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DIRECT.METHOD FOR SOLVING TRANSFER EQUATION BY EXPANSION
IN SPHERICAL HARMONICS: SCATTERING IN ATMOSPHERE WITH
LAMBERTIAN LOWER BOUNDARY AND THERMAL RADIATION TRANSFER

Ye.A. Ustinov
USSR Academy of Sciences
Institute of Space Exploration

Introduction /3%
In a recent series of studies [1-3] it was shown that the

method of expansion in terms of spherical harmonics is a
powerful tool which can be applied to solving the transfer
equation in scattering medla with scattering characteristics
varylng over the optical depth. Jeans [4] proposed the idea
of this method; it was further developed during its applica-
tion to the problem of the transfer of neutrons (corresponding
bibliographical references are given in [1]). Canosa and
Penafiel [1] applied the method to the transfer of radiation
in anisotrotropically scattering homogeneous media and they
pointed out an agproach by which cumulafive rounding errors
can be eliminated during I1ts application toc media with great
optical depth. Dave and Canosa [2] demonstrated the applica-
bility of the method to inhomogeneous media. All these studies
considered only the azumith--independent radiation intensity
component {(zero=th azimuth harmonic). Subseguently Dave [3]
elaborated a generalization of the method which can be used

to find higher agimuth harmoniecs.

This study has two objectives. First, all studies per-
taining to the discussed method with which the author is
familiar are based on using so-called "vacuum® boundary.

e

¥
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conditions on the upper and lower boundary of the scattering
medium. When these éonditions are applled to thé atmosphere
of a planet, they imply that the albedo of the lower boundary
surface is assumed to be zerc., Such a constraint is not Jjus-
tified. Therefore relations which allow us to apply the glven
method to more realistic lower boundaries are derived in this

paper.

Second, all studies based on an application of the given /4°
method known to the author pertain to transfer of solar radia-
tion, i.e. the assumptlion is made that the source function is
determined by radiation from a source of parallel rays located
outside the scattering medium. In this paper the case of
thermal radiation transfer is also considered, i.e, 1t is
assumed that the source functilon varies with depth and that it
depends on the temperature of the atmosphere and the emissive
power of the sourée.

I. Expansion in 3pherical Harmonics

We present here without derivation the basic relations
used: in this method appllied to the case of solar radiation
transfer with "vacuum" boundary conditions. We follow studies
[1, 2] and retain most of the notation used in them. Differences
pertain only to a number of minor misprints and also to some
changes made for more convenient electronic computer programming.

Let us consider a scattéring and absorbing medium having
optlcal depth Ty
depend on the depth. These characteristics can be described
by specifying the coefficients'yb, vy, wp- in the expansion
of the scattering indicatrix in ferms of Legendre polynonials

whose scattering and absorption characteristics

P(ces8) =[§L;o @, P, (cosd)



normalized in such a way that the quantity .

single scattering albedo. The selected number I is odd [1].
The orlglnal transfer equaticn together with the "vacuum"

boundary condltlons 1s expressedlin the form:

represents the

A
T = hY -~ . -
z‘--z-;.F{:’pr-'—*-;i P(Ueub‘fsf‘ci t}p.-:}
I{ 05 w9 ) = O when - u> 0
I(Z‘g; u;% ) = O when v O

where I 1s the intensity of the scattered radiation;

T 1s the optical thickness (depth) measured from the
upper boundary of the atmosphere:
u, u' 1is the cosine of the zenlth direction angle of

scatfered radiation measured from the positive direction

of the 7t axis (nadir);

P is the scattering indicatrix;

mF 1s the illumination intenslty of an area beyond the
atmosphere which is perpendicular to the direction of
the Sun's rays;

. Hp is The cosine of the Sun's zenith angle measured
from the zenith;

9y is the azimuth of the Sun.,

The azimuth independent intensity component

(2)



is sought in the form of an expansion in Legendre polynomials

(henceforth the superscript "0" will be omltted)

£ 2147 .
(zy W) =2 Vg~ fl{.:> P.{u) .
=9 : -
where 4
2.(e) = \I(’n;u) P-(u) 3,

Equation (1) is reduced to a system of differential equations
with boundary conditions, which in matrix notation, has the ¢
form: ?

s t—a; . cc-c>f< ) = s'_cz):
£,(0) = ~GEf, ©,. .
7o(%)-= & ( %2 _' T

where A and C{7t) are matrices having rank (L+1):

fo s ,_ 0 )
J “-'}f 0‘ . Jsg
A = n).e. (l).. ﬁ3
@ ‘QL-a O. -ﬁ"-
9,0
\ /
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(=, ()

s (z)
2@3 207, - (1)
0 : S (T
. 6—"’" (t)al
whose elements are
:: - 1 .-. . ——— l . *‘. (8)
e = TEIFTY fp = rTErTTs

ooy =1 BfEY ()

respectlvely, and s(t) is an L+l-dimensional vector with COmpo-
nents

- B < '
s,(c) = ey EKP(““;“;’ )_!',C"’g(?f')l_’l(f‘o)f (10)

fo and fe are (IL+1)/2-dimensional vectors, whose components
are respectively the odd and even components of the vector f:

’ 3 . 4 h
24 _ LT
To® T3 fe= |2
%, 11
% 4 A J

G 1s the matrix of boundary conditions found on the basis of /T
the recurrence formulas

C1.0 =053
o . (Lﬂ ""‘"E) (21 ""3) G . .
1.2 7 2(41u3}(1+q} e W P54
l = 29 39 &% 0000 (L'E"Z)ffa; ) . (ll)

e - _Ceme2€ien) + 4l(ism) G
2m+1, 217 2r[2(T-n) - 73-(+m1)  2m=1,21:
n = 29 35* veB6o (-"'I“i)/z
Elements Gi'j with even 1 and odd J are not defined, and the
matrix is considered to have rank (IL+1)/2.




The next step ¥s the introduction of a grid.of n integra-

tion points t;, with 7,=0 and 7 =Ty and reduction of (5) to

n
a system of matrix equations having the form

* £, %

s goafs =W . s
19:'!_:'\’; i1 i _ } (12)
s

0o
¥

where
Ty T; T; +T:
- e-+1 k)
By,i = b b gt o ()
“E —'t -C'*-t'-é-d .
a - (-2 I o i :
1,4+ = F ) c( 2 Js (13)

w5 =.___2“—=:= [s(-ci) + s(t,-;,) ]‘“

Next, row and column operators are introduced, which interchange
suchza way, that the first (L+1)/2 rows (columns) of the matrix
are even (0, 2, ..., L-=1) rows (columns) and the following
(L+1)/2 rows (columns) are odd (1, 3,..., L) rows (columns).

The system of matrix equatlions (12) is transformed to the form

| _ /8
3,181 ¥ Dy 5448101 = Fis (14)
i = ‘1_9 29 oooanj-_"iﬁ
b 5 i ’ (1
g1==-G8] i &, = Gay, . >
where R | :
= m (S,
D;4 = Column ¢ 13)9 (16)

03
;-.l-
H

Row (fi),‘



The superscripts "t" and Ub" denote respectiyely the top or
bottem half of a vector or matrix. The initilal system of
equations for obtalning a solution is system (14, 15).

Canosa and Penafilel [1] presented methods for solving
equations [14, 15] both for the case of moderate optical
depth and for medla whose optlcal depth is so great that it
requlres certain stabilizing transformations preventing an
inerease in rounding errors.

2.1, Medlum with Moderate Optical Depth

A sequence 1s constructed from n-l1 matrices having rank
(L+1):

-~
7= = (D 5,97 Bigis} ORIGINAL PAGE 1§

i= 19 29 oa;n‘“ﬂ QEEOOR QUALITY (17)
A sequence is constructed from n rectangular (L+1l) x (L+1)/2
matrices
T P, =7, F
By= | ]5 i~ i=-7T1i-1, . ‘ (18)
. “G‘ . . i = 29 39 oo ol
where I.is the ldentity matrix.
A sequence is constructed from n (L+1l)-dimensional vectors:
(o . _
E‘ ) is= 29 39 coe H, - (19)
R, - .o
The (L+1)/2-dimensional vector.. 1s determined from a solution

1
of the system of (L4+1)/2 equations having the following form
in matrix notation:


http:whereI.is
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al” ‘1_ - (21)

is a solution of system (14, 15).

2.2. Medium with Great Optical Depth

The necessary number of so-called overdetermining points
T (k=1, 2., No) with i =1, iy _=n, is selected from the {°’
set of polnts TE. The points are selected on the basis of the

requirement that the rounding errors cannot increase to an
appreciable magnltude on an Interval between neighboring over-
determining points. Empirical selection rules for the position
of the points Tik are discussed in [2].

A seguence is constructed from Nc transformation matrices
having rank (L+1)/2:

akh

T% =1; B = F

=
m i ,
LT PR 3} (22)

A sequence 1s constructed from n transformed (IL+l)/2-dimensicnal

vectors
Lo t —::B e » ' . L3
t,E:Og L‘]I = :'?;.i it fi (T,i‘l’z 32 “ ere ¥ Eqmao 3 °Tkﬁ“ltk-=’i ), (2 )
. ¥ Yk _ 3
ta:&ia [ k‘: = 39 49 cae R-c e’

A sequence is constructed from n rectangular (L+1) x (L+1)/2

matrices: T. = B.00 ool
i T CTATATRT R T
Lo 4= i ik,
1‘: = 29 39 goc{c9 (18""'1)

o
i

FBT‘?TEO ce o ﬂ.r-ﬂ'uli“f:c: .
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A sequence 1s constructed from n (L+1)-dimensional vectors:
EY * O

5\ &tﬁ " .ﬁiki‘%.ltmgta _‘E' soo - T‘ETEQGO‘LI{“I{) '(19:1)
' _g_agx,”ﬁ

-

The (L+1)/2-dimensional vector 1y 1s determined from a solutilon
¢

of the system of (L+1)/2 equations having the following form

in matrix notation:

N “-‘,.u_ . B ,
(O~ Gy = =¥y 2o-1)

The sequence consisting of N ~1 (L+1)/2 dimensional vectors 1k

11:. = Tk-m (lk-r-“i tk-—’i) }

N _‘i “2 LX) 1
k.= d v (20-2)

is determined
The sequence of n (L+1)=dimensional Vectors g; representing

a solution of system (14, 15) is determined:

g.—Ulk’ﬁ'ul? }
e T
N 21-1
k=1, 25 oee Bl (21-1)

By = Ugly % -

3. Boundary Condition Matrix for Lambertian Lower Boundary

Formulas for elements of the matrix of boundary conditions
(11) were presented above for the case when no scattered radis-
tlon impinges on the scattering medium from outside. When the
medium is bounded (for example from below) by a boundary with
nonzero albedo, such radiation is obviously present. Let us
assume that the optical depth of the scattering atmosphere is
sufficiently great and the illumination intensity of the lower



ORlaiNy, ,
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boundary due to direct solar radiation is negligibly small,
Then the boundary condition for the Lambertian boundary with
albedo A can be written in the form: }
i ¥ /11
,1,(& u?)-—é&gz(znxfﬁ"‘- iq C_-.-
3‘ b4 Y e 3. Wy T i 1;
¢ 0
This relation can be transformed to the condition for the azimuths—

independent component expressed in the form:
-

(5 ) =2 1% u) v e
10-‘_.:;-',. e
taking into account (3), we have
A SR S '
S Io(-cg;_u’)-u"du’ = S eZ- %ﬂ fl( ) ?1( u})u du’=
=D
] Co

1 .
-3 [ & S PiC u) Py w’) ) 2;(z,) 5o, 155 (%)

_ £=0 S, . B2

Formulas for the le are given, for instance, in [2]. For odd
1, the following holds:

i C,5 when =1
le = .

For even 1, the quantities le and the elements of matrix @G
defined by formulas (11) are related by the simple relation

Gy = 201 (25B)

Following the scheme proposed by Marschak (see for instance
[21), writing down expansion (3) for the left member of (24)
and taking into account subsequent mathematical operations we
obtain:

-~

L - -
s 21+14-
= 2+ f1<-cg) Pl( a ) = 2A Z- c’i"; (T'g) (26)

10



OHIGAN
é?ﬁgo;’“QPAGE I3

Since (26) can oﬁly be satisfied for a finite number of points

in [-1, 0], following Marschak, we multiply both sides of (26)

by P (u) (m=1, 3,..., L), integrate over the interval [-1, 0], ***
and require that these egualities be satisfiled for all m. We

have __.. _ o

L’:: .‘f. '.
szs £1(%g) Py (u) By(u) du = S.‘.’Z’ qufl(-cg) P (o) du.

Rt B
£fter obvious transformatlons, writing

. D, ml 21+” Xu P (u) Pl(u) a

we obtain: /lg

[
L ] . ; i 2
D3 (5) = e & Canfa (e o
m = '19 39 LA ‘L

Performing obvious operations it can be shown that

5 - ~Ci . Afor even 1
-ml le A Tor odd 1

Taking into account (254}, we rewrite (24) in the form

- . X
£ Z cmlf1==4300(%f1*2 0111)} (28)

A #50,2,.--
fs:o..i m=1 3, ocoa IJ

n.\i -

Let us first consider the case m=1. Substituting 010—0 25,

after obvious transformations and taking into account (25B),
we obtain:

L-4
= J=i : (29)

11
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Next, let us consider the case of arbitrary ddd m. Substituting
(23) in (28) and taking into account (26) werobtain:

Lrt ) ’
4
tn = 2, Cm = —5E Gofun) %1 (30)

It can be easily shown that (29) is a special case of (30) for
m=1. Relation (30} holds for m=1, 3, ..., L, and it can be

rewritten in matrix form:
C £, (D) = GpT () (31)

where the elements of matrix GA have the form:

4A
(Gpdp = Cm = 73E~ Cmo®ay (32)

We obtained the sought form of the boundary condition for
the Lambertian boundary surface. The matiix Gp must be sub-
stituted in equations (20) and (21) instead of the matrix G.
It is easily seen that :

GA+G as A0

Another obvious property follows: when A=1, having performed
elementary operations, we have:

“ (G‘A)ql =0 (33)

This corvesponds to the fact that at a boundary with A=1, we /13
must have zero radiation flow. Indeed, it can be easily seen
that the magnitude of flow at the lower boundary is 2wfl(1g).
Combining (31) and (33), we obtain

fi(Tg) =0

i,e. the flow s indeed =zero.

4, Thermal Radiation Transfer

The thermal radiation transfer equation can be written in
"the following form (see for instance [5]):

| 114
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dlé—i“ u) , (3 u) =
23 0 Bz wiu) Iz wt) @ 1= w, ()] B(Z) (3

Uy

1

where B(T) is the radiation intensity of an ideal black body.
As before, the upper boundary cordifion is a vacuum condition,
and the lower boundary condition can be written in the form

y ] i
) I(z,3 u) =24 S (% w’) u’du’ + (1-&)3(51‘..3) (35)
o . -

where 1=4, Tg is the emissive power and temperature of the
lower boundary respectively.

Next, we follow:the general idea of the spherical harmonics
method. Applying the summationtheorem for Legendre polynomials
(see for instance [6]) and changing to the variable T in the
function B(T), we rewrite (34) in the form:

Ei(t:; u)
u azT -

+ I(T u) =

L-11

=0

4
L - Ed
= % e%;a)e(-c) EICu) :S; Pl(u') I('? u"-)d&-’-z- E"i-uce)a('c)]B("c)

Multiplying the above eguation by Pk(u) (k=d, 1, ..., L) and
integrating from -1 to 1, we obtain after obvious transforma-
tions

%I_? Pk{u) u du + [1 - %le SI(E 3 u) Pk(u)du 'mb (=)

k=09 ,‘, oo.L !

/1h

.EJ--—‘\A

where

]
Q

{1 -~e,&@]-B@ for k

O ) for k 19 ago-oL'

]

12



Applying the recurrence relation

(2k+1) u Pk(u) =‘{k+4) Pk;1(u) + kPk_qCu)

(see for instance [7]) and replacing the subseript k by 1, we
obtain the system of eqguations

5 a4 41 o
178~ Y Purae § * ‘3;1 (=)t = 51(’:)} (36)
1 = 2 19 ss 0 L

The validity of the system written in this form can be verified
by keeping in mind that P1=0 for all 1<0 and taking fL+l=0r
Here ay, B4 and Gl(T) are determined on the basis of formulas
(8, 9), and for s, (1) werhave:

5 2[1 = @, ()]*B(E) A for 1 =0

é(t}:-’Twr,b(’a)= e
1 21+ L 0 Ifor 1= 192990»11

System of (36) can be written in matrix notation in a form which
is identical with the form of the differential equation in
system (5). Thus, as was to be expected, the differenc from
the case of solar radiation transfer is the source function
vector s(t) which is now determined from formula (37) instead
of (10).

Let us now consider the lower boundary condition (35).
The #ight member involves a constant which is independent of
I(Tg; u) within the context of the given formulation of the
problem. Denoting for conciseness this constant PY b, and pro-
ceeding anslologously as in section 3, we write:

i L

213471 . & -
eZ# 5= £1(%) By() = 28 2. C%3(Z) + b

-

13



For m=l, 3, iu., L we have;

L .
£ Py = b, Oty + By »
1 b 1 L 5 ¢ ) . 20
2 m”ﬁ% ?__%go%f1+h%;, 1 Opg?
o 2
£ =7 %2 @)y = —73E Gao® ,

From the above we obtain the sought expression for the boundary
condition in matrix form:

£o(Tp) = GE (%) - i Ggli-2)B(2,)

Here GO is the i-th column of the matrix G.

Clearly, as A+0 and B(TS)+0, (38) becomes the "vacuum"
boundary condition for Ty in system (5).

5. Conclusions-

It was shown above that the spherical harmonics method
can be generallized to the case of a lower boundary with albedo
different from zero and that it can alsoc be applied to the
case of thermal radiation transfer. In both cases the effect
of the lower boundary can be taken into account by modifying
the lower boundary condition matrix. In addition, in the case
of thermal radiation transfer, it is necessary to make an
appropriate replacement of the source function vector. The
above-mentioned changes are minor and they can be carried out
as additional modifications of existing computer programs using
the spherical harmonics method. ’

The author is deeply grateful to V.I. Moroz, doctor of
physical and mathematical sclences, and V.G. Zolotukhin,
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doctor of physical and mathematical sciences, for useful dis-
cussions which contributed to the publication of this paper.
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