does in the troposphere. This is not
 

true for horizontal motions in the stratosphere which are signifi­

cantly more rapid than the vertical motions. Typical horizontal wind
 

velocities in the stratosphere are of the order of 1 to 100 m/sec,
 

-
whereas vertical velocities are in the range of 10-4 to i0 1 m/sec.
 

The overall structure of the wind field in the stratosphere has
 

been investigated and shows a complicated latitudinal and seasonal
 

dependence [5,6]. In general, there are some correlations between
 

the meridional (N-S) and vertical wind fields at different times of
 

the year [4]. No correlation seems to exist between the rapid zonal
 

(E-W) circulation and vertical wind data.
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Un summary, because of the slow vertical mixing, the contaminants
 

which are introduced into the stratosphere-at a particular altitude.'
 

will remain near that altitude for periods as long as several years
 

[7]. This long residence time allows the contaminants to take part
 

actively in the chemical and radiative processes of the stratosphere.
 

In the case where a contaminant is capable of entering a catalytic
 

process which would lead to the destruction of an important stratos­

pheric constituent such as ozone, the consequences are of great
 

importance and must be thoroughly investigated.
 

2.1.3 Stratospheric Constituents
 

The constituents of the stratosphere may be separated into four
 

categories. These are:
 

* Major gaseous constituents,
 

* Minor gaseous constituents,
 

* Trace gaseous constituents, and
 

* Aerosols.
 

The major atmospheric constituents are N2 , 02, A and CO2 . The
 

accepted value for N2 concentration is 78.08 percent by volume of dry
 

air. Recent oxygen measurements show a concentration of 20.95 percent
 

by volume when corrected to dry air conditions [4]. Argon has a
 

stratospheric background concentration of 0.93 percent and carbon
 

dioxide of 0.03 percent at about 20 km.
 

The minor constituents, such as 03H20, CH etc.; have concen­

trations of a few parts per million in the stratosphere. Table 2-1
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-summarizes some of the minor constituents at 20 km that are known to
 

be important in stratospheric chemistry and circulation.- The number
 

of important trace gaseous constituents known to play b significant
 

role in stratosphere chemistry is very large and growing rapidly. A
 

complete development of the characteristics of these constituents is
 

given in later sections.
 

Besides these gaseous chemical constituents, a layer of particles
 

several kilometers thick, exists in the stratosphere. This layer,
 

called the "Junge layer," is located several kilometers above the
 

tropopause. The Junge, or sulfate layer, has a particle density of
 

two to ten times that exhibited above and below this layer. The
 

particle size is predominately in the 0.1 to 1.0 im radius range. The
 

particle distribution shows a decreasing concentration with increasing
 

size. The particles consist mainly of sulfuric acid or sulfate solu­

tions and are probably in a supercooled liquid state. The characteris­

tics of this aerosol layer and of all stratospheric aerosols will be
 

covered in detail in later sections.
 

2.2 	The "Perturbed" Stratosphere
 

As stated previously perturbations in the stratosphere may be
 

caused by either natural or anthropogenic changes. Natural changes 

generally take the form of injection of gaseous, liquid or solid
 

materials through the tropopause iito.the stratosphere. Such changes
 

may be either abrupt as in the case of volcanic eruption or quasi­

continuous as in the case of the daily worldwide occurrence of thun­

derstorms. However, in this later case there is some question as to
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TABLE 2-1 

IMINOR STRATOSPHERIC CONSTITUENTS 

eels Concentration At 20 km Variabilit ortance 

03 
6 ppmv Factor of two 

or more diur-

nal, season, 
latitude and 
height. 

UV-shield, 
radiative 
heating 
and cooling 
of strato­
sphere. 

H 0 
2 

3 ppmv With latitude, 
season, and 
altitude. 

Radiative 
balance, 
clouds, 
particle 
formation, 
03 chemistry. 

4 
1 ppmv Decreases 

with height 
above tropo-
pause. 

Chemical 
source of 
OH. Possible 
sink of Cl, 
indicator of 
tropopause 
interchange. 

H2 0.55 ppmv Increases to 
a maximum of 
0.8 ppmv at 
28 km and 
decreases to 
0.4 at 50 km. 

03-chemistry. 

N20 0.1 ppmv Decreases with 
altitude, sea-
son, and 
latitude. 

Source of 
stratospheric 
NO. 

CO 0.05 ppmv May decrease 
above tropo-
pause, but 
actual pro-
file and 
variations 
are unknown. 

Indicator of 
troposphere­
stratosphere 
exchange. By­
product of CH4 
chemistry. 
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whether thunderstorms should be considereda perturbation or merely
 

one.art of the natural stratosphere. For-the'purposes of this.report
 

they 	will be treated as perturbations.
 

Injection of extraterrestrial material downward through the meso­

pause seems to occur but the characteristics of this mechanisms are
 

poorly understood. At present the total possible mass of such injec­

tions is thought to be small and would represent a negligible optical
 

perturbation [66].
 

Anthropogenically caused changes may take the form of direct
 

release of material in the stratosphere as with aircraft and rocket
 

exhaust or upward diffusion and transport through the tropopause of
 

material released into the troposphere; Table 2-11 lists the major
 

categories of materials currently known to cause significant strato­

spheric perturbations along with the sources of each. The table
 

includes both natural and anthropogenic materials.
 

The ultimate stratospheric effects caused by these perturbations
 

belong to two chains, the UV chain and the climate chain. The direct
 

channels for production of these effects are three:
 

(1) 	Changes in UV transmission resulting from changes
 
in ozone concentration.
 

(2) 	Changes in the radiative heat balance caused by
 
formation of aerosols.
 

(3) 	Changes in the radiative heat balance caused
 
directly by some gages such as carbon dioxide.
 

Since 03 concentration controls the amount of UV-B radiation that
 

reaches the surface of the earth, a reduction in 03 concentration will
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. TABLE 2-II
 

PRINCIPAL SOURCES OF STRATOSPHERIC PERTURBATIONS
 

TYPE 

OF 


PERTURBATION 


Liquid water or ice
 

.Particles
 

Gases
 

Carbon Dioxide 


Water Vapor 


Nitrous Oxide 


Other Nitrogen Oxides 


Ammonia 


Hydrogen Sulfide
 

Sulfur Dioxide 


Carbon Monoxide and
 

Hydrocarbons 


Chlorine Compounds
 
including
 
Chlorofluoromethanes 


TRANSPORTED RELEASED BY 
FROM . AIRCRAFT 

TROPOSPHERE IN-SITU
 

V V 

/ V 

- / 

V 

V 

/* V/
 

V V
 

V 

Major. mechanism is thunderstorms and cumulonimbus clouds.
 

Major mechanism is volcanic eruption.
 

Through ordinary transport and volcanic eruption.
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increase the amount of this radiation, which has been shown to
 

cause skin cancer and other biological, effects [42]. The increase in
 

aerosol concentrations (besides-increasing the potential forhetro­

geneous reactions whose effects are not well understood at present)
 

will perturb the radiation balance of the earth's atmosphere and may
 

lead to climatic changes, affecting sunshine, temperature, and
 

precipitation. In addition to- these, CO2 and H20 vapor introduced
 

into the stratosphere by aircraft or Space Shuttle vehicles may
 

increase the greenhouse effect and lead to stratospheric wiLi2g, 

which would perturb the natural circulation of the stratosphere. 

-Table 2-111 shows which of the three channels for producing UV 

or radioactive heat balance changes are associated with the various
 

categories of stratospheric perturbations. In the following subsec­

tions the mechanisms for ozone change and aerosol production are
 

discussed in more detail. Direct radioative heat balance changes are
 

not discussed since they are beyond the scope of this report.
 

2.3 Stratospheric Chemistry
 

The stratosphere contains many different kinds of reactive
 

chemical species. Any one of these species can react with a number
 

of others, or be generated by a variety of other reactions which are
 

sometimes very complex and quite indirect.
 

As related to stratospheric chemistry in general, three types of
 

reactions may be distinguished. These are:
 

* Photochemical reactions,
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TABLE 2-111
 

PRINCIPAL CHANGES ASSOCIATED WITH STRATOSPHERIC PERTURBATIONS
 

TYPE 
OF 

PERTURBATION -

CHANGES IN 
OZONE AND UV 
TRANSMISSION 

CHANGES IN 

RADIATIVE HEAT BALANCE 

VIA AEROSOLS DIRECT 

Liquid water or ice 

Particles -

V V 

V 

V 

Gases 

Carbon Dioxide V 

Water Vapor V V V 

Nitrous Oxide -V 

.Other Nitrogen Oxides 

Ammonia 

N/ 

V V 

Hydrogen Sulfide V 

Sulfur'Dioxide V V 

Carbon Monoxide and 
Hydrocarbons N/ 

Chlorine Compounds 
including 
Chlorofluoromethanes V 
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a Homogeneous reactions, and
 

- Heterogeneousreactions. 

Photochemical reactions involve the interaction of electro­

magnetic radiation of of varying wavelengths with constituents of the
 

stratosphere. Photochemical interactions are the only known source
 

of stratospheric ozone production.
 

Homogeneous reactions are those reactions in which both the
 

reactant species and the products are in a gaseous phase. If in
 

these reactions a "third body" is needed to carry off energy to
 

prevent dissociation of the product, that third body is a gas mole­

cule.
 

Heterogeneous reactions are those reactions in which a particle,
 

solid or liquid, interacts with gaseous species. The interaction may
 

be catalytic, or the particle itself may take part in the reaction.
 

In the following subsections a more detailed discussion of the
 

chemistry of ozone and aerosols will be presented.
 

2.3.1 Ozone Chemistry
 

As stated above many reactive trace gases from both natural
 

and anthropogenic sources are tansported into the stratosphere or
 

released in situ. Although the mass of the stratosphere is an order
 

of magnitude less than that of the troposphere, the rate of exchange
 

with the troposphere is slow and there is no significant washout by
 

precipitation. For these reasons relatively minor perturbations in
 

the stratospheric balance can have significant long term effects.
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The -most important trace constituent in the stratosphere is
 

ozone. Any possibility of decreasng or even increasing the ozone
 

content of the stratosphere by altering the natural chemical balance
 

must- e viewed as potentially dangerous. Two major applied problems
 

exist in current studies of stratospheric ozonS. These are the­

effect of aircraft and rocket exhausts releasedin the stratosphere
 

and the transport of chlorofluoromethanes from the troposphere.
 

Other relatively less significant problems also exist as was shown
 

previous in Table 2-11. In regard to ozone chemistry, perhaps key
 

among these others are anthropogenic releases of nitrous oxide,
 

ammonia and various organic chemicals.
 

An assessment of the effects of these stratospheric perturba­

tions requires an understanding of the natural chemistry and atmos­

pheric dynamics of the ozone balance. This is the basic problem.
 

The chemistry which originally was thought to be relatively simple,
 

is now known to be quite complex and involving many species. In
 

fact, except for the inert gas Argon, every gas currently known to
 

exist in the stratosphere can be related either directly or indirect­

ly with either ozone chemistry, aerosol chemistry or both.
 

*In order to describe the chemistry of ozone formation and
 

destruction the various reactions will be discussed in the following
 

.sequence.
 

" pure oxygen reactions
 

" hydrogen-oxygen reactions
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* methane and hydrocarbon reactions
 

* nitrogen reactions
 

* chlorine reactions
 

" chlorine-nitrogen reactions
 

* other chemicals
 

In discussing the various ozone chemistry chains, the various
 

gases can be divided into three types, reactive, inactive and passive.
 

The term reactive will refer to those gases which readily and vigor­

ously participate in reactions leading to the increase or decrease of
 

ozone. Examples of such are atomic oxygen, hydroxyl, nitric oxide
 

and chlorine monoxide.
 

Inactive gases are those which when formed during some ozone
 

related process are removed completely from further participation in
 

ozone chemistry. The prime example of such is carbon dioxide usually
 

formed from the reaction of carbon monoxide and hydroxyl. There is
 

no known mechanism for the reentry of carbon-dioxide into any stratos­

pheric ozone chemistry chain. .
 

Passive gases are less reactive gases formed from one or more
 

reactive components which temporarily prevent the reactive components
 

from vigorous participation in ozone chemistry. An example of such
 

is hydrogen chloride gas. While in this state the chlorine atom is
 

prevented from reacting with ozone. Since the rate of formation of
 

hydrogen chloride gas by reaction of atomic chlorine with methane or
 

HO is one or two orders of magnitude greater than the rate of
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destruction of hydrogen chloride gas by hydroxyl or atomic oxygen the
 

hydrogen chloride gas serves as a quasi.sink for chlorine atoms.
 

Such gases are referred to as passive (i.e., less reactive).­

2.3.1.1 Pure Oxygen Reactions. The pure oxygen reactions
 

in ozone chemistry refer to those in which only some forms of oxygeh
 

participate. These reactions may involve solar ultraviolet light or
 

the presence of a third body (typically N or another 0 molecule).

22
 

These reactions may be termed natural since they occur irregardless of
 

any stratospheric perturbations. The principal pure oxygen reaction
 

are: 

02 + hv (X < 0.242 )nm) - 0 + 0 (1) 

0 + 02 + M - 03 + M (2) 

03 + hv (K: 0.45-0.65im)--- 0 + 02 (3a) 

03 + hv (k: 0.31-0.34 m)-----0 2 (IA) + 0 3P) (3b) 

03 + hv (k< 0.31 pLm)-0 D) + 02 (3c) 

03 + 0- + 0 2 (4)
O 2 


0 + 0 + M - 02 + M (5)
 

Reaction (1) is concentrated in the upper stratosphere and
 

provides the initial source of atomic oxygen. The reactions (2)
 

through (4) occur at lower altitudes in the stratosphere and reach
 

their maxima in th& same altitude area as the ozone maximum. Reac­

tion (5) typically occurs in the mesosphere and can be neglected in
 

the stratosphere since reaction (2) predominates [751.
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2.3.1.2 Hydrogen-Oxygen Reactions. Theoretically reactions
 

involving hydrogen, oxygen and/or hydrogen oxides (HO ) can occur via
 x 

direct two body collision, three body collisions involving a neutral
 

third body (M) or by photochemistry. The two body collision is the
 

predominant one in the stratosphere with photochemical processes
 

occurring in the mesosphere. 

The principal reactions involving a single hydrogen atom are: 

H + 02 + M--HO 2 + M (6) 

H + 03 HO.+ 02 (7) 

+ HO (8)HO 2 + 0--02 

HO + 0 -- H + 02 (9) 

--- HO + 202 (10a)
HO2 + 0 


HO + 0 - HO2 + 02 (10b)
 

The first three of the above reactions principally occur in
 

the upper stratosphere in the 35-km and above region. The atomic
 

hydrogen involved initially in equation (6) is transported downward
 

from higher levels in the mesosphere. These three reactions provide
 

a mechanism for the production of hydroperoxyl and hydroxyl in the
 

upper stratosphere. In the lower stratosphere (20 to 40 km) these
 

two radicals which may be transported downward from the upper stratos­

phere or produced from other in situ reactions act as removal
 

mechanisms for ozone and atomic oxygen (equations 7 through 10b).
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Direct production and depletion of hydroxyl in the lower
 

stratosphere depends on the two principal reactions:
 

0 (1D) + H2O0 -HO + HO (11) 

HO + HO - HO0 + 0 (12) 
2. 2 2
 

Thus the presence or absence of water vapor in the lower stratos­

phere enters as a significant factor in the ozone balance.
 

The piincipal reactions which involve the production and
 

destruction of molecular hydrogen, 12, are:
 

H + HO2---H2 + 02 (13)
 

H2 + 0 (ID)- H + HO (14) 

Reaction 13 is important in the mesosphere and the hydrogen mole­

cules produced may be transported downward into the stratosphere
 

where they react with atomic oxygen to produce additional hydroxyls.
 

The extent to which hydrogen peroxide enters into the hydrogen/
 

oxygen chemistry cycle is poorly understood and requires more experi­

mentation [751. The basic reaction for formation of hydrogen peroxide
 

involves the direct combination of 2 hydroperoxyl radicals:
 

HO2 + H02- H202 + 0 2 (15)
 

Hydrogen peroxide is destroyed eithtr through photodissociation,
 

H202 + hv-- HO + HO (16)
 

or by reaction with hydroxyl,
 

HO + H2 02 ----H 20 + HO2 (17)
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This entire chain of reactions should be the subject of further
 

investigation.
 

'2.3.1.3 Carbon Monoxide and Hydrocarbon Reactions. The role
 

of carbon monoxide in the stratospheric ozone balance is indirect but
 

nevertheless very important. One principal reaction dominates,
 

HO + CO-CO 2 + H (18)
 

The hydrogen atoms released are thus available to react with mole­

cular oxygen to produce the highly reactive hydroperoxyl as shown in
 

reaction (6). In the upper troposphere and lower stratosphere
 

reactions (17) and (6) combine to provide the principal pathway for
 

conversion of hydroxyl to hydroperoxyl. It is therefore important to
 

know the concentration and vertical distribution of carbon monoxide
 

in the lower stratosphere. In the middle stratosphere the hydroxyl
 

-shows preference for reaction with ozone rather than carbon monoxide
 

while in the upper stratosphere the atomic oxygen-hydroxyl reaction
 

is favored.
 

The principal hydrocarbon involved in ozone chemistry is
 

methane. Methane, which is transported upward from the troposphere,
 

is photodissociated in the mesosphere and dissociated by oxidation in
 

the stratosphere. The two principal reactions are with excited
 

atomic oxygen, 0 ( D) or with hydroxyl, 

0 D)+ C - CH3 + H0 --(19)
4
 

HO + CH4----CH3 + H20 (20)
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In the stratosphere the methyl radicals which are produced in the
 

above reactions have a preference for reactidn with molecular oxygen
 

in a three body manner,
 

CH3 + 02 + M3- CH302 + M (21)
 

The methyl peroxy radicals produced usually enter into the nitrogen
 

chemistry chain in a variety of ways as will be discussed later.
 

These nitrogen chemistry reactions can yield formaldehyde which added
 

to any formaldehyde transported from the troposphere can photodecom­

pose yielding either atomic or molecular hydrogen,
 

CH20 + hv-CHO + H (22)
 

CH20 + hv---CO + H2 (23)
 

- 2.3.1.4 Nitrbgen, Hydrogen and Oxygen Reactions
 

Although the nitrogen oxides chemistry cycle is extremely com­

plex with many possible reactions, a simple description of the
 

essential reactions indicates the basic cycle. Nitric oxide may be
 

released into the stratosphere by high flying aircraft. However, the
 

predominent source is through the reaction,
 

O( D) + N 20---2NO (24) 

N20 is the principal nitrogen oxide transported upward from the 

troposphere where it is formed at the earth's surface through 

biological processes. 

Once the NO is formed an equilibrium is established between NO
 

and NO through a series of reactions. The three principal ones are,

2
 

NO +00-N +0 (25)
NO+03 O2 2
 

,N02 + O- NO-+ 02 (26)
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+ hv (X< 0.398 Ftm)- NO + 0 (27)02 


Reaction (25) is the same as that occurring in urban areas during
 

" 

smog production. Of the two reactions for ation of NO2 reac­

tion (26), as expected, occurs principally higher in the stratosphere
 

where more atomic oxygen is available and reaction (27) occurs at
 

the overall
lower altitudes. Due to the need for UV in reaction (27) 


net effect of the three reactions is an increase in NO2 at night and
 

NO in the daytime. 

At present the only know sink mechanism for stratospheric NOX 

is conversion to one of the nitrogen oxide acids. This is followed
 

by some type of aerosol formation and eventual settling into the
 

The principal NO conversion
troposphere where rainout can occur. x 

reactions involve interaction with HOx and a third body, 

(28)
NO + HO2 + M--HNO3 + M 


NO2 + HO + M--HNO3 + M (29)
 

NO + HO+ M- HNO2 + M (30)
 

The conversion of NO to acids is also possible through a wide variety
 

of reactions with organic compounds. Typical of these ate reactions
 

with methyl oxy or peroxy radicals,
 

CH20 + HNO2 (31)
CH30 + NO2 --


-
 (32)
CH302 + NO - CH20 + HNO3 


As noted earlier reactions. of this type form a link between methane
 

or hydrocarbon chemistry and NO chemistry.

x 
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2.3.1.5 Reactions Involving Chlorine
 

'The potential for significant stratospheric ozone depletion
 

through reactions with odd chlorine has been clearly indicated by
 

many groups including the National Academy of Sciences [67,68]. The
 

basic source -of stratospheric odd chlorine is through photodissocia­

tion of chlorine containing compounds transported upward from the
 

troposphere. These compounds may have natural origins such as some
 

of the C14' CH3Cl and HCL or they may be completely anthropogenic
 

as in the case of CFCl3(F-il), CF2CI2 (F-12) and the other chloro­

fluorocarbons. At the present time it is felt that the most prevalent
 

of these compounds in the atmosphere is CH3Cl since its natural con­

centration is relatively-high [75]. However the most controversial
 

compounds are the chlorofluorocarbons due to the enormous economic
 

impact associated with their utilization. Considerable doubt still
 

remains over the question of the possibility of tropospheric-sinks
 

for these compounds [114].
 

The basic mechanism for-production of atomic chlorine in the
 

stratosphere is photolytic with the principal reaction at the present
 

time being,
 

CH3Cl + hv (X< 0.22 [Lm)- CH3 + Cl (33) 

The amount of atomic chlorine produced in this reaction is probably 

equal to that produced in the three following reactions [75]. 

4 3
Cct4 + hv- CCl3 + Cl (34)
 

CFC13 + hv (X < 0.226 jm)---CFCl 2 -+-Cl (35) 

2-22
 



F2L2 + Cl (36) 

The Aissociation of HCl is also of lesser.magnitude, 

HCI + hv (X< 0.22 m)-H + C1 

Thus methyl chloride is the most important overall source of strato­

spheric chlorine at the present. 

Once formed atomic chlorine rapidly enters into catalytic chain
 

decomposition of ozone in a two step reaction,
 

Cl + 030CIO + 02 (38)
 

CIO + O- CI + 02 (39)
 

CF2CL + hh (X< 0.215 jm)--CF22Cl 

The atomic chlorine may also be regenerated through reactions such as,
 

010 + NO---Cl + NO 2 (40)
 

CI0 + hv- Cl + 0 (41)
 

The principal sink for stratospheric chlorine is conversion into in­

active hydrogen chloride followed by downward transport to the tropo­

sphere and rainout. The conversion into HCl generally occurs by
 

reaction of chlorine monoxide with HO or possibly methane. For
 
x 

example, 

01 + HO2-- HCI + 02 (42) 

C + CH 4--HC + CH3 (43)
 

Recent reports [67,68] indicate that chlorine nitrate may serve as a
 

passive chemical (temporary sink) for-both Cl and NO . This is due
 

x 

to its apparent non-reaction with ozone and slow reaction with-atomic
 

oxygen. This slowly occurring cycle has three-principal reactions
 

[68],
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CI + NO2 + M--CIONO2 + M (44) 

,C1ONO2 + hv--ClO + NO2 (45) 

CIONO 2 + 0- Cid + NO3 (46) 

The role of chlorine nitrate in preventing ozone destruction has been
 

studied [67,68], and found to reduce ozone depletion significantly.
 

It concluded by the National Academy of Sciences [68] that, "unless
 

there is some presently unknown process that quickly returns ClONO2
 

into active CiO and NO species, the effect of chlorine nitrate
 

formation is to decrease the projected ozone reductions by about a
 

factor of 1.85 compared with the values calculated for the CFMs
 

without this reaction."
 

2.3.1.6 Other Halogen Reactions
 

The possibility that bromine or fluorine compounds analogous to
 

the chlorine compounds discussed in the previous section could play a
 

role in ozone destruction has been studied [68]. Diametrically
 

opposed results were reported for the two classes of chemicals.
 

The reactions for production of atomic bromine are very rapid.
 

However the sink reactions for production of HBr are largely ineffec­

tive in producing this acid. Thus, an equivalent quantity of Br is
 

much more effective than Cl in catalytic ozone destruction. It is
 

fortunate that at the present time natural and anthropogenic releases
 

of bromine compounds such as the fumigant CH3Br appear to be an order
 

of magnitude less than chlorine compounds.
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,In contrast to the above it zlppe rs that although stratospheric 

production of atomic fluorine and catalytic destruction of ozone is 

possible, the sink reactions for production of XF are extremely rapid 

and dominate this cycle. Thus FO is unlikely to be a major factor 
x 

in ozone ehemistry.
 

2.3.2 Aerosol Chemistry
 

Of equal importance to stratospheric processes as the ozone
 

chemistry cycle is the aerosol system which exists in the strato­

sphere. An aerosol is by definition [1151, "a colloidal system in
 

which the dispersed phase is composed of either solid or liquid
 

particles, and in which the dispersion medium is some gas, usually
 

air." This aerosol which varies significantly over time and space
 

greatly influences stratospheric radiative transfer in both the
 

incoming solar and outgoing infrared ranges. Changes in the nominal
 

opacity of the stratosphere, which is about 2 percent [4], effect the
 

passage of sunlight and heat to an extent which could result in
 

variations in global mean temperature, general circulation and
 

precipitation patterns. These climatic impacts are connected to a
 

whole range of social, political and economic interdependence among.
 

nations [100].
 

Stratospheric aerosols have their origins from both natural and
 

anthropogenic sources near the earth's surface and possibly somewhat
 

from extraterrestial sources-. In recent years the presence of air­

craft and rockets in the stratosphere has also made a contribution.
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Information on the global distribution of -aerosols which varies con­

siderabiy in time and space is given in volume III of this report.
 

In the present discussion, only a brief summary-of the vertical
 

distribution is covered as a background for-presentation of strato­

spheric aerosol chemistry.
 

In general the concentration of stratospheric aerosols shows a
 

decrease with height. A depiction bf this distribution is given in
 

figure 2-2. *The increase in concentration at an altitude of about
 

20km is called the Junge or sulfate layer. These aerosols are
 

thought to be formed principally through the oxidation of hydrogen
 

sulfide or sulfur dioxide which has been transported upward from the
 

troposphere. The concentration of the aerosols can increase by as
 

much as a factor of 10 to 100 after a volcanic eruption [66]. Study
 

efforts during the Climatic Impact Assessment Program [4] have shown
 

that the concentration of aerosols tends to decrease with time and
 

the size distribution shifts toward smaller sizes between major
 

volcanic eruptions.
 

At the 50km level another maximum is observed sporadically. These
 

aerosols may be of extra-terrestial origin. In any event, their
 

concentration is quite small and has a negligible effect on the total
 

stratospheric system.
 

As stated above the principal mechanism for stratospheric
 

aerosol formation appears to be oxidation of sulfur type gases and
 

conversion to sulfuric acid or sulfate aerosols. In the following
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sections the discussion of aerosol chemistry will be divided into the
 

-sulfuric acid/sulfate cycle and other known mechanisms.
 

2.3.2.1 Sulfate Aerosol Chemistry. The mechanisms for con­

version of sulfur dioxide to sulfuric acid and sulfates are not well
 

understood even for tropospheric situations [116]. The most important
 

tropospheric sulfuric and sulfate formations identified to date [116]
 

are shown in table 2-TV. Of the five mechanisms shown only the first
 

two are likely to occur in the stratosphere. The lack of liquid
 

water in the stratosphere makes mechanisms 3 and 4 unlikely. In
 

addition, except for the possibility of carbon particles in aircraft
 

or rocket exhaust, mechanism 5 can be neglected.
 

However, the probability of occurrence of mechanisms I and 2 in
 

the stratosphere is increased by the ambient conditions, principally
 

the availability of atomic oxygen, HOx and NOx . The basic mechanisms
 

for direct photooxidation involves the availability of atomic-oxygen
 

from a photochemical reaction such as (1) or (3a, b or c),
 

so + 0 + M---SO3 + M (47)

2 


which is followed by,
 

SO + nH2---H2SO4(n-I)H20 (48)
 

If HOx enters the reaction rather than atomic oxygen the procedure 

can be as follows,
 

SO + HO + hv (X:0.24 - 0.34 pLm)-- SO + HO (49)
2 2 .3 

which then proceeds as in reaction (48).
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TABLE 2-TV
 

TROPOSPHERIC MECHANISMS-FOR CONVERTING SULFUR DIOXIDE
 
TO
 

SULFURIC- ACID AND SULFATES [116]
 

MECHANISM 	 FACTORS CONTROLLING REACTION
 

1. 	Direct photo-oxidation Sulfur dioxide concentration,
 
sunlight intensity
 

2. Indirect photo-oxidation 	 Sulfur dioxide concentration,
 
organic oxidant concentration,
 

HO or NO concentration
 
x 

3. 	Air oxidation in liquid Ammonia concentration, liquid
 
droplets water
 

4. Catalyzed oxidation in 	 Concentration of heavy metal
 
liquid droplets (iron, -.: -!*',., manganese) 

ions, liquid water 

5. 	Catalyzed oxidation on Carbon/particle concentration
 
dry surfaces
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Laboratory studies [117] have indicated the importance of ammonia in
 

the growth of stratospheric aerosols. These studies concluded that a
 

significant portion of stratospheric aerosols are composed of ammonium
 

sulfate, ammonium bisulfate or possibly ammonium persulfate. A mech­

anism for the conversion to sulfate could be
 

NH3 + H2So4 .nH20----NH4HSO 4.nH20 	 (50)
 

followed by 

NH3 + NH 4HSO .nH20 - (NH4)2SO .nH20 (51) 

As soon as the ammonium sulfate salt is formed, it provides a medium 

for rapid catalytic oxidation of more S02) 

NH4 salt
 

2S0 2 20+0 02 2H2s04 (52)
 

In summary the three main mechanisms for sulfate aerosol production
 

are,
 

* 	Photolysis of 0 to produce 0 atoms which oxidize.SO-into
 

sulfuric acid,
 

* Neutralization of sulfuric acid by ammonia and
 

" Rapid oxidation of additional SO to sulfate through the
 
. 2


catalytic action of ammonium ions
 

2.3.2.2 Other Aerosol Mechanisms
 

Some of the non-sulfate mechanisms for production of strato­

spheric aerosols wee indicated briefly in-the introduction to this
 

section. A listing of these and others indicates six possible path­

ways,
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0 !Direct transport of particles from the troposphere
 

* Anthropogenic release in situ
 

" Conversion of non-sulfur stratospheric trace gases
 

* Extraterrestial matter
 

" Non-thunderstorm associated water or ice clouds
 

" Molecular clusters
 

Each of the above could contribute to the aerosol concentration in
 

the stratosphere but.none has shown any evidence of approaching the
 

magnitude and scope of the sulfuric acid/sulfate aerosols.
 

The presence of stratospheric aerosols which have been trans­

ported upward from the troposphere is well substantiated by several
 

factors. The first is the great increase in aerosols after volcanic
 

activity. These eruptions probably contribute most of the basalt
 

(aluminum, calcium, magnesium) type species which have been detected.
 

The second factor indicating tropospheric to stratospheric transport
 

is the relatively continuous decrease in concentration of aerosols
 

with height and a third factor is the marked bimodal size distribu­

tion of the aerosols. It has been concluded from ClAP studies [4]
 

that aerosols formed from gases in the lower strafosphere have a
 

much larger mean size than those of tropospheric origin.
 

Anthropogenic releases of aerosols in the stratosphere occur
 

from aircraft and rocket exhausts. Results of the Department of
 

Transportation's High Altitude Pollution Program study [1131 show
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that current and projected aircraft operations in the lower strato­

sphere :emit significant amounts of water, soot [carbon particles],
 

lubricating oils and trace elements such as the heavy metals found
 

in many crude oils. In addition to these releases, operation of
 

propulsion systems such as the Space Shuttle booster .could release a
 

different set of chemicals such as aluminum oxides and hydrogen
 

chloride.
 

In addition to the formation of sulfuric acid aerosols from
 

sulfur dioxide and other sulfur gases, a lesser amount of aerosols
 

appear to be formed during the NO and CIO cycles discussed
X X 

previously in the ozone chemistry section. These aerosols serve as
 

a sink for NO and chlorine in ozone chemistry. The main species

x 

appear to be nitric acid and hydrochloric acid. Other possible
 

species include nitrous acid, nitrate and nitrite salts,-chloride
 

salts, hydrobromic-and hydrofluoric acids, and their related halogen
 

salts.
 

Non-thunderstorm associated water clouds are rare in the strato­

sphere. Two general types occur occasionally [115,1181 from natural
 

causes while aircraft contrails which transform into cirrus clouds
 

have an anthropogenic origin. The first natural type called nacreous
 

clouds occurs in polar regions at altitudes in the 21 to 30 Km range.
 

They are presumed to be composed of supercooled'water Or ice. The
 

second natural type called noctilucent clouds also occurs in polar
 

regions at altitudes between 75 and 90km._ These clouds may be
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composed of extra-terrestial dust possibly in combination with ice.
 

Neither of these natural clouds has a significant impact on the
 

stratospheric aerosol system. Ho.evet, ft has been shown that
 

upper tropospheric and stratospheric aircraft contrails can cause a
 

measurable change in radiative transfer.
 

During the ClAP study period [4] the possibility or speculation
 

was indicated that certain gas molecules showed an affinity which.
 

caused small numbers of them to cluster together. These clusters are
 

presumed to be much too small to be considered true aerosols but they
 

should exhibit some non-gaseous characteristics. Among the gases
 

speculated to cluster are sulfur dioxide, nitric oxide, molecular
 

nitrogen, water vapor and carbon dioxide. The significance of
 

clustering has not been theorized. Thissubject would require
 

extensive investigation which does not appear to be warranted at
 

present.
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3.0 	 1SER REQUIREMENTS -FOR OZONE AND AEROSOL RELATED STRATOSPHERIC 
M4EASUREMENTS 

Jn volume I of-this report an extensive d cossio:i of user 

requirements for stratospheric measurements is presented. This dis 

cussion will be summarized here with emphasis placed on the distinc­

tion between the ozone problem which has changes in UV transmission 

as its piincipal effect and the aerosol problem which effects
 

radiative transfer and hence global climate.
 

3.1 	 Identification of the Users
 

The uses of both ozone and aerosol related data may be grouped
 

into three major categories, namely,
 

* understanding stratospheric chemistry and physics
 

" the effects of stratospheric change on the biosphere
 

* monitoring for regulatory activities and long-term trends.
 

The first function shown focuses on analysis and understanding
 

of the details of the various stratospheric cycles and is obviously
 

the most demanding in terms of the magnitude and scope of information
 

required.
 

The 	second function focuses primarily on the results of strato­

spheric change namely changes in UV transmission and climate and-how
 

they affect the earth's environment. Emphasis is not placed on the
 

particular cause of the change but rather on what results from the
 

change. Except for a few special cases such as direct intrusion of
 

ozone into high flying aircraft, in situ particulars are not of
 

concern to these users.
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The third function of monitoring and regulation is of interest
 

to a-wide spectrum of users extending from governmental agencies to
 

manufacturers or users of known or potentially hazardous materials.
 

For example, an understandably large number of industrial organiza­

tions are known to be supporting studies of the chlorofluorocarbon/
 

ozone problem. These users, both governmental and industrial, are
 

concerned not only with the details of how ozone and aerosols alter
 

the UV and radiative transfer but also with the effects of such
 

alteration. The end goal of both groups is the formulation of equit­

able control and regulation when indicated.
 

3.2 	 Measurement Requirements for UV Studies
 

The predominant interest in the field of UV is in the interac­

tion of biological systems with UV. As a result, it appears that
 

this field is dominated by users far removed from effective utiliza­

tion of observations which describe the state or variability of those
 

features of the stratosphere which control UV transmission. However,
 

at the same time, considerable interest has developed among scien­

tific and regulatory groups in measurements of particular properties
 

and species which will help clarify the physical and chemical
 

processes which control the UV environment.
 

Specific measurement requirements are not generally clear since
 

the largest potential group of users is not interested in detailed
 

physics or chemistry of the stratosphere but rather with responses
 

of biological systems to changes in the environment. However, some
 

general comment can be made.
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First, it is clear that a topic of primary concern is the
 

intensity and wavelength -distribution of ultraviolet radiation at the
 

Earth's surface. Inference of this data from spacecraft measurements
 

provides a unique opportunity to supplement.present observations and
 

provide more comprehensive coverage in space and time.
 

Secondary studies would include determination of the variability
 

of radiation features, studies of the influence of polluting gases on
 

the atmospheric transmission in the UV spectrum and data which relates
 

the UV environment to biological variability.
 

Direct NASA contact with those studying the subject will begin
 

the communication cycle so necessary if experiments are to be
 

developed which satisfy these users.
 

3.3 Measurement Requirements for Climate Studies
 

Climate effects are much more pervasive than those defined
 

previously for -UV. In the case of UV, the chain of concern is
 

traceable from the stratosphere directly to the well-defined set of
 

users, both direct and indirect. For climate, the end point of such
 

a consequence chain is much more diffuse. For this reason, the user
 

community will be restricted to the primary users of remotely sensed
 

data with the understanding that concern with climate is almost
 

limitless.
 

The primary users of climatic data consist of those who are
 

studying-the physical processes of climate either through modeling
 

or other approaches and those whose concern is monitoring the climate
 

for indications of significant change.
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The total system which comprises the Earth's climate is extremely
 

complex and highly interrelated. Stratospheric aerosols play only i
 

small (but by no means insignificant) role in-the total climate.
 

However, in many cases perturbations in one or more of these smaller
 

components of the climate system can have far reaching consequences
 

throughout the world. With the full realization of the complexity of
 

climate, it is still desirable to separate the system into various
 

component processes,
 

* radiation
 

* water clouds
 

a surface
 

* atmospheric
 

Within these processes a set of parameters may be identified as being
 

required for adequate characterization and monitoring of climate and
 

in particular climate change. NASA [119] has proposed such a set of
 

40 parameters covering the full span of climatic component processes.
 

Those parameters involving atmospheric composition include:
 

* solar ultraviolet flux
 

* stratospheric aerosol optical depth
 

* tropospheric aerosol optical depth
 

* ozone
 

* stratospheric H20
 

* nitrous oxide and nitrogen oxides
 

* carbon dioxide
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* chlorofluoromethanes
 

q methane
 

As can be seen in the above list many of- the parameters also play key
 

roles in the ozone chemistry cycle. Their roles in climate generally
 

focus on their contribution to the radiative heat balance of the
 

atmosphere. However, as stated earlier in this section this discus­

sion is limited to aerosol related processes. The role of strato­

spheric gases in relation to climate has been discussed in Volume I.
 

Table 3-I shows NASA's proposed measurement requirements for
 

stratospheric aerosol optical depth. In conjunction with the pre­

sentation of these requirements they indicate the need for satellite
 

remote sensing as a key part of stratospheric aerosol monitoring.
 

The WMO-ICSU [471 has developed a set of requirements for the
 

Global Atmospheric Research Program (GARP). Those requirements
 

pertaining to atmospheric aerosol processes are shown in table 3-I.
 

It is noteworthy-that under the monitoring section the variables of
 

concern are not only the number and mass of aerosols but also the
 

concentration of precursor gases. It is unfortunate however that
 

this and other studies do not provide sufficient detail to present
 

the specifics of these precursor monitoring requirements. This
 

again can be understood from the fact that most users are concerned
 

with the effects of stratospheric aerosols rather than the detail
 

chemical and physical processes.
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TABLE 3-1
 

NASA'S PROPOSED MEASUREMENT REQUIREMENTS
 
FOR
 

STRATOSPHERIC AEROSOL OPTICAL DEPTH[119]
 

Desired accuracy 0.002
 

Spatial resolution
 

North-South 250 km
 

East-West 1000 km
 

Vertical 
 3 km
 

Temporal resolution 1 month
 

3-6
 



TABLE 3-11
 

_2OSOL PROCESSES-SUMMARY OF TENTATIVE. OBSERVATIONAL: REQUIREMENTS [47-]
 

-E. STUDY OF PROCESSES
 

a) 	Radiative effects of aerosols.
 

Required aerosol parameter 	 Observational require­
for 	troposphere and stratosphere ment and accuracy
 

Size distribution
 

dn 	 in cm-4 STP 5% 
dr­

5%
Vertical profile of size 

distribution Required vertical reso­

lution generally 0.5 to
 
1.0 	kilometer
 

Real refractive index of bulk 	 1% over the range
 

material n 1.0 	5 n < 2 

Imaginary part of the re- 10% 	over the range
 
fractive index k 	 0.001 < k < 0.1
 

Bulk density 6 of aerosol 	 5% over the range
 
- 3particles, in g cm	 1.0-s 6 < 3.0 

Use 	of 3 to 4 typical
Solubility of aerosol particles 

and/or growth characteristic growth curves
 
with relative humidity
 

For 	necessary data to calculate
 
energy balance of the atmosphere
 

b) Aerosol cloud interaction 	 Cannot be specified at
 
this time.
 

[I. MONITORING
 
Space Time Accuracy 

Variables to be monitored Resolution Resolution
 

1) 	 Total number concentration about 20 
2) 	Concentration of optically baseline
 

important particles stations daily 5%
}3) Total mass concentration distributed %
 

'4) Concentration of gaseous over the
 
precursors 	 globe
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4.0 SCIENCE REQUIREMENTS
 

A number of recent major study groups (CLAP-, GARP, NAS, etc.)
 

and many smaller ones have addressed the general question-of man's
 

interaction with and impact on the stratosphere. A few of these
 

groups have studied the entire stratospheric problem but in general
 

the studies focus on one or more specific aspects of the strato­

spheric such as ozone, nitrogen oxides, chlorofluorocarbons or
 

aerosols. In this section the results of these efforts are sum­

marized and used to develop two sets of scientific requirements
 

for stratospheric trace constituent measurements. The first set
 

is developed on the assumption that user concern is only with the
 

depletion of stratosphere ozone. The second assumes that user
 

concern is only with stratospheric aerosols and associated chemistry.
 

In Volume I a listing is presented of those stratospheric
 

measurements which would be desirable. The listing is presented
 

without regard to involvement of any species or property in any
 

specific chemical chain such as the ozone chain, the aerosol chain
 

or others. Table 4-1 presents the properties and gases from this
 

list and indicates in capsule form the major or typical reasons why
 

the measurement would be appropriate in a specific study of ozone
 

or aerosols. If the term no direct involvement (NDI) is applied
 

to any measurement it does not imply that no chain of reactions or
 

events exists which would link the measurement with ozone or aerosol
 

chemistry. It is intended to indicate any possible link is at least
 

relatively remote.
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PROPERTYOR GAS 


Stiatospheric Temperature 


Solar Irradiance (inc UV) 


I Earth Radiance 
Water Vapor 

Ozone, 03 


Aerosols 


Carbon Dioxide, CO2 

Hydroxyl, HO 


Atomic Oxygen, O3P) or O('D) 


Ammonia,.NH3 


Nitric Oxide, NO 


Nitrogen Dioxide, NO2 


Atomic Chlorine, Cl 


Chlorine Monoxide, CIO 


Hydrogen, H2 or H 


Hydroperoxyl, HO2 


Nitrous Oxide, N20 
 2x 
Nitrogen Pentoxide, N205 


Nitric Acid Vapor, 1iOl
3 


Chlorine Nitrate, ClON0 2 


Carbon Monoxide, CO 


Methane, CH4 


TABLE 4-I 
CAPSULE SUMMARY OF THE PARTICIPATION OF VARIOUS PROPERTIES AND GASES 

IN OZONE AND AEROSOL CHEMISTRY 

PARTICIPATION
 

OZONE CHEMISTRY 	 AEROSOL CHEMISTRY
 

Changes with changes in ozone chemistry cycles Change with aerosol changes
 

UV-B increases with decreasing ozone Radiation transmission affected by aerosol
 
concentration
 

Many species associated with ozone absorb IR Increase in aerosols create "greenhouse"
 
Involved in production of H2 and OH in upper Involved in 2SO4-nH2O formation
 
stratosphere*
 
a priori Involved in oxidation of S02 and H2S,
 

through 0 and HO
 
NDI a priori
 

Sink for CO through reaction with HO NDI, except possible CO2 cluster formation
 

Involved in 0, NOx, CIO and CH chemistry 	 Involved in SO chemistry

I x 4 	 x
 

HQ and C1O
Involved in x, NOx chemistry 	 Involved in basic oxidation of S02
 

Transport from troposphere and reaction with 	 Neutralizes H2SO4 to produce (NH ) and
 
related conpoundb
HO leads to NO chain 


NOx chemistry 	 NDI
 

NOx chemistry 	 NDI
 

CO chemistry, catalytic ozone depletion 	 Formation of HC and metal chlorides
 

CIO chemistry 	 Formation of HC1 and metal chlorides
 

Ox and HOx chemistry, HCI equilibrium 	 Indirectly through CI and'metal chlorides
 

Ox, HO , NO and CL chemistry 	 Oxidation of SO2
 

NO chemistry 	 ND.
I 
NOX chemistry 	 NDI
 

NOx chemistry 	 HO 3 aerosols and nitrates
 

Reduces 03 depletion; quasi sink for Cl and 	 NDI
x 


NO in'lower stratosphere
 

Involved in HOX chemistry 	 NDI
 

Reacts with 0 to produce HO and CH3 radicals; 	 NDI
 

also reacts with Cl to produce HC1 and CH3
 



TABLE 4-1 (CONTINUED) 

PARTICIPATION 

PROPERTY OR GAS OZONE CHMI1STRY AEROSOL CHEMIISTRY 

Hydrogen Chloride Gas, HCl 

Trichlorofluoromethane, F-I1, CFC13 

Dichlorodifluoromethane, F-12, CF2Cl2 

Sulfur Dioxide, SO2Tetrachioronethane, 01 4 

Chloromethane, CH3C1 

Cl chemistry 

C1 chemistry, reacts with 0 and UV 

Cl chemistry, reacts with 0 and UV 

Depletes 0, HO, HO2 etc., by oxidation to S03 
Cl chemistry, reacts with 0 and LIV 

Cl chemistry, reacts with 0 and UV 

Chloride aerosol formattod 

NDI 

NDI 

Principal source for H2SO4 and sulfates, 
MDI 

NDI 

DiChloromethane, CH2CI 

Trichoromethane, CC01 

Cl 

Cl 

chemistry, reacts with 0 and UV 

chemistry, reacts with 0 and UV 

NDI 

NDI 

Formaldehyde. CH20 

Chlorodifluoromethane, F-22, CHCIF2 

Dichlorofluoromethane, F-21, CHC12F 

HO. chemistry, reacts with UV to form H 

Cl chemistry, reacts with 0 and UV 

Ci chemistry, reacts with 0 and UV 

NDI 

NDI 

NDI 

t, 

0 

0 

-id 

Methyl Bromide, CH3Br 

Trichloroethylene, CCl2"CHCl 

Methylchloroform, CH3CCl 3 

Trichlorotrifluoroethane, F-113, CF2CICFCl2 

Carbonyl Fluoride, F2C0 

Fluoroformyl Chloride, CIFCO 

Tetrabromomethane, Cgr
4 

Methyl Peroxy Radical, CH302 

Methyloxy Radical, CH30 

;Chlorodifluoromethane Radical, CF2CI 

Dichlorofluoromethane Radical, CFC4 

Br chemistry 

C1 chemistry, reacts with 0 and UV 

Cl chemistry, reacts with 0 and UV 

Cl chemistry, reacts with 0 and UV 

Halogen chemistry 

Halogen chemistry 

Br chemistry 

CH4 and NO chemistry 

CR4andNO chemistry 

Halogen chemistry 

Halogen chemistry 

NDI 

NDI 

NDI 

NDI 

NDI 

NDI 

DI 

NDI 

NDI 

NOT 

NDI 

Chlorine Dioxide, C102 

Methyl Sulfide, (CH3)2S 

Carbonyl Sulfide, COS 

CIOx 

NDI 

NDI 

chemistry NDI 

Sulfur and SO. chemistry 

Sulfur and SO, chemistry 



TABLE4-I(CONCLUDED) 

PROPERTY OR GAS 
OZONE CHEMISTRY 

PARTICIPATION 

AEROSOL Cdifts 

Carbon Disulfide, CS2 

Dichloroethane, C2H4C12 

NDI 

C1 chemistry 

Sulfur and SOx 

NDI 

chemistry 

Chloroetha'ie, C2H5Cl Cl chemistry NDI 

Carbonyl Monochloride, COCI 

Tetrachloroethene, Cl2C:CCl2 

Cl chemistry 

.C1 chemistry 

NDI 

NDI 

Vinyl Chloride, CH2:CHC C1 chemistry NDI 

Hydrogen Sulfide, H NDI Sulfur and SO chemistry 

Hydrogen Fluoride, HF 

Hydrogen Bromide, HEr 

Hydrogen Peroxide, H202 

Ammonium Ion, NH4 ' 

Halogen chemistry 

Halogen chemistry . 

'HOx chemistry 

Possible involvement with NH3 /OH reactions 

HE aerosol formation 

HBr and bromide aerosol formation 

HOx/SOx chemistry 

Directly involved in.(NH4)2SO4 production 

Sulfur Hexafluoride, SF 
6 

Sul:fur Trioxide, So 

so3lieaicl 
Bisulfite Radical, HIOn 

Nitrogen Trioxide, NO3 ' 

Bromine Oxide, BrO 

Atomic Bromine, Br 

Atomic Oxygen, O( S). 

0 
2' 

X" 

NDI, tracer in dispersion studies 

Product of HO ISO2 reaction 

2S 
Imvolved in possible depletion of HO 

NOX chemistry 

Br chemistry, analogous to C10 

By chemistry 

Possibly involved in 0 chemistry 

NDI, tracer in dispersion studies 

Precursor of H2so4 aerosbl 
50. seo and S 

Possible precursor in H 4SO e 
aerosol formation 

Precursor for HNO3 and NO3 aerosols 

Precursor for HBr and Br- aerosols 

Precursor for HEr and Bt- aerosols 

NDI 

Molecular Oxygen, 02( a) Possible involved in 0 chemistry NDI 

Non-Methane Hydrocarbon, CxHy Possible reactions analogous to CH4 ND 

Various Organics, H C 0 x y Possible reactions analogous to CH202 NDI 



Specific aerosols have not been included in the table since they 

are a yTiori involved in aerosol chemistry and as a group have no 

direct involvement in ozone chemistry. This is due to the quasi 

irreversable nature of aerosol formation. The only known sinks for 

aerosols are gravitational settling into the troposphere or possible 

washout in stratospheric thunderclouds. 

4.1 Development of Scientific Criteria
 

The scientific criteria developed for stratospheric pollution
 

measurements must have 'as their basis the major objectives of the
 

entire stratospheric program. These objectives may be primary or
 

secondary depending upon the nature of their interaction with man
 

and his environment. The primary objectives are:
 

* 	Monitoring climatic changes caused by changes in the
 
concentrations of the various stratospheric trace
 

constituents, particularly aerosols; and,
 

* 	Monitoring changes in ultraviolet received at the earth's
 
surface as a result of changes in the concentrations of
 

the various stratospheric trace constituents, particularly
 
ozone.
 

The secondary objectives may be considered as indirect objectives of
 

the entire program. These are:
 

* 	Increased understandiug of the chemistry and physics of the
 
stratosphere and its constituents; and,
 

" 	Increased understanding of the meteorology and hydrodynamics
 
of the stratosphere.
 

Obviously, there is considerable overlap between the ptimary and
 

secondary objectives, since the latter have a much broader scope
 

which includes the former.
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The following sections present discussions supporting the
 

prioritization of ozone and aerosol related measurements -into.the. 


various groupings shown.
 

4.2, Prioritization of Ozone Related Measurements
 

The list of stratospheric ozone'related measurements has been
 

presented in four groups which are considered to be of descending
 

order of importance in terms of the absolute need for the measurement
 

without regard to present knowledge or measurement capability.
 

However, it must be emphasized at this point-that none of these
 

groups is considered unimportant. The groupings merely show the
 

degree of importance, and relative placement within a group has no
 

significance.
 

The rationale for placement of a required measurement in any
 

one of the categories is given below:
 

Ozone Group 1. This group contains those properties and species
 

which are considered to be directly related to changes in the untra­

violet flux. For example, ozone is directly related to the major
 

absorption of ultraviolet while the freon compounds are not.
 

Ozone Group 2. In this group are listed the components of the basic
 

reactions involved in the direct production or depletion of the ozone
 

concentration in the stratosphere. These species participate in the
 

principal chemical equations which directly involve ozone. These
 

equations are given below -for each of the significant chemistry
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chains. The numbers in parentheses are the equation numbers as used
 

previously in section 2. 

Pure oxygen reactions: 

0 + 02 + M--03 + M (2) 

03 + hv ( X:O945-0.65 m)-0 + 02 (3a) 

1 303 + hv (X :0.31-0.34 pLm) 02( A ) + 0 C3p) (3b) 

03 + hv ( X< 0.31 m) -0. (ID) + 02 (3c) 

03 + 0---02 + 02 (4)
 

Hydrogen-oxygen reactions:
 

H + 0 3--H0 + 02 (7)
 

HO 2 + 03----HO + 202 (10a)
 

HO + 03-- HO2 + 02 (10b)
 

Nitrogen-oxygen reactions:
 

03 + NO--NO2 + 02 (25)
 

Chlorine-oxygen reactions:
 

Cl + 03 --- ClO + 02 (38)
 

Ozone Group 3. This group contains those species considered to be
 

the most important ones in the indirect chemistry chains; that is,
 

those which result- in the production or depletion of the major
 

species discussed under Group 2.
 

Ozone Group 4. This group contains those species considered to be
 

involved in a lesser but nor unimportant way on the indirect chemistry
 

chains discussed above.
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Table 4-I presents the list of ozone related stratospheric.measure­

ments ihich should be made or would be of scientific interest. The
 

measurements'are grouped according to the .criteria discussed above
 

and placement was made after analyzing all available references that
 

discuss the importance of the various species. The list also shows
 

the major references supporting the selection of -the measurement and
 

its placement in the appropriate group. A number of other references
 

[49, 	57-61, 74-103, 113-120] were also consulted during preparation
 

of the list.
 

4.3 	Prioritization of Aerosol-Related Measurements
 

The list of stratospheric aerosol related measurements has been
 

presented in six groups which are considered to be of descending
 

order of importance in terms of the absolute need for the measurement
 

without regard to present knowledge or measurement capability.
 

However, it must be emphasized at this point that none of these
 

groups is considered totally'unimportant. The groupings merely show
 

the degree of importance, and relative placement within a group has
 

no significance.
 

The 	rationale for placement of a required measurement in any one
 

of the categories is given below:
 

Aerosol Group . This group contains those properties and species
 

which are considered to be directly related to changes in climate:
 

-and/or the stratospheric aerosol content. The group contains both
 

stratospheric properties such as temperature and radiative flux and
 

-species such as total aerosols and sulfate aerosols..­
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TABLE 4-11 

PRIORITIZED LIST OF DESIRED STRATOSPHERIC OZONE RELATED MEASUREMENTS 

NAME OF SPECfES/PROPERTY 
AND 
SYMBOL 

OZONE GROUP 1, MEASUREMENTS OF PROPERTIES 
AND SPECIES DIRECTLY ASSO-
CIATED WITH UV CHANGE 

39 40 62 63 

MAJOR REFERENCES WHERE CITED 

64 65 66 67 68 69 70 71 72 73 

Temperature N// V / V V/ v V V 
Solar Irradiance '(including UV) / %/ %/ V V V V v V 
Earth Radiance V V V V V V V 

Ozoneo3 V V V V V V VV/ VV V 

OZONE GROUP 2, COMPONENTS OF THE BASIC 
REACTIONS INVOLVED IN THE 
DIRECT PRODUCTION OR DEPLE-
TION OF OZONE 

Hydroxyl, HO .VV V V V V/ V V V/1 V 

Atomic Oxygen, O(3P) 

Atomic Oxygen, 0(iD) 

Nitric Oxide, NO 

Nitrogen Dioxide, NO2 

Atomic Chlorine, Cl 

V/ / 

X/VVVVV 
V V V 

v V 

V 

V/ 

V 

v V 

V 

/ 

/ IV 

V 
%/ V 

V / 

VV 

/ 

v/ 

/ 

V 

V 

V 

VV 

/ 

V 

V 

v 

V 

Chlorine Monoxide, ClO V V V V I/ VIV / / 

Hydrogen, H2 or H / / v/V vv v/ 
Hydroperoxyl, HO2 N/ V V V v / 



TABLE 4-11 (Continued)
 

NAME OF SPECTES/PROPERTY 
AND 
SYMBOL 39 40 62 63 

MAJOR REFERENCES WHERE CITED 

64 65 66 67 68 69 70 71 72 73 

OZONE GROUP 3, MAJOR COMPONENTS OF THE BASIC 
REACTIONS INDIRECTLY INVOLVED 
IN THE PRODUCTION OR DEPLE-
TION OF OZONE 

WaterVapor, H20 VV V V %/VVV V VNV 

Ammonia, NH3 V/ / V/ 

Nitrous Oxide, N20 V/ v V/ V V / 

Nitrogen Pentoxide, N205 / VV V/ /V / 

Nitric Acid Vapor, HNO3 V V V V V V / V V V V V 

Chlorine Nitrate, ClONo 2 V V V V 

Carbon Monoxide, CO V/ %/ V V 

Methane, CH4 V N V/%/ / / V/ V 

Hydrogen Chloride Gas, HCI 

Trichlorofluoromethane, F-l, CFC1 / 

v 

/ 

I / V 

V / 

/ V 

N/ 

V 

V 

/ 

/ 

V 

/ 

V 

' / 

Dichlorodifluoromethane, F-12, CF*Cl2 / V V V / V V V / V V 

Sulfur Dioxide,,SO2 V V /V V / 

OZONE GROUP 4, OTHER SIGNIFICANT COMPONENTS 
OF THE OZONE CHEMISTRY CHAINS 

Carbon Dioxide, CO2 V/ V/ / V _z V / / 

Tetrachloromethane, CC1 4, (carbon 
tetrachloride) V v v v v 



TABLE 4-11 (Continued) 

NAME OF SPECIES/PROPERTY MAJOR REFERENCES WHERE CITED 
AND 
SYMBOL 39 40 62 63 64 65 66 67 68 69 70 71 72 73 

OZONE GROUP 4 (Continued) I 

Chloromethane, CH3C, (Methyl Chloride)_ / - _ . -

Dichloromethane, CH2C12, (Methyl Dichloride) N/ - . . 

Trichloromethane, CHC 3 (Chloroform) - / 

Methanal, P. (Formaldehyde) 

Chlorodifluoromethane, F-22, CHCIF2 V V 

Dichlorofluoromethane, F-21, CHCI2F V 

Bromomethane, CH3BR, (Methyl Bromide) V V.tV . 

Trichloroethylene, CCI1101 --2V :V V_ 

Methylchloroform, CH3C1 3 . _ 7 . 

Trichlorotrifluoroethane, F-113, CF2ClCFCl2 

Carbonyl Fluoride, F2CO 

- 7 -%/V 

2 
V V V 

t 
V 

Fluoroformyl Chloride, IFCO .. . t V" " / 

Tetrabromomethane, CBr4 4i V . - '--

Methyl Peroxy'Radical, CH30 V . 

Methyl Oxy Radical, CH3O0 -

Chlorodifluoromethane Radical, CF2C1+ / V 

Dichlorofluoromethane Radical, CFC12 - I V 
--------------------------------------------------­



TABLE 4-SI (Continued) 

NAME OF 'SPECIES/PROPERTY 
AND 

SYMBOL 

OZONE GROUP 4 (Continued) 

39 40 

-

62 63 

I" 

MAJOR RIFERENCES WHERE CITED 
64 65 66 67 68 69 70 71 72 73 

Chlorine Dioxide, CIO2 

Dichloroethane, C2N4012 !-

-

.. 

- . 2. 
. 

Ethyl Chloride, C2 H5C1 
Carbonyl Monochloride, COCIl- : , ... . . / 

Tetrachloroethene, CL2C:CC12 
Vinyl Chloride, CH2:CHC1 

.3.. Hydrogen Fluoride, HF V . %V V . 

.r,t~ 

Hydrogen Bromide, HBr 

Hydrogen Peroxide; H202 

Ammonium Ion, NH4+ 

Sulfur Trioxide, So 

V 

V 

V 
/ 

V 
V 

" 

V 
. 

. 

V/. 

. 

! V 

1 

V 

-I 

P 

c 

Bisulfite Radical, 1SO3 

Nitrogen Trioxide, NO3 

Bromine Oxide, BrO 

Atomic Bromine, Br 

Atomic Oxygen, O( S) 

Oxygen, O2 jA) 
02( A) 

VN/. 
. 

. I 

. 

. 

IV 

. V 
-/ 

.. ... 

V 
V 

V 
%/ 

-. 

V 
. / 

V 

N 



TABLE 4-11 (Concluded)
 

NAME OF SPECIES/PROPERTY MAJOR REFERENCES WIERE CITED
 
AND
 

39 40 62 63 64 65 66 67 68 69 70 71 72 73SYMBOL 


OZONE GRO? 4 (Concluded)
 

Non-Methane Hydrocarbons, C H.-. I -"
 

Various Organics, H C 09' I . .. ..
 
xy z 

' i 

>10 

S 



Aerosol Group 2. In this group are listed the gaseous precursor.
 

components which are involved in the basic reactions for production
 

of either sulfuric acid or ammonium sulfate-aerosols. These reactions
 

were shown in equations (47) through (52) in Section 2.3.2.1.
 

Aerosol Group 3. This group contains the major specific aerosols
 

both in the sulfate and non-sulfate category. The latter includes
 

aerosols such as nitric acid and hydrochloric acid.
 

Aerosol Group 4. This group contains all other aerosols which may be
 

of significance in the stratosphere.
 

Aerosol Group 5. This group contains the precursor gases for non­

sulfate aerosols along with the gases indirectly associated with
 

sulfate aerosols.
 

Aerosol Group 6. This group contains those species suspected of
 

being capable of forming molecular clusters as discussed in Section
 

2.3.2.1.
 

Table 4-111 presents the list of aerosol related stratospheric
 

measurements which should be made or would be of scientific interest.
 

ThL measurements are grouped according to the criteria discussed
 

above and placement was made after analyzing all available references
 

that discuss the importance of the various species. The list also
 

shows the major references supporting the selection of the measure­

ment and its placement in the'appropriate group. A number of other
 

references [49, 57-61, 74-103, 113-120] were also consulted during
 

preparation of the list.
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TABLE 4-I1
 

PRIORITIZED LIST OF DESIRED STRATOSPHERIC AEROSOL RELATED MEASUREMENTS
 

NAME OF SPECIES/I'ROPERTY MAJOR REFERENCES WHERE CITED 
AND ' 

73
SYMBOL 39 40 62 63 64 65 66 67 68 69 70 71 72 

AEROSOL GROUP IA, DIRECT MEASUREMENTS OF 
CLIMATIC CHANGE AND ULTRA-
VIOLET CHANGE 

Temperature V V V // / V V V 

Solar Irradiance (including UV) V %V V V / V V V/ V V / VV 

V/ V 
Earth Radiance V/ VV 

AEROSOL GROUP IS, MAJOR AEROSOLS 

IV
Total Aerosols. V V V V V/ N / 

V V/
Total Sulfate Aerosols V V V 

Sulfuric.Acid Aerosol, H2So04 .nH20 %/ N/ / V 
V
VV V
Ammonium Sulfate, (Nil4)2 so4 


AEROSOL GROUP 2, MAJOR SULFATE AEROSOL
 
PRECURSOR GASES
 V
 

l
Sulfur Dioxide, SO2 


Sulfur Trioxide, S03 0,
 

V V V
Atomic Oxygen, 0 V/ V V V V V V 

V VVWater Vapor,11 2 0 


Hydroxyl, HO
 

V VV V
Hydroperoxyl, HO2
 



NAME OF SPECIES/PROPERTY 


AND
 
SYMBOL 


AEROSOL GROUP 2 Concluded 


Ammonia, NH3 

Ammonium Ion, NH4+ 

AEROSOL GROUP 3, MAJOR SPECIFIC AEROSOLS 

Nitric Acid Aerosol, nHNO 

Chloride Aerosol, Cl-

Nitrate Aerosol, NO3 

Ammonium Ion Aerosol, nNH + 
0' 4 

Ammonium Peroxydisulfate, .(NH4)2 $20 8 

AEROSOL GROUP 4, OTHER SPECIFIC AEROSOLS 

Aluminum Oxide Aerosol, nAl 2 003 

Nitrite Aerosol, NO2-

Liquid Water or Ice, nH20 

+
Aluminum Ion, Al: ' 


Bromide Ion, Br-


Calcium Ion, Ca 


++
Copper Ion, Cu


TABLE 4-111 (Continued) 

39 40 62 

V 

63 

MAJOR REFERENCES WHERE CITED, 

64 65 66 67 68 69 

V / . 

I/ V 

70 71 72 73 
. 

V V 

/ 

V 

. 

V V 

V 

V 

I/ 

/ 

V 

v/ 

V 

V 

/ 

V 

N/ 

/ 



TABLE 4-111 (Continued) 

NAME OF SPECIES/PROPERTY' MAJOR REFERENCES WHERE CITED 
AND 
SYMBOL 39 40 62 63 64 65 66 67 68 69 70 1 72 73 

AEROSOL GROUP 4 Concluded 

Iodide Ion, I- / 

Iron Ion, Fe+ or Fe + + + 

Magnesium,.Mg V I 

Manganese Ion, Mn* ' - or Mn / 

Potassium Ion, K+V I 

Silicon Ion, Si V v 

Sodium Ion, Na+ V / 

AEROSOL GROUP 5, OTHER PRECURSOR 
GASES, 

Ozone, 0 
OzoeVVV 

1,4 , v N/
VY V 

V 
V V v/ %/.VV V 

Atomic Chlorine, C1 6 V V VV 

Chlorine Monoxide, CIO N/ VVV VV V MV V VN/vS 

Hydrogen, H2 or H 
V 

Nitric Acid Vapor, 203 k, A/ V V V V V. %V / 

Hydrogen Chloride Gas, HC1 v VV 
V 

V 

Hydrogen Sulfide, 2 

Methyl Sulfide, (CH3)2S 



TABLE 4-It (Concluded) 

NAME OF SPECIES/PROPERTY MAJOR REFERENCES WHERE CITED 
AND 
SYMBOL 39 40 6Z 63 64 65 66 67 68 69 

1 -7 
70 

7 
71 72 73 

AEROSOL GROUP 5 Concluded 

Carbonyl Sulfide, COS 

Carbon Disulfide, CS2 N/ 

Hydrogen Fluoride, HF N/ N/V V 
Hydrogen'Bromide, HBr / / . 

Hydrogen Peroxide, H202 V it . . . mVit 
Bisulftte Radical, HS0 3- % 

Nitrogen Trioxide, NO3 -/ . V / 

Bromine Oxide, BrO V V 
Atomic Bromine, Br N / 

AEROSOL GROUP 6, QUASI AEROSOLS 

Sulfur Dioxide, nSO 2, (in cluster formation) . V 
'Nitric Oxide, nNO, ( " " " ) / 

Nitrogen, nN2 ( " ) V 
Liquid Water or Ice, 

nH20 ( , ,, ) 

Carbon Dioxide, nCO2 ( " " " ) 



5.0 	-MISSION EVALUATIONS
 

'This section-presents the results of the application of a
 

method for the evaluation of various stratospheric species measurement
 

missions. The method was developed previously [2] and is presented in
 

detail as Appendix A in both Volumes I and II of this report. In the
 

current application the method has been revised and updated to evaluate
 

the same set of missions and instruments from two standpoints,
 

" 	the monitoring of stratospheric ozone and related processes,
 

* 	the monitoring of stratospheric aerosols and related precursor
 
gaseous processes.
 

5.1 	 Evaluation of Specific Missions
 

The missions selected for evaluation were:
 

* 	A Shuttle-type mission with a 300 inclination and a four­
to six-month duration,
 

* 	A Shuttle-type mission-with a 560 inclination and a four­

to six-month duration,
 

* A polar-type mission with a one- to two-year duration.
 

Several instruments under development were evaluated for each of
 

these missions. The instruments evaluated are shown in Table 5-1
 

along with the generic type of each of the species evaluated.
 

Tables 5-11 through 5-XVII show the results of these evaluations
 

for each species/instrument/mission combination. Included with each
 

parameter value for the three missions is the performance used to
 

determine the value. The values (V) shown in each table for present,
 

required and mission capability are taken from the value matrices
 

presented in Volume III of this report. The values represent the
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TABLE 5-1
 

STRATOSPHERIC INSTRUMENTS AND SPECIES EVALUATED -

FOR
 

OZONE AND AEROSOL MISSIONS
 

INSTRUMENT GENERIC TYPE 

* 

LIMS Limb scanning 


SAGE Solar occultation 


CIMATS Solar occultation 


HALOE Solar occultation 


OZONE AEROSOL
 

SPECIES MISSION MISSION
 

CO2 V 
03~ V%
 
02
 /%
 

NO -V2 

HN03 A/ % 

03 V V 

Aerosols V 

H20 /
 

CH -V4 

N20 

NH 3VV 

CO AV 

HF V /
 

CH4 V 
HC1 A/' 

NO V 

Instrument descriptions are given in Section 6.2 of Volume I.
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TABLE 5-11 

EVALUATION OF CARBON DIOXIDE, CO2 , LIMS WITH 800 AZIMUTH SCAN 

Parameter 

WF 
0-1 

Present 
Knowledge 
V VXWF 

Required 
Capability 
V VXWF 

Shuttle 
300 

V VXWF 

Shuttle 
560 
V VXWF 

Sun-Sync 
Noon 
V VXWF 

Latitude 0.1 8 0.8 9 0.8 5 
900 

0.5 8 0.8 
1400 

10 1.0 
1700 

Duration of 
Program 

0.3 8 2.4 8 2.4 5 1.5 
4-6 mos 

5 1.5 
4-6 mos 

7 2.1 
1-2 yrs 

Diurnal. 
Coverage 

0.1 8 0.8 8 0.8 10, 1.0 
Full 

10 1.0 
Full 

9 1.0 
Part D&N 

Launch Time 0 10 0 10 0 10 0 10 0 10 0 

Vertical Profile 
Coverage 

0.2 10 2.0 10 2.0 10 2.0 
Full 

10 2.0 
Full 

10 2.0 
Full 

Vertical Profile 
Resolution 

0.2 8 1.6 9 1.8 10 2.0 
<1Km 

10 2.0 
<1Km 

10 2.0 
<IKm 

Longitude 0.1 

1.0 

8 0.8 

8.4 

8 0.8 

8.6 

10 i.0 
Full 

8.0 

10 1.0 
Full 

8.3 

10. 1.0 
:Full 

9.1 

CA­
total 
Value 

8 9 8 8 9 

Incremental 
Gain Over 
Present 

<1 <1 <1 I 

-,LEGEND: 
V,Value 
VXkF = Value x weighting factor 



TABLE 5-111
 

EVALUATION OF OZONE, LIMS WITH 80* AZIMUTH SCAN
 

Parameter 

WF 
0-1 

Present 
Knowledge 
V VXWF 

Required 
Capability 
V VXWF 

Shuttle 
30 

V VXWF 

Shuttle 
. 560 
V VXWF 

Sun-Sync 
Noon 
V VXWF 

Latitude .25 10 2.5 10 2.5 5 
900 

1.25 6 1.5 
1400 

10 2.5 
1700 

Duration of 
Program 

.25 7 1.75 10 2.5 4 1.0 
4-6 mos 

4 1.0 
4-6 mos 

6 . 1.5 
1-2 yrs 

Diurnal 

Coverage' 

.15 2 .3 8 1.2 10 1.5 

Full 

10 1.5 

Full 

8 1.2 

Part D&N 

Launch Time 0 10 0 10 0 10 0 10 0 '100 

Vertical Piofile 

Coverage 

.1 7 .7 10 1 10 1.0 
Full 

10 1.0 
Full 

10 1.0 
Full 

Vertical Profile 
Resolution 

.15 5 .75 10 1.5 10 1.5 
<iKm 

10 1.5 
<1Km 

10 1.5 
<iKm 

Longitude .1 10 1 10 1 10 1.0 

Full 

10 1.0 

Full 

10 1.0 

Full 

1.0 7.0 9.7 7.25 7.5 8.7 

Total 
Value 

7 10 7 8 9 

Incremental 
Gain Over 

Present 

3 <1 1 2 

LEGEND: 
V = Value 
VXWF 'Value x weighting factor 



TABLE 5-TV 

EVALUATION OF OZONE, SAGE, SOLAR OCCULTATION
 

Parameter 

WF 
0-1 

Present 
Knowledge 
V VXWF 

Required 
Capability 
V VXWF 

Shuttle 
300 

V VXWF 

Shuttle, 
560 
V VXWF 

Sun-Sync 
Noon 
V VXWF 

Latitude .25 10. 2,5 10 2.5 4 1.0 
900 sparse 
at extremes 

7 1.75 
1500 sparse 
at extremes 

0 0 
5 

Duration of' 
Program 

.25 7 1.75 10 2.5 4 1.0 
4-6 mos 

4 1.0 
4-6 mos 

6 1.5 
1-2 yrs 

Diurnal 
Coverage 

.15 2 .3 8 1.2 2 0.3 
Part Day 
2 points 

2 0.3 
Part Day 
2 points 

2 0.3 
Part Day 
2 points 

Launch Time 0 10 0 10 0 10 0 10 0 10 0 

Vertical Profile
Coverage 

.1 7 .7 10 1 10 1.0
Full 

10
Full 

1.0 10 1.0
Full 

Vertical Profile 
Resolution 

.15 5 .75 10 1.5 7 1.05 
-10 points 

7 1.05 
-10 points 

7 1,05 
-10 points 

Longitude .1 10 1. 10 1 10 1.0 
Full 

10 
Full 

1.0 10 1.0 
Full 

1.0 7.0 9.7 5.35 6.1 4.85 

Total 
Value 

7 10 5 6 5 

Incremental 
Gain Over, 
Present 

3 <1 <1 <1 

LEGEND: 
V- Value 
VXWF = Value x weighting factor
 



TABLE 5-V
 

EVALUATION OF WATER VAPOR, H20 , CIMATS SOLAR OCCULTATION
 

Parameter 

WF 
0-1 

Present 
Knowledge 
V VXWF 

Required 
Capability 
V VXWF 

Shuttle 
300 

V VXWF 

Shuttle 
.560 
V VXWF 

Sun-Sync 
Noon 
V VXWF 

Latitude .3 6 1.8 9 2.7 6 1.8 

900 sparse 
at extremes 

8 2.4 
150* sparse 
at extremes 

0 0 
50 

Duration of 
Program 

.2 5 1.0 9 1.8 6 1.2 
4-6 mos 

6 1.2 
4-6 mos 

9 1.8 
1-2 yrs 

Diurnal' 
Coverage 

.i 7 0.7 8 0.8 2 0.2 
Part Day 
2 points 

2 0.2 
Part Day 
.2points 

2 0.2 
Part Day 
2 points 

'n 
a, 

Launch Time 
Vertical Profile 
Coverage 

0 

.15 

10 

5 

0 

0.75 

10 

10 

0 

1.5 

10 0 

10 1.5 
Full 

10 

10 
Full 

0 

1.5 

10 0 

10 1.5 
Full 

Vertical'Profile 
Resolution 

.15 7 1.05 10 1.5 5 
-20 

0.75 
points 

5 0.75 
-20 points 

5 0.75 
-20 points 

Longitude .1 0 0 8 0.8 10 0.1 10 0.1 10 0.1 

Full Full Full 

1.0 5.3 9.1 5.55 6.15 4.35 

Total 

Value ' 

5 .9 6 6 4 

Incremental 4 1 1 <1 

Gain Over 

Present 

LEGEND: 
V = Value 
VXWI = Value x weighting factor 



TABLE 5-VI 

EVALUATION OF WATER VAPOR, H2 O0;LIMS WITH 800 AZIMUTH SCAN
 

Parameter 

WF 
0-1 

Present 
Knowledge 
V VXWF 

Required 
Capability 
V VXWF 

Shuttle 
300 

V VXWF 

Shuttle 
560 
V VXWF 

Sun-Sync 
Noon 
V VXWF 

Latitude .3 6 1.8 9 2.7 7 
900 

2.1 9 2.7 
140* 

10 
170 

3.0 

Duration of 
Program 

.2 5 1.0 9 1.8 6 1.2 
4-6 mos 

6 1.2 
4-6 mos 

9 1.8 
1-2 yrs 

Diurnal 
Coverage 

.1 7 0.7 8 0.8 10 1.0 
Full 

10 1.0 
Full 

9 0.9 
Part D&N 

Launch Time 0 10 0 10 0 10 0 10 0 10 0 

Vertical Profile 
Coverage 

.15 5 0.75 10 1.5 10 1.5 
Full 

10 1.5 
Full 

10 1.5 
Full 

Vertical Profile 
Resolution 
Longitude 

.15 

.1 

7 

0 

1.05 

0 

10 

8 

1.5 

0.8 

10 1.5 
<1Km 
10 1.0 

10 1.5 
<iKm 
10 1.0 

10 1.5 
<1Km 
10 1.0 

Full Full Full 0 

1.0 5.3 9.1 8.3 8.9 9.7 

Total 
Value 

5 9 8 9 10 2, 

Incremental 
Gain Over 
Present 

4 3 4 5 

LEGEND: 
V = Value 
VXWF = Value x weighting factor 



TABLE 5-VIi
 

EVALUATION OF AEROSOLS, SAGE SOLAR OCCULTATION
 

Parameter 

WF 
0-1 

Present 
Knowledge 
V VXWF 

Required 
Capability 
V VXWF 

Shuttle 
300 

V VXWF 

Shuttle 
560 
V VXWF 

Sun-Syncq 
Noon 
V VXWF 

Latitude .15 9 1.35 10 1.5 4 0.6 

900 sparse 
at extremes 

7 1.05 

1500 sparse 
at extremes 

0 0 

5 

DuraEion of 
Pr6gram 

.15 8 1.2 9 1.35 7 1.05 
4-6 mos 

7 1.05 
4-6 mos 

9 i35. 
1-2'yrs 

Diurnal, 
Coverage 

.05 9 0.45 9 0.45 6 .3 
Part Day 

2 points 

6 .3 
Part Day 

2 points 

6 .3 
Part Day 

2 points 

Launch Time 0 10 0 10 0 10 0 10 0 10 0 

Vertical Profile 
Coverage, 

.25 8 2.0 10 2.5 10 2.5 
Full 

10 
Full 

2.5 10 2.5 
Full 

Vertical Profile 
Resolution 

.15 7 1.65 10 1.5 7 1.05 
-10 points 

7 
-10 

1.05 
points 

7 
-10 

1.05 
points 

Longitude .25 6 1.5 10 2.5 10 2.5 

Full 

10 

Full 

2.5 10 2.5 

Full 

1.0 7.55 9.8 8.00 .8.45 7.7 

Total 

Value 
8 10 8 8 8 

Incremental 

Gain Over. 
Present 

2 <1 <1 <1 

LEGEND: 
V = Value 
VXWF- Malue x weighting factor 
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TABLE 5-VII
 

EVALUATION OF AMMONIA, NH3 , CIMATS SOLAR OCCULTATION
 

WF 

Parameter 


Latitude .2 


Duration of .1 

Program 


Diurnal .15 

Coverage 


Launch Time 0 


Vertical Profile .25 

Coverage 


Vertical Profile .25 

Resolution 


Longitude. .05 


1.0 


Total 

Value
 

Incremental 

Gain Over
 
Present.
 

LEGEND:
 
=
V Value
 

VXWF = Value x weighting factor
 

Present 

V VXWF 


0 0 


0 0 


0 0 


10 0 


0 0 


0 0 


0 0 


0 


0 


Required 

V VXWF 


7 1.4 


6 0.6 


6 0.9 


10 0 


7 1.75 


7 1.75 


8 0.4 


6.8 


7 


7 


Shuttle 

V VXWF 


7 1.4 

900 sparse 

at extremes 


8 0.8 

4-6 mos 


4 0.6 

Part Day 

2 points 


10 0 


10 2.5 

Full 


9 2.25 

-20 points 


10 0.5 

Full 


8.05 


8 


8 


Shuttle 

V VXWF 


8 1.6 

1500 sparse 


at extremes
 

8 0.8 

4-6 mos 


4 0.6 

Part Day 

2 points 


10 0 


10 2.5 

Full 


9 2.25 

-20 points 


10 0.5 

Full 


8.25 


8 


8 


Sun-Sync 
V VXWF 

0 0 
-50 

9 0.9 
1-2 yrs 

4 0.6 
Part Day 
2 points 

0 
0 

10 0 

10 2.5 
Full 4 

9 2.25 
-20 points 

I0 0.5 
Full 

6.75 

7 

7 



TABLE 5-TX
 

EVALUATION OF NITROGEN DIOXIDE, NO 2, LIMS WITH 800 AZIMUTH SCAN
 

Parameter 

WF 

0-i 

Present 

Knowledge 
V VXWF 

Required 

Capability 
V VXWF 

Shuttle 

300 
V VXWF 

Shuttle 

560 
V VXWF 

Sun-Sync 

Noon 
V VXWF 

Latitude' .15 4 .6 10 1.5 7 

900 

1.05 9 1.35 

1400 

10 1.5 

1700 

Duration of 
Program, 

.15 5 .75 9 1.35 7 .05 
.4-6 mos 

7 1.05 
4-6 mos 

9 1.35 
1-2 yrs 

DiurnalX. 
Coverage 

.35 5 1.75 9 3.15 10 3.5 
Full 

10 3.5 
Full 

8 2.8 
Part D&N 

Launch Time . 0 10 0 10 0 10 0 10 0 10 0 

Vertical Profile 
Coverage 

.15 6 0.9 10 1.5 10 1.5 
Full 

10 1.5' 10 + 1.5 
Full Full 

Vertical Profile 
Resolution' 

.15 4 0.6 10 1.5 10 1.5 
RIKm 

10 1.5 
ZiKm 

10 1.5 
ZlKm 

Longitude .05 0 0 8 0.4 10 .5 

Full 

10 

Full 

.5 10 .5 

Full, 

1.0 4.6 9.4 9.1 9.4 9.15 

Total 

Value 
5 9 9 9 9 

Incremental 
Gain Over 

Present 

4 4 4 4 

LEGEND: 

V = Value 
VXWF= Value x-weighting factor 



TABLE 5-X
 

EVALUATION OF NITRIC ACID.VAPOR, NHO3, LIMS WITH 80* AZIMUTH SCAN
 

Parameter 

WF 
0-1 

Present 
Knowledge 
V VXWF 

Required 
Capability 
V VXWF 

Shuttle 
30 ° 

V VXWF 

Shuttle 
560 
V VXWF 

Sun-Sync 
Noon 
V VXWF 

Latitude .3 5 1.9 10 3.0 7 
900 

2.1 9 2.7 
1400 

10 3.0 
1700 

Duration of 
'Program 

.25 3 .75 9 2.25 7 1.75 
4-6 mos 

7 1.75 
4-6 mos 

9 2.25 
1-2 yrs 

Diurnal 
Coverage 

.1 7 .7 8 .8 10 1.0 
Full 

10 1.0 
Full 

8 0.8 
Part D&N 

Launch Time 0 10 0 10 0 10 0 10 0 10 0 

Vertical Profile 
Coverage 

Vertical Profile 

.15 

.1 

7 

8 

1.05 

.8 

10 

10 

1.5 

1.0 

10 1.5 
Full 

10 1.0 

10 1.5 
Full 

10 1.0 

10 1.5 
Full 

10 1.5 

0 

Resolution Km ZlKm Z1Km 

Longitude .1 0 0 8 .8 10 1.0 

Full 

10 1.0 

Full 

10' 1.0 

Full 

1.0 4.8 9.35 8.35 8.95 9.55 

Total 
Value 

5 9 8 9 10 

Incremental 
Gain Over 
Present 

4 3 4 5 

LEGEND: 

V = Value 
VXWF Value x weighting factor 
D & N = Day & Night 



TABLE 5-XI
 

EVALUATION OF HYDROGEN CHLORIDE GAS, HCI, HALOE SOLAR OCCULTATION
 

Parameter 

WF 
0-1 

Present 
Knowledge 
V VXWF 

Required 
Capability 
V VXWF 

Shuttle 
300 

V VXWF 

Shuttle 
560 
V VXWF 

Sun-Sync 
Noon 
V VXWF' 

Latitude .35 4 1.4 9 3.15 6 2.1 
900 sparse 
at extremes 

8 2.8 

1500 sparse 
at extremes 

0 0 

56 

Duration of 
Program 

.1 5 .5 8 .8 8 0.8 
4-6 mos-

8 0.8 
4-6 mos 

9 0.8 
1-2 yEs 

Diurnal 
Coverage 

.1 0 0 7 .7 3 0.3 
Part Day 

2 points 

3 0.3 
Part Day 
2 points 

3 0.3 
Part Day 
2 points 

Launch Time 0 10 0 10 0 10 0 10 0 10 0 

Vertical Profile 
Coverage 

.2 6 1.2 9 1.8 9 1.8 
10-40Km 

9 1.8 
10-40Km 

9 1.8 
10-40Km 

Vertical Profile 
Resolution 

.2 7 1.4 9 1.8 9 
2Km 

1.8 9 
2Km 

1.8 9 
2Km 

1.8 

Longitude .05 0 0 8 .4 10 0.5 
Full 

10 
Full 

0.5 10 0.5 
Full 

1.0 4.5 8.65 7.35 8.0 5.2 

Total 
Value 

5 9 7 8 5 

Incremental 
Gain Over 
Present 

4 2 3 <1 

LEGEND,: 
V = Value 
VXWF = Value x weighting factor
 



EVALUATION OF METHANE, CH4, CIMATS SOLAR OCCULTATION
 

Parameter 

WF 
0-1 

Present . 

Knowledge 
V VXWF 

Required 
Capability 
V VXWF 

Shuttle 
300 

V VXWF 

Shuttle 
560 

V VXWF 

Sun-Sync 
Noon 
V VXWF 

Latitude .4 0 0 8 3.2 7 2.8 
900 sparse 

at extremes 

8 3.2 
150' sparse 

at extremes 

0 0 
50 

Duration of 
Program 

.1 0 0 6 0.6 8 0.8 
4-6 mos 

8 0.8 
4-6 mos 

9 0.9 
1-2 yrs 

Diurnal 
Coverage' 

Launch Time 

.15 

0 

0 

10 

0 

0 

6 

10 

0.9 

0 

4 0.6 
Part Day 
2 points 

10 0 

4 0.6 
Part Day 
2 points 

10 0 

4 0.6 
Part Day 
2 points, 

100 oo 

HCoverage 

Vertical Profile 

Vertical Profile 

Resolution 

Longitude 

.15 

.15 

.05 

6 

3 

,0 

0.9 

0.45 

0 

8 

9 

8 

1.2 

1.35 

0.4 

10 1.5 

Full 

9 1.35 

-20 points 

10 0.5 

Full 

10 1.5 

Full 

9 i.35 

-20 points 

10 0.5 

Full 

10 1,5 

Full ' 

9 1,.35 

-20 points 

10 '0.5 

Full 

r02 
£,t 

D t 

1.0 1.35 7.65 7.55 7.95 4.85 

Total 

Value 
1 8 8 8 5 

Incremental, 
Gain Over 
Present 

7 7 7 4 

LEGEND: 

V = Value 
VXWF = Value x weighting factor
 



TABLE 5-XIII
 

EVALUATION OF METHANE, CH4, HALOE SOLAR OCCULTATION
 

Parameter 

WF 
0-1 

Present 
Knowledge 

V VXWF 

Required 
Capability 

V VXWF 

Shuttle 
300 

V VXWF 

Shuttle 
560 

V VXWF 

Sun-Sync 
Noon 

V VXWF 

Latitude .4 0 0 8 3.2 7 2.8 
90' sparse 
at extremes 

8 3.2 
1500 sparse 
at extremes 

0 0 
-5 

Duration of 
Program 

.1 0 0 6 0.6 8 0.8 
4-6 mos 

8 0.8 
4-6 mos 

9 0.9 
1-2 yrs 

Diurnal 
Coverage 

.15 0 0 6 0.9 4 0.6 
Part Day 
2 points 

4 0.6 
Part Day 
2 points 

4 0.6 
Part Day 
2 points 

Launch Time 0 10 0 10 0 10 0 10 0 10 0 

Vertical Profile 

Coverage 

.15 6 09 8 1.2 10 1.5 

Full 

10 

Full 

1.5 10 1.5 

Full 

Vertical Profile 
Resolution 

.15 3 0.45 9 1.35 9 
2Km 

1.35 9 
2Km 

1.35 9 1;35 
2Km 

Longitude .05 0 0 8 0.4 10 0.5 
Full 

10 
Full 

0.5 10 0.5 
Full 

1.0 1.35 7.65 7.55 7.95 4.85 

Total 
Valui 

1 8 8 8 5 

Incremental 
Gain Over 
Present 

7 7 7 4 

LEGEND: 
r_- lue 
VXWF = Value x weighting factor
 



EVALUATION OF NITROUS OXIDE, N20, CIMATS SOLAR OCCULTATION
 

Parameter 

WF 
O-i 

Present 
Knowledge 
V VXWF 

Required 
Capability 
V VXWF 

Shuttle 
300 

V VXWF 

Shuttle 
560 
V VXWF 

Sun-Sync 
Noon 
V VXWF 

Latitude .25 4 1.0 10 2.5 7 1.75 
900 sparse 
at extremes 

9 2.25 
1500 sparse 
at extremes 

0 0 
-5' 

Duration of 
Program 

.15 5 0.75 9 1.35 7 1.05 
4-6 mos 

7 1.05 
4-6 mos 

9 1.35 
1-2 yrs 

Diurnal 
Coverage 

.1 8 0.8 8 0.8 1 0.1 
Part Day 
2 points 

1 0.1 
Part Day 
2 points 

1 0.1 
Part Day 
2 points 

Launch Time 0 10 0 10 0 10 0 10 0 10 0 

Vertical Profile 
Coverage 

.15 6 -0.9 10 1.5 10 1.5 
Full 

10 
Full 

1.5 10 1.5 
Full 

Vertical Profile 
Resolution 

.15 4 0.6 10 1.5 9 1.35 
-20 points 

9 1.35 
-20 points 

9 1.35 
-20 points 

Longitude .05 0 0 8 0.4 10 0.5 
Full 

10 
Full 

0.5 10 0.5 
Full 

1.0 4.05 8.05 6.25 6.75 4.8 

Total 
Value 

4 8 6 7 5 

Incremental 
Gain Over 
Present 

4 2 3 1 

LEGEND: 
V = Value 

VXWF = Value x weighting factor 



TABLE 5-XV
 

EVALUATION OF CARBON MONOXIDE, CO, CIM&TS SOLAR OCCULTATION
 

Parameter 

WF 
0-1 

Present 
Knowledge 
V VXWF 

Required 
Capability 
V VXWF 

Shuttle 
300 

V VXWF 

Shuttle 
560 

V VXWF 

Sun-Sync 
Noon 
V VXWF 

Latitude .4 0 0 8 3.2 7 2.8 
900 sparse 
at extremes 

8 3.2 
1500 sparse 

at extremes 

0 0 
-50 

Duration of 
Program 4 

.1 0 0 6 0.6 8 0.8 
4-6 mos 

8 0.8 
4-6 mos 

9 0.9 
1-2 yrs 

Diurnal 
Coverage 

LaunchTime 

' .15 

0 

0 

10 

0 

0 

6 

10 

0.9 

0 

4 0.6 
Part Day 
2 points 

10 0 

4 0.6 
Part Day, 
2 points 

10 0 

4 0.6 
Part Day 
2 points 

100 

1 Vertical Profile 
Coverage 

.15 5 .75 9 1.35 10 1.5 
Full 

10 
Full 

1.5 10 1.5 
Full 

Vertical Profile 
Resolution 

.15 3 .45 9 1.35 9, 1.35 
- 20 points 

9 
-20 

1.35 
points 

9 1.35 
-20 points 

Longitude .05 0 0 8 0.4 10 0.5 
Full 

10 
Full 

0.5 10 0.5 
Full 

1.0 1.2 7.8 7.55 7.95 4.85 

Total 

Value 
1 8. 8 8 5 

Incremental 
Gain Over 
Present 

7 7 7 4 

LEGEND: 
V = Value' 
VXWF = Value x weighting factor 



TABLE 5-XVI
 

EVALUATION OF HYDROGEN FLUORIDE, HF, HALOE SOLAR OCCULTATION
 

WF Present Required Shuttle Shuttle Sun-Sync 
0-1 Knowledge Capability 300 560 Noon 

Parameter V VXWF V VXWF V VXWF V VXWF V VXWF 

Latitude, .2 0 0 7 1.4 7 1.4 8 1.6 0 0 
900 sparse 1500 sparse l5* 

at extremes at extremes 

Duration of .1 0 0 6 0.6 8 0.8 8 0.8 9 0.9 
Program 4-6 mos 4-6 mos 1-2 yrs 

Diurnal .15 0 0 6 0.9 4 '0.6 4 0.6 4 0.6 
Coverage Part Day Part Day Part Day 

2 points 2 points 2 points 

Launch Time 0 10 0 10 0 10 0 10 0 10 0 O 

Vertical Profile .25 0 0 7 1.75 10 2.5 10 2.5 10 2.5 0 
Coverage Full Full Full 

Vertical Profile .25 0 0 7 1.75 9 2.25 9 2.25 9 2.25 'd 
Resolution 2Km 2Km 2Km 

Longitude .05 0 0 8 0.4 10 0.5 
Full 

10 0.5 
Full 

10 0.5 
Full 

-, 

1.0 0 6.8 8.05 8.25 6.75 

Total 0 7 8 8 7 
Value 

Incremental 7 8 8 7 
Gain Over 
Present 

LEGEND: 
V = Value 
VXWF = Value x weighting factor 



TABLE 5-XVII
 

EVALUATION OF NITRIC OXIDE, NO, HALOE SOLAR OCCULTATION
 

Parameter 

WF 
0-1 

Present 
Knowledge 
V VXWF 

Required 
Capability 
V VXWF 

Shuttle 
300 

V VXWF 

Shuttle 
560 

V VXWF 

Sun-Sync 
Noon 

V VXWF 

Latitude . .25 4 1.0 10 2.5 6 1.5 

900 sparse 
at extremes 

9 2.25 

150' sparse 
at extremes 

0 0 

50 

Duration'qf 
Program 

.2 8 1.6 9 1.8 5 1.0 
4-6 mos 

5 1.0 
4-6 mos 

9 1.8 
1-2 yrs 

Diurnal 
Coverage ' 

.3 5 1.5 9 2.7 3 0.9 
Part Day 
2 points 

3 0.9 
Part Day 
2 points 

3 0.9 
Part Day 
2 points 

Launch Time 0 10 0 10 0 10 0 10 0 10 0 

Vertical Profile 
Coverage 

.1 7 0.7 10 1.0 10 1.0 
Full 

10 1.0 
Full 

10 1.0 
Full 

Vertical Profile 
Resolution 

.1 7 0.7 10 1.0 8 0.8 
2Km 

8 0.8 
2Km 

.8 0.8 
2Km 

Longitude .05 0 0 8 0.4 10 0.5 
Full 

10 0.5 
Full 

10 0.5 
Full 

1.0 5.5 9.4 5.7 6.5 5.0 

Total 
Value 6 9 6 7 5 

Incremental 
Gain Over 
Present 3 <1 1 <1 

LEGEND: 
V = Value 
VXWF = Value x weighting factor 



relative value on a scale of 0 to 10 (low to high) for the stated
 

performance where 0 indicates no capability and 10 indicates perfect
 

capability. The weighting functions show the valueof one parameter
 

relative to the others under study. The product of the value and its
 

corresponding weighting function (VXWF) yields the desired weighted
 

value for each parameter. The sum of the weighted values for each
 

parameter yields the total relative value for each pollutant (see
 

Appendix A for full explanation).
 

5".1.1 Ozone Related Single Instru. c;!EMissions
 

In Table 5-XVIII the incremental gains have been summarized
 

to show the totals for each instrument/orbit/species combination which
 

could beused in an ozone-related mission. The results have been
 

weighted by the weighting factors for the various ozone related
 

pollutant groups. These weights adjust to individual pollutant values
 

to account for the different priority groups into which they were
 

placed in Section 4.1.1 (Table 4-11). The factors assigned to the
 

different ozone priority groups are as follows:
 

Group 1 - Measurements of properties and species 1.0
 
directly associated with UV change
 

Group 2 - Components of the basic reactions in- 0.9
 
volved in the direct production or
 

depletion of ozone
 

Group 3 - Major components of the basic reactions 0.8
 

indirectly involved in the production or
 
depletion of ozone
 

Group 4 - Other significant components of the ozone .0.6 
chemistry chains 
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TABLE 5-XVIII
§aMAL PAG.E JS 

ML 1t .QUTn SUMMARY OF INCREMENTAL GAINS FOR EACH OZONE RELATED 

SPECIES/INSTRUMENT/ORBIT COMBINATION 

SPECIES 

OZONE 
PRIORITY 
GROUP 

GROUP "WEIGHTED 
WEIGHTING REQUIRED 

FACTOR INSTRUMENT- GAIN 

-WEIGHTED INCREMENTAL GAIN 
' " 

*3O0 ORBIT* 56P ORBIT- POLAR ORBIT 

03 1 1.0 LIMS 3 <1 1 2 

1 1.0 SAGE 3 <1 <1 <1 

NO 2 0.9 HALOE 3 <1i1 <i 

NO2 2 0.9 LIMS 4. 4 4 4 

H20 3 0.8 CIMATS 3 <1 <I <1 

3 0.8 LIMS 3 2 3 4 

NH3 3 .0.8. CIMATS 6 6 6 6 

HNO3 3 O.8 LIMS j 2 3 4 

HCl 3 0.8 -HALOE 3 2 2 <1 

CH4 3 0.8 -CIMATS 6 6 6 3 

3 0.8 HALOE 6 6 6 3 

N20 3 0.8 CIMATS 3 2 2 <1 

CO 3 0.8 CIMATS 6 6 6 3 

CO2 4 0.6 LIMS <1 <1 <1 <1 

HF. 4 0.6 HALOE 4 5 5 4 

' 44-45 

Uncertainty due to use of values <1. The total equals the sum of the best "values for 

each species. 
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The incremental gain totals for each instrument/orbit combina­

tion which 5ould be used in an ozone related mission are summarized in
 

Table 7-XIX. it is obvious that those combinations showing the
 

highest gains exhibit two prominent characteristics,',­

(1) 	the instrument measures a larger number of species, and/or
 

(2) 	most of the species measured represent those for which
 
little data now exist; this allows large incremental gains
 
for any successful measurement.
 

5.1.2 Aerosol Related Single Instrument Missions
 

In Table 5-XX the incremental gains have been summarized to
 

show the totals for each instrument/orbit/species combination which
 

could be used in an aerosol related mission. The results have been
 

weighted by the weighing factors for the various aerosol related
 

pollutant groups. These weights adjust the individual pollutant
 

values to account for the different priority groups into which they
 

were placed in Section 4.1.2 (Table 4-111). The factors assigned to
 

the different aerosol priority groups are as follows:
 

Group 	1A - Direct measurements of climatic change 1.0
 
and ultraviolet change
 

Group 1B - Major aerosols 1.0
 

Group 2 - Major sulfate aerosol precursor gases 1.0
 

Group 3 - Major specific aerosols 0.8
 

Group 4 - Other specific aerosols 0.6
 

Group 5 - Other precursor gases 0.5
 

Group 6 - Quasi aerosols (clusters) 
 0.3
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TABLE 5-XIX
 

SUMMARY OF INCREMENTAL GAINS FOR EACH OZONE RELATED
 
INSTRUMENT/ORBIT COMBINATION
 

WEIGHTED WEIGHTED INCREMENTAL GAIN
 

SPECIES REQUIRED 
POLAR ORBITINSTRUMENT MEASURED GAIN 300 ORBIT 560 ORBIT 


CO2, 03, 13-14 8-10 11-12 14-15LIMS 
H20, NO2
 

HNO 3 

3 <1 <1 <iSAGE 03 


H2o CH 24 20-21 20-21 12-14ClMATS 

(solar
 
occultation) N20 Ni3 '
 

CO 

HALOE HF, CH4 16 13-14 13-14 7-9
 

HC1, NO
 

Uncertainty due to-use of values of <1
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OZONE 

PRIORITY 


SPECIES GROUP 


-otal
 
aerosols 1 


-20 2 


2 


NH3 2 


23 5 


5 


-INO 53 


BCI 5 


-iF 5 


The total equals 

TABLE 5-XX .O)Po~rnA PAGE 1SOF P001t QUALITy 
SUMMARY OF INCREMENTAL -GAINS FOR EACH AEROSOL RELATED 
 y 

SPECIES/INSTRUMENT/ORBIT COMBINATION
 

GROUP WEIGHTED WEIGHTED INCREMENTAL GAIN
 
WEIGHTING REQUIRED
 
FACTOR INSTRUMENT GAIN 300 ORBIT 560 ORBIT POLAR ORBIT
 

1.0 SAGE 2 <1
<1 <1
 

1.0 CIMATS 4. 1 1 <1
 

1.0 LIMS 4 4
3 5
 

1.0 CIMATS 7 8 8 7
 

0.5 LIMS 2 <1 <1 1
 

0.5 SAGE 2 <1 
 <1 <1
 

0.5 LIMS 2 2
2 3
 

0.5 HALOE 2 1 2 
 <1
 

0.5 HALOE 4 4 4 4
 

Z = 23* 

the sum of the best values for each species.
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The incremental gain totals for each instrument/orbit combina­

tion 	which could be used in an-aerosol related mission are summarized
 

in Table XXI. Inspection of the data shows that the highest gains are
 

produced by those instruments which, . 

(1) 	measure a iarger number of species, particularly those
 

species in-high priority groups, and/or
 

(2) 	measure high priority species for which little data now
 
exists; thus allows large incremental gains for any success­
ful measurement.
 

Thus the CIMATS instrument, which has the potential for measuring
 

the high priority but previously unmeasured ammonia, scores very well
 

as opposed to SAGE which measures relatively well known ozone and
 

total aerosol distributions.
 

5.2 	Evaluation of Multiple Species or Instrument Missions
 

5.2.1 Ozone Related Missions
 

Table 5-XXII shows the summary of incremental gains resulting
 

when 	various combinations of two, three, or four instruments are flown
 

on the same ozone oriented mission. These values are obtained by
 

adding the individual .contributions of bach species/instrument except
 

in those cases where two instruments measure the same species. In
 

this later case, the value is determined by using the better value for 

- each parameter between the instruments involved. 

Inspection of the results reemphasizes some previous intuitive
 

knowledge and also presents some new concepts. In the former category
 

are such results as:
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TABLE 5-XXI
 

SUMMARY OF INCREMENTAL GAINS FOR EACH AEROSOL RELATED - DRIGINAU PAGE Is 
INSTRUMENT/ORBIT COMBINATION (OF POOR QUALITY 

WEIGHTED WEIGHTED INCREMENTAL GAIN 
SPECTES REQUIRED 

INSTRUMENT MEASURED GAIN 300 ORBIT 560 ORBIT POLAR ORBIT 

LIMS 	 H20 03' 8 5-.6 6-7 9
 , 


SAGE 	 Aerosols, 4 <1 <1 <1 
03 

CIMATS 	 H2 0, NH3 11 9 9 7-8 
(solar
 
occul­
tation)
 

HALOE 	 HC1, HF 6 5 6 4-5 

Uncertainty 	due to use of values <i
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TABLE 5-XXII AD 

SDMMARY OF INCREMENTAL GAINS RESULTING OF POOR-4IIAITh 
FROM 

VARIOUS INSTRUMENT COMBINATIONS USED IN OZONE ORIENTED MISSIONS 

-

INSTRUMENTS SPECIES MEASURED 

WEIGHTED 
REQUIRED 
GAIN 30 

WEIGHTED INCREMENTAL GAIN 

ORBIT 560 ORBIT POLAR ORBIT 

Four Instruments 

LfMS, SAGE, 
CIMATS, HALOE 

03' NO, NO2, H20. 3,. N03, 
HC1, CH4 , N120, C0, CO2 - HF 

44-45 36-37 38-40 31-33 

Three Instruments 

LIMS, CIMATS, 
HALOE 

03' NO, NO2, H20, NH3- HNO3, 
HCl, CH4 , N20, C0, C02, HF 

44-45 - 36-37 38-40 31-33 

LIMS, SAGE, 
CIMATS 

03' N02, H20 , 
N20, CO, CO2 

NH3' HNO3, CH4 34-35 29-30 31-32 26-28 

SAGE, CIMATS, 
HALOS 

03' NO, H20, NH13' 
N20, CO, HF 

HCl, CH14, 37 28-29 28-29 18-19 

LIMS, SAGE, 
HALOE 

03, NO, NO2, H20, HNO3, 1CI, 
CH14' CO2 , HF 

29-30 22-23 24-26 22-23 

Two Instruments 

LIMS, CIMATS 03. NO2, H20 , NH3, 11403, CH4) 

N20 0, C22 

34-35 29-30 31-32 26-28 

CIMATS, HALOE NO, H20, NH3, HC1, CH4, N20, 

CO, HF 

34 27-28 27-28 17-19 

SAGE, CIMATS 03' H20 , NH3, CH4' N20, CO 27 20-21 20-21 13-14 

LIMS, HALOE 03' NO, NO2i H20, HN03 

CH4) C02' HF 

HC11I 29-30 22-23 24-26 22-23 

LINS, SAGE 03, NO2, H20 , HNO3 CO2 13-14 8-10 11-12 14-15 

SAGE, HALOE 03, NO, H10, CR4) HF 19 13-15 " 13-15 8-9 

* 
Uncertainty due to use of values <1
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* 	the more individual species and/or instruments involved,
 

the greater the value
 

* 	Solar occultation-type instruments give poor global cover.
 

age in polar orbits
 

* 	Limb-looking instruments give excellent global coverage
 
in polar orbits
 

The principal conclusion in the later category is that the highest
 

potential for gain in value lies in the measurement of those species
 

in ozone priority group 3 which play important roles in stratospheric
 

processes but whose characteristics and spatial/temporal distribution
 

are poorly known. Thus those instruments which measure species such
 

as ammonia, methane and carbon monoxide score relatively high. -These
 

factors consistently lead to higher results for instrument/orbit
 

combinations involving LIMS, CIMATS and HALOE as opposed to the SAGE
 

instrument which measures only the reasonably well understood ozone.
 

In terms of orbit selection it is clearly shown in every combina­

tion that the 560 Shuttle type orbit is superior to the 300 Shuttle
 

type orbit and the polar orbit.
 

5.2.2 Aerosol Related Missions
 

Table XXIII shows the summary of incremental gains resulting
 

when various combinations of two, three or four instruments are flown
 

on the same aerosol 6riented mission. As was the case-with ozone
 

missions these results show that combinations which measure mote
 

species score relatively higher, particularly if the species is high
 

priority and relatively unmeasured.
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TABL xxn VRIUTAEPAGE ISTABLE XXIII POOR QUALITY 

SUMMARY OF INCREMENTAL GAINS RESULTING 
FROM-

VARIOUS INSTRUMENT COMBINATIONS USED IN AEROSOL ORIENTED -MISSIONS " 

WEIGHTED WEIGHTED INCREMENTAL GAIN 
REQUIRED 

INSTRUMENTS SPECIES MEASURED GAIN 300 ORBIT 560 ORBIT -POLAR ORBIT 

Four Instruments 

LIMS, SAGE, Aerosols, H20, 23 18-20 20-22 20-22 
CIMATS, HALOE NH3 , 03$ HNO3 ' 

HC1, HF 

Three Instruments 

LIMS, CIMATS, H20, NH3 ' 0 

HALOE HNO3 , HCI, HF 21 18-19 20-21 20-21 

LIMS, SAGE, Aerosols, H20, 17 13-15 15-17 16-17 
CIMATS NH3 , 03, HNO 3 

SAGE, CIMATS, Aerosols, H20, 21 14-16 15-17 12-14 
HALOE NH3, 03, HC1, HF 

LIMS, SAGE, Aerosols, H20, 03, 16 10-12 12-14 13-15 
HALOE HN0 3 ,- HC1, HF 

Two Instruments 

LIMS, CILATS H20' NH3, 03, IINO 3 15 13-14 14-15 16 

CIMATS, HALOE H20 , NH3, HCI, HF 17 14 '15 11-13 

SAGE, CIMATS Aerosols, H20, 15 9-11 9-11 8-9 

NH3, 03 

LIMS, HALOE H0 , 0 NO3, 14 10-11 12'-13 13-14 

HCl, HF 

LIS, SAGE Aerosols, H20, 03, 10 5-7 6-8. 9-10 

HNO 3 

SAGE, HALOE Aerosols, 03. HCI, 10 5-7 6-8 5-6 

HF 

Uncertainty due to use of values <1
 



In contrast with the ozone results, orbit selection for combina­

tidus of instruments for aerosol missions does not consistently show
 

.the 560 orbit to score highest. The polar orbit tends to prevail in
 

combinations containing the limb-emissionLIMS instrument while the
 

5,60 orbit is superior when it is absent. In no case is the 30' orbit
 

shown to be superior.
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APPENDIX A
 

.MISSION EVALUATION METHODOLOGY
 

A.1 	INTRODUCTION
 

In order to properly determine how well any selected strato­

spheric species measurement mission improves on present knowledge of
 

the characteristics and spatial/temporal distribution of the species,
 

a method is presented that evaluates a selected mission in terms of
 

the present status of stratospheric knowledge of the species of
 

interest and the required level of knowledge (as expressed by the
 

scientific user community). The method has also been inverted and
 

used to select the mission that is most effective.
 

The selection of an optimum mission involves not only the
 

evaluation of orbital characteristics but also the selection of those
 

species to be measured that provide the optimum incremental improvement
 

from 	present knowledge to required knowledge. Thus, two factors are
 

involved:
 

(1) 	Prioritization of pollutants based on a combination
 
of present knowledge and required knowledge.
 

(2) 	Selection of the "optimum" mission (orbit plus instru­
ment) based on present measurement knowledge and re­
quired knowledge.
 

The following sections will be limited to a discussion of the
 

"optimum" mission-selection for a single species. The prioritiza­

tion of species based on requirements was discussed in Section
 

5.2. Incorporation of these priorities into the evaluation method­

ology will be discussed later.
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This evaluation technique can be applied specifically to orbit
 

evaluation, instrument evaluation, or both ty selection of the appro­

priate parameters.
 

A. 2 DEVELOPMENT OF THE METHOD 

A.2.1 Approach to the Ranking and Evaluatibn 

For each stratosphere species of interest one may assign a
 

ranking or value in terms of an arbitrary scale of, say, 0 to 10
 

based on a comparison of either: (1) the present knowledge of the
 

species disttibution, (2) the required knowledge of the species
 

distribution, or (3) the projected measurement capability of a
 

specific mission with the total possible four-dimensional knowledge.
 

For a typical species this may be'exemplified as follows:
 

0 5 10 

Arbitrary 
Scale, 

_ _ _ _ 

I| 
_ 

I 
__ 

I I t 
No Full 

Knowledge - Knowledge 

Present I I I t 
Knowledge 

2 

Required
 

Knowledge -I. I.
 
6
 

Mission
 

Capability 
4 6 8
 

A B C
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The key to assessing the value of a particular mission lies in
 

comparing the mission capability with the incremental.improvement
 

between present knowledge and required knowledge. In .tbe example
 

illustrated above, the present level of knowledge has been given an
 

arbitrary rating of 2 and the required knowledge an arbitrary rating
 

of 6. It is important to note that the required knowledge level is
 

not always set at the maximum. This may be for two reasons. On the
 

one hand, a full capability of 10 may provide the user with much more
 

data than he needs or could ever make use of. On the other hand, the
 

present level of knowledge may be so low that the user would require
 

only a small increase in knowledge to achieve a significant improve­

ment in understanding the chemistry and distribution of the pollutant.
 

Requirements should be set at the level that best equals the capabili­

ty of the user community to assimilate the data measured.
 

Thus, in the given example, the critical area for gain lies
 

between the present knowledge and the required knowledge. Therefore,
 

system C is not automatically much better than system B. However,
 

each (B and C) is significantly better than system A.
 

In order to indicate this in a more powerful way, the ranking
 

scheme may be presented in a slightly different manner:
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10 Y 

R P - Present 

Knowledge 

4 5 R - Required
1Knowledge
 

F - Full Capability

P
 

0

10 1S 1i0 

Knowledge
 

Here we see a sharp rise in value between present and required knowledge
 

and little gain thereafter. Present knowledge is assigned a value at 

or near zero and required knowledge is assigned a value approaching 10 

but allowing some small value for additional knowledge up to full. 

In other cases the present knowledge may be such that it commands
 

a high value in relation to full capability leaving little room for
 

improvement. Conversely, the current requirements may be such that
 

they can be fulfilled with only a minimum additional capability.
 

F
10 F 


- nly
minimum Here, require­

ments are set 
improvement > at a lowlatalwlevel 
necessary P/ 

P 
of knowledge 

0 [n0
.0 10 

L-, 
0 10 

Knowledge .Knowledge 
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This type of evaluation has been used previpusly in a variety of
 

system.evaluations[108-112]. These reports give thedetails of.the
 

-application of the method to both real cases and illustrative examples.
 

The evaluation method makes use of value judgments of experts, either
 

individually or by consensus, to provide information where "hard"
 

data are unavailable.. The objective is to make use of as much
 

information as is available to the system. Much of this information
 

is 	derived from the experience of experts associated with the system
 

being evaluated. It is the objective of the evaluation to extract
 

this information and check for its validity and utility. Critical
 

areas can be identified where further gathering of information would
 

be 	most effective. The success of the method depends on two critical
 

factors:
 

" 	Availability of expert opinions or facts on the subject either
 

directly or through adequate documentation.
 

* 	A thorough understanding of the structure and utilization of
 

the evaluation procedure.
 

A logical sequence of steps in the application of the evaluation
 

method is shown in Figure A-1. The first step is to identify the
 

appropriate evaluation parameters. These parameters when measured
 

will provide the information needed to describe and adequately
 

evaluate the candid&td species; instruments, and orbits; The selec­

tion of the parameters must be made independent of any particular
 

knowledge of instruments or orbits.
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IDENTIFY 
EVALUATION 
PARAMETERS 

ESTABLISH 
MEASUREMENT 

SCALES 

DEVELOP 
VALUE 

FUNCTIONS-

ESTABLISH OVERALL 
SYSTEM VALUE 

"RELATIONSHIPS" 

L 

VALUE 
FUNCTION 
REVIEW 

/F 

SENSITIVITY 
ANALYSIS 

EVALUATION 

-

REVIEW OF 
SYSTEM VALUE 

RELATIONSHIPS 

RESULTS 

FIGURE A-1 
EVALUATION TECHNIQUE DEVELOPMENT AND VALIDATION 



Once the parameters are identified, measurement scales must be 

established fo each- parameter. The ranges of- the' technical parameter 

measurement values can be based either on established-facts (which 

are generally unavailable) or expert judgments. The analytical
 

formulation of the technique begins with the development of the value
 

functions. The value function and its graphic representation, the
 

value judgment curve, are the basic inputs of the method. The value
 

function relates points on the parameter measurement scale to a value
 

scale that ranges between zero for no value to the user and some
 

arbitrary positive number for maximum value to the user. (Ten was
 

selected as maximum in this study.)
 

The first step in developing a typical value judgment function is
 

to 	establish the maximum and minimum points for each of the evaluation
 

parameters. Additional points between the parameter maximum and
 

minimum points are defined and each assigned a value to the user.
 

Identification of all break points is very valuable in this procedure.
 

These points .are then plotted on a value judgment scale to indicate
 

the nature of the actual.relationship. In most cases the judgment
 

curves should have the following characteristics,
 

" Smooth variation over the entire range
 

* 	Zero slope at the origin
 

* 	An asymptotic approach to zero or the .maximum for large
 
values of the parameters
 

" 	Flexibility so that special cases are easily incorporated
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These characteristics are best represented by the family of hyperbolic
 

tangent curves characterized by the scale factors a and n. Then,
 

n
V = tanh(axn ) or V = 1-tanh(ax ) 

where, V = value to the user; x = parameter value; adetermines at
 

what point a change in parameter value begins to have a significant
 

effect on the value to the user and n determines the slope of the
 

change. In order for value to user to increase with increasing
 

parameter change n must be greater than 1. While the hyperbolic
 

tangent curve is used in most cases, it should be noted that other
 

types of value functions can be used. These may in some cases be
 

step functions or binary functions.
 

The next phase in the formulation of the technique is to develop
 

the overall system value relationship. This is accomplished by
 

establishing the relative importance of each of the parameters
 

through weighting functions. The initial step in developing these
 

functions is to designate each parameter as a factor or a term. A
 

parameter is designated as a factor if it is of such paramount
 

importance that if the value to the user is zero for that parameter,
 

the entire system is considered valuefess.- If a parameter-is not of
 

the same level of criticality as a factor, it is designated a term.
 

A term is related to the other parameters through an additive relation­

ship.
 

The second step in establishing the relative importance of the per­

formance parameters is to assign weights to each parameter designated
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a term; where the sum of these weights is 'equal to •unity.. Various
 

methods can be used to assign the weightsi For example1 the Delphi
 

technique developed by the RAND Corporation has been used to reach a
 

consensus within a group of experts as to the weights which should be
 

assigned. Another method is to assign an initial set of weights and
 

evaluate them against candidate species whose characteiistics and
 

relative importance are known. Refinement of the weights is then
 

made based on the results. However, there is no substitute for the
 

participation of experts in the field, either actually or by proxy.
 

The relationship among all parameters, including terms and factors,
 

is then established, taking the-general form of the following equation:
 

n m 

n 

where A 1 

i=l
 

V = value 

A i = weight
 

F. = value function (factor)
3 

-Gi = value function (term) 

x~x j = parameter measurement
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This equation is termed a value set and can be used to evaluate for
 

example all candidate instruments and/or orbits for a single stratos­

pheric species.
 

A total system value can be calculated by combining all the indi­

vidual value sets for the various species into one equation such
 

as,
 

Total System Value = V1V2 (W 3V3 + .. + W8V8) 

where
 
VIV 2 are individual value sets which are factors
 

V3 ... V8 are individual value sets which are terms
 

W 3 0. W 8 are term weighting functions where W 3 + ... + W = 1 

A sensitivity analysis can be performed on all value sets and value
 

functions if desired. 
The analysis should indicate which evaluation
 

parameters are most critical to the system value. In addition this
 

analysis may also indicate if the various weighting functions or
 

value set algorithms should be modified.
 

This technique is of high utility for decision making. However,
 

it is a tool for use in decision making and not a decision maker
 

itself. The ultimate decisions should be made by the experts in the
 

field who have benefited from the logical presentation of available
 

information by means of this structured technique.
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A.2.2 Application of the Method to Stratospheric Species
 

Measurement
 

The evaluation method discussed in the previous section was used in
 

the development of the evaluation techniques applied to stratospheric
 

species measurement. However, two basic changes were made in its
 

present application:
 

(1) 	Incremental values were used in place of smoothly varying
 
value functions
 

(2) 	Two-dimensional value functions were used for each measure­
ment parameter
 

The first change was indicated by the minimal amount of information
 

available about most species of interest. The second change was made
 

because the quality and quantity of the various measurements were
 

considered to be an important part of the value function development.
 

In a sense, these may be considered as weighting factors on each
 

measurement parameter. In the actual application, these were combined
 

into a common parameter called the data status.
 

The parameters considered to be of sufficient importance to be
 

included in stratospheric species analysis are:
 

" latitude coverage
 

* 	Duration of the mission or measurement
 
program
 

" 	Diurnal coverage
 

-	 Launch date 

* 	Vertical coverage
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0 	Vertical resolution, ana
 

* Longitude coverage
 

Each of the above parameters must be analyzed and values assigned to
 

the -various -erformance levels fromzero to full capability. The
 

measurement scales selected for each parameter are shown in Figures
 

A-2 through A-5.
 

For 	each matrix shown, values must-be selected for each incre­

mental improvement from no capability for both the parameter and
 

the status of the data up to full capability for both. The general
 

approach is first to determine the level of present knowledge and the
 

required level of knowledge for each species. These levels are
 

then assigned appropriate values from 0 to 10 and the levels beyond
 

and in between these levels are given other appropriate values based
 

upon the present and required knowledge. For example, for the case
 

of latitude coverage for nitric acid vapor, it is known from Section
 

5.3 and supporting information that nitric acid has been measured in
 

the 	stratosphere over various latitudes that cover approximately
 

°
 120 . However, the quantity of data available is very small. Thus
 

the value matrix for nitric acid versus latitude becomes:
 

Nitric acid vapor, 
DATA Good R HNO 3 

STATUS Med _ - l 

Sparse P_ 

None 0 

None 60 120 180 

LATITUDE BAND COVERED 
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Latitude Coverage -

Good 110 

Med
DATA 


STATUS
 
Sparse
 

None 0
 

None 600 11200 11800
 

f LATITUDE BAND COVERED
 

Includes nadir coverage plus any additional coverage due to
 
orientation of instrument.
 

Duration of Measurement Program -


Good 10
 

Med
DATA 


STATUS Sparse
 

None 0
 

None -Short One iDecades -

Survey Year: 

Plus 

DURATION OF MEASUREMENT 

PROGRAM 

FIGURE A-2 
PARAMETERIZATION OF LATITUDE COVERAGE AND PROGRAM DURATION 
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Diurnal C6verage
 

10
iGood 


iMed
DATA 


STATUS I
 
;Sparse
 

'None '0
 

None lFixed Partial Full Partial Full
 
Time Day Day Day Diurnal
 

and
 
-Night
 

DIURNAL COVERAGE
 
Based on both orbit and instrument capability.
 

Launch Date or Beginning of Experiment ­

;Good 10
 

Med
DATA 


STATUS
 
Sparse
 

None 0
 

2700 1800 900 None or 
DNA 

SEASONAL PHASE DEVIATION
 
90' - Launch-is one season *rior to desired.season
 
180' - Launch is two seasons prior toudesired season
 

2700 - Launch Ls three seasons prior'to desired season 
DNA - Launch time not important therefore does not-apply 

FIGURE A-3
 
PARAMETERIZATION OF DIURNAL COVERAGE AND TIME OF LAUNCH
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Vertical Coverage -

Good 	 AD 

IMed
 
DATA
 

STATUS
 Sparse
 

None 
 0
 

None <10% 50% i100%
 

STRATOSPHERIC VERTICAL COVERAGE
 

Vertical Resolution -

Good 	 10
 

Med
DATA 


STATUS Sparse
 

None 0
 

None <1 1 -;10 >40
 

NUMBER OF DATA POINTS OBTAINED
 

Note: 	 <1 data point refers to column density through entire atmo­
sphere which provides only part of a stratospheric data point.
 

FIGURE A-4 

PARAMETERIZATION OF VERTICAL COVERAGE AND VERTICAL RESOLUTION­
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.Longitude Coverage ­

'Good 10
 

Med
DATA 


STATUS Isparse
 

None
 

-
.None 0- 9o- 180
 

900 18o 3600
 

ILONGITUDE BAND COVERED
 

It is assumed that all orbits being considered for stratospheric
 
pollution missions automatically provide good longitudinal coverage.
 

* Therefore mission capability is automatically raised from present
 
knowledge to full capability.
 

FIGURE A-5 
PARAMETERIZATION OF LONGITUDINAL COVERAGE 

A-16
 



where the P indicates the present knowledge. Since nitric acid vapor
 

is considered to be one of the very important membersof the NO
 
x 

chemistry chain, requirements (R) have been set at full capability.
 

Values from 0 to 10 are then assigned to each of the matrix areas
 

yielding:
 

Nitric acid vapor,
 
DATA Good .6 9 R [ 
 HN03
 

- I0
 

STATUS Med 4 8 9
 

Sparse 2 P 7
 
5
 

None 0
 

None 60 120 180
 

LATITUDE BAND COVERED
 

These value matrices were 
prepared for all species prioritized into
 

Groups 1 and 2 plus those in Groups 3 and 4 for which satellite-borne
 

remote sensing instruments either exist 
or are under development.
 

The matrices are presented in Volume III of this.report.
 

A.2.3 Weighting Factors
 

In order to determine the exteht (in terms of value) to which
 

each orbit and/or instrument under consideration raises the present
 

knowledge of the species distribution up to or beyond the required
 

knowledge, the capability of the mission for each parameter (i.e.,
 

latitude coverage, vertical coverage, etc.). must be known. The
 

values corresponding to the capabilities for each parameter are 
then
 

combined i:to the value 
set for each species which provides a " e
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of how the entire orbit/instrument improves on present knowledge and
 

how it -compares with other orbit/instrument missions. However, as
 

iudicated in Section A.2.1, simple combination of such values
 

assumes that all oftthe parameters are of equal importance. This is
 

definitely not true. 
For any given species some of the parameters
 

are of much greater interest to the user community than others.
 

Thus weighting factors must be assigned for each measurement para­

meter. 
For example, in general the latitudinal distribution of
 

stratospheric species is considered to be more important than the
 

longitudinal distribution. Thus, it is more valuable to measure the
 

latitudinal distribution before the longitudinal distribution if both
 

cannot be measured simultaneously. However, if the latitudinal
 

distribution is already well known then the primary value lies in
 

extending knowledge to include the longitudinal distribution.
 

For most stratospheric species distributions the desirable
 

progression from "no knowledge" to "full knowledge" would be:
 

(1) No data
 

(2) a. Fixed point data exist (one latitude, longitude, altitude, 
and time.) 

b. Fixed point column burden data exist (one latitude, longi­
tude, and time.) 

(3) Fixed point vertical profile
 

(4). Latitude coverage
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-(5) Seasonal coverage*
 

(6) Diurnal :coverage*.
 

(7) Longitude coverage
 

(8) Long time coverage (years or decades)
 

Thus weighting factors must be assigned to each parameter for
 

each species based on present and required knowledge and the
 

logical progression of desired knowledge given above. High weights
 

should be given to those parameters that would yield the best
 

improvement from present to required knowledge and smaller weights to
 

the other parameters.
 

The various values for each parameter (adjusted by the weighting
 

functions) are combined to yield the total value for the mission
 

under study. Each mission value is then compared with the value of
 

the present knowledge and the required knowledge. The mission that
 

provides the largest improvement from present knowledge to required
 

knowledge should be considered the "optimum" system. If any mission
 

achieves a value beyond the required knowledge level, the mission
 

value should be truncated at the required knowledge level since this
 

is the goal for each pollutant. However, if several missions achieve
 

approximately equal values then this additional benefit should be
 

acknowledged.
 

In some cases the mission may show only a small improvement,
 

over present knowledge or in fact none at all. Thus, the incremental
 

* 	 For a few specific species diurnal coverage may be more important 

than seasonal coverage and possibly latitude coverage. 
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the value of present knowledge would be 
zero.
 

gain in value over 


However, this in no way implies that-the 
entire mission under evalua­

tion has no value at all. At the present state of the art of remote
 

sensing of the stratosphere any successful 
mission would have value
 

The
 
in terms of engineering, technological, and 

scientific advances. 


value derived-from the present evaluation oily 
indicates that the
 

mission would not significantly advance our 
knowledge of the mean
 

For this reason,

stratospheric distribution of the species measured. 


no mission will be given an absolute zero in 
the actual application
 

Such cases will be indicated as less than one.
 of this method. 


evaluate a multiple pollutant or multiple instrument
 In order to 


mission the value of each individual orbit/instrument 
is added to
 

In the case where several instruments measure
 give the total value. 


the same pollutant the highest capability for 
each parameter is used
 

to determine the contributing value. However, in the case of a
 

multi-species mission, simple addition of the individual 
species
 

values assumes that all are of equal importance. 
As was discussed in
 

Section 5.2 and again.at the beginning of this section, 
the species
 

have been prioritized. These priorities must be taken into account
 

This is accomplished,
when comparing the values of different species. 


These factors have been assigned to
 by applying weighting factors. 


the different species groups as follows:
 

1.0
Group la - Direct measurements of climatic 


change and ultraviolet change
 

A-20
 

http:again.at


Group lb - Species directly associated with 1.0 
changes in climate and/or ultra­
violet 

Group 2 - Important species associated with 0.9 
two or more chemistry chains 

Group 3 - Components of the basic reactions 09 
involved in the direct production 
or depletion of ozone 

Group 4 - Components of the basic reactions 0.8 
indirectly involved in the produc­
tion or depletion of ozone 

Group 5 - Other significant components of the 0.6 
chemistry chains 

Group 6 - Specific aerosols 0.6 

The rationale for selecting these factors is as follows. On a scale 

of 0 to 1 a factor of 1 was given to Groups la and lb since no dis­

tinction in importance could be identified. Group 2 rates almost 

as high due to the fact that the species are involved in more than 

one major chemistry chain. The Group 3 species are considered to 

be primary from both the NOx and Cl chemistry chains. All of these 

species are directly related to the ozone generation and destruction 

reactions. Thus, the weighting remains high. Group 4 species are
 

considered to be secondary in the sense that they are primarily
 

involved in the production of the primary species listed in Group 3.
 

The Groups 5 and 6 species, although very important in stratospheric
 

chemistry, cannot be considered as important as the species in the
 

previous groups. In the actual evaluation an initial set of weights
 

was postulated. This set was exercised against a small set of
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species for which relative importance-was known with some confidence.
 

From this the final revised set of weights was determined.
 

The combined values for present and required knowledge for all
 

pollutants for which value matrices were generated are given in Volume
 

III of this report. The combined values also include the parameter
 

weighting functions and the rationale for the selection of each. It
 

should be mentioned, that for the particular stratospheric species
 

and missions considered here, all final values are rounded off to the
 

nearest integer since this is considered to be the maximum preciseness
 

that can be justified by the accuracy of the input values.
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