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ABSTRACT

The  Multiple Model Adaptive Control algorithm has been used in appli-
cations of advanced control technology. However, in these applications,
many undesirable characteristics of the method, such as high amplitude
limit cycles, have been uncovered. In this thesais the basic types
of behavior exhibited by the method are explored. This is done through
the simulation and analysis of the method as applied to a sample system
structure. This structure has been carefully chosen to exhihit the
major phenomena of interest while remaining amenable to detailed analysis.
Two major types of results are presented. First of all, detailed conditions
for the existance of each of the types of behavior are developed for the
speclral system structure under consideration. OFf possibly greater signi-
ficance are the gualitative insights which result from extrapolating the
detailed conclusions to problems of more general structure. It is believed
that the qualitative understandings developed in thas thesis can foxrm the
basis for the introducition of desagn modifications (two of which are
suggested in this thesisg) and the development of a systematic methodology
for the design of adaptive control systems using the Multiple Model
Adaptive Control algorithwms.
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CHAPTER 1

INTRODUCTLION

1.1 Motivation

In many applications of control theory, the dynamics of the plant
are incompletely known at best. Furthermore, the dynamics are often time-
varying and non-linear. In such an environment, control becomes a very
difficult task and the problem of the optimal control of such systems
remains unsolved. However, such systems need to be controlled and so
& myriad of suboptimal schemes have emerged.

The many methods which have been proposed can, in general, be di-
vided into two classes: the passive methods which rely on the robustness
of a time-invariant feedback controller to maintain good performance and
the active methods which involve changing the controllers as necessary.
For example, much of the work of Horowitz [1,2] has been aimed at de-
riving a single, time—invariant control law which gives acceptable be-
havior for all plant parametex values (a passive approach). The work
of Wong [3, 4] has similarly been aimed at analyzing the robustness
properties of feedback controllers using a geometric appreach, and
Safonov [5] has derived robustness conditicons for controllers when the
parameter variations are due to a change in the operating point of a non-
linear system. It should be pointed out that the ad hoc approach of
increasing the plant noise design parameter (see Section 2.1) often
mentioned for the standard Linear-Quadratic—-Gaussian (LQG) problem [6]ﬁ
iz also a passive method of overcoming plant uncertainty.

A major problem with such methods 1s that they are, by design,

compromrses. Performance for normal conditions is sacrificed in orxder

—8-
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to improve performance for other conditions. In the extreme, 1t may be
upossible to maintain the desired performance for the full range of con-—
ditions using a fixed controller. -

In contrast to the passive methods, the active methods make use of
a tme-varying controllexr. Thus, they employ mechanisms which force the
controller to adapt to changes in the operating environment. This, at
least in theory, improves performance under all cperating conditions
since the controller can be tuned to the actual, rather than the average
or even worst case, conditions,

As previously mentioned, the optimal control of such systems is an
unsolved problem. Thus ad hoc, suboptimal techniques have been proposed.
However, partly because of the non-linearities (due to adaption) of such
methods, they have not been subject to careful study regarding gualitative
performance characteristics such as deter@iniétlc stability. In applica-
tions, many of these methods have exhibited difficulties which have been
mitigated by further ad hoc modifications of the design [16, 23]. In
general, these modifications were not the preduct of extensive, systematic
analysis of the system's behavior and no general design methodology has
emerged.

The research which is reported herein attempts to qualitatively and
quantitatively examine the properties of one method of adaptive control
which has been discussed in the literature, namely, the Multiple Model
Adaptive Control (MMAC) methed [7]. The MMAC method, which 1s digcussed
further in Chapter 2 of this thesis, has a very pleasing structure: a
cascade of something which resembles a Maximum Aposteriori Probability

(MAP) i1dentifier [15] (basaically a bank of Kalman Filters) and a bank of
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lingar quadratic requlators. Howevexr, in use it has become clear that

the MMAC method can exhibit unacceptable hehavior - such as high amplitude
limit cycles. In this thesis the major qualitative properties of the
MMAC method are examined and the principle reasons for the unacceptable
behavior explored. Tt 1s believed that a through understanding of the
behavior will lead to guidelines for the modification of the design

which will ultimstely yield a general design methodology.

1.2 Background

The general area of adaptive control has received much attention
recently. For example [26] and [27] both contain numerous references
to a wide variety of appreoaches. The basic subject which 1s addressed

is to generate a control u(t) for a system given by
x(t) = AlR)x(t) + BB ult) + D(t)

with obsexrvations
v} = cle)xt) + nlw) .

The state x(t) 1s an n-vecteor while the imput u(t) 1s an m-vector and
y(x) is a p-vector. The Vectors_gtt) and 1n(t) represent system un-
certainties and observation noise respectively. The condition which
introduces the most complexity is that the system matrix A (nxn), input

matrix B (nxm) and output matrix C (pxn) are only incompletely known.

The performance meagure which iz often used wo juddge such systems is

a quadratic one, given by
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J = [ Ix*(£)Q x(¥) + u'(t)Ru (£)ldt
o

where Q 1s an nxn-positive semi~definite matrix and-R is a mxm positive
definite matrix.

The solution to this control problem has not been found and the
work in [7] clearly indicates that the optimal system, assuming it can
be found, will prove to be far too complex to implement. Thus, numerous
suboptimal solutions have been proposed.

The MMAC method was largely inspired by the work of Magill [8] who
was the ?irst to examine a parallel -adaptive estimation algorithm in
which the basic estimation is done by a bank of filters which are then
coordinated by a centralized controller (see Figure 1.l1l). Further work
in the area has been done by Lainiotis whose work has been summarized
in I9]. The major thrust of this work has been aimed at adaptive esti-
mation and parameter identification and not the control problem.

Many authors [10, 11, 7] have examined feedback controllers based
on the structure of Magill's estimator, howewver. For example, Stein
[10] has been able to derive upper and lower bounds on the cost in the
optimal control problem and using the upper bound, has obtained a control
law exhibiting a parallel structure. Saridis and Dao [1l] have ex-
ploited Stein's lower bound to obtain a different control law. One
major drawback of both algorithms is that they require significant
on-line computation.

Willner [7] proposed the MMAC algorithm as discussed in thas

thesis and showed that it performed well in relation to both the
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upper and lower bounds of Stein. Independently, Deshpande et al {12]
arrived at the same algorithm as an ad hoc extension of the estaimation/
identification algorithm of Magiil [8]. The method has been further
considered by Lainiotis [13].

To our knowledge, no one has been successful in establishing any
definitive properties on the behavior of the MMAC méthod. Specifically,
the convergence properties of the identification problem (i.e., with
the adaptive mechanism disabled) have only recently been proven. Both
Hawkes and Moore [14] and Baram [15] have provided useful results, but
both results do not hold in an adaptive situation (i.e., when the con-
trol law is a function of the system output).

The MMAC method has been applied to various settings. For example,
in Athans et al. [16, 23] the method has been used to control the F-8
aircraft. Also, the F-8 controller of Stean et al. [17] can also be
considered te be a multiple model design. 2Additional experience with
and insight into the MMAC method has been gained by applying the esti-
mation/identification algorithm to the detection of accadents on free-
ways [18].

To a great extent, the F-8 project [16, 23] has provided the moti-
vation for our work. In that project, where the true system does not
correspond exactly to any of the hypothesized models, several problens
were encountered. First of all, the probabilities often oscillateé
rapidly between two models, exhibiting behavior very much like a limit

cycle. This problem led to a design meodification consisting of the

insertion of low pass filters to slow the probability transitions.
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A second problem which was encountered involved the choice of which
models to include in the set of possible models. The aircraft, of course,
responds in a continuous way to parameter changes, and model set selection
was found te have a considerable effect on performance.

It 1s issues such as these which have motivated our study. Our
goals have been to understand the characteristics of the MMAC method

and develop a usaful design methodology based on the MMAC algorithm.

1.3 Contributicons of This Thesis

This thesis presents the results of a detailed study of the MMAC
algorithm. The major conclusions of this study, which are detailed in
Chapter 6, are of two basic types. First ;f all, there are specific
conclusions which the analysis of Chapters 4 and 5 yield. However,
gince the analysis of these chapters relies heavily on a special case,
the results are of relatively little direct applicability. However,
they are indicative of the types of and basic causes for behavior which
has been observed in more general saituations. Thus, of possibly greater
importance are the gualitative conclusions which result when the specific
conclusions are extrapolated to general problem structures. These

qualitative results are also detailed in Chapter 6.

The following are the major results of this thesis.
1. The neutral stability of the MMAC method is establashed.
2. Conditions which guarantee state convergence are derived.

3. The MMAC algorithm consists of a bank of XKalman Filters,

each corresponding to a hypothesized linear taime-invariant model of
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the system generating the observations {(referred to as the true system}.

The outputs of each filter are used to calculate the apogteriori prob-

abrlity that &ach filté¥ matches the true system. The feedback céntrol

is then given-by the probabilisticly weighted average of the controls

calculated for each hypothesized model. (See Chapter 2 for a complete
discussion). This results in a highly non-linear closed loop system.
However, if the probability is constrained to be constant, then the
closed loop system becomes linear time-invariant. In this thesis it
is shown that even if the closed loop system is unstable for all
constant values of the probabality, the overall system may have a
bounded (in fact “hypérbolicly stable” - see Section 4.6) response.

t

For a special case, specific conditions are dexived.

4. The effects of numerical roundoff are examined and a form of

implementation which behaves well is proposed.

5. The specific results of this thesis can be used to predict the
gqualitative behavicr of MMAC systems which have a more complex structure

than the ones analyzed hexein.

4.1 owverview of this Thesis

In Chapter.2, the MMAC algorithm is introduced in the form which
w1ll be used in the reaminder of this thesis. Both the continuous and
dascrete time versions of the algorithm are presented, although the
discrete version 1s employed for the majority of the analysis.

In Chapter 3, the canonical problem which forms the focus for the

entire thesis is introduced. This problem, about which various structural
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assumptions are made, has been carefilly selected in order to provide a
situation which retains many of the gualitative properties (such as the
existence of oscillaticons) which have been observed in more general
problems while simultaneously being amenable to detarled analysis., The
remainder of the chapter contains a discussion of the various types of
behavior which have been ohserved in simulations of the canonical problem
along with sample simulation results to illustrate each behavior. The
basic responses are shown to be of three types. In the first, termed
"exponential" or "gecmetric®, the states are geometrically stable. In
this case, all of the states are decreasing for all constant values
of the probability. The second type termed "oscillatory” results in the
probability oscillating between zero and one, which in turn results in
the states exhibiting an oscillatory behavior, alternately increasing
and decreasing along with the probability. The third type termed
"mixed", results in a behavior which, depending on the magnitude of the
inatial conditions, exhibits either an oscillatory or expeonential
behavior. ‘These simulations have been used to motivate the analysas
in the remainder of the thesis.

Chapter 4 contains the majority of the analysis of the MMAC method.
In this chapter, each type of behavior described in Chapter 3 is analyzed
in order to yield an understanding of the underlying causes of the
behavior. This results in conditions which guarantee the existance of
the exponential mode. Furthermore, various approximations are used to
characterize the major modes of behavior which lead to conditions for

the presence and absence of each behavicr for the special case of the
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canonical problem. Beyond this, more general gqualitative results are
also pregented.

In Chapter 5, various aspects of the problem of implementing the
MMAC method using a digital computer are discussed. By far the most
important of these is the modification o the analysis of the oscilla-
tory behavior when the finife precision nature of the computer becomes
a factor in the behaviocr. Also discussed are the effects of using
each of the various forms of the equations as far as numerical accuracy
is concexrned. The chapter concludes with the proposal of a new form
of the egnations which is believed to allow the designer gresater latitude
in design without encountering nmerical problems.

Chapter 6 contains a discussion of various ad hoc design modifica-~
tions which have been proposed in order to overcome the shortcomings of
the MMAC method. Alsco included there 1s a summary of the conclusions

of this thesis as well as some suggestions for future research.

1.5 Notation

The following 1s a brief list of the notation employed in the
thesis. Except for the notaticn for the components of the residual

of a Kalman Filter, all are bhelieved to be standard.

Matrices are represented by upper case letters which are
underlined.

Vectors are represented by lower case letters which are
underlined.

Scalars are represented by lower case letters (not under-
lined).



-18—

the transpose of A.

the norm of a matrix = Max A(A'A)
the set of eigenvalues of a matrix.
the Null Space of a matrix.

the eql—norm of a vector x given by
Jk'e“lx for 9-1 positive definite.
the norm of a vector given by'z;ﬁz'
magnitude of a real or complex a.

change in x(-) from k-1 to k.

Product for i=1 to N

Sum for 1 =1 to N

vector of true state variables

gcalar true state component i
.th

scalar j— component of r

open interval between a and b.

closed interval between a and b.



CHAPTER 2

REVIEW OF THE MMAC METHOD

The purpose of the present chapter is to intreoduce the Multiple
Model Adaptaive Control (MMAC) algorithm. A full discussion will not be
given as that is available from other scurces [7, 12].

The MMAC algorithm is composed of two parts. The first, which
performs an estimation/identifarcation fumction, is simlar to a Maximm
Aposteriori Probability (MAP) algoxithm [15] which is discussed in Section
2.1 for the discrete time case. The MAP algorithm is structured as a
bank of Kalman Filters with some decision logic. The second part, which
1s cascaded with the MaP-like algorithm, is a control computation which
is discussed in Sections 2.2 and 2.3 for the discrete time case.

The remaining sections of this chapter contain a development

and discussion of the special forms of the equations for the MMAC algorithm

which prove useful in the remaining chapters of this thesis.

2.1 Maximum Aposteriori Probability (MAP) Identification

2.1.1 The Kalman Filter (KF)

Assume that a linear, time-invariant (LTI} discrete time system is

given by:
x(k+l) = A x(k} + Buw(k) + g(k) (2.1a)
with observations:

vk} = Cx (k) + n(k) (2.1b)

-19~-
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where x({k) is the n-dimensional state vector, u(k) s the m-dimensional
control vector and y(k) is the p-dimensional observation vector. The
noise sources G(k) and n(k) are taken to be zero mean white Gaussian
noises of covariances = and U respectively. The matrices A (nxn), B
(nxm} , and C {pxn) are the system, input and output matrices respectively.

We will use the notation

(2, B, © (2.2)

to refer to the above system. The system (&, B, C) which generates the
cbservations y(k) will be called the true system.

In practice, the actual values of the matrices A, B, C, = and g are
unknown. However, estimates of these parameters are often available from

a knewledge of the system. Thus, (A,, B,, C,) will be used to denote
=7 =’ =

the J'.th model of the system, given by:
x(k+l) = A, x(k) + B ulk) + (k) (2.3)

y(k) = Cx(k) + n(k) .

For the purposes of the present study the values of 1_1)__ and = will not
vary from medel to model, although extensions to that case could be con-
sidered.

It is well known that the steady state Kalman Filtexr (XF) [19, 20]

which estimates the state x(k), based on the model .

(3; . B+ 91)

is given by
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£, (k+1) = A%, (k) + B.u{k) + H, r, (+1)
i 3 s P B - 11

(2.4)
r(k+l) = y(k+l) - ¢ [A, %, (k) + B u(k)]
- = B e -—
. .th
where gi 1s the Kalman gain for the i— model:
H o= S.crut (2.5)
e T e F )
and Ei 1s the nxn solution to the familar Riccati equation
- -1
-1 =1
L, = [C'y "c, + (A, Z,A! + ) 7] . (2.6)
~i = =i =i =

The state estimate gi(-) is n-dimensional, while the residual vector,

x, (-}, is p-dimensional.

2.1.2 Properties of the XKalman Filter

The Kalman Filter has many intsresting properties, (see for example
[191), a few of which are useful in understanding the MMAC method. These

are now discussed. A few definitions are useful.

Definition 1: The 1th Kalman Filter is said to be matched if the mabtrices

used in the filter design (i.e., the model) and the matrices of the true

system are identical; that is, ifa =24 B =B and C, = C.
= =, = —-1 =

Definition 2: The Filter is called mismatched if it 1s not matched.

Property 1l: If the ith Kalman Filter is matched then in steady state:
Elr. K)} =0 (2.7a)
=4 =

=1
E{El (k)8 gi(e)}= I6(k-e) (2.70)
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where 8(-) is the impulse function, E{-} denotes expectation, and Gi is

given by . ' -

§i=w+c2.c' . (2.7¢c)

- o Bty

Furthermore, 1f the lth filter is matched, then gi(-) gives the optimal

estimate of the state x(*).

Property 2: If the ith Kalman Filter is matched, then the probability

density function for the residual Ei(-} is given by [20]:

(2.8a)

with

-1
8, = (\/(2 )™ I) ] (2.8b)

0.
=i
Property 3: If the ith Kalman Filter is mismatched then

Blr. k)} = r (k) (2.9a)
-1

r

=

E{(z. (k) - r.(k))@?l(r (2) ~x ()"} = 8. (k-0 (2.90)
=i =i -1 = = -1

where E:in general is nonzero and E; 1s a functicn of the system and the
noise covariances (see [28]) with, in general, E;(O) > I.
It follows that if two filters (one matched and one mismatched) are

computed then
Bz, 0677 (0} < B{r! (08 x (0} (2.10)
=17 =1 =1 =272 =2 )

1s from the matched filter and r, is from a mismatched filter

wnere x. 5

1,
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(161. Thus, if eqguation (2.8) is evaluated for both a matched {1) and

a mismatched (2) XF, then

E{p(g:_l)} > elp (52)} . (2.11)

2.1.3 The Probabiliity Eguation

Assume that we are interested in i1dentifying a dynamic system from
its outputs and that the true system is known only to be one of N speci-
fied models. Baye's rule and Properties 1-3 imply {15, 7] that the

th .
probability that the 1~ model matches the unknown system (Pl) is given

by

p, (k) plr (k+1})
—L

P, (k+1) = (2.12)
i

I zle

P, (K)pl{r (k+1)}
J -]

Jj=1

where p(rl(k+l)) is given by eguation (2.8). The structure of the re-

sulting system 1s shown in Figure 2.1.

2.2 Adaptive Control

If one knew with certainty which model matched the true system, it
would be a simple matter to design a contreller using any of the standaxd
synthesis techniques. Therefore, one reasonable way to determine a

control law for the unknown sysiem is to probabilisticly weight the con-

trols which would be used if one assumed that one of the models was
correct. That 1s, let
N

uk) = I P (klu, (k) {2.13)
- 4o+ 4
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where PiCk) is given by equation (2.12) and Ei(k) 1s the control which
one would apply if model i were assumed to be matched to the true system.

It will be assumed that

u, = G, %, (2.14)
e T R
although this is not necessary and is further discussed in Section 2.3.

Figure 2.2 thus summarizes the Multiple Model Adaptiwve Control method.

2.2 The Contreol Law

The MMAC method as developed in the literature (7, 16] has assumed
that the linear guadratic (LQ) methodology is used to design the controller.

Thus, the feedback gains Ei of equation (2.14) are chosen to minimize

-]

Ja = I (x'&)Qx (k) + u' (K)Ru (k) . (2.15)
k=1

It can be shown [21] that the optimal gains are given by

c. = [B'K.B, + Rl T BIK.A, (2.186)
=1 == = S

where Ei is the solution to the steady state Riccari equation

., =0 + AK.A,

-1
X 0 - A'X.B, [B'X.B. + Rl B.XK.A, . (2.17)
bt =L 111 —3/11 —1-31—L - —1—3.—1

Although to date, all references to MMAC have made use of the control
law (2.18), this 1s not a necessary part of the method. Thus, any control
law which gives good results for the respective model may be used. How-
ever, there is a strong intexaction between control law choice and

adaptive performance due to the feedback, about which very little is known.
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For the purposes of this study we will for the most part restrict our
research to control laws based on the linear guadratic (Equation 2.15)

form.

2.4 Comments on MMAC

A few comments are in order.

1) The MMAC algorithm, as shown by Willner [7] 1s suboptimal even
for the problem originally posed. Willner was able to show that the
algorithm is optimal for the final step of the dynamic programming
algorithm [7] but was unable to continue the calculation backward in

time.

2) BAs posed agbove, the true model is assumed to belong to a finite
set of known models. ILainiotis [9, 13] Kas discussed the infinite set
case but concludes that a finite approximation is then required for use
in applicationg. Thus, for most real problems when the true model may
take values from an infinite sget, a further suboptimal approximation is
required. The results of Baram [15] (which apply only to the cpen-loop -

case) may help in discretizing the model set.

2.5 Continuous Time MMAC

2z developed in the preceeding sections, the MMAC method has been
based on discrete time systems. For Fnalysis purposes, it will be useful
to consider the related continuous time problem, largely because of the
simplified form of the probability equation.

The complete equations for the method will not be given here as they
are the continuous time regulator and continuous time Kalman Fillter

equations [19, 6] with a set of equations for the probability of each model.
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Dunn [22] has shown that if Pi(t) is the probability of the 3'.-%5}l

model at time £ then

- N -1 )

P, (t) =P, (c.® - ZPC.R)0 (v~ ZpP.CR) (2.18)

i T Rt T e e Rl S b e

i= =1

whexe gj’ 3% and y are defined analogously to the discrete time case and
0 is the observation noise covariance. The property which makes Fguation
(2.18) useful for analysis 1s the absence of either exponentials or a

denominator. These equations are examined further in the two model, two

state case in the following section.

2.6 A Special Case

Of special interest to the research at hand is the case when N=2
{i.e., the two model case) with full state observation. Furthermore, we
shall assume that the input (3) matrix is the identity.

The special case captures all essential features of the problem that
wWe are interested in examining without adding unnecessary complexity, and

it forms the central focus for this research.

2.6.1 Discrete Time Case

In the discrete time case, the true system is then given by

x(k+1l) = ax (k) + ulk) + (k)

(2.1%a)
y(k) = x(k) + n(k)
with models
Model 1: £ (k+l) = A % (k) + ulk) + L(k)
—1 = (2.19b)

yk) = & (k) + nk)
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Model 2: X, (k+1) = 1323_20«:1 + u(k) + glk)

{2.19c)
yk) = & () + nt&) .

Thus, the MMAC method reduces to the following set of discrete time
equations

x(k+1l} = ax (k) + ulk) + g(k)

vik) = x(k) + nlk)

£ Getl) = 2,8 (k) + uk) + H r, (k+l)

x, (k#l) = y(k+1) - B, R (K) - uilk)

£, (k1) = B2 (k) + ulk) + H,x (k+l) (2.20)

g, (ktl) = y(k+l) - A % (k) - ulk)
ulk) = -G X (k) - P62 (k)

1

Py (k) p(;l)

P {k+l) =
1 P, (Klp(z,) + B, (Kp(z,)
l ¥ ""l
) oo 2 EEiE]
plr,? = b;® .

The majoxr goal of the research has been to understand such qualitative
properties of the MMAC method as stabiality. Since the phenomenon which
have been observed are largely due to the nonlinearities of the system
and occur even in noise-free simulations, the noise terms £({-) and n(.)
add an unnecessary complexity. Thus, these terms are ignored in the

remainder of this thesis. It should be noted that the KF's, designed
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assuming the noises to be present, are an integral part of the MMAC method
and are therefore retained. Thus, the principle focus of the work is to

examine the deterministic properties of Equation (2.20) and the correSponrd= -

ing continuous time system discussed in the next subsection. Since the

sum of the probabilities of the models must always be 1, it is known that

P2(k) = (l—Pl(k)) ¥K.

Then, rewriting Egquation (2.20) in terms of the residual Ei(k) we see

that the equations of the MMAC method can be summarized by

x(k+l) = ax (k) + ulk)
r (et1) = (a-3)xd) + A (@-H))z, ()

r,(k+l) = (a-3,)x(k) + A (I~H )z, (k) (2.21)

alk) = -(2,G; + (1-P)G )x(k) + 2,6 (I-E,)x, + O-P,)G, (I-H))z,
Pl(k) p(gi)
P, (k+1) =
1 Pl(k) P(El) + (l—-Pl(k)) p(Z_C_2)
- e
-1— -1
p(gi) = Bie .

It will be useful notaticnally to combine the state and residual

equations into one vector equation. Therefore, we define the vector

T

w k) =[x (), ), 2, 001° .

Thus, Equation (2.21) can be rewxitten as
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~3]-
AP Gy = (1-P)Gy [ PiG (I-H) 1 (=P )G, (T-H ) (5 oony
wlik+l) = (a-2) DA (TED 0 w (k)
| @) Do iB(TE) ]
oxr
wik+l) = A(2,)w(k)
with
P, (K)p(x,)
Pl(k+l) = . (2.22b)

P, (k) plx,) + (1-p, (k))p(z,)

These egquations, along with their continuous time counterparts, form the

basis for the research which has been undertaken.

2.6.2 Continuous Time Case

Similar assumptions to those previously presented foxr the discrete
time case can be made in the continucus time case. Here, we will again
restrict our attention te the two model, state feedback case with B=I.

Thus, the MMAC method reduces to the folleowing eguations

() = ax (t) + ult) + gk)

yle) = () + nle)

I

e & 2.23
2 &) =% (&) +u®) + Ex () ( )

1

£ (€)= y(8) - & (&)

R (8) = 3% (v) + ult) + B r, ()
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T, (8) = y(&) - &, (%)

uft) = B G R, (8) - PG (t)

. - ~ O "1 - ~ - - Lol

B, (&)= P, (0)P, (£} [Z, (£)-% (£)1'8 "ix-P, ()X ~(1-P, (£))X, (t)]

. £) = 1- .
with Pz( } =1 Pl(t)

For the same reascns as presented in the previous section the noise
sources ;(t) and ﬂjé) will again be ignored for the majority of the
proposed research. It should be noted that wunder this condition, the

residual x, (t) exactly equals the estimation error x(t) - :’Ei {(t). Thus,

equations (2.23) can be rewritten as

x(t) = Aax (t) + ult)
x,(€) = (a,-H )z, (&) + (A=A, )x(¥) (2.24)
E,(t) = (2,-H)z (£) + (A-B )x(t)

n(E) = -P, (B)G (x(t) - x (£)) ~ (1-P (¥)) G, {x(t) - x, (&)

- _ _ _ ' _l _
B (£) = P (8) =P (£} ][z, () -z, (©)]" 87 [P (E)x; (£) + (1-P (D), (6)] .

Thus, if we again combine equations by defining the variable

x(t)

w(e)=le (£ .

x, {t)

Equation (2.24) can be rewritten as
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. {
- - -— ¥ -
a Plgl {1 Pl)gzji Pl_G_l¥ (3 Pl)_G_Z
i i
% = - I -7 F
W (t) @-2,) CaEE O w(t) (2.252)
¥ i
1 ]
(a-2)) ! 0 ; A -H
i 275 L= BT
or wie) = AR, )w(E)

with. (2.25B)

-

-1
B (£) = 2 (£) (12 (£)11x, (€) - 2, (£)1 87 IR (e)x (&) + (1-P, (£))x, (£)] .

2.7 A Change of Variable

A change of variable which proves useful in the sequel is to let

g = 2Pl-l . (2.28)

Making this cheange in Eguation (2.22) yields

wlk+l) = A(q) wi(k) (2.27)

)

(1+q)p(£l) - (l-q)P(gz)
(l+q)13(£l) + (I~glplz,)

g(k+1)

where

1 1 1 1 o
A - '5'( 1+q) gl - E(l-q) -(3-2 —(1+q) (—;‘1 (I-H. '2—(l-q) G, (I-Ez)

2 l)

w
g
It
g
|
[ o

[

1

1

!

1

i

|
A(I-Ii_() 0
=T =0 hd

1

13

1

i

i

[

e
1
[

- -
0 A, (Z-H)

-

b

L

In continuous time the corresponding change to Equation (2.253) yvields
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wit) = X(q) w (£)
(2.28)

. 1 2 -
a(e) = $0-a") [z,75,1'8 [ +@z, + (-@)z,]

where 1 1 Ty C 1 "
3 -0l m30-0G, 3l 398
ala) = A-R B 2
B .‘?’. - é.z : g . éz = §2

Note that the same basic notation is used for the A matrices of Equations
(2.22), (2.25), (2.27) and (2.28). However, no confusion should arise

as the meaning should always be clear from context. .

2.8 A Useful Definition

A further concept which will prove useful can be seen by considering
either the continuous or discrete time problems as summarized by eithexr
Bquation (2.25) or {2.22)

Continuous time: w(t) = A(P.)w(k) (2.25)

Discrete time: wi(k+l) = g(.?l)y_(k) (2.22)

wheze

I
- —~ (1~ ! i -
32,6 ~0-P)G, 1 7,6 | (=BG,
f F
] {
. N - - k
Continous time: A-a, ; 2 - ] °
{
. 275 b2 Bl
a(p.) = - -(1- ! ~-H ) ! -
alz, [a-p 6, -(2 PG, | P& (TE)) | (1-P,)G, (1H
1 i
] 1
Di i . - N I i
iscrete time: A _P_:L [ A (T~-H) ! 0
e R SR A
| d
- I I -
| A-3 : ° | EQ(E: Byl
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Thus, it 1s cleax that if Pl(-) iz held constant, then Eguations (2.25)

and (2.22) describe linear, time-invariant dynamical systems in the

variable w' = [x', Ei' Eél" Thus, Equations (2.25) and (2.22) with

P constant will be referred to as the linear, time invariant system for

fixed P, or LTI for fixed P. Aas will be seen in Chapters 4 and 5, many
of the major properties of the MMAC method can be exXpressed In terms of
the properties of the LTI system for fixed P as a function of P.

A second important point to note is that in applications and

simulations of the MMAC system, another parameter becomes important due
to the finite precision usually available £or computation. From the
equations of this chapter, it is cleaxr that the ¥MMAC method has the

property that
Pi(k) =(3::>Pi(-) = 0 for all future times.

Such a saituation is usually to be avoided; as it reduces the flexibilaty
of the algorithm in a number of applications. For example, the parameter
of the true model are often changing in adaptive control situations, and
one would like to require Pi to be nonzero for all time so that the MMAC
algorithm can respond to such changes. Thus, one almost always applies

an additional constraint on the probability such as

P, (k) > P i, ¥k .

lim

This hag been done throughout this study with a value of Pllm = 10 .

The effect of such a limt is examined in detzal in Section 5.1.



CHAPTER 3

OUALITATIVE RESULTS

In order to guide and motivate the research, we have examined a
problem consisting of a system with two independent states and two models.
This system, while simple, captures many of the basic issues which are
important to the method and sheds light on the fundamental problems in-
volved with the MMAC design. The problem is formulated in the next
section of this chapter. The remaining sections contain simulations
which demonstrate the various types of behavior which have been observed.

A discussion of the important properties is included.

3.1 Problem Formulation

In most applications of an adaptive control algorithm, a detailed
analysis of the behavior of the algorithm has proved intractable. This
is especially true for the MMAC algorithm. Howewver, in the case of
MMAC, it is possible to find a simple example problem that lends itself
to analysis and simmitaneously maintains the basic properties exhigited
in simulations of the more general systems. Thus, for the purposes of
this thesis, a sample problem structure has been chosen which displays
what we feel are the critical characteristics of the method and which

is also amenable to detailed analysis.

The chosen true system to be controlled 1s given by:

a 0
x(k+l) = x(k) + ulk) + gk) (3.1}
o a
y(k) = =(k) + n{k)

-36=
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or a continuous time system of the same structure and A matrix

a 0

x(t) = x(t)y + wE) + glE) (3.2)
0 a

y{t) = =x(t) + n{t)

where a takes on values in the range [0, 2]. The discrete time system
is useful for simulation studies and most of the analysis. However, usa
of the continuous time system provides greater insight for the lineariza-
tion results in Section 4.1. The set of models for either the discrete

or continuous time case is given by

Model 1: (él; ;_f E}

. Model 2: (3, I, I
with
a o 2 0
A, = A, =
0 A c a

where 2 takes on various values from 0 to 1.5. The parameters a and &
are varied to obtain different responses from the overall system.

For the purposes of KF design, the noise sources {(-) and n(-) are
assumed to be zZero mean, white and Caussian with covariances of IS(-)
where I 1s the 2x2 identity matrix. This structure results in diagonal

Kalman Gain matrices such that
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where h 1s the gain corresponding to a and h is the gain corresponding

~

to a. PFurther, the control law weight gi and Bi are chosen diagonal such

that

qg O & o
g = g, = .
o & 0 g

This results in a diagonal control gain matrix

g 0 & o
El_ Ez = .
0o g 0 g

The structure described above will be referred toc as the canonical problem.

The emphasis of this study has been on the examination of such quali-
tative propexties as stability. Thus, we ignore the noise sources both
in the simulation and in the analysis of the properties of the MMAC
methed. That is, in both the analysis and simulations, {{.) and n(-) are
set equal to zero. WNote, however, that the KF's designed with thg assumed
non—-zexo noise sources are retained. It is clear that noise can have
a major effect on a system [29]. However, as we will see, many of the
propexrties of the MMAC method are due to the nonlinearities of the
probability equation. Thus, it is our feeling that an anlysis of this
noise—~free case is of considerable importance.

A few comments are in order concerning the the choice of the example
procblem., First of all, the system is chosen to be the simplest possible

and gtill capture the important phenomena. Thus, we selected a two
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state, two model system. The choice of model 1s, admittedly, somewhat
extreme 1n the degree of symmetry and mismatch between the models and

the true system. However, this choice has been deliberately made in order

to 1nvestigate phenomena which have been cbserved in actual applications
[23]. Thus, 1t is felt that the analysis of this problem has yvielded

insight into the more general case.

3.2 Basic Responses

Various types of responses have been cbserved in simulations of the
system presented in Section 3.1. Table 3.1 details the parameters used
for each simulation. The remainder of this chapter presents examples
of each of the major modes along with a discussion of the important
characteristics of each. The simulations, which have been performed on
an IBM 370 computer using double precision FORTRAN, have been used to
motivate and guide the analysis of Chapters 4 and 5. In fact, the types
of analysis described in these chapters and, in particular in Section
4.6, wexre to a large degree suggested by the simualations discussed in
this chapter.

For each simulation presented, three plots have been included. The
first is a plot of the probability of model one (Pl) versus time. The
second is a plot of the two true states xy and x, versus time. The third
15 a plot of the quantity 1n(xlx2}. This quantity has been found to he
indicative of the stability of the closed loop, nonlinear system. This

variable is further discussed i1n Section 4.6 where it 1s linked with

the concept ¢f "hyperbelic stability”.



Case # a a a g g g h a Figures
la 2 0 1.02 1.62 1 0  .809 .5 3.2
1b 2 0 0 1.5 1 0  .809 .5 3.3
lc 2 0 * 1.4 1 0 .89 .5 3.4
2 1.5 1.0 1 1.09 1 .el8 .7245 .62 3.5,6
3 .9 0 1 .538 1 0 .597 .5 3.1

IABLE 3.1

Parameters of Sample Cases

*This value of the contreol can not result from an I design.
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3.2.1 Exponeﬁtial Mode

The first type of behavior i1g one in which the states of the true
system increase or decrease in an exponential marnmer (see Figure 3.1).
This type of behavior appears to arise in two situatioms. First,
examination of the equations of Chapter 2 indicate that 1f the KF resi-
duals £1 and 52 are equal with the true state components egual +to each
other, then Pl(t) = 0 or equivalently, Pl{k+l) = Pl(k). Thus, if the

system is symmetrically initialized (that is, the two true states are

equal with r, =

g T, T 0 and Pl(o) = .5) then Pl(t) = .5 ¥t or equivalently

Pl(k) = .5 ¥k . The closed loop system is then time invariant and sta-
bility analysis for the resulting LTI system follows as usual. Note that
the resulting sysitem can be exponentially staﬁle, neutrally stable or
exponentially unstable depending on the control gains §1 and §2. Al-
though this is clearly a singular condrtion, 1t nonetheless is important

from an applications point of view because one commonly attempts to

ini1tidlize the system with equal probability and with r, =z, (i.e.,

31 = %2). An analysis of this mode is presented in Section 4.1.

A somewhat similar type of behavior occcurs when the LTI system for
fixed P is stable for all P. This, of comrse, is a fairly restrictive
condition which in essence requires extreme robustness of each controlier.
However, such a condition does imply exponential stability. This occurs in-
dependently of how the probability behaves. Note that +his is a non-
trivial result since ng(k)} 1s time-varying because P{k) 1s. Section

4.2 contains the analysis of this situation and Figure 3.1 is an example

of the type of simmlation results obtained.
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3.2.2 Qscillatory Reponse

Probably the most unusual behavior which has been observed both in
the du¥rent woérk and in applications of the MMAC algorithm [23] has been
an oscillatory response in which the probability jumps hetween neaxr-
zero and near-one® in what appears to be (but strictly speaking is not)
a limit cycle.

Figures 3.2 through 3.4 are examples of this type of behavidr. Figure
3.2 1s a case in which'the peaks of the state trajectories are approxi-
mately constant while the period of oscillation increases. Fagure 3.3
is a case in which both the peaks and the period are constant while in
Figure 3.4, the system is unstable. These three cases are obtainad by
changing the value of the control gain. Note that each gain would yield
stable hehavior for the model used in its desaign.

It 1s 1nteresting to note that the states of the system are also
highly oscillatory. It might be expected that the plant dynamics would
smooth the rapid probability transitions to form a smoother “average”
state response. However, as shown in Chapter 4, the oscillatory state
behavior is a direct consequence of the model mismatch problem in the
MMAC algorithm.

The reasons for this oscillatory behavior, which are discussed in
Sections 4.4 through 4.6 and again in Section 5.1, are closely related

tc the fact that neither of the hypothesized models individually yields

#This is the one set of simulations in which the lower limit on the
probability (see Section 2.8) of 107%0 is achieved. Section 5.1 dis-
cusses the analysis in this case in detail.
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a control which stabilizes the true system. Basically, the adaptive
control law then attempts to achreve stability by al%ernatelz contrclling
each mode of the system. This results in unusual behavior which may be
bounded. (Figure 3.2 and 3.3) or unstable (Figure 3.4). Chapters 4 and

5 contains analysis which gives conditions for each type of behavior.

The principle conclusion is that stability will result when the controller
at any time stabilizes some modes faster than it destabilizes the re-

mainder. Thus, for the two state problem, a state must be reduced more

when the contxoller stabilizes it than it is increased when the control
results in unsgtable behavior for that state.
One variable which appears useful in characterizing the above condi-

tion is the product of the true states, that is, the quantity x This

1%
variable is plotted for each simulation (i.e., see Figure 3.2(¢)}. A
complete analysais of the properties of this variable 1s given in Section
4.5. While not strictly a Lyapunov function, examination of this variable
provides a type of analysis which permits a characterazation of the sta-
bility behavior of the MMAC method. Furthermore, 1it captures the important
observed characteristics of the simulations. PFor example, the analysis

of Section 4.6 uses this wvariable to predict the stability of the three
cases of Figures 3.2 - 3.4, The connection with stability can best be

seen by considering a plokt of.xl Versus X.,-. Figure 3.5{a) is such a

plot corresponding to the simulation of Figure 3.2. The state trajectory

for this example tends to look like a family of hyperbelas
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If the overall system is bounded, the trajectory then changes as in
Figure 3.5{a). Likewise, unbounded behavio? occurs whenever b is
greater than zero (see Figure 3.5(b)).

It should be noted that simply bounding the product of the states
is not sufficient to guarantee the boundedness of the individual states
since the states could still go to infiniéy along a hyperbola. However,
an analysis of the probability equation (Sections 4.4 and 5.1) provides
bounds on the values of the state at which probability transitions will
occur. This leads to the conclusion that the peaks of the state tra-
jectories will be bounded whenever the product of the states is bounded.
Thus when a constant value of P results in a stabilizing control, the
system may still be bounded but not asymtotically stable. Further,
when the system is bounded and b is less than zero, then the period of
oscillation is increasing since the stable mode decreases more than the
unstable mode increases and the peaks of the curves are constant re-
sulting in the unstable mode having to increase more on each cycle of

the probability.

3.2.3 Mixed Case

When the LTI system for fixed P 1s stable for some P but not for
all P, depending upon the initial conditions, we can obtain simulations
which exhibit characteristics of either of the preceding types of bhe-
havior in that either an oscillatory or an exponential response may be
observed depending on the initial conditions. For large initial con-

ditions the response will initially be oscillatory but usually will
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finally decay to a constant value of P.* Furthermore, this limiting
value of P will be such that A(P) is a stable matrix. Figure 3.6 is a
simulation of the Case 2 configuration with large initial conditions.
When the initial conditions are small, a second type of response
occurs. Assume that A(P) 1s a stable matrix for P £ [1/2-g, L/2+€]
and unstable otherwise. If P(0) = 1/2, then there exists some non—-zero
w(0) such that Ilg(k)ll decays sufficiently quickly so that the resulting
change in P does not. take it beyond 1/2 + €. Thig is a direct consequence
of the fact derived in Section 4.1 that the change in the probability is
proportional to IlEle while the change in w is proportional only to
[|3J|. Pigure 3.7 is a simulation of the Case 2 configuration for small
initial conditions. WNote that the probability merely makes a small
jump and that it shows little tendency to return to 1/2. Section 4.7
details a procedure which can be used to estimate the range of w(0)

which results in this non—oscillatory behavior.

3.3 Summary

The preceeding sections have given an overview of the types of
behavior which the MMAC method can produce. Table 3.2 summarizes the
major characteristics of each. Each type of behavior requires a dif-
ferent form of analysis in order to understand the dominant.effects.

This analysis is given in Chapters 4 and 5.
Exponential behavior occurs primarily when the basic characteristics

of the cloged-loop system are independent of the probability, either

*Whether or not the oscillations always die out in this case remains
an open gquestion.
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Values of

P vielding
Section Figqg. g;:ﬁi; . bi bou?ded ofpizigilation
3.2.1 3.1 All decreasing Yes NA
3.2.3 g:: Some decreasing Yes increasing
3.2.2 3.4 None LNCreasing No *
3.2.2 3.3 Ncne constant Yes constant
3.2.2 3.2 None decreasing Yes increasing
N A = resulting behavior not pericdic

period approaches a constant

TABLE 3.2

Principle Modes of Response
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because the probability is held constant by the dynamics or because all
states either increase or decrease regardless of the value of P. Sections
4.1 through 4.3 provide significant insight in this case. Section 4.1
contains the analysis of .the local behavior, concluding that the prob-
ability equation is neutrally stable because the rate of change of the
probability is proportional to the square of the system states. Section
4.2 considers the only case in which exponentially stable behavior can
be guaranteed. This is shown to occur when A(P) is a stable matrix for
all values of the probability. Section 4.3 provides an asymtotic resuli
when one of the models matches the true system.

The oscillatory mode of behavior is analyzed in detail in Sections
4.4 through 4.5 and includes criteria as to when the overall system will
be stable or unstable. It is shown that the important parameter de—
termining stability is the relationship between the stabilizing time
constants of each state. Thus, if the controller stabilizes one state
faster than 1t destabilizes the other, the overall system will be stable.
Section 4.4 contains a detailed analysis of the probability eguation
which shows why state oscaillations are an integral part of the oscillatory
behavior. Finally, Section 4.7 discusses the reasons for the mixed type
- of behavior. It concludes with a procedure for determining the range of

initial conditions such that non~oscillatory behavior will occur.



CHAPTER 4

STABILITY ANALYSIS

It is the purpose of the present chapter to provide the analysis
necessary te understand the basic stability properties and gualitataive
behavior of the MMAC method. At present, there 1s no single stability
result which totally describes these properties. Thus, i1t becomes
necessary to examine several approaches, each of which adds To the over-
all picture, but with none providing a whole view. Furthermore, 1t
often 1s necessary to combine the results of differing methods to deduce
a single property. 2an example of this is the combining of the Lyapunov
results of Section 4.5 with the analysis of the behavior of the probability
equation in Sections 4.4 and 4.5 to arrive at a stability result which
neither type of analysis alone could provide.

Chapter 3 contains simulations of carefully selected special cases
of systems controlled by the MMAC algorithm. The purpose of the present
chapter 1s to attempt to provide an understanding of the properties of
the MMAC method by first noting various features from the simulations
and then, guided by the simulations, attempting to understand the features
by analyzing some special cases. This results in some specific conclusions
for the special cases and, more importantly, it yields considerable in-

sight into the qualitative behavior of the MMAC system in more general

situations. The major conclusions of this chapter are:

1) At best, the MMAC system is neutrally stable about an equilibrium

point in that the probability has no tendency to return to its initial

_67_
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value following a perturbation. This is not an ﬁhexpected property for an

adaptive controller.

2} If_éCP) 1S an unstable matrix for P=1/2 then the specral case

of Section 3.1 results in the probability oscillating.

3} This oscillatory behavior results in the states being either
bounded or unstable. Specific conditions for two special cases are given.
Qualitatively, the requirement for the boundedness of the states 1s that
the modes of é}P) which are unstable for P = 1(P=0) must be dominated
by the stability of the same mode when P=0 (P=1) 1in that they must grow

slower for P=1 (P=0) than they decay for P=0 (P=1).

4) The oscillations observed in Section 3.2 may be bounded even 1f
no constant value of P results in a stabilizing control. The controller
then attempts to achieve stability by alternately controlling each mode
of the system. This alternating of controls also occurs for large
initial condations When_éﬁp) 1s a stable matrix for some but not all
values of P.

As seen in Section 3.2, two major types of behavior have been ob-
gexrved in simulations: oscillatory and exponential (non-oscillatory),

The analysis of the present chapte£ 15 aimed at understanding each.

Thus, Sections 4.1 through 4.3 deal largely with the exponential hehavior
while Sections 4.4 through 4.6 consider the case in which the probability
oscillates. Section 4.7 considers the case in which either type of
behavior can occur and contains a discussion of the initial conditions
that lead to each type of behavior. A detailed overview of the chapter

follows.
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Section 4.1 through 4.3 contain preliminary material dealing with
the exponential case. For example, the neutral stability of the prob-
ability exhibited in the simulations of Figures 3.6 and 3.7 is derived
in Section 4.1. The other major conclusion of the section is that
changes in the probabilléy are proportional to the norm of the state
squared while changes in the states are only proportional to the state
to the first power. Thus, for small values of the state, the state tends
to change faster than the probability. This further explains the switch-
ing behavior exhibited in the oscillatory responses in Section 3.2. In
Section 3.2.1, the case in which both models result in stabilizing con-
trols for all wvalues of the probabilities has been simulated. It 1s
shown that under some condirtions the probability dynamics can effectively
be i1gnored in determining stability. Section 4.2 contains the analysis
of this case and proves that éﬁP) must be a stable matrix for all P in
order to guarantee that the states will be exponentially stable for
all initial conditions,

Secition 3.2.2 includes simulations in which the probability tends
+o look like a switch, taking on values near one or zero but seldom in
between. Section 4.4 contains a detailed analysis of the probability
equation which leads t; an understanding as to why the probability jumps
so rapidly. Sections 4.5 and 4.6 continue this analysis to present two
methods of analysis for ascertaining when the oscillatory behavior will
be bounded or unstable. These sections, which result in basically the
game criteria, take different points of view; Section 4.5 contains

approximations to the general solution over several time intervals while
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Section 4.6 employs a funcitlon which resembles a Lyapunov function.

From Section 3.2.3, it is ¢lear that the size of the initial con-
ditions partly determines whetﬁer the piobabllity w1ll oscillate ox not.
In Section 4.7 the situation is analyzed in detail and a procedure de-
veloped which allows for the determination of the limits of the initial
conditions which result in the probability not oscillating.

The majority of the analysis in this chapter has been performed in
the discrete time domain. In many ways this i1s to be preferred as this
1s the form in which the method 1s most often implemented in practice.
However, some of the analysis is done using the continuous time version
because the results are simpler and lend themselves to interpretation
more easily. MNo clamm 1s made as to the complete equivalence of the
two forms. In fact, one could expect some differences between them due
to the different assumptions on the availability of sensor data (i.e.,
discretly versus continucusly available). However, the gualitative
conclusions of one are applicable to the other, as can be seen by the
examination of the two sets of egquations. It should also be born in
mind that the analysis of this chapter 1s aimed at understanding the
phenomena exhibited in the simulations of Chapter 3. Thus, unless
stated, it can be assumed that the canonical structure of Section 3.1
is under consideration. However, the structure of the canonical prob-
lem has been carefully seiected to accentuate certain types of behavior
obzerved in more general MMAC simulations [16, 23]. Thus, the intuition
and qualitative results are believed to provide significant insight in-

to the behavior for more general systems.
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It should be noted that throughout this thesis, the terms "oscillatory®,
"non~oscillatory” and “exponential"' refer to gualitative behavior of the
probability. Although not observed in the siamulations in Chapter 3, 1t
1s pdssible to have the LTI system for fixed P display a second-order
response and it is important to note that this 1s not considered an

oscillatory response for the purposes of this thesis.

4.1 ILinearized Analysis

In Chapter 3, simulation results have indicated that the probability
may tend to be neutrally stable in that 1t shows no tendency to return to
its inatial value following a perturbation. Greater understanding of the
causes and conseguences of this can be gained by examining the local
behavior of the states and the probability about an equilibrium point.
Examination of Equation (2.22) or (2.28) shows that the MMAC algorithm
results in a closed loop system which has a set of equilibrium points:
any point of the form w=0, with any value of ? 1s an egquilibrium point
since when w=0, there 1s no infoxmation in the system that would lead
to a change in P.* The value of the state about which the present
analysis 1s performed is w=0, P=1/2. The reasons for considering this
point in preference to others stems largely from the high degree of
symmetry inherent in the problem formulation gaiven in Section 3.1. For

A
example, the range of P for which the LTI system for fixed P is stable

*gimilar reasoning indicates that neutral stability 1s a general property
of any adaptive controller.
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1s easily seen to be symmetric about P=1/2 (1.e,, about g=0).
In order to lend clarity to the results, the continuous time equations

are considered. Examination of the discrete time eguations results in

similar conclusions. The continuous time algorithm is rewritten as

w(t) = E(q) w(t} (2.28)
gt} = l{l-qz)Ir -r_]! 6_1[(1+q)r + (1-g)r.]
4 2 =1 - —1 - —2
= X163 o
= 4(:L q) w'Q,-aQ, 1w
where
1 1 1 1 -
A-JHG -50a)g, (g F1-ag,
Alg) = A~3, Ay - H 0
A-A o A-H
_ = =2 - - 2 -
Simple calculations then lead to the linearized system equation
(4.1)
A Algy) AW, Aw
hg| |Ea-a® @0, ~q01 xwiisa’o, -2q.0 -0,1w ||ac
2 0 —0—=1 02 4 0 " C0=2 o=l =20 ’
with ‘
1 1. -x
346~ &) 2 =1 T2 %
§_= s} 0 Q
0] Q a
0 0 o 0 0
o.= o - o o, ={o &t ot
=1 - -1 =2 VPSS RS |
0 0 8 o -8 8
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where the linearization is done z2bout the values {EO, qOI. Note that
aif EO = 0, then the linearized system reduces to

. i(q ) 0
A_ = = 0 - .A..‘y.. . (4.2)
Ag ° 0 Ag

Thus, the system 13, at best, neutrally stable to first order {(1r.e., the
linearized system has a zero eigenvalue). This should not be particularly
surprisaing; when the state is zero, there is no need or basis for changing
the i1dentrfication results. It should be further noted that if é}qo) is

an unstable matraix, then the resulting linearized equations are unstable.
Thus, in order to have asymitotic non-oscillatory behavior in a system sub-
Ject to perturbations, it is necessary that therve exists a value of 9y such
that Eﬁqo) is a stable matrix.

Equation (2.28} can also be rewritten exactly as:

w(t) = X(0) wit) + Rw(t) qlt) (4.3a)

N

§e) =T w'lo, ~ga-ga +Qa’lw - (4.3b)
{This 1s the full Taylor series expansion about w=0, g=0). A few cb-
servations can now be made. Pirst of all, for q near zero, the rate of
change of the state 1s proportiocnal to l]wl] while the rate of change
of the probability is proportional to ||wl|2-hence the neutral stabi-
laty of the linearized system. Thus, the probability tends to change
slowly for small values of w. Furthermore, again for g small, the higher

order terms in g can be ignored so Equation (4.3b) can be approximated

by
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s =g [ml17 - gl 2] (a.4)
& g
2 1

Thus, the changes in g are such that g increases xf |t£é]| > ]kElIJ-and
decreases if |[£2|I < lLElll, which agrees well with the intuitive
notions of how an adaptive controller should behave. Furthermore, when
) = I, there 1s no information as to which model provides the better
match to the true system.and so no change in the identification results
can be made. It should be noted that this may result in exponentially
unstable behavior when é(q0=0) is an unstable matrix and the system is
initialized with g(0) = Iy = 0 and, for example, 51(0) = 52(0) = 0. This
is an important special case since in practice one often attempts to
initialize an MMAC system with just such initial conditions. Eguation
(4.4) also illustrates the neutral stability of the probability.

In summary, 1f éﬁO) is an unstable matrixz, the equilibraoum w=0,
g=0 1s unstable and small perturbations in the state cause a divergence
from the equilibrium which will most likely result in the oscillatory
behavior of the probability {(resulting in either bounded or unstable
state responses) observed in Figures 3.2 through 3.4. However, if Z(0)
1s a stable matrix, then two modes of hehavior are possible. For pertur-
bations large enough that éjq) becomes an unstable matrix, at least
temporary oscillations most likely occur as seen in Figure 3.6. For
smaller perturbations, the state, w, will return to zero and the
probability will simply move to a new value which 1s such that éﬁq) 1s

stable. This cccurs since, by Egquation (4.4), the probability has no

2
tendency to return to zero unless ||r2|[6ﬂf|lr1|[e_l changes sign. This

—2 -1
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1s precisely the behavior chserved in Faigure 3.7.

The next section discusses the conditicns such that the latter type
of non-oscillatory behavior occurs for all anitial conditions. This
can be viewed as an extension of the results of this section for the
case 1n which A(P) 1s stable for all P. Pollowing an analysis of the
stability of the oscildatory behavior, attention again is focused on
the linearized system in Section 4.7 where a procedure i1s derived for
determining how larde the above perturbations can be and still have non-

oscillatory behavior guaranteed.

4.2 TUniversal Stability

For any adaptive control algorithm one would at least like to be
able to conclude that the overall system 1s asymptoticly stable about
the point w=0 in spite of any uncertainties about the true system. 2as
seen in the previcus section, the MMAC method always results in a system
with neutral stability in the probability. However, it 1s also shown
that 1t 1s possible for the states to locally converge to zero despite
the behavior of the probability. The present section discusses one
case 1n which global asymptotic convergence of the states can be
demonstrated.

Consider the discrete time MMAC system given by Equation (2.22}):

il

w(ktl) = A(P) wik)

(2.22)

p(k) p(gl)

Mkﬂ):PﬂdP@f + (1-P(k)) plx,) .
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We now make the following assumption, which will be termed Universal
Stabirlity: Assume HE(P)” <e<1l ¥Pe [0,1] where [a|] 1s the -

. ‘It should be noted that this is a-fairly restrictive =

=

Tiorm of
assumption as it reguires that the control law associated with each
hypothesized model stabilize the true system. In general, thas requires
that the condition HE_(P) H < 1 be explicitly tested for all values of
P. However, as discussed in Section 4.3 in some cases such as when

the true system and all of the hypothesized models are diagonal, 1t
becomes sufficient to perform the test for extreme values of P only.

When the assumption 1s valid, the following theorem is useful.

Theorem: Under the assumption of universal stability, w(k) + 0 geo-
metrically as k¥®.
Proof: By assumption, HELPlll [ fse<l %P & [0,1]1, Thus, teking

norms 1n Eguation (2,22) yields

|lwoerny || = [|Eepweal] < K@ [yl s
<e llwoal]l .
Thus, | le_(k) ] < Ekl lvi(,ol ||. since by assumption £<1, the conclusion
follows. A

Tt should be noted that by a suitable redefinition of the matrizx
ELP) , this theorem can he extended to the N-model case where P bacomes a
vector of probabilities such that Hg” < 1 and each P_1s non-negative,

The value of this theorem in applications is, of course, severely

-

limited by the assumption on the stability of 'ZE(Pl).\ However, as
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demonstrated by the analysis in the remainder of this chapter and the
gimalations of Section 3.2, a condition such as this 1is necessary to
guarantee geometric convergence. 2Any weakening of the hypothesis admits

the possibility of at least transitory oscillatory responses.

4,3 An Asymptotic Result

As discussed in Chapter 1, the MMAC method was developed with the
implicit assumption that one member of the set of hypothesized models
exactly matches the true system. Under this assumption, Baram [15] has
shown that the identification algorithm (i.e., the value of the proba-
bility when all feedback gains are set to 0) converges to the matched
model when the input is ergodic. However, he also shows that when de-
terministic inputs are used and none of the models match the true system
the convergence properties are indeterminate - the model to which the
probability converges is a function of the input. Furthermore, his
results require the ergodicity of the residual which clearly is not
guaranteed when the probabilisticly weighted control is applied*.

Thus, no general convergence result has been derived for the closed

loop adaptive szrtuation.

*Ljung et al [24, 25] have considered closed loop identification for
some specific model structures and identification methods. However,
we have not attempted to apply their results to the MMAC method;
this remains as a topic for the future.
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However, the following theorem provides some insaght i1nto the
expected behavior. It should be pointed out that no assumption as to

the number of models i1s made.

Theorem: Assume the following for a discrete time MMAC System:
(1) There are N hypothesized models.
(2) Model #1 exactly matches the true system.

(3) All models (and therefore by (2) the true system) have
diagonal A-matrices with C=B=I (as in Chapter 3).

(4) {0 =0
(5) Pl(O) >0

Then, ||x(k)| ] +0 as k»w,
Proof: Since ;_1(0) = Q, and model 1 matches the true system, l:_l (k) =0 .
Thus, Pl(k) 1s non-decreasing and eirther:

Case 1) Pl(k) -1 as k+® or

Case 2) 3€>0 33 1-P. (k) > & ¥k.
(equivalent, 3i 3 Pl(k) > 0.)

Consider Case 1:

Pl(k) +1 ;:>‘:? K 3k>K=>é(P (k)) 1s a stable matrix since Ei_(l) is

stable by hypothesis. This in turn i1mplies the convergence of Hxl | .

Consider Case 2: -°

1-P(k}) > £ Wk together with P(k) non-decreasing implies } at
least one other model such that its residual approaches zero since
otherwise Pl(k) would increase to 1. AaAssume for the moment that there

1s only one such other model, dencted by model i. (That i1s, assume

~
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that only _r_lt-) and x; approach zero.) Due to the use of full state
observations in the canonical problem, the equation for 5N (+1 can be

rewritten from Egquation (2.22) as
r (k+1) = A (I-H) r (k) + (A-A ) x(k)
-1 -1 T - - i -

Since z; (k) + 0, x(k) must approach an element of N(A—Ail.* The dynamic

equation for x(k) iz now rewritten as

N
z{k+1l) = B (kK)={k) + L 2,.(K)G,.(I-H.)r. (k)
= -0 = =13 T3 T
whare
Eo(k) = [Pl(k) {g—gl) + (l-Pl(k)) (li—-ﬁl) + {1-P(k)) (1_}1-_(5_1)
N
- L P {K)G ] .
3=2 J -3
j#a
If r, (-}, J#1 or i is bounded, then, since P,(k) - 0, P G (I-K,)r, (&) ~ O.
- 4 3 }J J J 3]
If r (-), j#1 ©ox 1>, then, since pj + Q as e—rjrj, P, r - 0.
=4
N
Thas implies that L P (k)gﬁggjgj)fé(k) + 0. Thus, consider the un-
=1

undriven system

2(k+l) = B, (k)x (k)

whrch, since Pl (=), Pl (®) exist, can be rewritten as

*N{-) represents the null space of a matrix.
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% (k+1)

[Pl(°°) Cg-gl) + (1—91 (*}) (A;-G.)1x(*)
I k) =2 (®) (B=G,) - (P, (k)-P, (=) (;-C )]x(k)

+ (1-P, (k) (A=A ) x(k)

(g-_c_%_l) and {_il_kl—g_l_ ) are stable by design. Then since they are also
diragonal, the convex combination of stable matrices 1s stable. Thus,

there exists a b<l 3
[, =) @-gy) + (1-P (=) (&;~6)1x(0) || < b|[x00)] |
Then, for some £€ 3 b+e<1 and any given §, we can find a K %
1, k-2 =) @-g ) -, 0)-R (=) (a,-6)1xt || < e |[z00]]
(since Pl(k) - Pl{w)) and

|12, k) @-a)x00) || <8

(since x(k) ~ N(A-Ai)). Combining these yields
[z || 2 ) x| + 6 ¥k > K

or, using the variation of constant formula,

k-1
| =) }] < ) EE [z |]+ Z bre) s wx > K
j=K
k.K
k-K § - (b+e) "3
or ||z ] < )™ |z || + T g ;

Taking the limit as k->w
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3

man ||z || <0+ 7955,

ko

since X was selected such that (b+e) < 1. But § was arbitrary. Thus
Lim ILE(k)|| = 0. The case i1n vwhich more than two models have non-
koo
vanishing probabilities follows simalarly.

Some comments on this theorem are important.

1. Assumption (5} merely guarantees that the probability of model 1

can change since

Pl(_O) = 0=>P(k) = 0 ¥k .

2. Assumption (4) has been made for convenience, It iz used to
guarantee that Pl(-) 1s non-decreasing, thus preventing oscillations in

the probability due to ||£1L-)|| - llfit-)]| changing sign.

3. Assumption (3) is, of course, very restrictive. It 1s necessary
t0 enable one to conclude stability when a convex combination of stabi-
lizing controls 1is applied. Given a non-diagonal matrix A and controllers

§1 and §2 with

A@a-g)f <1, 1=1, 2

it can be shown by counterexample that

A-bG -(1-b)G, be [0,1] (4.6)

is not necessarily a stable matrix. It may be possible to overcome this
problem by using the fact that_zl(k) <+ 0 as k + « yhich restricts the

kinds of state interactions which can occur in Expression (4.6}. It
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should be pointed out that assumption (3} can he relaxed to any situation
in which the convex combination of stable matrices is stable. For example,
if A and all of the §1 are in Jordan form with identical Jordan structure,
then our result holds. This 1s eguivalent to assuming that the shapes

of the modes of the system are known but that the eigenvalues are not.

This is less restrictive than the diagonal case.

4. WNote that no claim is made about the convergence of the
probability even when one model matches the txrue system. Thas is, of
course, ancther example of the need for persistently exciting anputs

in order to guarantee the convergence of identification algorithms [36].

4.4 An Analysis of the Probability Equation

The simulations of Section 3.2 have indicated that the behavior of
the probability often resembles the output of a switch, alternately
taking on values near zerc and near one but seldom in between. By now,
it should be clear that this property is largely determained by the
equation for the probability, Egquation (2.22b). Therefore, the present
section contains a detailed examination of the characteristics of this
equation. The principal conclusion is that the eguation for the
probability can be rewritten as a scalar, static nonlinearity and
a summation (the log likelihood ratio). This decomposition aids the
analysis since attention can be focused on each part separately. Thus,
this section examines the characteristics of the nonlinearity and shows
that the sw1éch—like behavior of the probability 1s largely due to this

nonlinearity. Section 4.5 continues the analysis by examining in de-

tail how the true system and set of models affect the log likelihood
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ratio and therefore, by the analysis of this section, the probabillfy
and ultimately the closed loop behavior.

Egunation (2.22b} 1s repeated for convenience.

P(k)p(;l)
PUS = s + (12 ()B(E) (2.220)
5 = 8
where p(ri) = Ble . This can be rewritten as
_ P (k)Y (k+1)
POHD) = Sy (o) + (1B (0)) (4.7
where Y{(k}) 1is the instantaneous likelihood ratio
1 -1
-5 (218, ]
p(r (k) Be 2 T -t
Y(k) = —2 —
P(r_(k))
2 —l-[r'e_lr 1
B e 2 =2-2 =2
2
1 -1 -1
Sy £ T S P |
=B e 2 — -1 2—2 =2 (4.8)

It is now possible to rewrite Equation (4.7) such that the probability

does not appear recursively:

k
PO) I v(x)
P(k) = l:l‘ : (4.9)
p(0) I v(k) + (1-P(0O))
1=1
Finally, let
-1 -1
k [ri8.r -8 "zl
alk) = T —1—1 —1 22 =2 . (4.10)
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Thus, Eguation (4.9) becomes

i

~ . = =a(k)
P {0)Re
B(k) = 1 (4.311)
L "7 olx)
P(0)Be + (1-p(0))

Note that a(k) 1s the Log Likelihood Ratio. Thus, Egquation (4.11)
provides the connection“between the Log Likelihood Ratio and the
probability. Figure 4.la is a plot of P(k) versus a(k) for a few
values of P(0) and é=l. Figure 4,1b 1s a detail of the same curve

for P(0) = 1/2. Define us to be the value of da(-) for whach P(-) = 1/2.
It'is then clear that

a(+) > o =>P(-)x0
S (4.12)

af{.) << or.s=> P{-)=1 :

Thus, us will be called the switch point for o(-). Equation (4.11)

can be solved to give

l—PO
as = -2 1n P B . {(4.13)

Now, consider Equation (4.11) evaluated in the vicinmity of us. For

example, 1f

a(-) = o + 2g
s

where £ 1s any positive or negative mmber we see that the resulting

probability 1s

i

P(-)
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which 1s totally indpendent of any parameters of the MMAC method. ¥Finally,
simple calculations reveal that the curve of P(-) versus o(+} is anti-
symmetric about the point as. Thus we see that the switch point as is
determined sclely by the apriori infoxrmation P(0)} and § and that no
parameters of either the true system or the models (except for the

assumed nolse covariances contained in E} affect the switching character—
istics of the system other than by determining o(k}. Various approxi-—
mations to P(*) can thus be calculated from qo(-). One example, shown

is the dotted line in Figure 4.1b, is

i cz(-)<ocs-5 -
Plk)={ 0 af-) > as + 5 (4.14)
.5—(@(-)-—&8)/10 otherwise,

Examination of Equation (4.1l) or Figure 4.1 reveals the reason for
the zero-one type behavior so often noted in the simulation results in

Chapter 3. Only for values of o(:)} such that

oty =] <s

w1ll an intermediate value of P occur. As seen in Eguation (4.10)
{see also Section 4.1), a{.} 1s proportional to the square of the norm
of Ei(')’ Thus, for 51(-) large, o) tends to change at a rate twice
as large as that for Ilzi(-)|| and may never fall in the range.

One potential advantage of using BEquation (4.11) in a MMAC con-
troller i1s that a wealth of information has been accumulated about
the behavior of the log likelihood ratio [34, 35]. Thus, use of this

approach allows full use of this information while still permitting a
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simple control to be calculated.

The approximation (4.14) 1is. also useful for characterizing the
length of the half-periods of the oscillations observed in Section 3.2.
By the definition of as, 1t 1s clear that jumps in the probability (i.e.,
from 0 to 1 or from 1 to Q) correspond to transitions of ¢f-) through
as. It is thus possible to calculate a bound on the half-period of an
oscillation. Define T, to be the tame of a transition in the probabilaity

1

{(assume from P=0 to P=1) and (T +T2) to be the next transition. (see

1
Figure 4.2). Thus, by the above analysis and the definition of o

d(Tl) =0 = OL(T1 + T2) . (4.15)

By the definition of «(-)

!

friypTt 2y aed -1 .
.?':?1 [z ()0, 7x, (1) = 23 (1)8 " r, ()]

Tty N " (4.16)
= 12__31 [£] ()87 x, (1) - £5(1)8) r, (1)]

+
T2 Tl

or T @t () -z w8, 1 =0 . (4.17)

f=p +1
i Tl

Equation (4.17) thus provides a condition which.Tl and T2 must satisfy,
This equation is explored further in the next section where an approxi-
mation for Ei(t) 1s employed. .

This section has presented a detailed analysis of the probability
equation (2.22). It has been shown that -the equation can be broken

down into a static nonlinearity and a summation (the log likelihood

ratioc}. Attention has then been focused on the static nonlinearity.
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The next section continues the analysis by considering the hehavior of

0{.) for one class of systems.

4.5 An Analysis of the Oscillatory Behavior

Many of the simulations of Section 3,2 display an oscillatory be-
havior inveolving all states and the probability. The preceeding section
contains an analysis of the equation for the probability of a model, one
of the conclusions of which is an cobservation that Equation (2.22b} can be
divided into two parts; one containing a static nonlinearity (4.10) and

a relatively simple summation

k 2 2
atk) = I |lzeall7 ;) - [lzel]7_;
i=1 8 8
-1 —2
(4,15).
k -1 -1
= Iz ®6L k) - (K .
=1
Furthermore, the approximations
al.) >> OLS = P(.} = 0
(4.11)

ofl-) << as=$ P() # 1

have been found to be very good for [ut-l - uS[ greater than about 5
o

where ¢ can be determined solely in temms of P(0) and 8. Note that

for the present study we can take us = 0 since we can assume that the

system started in the remote past in which case P({0} can be chosen

arbitrarily.
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The present section continues the analysis of the oscillatory hehavior
of the probability by considering the behavior of the variable (k) for
the canonical problem of Section 3.1. The approach taken is to isolate
the basic modes of the state of the canonical problem by partitioning w
in & new fashion. This partitioning emphasizes the two basic modes
inherent in the structure, namely those associated with true state #l
and those associated with true state #2. Because of the diagonal nature
of the canonical system, this partitioning allows d(-) to be bounded by
simple exponentials which are then analyzed,

In this section extensive use has heen made of the ohservaticn
from Chapter 3 that during pexriods of oscillatory behavior the probh-
abhi1lity tends to be virtunally constant for long periods of time and then
abruptly changes. This square-wave like behavior, clearly seen in
for example Figure 3.2, is a key element of the approximations employed
in this section.

Recall from Chapter 2 that
wik+l) = A(R)w (k) (2.22)°

where w' (.} = [x'() =7 () Eé(‘)l . Az seen in Section 3,2, during
periods of oscillatory behavior, each. component of w(:} i alternately
stable and then unstable. It thus is natural to regroup the states
such that components which are simultanecusly stable are grouped to-
gether. To this end, define giC,l to be those states of w which cor-
respond to the first component of the true state and XQCt} those which

correspond to the second. That is,
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Xl (_C) -Xz (.)-
g = e, i 1@
zl( } r, (=) ; gz-(.-) ={ry (*)
(L) (2)
_rz (-)_ _rz (-)_

whexré r:ﬁl) {-} 1s the J.ﬂ component of the residual of the KF for the

j2 model and xi(-) 15 the :|.EE component of the txue state X. Using

this decomposition Equation (2.22) can be rewritten as

{k+1) i (P) 0 (x
Iy 2y 2 7, () (4.18)

¥, (k1) 0 A,(®) 7, (k)

where él {P} and éz(P) contain the appropriate elements of z_“i_ (PY. The
block diagonal nature of Equation {(4.18) is a direci consequence of
the assumption that the true system and each model is diagonal., If

and are defined to be the appropriate partitioned versions of B—l and
1 2 —1

_9_;1 ;, Equation (4.15} becomes '

k 1 1
o (k) =LZ y’2(0) I é'z(r’(j))g2 I §2(P(j))y2(0) -
=1 1=1 1=1 -

{(4.19)

l—'l

1
I X (P(J))_z{l(O)] .
j:

1l
¥ TE ®GNY,
=1

We will consider the initial conditions shown in Figure 4.3(a)
X 2 2
in which @(0) < 0 (but a(-1) > 0), ||;,;l(0)|[ > ||12(0)H and P=1.
Note that this corxrresponds to the case in whiach a change in probability

{from P=0 to P=1) has just occurred. The equation (4.19) and the
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simulations of Section 3.2 indicate that if oscillatory behavior occurs,
the trajectories of Hgi(-)l |2, &(.) and P(-) must be as sketched in
Figure 4.3, since iLXlC‘)ilz 1s decreasing by design for P(.} ~ 1.

It wall be assumed for the present analysis that P can be closely

gpproximated by either 0 oxr 1. As seen in the previous section, this

corresponds to assuming that l&(-) - asl 1s greater than about 5. From
the simulations of Chapter 3, this 1s a reasonable approximation during
periods of oscillatory behavior such as are being analyzed here.® PFurther-

more, it will be assumed that both K.F¥.'s have been correctly initialized

(equivalently, have been running since the remote past) so that the
matched K.F. residuals are zero.

The remainder of this section is concerned with characterizang the
peak excursions of lei[[ {see Figure 4.3) and also the half-pericd Tl'
This is done by approximating the behavicor of o{-) after first approxi-
mating the behaviors of zi(o)gisgiéi(l)zl(O) (see Equation 4.19). It

1s clear that sach of these terms must behave as exponentials for P=1;

that 1s

lg, G [1* < af |z, 1]* (4.20)

where a, = |[§1(1)||2 . Thus

H_gz(O)Ilzoz-ai’ ligl(O)szll (4.21)

koo
a{k) = L [a2
0]

*

When the probability is forced to either zero or one (by, for example,

use of a maximum likelihood type contxol rather than the probabilistically
weighted one) then this is not an approximation.
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where Gi = the maximum eigenvalue of ¢i.* A few comments are necessary

on this approximation. First of all, note that for P=1 it can bes shown

that

(4.22)

by the consitructions of §1(°)' Furthermore, as noted earlier,
2 2
Hzy @ 1% << gy @ ]* .

Thus, during the initial part of the intexval, the term in yl(-) dominates
while later the term in yz(o) dominates. We are interested in determining
the half-period, :.e., when the probability switches from 1 to 0. As saen
in Sectaion 4.4, this occcurs when ¢(-)}) = 0. Thus, an approximation to

thais condition is o Ffind Tl such that .

T

Iy 2
I oag flg ] =

; 2
z ai g ° . (4.23)
i=0 1

"1 A
bt

0

It should be peoainted out that the term in XQ leads to an underestimation
of Tl while the term in ¥ leads to an overestimation. Thus, Equation
{4.23) does not yield either an upper or lower bound. However, it is
felt that this is st1ll of value since the analysis yields insight

into the type of hehavior cohsexrved in simulations. Furthermore, al-

though sometimes not of use, the T, of BEguation (4.23) does lie hetween

1

the upper and lower bound.

*By the symmetry of the canonical problem, note that g, = 0O



Evaluating the summations in Equation (4.23) yields

_11

a (Tl +1)

[-&

e

2
|y, (]|

v
|

[
)

and use has been made of the fact that 0. =0
be solved numerically to arrive at an approximation of T
closed-form solution is possible.

Further insight into the behavior can be obtained by invoking

another assumption.

<
al 1

>
and a2 1

we assume

T +1
1
<L
2y 2y
4
aTl 1
>>
2 2

This 1s c¢learly reasonables since T
way that al closer to 1 vields T

an assumption, it 1s very reascnable.

becomes

]

where by the assumption that on the interval k=0 to T

- g @il <2

_Hj;}..z(l)ll > 1

1

g, @][? |2

1

depends on a

i

l-—l

and a,. in such a

Equation (4.24) could

although no

(4.25)

larger. Thus, although (4.25) 1is

Using this, Egquation (4.24)
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Tl+l
2 1 . 2 %2
”.—E{I.(O)H “(l—_al—) = 1122(0)” -1 {4.286)
2
or, using Equation {4.20)
{a., ~1)
2 2 2
||_’_{_2(T1)H *‘-Hzl“”“ m . (4.27)
1
Defining
(a2-l)
a2(l -al)
yields
2 2
sz(Tl)H R]!le)ll . (4.29)

Thus, 1f R>1, the value of |[yi(-)|| when P switches increases with
each cycle and ||yl(-)|]-+ © {i.e., the closed loop system 1s unstable}.
Similarly, 1f R < 1, then peaks of Ilyicoll] gecrease with each cycle.

t  An interesting interpretation of these results can now be given hy

noting that

aja, >1 =3 R>1 (4,30a)

aja, <1 =pR<1 (4,30b)
= = 4

a,a, 1 = R=1 (4.30c)

and that 2, 1s the slowest decaying mode of the stable matrix gl(l) and

a, is the fastest growing (most unstable) mode of éz(l). Thus the
closed loop system will be stable if the slowest decaying stable mode
of the matching subsystem {éitl)) deminates the unstable modes of the

mismatched system an the sense that the product of the appropriate norms

is less than 1.
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Equation (4.26) can also be rewritten as

.2
T gl

a, g — . (4,31)
2 gy 12

Thus, the following approximation to T, can be given

i

[l ]
. (4.32)
Ll |z, 0| |

An interesting phenomena can be seen by considering multiple periocds.

Thus, by analogy with BEguation (4.32)

2
rlly (x)]]
T o~ lp | —2 L Sln a, .

2 2
Mgy @pll

But 1t can be shown that

2 2
Hyyeep 1™ 0 g2 g of]

2 T T 2
|z, x| ata! [y, ]|

This results in the conclusion that 1f the initial period is sufficiently

long, then subsequent periods will be of increasing lengtﬁ 1f ala2 < 1.
The above analysis results in the conclusions that a13, is the

key quantity in determining the stabilaty of the closed loop system.

If R 15 less than one, then the peaks of the state trajectories decrease

and the period increases. However, if R is greater than one, instability

results. These conclusions agree well with the simulation results of

Chapter 3. The only point of discrepancy is in the simulation of Figure

3.2. In that case, the peaks appear to remain constant even though
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calculations reveal that stability results. Close examination of the results
of the simulation have revealed that in this case the lower limit on
the probability (see Chapter 3} is consistently achieved, As shown in
Chapter 5, this somewhat modifies the hebhavior resulting in uniform peaks
even when the system is stable. Further discussion of this important
case is deferred to Chapter 5.

In summary, the stability of the MMAC algorithm 1s determined by the

relation between the growth rate of the most unstable mode of the mis-

matched subsystem and the rate of decay of the slowest stable mode of
the matched subsystem. This leads to the qualitative conclusion that
stability results when the stable modes are "faster” than the unstable
modes. This concept is further emphasized in the £following section
where an alternate view of the problem leads to a similar resuli.

4.6 Quasi-Lyapunov Analysis

-

An alternate view of the stability results given in the previous

section can be obtained by employving an analysis which closely resembles
the methods of Lyapunov. The results obtained complazment those of
Section 4.5 and given increased insight into the behavio? of the MMAC
method.

The approach of this secticn is first to explore the use of the
"normal®” quadratic Lyapunov Function. This is used to introduce the
ideas and also to demonstrate the drawbacks of this standard approach.
This leads to the introduction and motivation of a new Lyapunov-like

function which is then used to derived a stabilaty result which.
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emphasizes the role of the individual control gains, This function is
motivated largely by the simulation results in which the controller

1s seen to alternately attempt to control each mode of the system. Thus,
each state tends to be piece-wise exponential (see Chapter 3). This
results in a phase-plane plot, such as seen in Figure 3.5 which resembles

a hyperbola. It is this observation which led to the function investigated

in the major part of this section.

First, consider the function
vk) = w'(k) wik) (4.33)
where w(k) 1s governed by Egquation (2.22)

w{k+l) = A(P) w(k) . (2.22)

Thus, v(k+l) can be written as”

vik+l) = w' (KA @ GDAEG)wk) . (4.34)

In order to prove stability, it 1s reguired te show that

v{k) > v(k+l) . (4,.35)

Unfortunately, Bauation (4.34) depends strongly on P and, thus stability
is difficult to show. The one case in which it is possible to determine
stability 1s when ]Ié(P)Il < 1 %P, However, this case has been well
discussed in Section 4.2 and so will not be repeated.

An improved result is obtained 1If attention Is first restricted to
the diagonal case. Thus, assume that the canonical system of Sectron

3.1 is under consideraticn. Define the function
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vik) = xl(k)xz(k) (4.36)
or
vik) = 2w (0T k) (4.37)
whexe
0 1
{0
I=}1 01
;, — -
o 1o

A defimtion is useful in the seguel: The gystem (2.22) is hyperbolically

-

stable 1f v{k) + 0. The choice of v(k) is heavily motivated by the
simulation results in Chapter 3., As discussed in Section 2.2, the phase-
plane plot of Xl vs. X, resambles a hyperbola (truncated for large
excursions). Figure 3.5 graphically depicts this phenomenon. 24 second

motivation stems from the analysis in the previous sections of this

chapter in which each state tends to be governed by an squation such as
k
iixi(k+1>|| =a||x; 0] (4.38)

for periods of time. Thas, of course, is due to the fact that the
probability tends to be piece-wise constant due to the nonlinearities
analyzed 1n Section 4.4.

It should be pointed out that £ﬁe function in Equation (4.36) is
not a valid Lyapunov function. Fairst of all, v{k) can be either positive
or negative depending on the initial condations. Secondly, vk} = 0
does not imply that x. 1s even bounded! Neither of these invalidate

1

the analysis, however. A slight redefinition of v(-) would overcome



-102-

the first. This is not explicitly done here because 1t 1s not necessary
for the problem at hand and would complicate the analysis. The bounding
of the state has already been indicated in previous sections and thus
iz provided by altexnate means. Furthermore, even if a bound were not
available{ the analysis would yield insight into how the system behaves
when each mode is alternately controlled.

Some useful notation for the diagonal system is now needed. Recall

from Section 2.1 that

Define
g 0 g 8]
= o g TR 0 g] ]
and
0 R O
2, o & i Hy = o h] :

Temporarily, assume that % = 0.* Then Equation (4.37) becomes

v(k+l) = w' (K)A' (P)Ia(P)w (k) (4.39)

which, when written out texrm by texm becomes

v(k+l) = [ala-g) + Pg> - P2g>1 v(k) (4.40)

or v(k+1) = A(P) v(k). Note that A(P), which 1s plotted in Figure 4.4,

%
This corresponds to Case 1 in Chapter 3.
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is a convex guadratic function of P. The following two theorems then

follow:

Theorem: Given the canonical MMAC system of Section 3.1 with §= 0,

the overall system is hyperbolically stable {i.e., x,x, - 0} if the

172
follcm;ing two conditions are met.
(1) lata~g)| < 1 (4.41)
and
1 2
(2) lala-g) + 3 ¢ <1. (4.42)

This plus the hounding results of Section 4.5 yields stabilaty.

-

Theorem: Given the canonical MMAC system of Section 3.1 with §=0,

the overall system is unstable if

(1) afa~g) > L (4.43)
or if

(2) ala~g) +%g2 < -1 . : (4.44)

A few comments can now be made.

1. cConditions (4.41) and (4.42) essentially require that v(k)
be decreasing for all P. Note that this can be-true independent of
whether E(P) 1s stable. In fact, for the Case 1 example of Chapter 3,

é(P} is unstable ¥ P but v{k) is still decreasing.

2, Theorems such as the above can easily be derived for the
relaxed case in which the two elements of the true system matrix are

not equal. The curve for A(P) is-then not symmetric about P = 1/2 but
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similar analysis can still ke done, The results do not significantly

increase our understanding and so ave not presented.

(3} Note that Condition (4.43) is consistent with. the results sum—
marized by Equation (4.30) of the previous section. The added condition
of (4.42) zresults from relaxing the assumption 1n Section 4.5 that P
is always "neax" zero or one. Further insight results from plotting the
Conditions (4.41) and (4.42). The shaded area in Figure 4.5 is the
set of a and g for which Condition (4.41l) is satisfied and the crosshatched
area is where Condition (4.42) is satisfied, The points corresponding
to Cases la, b and ¢ from Section 3.2 are plotted.

A few comments are in order, First, as evidenced by the simulation
results, it may be sufficient for hyperbolic stability that Condition
(4.41) be satisfied. In that case, if P oscillates between zero and one
(which the simulations indicate is likelyl), stability will result.
Purther, 1f the prcbability is forced to be either zero or one by using
the control for the most likely model rather than the probabilistically
welghted control, then Condition (4.41) is sufficient to guarantee
stability. -

Another interesting obsexrvation is that for this special case, the
smallest control gain which yvields v(.) decreasing for P=0 or 1 (i.e.
the lower edge of the shaded area in Figure 4.3] exactly corresponds to
the value of the control gains for the LQ problem with a state cost of

zero [31, 32]. This implies that for this special case use of the IO

methodology guarantees that Condition (4.41) will be satisfied, This

is believed to be due to the robustness properties of the LO design
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technique discussed in [5, 33]. The implications to more general MMAC
structures remains an open guestion. However, note that thers are many
control gains (not gensrated by an LQ methodology) which yield unstable
behavior. For example, the matched system is stable for all control

gains

ge (1,2 .

-

However, from Figure 4.5, if the chosen controel gain is
g g (1: 1.5)

then the resulting MMAC system is wmstable,

A second point to note from Figure 4.5 is that for a>2, no lineax
controller will result in v(k) decreasing for-?P = 1/2, Under these
conditions, the only stable behavior peossible must be of the oscillatory
type.

The removal of the assumption that §=0 resulis in the analysis be—
coming intractable. For example, when evaluated at P=1, the equation

coxresponding to (4.40) becomes

vktl) = (a-g) (a-g) vik) +

(a~g) g(l-h) rlm

+

%3
(4.45)
Ason o an (2)
+ (a~q) g(l‘ﬁlfl Xy

+ -m2 ri?.)ril) .

If it is assumed that the matched K¥ state has been correctly initialized

(L)

1 = 0) thlis becomes

(i.e., T
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vik+l) = (a-§) (a-g)vik)
(4.46)

+ (a- g)'g\(l—ﬁ)rl(z)x

1

where the mismatched component of the KF now enters to modify v(k+1l).
Equation (4.46) has evaded further analysis except in a few cbvious
special cases (such as K=1) which will not be discussed.

This section has attempted to accomplish two goals. First of all,
one interesting special case has been examined to the point that both
stability and instability results have been presented. These results
conplement those of the previous section and provide an alternate view
of the mechanisms wmderlying the stability of the MMAC method. A pos-
sibly more valuable contraibution has been to point out the need for
careful design of each 'individual controller énd the set of available

models.

4,7 Domain of Attraction

In Section 4.1, it is demonstrated that if A(P) is a stable matrix
for P=1/2, then the system linea¥ized about P= 1/2 1is neutrally stable
in that the probability has no tendency to return to 1/2. This is seen
to be due to the fact that 1f w = 0, then there is neither the need nor
the basis for changing the probability. Equivalently, the eguilibrium
set ig {w = 0 with any P}. This is sketched in Figure 4.6. The stability
of each equilibrium point has already been examined using a linearization
approach. One important question which remains. is to determine the set
of initial conditicns such that the system will return to an eguilibraium

point without first oscillating. (The analysis of Section 4.4 through 4.6
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have indicated that stable oscillations may result in w approaching the
equilibriumm set and it should be noted that this is Egg_the case under
congideration here}.

The importance of this analysis is best seen by considering the
gimulations of Case 2 in Chapter 3. There it is seen that if ng) is a
stable matrix for P=1/2 but not for P=0 or 1 then small initial con-

ition perturbations result in small changes in w(-) and P(.) whereas
large perturbations result in P(.} going to zerc or one and then os-
cillating at least for a while. This section continues the analysis
of Section 4.1 and results in a procedure for determining a bound on

[|w(0) || such that the probability does not oscillate.

Consider the equations from Section 3,6.1

il

w(k+l) = E(p) w(k)

(2.22)
P(k+1)

p{k) P(El)
P{kip(r;) + (I-pkx)Ip(z,) .

We will assume throughout most of this section that P(0) = 1/2 (i.e.,

o, = 0)* and that E(-) is such that there exists an £ < 1/2 such that

[1E@) |} <2 ¥ £ (1/2-€, 1/2+¢€)
] - (4.47)

| 1A @) ] > 1 otherwise.

It can be shown that this is the only case in which exponential behavioxr
has not been investigated. In Section 4.2, the case of ||E(®)|]| <1 wp

has been investigated, and if ||§_(P) || > 1 %2 then Section 4.1 has

*As 1n Section 4.4 we assume B = 1.
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shown that oscillatory behavior (either stable or unstable} must result.
Assumption {4.47) represents the examination of a previously unstudied
case. As seen in previous sections, f’_&(P(-)) is a function of o(-} which
in turn is a function of the data (state) generated by A(P(.}). Thus,
there is a close connection between bounds on ¢(*) and bounds on
][E}P(‘))l[. The basic approach of this section is to bound a{*} in
such a way that |[|E(P(+))|| remains a stable matrix. This bound on

a(*) is then translated to a bound on ||x_~10[ |. That is, we bound the
s1ze of the initial conditions ki so that w(k) is small enough so that
in turn d(*) remains within its bound. This i1s accomplished as follows.

From Eguation {4.48) it clear that

’ Pe(-;;-e,%d.-e) = [[E@]] <1 (4.48)
andthatPS(%--El,%'-i— El) =>H§(P)]l <a <1l £for some €l<E.

(Refer to Figure 4.7.) From Section 4.4, each value of P(-) maps to a
value of a(-} as shown in.Figqure 4.7 and thus attention can be focused
on c{*). Define & to be the value of a(*) such that ? = 1/2 - € and 61

as the wvalue of a{*) for P = 1/2 - ¢

1
It is shown in Appendix A that
2
a, | lu, ||
10
< ¥ 4.4%
et | < PR x (4.49)
1
where a, 1s Max [|1Z(ex))|]|* and 0 is related to the residual weighting
af)
matrices of _G_l and @2 Thus, one may choose an a(*) = Gl for some Gl,

*The maximum is achieved for the maximum value of o(+) for the canonical
Problem.
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compute the value of a < 1, and finally use the equality from Equation
(4.49) to find a ||EO|]2 such that a(k) is bounded as necessary. By
¢hanging 61 and repeating the procedure, a different value of |]Eb|]2
is obtained which may be either greater or less than the first. The
detailed development of the algorithm is given in Appendix A. The re—

sulting procedure may be formalized as follows:

Step l: Find & such that Condition (4.48) 1s satisfied, This in general
will require an iterative procedure for detemmining ||E(P)|] for various

values of P.
Step 2: Calculate § from Equation (A.1).

Step 3: Choose an 0 < o < §.

4, i
step 4: Calculate Pl corresponding to al

*
compute a = [|A(Pl)||2. Wote that by the selection of o in Step 3, a

from Equation (4.11). Finally,

is less than 1.

gtep 5: Calculate llHle from

2 _ ag(l-a)
w| [* = ===

(4.50)

Repeat steps 3 through 5 for different values of ¢. to maximize Ilﬂll-

1

Note that a maximum exists since all functions used above are continuous

and ||H|i is minimized for o = 0 and for o =.8. The begt way to understand

*
Due to the nature of the canonical problem, |[A(P)[|2 is maximized for

extreme values of P. In general, greater care is needed in order to

2
assure ||a(p)|] < a for all p in the region of interest.
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the procedure is to verify that [|w|| in Equation (4.50) results in
exponential behavior. To do this it is sufficient to show that

l!wo[] = ||w|] =+|a®)| <8 ¥k. But by construction

lat) | <o ¥k

and so 0 < § by Step 3 finishes the result for PO = 1/2,

As an example of the use of this algorithm, Table 4.1 demonstrates
its application to the conditions of the Case 2 simulations from Chapter
3. The table contains the ewvaluation of ”EOI 12 for various values of
Gy - It is thus possible to conclude that if 2(0) = 1/2 and [[Hjo)[|2 < .235
then exponential behavior will result. Simulations confirm this cbser-
vation and indicate that IIE(O) | Izz .8 results in P just reaching the
boundary of the stability range of A(P).

It is possible to extend the procedure to PO g (1/2-eg 1/2+¢c) as
follows. Given P_, compute o, from Equation (4.11). This effectively

0

reduces the amount c(«) ¢an change and still have Ei_(P(')) stable.

Thus replace § in Steps 2 through 5 by ¢ - Iao . It thus becomes pos—

sible to compute a complete region in P, x H-‘EOH space such that a

0
nonoscillatory response results. Figure 4.8 depicts such a region. It
should be pointed out that the resulting set is not exhaustive in that
points outside the set may result in nonoscillatory behavior. This is
due largely to the conservative nature of Ineguality (4.49) which uses
a worst case estimate of Ilé(?(k)}ll for all k. Thus, a(k) tends to
change slower than predicted by Inequality (4.49). The procedure does,

however, yvield a useful lower bound to the full set of initial conditions

which yield nonoscillatory responses.
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: - 2
oy P, a | |wl |
2.20 .25 . 968 -1135
1.69 .3 .031 .2022
1.238 .35 .894 .236
.811 .4 .B59 .2147
401 .45 .826 .13625
TABLE 4.1

Example of Range of ||};_r(0) || for Exponential Behavior
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4.8 gsummary

This chapter has presented a collection of analyses of the MMAC
method. It has relied heavily on the special cases given in Section 3,1
and as such, any conclusions with respect to more general cases must Be
viewed with some caution. However, these special cases have baén care~
fully selected to accentuate types of hehavior observed in mores general
settings and so it is believed that the qualitative results we have
cbtained are of some general interest. Thus, the result of our analysis
has yvielded insight inte the nature and causes of the bhehavior of the
MMAC method. This understanding can be used to provide a basis for
improving the design and for determining when It will work well, The

main conclusions of this chapter are:

1) At best the MMAC system is neutrally stable about an equilibyimm
point in that the probability has no tendency to return te its initial

value following a perturbation (see Section 4.1},

2) If A(P) is an unstzble matrix for P=1/2, then for the structure
of Section 3.1 small perturbations result in the probability oscillating
which in tuxn results in behavior which is either stable or unstable.

If A(P) is a stable matrix for P=1/2 either oscillatory or nonoscillatory
behavior may occur depending on the size of perturbations and the
stability of A(P) for P=0 and 1 (see Section 4.1). A procedure has

been presented in Section 4.7 for determining a lowexr bound on tlie set

of pexturbations which yield oscillation-free responses, This procedure

is valid for any two model structure with. slight modification.
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3) The rate of change of P is proportional to IIEJ|2 while the
rate of change of ||w|| is proportional to ||w|| to the first power
{see Section 4.1). This zesults in P changing faster tham ||w|| for
IIEJ[ large and slower for [|EJ| small. This partly causes the sguare—

wave behavior often noted for P.

4} A necessary condition for Ilwll to ceonverge to zere
shown to be that A(P) be a stable matrix for some value of P (see Section

4.1, 4.8),

5) A sufficient condition for exponential convergence has been
sﬁgwn to be that éﬂP) be a stable matrix for all values of P (see Section
4.3). This, of course, is very restrictive. Lacking this condition, the
possibility of at least short-term oscillations must be recognized. Thus
the MMAC method is probably a poor choice when such oscillations can not

be tolexrated.

6) If one model matches the true system and each model is diagonal,
then ||w|| + 0 exponential (see Section 4.3). This says nothing about

the behavior of P(*) however.

7} Whenever the MMAC method is used with two models, the equation
for the probability can be divided into a scalar, static nonlinearity
and a summation (i.e., the log likelihood ratio (see Section 4.4). Al-
though not done here, this can be generalized in the N-model case to
an N-1 wvariable static nonlinearity and N-1 log likelihood ratios. This
approach is important as it emphasizes the switching behavior of the proba-

bility, allows relatively simple analysis to be done for the often seen
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case when P is nearly piece~wise constant and provides for a slight

numerical superiority in applications (see Section 5.3}.

8} For two special cases specific conditions for the stahility or
instability of the oscillatory mode have been presented (see Sections
4.5 and 4.6). These results agree well with simulations and with each
othar. The basic result is that stability results when the stable and
unstable eigenvalues are such that ab < 1 where a and b are appropriately
defined as in Sections 4.5 and 4.6. The gualatative conclusion which
follows is that for stability to occur the most unstable mode must be

dominated by the stable modes.

9) The oscillatory response may be stable even if no value of P
results in X(P) being a stable matrix (see Section 4.6). In this
case the phase-plane plots resemwble hyperbolas (see Figure 3.5). This
emphasizes the nature of the controller in that it attempts to achieve

stabirlity by alternately controlling each mode of the true systen.

10) For the special case of Section 3.1 with § = 0, it has been shown
that v(-) is decreasing for P=0 and 1 as long as the LQ desian procedure is
used with a nonzero state weidhting penalty. Generalizations have
evaded analysis but this is believed to be a result of the gain and
phase margin properties of the LQ design [5].

Recall that in this épecial case the X¥ dynamics do not enter
into the closed-loop behavior (since §=0). Thus, since the gain
and phase margin properties can disappear when a KF 1s included in
the feedback path [33], the extension to the general case (§#0) is

in doubt.
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11) In contrast to the previous conclusion, there are many values
of the control gain which yield satisfactory matched behavior (i.e.,
stable) but which will result in unstable behavior in thée MMAC system.
Thus, care must be exercised in the choxce of control gain.

Thus, two major types of behavioxr have been observed and analyzed;
oscillatory and exponential (nonoscillatory). It has been seen that
oscillatory behavior is very natural for the MMAC algorithm and that the
conditions for excluding it are restrictive. Stability conditions for
special cases have been presented and the gualitative implications for
more general systems discussed. Thus, although based on special cases,
the gualitative conclusions regarding the types of behavior and theix

mderlying causes are believed to be of fairly general applicability.



CHAPTER 5

NUMERICAL. ASPECTS OF MMAC

In the course of this study, various issues relating to the numerical
sensitivity of the MMAC method when implemented on a digital computer have
come to light. The purpose of the present chapter is to discuss these
aspects and finally to propose an alternate formulation which appears to
overcome some of the limitations.

In Chapter 4, while discussing the oscillatory behavior so often
cbserved, it was noted that a lewer limit on the probability tends to
modify the behavior tu some degree. Thus, while the analysis of Section
4.5 1ndicates that the peaks of the state trajectories should be decreasing
for the simulation in Figure 3.2, in fact, the peaks are seen to be

constant.

In Section 5.1 the oscillatory behavior is again analyzed, this time
assuming that a lower limit on P is in use. This leads to the conclusion
that if the limit is consistently achieved, then the peaks of the states
trajectories will be equal when they would otherwise be decreasing.
Furthermore, complete characterizations of ‘both the period and peak
amplitude of the states are given for both stable and unstable operation.
The results are, except for the peak value, essentially the same as
those in Section 4.5.

Section 5.2 contains a brief discussion on various forms of the
probability equation. It is found that a few forms behave very poorly

in the face of numerical roundoff caused by finite precision. Precision

=121-
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refers to the number of digits in the mantissa of the representat;on of
a number in the computer. In addition, the need for extended range
is also discussed. Range refers to the available size of the exponents
in the computer. In particular, it is noted that due to large changes
in the probability during oscillatory operation, (as seen in the simulations
of Case 1 in Chapter 3) exponents of less than -75 often ocecur. Through-
out this section the comments are made assuming that the algorithm is
implemented using floating-point nmumber representations.

In light of the results contained in Sections 5.1 and 5.2, it is
clear that the MMAC method places large demands on the computer which
calculates the control. However, as seen in Section 4.4, there is an
alternate form to the probability éguation. In Section 5.3, a discussion
of the numerical properties of this form is given which concludes that
uging Equation (4.11) in order to calculate the probability results in
reduced sensitivity to the problems discussed in Sections 5.1 and 5.2
compared to using Equation (2.22b). It is important to note that the
proposed formulation does not eliminate the necessity of having a
lower bound on the probability but merely allows the designer much
greater latitude in the choice of this parameter.

One final comment is important. The remarks in Section 5.2 are

not based on any detailed analysis of the numerical properties. The
purpose ;f the thesis has beén to examine the stability of the MMAC

algorithm and not to prove anything about its numerical properties.

However, in performing, the simulations contained in Section 3.2,

certain aspects of the numerical problem have become apparent.
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The purpose of Section 5.2 is to point out these aspects. In keeping
with this, no comment is made as to the numerical properties of the XKalman
Filter, which i1s a significant problem in its own raght. See, for ex-

ample, the work of Sripad [30].

5.1 The Lower Limit Effect

The basic egquations of the MMAC method have been presénted in
Chapter 2. As mentioned there, it is often necessary in practice to
place an artificial lower limit on the probability of any model.

This is usually accomplished by simply setting the probability
equal to the lower limit whenever the.probability is less than the

limit, Inclusion of a FORTRAN statement such as

IF(P(I) .LT. PLIM} P{I) = PLIM

is an example of the use of such a limit. The principal reason for

such a limit is that without such a device, the probability of any model
could be come exactly zexo due to round-off errors. After this occurs,
the probability remains zero as shown in Section 4.1. This iz detri-
mental in cases in whach the true model is changing and also in cases

in which an oscillatory behavior cccurs (such as in Section 3.2.2),

for then roundoff may occcur before the probability switches. In fact,
the Case 1l simulations of Section 3.2 are just such a case. It should
be recognized that although the lower limat is scmewhat artificial, it
1s required in some form whenever a computer with finite precision is

used for control caleulations.
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As mentioned in Segtion 4.5, the existance of a lower limit reguires
the modification of the analysis of the behavior of the method. The
remainder of this section contains tlie Modified analysis. As in Section
4.5, we study the canonical problem of Section 2.1. Further, we assume
that the system is oscillating as in Figure 4.3 such that P is closely
approximated by either 0 or 1. Note that this is consistent with Section
4.5.

Recall from Section 4.5 that the canonical problem (see Section 3.1)

can be rewritten as

¥4 (k+1) A () © ¥y (k)
= _ ) (4.8)
22(k+1) [«] éQ(P) XQ(k)

The log likelihood ratio, ¢{+)}, can then be written as
k
= R
alk) = iil zé(k)gggg(k) zi(k)gigi(k) (5.1)
where gi 1s defined in Section 4.5.

In Sections 4.4 and 4.5 1t is argued that during oscillatory periods
{i.e., when P{-) is alterately near zeroc and near one), then «(k) must
behave as the solid line in Figure 5.1 and also that ¢(+) can be approxi-
mated by a piecewise-exponential curve. Itwill now be argued that the
affect of a lower limit on the probability is to change the trajectory
of af(+*) to that of the dotted line in Figure 5.1.

In Section 4.4 a static relationship between P{-) and o(+) has

been derived as
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P(k) = ’ (4.11)

B(0) fe + (1-2(0))

Thus, i1f the probability of each model is constrained to be always greater
than some limit Plim' then it can be shown that this is entirely egquivalent

to constraining a{+) such that

locy = | <oy, (5.2)

where o, 1S the wvalue of a(+) when P(-) = 1/2 {(given by Eguation (4.13))

and is given by

a. .
lim

1= Pin
a =21n < - (5.3)

Lo 1im

Thus, placing a lower limit on the probability can be seen to modify the
plot of a{+) to the dotted line in Figure 5.1: Initially, until the limit
is reached, the Limited and non-limited behavior are identical, but vhen
the 1limit is reached, further increases in the magnitude of o(*) are
ignored until o{*} again decreases (in magnitude). ©Note that since the
size of the term in Eguation (5.1) which forces 0.(+) to return to zexo
is independent of the exaistence of a limit, «¢{+) must cross the axis
earlier when a limit is in effect than otherwise. This of course will
influence future periods. Tt is thus argued that during oscillatory
behavior in which the lower limit on the probability 1s achieved, in
analyzing the behavior of the MMAC algorithm the positive term of
Equation (5.1) can be set equal to o for P & 0 while the negative

lim

term can be set equal to -q.. for P ® 1 (assuming P small}.

lim lim
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Thus, we see that for the analysis of Section 4.5, the effect of a
lower limit on the probability is to allow us to replace Egquation (4.23),
repeated here for convenience,

R » 1 2
E a2[|12(0)|| g~ & al||gi(0)|| 9y (4.23)
1=1 1=1

by the eguation
Ty

. i 2
Ui 3 2 a, |y, @ || (5.4)

lim i=1

where Tl has been defined in Section 4.4 as the time of the probability

transition from P=1 to P=0,
~ 2
a, =max ||Z (®)]]
i P —i

and O'i is the maximum eigenvalue of Qi (where, by symmetry, O'l = 0'2 = J}.

T
Noting asg in Chapter 4 that ||y2(’I‘1)[]2 = a21[|y2(0)]|2, Equation (5.4)

can be rewritten as

9%, 2 2
allm=(a2——-l) [HS_Z__z(Tl)H - HZQ(O}H 1 . (5.5)

or, solving for lle(Tl)llz

o
2 1i 2
g, ¢z |7 = le + |z, @] (5.6)
whexe
- a203 5.
R.L (a2 -1) i .

In the common case {see the simulations of Case 1 in Section 3.2) in

which
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2 2
Hz, @ 7 << [lg, )| (5.8)
then Egquation (5.?) becomes

Q.
2 lim
Ny, ) 17 » == . (5.9)

!

For the Case 1 parameters, this indrcates that the probability will change
when ]122(T1)||2 = 100 which agrees well with the simulations when the
integer nature of T1 is considered. Note that Eguation (5.9) implies
that the probability will change when ||y2(0)||2 equals a constant if
the lower limit on the probability is achieved; this constant 1s dependent
only on the system parameters,

In order to determine any change in period due to changes in the
state, consider the situation in Figure 5.2 in which P=1 for k=0 to
T and P=0 for k=T, to T,+ T, where T, and T, + T. are defined as the

1 1 2 1 1 1 2
switching times of the probability. Thus, from Equation (4.20)

a]I: ]|11(o)!12 k € [0,T,)
2
Hyym |[° < kem, T ,
a, ~a |y @] k e [T),Ty +T,))

where,

& @ |* <1

o
il

U
il

15, @ []% > 1 :

by the construction of Ei(P)' From Eguation (5.9) it is clear that

2 2
g, @ ]° % [|gg e+l [" or
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Fig. 5.2 Definition of Tl and ‘1‘2
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T T
g, @112 < a2t [ly, @]]? (5.10)

which; after -some manipuldtién, yields

T
T2 . 1n al
'l‘l — 1n a2

. (5.1L)

Evaluation of this results in the foilowing conclusion: If ala2 < 1, then

the peaks of the trajectories of ,121(')l| are constant and the pericd

1s increasing on each cycle of the probability. Furthermore, if aa, = 1,

then the peaks are constant and the period approaches a constant. The

case in which a,a, > 1 is indeterminant from the above analysis although
a plausible resﬁit; which is consistent with the simulations and the
results of Section 4.6, is that the peried would decrease until Eguation
(5.8) would no longer be a reasonable approximation. At this point,

the peak amplitude of [|yl(-)|] would grow. Basically in this case the
states are destablized more than they are stablized and the overall
system is unstable. Neither term (i.e., the positive or negative term)
in the eguation for cf{+) (5.1) need become small. Note that alaz <1
results in stable behavior which is in agréement with the results in
Chapters 3 and 4. However, in this case, note that the peaks remain
constant and so asymtotic stability does Egz:result. In fact, the

oscillations will continue forever with constant amplitude and increasing

period. This is indeed an unusual type of behavior.
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5.2 PForms of the Equations and Accuracy

In the course of doing the simulations contained in this thesis,
a few points regarding the numerical aspects of the MMAC methed have
become apparent. These effects will not be dwelt upon as whole volumes
could be written. However, they do form part of the basis for the form
of implementation advocated in Section 5.3 and gince such issues are
often overlooked, a brief discussion is in order.

For the simulations in Chapter 3, the variable P makes large
excursions, in some cases changing by 50 orders of magnitude in one
or two time steps. This, of course, makes implementation very crucial.

For example, throughout this thesis, the identity )

P_= 1-P (5.12)}

has been used to reduce the number of variables under consideration.

However, using Equation (5.12) in a recursive eguation such as

Pl{k)pggl)
2 (k}p (_r_l) + (1-91 (k))p (_r_z)

Pl(k+1) = (2.22L)
can result in very poor accuracy due to roundoff. Thus, on a computer

with 6~digit accuracy, this roundoff will occur for P2(-) % 10-6 re-

sulting in Pz(‘) becoming exactly zero and remaining there unless some
form of lower limit is placed on the probabilities as discussed in
Section 5.l. Thus, usingiPé-) = (1-Pl(°)) places severe restrictions
on the choice of a lower limit on the probability, which may be un—

desirable. The following three conclusions then are apparent.
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1) Use of separate equations for Pl(-) and P2(-) is desirable if

a recursionon P is to be performed as in Egquation (2.22b). Thus, in

Pl(k)p(_x_'l)

P, {k+l) =

1 P, (k)p(r,) + P, (p(x,)
P (k)p(x,)

P, (kt1) = 2 2

B, )p(x,) + P, (k)ptg_:z)

which aveids the direct recursive calculation of [l-—Pl{k)]. Thus,

when using a floating peoint representation with finite preeaision Pz(k)

in the above may be nonzero even when [1-Pl(k)] is zero. Note that this
does not significantly increase the computational load since both the
numerator and denominator of the second equation are contained in the
first. BAn alternate approach to solving this problem is discussed in

the next section.

2) Due to the fact that large variations in both the probability and
the states estimates often occur, the maximum number of digits possible should
be matntained. It should be noted that this is very important for the
probabilities but less so for the other wvariables since the rounding

off of the state does not adversely affect the overall system.

3) There is a direct relationship between the smallest possible

value for PLIM and the possible range of exponents in the floating

point representation. This tradeoff between design freedom {i.e.,

choice of PLIM) and computational complexity (1.e., needing laxge
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magnitude exponents) must be recognized in any application.

As shown in the first section of this chapter, the achieving of
a lower limt by the probability can result in some change in the
behavior observed in a system. Also, a number of the precision aspects
of the problem have been shown to most directly affect the probability
variable. It thus is of some advantage to develop an implementation
which minimizes the effects of such phenomenon. Such an implementation

is discussed in the next section.

5.3 Proposed Implementation

As shown in the previous sections of this chapter, the form of
the equations used to implement the MMAC algorithm can affect the achieved
results. The major area in which problems occur has been seen to be
in the calculation of the probability. In this section an alterna?e
form of the probability equation 1s proposed which, although not elimi-
nating the problems, does tend to minimize their effect.

The existance of a lower limit on the probability, although somewhat
artificially imposed, is a necessary result of using a computer with
finite precision. Thus, in any application of the MMAC method, a lower
limit is present, 1n one form or another. The form of the probability
equation about to be presented does not eliminate the lower bound problem
but instead reduces the smallest possible value beyond that possible
with the form given in Chapter 2. It thus allows increased freedom of
choice for the designer.

From Section 5.2, one possible implementation of the probability

calculation is
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P {(k)p(x,)
1 3
Pl (k)p(_gl) + Pz(k)p(;‘:z)

Pi(k+l) = i=1,2 il

It is argued there that this form is to be preferred to the form given
by Equation (2.22b) in that the subtraction l-Pl{') is awvoided. In
Section 4.4, it is shown that Eguation (2.22b) is entirely equivalent

to

.- -;-o'. (k)
Pl(O) Be
Pl(k) = 1 (4.11)
~=ak) )
P]_(O) Be + PZ(O)
with

k -1 -1

alk) = 151[51(1)"6'1 _1_?_1(1) - _l_:_‘z(l)g,z 52(1)] . {5.13)

It 1is believed that Eguation (4.11) is numerically superior to either
of the other approaches. WNote that, while a term such as [1- Pl(O)] is
still required to compute P2(-) for the calculation of the control, any
errors in this computation do not get accumulated in the probability.
Thus, the real advantage of using Equation (4.11) is that it is static,
involving no recursive calculations. Thus, while roundoff cbviously
will occur, it will not influence future values as would happen with the
other approaches. It should be pointed out that the recursive nature

of the probabili?y has, in effect been retained in the calculation of
a(+) and that now care must be taken to guarantee its numerical accuracy.
However, by its nature, it tends to be a better-behaved function. For

50

example, a change in P from 1 to 10 corrasponds to a2 change in a(*)
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from approximately +225 to -225. Thus, the recursion has effectively
been moved to the exponent {i.e., the Log Likelihood Ratio) rather than
in the probability 1itself. The importance of this can best be seen by
considering the following problem. Assume one wishes to calculate the
ab . a b
quantity (e e ). Once approach is to compute {e }, then compute {(&7)
and finally (ea)(eb). This is effectively the kind of approach Equation
{4.22b) uses. However, it is more accurate {(for finite precision calcu-

lations) to compute e(a+b), which is analogous to what Equation (4.11)

does.

- A further advantage of using Equation (4.11) is that it can be approxi-
mated by any one of a number of functions without having to be overly con-
cerned about the accuracy of the approximation. This is due to the fact
that Equation (4.11) 1tself is not recursive and thus erxrors made in ap-
proximating P do not accumulate except through the true states. One ex-—
ample of such an approximation is a switch such that P(+) = 0 foxr a(-*) >0 and
P = 1 for a(*) < 0 while another has besn presented in Section 4.5.

Note that for the wariations of the MMAC algoxithm which use the control
for the most probable model rather than the weighted control, a switch
is an exact representation and not an approximation.

It should be pointed out that this approach can be generalized to an
N model situation. In this case, one can define the N=-1 log likelihood

ratios based on, for example, model N as

k 1 -1
o, (k) = jiltggcj)ﬂi T (3) - £t Ly (9]
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where all terms are defined analogously to their two-model-case counter-
parts. Repeating the derivation in Section 4.4 yields the N-1 nonlinear

egquations for the probabilities

1

. = =0, (k)
P.(O)Bie 21
Pi(k) = 1 .
N-I - —--2-0:.(1:)
TP (0)B.e ‘7 |+ [1-P_(0)]
a3 3 N
=1
5.4 Summary

In this chapter a number of issues relating to the behavior of the
MMAC algorithm when implemented on a digital computer have been examined.
The most important of these is contained in Section 5.1 1in which the
effect of placing a lower bound on the probability is discussed. The
principle conclusion of that sectiop is that during oscillatory pericds
in which the lower limit is achieved, the conclusions of Chapter 4 are
still valid except that the peaks of the trajectories of ||gi[| are con-—
stant even during stable operation. Table 5.1 thus summarizes the con-
clusions about the stability whenever the lower limit is achieved. These
results are seen to agree well with the simulation studies in Section
3.2.2.

It should be born in mind that, as discussed earlier in the chapter,
there are philosophical reasons for choosing a relatively large value
for the variable PLIM' Note that such a cholce resulis in a tendency to
reduce the amplitude of oscillations as well as the periocd since the

unstable state must now change less to cause C(*) to change by aLiM
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Peaks of

a : .
a;a, llyill Pexiod Stability
<1 constant increasing stable
=1 constant constant just stable
>1 constant changing decreasing unstable

to increasing changing to
indeterminant

TABLE 5.1

Stability Summary ~ P Limited
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i.e., tause P to reach P -
{ ’ e e LIM)

Section 5.2 has presented a brief discussion of the numexrical

— éroéérties of wvarious forms of the probability ééuatlon. The principle
conclusion is that the MMAC algorithm, if implemented using the straiéﬁt
forward equations such as Equation (2.22b), places large demands on a
digital computer due to the recursive nature of the calculations, the
use of a term such as (1L-P(k)) at each iteration, and a possibly large
dynamic range of the probability. A2An alternate formulation, based on
the analysis of Section 4.4 is presented in Section 5.3. It is shown
that this formulation tends to be superior to the others presented in
that the recursion is done on the exponent where accuracy can be bettexr

*

controlled.



CHAPTER 6

COMMENTS AND COMCLUSIONS

Thrs thesis has presented an analysis of the behavior ;f the Multiple
Model Adaptive Control algorithm through both analysis and simulation.
Extensive use has been made of a canonical system (see Section 3.1) in
which certain assumptions on the structure of the true model are made,
chief of which is that it is diagonal. While somewhat extreme, this
sample structure has been carefully chosen to display what we feel are
the critical characteristics of the method as cbserved in more general
applications and which, unlike the more general problem, alsc has been
amenable to detailed analysis. )

The purpogse of this chapter is twofold. First of all, wvarious
ad hoc modifications have heen proposed for the MMAC algorithm whaich
are aimed at overcoming some of the undesirable behavior observed in
applications. An example of such 2 modification is the introduction of
a low pass filter to smooth out the probabilities. Section 6.1 contains
a brief discussion of the most prominent modifications along with three
methods for improving the response which are suggested by the results
of the analysis of this thesis. The basic conclusion is that with any
of these modifications great care needs to be taken to ensure that the
response 1is not degraded.

The second purpose of this chapter is to provide a summary of the
major conclusions of this thesis. This is done in Section 6.2 in which

the specific conclusions of the analysis contained in this thesis are

=139~
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summarized. Also in this section are a list of gualitative conclusions
regarding the MMAC system when applied to general systems. These result
from extrapolating the specific conclusions to mores general systems.

The chapter concludes with a list of suggestions for future research in

understanding the MMAC algoxrithm.

6.1 Modifications

Various ad hoc modifications have been proposed -to overcome some of
the undesirable properties of the MMAC algorithm which have been cbhserved
in applications. In this section two of the most prominent of these are
discussed. First of all, in order to make the algorithm more sensitive
to changes in the true model, a form of the MMAC algorithm which possesses
a finite memory property can be used. In the first subsection, it is
shown that most of the properties of the MMAC method apply in this case.
The exception to this is that no convergence property can be given due
to the finite memory.

The next subsection contains a brief discussion of the addition of
a low pass filter in the probability calculation. This modificataion
has been proposed [23]1 to smooth out the rapid probability transitions
and oscillations which can occur and thereby attempt to get a smoother
state response. It is argued in Section 6.1.2 that, especially when no
model matches the true system, this can result in at best no change in
performance and at worst in a destablilizing effect. This section then
concludes with a discussion of three modifications which have been

suggested by the analysis of this thesis.



G.1l.1 Finite Memory MMAC

One of the many ad hoc modifications to the MMAC method which has
been proposed has been termed Finite Memory MMAC (FM-MMAC). It can best

be understood by considering the form of the probability equation given

in Section 4.4:

1

- - E a (k)
P(k) = ?‘O’ie (4.11)
~5 o (k)
P(0)fe + (1~P(0))
where
k -1 -1
alk) = izlgitlygi 51(1) - 52(1)92 52(1) . (4.10)

This form of the egquation makes i1t clear that all of the past data are
equally weighted in determining the present probability. This is not
necessarily what one would desire in an adaptive controller since data
from the far past may not be relevant to the current operating conditions.
There are, of course, many ways to modify the method so as to make 1t

more responsive to the immediately past data than it 1s to the more

remote data. For example, one may exponentially weight the past data:

k
g(k) = Z
i=1

(-1i) ., ,.. -1 , e .
a [z (1)8,7z, (1) - z3(3)8,7z, (1)] (6.1)
for some a < 1. An alternative is to merely use the last M values of

the residuals. Thus, one could use

k
~ -1 -1
G = T [zP(L8 7 (i) - 228z (i)] (6.2)
T R 2722 =2
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where M is a free design parameter which would be chosen partly on the
basis of how fast the parameters of the true model are expected to
change. This is referred to as the Finite Memory MMAC algorithm.

It should be noted that a significant amount of the analysis of
systems of these types has already been done in Chapter 4. To illustrate
this, a discussion of the second of the proposed schemes with M=1 is

given. Thus, take

A - N "l - r -l
Gk) = z; ()6, "z, (k) - z) (k)gzgz(k) . (6.3)

First of all, from Section 4.1, the basic linearized analysis con-
clusions such as the neutral stability are unchanged as are the results
of Sections 4.2 (Universal Stability). Note that the state convergence
results of Section 4.3 do not carry over in this case. The technical
reason is that Pl(-) 1s no longer non-decreasing. In fact, it is easy

to show that

Hae) [l »o=2 ) > 2

where N is the number of models. Thus, if the closed loop system 1s not
stable for the éase in which all models are equally likely (1i.e., the
N-model extension of the condition that EIP) is stable for P = 1/2),
then [lEJI can not approach zero. This 1s a direct result of the finite
memory assumption and occurs for any finite M. This is not, however,
necessarily bad for an adaptive controller. It roughly corresponds to
the noticon that without information as to which model is correct,

{i.e., £i==0) one can assume that each model i1s equally likely.



The results of Section 4.4 on the analysis of the probability
equation also hold since they do not depend on how (+*) is computed.

Thus, Figure 4.1 is again useful as are the approximations

af=) >> c =>  P(*)

H3
o

{(4.12)

a
[

a(s) <o, = B()

and (4.14), where as is as in Equation (4.13). The qualaitative behavior
can best be appreciated by noting that combining Approximation (4.12) with

BEqguation (6.3) yields

l|£l(k)]le_l >> |[£2(k)He_.l => P(k) ~ 0

o1 —2 (6.4)
I|r (k)|| << ||r (k)ll = p(k) ¥ 1
—1 e-l -2 e-l
s § —2
where, as 1n Chapter 4 we have assumed as = 0. (Removing the assumption

that us = 0 merely results 1in us being added to the appropriate term in
Approximation- {6.4}.) Thus one can expect that, compared to the ainfinite
memory case, the period of oscillation for the M=l Ease will be shorter
due to a lack of the accumulation of the residuals over time. Effectively,
by removing the summation of the residuals (the discrete time analogue

of an integrator), a lag has been removed f£rom the system. Thus, one
would expect the peaks of the state curves to be smaller than when the
summation 1s included. Note that it is possible, following the analysis
of Chapter 4, to calculats approximations to the switching times Tl and

T2. In fact, 1t becomes somewhat easier to compute since no summation

is invelved, Note, however, that care must be used in applying the results
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due to the assumption that P is always near zero or one.

Simulation results of this case are shown in Figure 6.1. The con-
ditions of this simulation.are identical to those of Figure. 3.2 except ..
that M=1 is used in the probability calculation. WNote, however, that
the character of the response has changed markedly. The probability
(Frgure 6.la) changes much more rapidly and takes on intermediate values
cccasionally as it transitions between zero and one. This, of course,
complicates any analysis such as the computation of the switching times

T, and T The state trajectories are shown in Figure 6.lb. Note that

1

they are also much more oscillatory and in fact appear to limit-cycle.

2°

It is unknown at present if this 15 in fact a true limit cyecle. Also,
clearly shown is the reduction in the peaks of the state trajectories
from about 17 for the unmodified situation to about 1.2 for the M=l
case.

The variable'ln(xl xz), shown in Figure 6.1c¢, also is haighly
oscillatory and does not exhibié the negative slope which is evident
in the unmodified case (Figure 3.2). This is further evidence of a
limit cyecle and indicates that the closed loop system is only neutrally
hyperbolically stable. It should be noted that the analysis of Sections
4.5 and 4.6 on the conditions for hyperbolic stability required that
the probability be aiways near zero or one. As long as this condition
is met, the results of those sections still apply to the Finite Memory
case. Note, however, that the assumption on the probability may not

be as reasonable due to the presence of the high fregquency oscaillations.
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6.1.2 Low Pass Filter

As seen 1in Section 3.2, the probability often exhibits a zero-one
type behavior, rapidly changing between these values. In an attempt to
smooth ocut these probability transitions, it has been proposed that a low
pass filtered version of the probabilityv be used for the control calcu-
lation. In this section a brief argument is presented which concludes
that this may result in a degrading of the response.

As seen in Chapter 4, when A(P) is an unstable matrix for all fixed
P, the oscillatory bthavior 1s necessary if hyperbolic stability is
to be achieved. Thus, one can easily imagine cases in which low pass
filtering the probability would result in a degradation in response.
Although no detailed analysis has been done, the resulits of this thesas
indicate that at least during the initial period, including a low pass
filter on the probability would cause the probability to. lag behind
what it would be otherwise. This in turn would result in the umstable
state growing to a larger value before the probability swirtches. &Although
the effects in later pexiods are unknown, 1t 1s reasconable to conglude
that the net result is an increase in the values of the peaks of the
state trajectories compared to the case in which no extra filtering is

done. 3\

6.1.3 Miscellaneous Mpdifications

In this section three relatively simple modifications to the MMAC
algorithm which have been suggested by the analysis contained in Chaptexrs
4 and 5 are introduced and discussed. The three modifications are:

scale the residuals, increase the lower limit on the probability and take
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the square root of a(*} in the probability egquation.

In Chaptexr 4 it 1s shown that a discrepancy between the probability
equation and the state equation exists in that for P near 1/2 the rate
of change of the probability is proporticnal ko the square of ][EJ| while
the rate of change of IlEJl is only proportional to |I3j| to the first
power. This suggests that one way of smoothing the probabilities is

to replace Eguation (2.22b) by

Pl(k)iiigl)
Pl(k+l) = P (RB@E) * P (5@ (6.5)
where
1 -
Br) =Be 2 58, (6.6)
Pir;7 = b, . )

Note that p(*)} is no longer the Gaussian density function. This version

will be referred to as the sguare root modification of the MMAC algorathm.

Simulations using this redefined function (shown in Figure 6.2)
indicate that the probability still behaves in a zero-one fashiom.
Furthermore, note that the peaks of the state trajectories have increased
significantly compared to the results using the normal probability
function. {See Figure 3.2). This is believed to be due to the effective
delay which results from 0{*) changing linearly rather than guadraticly.
Thus, this modification does not accomplish the goal of smoothing the
probability and results in degraded state responses. It is fuxther
concluded that the dominant ponlinearaty 1in so far as the oscillatory

behavior 1s concerned is that of Eguation (4.11)
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- % (k)
P(k) = P(O)Ee (4.11)
-3 (k)
P (0)Be + (1—P0(0))

and not those of the a(*) term.
Finally, note that as predicted by the results of Chapter 4, the

closed lcop syétem 1s hyperbolically stable. This is best seen by con-

sidering the plot of ln(xlxz) given in Figure 6.2c in which this variable
1s seen to decrease linearly. This indicates that the states behave in

such a fashion that

where b 1s the slcope of the line in Fiqure 6.2c.
The second possible modification is to change the lower limit on

the probability, Pllm' discussed in Section 5.1. In that section it

1s shown that during periods when the lower limit is achieved, then the

peaks of the state trajectories are given by allm/R1 where

% inm
al:.m = 2 1n —-IT*— {5.3)
1lim

and Rl 1s given by Equation (5.7). Thus it 1s possible to reduce the

peaks merely by increasing the value of P as long as the approxima-

1lim

tions

A1)

!2

A-p )

£(0)

a
J e
W
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are valid. Even when these approximations are not valid, the approach
is still valid if the effect on Rl is accounted for by replacing
A (x with ||z, (1-p_, éé Séction 5.1).
|L_l(1)|| ith |L_l( lxm)ll (séé séction )
Simulations in which Plﬂn is changed have been done and they confixm

this observatron. However, two points need to be recognized in expleoiting

this fact. First of all, if P is reduced too much, the assumption

lim
that alim/Rl 1s greater than |[y2(0)l|2 {see Section 5.1) 1s violated
resulting in the peaks not being as predicted by allm/Rl' Also, by
Equation (5.3), the value of the peak wvaries as the natural logarithm of
Plim and so large changes in Plim are necessary to make moderate changes
in the peaks.

A third meodification, suggested by the analysis of Section 4.4,
is to scale the residuals. As seen in Section 4.4, the value of the

probability 1s determined by c(*). Thus, 1f the calculation of d(*) is

replaced by
G(+) = a a(-) (6.7)

with a>1 where 0(*) is given by Equation (4.10), then the changes in

a{*) are amplified. This, when combined with the existance of a lower
limat tends to reduce the peak value pf the state trajectoreis and

the period (see Section 5.1). A simulation of this, shown in Figure

6.3, indicates that significant decreases in the peak amplitudes are
possible. The samulation conditions are identical to those Of Figure 3.2
except that the residuals are scaled by a factor of 10. This corresponds

to letting a = 100.in Equation (6.7). As a comparison, the wmodified
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MMAC algorithm had a peak of about 17. (see Figure 3.2b), the FM-MMAC
algorithm had a peak of about 1.4 (see Figure 6.1lb) but oscillated rapadly,
while scaling with a value a = 100 results in peaks of about 1.6 (see
Figure 6.3b). Note also that the quantity 1ln xlx2 for the case when

%(*) 1s scaled (Figure 6.3c) behaves exactly as in the unmedified case
while the FM~-MMAC algorithm results in neutral hyperbolic stability

(i.e., 1n 1n X%, being constant).

This modification only reduces the peaks of the state trajectories
when the lower limit on the probability is achieved. In fact, it follows
directly from the anslysis of Section 5.1 and thus all of the analysis
of that section can be repeated. In particular, the results on the
hyperbolic stability and the calculation of the switching times follows
analogously with the use of Equation (6.7). One drawback of this
approach 1s that since a(*) is scaled without modifying the associated
KF's, o(*) will tend to be affected more by noisy inputs than bafore.

This in turn could significantly alter the response to neoise in the

observations (see Section 6.3)}.

6.2 Summary of Results

The major results of this thesis are of two basic types. The
first type is the specific conclusions which have been derived for the
special cases discussed in Chapter 3 and 4. Thesze result in specific
criteria for each type of behavior but, strictly speaking, apply only
to the associated special case. OfFf possibly greater importance are

the qualitative results which, while not proved in this thesis are
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reasonable extrapolations of the specific conclusions. Both types of
results are summarized below. For the details of the specific conclusions,
the reader is referred to the appropriate section of the body of the thesis.

The major specific conclusions of this thesis are:

1. At best the MMAC system is neutrally stable about an eguilibrium
point in that the probability has no tendency to return to its initial

value following a perturbation. (See Section 4.1).

2. If A(P) is an unstable matrix for P=1/2, then for the structure
of Section 3.1 small perturbations result in the probability oscillating
which in turn results in behavior which 1s either bounded or unstable.

If EIP) is a stable matrix for P=1/2 either oscaillatory or ncnoscillatory
behavior may occur depending on the size of the perturbations and the
stability of A(P) for P=0 and 1 (see Section 4.1). A procedure has

been presented in Section 4.7 for determining a lower bound on the set

of perturbations which yield oscillation~-free rasponses. This procedure

15 valid for any two model structure with slight modification.

3. The rate of change of P is proportional to IIEI‘Z while the
rate of change of l[EJ| is proportional' to Ilgjl to the first power (see
Section 4.1). This results in P changing faster than ||w|| for |lw||
large and slower forﬂlIEJ| small. This partly causes the square-wave
behavior often noted fo; 2.

4. A necessaxry condition for tlzjl - 0 has been shown to be that

E(P) be a stable matrax for some value of P (see Section 4.1, 4.6).

5. & gufficient condition for the exponential convergence of the

state has been shown to be that EXP) be a stable matrix for all values
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of P. (see Section 4.3). This, of course i1s very restrictive. ILacking
this condition, the possibility of at least short term oscillations
in the probability which cause the states to increase must be recognized.

Thus, the MMAC method is probably a poor choice when such oscillations

can not be tolerated.

6. If one model matches the true system and each model is diagomal,
then [!EJI > 0 (see Section 4.3). This says nothing about the behavior

of P(+) howaver.

7. Whenever the MMAC method is used with two models, the eguation
for the probability can be divided into a scalar, static nonlinearity and
a sumation (i.e., the log likelihood ratio) (see Section 4.4). Although
not done here, this can be generalized in the N~model case to an N~1
variable static nonlinearity and N-1 log likelihood ratios. This ap-
proach is important as it emphasizes tﬁe switching behavior of the prob-
ability, allows relatively simple analysis to be done for the often
seen case when P is nearly piece~wise constant and provides a slight

numerical superiority in applications (see Section 5.3).

8. For two special cases specific conditions for the stability
or instability of the oscillatory mode have been presented (see Sections
4.5 and 4.6). These results agree well with simmlations and with
each other. The basic result is that stability results when the slowest
decaying stable eigenvalue and the most rapidly growing eigenwvalue

are such that their product.1s less than unity.

9. The oscillatory mode of response may be hyperbolicly stable

in that the quantity In(x;x,) 1s decreasing even if Z(P) is an unstable


http:product.is

-1l6]1-~

matrix for all constant values of P (see Section 4.6). This 1s seen to
correspond to the observation that the states are alternately contrelled

in a mannhey such that

where b is a constant which is negative for hyperbolicly stable systems.
In this case the phase-plane plots resemble hyperbolas (see Figure 3.5}.
This illustrates the nature of the controller in that it attempts to

achieve stability by alternately controlling each mode of the true system.

10. PFor the special case of Section 3.1 with § = 0, it has been
shown that v(-) 1s decreasing for P=0 and 1 as long as the IQ design

brocedure 1is used with a nonzero state weighting penalty.

11. In contrast to the previous conclusion, there are many values
of the control gain which yield satisfactory matched behavior but which
will result in unstable behavior in the MMAC system. Thus, care must

be exercised in the choice of control gain.

12. The existence of a lower limit on the probability slightly
affects the results. When the limat i1s consistently achieved, the
peaks of the state trajectories tend to a precomputable constant (see

Section 5.1).

13. Various forms of the equation for the probability have been
examined as to the effects of numerical roundoff (see Section 5.2)
resulting in the proposal in Section 5.3 of a form which is believed to

be superior to others in that it 1s less sensitive to roundoff effecis.
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14. Five ad hoc modifications to MMAC algorithms have been
examined {see Section 6.1). The Finite Memory MMAC resulted in a
signn.f:]:ant redu;:tion in the amplitude of £he peaks of the ;:ate
trajectories but also resulted in a significant increase in the fxe-
quency of the oscillation. Adding a low pass filter was seen to be
possibily detrimental to the samulation results as was using the
square root of d(*) in the probability calculation. Two approaches
which appear to improve the response have been given. These-are to
increase the smallest value that the probability is allowed to assume
(1.e., increase P_, ) and also to scale the residuals by a scalar which

iim

is greater than one.
The qualitative results are:

i. If one of the models matches the true system, good behavior
(as. defined by the design cost function) probably results. Some
doubt must remain due to the fact that convex combinations of stabi-

lizaing controls do not necessarily yvield stabilizing controls.

2. If none of the models wmatch the true system but if at least
one model results in a stabilizaing control (that ais, 1f A(P) is the
extension oﬁ Eﬁ?) to the N model case, then this results when there
exists gome i such that Pi = 1 => A(P) is a stable matrix) then
stability probably results. However, it is clear that the quality of
the response may still be poor in that 1t may be signaifiantly different
frxom the design performance specifications as measured by the response

of the control system under perfectly matched conditions. Furthermore,
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"it 1s possible to get oscillations in this situation. Consider, for
example, the case with two models where.one model stabilizes the closed
loop system bﬁt has a slow filter while the other destabilizes the system

but has a fast filter. One could then expect a cycle to develop in which

the system alternates between the stable and unstable control laws.

1

3. Even if no constant value for the probability results in
a stabilizing control, the overall system may still be hyperbolically
stable (where hyperbolic stability would have to be redefined for the
general case). In this case, the probabilities would tend to rapidly

change alternately controlling the various modes of .the true system.

4, Tven when a constant value of P results in a stable contrel,
oscillations in the prechability are likely to occur. In fact, the
oscillations are a natural and necessary attribute of using the MMAC

algorithm when pexrfect model matching does not occur.

5. The MMAC algorithm can be expected to provide good response
in conditions in which the set of possible models is closely approxi-
mated by a finite set of models. BAn example of this would be the

control of a system subject to discrete failures in various components.

6.3 Suggestions for Future Research

Many aspects of the behavior of the MMAC algorithm remain to be

studzed. A partial list follows.

1. Ijung et al [24, 25] have considered closed loop identification
for some specific model structures and identification methods. Appli-
cation of their results to the MMAC method remains to be done. This
may result in the extension of Baram's results [15] to the closed lcop

case.
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2. In Section 4.5, the analysis produced the conclusion that the
peaks of the state trajectories decrease and the period increases if

- - l — -
1s less than unity. However, this eventually results in the

%1%
violation of the assumption that the probability is either zero oOr one.
Furthermore, 1f the closed loop system with P constant is unstable for
all values of P, then the state can not approach zero since, as seen in
Chapter 4, this would imply that P approaches zero even faster than the
state. Simulation results to date have been of little help in that in
all simulations in which long term behavior was explored an underflow

to0 zZero occurred for at least one of the components of the state. Thus,

the asymptotic properties of the MMAC method remain to be determined.

3. All of the analysis and simulation results of this thesis are
based on a noige—free case. 'The effect of noise needs to be determined.
Note that thas is a non-trivial task since even if all the 51(-) are
assumed zero mean, G(*) is then Chi-Squared resulting in a very complex

digtribution for the probability.

4. Many of the gqualitative properties discussed in Section 6.2,
while substantially based on the specific conclusions of this thesis,
remain to be provad in general. An example of this 1s the proof of the
general coﬁvergence of the probabilities when one of the hypothesized
models matches the téue system but when the assumption that the true

system 1s diagonal is not satisfied.

5. Much of the analysis contained in this thesis has been based on
the canonical problem structure of Section 3.1 in which the true system

is assumed to be diagonal with two states. Extensions to non-diagonal
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1
[

systems and/or systems with more than two states are needed.
6. Much of the analysis has included the assumption that there

were two hypothesized models. Extensions to the N-model case are needed.

7. In the analysis of Section 4.6 on hyperbolic stability 1t is
assumed that the control gain corresponding to the mismatched state
(§) is zero. Extensions to the more general case have been attempted
without success (see Section 4.6). However, such results would yvield

useful insight into the general MMAC system.

8. In Section 4.6 it iz noted that for the special case under
consideration, the LY methodology is guaranteed to produce a control
which meets one of the criteria for hyperbolic stability. It remains
to determine 1f this is a general property or merely a result of the

conditions of the special case.

9. Recall from Section 4.6 that hyperbolic stability is guaranteed
when Condations (4.41) and (4.42) are met. The first of these guarantees
hyperbolic stability for P=0 and 1 while the latter does so for P=1/2.

If it can be shown that in cases in which Condition {4.41) is met but
(4.42) is not that P oscillates in such a fashion that 1t never takes
on intermediate values, then Condition (4.41) would 1tself be sufficient

to gunarantee hyperbolic stability.

10. In Section 6.1 it is seen that using the finite memory MMAC
algorithm with M=l results in what appears to be a limit cycle. Simula-
tion results indicate that the characteristics of the limit cycle are

dependent on the system parameters and not on the initial conditicns.
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For example, when initialized with extremely small initial conditaons

10 na 1 x 10720 respectively) behavior

(i.e., true states of 1 x 10
very much like that in Figure 6.1 has been cbserved in that oscillatiomns
of the same amplitude and pexriod start afiter about 200 time steps. It
would thus be useful to examine the characterastics of this case to

determine the amplitude, bias (see Faigure 6.1) and fregquency of this

oscillation.

11. Throughout this thesis, extensive use has been made of the
matrix norm [|§[|2 = Max A(AA'). This results in conservative estimates,
for example, for the domain of attraction in Section 4.7. Calculations
in which Max|A(a)| 2s used in place of the norm have been done and
estimates which agree better with simulation results thus obtained. How-
ever, this quantity 1s not, in general, a norm for the matxix A. Résearch
into using Max|l(§g] in place of the norm may result in the improvement

in the estimates used throughout this thesis.

12. 1In this thesis, the concept of hyperbolic stakility is intro-
duced for the two-state diagonal system. Extensions of this useful

concept to more general system structures needs to be done.

13. A few design medifications have been proposed and analyzed.
It is believed that the results of this thesis can be used to develop
additional design modifications which lead to improvements of the

response.

14. The results of this thesis strongly indicate the types of
behavior which a general MMAC algorithm can cause. Although no con~

gistent general methodology has been developed, the gualitative results
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of this thesis provide a basis for such methodology. Specifically,
important design ground rules are needed for selecting an appropriate
hypothesized model set given the expected range of parameters of the
true model and for the selection of the contrel gains for each of the
hypothesized models. Qur analysis in Chapter 4 provides insights into
the constraints which must be imposed upon such choices and thus should

help form the basis for such a design methodology.



APPENDIX A

DEVELOPMENT OF THE ALGORITHM FOR THE RANGE
oF |lw_|| FOR EXPONENTIAL BEHAVIOR
J

In Section 4.7 an algorzthm has been presented which allows cne to
compute a bound on HE(O) H such that exponential (non-oscillatory)
behavior results. This appendix contains a more detailed development
of that algorithm.

Consider Equation {2.22)

w(k) = A(P) wik)

p{k) p (51)

Plktl) = PIIP(E,) + (L-2(8))pE,) '

We make the following assumptions as in Section 4.7:

1) 20} = 1/2 and B=1 (.e,, &_=0)

2) A(P) is such that there exists an € < 1/2 such that
HWae) || < 1 #pPe(l/2-g, 1/2+€)

i ] > 1 otherwise.
Define 6 to be the value of G(+*) corresponding to P = 1/2-¢; that is,

define ¢ as the solution of

1
A—~26

S—~e = L. ;.10

1
ge"f(?ﬂ
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Thus, by the definition of € and o it can be shown (see Section 4.4}

that

{n.2)

P(*) € (1/2-¢, 1/2+¢) <= q(+) & (as + 68, us-c)

Combining Equations (4.48) and (A.2) with the definition of o(+} from

Equation (4.10), it can be shown that

[|Z@®N]] <1 ¥k >0 (2.3)

<=>

T yenl S
ot }] = Iiil [£; (138, z, (2) ~ x2 ()8 x, ()1] < 8 .

This condition merely states that for Z(P(+)) to remain a stable matrix
P(+), and therefore also 0(.), must remain close to their initial wvalues.

It 1s now necessary to examine o(*). Eguation (4.10) can be rewritten

as
k i . o~ i
afk) = Zw' (0) |0 Ee@))| I | Ta@EE)| w©) (a.4)
i=1 j=1 1=1
where
0O ] 0
3 -1
E_O E]_ 0
0 0 -5t .

Define a such that
[lZean]* <a ¥i =1,2,...,%

Taking norms in Equation- (A.4) then yields



k ai 2
la)| < & |lw.l] (2.5)
. g
i=1
where G = MIN{}L(QI) ' ?\(gz}} with A(f) representing the set of all eigen-
values of §. Evluating the summation in Equation (A.5) then yields

allnll®

|0f.(k)| < w {a™"-1) ° . (a.6)

Thus, the approach in the remainder of this section is to bound changes
in ¢{*) so that ?L_(P (*)) 18 always a stable matrix. If é(P(-)) is always

stable, then a is less than one and Imecuality (A.7) can be replaced by

2 1w, | 12

la(k)l < (1-a)o

¥k (a.7)

since the right hand side of Inequality (A.7) 1s an increasing function
s s 2
of k. This leads to the procedure of Section 4.7 for finding HEOH

such that |0L(')] < 4§ ¥k.
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