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ABSTRACT



The-Multiple Model Adaptive Control algorithm has been used in appli
cations of advanced control technology. However, in these applications,



many undesirable characteristics of the method, such as high amplitude


limit cycles, have been uncovered. In this thesis the basic types


of behavior exhibited by the method are explored. This is done through


the simulation and analysis of the method as applied to a sample system


structure. This structure has been carefully chosen to exhibit the


major phenomena of interest while remaining amenable to detailed analysis.


TPwo major types of results are presented. First of all, detailed conditions



for the existance of each of the types of behavior are developed for the


special system structure under consideration. Of possibly greater signi


ficance are the qualitative insights which result from extrapolating the


detailed conclusions to problems of more general structure. It is believed


that the qualitative understandings developed in this thesis can form the



basis for the introduction of design modifications (two of which are


suggested in this thesis) and the development of a systematic methodology


for the design of adaptive control systems using the Multiple Model



Adaptive Control algorithms.
 


THESIS SUPERVISOR: Alan S. Willsky 

TITLE: Associate Professor, Electrical Engineering and 

Computer Science 
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CHAPTER 1



INTRODUCTION



1.1 Motivation 

In many applications of control theory, the dynamics of the plant



are incompletely known at best. Furthermore, the dynamics are often time


varying and non-linear. In such an environment, control becomes a very
 


difficult task and the problem of the optimal control of such systems



remains unsolved. However, such systems need to be controlled and so
 


a myriad of suboptimal schemes have emerged.



The many methods which have been proposed can, in general, be di

vided into two classes: the passive methods which rely on the robustness 

of a time-invariant feedback controller to maintain good performance and 

the active methods which involve changing the controllers as necessary. 

For example, much of the work of Horowitz 1,2] has been aimed at de

riving a single, time-invariant control law which gives acceptable be

havior for all plant parameter values (a passive approach). The work 

of Wong [3, 43 has similarly been aimed at analyzing the robustness 

properties of feedback controllers using a geometric approach, and



Safonov 15] has derived robustness conditions for controllers when the



parameter variations are due to a change in the operating point of a non

linear system. It should be pointed out that the ad hoc approach of



increasing the plant noise design parameter (see Section 2.1) often



mentioned for the standard Linear-Quadratic-Gaussian (LQG) problem [63



is also a passive method of overcoming plant uncertainty.



A major problem with such methods is that they are, by design,



compromises. Performance for normal conditions is sacrificed in order
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to improve performance for other conditions. In the extreme, it may be



impossible to maintain the desired performance for the full range of con


ditions using a fixed controller. 

In contrast to the passive methods, the active methods make use of



a time-varying controller. Thus, they employ mechanisms which force the



controller to adapt to changes in the operating environment. This, at



least in theory, improves performance under all operating conditions



since the controller can be tuned to the actual, rather than the average



or even worst case, conditions.



As previously mentioned, the optimal control of such systems is an



unsolved problem. Thus ad hoc, suboptimal techniques have been proposed.



However, partly because of the non-linearities (due to adaption) of such



methods, they have not been subject to careful study regarding qualitative



performance characteristics such as deterministlc stability. In applica


tions, many of these methods have exhibited difficulties which have been



mitigated by further ad hoc modifications of the design [16, 233. In



general, these modifications were not the product of extensive, systematic



analysis of the system's behavior and no general design methodology has



emerged.



The research which is reported herein attempts to qualitatively and 

quantitatively examine the properties of one method of adaptive control 

which has been discussed in the literature, namely, the Multiple Model 

Adaptive Control (MMAC) method 17]. The MMAC method, which is discussed 

further in Chapter 2 of this thesis, has a very pleasing structure: a 

cascade of something which resembles a Maximum Aposteriori Probability 

(MAPY identifier 151 (basically a bank of Kalman Filters) and a bank of 
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linear quadratic regulators. However, in use it has become clear that



the MAC method can exhibit unacceptable behavior - such as high amplitude



limit cycles. In this thesis the major qualitative properties of the
 


MMAC method are examined and the principle reasons for the unacceptable 

behavior explored. it is believed that a through understanding of the 

behavior will lead to guidelines for the modification of the design
 


which will ultimately yield a general design methodology.



1.2 Background 

The general area of adaptive control has received much attention 

recently. For example J26] and [27) both contain numerous references 

to a wide variety of approaches. The basic subject which is addressed 

is to generate a control u~t) for a system given by 

x t = A(t)x t) + B(t)u(t) + Ct) 

with observations



zCtl - C (t) x Ct + 0i(t) 

The state xt is an n-vector while the input u(t) is an m-vector and 

Zyt) is a p-vector. The vectors r(t) and n(t) represent system un

certainties and observation noise respectively. The condition which



introduces the most complexity is that the system matrix A (nxn), input



matrix B (anx) and output matrix C (pxn) are only incompletely known.



The performance measure which is often used to judge such systems is



a quadratic one, given by





J(u)= f LX' (t)Q x(t) + u' (t)R (t)Jdt


0



where 2 is an nxn-positive semi-definite matrix and-R is a mxm positive 

definite matrix. 

The solution to this control problem has not been found and the



work in [7) clearly indicates that the optimal system, assuming it can



be found, will prove to be far too complex to implement. Thus, numerous



suboptimal solutions have been proposed.



The MMAC method was largely inspired by the work of Magill [8) who



was the first to examine a parallel -adaptive estimation algorithm in 

which the basic estimation is done by a bank of filters which are then



coordinated by a centralized controller (see Figure 1.1). Further work



in the area has been done by Lainiotis whose work has been summarized



in [9]. The major thrust of this work has been aimed at adaptive esti


mation and parameter identification and not the control problem.



Many authors [10, 11, 7] have examined feedback controllers based



on the structure of Magill's estimator, however. For example, Stein



[103 has been able to derive upper and lower bounds on the cost in the 

optimal control problem and using the upper bound, has obtained a control 

law exhibiting a parallel structure. Saridis and Dao [11] have ex

ploited Stein's lower bound to obtain a different control law. One 

major drawback of both algorithms is that they require significant 

on-line computation. 

Willner [7] proposed the MMAC algorithm as discussed in this



thesis and showed that it performed well in relation to both the 
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Fig. 1.1 Parallel-Adaptive Algorithm Structure
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upper and lower bounds of Stein. Independently, Deshpande et al [12 

arrived at the same algorithm as an ad hoc extension of the estimation/ 

identification algorithm of MagIll [8). The method has been further 

considered by Lainiotis 113). 

To our knowledge, no one has been successful in establishing any 

definitive properties on the behavior of the MMAC method. Specifically,



the convergence properties of the identification problem (i.e., with



the adaptive mechanism disabled) have only recently been proven. Both



Hawkes and Moore [14] and Baram [15] have provided useful results, but



both results do not hold in an adaptive situation (i.e., when the con


trol law is a function of the system output).



The MMAC method has been applied to various settings. For example,



in Athans et al. 116, 231 the method has been used to control the F-8



aircraft. Also, the F-8 controller of Stein et al. [17] can also be



considered to be a multiple model design. Additional experience with



and insight into the MMAC method has been gained by applying the esti


mation/identification algorithm to the detection of accidents on free


ways 118).



To a great extent, the F-8 project 116, 23] has provided the moti


vation for our work. In that project, where the true system does not



correspond exactly to any of the hypothesized models, several problems



were encountered. First of all, the probabilities often oscillated



rapidly between two models, exhibiting behavior very much like a limit



cycle. This problem led to a design modification consisting of the



insertion of low pass filters to slow the probability transitions.
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A second problem which was encountered involved the choice of which



models to include in the set of possible models. The aircraft, of course,



responds in a continuous way to parameter changes, and model set selection



was found to have a considerable effect on performance.



It is issues such as these which have motivated our study. Our



goals have been to understand the characteristics of the MDMAC method



and develop a useful design methodology based on the MMAC algorithm


1.3 Contributions of This Thesis



This thesis presents the results of a detailed study of the M1MAC



algorithm. The major conclusions of this study, which are detailed in



Chapter 6, are of two basic types. First of all, there are specific



conclusions which the analysis of Chapters 4 and 5 yield. However,



since the analysis of these chapters relies heavily on a special case,



the results are of relatively little direct applicability. However,



they are indicative of the types of and basic causes for behavior which



has been observed in more general situations. Thus, of possibly greater



importance are the qualitative conclusions which result when the specific



conclusions are extrapolated to general problem structures. These



qualitative results are also detailed in Chapter 6.
 


The following are the major results of this thesis.



1. The neutral stability of the MMAC method is established. 

2. Conditions which guarantee state convergence are derived.



3. The MMAC algorithm consists of a bank of Kalman Filters,



each corresponding to a hypothesized linear time-invariant model of





the system generating the observations (referred to as the true system). 

The outputs of each filter are,used to calculate the aposteriori prob

abflity that each filtex-matdhes -thetrue system. The'feedback c6ntrol 

is then given-by the probabilisticly weighted average of the controls 

calculated for each hypothesized model. (See Chapter 2 for a complete 

discussion). This results in a highly non-linear closed loop system. 

However, if the probability is constrained to be constant, then the 

closed loop system becomes linear time-invariant. In this thesis it 

is shown that even if the closed loop system is unstable for all 

constant values of the probability, the overall system may have a 

bounded (in fact "hyperbolicly stable" - see Section 4.6) response. 

For a special case, specific conditions are derived.



4. The effects of numerical roundoff are examined and a form of



implementation which behaves well is proposed.



5. The specific results of this thesis can be used to predict the



qualitative behavior of MMAC systems which have a more complex structure



than 	 the ones analyzed herein.



4.1 	 Overview of this Thesis
 


In Chapter 2, the MMAC algorithm is introduced in the form which



will be used in the reaminder of this thesis. Both the continuous and



discrete time versions of the algorithm are presented, although the



discrete version is employed for the majority of the analysis.



In Chapter 3, the canonical problem which forms the focus for the



entire thesis is introduced. This problem, about which various structural
 




-16


assumptions are made, has been carefully selected in order to provide a
 


situation which retains many of the qualitative properties (such as the



existence of oscillations) which have been observed in more general



problems while simultaneously being amenable to detailed analysis. The



remainder of the chapter contains a discussion of the various types of



behavior which have been observed in simulations of the canonical problem



along with sample simulation results to illustrate each behavior. The



basic responses are shown to be of three types. In the first, termed



"exponential" or "geometric", the states are geometrically stable. In



this case, all of the states are decreasing for all constant values 

of the probability. The second type termed "oscillatory" results in the



probability oscillating between zero and one, which in turn results in



the states exhibiting an oscillatory behavior, alternately increasing



and decreasing along with the probability. The third type termed



"mixed", results in a behavior which, depending on the magnitude of the
 


initial conditions, exhibits either an oscillatory or exponential



behavior. These simulations have been used to motivate the analysis



in the remainder of the thesis.



Chapter 4 contains the majority of the analysis of the MMAC method.



In this chapter, each type of behavior described in Chapter 3 is analyzed



in order to yield an understanding of the underlying causes of the
 


behavior. This results in conditions which guarantee the existance of



the exponential mode. Furthermore, various approximations are used to



characterize the major modes of behavior which lead to conditions for



the presence and absence of each behavior for the special case of the
 




canonical problem. Beyond this, more general qualitative results are



also 	 presented.



In Chapter 5, various aspects of the problem of impl'ementing the



MDMAC method using a digital computer are discussed. By far the most



important of these is the modification to the analysis of the oscilla


tory behavior when the finite precision nature of the computer becomes



a factor in the behavior. Also discussed are the effects of using



each of the various forms of the equations as far as numerical accuracy



is concerned. The chapter concludes with the proposal of a new form



of the equations which is believed to allow the designer greater latitude



in design without encountering numerical problems.



Chapter 6 contains a discussion of various ad hoc design modifica


tions which have been proposed in order to overcome the shortcomings of



the MMAC method. Also included there is a smmary of the conclusions



of this thesis as well as some suggestions for future research.



1.5 	 Notation



The following is a brief list of the notation employed in the



thesis. Except for the notation for the components of the residual



of a Kalman Filter, all are believed to be standard.



katrices are represented'hy tpper case letters which are


underlined.



Vectors are represented by lower case letters which are


underlined.



Scalars are represented by lower case letters (not under

lined).





A' - the transpose of A. 

I AII - the norm of a matrix = Max X(A'A) 

X(A) - the set of eagenvalues of a matrix. 

N(A) - the Null Space of a matrix. 

Sll -i - the 6-l-norm of a vector x given by 

vx'8-x for 0-1 positive definite. 

I H x - the norm of a vector given by-Vfl 

Ial - magnitude of a real or complex a. 

Ax(k) - change in x(-) from k-i to k. 

N 
T - Product for i=l to N 

i=l 

N 
- Sum for i = 1 to N 

i=il 

x - vector of true state variables



x. - scalar true state component i
 
1 

Ci) .th 

r.j ) - scalar - component of r2. -! 

(a,b) - open interval between a and b.



[a,b] - closed interval between a and b.



Ois





CHAPTER 2 

REVIEW OF THE MMAC METHOD



The purpose of the present chapter is to introduce the Multiple 

Model Adaptive Control (MMAC) algorithm. A full discussion will not be 

given as that is available from other sources [7, 12]. 

The MMAC algorithm is composed of two parts. The first, which 

performs an estimation/identification function, is similar to a Maximum 

Aposteriori Probability (MAP) algorithm [15] which is discussed in Section 

2.1 for the discrete time case. The MAP algorithm is structured as a 

bank of Kalman Filters with some decision logic. The second part, which 

is cascaded with the MAP-like algorithm, is a control computation which



is discussed in Sections 2.2 and 2.3 for the discrete time case. 

The remaining sections of this chapter contain a development



and discussion of the special forms of the equations for the IMMAC algorithm



which prove useful in the remaining chapters of this thesis. 

2.1 Maximum Aposteriori Probability (MAP) Identification
 


2.1.1 The Kalman Filter (KF) 

Assume that a linear, time-invariant (LTI) discrete time system is 

given by: 

x(k+l) = A x(k) + Bu-(k) + C(k) (2.1a) 

with observations:



y(k) = Cx (k) + n(k) (2.1b) 

-19
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where x(k) is the n-dimensional state vector, u(k) is the m-dimensional 

control vector and y(k) is the p-dimensional observation vector. The 

noise sources C(k) and TI(M) are taken to be zero mean white Gaussian 

noises of covariances E and * respectively. The matrices A (nxn), B 

(nxm), and C (pxn) are the system, input and output matrices respectively. 

We will use the notation



(A, B, C) (2.2) 

to refer to the above system. The system (A, B, C) which generates the



observations y(k) will be called the true system.



In practice, the actual values of the matrices A, B, C, E and T' are 

unknown. However, estimates of these parameters are often available from 

a knowledge of the system. Thus, (A., B., C.) will be used to denote 

the ith model of the system, given by: 

x(k+l)" = A.x(k) + B.u(k) + ?(k) (2.3)
a= -i 

y(k) = C.x(k) + p(k) 
- _ 

For the purposes of the present study the values of q) and E will not 

vary from model to model, although extensions to that case could be con

sidered. 

It is well known that the steady state Kalman Filter (KF) [19, 20) 

which estimates the state x(k), based on the model 

(A., B., C 

is given by 
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X. (k+l) = A.i. (k) + B.u(k) + H.r. (k+l) 

(2.4) 

r(k+l) = y(k+l) - C [A.. (k) + B u(k)] 

.th 
where H.is the Kalman gain for the i-- model:



-H. = .CIP (2.5) 

and E. is the nxn solution to the familar Riccati equation 

. - [C, -'C. + (A.S.A! + 2) . (2.6) 

The state estimate ^ (.) is n-dimensional, while the residual vector, 

r. (-) , is w-damensional. 

2.1.2 Properties of the Kalman Filter



The Kalman Filter has many interesting properties, (see for example 

[19]), a few of which are useful in understanding the MMAC method. These 

are now discussed. A few definitions are useful. 

th 
Definition 1: The i Kalman Filter is said to be matched if the matrices



used in the filter design (i.e., the model) and the matrices of the true 

system are identical; that is, if A = A B = B and C. = C. 

Definition 2: The Filter is called mismatched if it is not matched.



Property 1: If the i t h Kalman Filter is matched then in steady state: 

E{r.(k)} = 0 (2.7a) 

E-,r (k) 0.lri(e)} i (k-e) (2.7b) 
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where S(-) is the impulse function, E{-} denotes expectation, and 6. is1 

given by



8. i+ CE .c . (2.7c) 

Furthermore, if the a.th filter is matched, then 5^.)/1 gives the optimal 

estimate of the state x(').


Property 2: If the ith Kalman Filter is matched, then the probability


density function for the residual r. (-) is given by [20]:

2


1 [ lr] 
p(r.) = P.e 2 (2.8a) 

with 

. = (2 (2.8h))m16  
 

Property 3: If the ith Kalman Filter is mismatched then 

E{r. (k)} r (W) (2.9a) 
-1 

E{r.(C)-.(I)).(r CM (YO) 'I ki (2.9b) 

where r in general is nonzero and 8. is a function of the system and the 

noise covariances (see [28J) with, in general, 9. (0) > I. 

It follows that if two filters (one matched and one mismatched) are 

computed then



Efr (k)6 1r (k)} < E{r I WO r (k)} (2.10)
-1 -l -1 -2 -2 -2 

where E. is from the matched filter and E. is from a mismatched filter 
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[16]. Thus, if equation (2.8) is evaluated for both a matched (1) and 

a mismatched (2) YT, then 

E{p(r )} > Efp (r2) } (2.11) 

2.1.3 The Probability Equation 

Assume that we are interested in identifying a dynamic system from 

its outputs and that the true system is known only to be one of N speci

fied models. Baye's rule and Properties 1-3 imply [15, 7] that the 

th 
probability that the i model matches the unknown system (P) is given 

by 

P.(k) p(r (k+l)) 
P. (k+1) = 1 (2.12)

1 N


Z P.(k)p(r (k+l))



j=l ] -3



where p(r (k+l)) is given by equation (2.8). The structure of the re


sulting system is shown in Figure 2.1. 

2.2 Adaptive Control 

If one knew wirh certainty which model matched the true system, it 

would be a simple matter to design a controller using any of the standard 

synthesis techniques. Therefore, one reasonable way to determine a 

control law for the unknown system is to probabilisticly weight the con


trols which would be used if one assumed that one of the models was



correct. That is, let
 


N 
u~k) = E P (k)u.(k) (2.13)

Ii=l 



185008AW001 

KFrFKI-
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PROBABILITY 
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. .. 

-
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u(k) 

Fig. 21Ie KF N 

r 

ru 

Fig. 2.1 Identification Structure 
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where P. (k) is given by equation C2.121 and u. (X) is the control which
1 --a 

one would apply if model i were assumed to be matched to the true system. 

It will be assumed that 

u. = G.2. (2.14) 

although this is not necessary and is further discussed in Section 2.3.



Figure 2.2 thus summarizes the Multiple Model Adaptive Control method. 

2.3 The Control Law



The MMAC method as developed in the literature [7, 16] has assumed 

that the linear quadratic (LQ) methodology is used to design the controller. 

Thus, the feedback gains G. of equation (2.14) are chosen to minimize 

J(u) = (x' (k)Ox(k) + u' (k) RuCk)) (2.15) 
k=l



It can be shown [21] that the optimal gains are given by 

G. = [B!K.B. + RI B!K.A. (2.16) 

where K. is the solution to the steady state Riccati equation



--- l



K. = 0. + A'K.A. - A.K.B. EB!K.B. + RI B.K.A. (2.17) 

Although to date, all references to MIMAC have made use of the control



law (2.16), this is not a necessary part of the method. Thus, any control 

law which gives good results for the respective model may be used. How

ever, there is a strong interaction between control law choice and



adaptive performance due to the feedback, about which very little is known. 
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For 	 the purposes of this study we will for the most part restrict our



research to control laws based on the linear quadratic CEquation 2.15) 

form. 

2.4 	 Comments on MMAC 

A few comments are in order. 

1) The MMAC algorithm, as shown by Willner [7] is suboptimal even 

for the problem originally posed. Willner was able to show that the 

algorithm is optimal for the final step of the dynamic programming 

algorithm [7] but was unable to continue the calculation backward in 

time. 

2) As posed above, the true model is assumed to belong to a finite



set of known models. Lainiotis 19, 13] has discussed the infinite set 

case but concludes that a finite approximation is then required for use 

in applications. Thus, for most real problems when the true model may



take values from an infinite set, a further suboptimal approximation is 

required. The results of Baram [15] (which apply only to the open-loop 

case) may help in discretizing the model set. 

2.5 	 Continuous Time MMAC



As developed in the preceeding sections, the MMAC method has been



based on discrete time systems. For analysis purposes, it will be useful



to consider the related continuous time problem, largely because of the
 


simplified form of the probability equation. 

The complete equations for the method will not be given here as they 

are the continuous time regulator and continuous time Kalman Filter 

equations [19, 6] with a set of equations for the probability of each model. 
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th



Dunn [22] has shown that if P. (t) is the probability of the i-
1 

model at time t then



N N 
)e
P. (t) = P. C. - . .)-y - E P.C.x ) (2.18)1 i-- j -- 3--3-3 

where C., x. and y are defined analogously to the discrete time case and 

e is the observation noise covariance. The property which makes Equation 

(2.18) useful for analysis is the absence of either exponentials or a 

denominator. These equations are examined further in the two model, two 

state case in the following section.



2.6 A Special Case 

Of special interest to the research at hand is the case when N=2 

(i.e., the two model case) with full state observation. Furthermore, we 

shall assume that the input (B) matrix is the identity. 

The special case captures all essential features of the problem that 

we are interested in examining without adding unnecessary complexity, and 

it forms the central focus for this research. 

2.6.1 Discrete Time Case



In the discrete time case, the true system is then given by 

x(k+l) = Ax (W) + uk) + CWk) 

(2.19a) 

y(k) = x(k) + _(k) 

with models



Model 1: 2-l (k+l) = A 1 (k) + u k) + C(k)-l (2.!9b) 

Zyk) = 1 1 (k) + nk) 



-29-


Model 2: 2 (k+l) = A+ u(k) + _k) 
(2.19c) 

y(k) = (k ) + nk) 

Thus, the ZMAC method reduces to the following set of discrete time 

equations 

x(k+l) = Ax (k) + u(k) + C(k)


y(k) = x(k) + n(k)


2, (k+l) = Ai (k) + u(k) + (k+l)


rL (k+l) = y(k+l) - A 5 (k) - u(k) 

(k+l) = A2 2(k) + u(k) + H r (k+l) (2.20) 

r (k+1) = y(k+l) - A2- (k ) - u(k) 

u(k) = -P () - PG22 (k) 

Pp(k) p(r) 
p (k+l)


S PI(k)p(r!) + P 2(k)p(r) 

- -2P~~~r -2=



pt(r_) 8. e



The ma3or goal of the research has been to understand such qualitative 

properties of the MMAC method as stability. Since the phenomenon which 

have been observed are largely due to the nonlinearities of the system 

and occur even in noise-free simulations, the noise terms 1(-) and n (-) 

add an unnecessary complexity. Thus, these terms are ignored in the 

remainder of this thesis. It should be noted that the KF's, designed 
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assu ing the noises to be present, are an integral part of the MMAC method 

and are therefore retained. Thus, the principle focus of the work is to 

examine the deterministic properties of Equation (2.26) anid the correspoid 

ing continuous time system discussed in the next subsection. Since the 

sum of the probabilities of the models must always be 1, it is known that 

P (k) = (1-P Ik)) Vk. 

Then, rewriting Equation (2.20) in terms of the residual r. (k) we see
-i 

that the equations of the MMAC method can be summarized by 

x(k+l) = Ax (k) + u(k) 

r (k+l) = (A-A )x(k) + A (I-H )r l(k) 

r (k+l) = (A-A )x(k) + A (i-H)r2 (k) (2.21)
-2-2 - -2 -- 2 -221 

u(k) = -(PIG + (1-P )G )x(k) + PGl (I-H)rl + C1-PIJO_(I-HJr
1-). 1- 2- 1)12a- (-2- 2 

P1CIk J p(r l ) 
p(r 2 )

I(k) p~r) + (l-P(k))
P (k+l) = 

P1 pLI)+-l lk) (

2 Er! r.]



-p (r _ ) = 

It will be useful notationally to combine the state and residual



equations into one vector equation. Therefore, we define the vector



Th(,) = Ex' (kn) rE() r, r(k)] 

Thus, Equation (2.21) can be rewritten as 



ORIGINAL PAGE I


OF POOR QUALITY
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- 1-i-:G 
-- -- - (A-p1)G2 "P(IG1--H--) 1)G2(--H2 (2.22b) 

................... ...........................w(k+l) (A-A) 1 w(k) 

................. ........ 


0 A2 (I 2 ) J 

or 

w(k+l) A(P1)w(k) 

with 

P!(k)p (r! 

P (k+ () P ( ))p(r 2 ) (2.22b) 
1 P (k pr) + (1-Pl~)pT2 

These equations, along with their continuous time counterparts, form the 

basis for the research which has been undertaken. 

2.6.2 Continuous Time Case 

Similar assumptions to those previously presented for the discrete



time case can be made in the continuous tme case. Here, we will again 

restrict our attention to the two model, state feedback case with B=I. 

Thus, the MAC method reduces to the following equations 

k(t) = Ax (t) + u(t) + ;(t)


y(t) r(t) + r_ t)


2_lt) = A 2X(t) + u t) + H r (t) (2.23)


rl(t) = y~t) - lCt)


2S2 (t) = A2_2 (t) + u(t) + H2r2 (t)
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r2 (t) = y(t) - 2(t) 

u(t)-=-PiGi -t - PG (t-)



- 12-i 22



P (t)= P Lt)P (t) [Xl (t)-2 (t)J'I- Ix-P Lt)X -(1-P (t))i 2 Ct)I
1 13 2 - 2 - -3 3. -2 

with P2 (t) = 1-p1 t). 

For the same reasons as presented in the previous section the noise 

sources C(t) and rj(t) will again be ignored for the majority of the 

proposed research. It should be noted that under this condition, the 

residual r. (t) exactly equals the estimation error x(t) - 2.Ct) . Thus,
i 2 

equations (2.23) can be rewritten as



S(t) A x (t) + uCt) 

S(t) = (Al-H )rlCt) + (A-A )xCt) (2.24) 

t2(t) = (A2-H 2)r2(t) + (A-A2)x(t) 

u(t) = -PlCt)G (x(t) - r l(t)) - (-P (t)) G2Cx~t) - r2Ct)) 

-1 -11 2 -2-1 
 

P (t) p1!(t)[1-P (t)] r2 (t) -rl(t)]' 0-EP I(t)r (t) + (I-P (t))r 2 (t)] 

Thus, if we again combine equations by defining the variable 

x Ct) 

w(t) rCt)



E-2 Ct) 

Equation (2.24) can be rewritten as 
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[A -PaG1 - (.l-PI)21 PIG1 (1 - PI)2 

1)2 

(t) = (A-A 1 ) jAI-H1 C w(t) (2.25a) 

CA- A2 ) Al-2 

or ;(t) = 9CP!1 wCt) 

with 	 (2.25b)



(t) = 	 P (t) 1-P (t)J]r2 t) ) 0-1[P1(t)r (t) + (l-Pl(t))r2(t)] 

2.7 	 A Change of Variable 

A change of variable which proves useful in the sequel is to let 

q = 2P1 - 1 (2.26) 

Making this change in Equation (2.22) yields 

w(k+l) = A(q) w(k) (2.27) 

q~k+l) = 1(+q)p(r!) - (l-q)p(r2)


(l+q)p(r1 ) + (l-q)p Cr2)



where



1



-(q)- -I-_) O0 

AA 0 AA(I-H) 
- 2 - 2- --2 

In continuous time the corresponding change to Equation (2.25) yields 
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w_(t) = A(q) w (t) 
(2.28) 

= 1(t) 2 -r_3 e [(l+q)r1 + (1-q)r2 ](1-q 2 ) [r_ I ] 

-
where 
 

A - (+ - 1 l-q)G2 3(l+qGI1 L(1-q)G2 

2_(q) A 0 

A- -2 -2 -2 

Note that the same basic notation is used for the A matrices of Equations 

(2.22), (2.25), (2.27) and (2.28). However, no confusion should arise 

as the meaning should always be clear from context. 

,2.8 A Useful Definition 

A further concept which will prove useful can be seen by considering 

either the continuous or discrete time problems as summarized by either 

Equation (2.25) or (2.22) 

Continuous time: w(t) = AiP1w t) (2.25).1 

Discrete time: w(k+l) = A(P1)w(k) (2.22)



where



A-P G -Cl-PIG_ P G_ ' (1-P )G1 
Continous time: Ao A 0 

:-2 -S2 -
A P )A-P G -1-PC )G PGl(I-H )I (1-P)G(t 

Discrete time: j (U- _ O 

A- A, o - cI_ 
0 
-20 1-H)EA-A 2- - ..
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Thus, it is clear that if P1.) is held constant, then Equations (2.25) 

and (2.22) describe linear, time-invariant dynamical systems in the 

variable w' = [x', r, ri]'. Thus, Equations (2.25) and (2.22) with 

P constant will be referred to as the linear, time invariant system for 

fixed P, or LTI for fixed P. As will be seen in Chapters 4 and 5, many 

of the major properties of the MMAC method can be expressed in terms of



the properties of the LTI system for fixed P as a function of P. 

A second important point to note is that in applications and



simulations of the MMAC system, another parameter becomes important due 

to the finite precision usually available for computation. From the



equations of this chapter, it is clear that the MMAC method has the



property that



P. (k) = 0 >P. (.) = 0 for all future times.i i 

Such a situation is usually to be avoided, as it reduces the flexibility 

of the algorithm in a number of applications. For example, the parameter 

of the true model are often changing in adaptive control situations, and 

one would like to require P. to be nonzero for all time so that the MMAC

i 

algorithm can respond to such changes. Thus, one almost always applies 

an additional constraint on the probability such as 

Pi (k) >-Plm Pi ,ik 

10-50This has been done throughout this study with a value of Plm = 

The effect of such a limit is examined in detail in Section 5.1.





CHAPTER 3 

QUALITATIVE RESULTS 

In order to guide and motivate the research, we have examined a 

problem consisting of a system with two independent states and two models. 

This system, while simple, captures many of the basic issues which are



important to the method and sheds light on the fundamental problems in

volved with the MMAC design. The problem is formulated in the next 

section of this chapter. The remaining sections contain simulations



which demonstrate the various types of behavior which have been observed.



A discussion of the important properties is included.



3.1 Problem Formulation



In most applications of an adaptive control algorithm, a detailed 

analysis of the behavior of the algorithm has proved intractable. This 

is especially true for the MMAC algorithm. However, in the case of 

MMAC, it is possible to find a simple example problem that lends itself 

to analysis and simultaneously maintains the basic properties exhibited 

in simulations of the more general systems. Thus, for the purposes of



this thesis, a sample problem structure has been chosen which displays 

what we feel are the critical characteristics of the method and which 

is also amenable to detailed analysis. 

The chosen true system to be controlled is given by: 

x(k+l) = ( alx(k) + u(k) + (k) (3.1) 

y(k) = x(k) + n(k)
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or a continuous time system of the same structure and A matrix 

X-(t) [ ]-x(t)- + Uf(t) + C(t) (3.2) 

y(t) x(t) + n__(t) 

where a takes on values in the range [0, 2J. The discrete time system



is useful for simulation studies and most of the analysis. However, use 

of the continuous time system provides greater insight for the lineariza


tion results in Section 4.1. The set of models for either the discrete



or continuous time case is given by 

Model 1: (A I) 

Model 2: (A2V I ) 

with



[a: ] a i 
where £ takes on various values from 0 to 1.5. The parameters a and a 

are varied to obtain different responses from the overall system. 

For the purposes of XF design, the noise sources (-) and n(') are 

assumed to be zero mean, white and Gaussian with covariances of IS(-) 

where I is the 2x2 identity matrix. This structure results in diagonal 

Kalman Gain matrices such that 

I j =[ h 0 E2=[h 0
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where h is the gain corresponding to a and h is the gain corresponding 

to L Further, the control law weight Q. and R, are chosen diagonal such 

that 

R R =1I
-1 -2 -

This results in a diagonal control gain matrix



The structure described above will be referred to as the canonical problem.



The emphasis of this study has been on the examination of such quali

tative properties as stability. Thus, we ignore the noise sources both 

in the simulation and in the analysis of the properties of the MMAC 

method. That is, in both the analysis and simulations, 1(.) and TI(-) are 

set equal to zero. Note, however, that the KF's designed with the assumed 

non-zero noise sources are retained. it is clear that noise can have 

a major effect on a system [29]. However, as we will see, many of the 

properties of the MMAC method are due to the nonlinearities of the 

probability equation. Thus, it is our feeling that an anlysis of this



noise-free case is of considerable importance. 

A few comments are in order concerning the the choice of the example 

problem. First of all, the system is chosen to be the simplest possible
 


and still capture the important phenomena. Thus, we selected a two
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state, two model system. The choice of model is, admittedly, somewhat 

extreme in the degree of symmetry and mismatch between the models and 

the true system. Howver, this choice has been deliberately made in order 

to investigate phenomena which have been observed in actual applications 

[233. Thus, it is felt that the analysis of this problem has yielded



insight into the more general case.



3.2 	 Basic Responses



Various types of responses have been observed in simulations of the



system presented in Section 3.1. Table 3.1 details the parameters used



for each simulation. The remainder of this chapter presents examples



of each of the major modes along with a discussion of the important



characteristics of each. The simulations, which have been performed on



an IBM 370 computer using double precision FORTRAN, have been used to



motivate and guide the analysis of Chapters 4 and 5. In fact, the types
 


of analysis described in these chapters and, in particular in Section



4.6, were to a large degree suggested by the simulations discussed in



this chapter.



For each simulation presented, three plots have been included. The



first is a plot of the probability of model one (PI) versus time. The 

second is a plot of the two true states x1 and x2 versus time. The third 

is a plot of the quantity ln(xlx ). This quantity has been found to be 

indicative of the stability of the closed loop, nonlinear system. This



variable is further discussed in Section 4.6 where it is linked with



the concept of "hyperbolic stability".
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Case# a a q g h Figures 

la 2 0 1.02 1.62 1 0 .809 .5 3.2 

lb 2 0 0 1.5 1 0 .809 .5 3.3 

ic 2 0 * 1.4 1 0 .809 .5 3.4 

2 1.5 1.0 1 1.09 1 .618 .7245 .62 3.5,6 

3 .9 0 1 .538 1 0 .597 .5 3.1 

TABLE 3.1 

Parameters of Sample Cases 

*This value of the control can not result from an LQ design.





3.2.1 Exponential Mode 

The first type of behavior is one in which the states of the true 

system increase or decrease in an exponential manner (see Figure 3.1).



This type of behavior appears to arise in two situations. First,



examination of the equations of Chapter 2 indicate that if the KF resi


duals r 1 and r 2 are equal with the true state components equal to each 

other, then P (t) = 0 or equivalently, P1 (k+l) = P1 (k). Thus, if the
 


system is symmetrically initialized (that is, the two true states are
 


equal with r 1 = L2 = 0 and Pl(0) = .5) then Pl(t) = .5 Yt or equivalently 

P (k) = .5 V k. The closed loop system is then time invariant and sta

bility analysis for the resulting LTI system follows as usual. Note that 

the resulting system can be exponentially stable, neutrally stable or 

exponentially unstable depending on the control gains al and a 2 . Al

though this is clearly a singular condition, it nonetheless is important 

from an applications point of view because one commonly attempts to 

=initi&lze the system with equal probability and with r 1 r 2 (i.e., 
A 

x = 2 ). An analysis of this mode is presented in Section 4.1. 

A somewhat similar type of behavior occurs when the LTI system for



fixed P is stable for all P. This, of conrse, is a fairly restrictive



condition which in essence requires extreme robustness of each controller.
 


However, such a condition does imply exponential stability. This occurs in


dependently of how the probability behaves. Note that this is a non


trivial result since A (P (k)) is time-varying because P (k) is. Section 

4.2 contains the analysis of this situation and Figure 3.1 is an example



of the type of simulation results obtained.
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3.2.2 Oscillatory Reponse



Probably the most unusual behavior which has been observed both in



the current work an6 iff applications ot the MMAC algorithm f23] has been 

an oscillatory response in which the probability jumps between near

zero and near-one* in what appears to be (but strictly speaking is not) 

a limit cycle. 

Figures 3.2 through 3.4 are examples of this type of behavi6r. Figure 

3.2 is a case in which'the peaks of the state tra3ectories are approxi


mately constant while the period of oscillation increases. Figure 3.3



is a case in which both the peaks and the period are constant while in 

Figure 3.4, the system is unstable, These three cases are obtained by 

changing the value of the control gain. Note that each gain would yield 

stable behavior for the model used in its design.



It is interesting to note that the states of the system are also



highly oscillatory. It might be expected that the plant dynamics would



smooth the rapid probability transitions to form a smoother "average"
 


state response. However, as shown in Chapter 4, the oscillatory state



behavior is a direct consequence of the model mismatch problem in the



MMAC algorithm.
 


The reasons for this oscillatory behavior, which are discussed in



Sections 4.4 through 4.6 and again in Section 5.1, are closely related



to the fact that neither of the hypothesized models individually yields



*Thls is the one set of simulations in which the lower limit on the


5 0 
 probability (see Section 2.8) of 10- is achieved. Section 5.1 dis


cusses the analysis in this case in detail.
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a control which stabilizes the true system. Basically, the adaptive 

control law then attempts to achieve stability by alternately controlling



each mode of the system. This results in unusual behavior which may be 

bounded Wigure 3i.2 and 3.3) or unstable (Figure 3.4). Chapters 4 and 

5 contains analysis which gives conditions for each type of behavior.



The principle conclusion is that stability will result when the controller



at any time stabilizes some modes faster than it destabilizes the re


mainder. Thus, for the two state problem, a state must be reduced more



when the controller stabilizes it than it is increased when the control



results in unstable behavior for that state.



One variable which appears useful in characterizing the above condi

tion is the product of the true states, that is, the quantity XIX2. This 

variable is plotted for each simulation (i.e., see Figure 3.2(c)). A 

complete analysis of the properties of this variable is given in Section 

4.5. While not strictly a Lyapunov function, examination of this variable 

provides a type of analysis which permits a characterization of the sta

bility behavior of the MMfAC method. Furthermore, it captures the important 

observed characteristics of the simulations. For example, the analysis



of Section 4.6 uses this variable to predict the stability of the three 

cases of Figures 3.2 - 3.4. The connection with stability can best be 

seen by considering a plot of x 1 versus x2 . Figure 3.5(a) is such a 

plot corresponding to the simulation of Figure 3.2. The state trajectory 

for this example tends to look like a family of hyperbolas 

bt = e'xl 2 
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If the overall system is bounded, the trajectory then changes as in 

Figure 3.5(a). Likewise, unbounded behavior occurs whenever b is 

greater than zero (see Figure 3.5(b)). 

It should be noted that simply bounding the product of the states
 


is not sufficient to guarantee the boundedness of the individual states



since the states could still go to infinity along a hyperbola. However,



an analysis of the probability equation (Sections 4.4 and 5.1) provides



bounds on the values of the state at which probability transitions will



occur. This leads to the conclusion that the peaks of the state tra


jectories will be bounded whenever the product of the states is bounded.



Thus when a constant value of P results in a stabilizing control, the



system may still be bounded but not asymtotically stable. Further,



when the system is bounded and b is less than zero, then the period of



oscillation is increasing since the stable mode decreases more than the



unstable mode increases and the peaks of the curves are constant re


sulting in the unstable mode having to increase more on each cycle of



the probability.



3.2.3 Mixed Case



When the LTI system for fixed P is stable for some P but not for



all P, depending upon the initial conditions, we can obtain simulations



which exhibit characteristics of either of the preceding types of be


havior in that either an oscillatory or an exponential response may be



observed depending on the initial conditions. For large initial con


ditions the response will initially be oscillatory but usually will
 




-57

85008AW01 9 

x 2


xl 
(a) Stable 

x2 

(b) Unstable 

Fig. 3.5 Phase-Plane Plot





-58


finally decay to a constant value of P.* Furthermore, this limiting 

value of P will be such that ACP) is a stable matrix. Figure 3.6 is a



simulation of the Case 2 configuration with large initial conditions.



When the initial conditions are small, a second type of response



occurs. Assume that A(P) is a stable matrix for P e [1/2-6, 1/2+61 

and unstable otherwise. If P(O) = 1/2, then there exists some non-zero 

w(O) such that 11w_(k) II decays sufficiently quickly so that the resulting 

change in P does not, take it beyond 1/2 + E. This is a direct consequence 

of the fact derived in Section 4.1 that the change in the probability is



proportional to IwIw2 while the change in w is proportional only to 

I I!wI. Figure 3.7 is a simulation of the Case 2 configuration for small 

initial conditions. Note that the probability merely makes a small 

jump and that it shows little tendency to return to 1/2. Section 4.7 

details a procedure which can be used to estimate the range of w(0) 

which results in this non-oscillatory behavior.



3.3 	 S



The preceeding sections have given an overview of the types of
 


behavior which the MMAC method can produce. Table 3.2 summarizes the 

major characteristics of each. Each type of behavior requires a dif


ferent form of analysis in order to understand the dominant, effects. 

This 	 analysis is given in Chapters 4 and 5.



Exponential behavior occurs primarily when the basic characteristics



of the closed-loop system are independent of the probability, either



*Whether or not the oscillations always die out in this case remains
 


an open question. 
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Values of 

P yielding 
Stable LTI b. bounded period 

Section Fig. System . of oscillation 

3.2.1 3.1 All decreasing Yes NA



3.2.3 3 Some decreasing Yes increasing

3.6



3.2.2 3.4 None increasing No



3.2.2 3.3 None constant Yes constant



3.2.2 3.2 None decreasing Yes increasing



N A = resulting behavior not periodic



* = period approaches a constant 

TABLE 3.2
 


Principle Modes of Response





because the probability is held constant by the dynamics or because all



states either increase or decrease regardless of the value of P. Sections



4.1.through 4.3 provide significant insight in this case. Section 4.1



contains the analysis of-.the local behavior, concluding that the prob


ability equation is neutrally stable because the rate of change of the



probability is proportional to the square of the system states. Section



4.2 considers the only case in which exponentially stable behavior can 

be guaranteed. This is shown to occur when J(P) is a stable matrix for 

all values of the probability. Section 4.3 provides an asymtotic result 

when one of the models matches the true system. 

The oscillatory mode of behavior is analyzed in detail in Sections



4.4 through 4.6 and includes criteria as to when the overall system will



be stable or unstable. It is -hown that the important parameter de


termining stability is the relationship between the stabilizing time 

constants of each state. Thus, if the controller stabilizes one state
 


faster than it destabilizes the other, the overall system will be stable.



Section 4.4 contains a detailed analysis of the probability equation



which shows why state oscillations are an integral part of the oscillatory



behavior. Finally, Section 4.7 discusses the reasons for the mixed type



* of behavior. It concludes with a procedure for determining the range of



initial conditions such that non-oscillatory behavior will occur.





CHAPTER 4



STABILITY ANALYSIS



It is the purpose of the present chapter to provide the analysis 

necessary to understand the basic stability properties and qualitative 

behavior of the MMAC method. At present, there is no single stability 

result which totally describes these properties. Thus, it becomes 

necessary to examine several approaches, each of which adds ro the over

all picture, but with none providing a whole view. Furthermore, it 

often is necessary to combine the results of differing methods to deduce 

a single property. An example of this is the combining of the Lyapunov 

results of Section 4.5 with the analysis of the behavior of the probability 

equation in Sections 4.4 and 4.5 to arrive at a stability result which 

neither type of analysis alone could provide. 

Chapter 3 contains simulations of carefully selected special cases



of systems controlled by the NM4AC algorithm. The purpose of the present



chapter is to attempt to provide an understanding of the properties of



the MnAC method by first noting various features from the simulations



and then, guided by the simulations, attempting to understand the features 

by analyzing some special cases. This results in some specific conclusions



for the special cases and, more importantly, it yields considerable in


sight into the qualitative behavior of the MMAC system in more general



situations. The major conclusions of this chapter are:



1) At best, the MMAC system is neutrally stable about an equilibrium



point in that the probability has no tendency to return to its initial
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value following a perturbation. This is not an unexpected property for an



adaptive controller.



2) If ALP) is an unstable matrix for P = 1/2 then the special case



of Section 3.1 results in the probability oscillating.



3) This oscillatory behavior results in the states being either 

bounded or unstable. Specific conditions for two special cases are given. 

Qualitatively, the requirement for the boundedness of the states is that 

the modes of A(P) which are unstable for P =I(P=O) must be dominated 

by the stability of the same mode when P = 0 (P=I) in that they must grow 

slower for P = 1 (P=0) than they decay for P = 0 (P=1). 

4) The oscillations observed in Section 3.2 may be bounded even if



no constant value of P results in a stabilizing control. The controller



then attempts to achieve stability by alternately controlling each mode



of the system. This alternating of controls also occurs for large
 


initial conditions when (P) is a stable matrix for some but not all



values of P.



As seen in Section 3.2, two major types of behavior have been ob


served in simulations: oscillatory and exponential (non-oscillatoryl.



The analysis of the present chapter is aimed at understanding each.



Thus, Sections 4.1 through 4,3 deal largely with the exponential behavior



while Sections 4.4 through 4.6 consider the case in which the probability



oscillates. Section 4.7 considers the case in which either type of



behavior can occur and contains a discussion of the initial conditions
 


that lead to each type of behavior. A detailed overview of the chapter



follows.
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Section 4.1 through 4.3 contain preliminary material dealing with 

the exponential case. For example, the neutral stability of the prob

ability exhibited in the simulations of Figures 3.6 and 3.7 is derived 

in Section 4.1. The other major conclusion of the section is that 

changes in the probability are proportional to the norm of the state 

squared while changes in the states are only proportional to the state 

to the first power. Thus, for small values of the state, the state tends 

to change faster than the probability. This further explains the switch

ing behavior exhibited in the oscillatory responses in Section 3.2. In 

Section 3.2.1, the case in which both models result in stabilizing con

trols for all values of the probabilities has been simulated. It is 

shown that under some conditions the probability dynamics can effectively 

be ignored in determining stability. Section 4.2 contains the analysis 

of this case and proves that A(P) must be a stable matrix for all P in 

order to guarantee that the states will be exponentially stable for 

all initial conditions, 

Section 3.2.2 includes simulations in which the probability tends



to look like a switch, taking on values near one or zero but seldom in



between. Section 4.4 contains a detailed analysis of the probability



equation which leads to an understanding as to why the probability 3umps



so rapidly. Sections 4.5 and 4.6 continue this analysis to present two



methods of analysis for ascertaining when the oscillatory behavior will



be bounded or unstable. These sections, which result in basically the



same criteria, take different points of view; Section 4.5 contains



approximations to the general solution over several time intervals while
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Section 4.6 employs a function which resembles a Lyapunov function.



From Section 3.2.3, it is 6lear that the size of the initial con


ditions partly determines whether the probability will oscillate or not.



In Section 4.7 the situation is analyzed in detail and a procedure de


veloped which allows for the determination of the limits of the initial



conditions which result in the probability not oscillating.



The majority of the analysis in this chapter has been performed in



the discrete time domain. In many ways this is to be preferred as this



is the form in which the method is most often implemented in practice.



However, some of the analysis is done using the continuous time version



because the results are simpler and lend themselves to interpretation



more easily. No claim is made as to the complete equivalence of the



tno forms. In fact, one could expect some differences between them due



to the different assumptions on the availability of sensor data (i.e.,



discretly versus continuously available). However, the qualitative



conclusions of one are applicable to the other, as can be seen by the



examination of the two sets of equations. It should also be born in



mind that the analysis of this chapter is aimed at understanding the



phenomena exhibited in the simulations of Chapter 3. Thus, unless



stated, it can be assumed that the canonical structure of Section 3.1



is under consideration. However, the structure of the canonical prob


lem has been carefully selected to accentuate certain types of behavior



observed in more general MMAC simulations [16, 23]. Thus, the intuition



and qualitative results are believed to provide significant insight in


to the behavior for more general systems.
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It should be noted that throughout this thesis, the terms "oscillatory",



"non-oscillatory" and "exponential" refer to qualitative behavior of the



probability. Although not observed in the simulations in chapter 3, it 

is p6ssible to have the LTI system for fixed P display a second-order 

response and it is important to note that this is not considered an 

oscillatory response for the purposes of this thesis.



4.1 Linearized Analysis 

In Chapter 3, simulation results have indicated that the probability 

may tend to be neutrally stable in that it shows no tendency to return to 

its initial value following a perturbation. Greater understanding of the 

causes and consequences of this can be gained by examining the local 

behavior of the states and the probability about an equilibrium point. 

Examination of Equation (2.22) or (2.28) shows that the _MMAC algorithm 

results in a closed loop system which has a set of equilibrium points: 

any point of the form w =0 , with any value of P is an equilibrium point 

since when w=0, there is no information in the system that would lead



to a change in P.* The value of the state about which the present



analysis is performed is w= 0, P =1/2. The reasons for considering this



point in preference to others stems largely from the high degree of
 


symmetry inherent in the problem formulation given in Section 3.1. For



example, the range of P for which the LTI system for fixed P is stable



*Similar reasoning indicates that neutral stability is a general property



of any adaptive controller.
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is easily seen to be symmetric about P= 1/2 (i.e., about q=0).



In order to lend clarity to the results, the continuous time equations



are considered. Examination of the discrete time equations results in



similar conclusions. The continuous time algorithm is rewritten as



*(t) = (q) w(t) (2.28) 

q(t) = 1 (1-q2 ) [r2-rl' 61((l+q)r + (1-q)r 2] 

4 2 

I(l-q2) w' [Q -qQJ]w 

where


1 (i) 1 1 A - (l+q)_1l--i(!-q)G- +) G (-) 

-2 -l' M~'2 2 r2 1 2 

(q) A-A A -H 0 

A-A0 A-H 2 

Simple calculations then lead to the linearized system equation



(4.1) 

Aw (q0 )
2 

al-o
1 

[Ag q[21(q 1 -q9Q2 
1-w'E[3r02 -q~ 2 

with 

21)2 2 !

= 0 0 

4 ' 14= @-! 8-i 
6o e
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where the linearization is done about the values (w , q 0 3. Note that 

if w = 0, then the linearized system reduces to 

(qw(40 A .2) 

Thus, the system is, at best, neutrally stable to first order (i.e., the



linearized system has a zero eigenvalue). This should not be particularly



surprising; when the state is zero, there is no need or basis for changing



the identification results. It should be further noted that if A(q 0 ) is 

an unstable matrix, then the resulting linearized equations are unstable. 

Thus, in order to have asymtotic non-oscillatory behavior in a system sub

ject to perturbations, it is necessary that there exists a value of q0 such 

that A(q0) is a stable matrix.



Equation (2.28) can also be rewritten exactly as:



*(t) = 2(0) w (t) + Tw(t) q(t) (4.3a) 

1 _ 2 ~2 q3w
4(t) = w1[Q1 0q -Qq + 0q ]w . (4.3b) 

(This is the full Taylor series expansion about w=0, q=0). A few ob


servations can now be made. First of all, for q near zero, the rate of



change of the state is proportional to IIwil while the rate of change



of the probability is proportional to I1w1 12 -hence the neutral stabi

lity of the linearized system. Thus, the probability tends to change



slowly for small values of w. Furthermore, again for q small, the higher



order terms in q can be ignored so Equation (4.3b) can be approximated



by 



-74


(t) 1 r2 - r 2 (4.4) 

21 

Thus, the changes in q are such that q increases if 11-r 11 -> 1 1 1 -and 

decreases if lr2 1 < [Ir 11, which agrees well with the intuitive 

notions of how an adaptive controller should behave. Furthermore, when 

r= r 9 , there is no information as to which model provides the better 

match to the true system .and so no change in the identification results 

can be made. It should be noted that this may result in exponentially 

unstable behavior when A(q0=0) is an unstable matrix and the system is 

initialized with q(O) = q0 = 0 and, for example, r1 (O) = r2(0) = 0. This 

is an important special case since in practice one often attempts to
 


initialize an MMAC system with just such initial conditions. Equation



(4.4) also illustrates the neutral stability of the probability.



In summary, if A(0) is an unstable matrix, the equilibrium w= 0, 

q= 0 is unstable and small perturbations in the state cause a divergence 

from the equilibrium which will most likely result in the oscillatory



behavior of the probability (resulting in either bounded or unstable



state responses) observed in Figures 3.2 through 3.4. However, if K(O) 

is a stable matrix, then two modes of behavior are possible. For pertur


bations large enough that A(q) becomes an unstable matrix, at least 

temporary oscillations most likely occur as seen in Figure 3.6. For 

smaller perturbations, the state, w, will return to zero and the 

probability will simply move to a new value which is such that A(q) is 

stable. This occurs since, by Equation (4.4), the probability has no



tendency to return to zero unless Ir211 -1- rl [ 2
[21 changes sign. 
 This


e e


-2 
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is precisely the behavior observed in Figure 3.7.



The next section discusses the conditions such that the latter type



of non-oscillatory behavior occurs for all initial conditions. This



can be viewed as an extension of the results of this section for the
 


case in which A(P) is stable for all P. Following an analysis of the



stability of the oscillatory behavior, attention again is focused on



the linearized system in Section 4.7 where a procedure is derived for



determining how large the above perturbations can be and still have non


oscillatory behavior guaranteed.



4.2 	 Universal Stability



For any adaptive control algorithm one would at least like to be



able to conclude that the overall system is asymptoticly stable about 

the point w=0 in spite of any uncertainties about the true system. As 

seen in the previous section, the MMAC method always results in a system 

with neutral stability in the probability. However, it is also shown 

that it is Dossible for the states to locally converge to zero despite 

the behavior of the probability. The present section discusses one 

case in which global asymptotic convergence of the states can be



demonstrated.



Consider the discrete time MMAC system given by Equation (2.22):



w(k+l) A(P) w(k) 

(2.22)



P00) p(rl 
LP(k+l) 

P(k)p(r l ) + (1-P(k)) p(r2) 
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We now make the following assumption, which will be termed Universal



Stability: Assume II_(P) Ij <_ E < 1 V P E [0,lJ where I IAII is the 

norm 6f A. -It should be noted that this is a- fairiy restrictive 

assumption as it requires that the control law associated with each



In general, this requires
hypothesized model stabilize the true system. 


that the condition I 7(P)II < 1 be explicitly tested for all values of 


P. However, as discussed in Section 4.3 in some cases such as when



the true system and all of the hypothesized models are diagonal, it



becomes sufficient to perform the test for extreme values of P only.



When the assumption is valid, the following theorem is useful.



0 geo-
Theorem: Under the assumption of universal stability, w(k) + 

metrically as k +0'. 

Proof: By assumption, IIMl9II < 1 VPI e[0,1], Thus-
 taking 

norms in Equation C2,221 yields 

IIcP,1tII IIyfk-1.I 4IIwkacel IlI = I IAP~lwrklI I Cj C4.5) 

Thus, I IwCk)II< sI I _Co II Since by assumption s< 1, tha conclusion 

follows. A



It should be noted that by a suitabla redefinition of ta e-matrix 

XLP), this theorem can be extended to the N-model case where P becomes a


vector of probabilities such that IPI_ I < 1 and each P ais non-negative. 

The value of this theorem in applications ls, of course, saverely' 

,However,
limited by the assumptLon on the stability of A(P-oeerla as
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demonstrated by the analysis in the remainder of this chapter and the



simulations of Section 3.2, a condition such as this is necessary to



guarantee geometric convergence. Any weakening of the hypothesis admits



the possibility of at least transitory oscillatory responses. 

4.3 An Asymptotic Result



As discussed in Chapter 1, the MMAC method was developed with the 

implicit assumption that one member of the set of hypothesized models 

exactly matches the true system. Under this assumption, Barami [15] has 

shown that the identification algorithm (i.e., the value of the proba

bility when all feedback gains are set to 0) converges to the matched 

model when the input is ergodic. However, he also shows that when de

terministic inputs are used and none of the models match the true system 

the convergence properties are indeterminate - the model to which the 

probability converges is a function of the input. Furthermore, his



results require the ergodicity of the residual which clearly is not



guaranteed when the probabilisticly weighted control is applied*.



Thus, no general convergence result has been derived for the closed



loop adaptive situation.



*LJung et al [24, 25] have considered closed loop identification for



some specific model structures and identification methods. However,


we have not attempted to apply their results to the MMAC method;


this remains as a topic for the future.
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However, the following theorem provides some insight into the



expected behavior. It should be pointed out that no assumption as to



the number of models is made.



Theorem: Assume the following for a discrete time MMAC System: 

(1) 	 There are N hypothesized models.



(2) 	 Model #1 exactly matches the true system. 

(3) 	 All models (and therefore by (2) the true system) have


diagonal A-matrices with C=B=I (as in Chapter 3).



(4) 	 rl(0) = 0 

(5) P (0) > 0 

Then, IIx(k)II - o ask-. 

Proof: Since r_ (0) = 0, and model 1 matches the true system, r (k) =0 Vk. 

Thus, P (k) is non-decreasing and either: 

Case 	 1) P 1(k) - 1 as k -* or 

Case 2) jE >0 :)1-P (Ik) > s Vk.


(equivalent,']i P3i (k) > 0.)



Consider Case 1:



P (k) -1= K Dk>K=>A(P(k)) is a stable matrix since A(1) is
1 

stable by hypothesis. This in turn implies the convergence of I xIl. 

Consider Case 2:



l-P(k) > e Vk together with P(k) non-decreasing implies + at



least one other model such that its residual approaches zero since



otherwise Pl(k) would increase to 1. Assume for the moment that there



is only one such other model, denoted by model i. (That is, assume
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that only rC-) and r, approach zero.) Due to the use of full state



observations in the canonical problem, the equation for r, C-I can be 

rewritten from Equation (2.22) as



r (k+l) = A (I-H) r (k) + (A-AjxCk) 

Since r. (k) 0, x(k) must approach an element of N(A-Ai1.* The dynamic 

equation for x(k) is now rewritten as



N


x(k+l) = 0 (k)x(k) + Z P.(k)G.(I-H.)r.(k)
- - 1=1 -- -

where



S(k) = [Pl(k) (A-G ) + (C-P (k )) (A-A) + (I-P(k)) (A -G.) 
-- 11 1 -i- i 

N 
- E P (k)G 

3=2 

j~di 

If r.(-), j3 ori.is bounded, then, since P.(k) + 0, P G (I-K.)r.t) 0.-3 3 1 
-rr 

If r.(-), j.l or i- 0 , then, since P. 00 as e 2 3, p. r -*0. 

N 
This implies that E P (k)G.(I-H )r (k)+ 0. Thus, consider the un
j=l I -j- 3 

undriven system



x(k+!) = 0 (k)x(k) 

which, since P (), P I() exist, can be rewritten as 

*N(-) represents the null space of a matrix.
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x(k+l) = [P (cs) CA-G) + (-P (c)) A.-GI)] x(k) 

+ [(P (k) - P1(c)) (A-G ) - (P (k)-P ( A))(.-G )]x(k) 

+ (l-P(k))(A-Aix(k)



A- 1) and (AI-G) are stable by design. Then since they are also



diagonal,the convex combination of stable matrices is stable. Thus,



there exists a b<l D



(1-P 1 (-)) (A1 <r bIK(k)jIII[1 &'()(A-§9)+ i-GI )il.(k)l 

Then, for some eD b+s<l and any given 6, we can find a K + 

[P(k)-P (c) A-C -( (k)-P (cc)) (A.-G. )lx(k) II1)(C I1x~k)I< 

(since P1 (k) PI(c)) and 

11(1-21Ck))(A-A)x(k)II-<6



(since x(k) + N(A-A.)). Combining these yields 

I 1.S( )I I < (b+e) I-tIx (k) I + 6 Vk > K 

or, using the variation of constant formula,



k-!



I k)lI< (b+)k -K Ix(K)II+ (b+e)k-l-D Vk > K 
j=K



-- 1 -(b+)or IIxk)i I--< --(b+E2 K1 6E6-


Taking the limit as k-no 
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kI Ix~k) I I + 1-64sLim 0 1- (b+e ) 

since K was selected such that (o+s) < 1. But & was arbitrary. Thus 

LimLim Ix(k) I = 0. The case in which more than two models have non

vanishing probabilities follows similarly. 
A 

Some comments on this theorem are important. 

1. Assumption (5) merely guarantees that the probability of model 1 

can change since 

P (0) = 0 => P(k) = 0 Vk
I 

2. Assumption (4) has been made for convenience. It is used to



guarantee that P 1.) is non-decreasing, thus preventing oscillations in 

the probability due to jr 1 -)ll - I jrI-)II changing sign. 

3. Assumption (3) is, of course, very restrictive. it is necessary 

to enable one to conclude stability when a convex combination of stabi

lizing controls is applied. Given a non-diagonal matrix A and controllers



C1 and g with 

J_ A-I)I < 1 , i=l, 2 

it can be shown by counterexample that 

A-bGI-(I-b)G b E [0,1) C4.61 

is not necessarily a stable matrix. It may be possible to overcome this



problem by using the fact that r (k) + 0 as k - which restricts the 

kinds of state interactions which can occur in Expression (4.61. It 
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should be pointed out that assumption (3) can be relaxed to any situation 

in which the convex combination of stable matrices is stable. For example, 

if A and all of the A are in Jordan form with identical Jordan structure, 

then our result holds. This is equivalent to assuming that the shapes



of the modes of the system are known but that the eigenvalues are not.



This is less restrictive than the diagonal case.



4. Note that no claim is made about the convergence of the
 


probability even when one model matches the true system. This is, of



course, another example of the need for persistently exciting inputs



in order to guarantee the convergence of identification algorithms [36].



4.4 An Analysis of the Probability Equation



The simulations of Section 3.2 have indicated that the behavior of 

the probability often resembles the output of a switch, alternately 

taking on values near zero and near one but seldom in between. By now, 

it should be clear that this property is largely determined by the 

equation for the probability, Equation (2.22b). Therefore, the present 

section contains a detailed examination of the characteristics of this 

equation. The principal conclusion is that the equation for the 

probability can be rewritten as a scalar, static nonlinearity and 

a summation (the log likelihood ratio). This decomposition aids the 

analysis since attention can be focused on each part separately. Thus, 

this section examines the characteristics of the nonlinearity and shows 

that the switch-like behavior of the probability is largely due to this 

nonlinearity. Section 4.5 continues the analysis by examining in de

tail how the true system and set of models affect the log likelihood 
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ratio and therefore, by the analysis of this section, the probability



and ultimately? the closed loop behavior.



Equation (2.22b) is repeated for convenience:



P (k)p (r91 ) 
P(k+l) = P(k)p(rl) + (l-P(k))p(r ) (2.22b) 

r' ] --2r 

where p(r.) = e 	 This can be rewritten as



P(k+l)P 	 (k) 2 (k+l) (4.7) 
P(k)y(k+l) + 	 (l-P(k)) 

where y(k) is 	 the instantaneous likelihood ratio



-1 Er'6 'r 
1-1-1
p(r (k)) Ie 


P (r 2(t))2_2 	 [r2'e2r2 ]
-


2 2-2 -2 


l[r1 r - r ] 
-e 2 -1-i -i --2 -2 (4.8) 

It is now possible to rewrite Equation (4.7) such that the probability



does not appear recursively:



k


P(0) H y(k)



P(k) =I- -	 (4.9)k 

P(O) Il y(k) + (1-P(O))
1=i 

Finally, let



c(k) = r 1-L 1 	 (4.10) 
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Thus, Equation (4.9) becomes



p0e- 1-a(k)k 

P(O)e 
P(k) = (4.11) 

k ) P (0) e a + (1-P(0)) 

Note that a (k) is the Log Likelihood Ratio. Thus, Equation (4.11) 

provides the connection between the Log Likelihood Ratio and the 

probability. Figure 4.1a is a plot of Pk) versus c(k) for a few 

values of PLO) and =1. Figure 4.1b is a detail of the same curve 

for P(O) = 1/2. Define a to be the value of a(-) for which P(-) = 1/2.s 

It-is then clear that 

a(-) >> a => P(-)=0
s (4.12) 

()<<a ---> P (') ;I 
S 

Thus, a will be called the switch point for a(.). Equation (4.11)s 

can be solved to give



a = -2 in[v-fj. (4.13) 

Now, consider Equation (4.11) evaluated in the vicinity of a . For



example, if



' = a + 2s S 

where C is any positive or negative number we see that the resulting



probability is



P(.) e



l+e
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which is totally indpendent of any parameters of the MMAC method. Finally, 

simple calculations reveal that the curVe of P(-) .versuS a(') is anti

symmetric about the point a . Thus we see that the switch point a isS s 

determined solely by the apriori information P(0) and and that no 

parameters of either the true system or the models (except for the 

assumed noise covariances contained in S) affect the switching character


istics of the system other than by determining a(k). Various approxi


mations to P(,) can thus be calculated from a(-). One example, shown



is the dotted line in Figure 4.1b, is



cz(') < a s - 5 

Pk) = a(-) > a s + 5 (4.14) 

.5-(a(-) -a )/10 otherwise. 

Examination of Equation (4.11) or Figure 4.1 reveals the reason for 

the zero-one type behavior so often noted in the simulation results in 

Chapter 3. Only for values of a(-) such that



ta(-) - al < 5 

will an intermediate value of P occur. As seen in Equation (4.10)



(see also Section 4.1), (.) is proportional to the square of the norm



of r (-). Thus, for r () large, a(-) tends to change at a rate twice 

as large as that for Iki.()11 and may never fall in the range. 

One potential advantage of using Equation (4.11) in a MMAC con


troller is that a wealth of information has been accumulated about



the behavior of the log likelihood'ratio [34, 35]. Thus, use of this 

approach allows full use of this information while still permitting a 



simple control to be calculated.



The approximation C4.14) is,also useful for characterizing the



length of the half-periods of the oscillations observed in Section 3.2.



By the definition of a., it is clear that 3umps in the probability (i.e.,



from 0 to 1 or from 1 to 0) correspond to transitions of a(.) through



a . It is thus possible to calculate a bound on the half-period of an

s 

oscillation. Define T1 to be the time of a transition in the probability 

(assume from P=0 to P= 1) and (T 1 +T 2) to be the next transition. (see 

Figure 4.2). Thus, by the above analysis and the definition of as 

+1 as = a(T1 T2 (4.15) 

By the definition of a(-) 

T1 rr ( )_1r1(i ) (3-0lr_2 U)I 
-

T2+TI(.6



- [r'(i) r (i) - r'(i)e r (i)]
2 - -l -1 -2 -2 -2 

1 ( 1or T2+T1 [ 

-l-l
i=T +1 
 

Equation (4.17) thus provides a condition which T1 and T2 must satisfy. 

This equation is explored further in the next section where an approxi

mation for r. ('-) is employed. 

This section has presented a detailed analysis of the probability 

equation (2.22). It has been shown that-the equation can be broken 

down into a static nonlinearity and a summation (the log likelihood 

ratio). Attention has then been focused on the static nonlinearity.





-89


85008AW023 

P 

1I 

1 
oit 

T 1 TT+ T2 

Fig. 4.2 Switching Times





-90-


The next section continues the analysis by considering the behavior of 

ct-) 	 for one class of systems. 

4.5 	 An Analysis of the Oscillatory Behavior 

Many of the simulations of Section 3.2 display an oscillatory be

havior involving all states and the probability. The preceeding section



contains an analysis of the equation for the probability of a model, one 

of the conclusions of which is an observation that Equation (2.22b) can be 

divided into two parts; one containing a static nonlinearity C4.10) and 

a relatively simple summation 

k h 
sj)1 2a(k) = I IIr1(k)I 12_1 

(£4.15) 
k 

W6r(k) r2 (k)e0 r(k) 

Furthermore, the approximations



at.) 	 >> --> PC,) 0 

a(-) 	 «< a s PC.) 1 

have been found ta be very good for Jac.) - as greater than about 5 

where a can be determined solely in terms of P COI and 6, Note that 
s 

for the present study we can take aL = 0 since we can assume that the s 

system started in the remote past in which case P (0) can be chosen 

arbitrarily.
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The present section continues the analysis of the. oscillatory behavior



of the probability by considering the behavior of the variable a(k) for 

the canonical problem of Section 3.1. The approach taken is to isolate 

the basic modes of the state of the canonical problem by partitioning w 

in a new fashion. This partitioning emphasizes the two basic modes 

inherent in the structure, namely those associated with true state. #1 

and those associated with true state #2. Because of the diagonal nature



of the canonical system, -his partitioning allows aC-) to be bounded by 

simple exponentials which are then analyzed, 

In this section extensive use has been made of the observation



from Chapter 3 that during periods of oscilltory behavior the prob


ability tends to be virtually constant for long periods of time and then 

abruptly changes. This square-wave like behavior, clearly seen in 

for example Figure 3.2, is a key element of the approximations employed 

in this section, 

Recall from Chapter 2 that 

w k+l) = A(P)w k) C2.221" 

where w'C.) = [x'&-) r'C,) rt. .j As seen in Section 3.2, during
-1 -2 

periods of oscillatory behavior, each component of wC- is alternately



stable and then unstable. It thus is natural to regroup the states 

such that components which are simultaneously stable are grouped to-, 

gether. To this end, define Xl C.1 to be those states of w which cor

respond to the first component of the true state and x.2 CO) those which 

correspond to the second. That is,
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"I (.)- " C.)" 

r(i).) r (2) 
( )
 
 1--I -r
1 =
 rX-2) 

(r) (2) . 
2 r2



wher r C-) is the i=- component of the residual of the KI for the j


.th th
j- model and x.1 C-) is the i- component of the true state x. Using 

this decomposition Equation (2.22) can be rewritten as 

(4.18)

A-0 (Pd xk)1-2(Y-2(k+l) I Zf[r k~~Iri~ 1P~ 

(k+l) 0 L 2 (k)J 

where A (P) and A2(P) contain the appropriate elements of A(P). The



block diagonal nature of Equation (4.18) is a direct consequence of



the assumption that the true system and each model is diagonal. If



±i and (2 are defined to be the appropriate partitioned versions of _-and 

1 , Equation (4.15) becomes 

a Lk) 11(3) 1 2 Pj) 2 0



(4.19)



-yi(0) H KI(P(j))! 31IAI(P(])YI(0) 

j=7 -- - I 

We will consider the initial conditions shown in Figure 4.3(a) 

in which at(0) < 0 (but c(-i) > 0), IjXl(o)j, 2 > IIX2(o 112 and P=1. 

Note that this corresponds to the case in which a change in probability 

(from P = 0 to P =l) has just occurred. The equation C14.19.) and the
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simulations of Section 3.2 indicate that if oscillatory behavior occurs,



the trajectories of j1y.(.)I12, a(.) and PC.) must be as sketched in


-1



Figure 4.3, since II.yI.)j 2 is decreasing by design for PC,)



It will be assumed for the present analysis that P can be closely



approximated by either 0 or 1. As seen in the previous section, this



corresponds to assuming that Jac-) - as Iis greater than about 5. From



the simulations of Chapter 3, this is a reasonable approximation during



periods of oscillatory behavior such as are being analyzed here.* Further


more, it will be assumed that both K.F.'s have been correctly initialized
 


(equivalently, have been running since the remote past) so that the



matched K.F. residuals are zero.
 


The remainder of this section is concerned with characterizing the



peak excursions of .11yi11 (see Figure 4.3) and also the half-period T,.



This is done by approximating the behavior of a(.) after first approxi-

k'-I



mating the behaviors of y'(0)A.k4.A (1)y (0) (see Equation 4.19). It



is clear that each of these terms must behave as exponentials for P = 1; 

that is 

fly (k)112 <a ly (0)[12 (4.20)



where ai = 1iX(1)112 . Thus


kI 2 12

a(k) E (a fly2(0)110-a' i-1 (4.21)2 (0) a]
 

=0 2 

When the probability is forced to either zero or one (by, for example,


use of a maximum likelihood type control rather than the probabilistically


weighted one) then this is not an approximation.
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=where ai the maximum eigenvalue of 4il* A few comments are necessary 

on this approximation. First of all, note that for P =1 it can be shown 

that 

< 1 

C4.22) 

a1 

>1
a 2 

by the constructions of A (.. Furthermore, as noted earlier,
-i 

Ily1 O)Il 2 
I112(0)112 << 

Thus, during the initial part of the interval, the term in y dominates


while later the term in y2 
(-) dominates. We are interested in determining 

the half-period, i.e., when the probability switches from 1 to 0. As seen 

in Section 4.4, this occurs when a(-) = 0. Thus, an approximation to 

this condition is to find T such that 

T 
 T1 


L_ a' latyO)II_Xa2 011 2 (4.23)
i=0i=0 

It should be pointed out that the term in Y2 leads to an underestimation 

of T1 while the term in xl leads to an overestimation. Thus, Equation 

(4.23) does not yield either an upper or lower bound. However, it is 

felt that this is still of value since the analysis yields insight



into the type of behavior observed in simulations. Furthermore, al

though sometimes not of use, the T1 of Equation (4.23) does lie between



the upper and lower bound. 

*ay the symmetry of the canonical problem, note that , =2'
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Evaluating the summations in Equation C4.23) yields



y()1 [a 2 _ (4.24)



where by the assumption that on the interval k=O to T1 , P z 1, 

a, = 11A1(1)II < 1 

a2 = II 2(1) > 1 

and use has been made of the fact that a 1 = a2 ' Equation (4.24) could 

be solved numerically to arrive at an approximation of T1 although no 

closed-form solution is possible. 

Further insight into the behavior can be obtained by invoking



another assumption. Since



< 1a1 
 

and > 1
a 2 

we assume 

aT << a


11 

(4.25)


T +1



a2 
>> a2 

This is clearly reasonable since T1 depends on a1 and a 2 in such a 

way that a1 closer to 1 yields T1 larger. Thus, although (4.25) is 

an assumption, it is very reasonable. Using this, Equation (4.24) 

becomes
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T +1



IY1(o)II2 1 2 '2I-- (l al) 1 y2 (0)II a 2 - (4.26) 

or, using Equation (4.20)



11]2(TI) 112 11yjl(0) 112 (a2 -1) 
_( a 2 - al) (4.27) 

Defining 

(a2 -1) 

R a 2 (-a) (4.28) 

yields



IL2 (T1) 112 -R 11y1(0)112 C4.29) 

Thus, if R>l, the value of i Cy..)jI when P switches increases with 

each cycle and Ilyl(,)fl e c (i.e., the closed loop system is unstable). 

Similarly, if R < 1, then peaks of j jyi(-)ll decrease with each cycle. 

An interesting interpretation of these results can now be given by 

noting that 

1 a 2 > 1 R > 1 C4.30a) 

*a 2 < I RR< 1 C4, 30hb) 

*1 a 2 = 1 R= 1 (4.30c) 

and that a1 is the slowest decaying mode of the stable matrix A (1) and



a2 is the fastest growing (most unstable) mode of A2 (1). Thus the 

closed loop system will be stable if the slowest decaying stable mode 

of the matching subsystem (A (1)) dominates the unstable modes of the 

mismatched system in the sense that the product of the appropriate norms



is less than 1. 
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Equation (4.26) can also be rewritten as 

a 2 i I I [2 R C4,311 

Thus, the following approximation to T1 can be given



Tjl0in 112 / in a 2 C4.32) 

An interesting phenomena can be seen by considering multiple periods.



Thus, by analogy with Equation (4.32) 

T in - I /in a2 LIXlT 2 2 

But it can be shown that 

R2 I ll(O)1 2
II72 (Tl) 112 
 

IlClTl ll2 aT1a l 1!2(o)112



This results in the conclusion that if the initial period is sufficiently 

long, then subsequent periods will be of increasing length if a a < 1. 

The above analysis results in the conclusions that ala2 is the



key quantity in determining the stability of the closed loop system. 

If R is less than one, then the peaks of the state tra3ectories decrease



and the period increases. However, if R is greater than one, instability



results. These conclusions agree well with the simulation results of



Chapter 3. The only point of discrepancy is in the simulation of Figure



3.2. In that case, the peaks appear to remain constant even though
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calculations reveal that stability results. Close examination of the results 

of the simulation have revealed that in this case the lower limit on



the probability (see Chapter 3) is consistently achieved, As shown in 

Chapter 5, this somewhat modifies the behavior resulting in uniform peaks 

even when the system is stable. Further discussion of this important 

case is deferred to Chapter 5.



In summary, the stability of the MMAC algorithm is determined by the



relation between the growth rate of the most unstable mode of the mis


matched subsystem and the rate of decay of the slowest stable mode of



the matched subsystem. This leads to the qualitative conclusion that



stability results when the stable modes are "faster" than the unstable



modes. This concept is further emphasized in the following section



where an alternate view of the problem leads to a similar result. 

4.6 Ouasi-Lyapunov Analysis
 


An alternate view of the stability results given in the previous 

section can be obtained by employing an analysis which closely resembles 

the methods of Lyapunov. The results obtained compliment those of 

Section 4.5 and given increased insight into the behavior of the M4AC



method.



The approach of this section is first to explore the use of the 

"normal" quadratic Lyapunov Function. This is used to introduce the 

ideas and also to demonstrate the drawbacks of this standard approach. 

This leads to the introduction and motivation of a new Lyapunov-like 

function which is then used to derived a stability result which. 
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emphasizes the role of the individual control gains, This function is



motivated largely by the simulation results in which the controller



is seen to alternately attempt to control each mode of the system. Thus, 

each state tends to be piece-wise exponential (see Chapter 3). This



results in a phase-plane plot, such as seen in Figure 3.5 which resembles



a hyperbola. It is this observation which led to the function investigated



in the major part of this section.



First, consider the function



v(k) = w' (k) w(k) C4.33) 

where w(k) is governed by Equation C2.221



w(k+l) = R(P) w(k) (2.22) 

Thus, v(k+l) can be written as' 

' v k+l) = w' (k)iKCP k)P M) I(kl . C4.34) 

In order to prove stability, it is required to show that



vk) > vk+l) . C4.351 

Unfortunately, Equation (4.34) depends strongly on P and, thus stability 

is difficult to show. The one case in which it is possible to determine 

stability is when I A11A)I < 1 V P. Eowever, tis case has been well 

discussed in Section 4.2 and so will not be repeated. 

An improved result is obtained if attention is first restricted to



the diagonal case. Thus, assume that the canonical system of Section
 


3.1 is under consideration. Define trie function





v W = xl(k)x2(k) (4.36) 

or



v 1I w' k)WIk) (4.37) 

where



0 
 :I
Li 
A definition is useful in the sequel: The system (2.22) is hyperbolically



stable if v(k) + 0. The choice of v(k) is heavily motivated by the 

simulation results in Chapter 3. As discussed in Section 3.2, the phase

plane plot of x vs. X2 resembles a hyperbola (truncated for large 

excursions). Figure 3.5 graphically depicts this phenomenon. A second



motivation stems from the analysis in the previous sections of this 

chapter in which each state tends to be governed by an equation such as 

Ix. (k+l) 11 = akllxi®II (4.38) 

for periods of time. This, of course, is due to the fact that the



probability tends to be piece-wise constant due to the nonlinearities



analyzed in Section 4.4.



It should be pointed out that the function in Equation (4.36) is 

not a valid Lyapunov function. First of all, v(k) can be either positive 

or negative depending on the initial conditions. Secondly, v(k) = 0 

does not imply that x 1 is even bounded! Neither of these invalidate 

the analysis, however. A slight redefinition of v(-) would overcome
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the first. This is riot explicitly done here because it is not necessary



for the problem at hand and would complicate the analysis. The bounding 

of the state-has already been indicated in previous sect-ions and thus



is provided by alternate means. Furthermore, even if a bound were not 

available, the analysis would yield insight into how the system behaves 

when each mode is alternately controlled. 

Some useful notation for the diagonal system is now needed. Recall



from Section 3.1 that



Define



and



Temporarily, assume that g = 0.* Then Equation (4.37) becomes



v(k+l) = w' ( (piA(P)w(k)P)A' (4.39) 

which, when written out term by term becomes 

2 2 

v(k+l) = [a(a-g) + Pg -p g2 v(k) (4.40) 

or v(k+l) = A() v(k) . Note that A(P), which is plotted in Figure 4.4, 

This corresponds to Case 1 in Chapter 3.
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is a convex quadratic function of P. The following two theorems then 

follow: 

Theorem: Given the canonical MAC system of Section 3.1 with 4 = 0, 

the overall system is hyperbolically stable (i.e., x1 x 2 0) if the 

following two conditions are met.



(1) la(a-g) < 1' (4.41) 

and 

(2) ja(a-g) + - g2 1 < 1 . (4.42) 

This plus the bounding results of Section 4.5 yields stability. 

Theorem: Given the canonical MMAC system of Section 3.1 with 9=0, 

the overall system is unstable if 

(1) a(a-g) > 1 (4.43) 

or if



1 2(2) a(a-g) -'jg < - . (4.44) 

A few comments can now be made.



1. Conditions (4.41) and (4.42) essentially require that v(k) 

be decreasing for all P. Note that this can be-true independent of 

whether K(P) is stable. In fact, for the Case 1 example of Chapter 3, 

A(P) is unstable VP but v(k) is still decreasing. 

2. Theorems suck as the above can easily be derived for the 

relaxed case in which the two elements of the true system matrix are 

not equal. The curve for A(P) is-then not symmetric about P = 1/2 but 
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similar analysis can still be done. The results do not significantly 

increase our understanding and so are not presented.



C3) Note that Condition (4.431 is consistent with. the results sum

marized by Equation C4.30) of the previous section. The added condition



of C4.42) results from relaxing the assumption in Section 4.5 that P 

is always "near" zero or one. Further insight results from plotting the



Conditions (4.41) and C4.42). The shaded area in Figure 4.5 is the 

set of a and g for which Condition (4.411 is satisfied and the crosshatched 

area is where Condition (4.42) is satisfied. The points corresponding



to Cases la, b and c from Section 3.2 are plotted.



A few comments are in order, First, as evidenced by the simulation 

results, it may be sufficient for hyperbolic stability that Condition 

(4.41) be satisfied. In that case, if P oscillates between zero and one 

(which the simulations indicate is likelyl, stability will result. 

Further, if the probability is forced to be either zero or one by using



the control for the most likely model rather than the probabilistically 

weighted control, then Condition (4.411 is sufficient to guarantee 

stability.



Another interesting observation is that for this special case, the



smallest control gain which yields v(.) decreasing for P= 0 or 1 (i.e. 

the lower edge of the shaded area in Figure 4,51 exactly corresponds to 

the value of the control gains for the LQ problem with- a state cost of 

zero 131, 32]. This implies that for this special case use of the LQ 

methodology guarantees that Condition C4.41) will be satisfied, This 

is believed to be due to the robustness properties of the LQ design 
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technique 	 discussed in [5, 33]. The implications to more general MMAC 

structures remains an open question, However, note that there are many



control gains (not generated by an LQ methodology) which yield unstable 

behavior. For example, the -matchedsystem is stable for all control



gains 

g E (1,2) 

However, 	 from Figure 4.5, if the chosen control gain is 

g E (1, 1.5) 

then the 	 resulting MMAC system is unstable. 

A second point to note from Figure 4.5 is that for a>2, no linear 

controller will result in v(ki decreasing for-P = 1/2. Under these 

conditions, the only stable behavior possible must be of the oscillatory 

type. 

The removal of the assumption that 9 = 0 results in the analysis be

coming intractable. For example, when evaluated at P= 1, the equation 

corresponding to (4.40) becomes 

v(k+l) 	 (a-g) (a-g) v(kI +



(a-g) gCl-h) r x2



(4.451 
C2)+ (a-g) 	 ̂ 9rs 

1 1 

2 ( 2 (2) (2)
g(l-h)2 	 r1 r 1 

If it is assumed that the matched IP state has been correctly initialized 

(i.e., r!(1) = 0) this becomes 
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v~k+l) = (a-q) 	 (a-g)v(k) 
(4.46) 

+ 	 (a-g)9^(l-r)r(2) x



1 1



where the mismatched component of the KF now enters to modify v(k+l). 

Equation (4.46) has evaded further analysis except in a few obvious 

special cases (such as P=1) which will not be discussed.



This section has attempted to accomplish two goals. First of all, 

one interesting 	 special case has been examined to the point that both



stability and instability results have been presented. These results 

conplement those of the previous section and provide an alternate view 

of the mechanisms underlying the stability of the MMAC method. A pos

sibly more valuable contribution has been to point out the need for 

careful design of each-individual controller and the set of available



models. 

4.7 Domain of Attraction



In Section 4.1, it is demonstrated that if Kci) is a stable matrix 

for P= 1/2, then the system linearized about P= 1/2 is neutrally stable 

in that the probability has no tendency to return to 1/2. This is seen 

to be due to the fact that if w = 0, then there is neither the need nor 

the basis for changing the probability. Equivalently, the equilibriun 

set is iw = 0 with any P1. This is sketched in Figure 4.6. The stability 

of each equilibrium point has already been examined using a linearization 

approach. One important question which remains- is to determine the set 

of initial conditions such that the system will return to an equilibrium 

point without first oscillating. (The analysis of Section 4.4 through 4.6 
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have indicated that stable oscillations may result in w approaching the 

equilibrium set and it should be noted that this is not the case under 

consideration here).



The importance of this analysis is best seen by considering the 

simulations of Case 2 in Chapter 3. There it is seen that if X(P) is a 

stable matrix for P= 1/2 but not for P =0 or 1 then small initial con

dition perturbations result in small changes in w(-) and P () whereas 

large perturbations result in P(.) going to zero or one and then os


cillating at least for a while. This section continues the analysis 

of Section 4.1 and results in a procedure for determining a bound on 

IIw(O)II such that the probability does not oscillate. 

Consider the equations from Section 3.6.1



w(k+l) = (P) w(k)



(2.22) 

P(k+l) = P(k) p(r 

P(k)p(r) + (l-P(k))p(r2 ) 

We will assume throughout most of this section that P(0) = 1/2 (i.e., 

= 0)* and that (-) is such that there exists an s < 1/2 such that 

I (4.47) 

IIACP)II > 1 otherwise. 

It can be shown that this is the only case in which exponential behavior



has not been investigated. in Section 4.2, the case of I I(P) II < 1 VP 

has been investigated, and if IACP) II > 1 VP then Section 4.1 has 

*As in Section 4.4 we assume = 1.
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shown that oscillatory behavior (either stable or unstab-le) must result. 

Assumtion (4.47) represents the examination of a previously unstudied 

case. As seen in previous sections, A(P(-)) is a function of a(.) which 

in turn is a function of the data (state) generated by Z(P(-)). Thus,



there is a close connection between bounds on a(-) and bounds on 

IIA(P( ° ) ) I- The basic approach of this section is to bound a(*) in 

such a way that IA(P()) Il remains a stable matrix. This bound on 

a(-) is then translated to a bound on ILwjI. That is, we bound the 

size of the initial conditions w so that w(k) is small enough so that 

in turn a(-) remains within its bound. This is accomplished as follows. 

From Equation (4.48) it clear that



P E s,( 2 + -- II A(P)lI < (4.48)
2 


and that P a 1 1 + EI) => (P) < a < I for some E1 < S. 

(Refer to Figure 4.7.) From Section 4.4, each value of P(') maps to a 

value of a(-) as shown inFigure 4.7 and thus attention can be focused 

on a(.). Define 6 to be the value of a(-) such that P = 1/2 - s and 

as the value of a(-) for P = 1/2 - e 


It is shown in Appendix A that 

1a ( k ) <I (1-a 1 )O k (4.49) 

where a1 is Max j IA(P(k))II* and a is related to the residual weighting 
a(-) 

matrices of - and 9 . Thus, one may choose an a(-) = & for some 61' 

*The maximum is achieved for the maximum value of a (*) for the canonical



problem.
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compute the value of a < 1, and finally use the equality from Equation 

(4.49) to find a 11%o 1 12 
 such that cc(k) is bounded as necessary. By 

changing 61 and repeating the procedure, a different value of II0112 

is obtained which may be either greater or less than the first. The 

detailed development of the algorithm is given in Appendix A. The re

sulting procedure may be formalized as follows: 

Step 1: Find E such that Condition (4.48) is satisfied. This in general 

will require an iterative procedure for determining IIA(P)II for various 

values of P. 

Step 2: Calculate 6 from Equation (A.1).
 


Step 3: Choose an 0 < a1 <6. 

Step 4: Calculate P1 corresponding to a1 from Equation (4.11). Finally, 

compute a = IIA(P) I 2.* Note that by the selection of a in Step 3, a 

is less than 1. 

Step 5: Calculate 11w,12 from 

ii- - aa(l-a) (4.50) 
a 

Repeat steps 3 through 5 for different values of a to maximize IH11. 

Note that a maximum exists since all functions used above are continuous 

and j jwI I is minimized for a = 0 and for a =.S. The best way to understand 

Due to the nature of the canonical problem, IIA(P) 112 is maximized for 

extreme values of P. In general, greater care is needed in order to 


assure I IA(P) II2 < a for all P in the region of interest. 
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the procedure is to verify that I w in Equation (4.50) results in 

exponential behavior. To do this it is sufficient to show that 

IlwoII = Ilwli IaldkI < 6 Vk. But by construction 

Ia(k)l Vk 

and so a < 6 by Step 3 finishes the result for P0 = 1/2.



As an example of the use of this algorithm, Table 4.1 demonstrates 

its application to the conditions of the Case 2 simulations from Chapter 

3. The table contains the evaluation of I IE112 for various values of 

aV It is thus possible to conclude that if P(0) = 1/2 and I Iw(O) 112 < .236 

then exponential behavior will result. Simulations confirm this obser

vation and indicate that Ijw(O)j12; .8 results in P just reaching the 

boundary of the stability range of R(P). 

It is possible to extend the procedure to P0 S (1/2- E 1/2 + a) as 

follows. Given P0' compute a0 from Equation (4.11). This effectively 

reduces the amount ct(-) can change and still have X(P(-)) stable. 

Thus replace 6 in Steps 2 through 5 by 6- I-aI. it thus becomes pos

sible to compute a complete region in P0 x 112!j1 space such that a 

nonoscillatory response results. Figure 4.8 depicts such a region. It 

should be pointed out that the resulting set is not exhaustive in that 

points outside the set may result in nonoscillatory behavior. This is 

due largely to the conservative nature of Inequality (4.49) which uses 

a worst case estimate of IAi(P(k))ll for all k. Thus, a(k) tends to 

change slower than predicted by inequality (4.49). The procedure does, 

however, yield a useful lower bound to the full set of initial conditions 

which yield nonoscillatory responses. 
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2 
ai P11 a 1j1


2.20 .25 .969 .1135



1.69 .3 .931 .2022



1.238 .35 .894 .236



.811 .4 .859 .2147



.401 .45 .826 .13625



TABLE 4.1



Example of Range of IjZ(0) 1 for Exponential Behavior 
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4.8 	 Summary 

This chapter has presented a collection of analyses ot the MAC 

method. It has relied heavily on the special cases given in Section 3,1 

and as such, any conclusions with. respect to more general cases must ba 

viewed with some caution. However, these special cases have Been care, 

fully selected to accentuate types of behavior observed in more general 

settings and so it is believed that the qualitative results we have 

obtained are of some general interest, Thus, the result of our analysds, 

has 	yielded insight into the nature and causes of the behavior of the



Z4AC 	method. This understanding can be used to provide a basis for 

improving the design and for determining when it will work well, The



main 	 conclusions of this chapter are: 

1) At best the MhAC system is neutrally stable about an equiliBri aw 

point in that the probability has no tendency to return to its initial 

value following a perturbation (see Section 4.1). 

2) If A(P) is an unstable matrix for P= 1/2, then for the structure 

of Section 3.1 small perturbations result in the probability oscillating 

which in turn results in behavior which. is either stable or unstable. 

if A(P) is a stable matrix for P = 1/2 either oscillatory or nonoscillatory 

behavior may occur depending on the size of perturbations and the 

stability of K(P) for P= 0 and 1 (see Section 4.1). A procedure has 

been presented in Section 4.7 for determining a lower bound on the set 

of perturbations which yield oscillation-free responses, Thits procedure 

is valid for any two model structure witE slight modification. 
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3) The rate of change of P is proportional to I Iw,12 while the 

rate of change of 1w11 is proportional to I jwj to the first power 

(see Section 4.1). This results in P changing faster than 11wIj 
 for 

Ijw1j large and slower for I IKIwsmall. 
 This partly causes the square

wave behavior often noted for P.


4) A necessary condition for I11Il to converge to zero 

shown to be that A(P) be a stable matrix for some value of P (see Section 

4.1, 4.6). 

5) A sufficient condition for exponential convergence has been 

shown to be that A(P) be a stable matrix for all values of P (see Section 

4.3). This, of course, is very restrictive. Lacking this condition, the 

possibility of at least short-term oscillations must be recognized. Thus 

the MMAC method is probably a poor choice when such oscillations can not 

be tolerated.



6) If one model matches the true system and each model is diagonal, 

then I jw4 j 0 exponential (see Section 4.3)-. This says nothing about 

the behavior of P() however. 

7) Whenever the MMAC method is used with two models, the equation 

for the probability can be divided into a scalar, static nonlinearity 

and a summation (i.e., the log likelihood ratio (see Section 4.4). Al


though not done here, this can be generalized in the N-model case to 

an N-1 variable static nonlinearity and N-1 log likelihood ratios. This 

approach is important as it emphasizes the switching behavior of the proba

bility, allows relatively simple analysis to be done for the often seen
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case when P is nearly piece-wise constant and provides for a slight 

numerical superiority in applications (see Section 5.3).



8) For two special cases specific conditions for the stability or



instability of the oscillatory mode have been presented (see Sections



4.5 and 4.6). These results agree well with simulations and with each 

other. The basic result is that stability results when the stable and 

unstable eigenvalues are such that ab < 1 where a and b are appropriately 

defined as in Sections 4.5 and 4.6. The qualitative conclusion which 

follows is that for stability to occur the most unstable mode must be 

dominated by the stable modes. 

9) The oscillatory response may be stable even if no value of P



results in (P) being a stable matrix (see Section 4.6). In this



case the phase-plane plots resemble hyperbolas (see Figure 3.5). This 

emphasizes the nature of the controller in that it attempts to achieve 

stability by alternately controlling each mode of the true system. 

10) For the special case of Section 3.1 with 4 = 0, it has been shown 

that v(-) is decreasing for P=O and 1 as long as the LQ design procedure is



used with a nonzero state weighting penalty. Generalizations have 

evaded analysis but this is believed to be a result of the gain and 

phase margin properties of the LO design 5]. 

Recall that in this special case the rF dynamics do not enter 

into the closed-loop behavior (since 9 =0). Thus, since the gain 

and phase margin properties can disappear when a KF is included in 

the feedback path [33], the extension to the general case (C30) is 

in doubt. 
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11) In contrast to the previous conclusion, there are many values 

of the control gain which yield satisfactory matched behavior (i.e., 

stable) but which wil result in unstable b hvior in thefMMAC system. 

Thus, care must be exercised in the choice of control gain. 

Thus, two major types of behavior have been observed and analyzed; 

oscillatory and exponential (nonoscillatory). It has been seen that



oscillatory behavior is very natural for the MMAC algorithm and that the 

conditions for excluding it are restrictive. Stability conditions for 

special cases have been presented and the qualitative implications for 

more general systems discussed. Thus, although based on special cases, 

the qualitative conclusions regarding the types of behavior and their 

underlying causes are believed to be of fairly general applicability. 



CHAPTER 5



NUMERICAL ASPECTS OF MMAC



In the course of this study, various issues relating to the numerical



sensitivity of the MMAC method when implemented on a digital computer have



come to light. The purpose of the present chapter is to discuss these



aspects and finally to propose an alternate formulation which appears to



overcome some of the limitations.



In Chapter 4, while discussing the oscillatory behavior so often
 


observed, it was noted that a lower limit on the probability tends to



modify the behavior to some degree. Thus, while the analysis of Section



4.5 indicates that the peaks of the state trajectories should be decreasing



for the simulation in Figure 3.2, in fact, the peaks are seen to be



constant.



In Section 5.1 the oscillatory behavior is again analyzed, this time



assuming that a lower limit on P is in use. This leads to the conclusion



that if the limit is consistently achieved, then the peaks of the state



trajectories will be equal when they would otherwise be decreasing.



Furthermore, complete characterizations of 'both the period and peak



amplitude of the states are given for both stable and unstable operation.



The results are, except for the peak value, essentially the same as



those in Section 4.5.



Section 5.2 contains a brief discussion on various forms of the



probability equation. It is found that a few forms behave very poorly



in the face of numerical roundoff caused by finite precision. Precision
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refers to the number of digits in the mantissa of the representation of



a number in the computer. In addition, the need for extended range



is also discussed. Range refers to the available size of the exponents



in the computer. In particular, it is noted that due to large changes



in the probability during oscillatory operation,(as seen in the simulations



of Case 1 in Chapter 3) exponents of less than -75 often occur. Through


out this section the comments are made assuming that the algorithm is



implemented using floating-point number representations.



In light of the results contained in Sections 5.1 and 5.2, it is



clear that the MMAC method places large demands on the computer which
 


calculates the control. However, as seen in Section 4.4, there is an



alternate form to the probability 6quation. In Section 5.3, a discussion



of the numerical properties of this form is given which concludes that



using Equation (4.11) in order to calculate the probability results in
 


reduced sensitivity to the problems discussed in Sections 5.1 and 5.2



compared to using Equation (2.22b). it is important to note that the



proposed formulation does not eliminate the necessity of having a



lower bound on the probability but merely allows the designer much



greater latitude in the choice of this parameter.
 


One final comment is important. The remarks in Section 5.2 are 

not based on any detailed analysis of the numerical properties. The 

purpose of the thesis has been to examine the stability of the MMAC 

algorithm and not to prove anything about its numerical properties. 

However, in performing,the simulations contained in Section 3.2,



certain aspects of the numerical problem have become apparent.
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The purpose of Section 5.2 is to point out these aspects. In keeping 

with this, no comment is made as to the numerical properties of the Kalman



Filter, which is a significant problem in its own right. See, for ex


ample, the work of Sripad [30].



5.1 	 The Lower Limit Effect



The basic equations of the MMAC method have been presented in



Chapter 2. As mentioned there, it is often necessary in practice to



place an artificial lower limit on the probability of any model.



This is usually accomplished by simply setting the probability



equal to the lower limit whenever the probability is less than the



limit. Inclusion of a FORTRAN statement such as



IF(P(I) .LT. PLIM) P(I) = PLIM 

is an example of the use of such a limit. The principal reason for



such a limit is that without such a device, the probability of any model



could be come exactly zero due to round-off errors. After this occurs,



the probability remains zero as shown in Section 4.1. This is detri


mental in cases in which the true model is changing and also in cases



in which an oscillatory behavior occurs (such as in Section 3.2.2),



for then roundoff may occur before the probability switches. In fact,



the Case 1 simulations of Section 3.2 are 3ust such a case. It should



be recognized that although the lower limit is somewhat artificial, it



is required in some form whenever a computer with finite precision is



used 	 for control calculations.
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As mentioned in Section 4.5, the existance of a lower limit requires 

the modification of the analysis of the behavior of the method. The 

remainder of this section contains the modified analysis. As in Section 

4.5, we study the canonical problem of Section 3.1. Further, we assume 

that the system is oscillating as in Figure 4.3 such that P is closely 

approximated by either 0 or 1. Note that this is consistent with Section


4.5.



Recall from Section 4.5 that the canonical problem (see Section 3.1)



can be rewritten as



y(k+1) 
 
A (P) 0Y 
 (4.8)
k
I4 LZZ 
Sl 


The log likelihood ratio, a(-), can then be written as



k 
a(k) = Z 4 (k)%X2(k) - y{(k) 1 Yt1 (k) (5.1) 

i=l 

where 4j is defined in Section 4.5. 

In Sections 4.4 and 4.5 it is argued that during oscillatory periods 

(i.e., when P(-) is alternately near zero and near one), then a(k) must 

behave as the solid line in Figure 5.1 and also that a() can be approxi


mated by a piecewise-exponential curve. Itwill now be argued that the



affect of a lower limit on the probability is to change the trajectory



of a(-) to that of the dotted line in Figure 5.1.



In Section 4.4 a static relationship between P(') and a(-) has



been derived as
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( .
 

1 
e
P(0)

Wk)rP ~k) = -1 (4.1k) 

_ ( k ( 2 + (l-P(O)) 

Thus, if the probability of each model is constrained to be always greater



than some limit Plim' then it can be shown that this is entirely equivalent 

to constraining a(-) such that



laW -ta I < alim (5.2) 

where a is the value of a(-) when PC-) = 1/2 (given by Equation (4.13))s 

and alim is given by



P l i m  alim = 2 In . (5.3) 

Thus, placing a lower limit on the probability can be seen to modify the 

plot of a(-) to the dotted line in Figure 5.1: Initially, until the limit 

is reached, the limited and non-limited behavior are identical, but when 

the limit is reached, further increases in the magnitude of a(-) are 

ignored until a(-) again decreases (in magnitude). Note that since the 

size of the term in Equation (5.1) which forces a(-) to return to zero 

is independent of the existence of a limit, a(-) must cross the axis 

earlier when a limit is in effect than otherwise. This of course will 

influence future periods. It is thus argued that during oscillatory 

behavior in which the lower limit on the probability is achieved, in 

analyzing the behavior of the MMAC algorithm the positive term of 

Equation (5.1) can be set equal to alim for P Z 0 while the negative 

term can be set equal to -alim for P z 1 (assuming Plim small). 
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Thus, we see that for the analysis of Section 4.5, the effect of a



lower limit on the probability is to allow us to replace Equation (4.23),



repeated here for convenience,



1 T 
E a 1jy2(0) 11 I Z 

! 

ally 1(OI j2u1 (4.23) 

by the equation


a azy(O)112a (5.4)
lim i=! 21112(4)



where T has been defined in Section 4.4 as the time of the probability



transition from P=l to P=0,



a. = max


p



and a. is the maximum eigenvalue of i (where, by symmetry, a!, a2 a=T )
l



Noting as in Chapter 4 that 1Y2 (T!)112 z a2 111y 2(0)112
,Equation (5.4)
 

can be rewritten as



a



a = = [11 2 (CT)1 I2 _- 12( ) 112]
 (5.5) 
, (a2 -1) 4



or, solving for IIY2(TQ)1 
2



IL.2(T!) 112 ali + 1112(0)11 2 (5.6) 

where



a2a


2 (5.7) 

Rl 1(a-12



In the conmon case (see the simulations of Case 1 in Section 3.2) in



which
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11Z C05112 << I y_2 T )112 (5.8) 

then Equation (5.6) becomes



1Ly2 (T9 12 aiim (5.9)



For the Case 1 parameters, this indicates that the probability will change 

when I1z2 (T) I112 z 100 which agrees well with the simulations when the 

integer nature of T is considered. Note that Equation (5.9) implies 

that the probability will change when Ily2 (0)112 equals a constant if 

the lower limit on the probability is achieved; this constant is dependent 

only on the system parameters. 

In order to determine any change in period due to changes in the



= 
 state, consider the situation in Figure 5.2 in which P= 1 for k 0 to



T1 and P=0 for k=T 1 to T2 + T, where T, and TI + T2 are defined as the



switching times of the probability. Thus, from Equation (4.20)



Hl (k)ll11 - k-T k 
( 11 5)0,T
 

2

1T1I 

0)11
( I2 k-[T,,.


I
aak2 IIa1( fyl01 [,T+2) 

where,



a,1 
a1-A_ 1('15112 <1 

= (o)ll2 > 1a2 1 

by the construction of AI(P). From Equation (5.9) it is clear that



I11y 1 (0)12 z IIZ(r+ T2112 or 



85008AW01 2 

Yl lI2%11I 

k=TF+Tk=O k=T 

1 

Fikz,2Deintkn=T 1 and+T 2
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T1 2
IYt(O) II 2 <saa 
2T 

e I ' 1x1(O)11] (5.10) 

which-i after -some manipulation. yields 

T2 In a 1
2- (5.11l) 

- In a 2T1 
 

Evaluation of this results in the following conclusion: If ale2 < 1, then



the peaks of the trajectories of ly (.)11 are constant and the period 

is increasing on each cycle of the probability. Furthermore, if ala2 = , 

then the peaks are constant and the period approaches a constant. The 

case in which aIe 2 > 1 is indeterminant from the above analysis although



a plausible result, which is consistent with the simulations and the



results of Section 4.6, is that the period would decrease until Equation



(5.8) would no longer be a reasonable approximation. At this point,



the peak amplitude of Ily(.)II would grow. Basically in this case the



states are destablized more than they are stablized and the overall



system is unstable. Neither term (i.e., the positive or negative term)



in the equation for a(-) (5.1) need become small. Note that a a2 < 1 

results in stable behavior which is in agreement with the results in 

Chapters 3 and 4. However, in this case, note that the peaks remain 

constant and so asymtotic stability does not result. In fact, the 

oscillations will continue forever with'constant amplitude and increasing 

period. This is indeed an unusual type of behavior.



http:1x1(O)11](5.10
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5.2 Forms of the Equations and Accuracy 

In the course of doing the simulations contained in this thesis,



a few points regarding the numerical aspects of the MMAC method have



become apparent. These effects will not be dwelt upon as whole volumes



could be written. However, they do form part of the basis for the form 

of implementation advocated in Section 5.3 and since such issues are



often overlooked, a brief discussion is in order.



For the simulations in Chapter 3, the variable P makes large



excursions, in some cases changing by 50 orders of magnitude in one



or two time steps. This, of course, makes implementation very crucial. 

For example, throughout this thesis, the identity



P = I-P (5.12) 
2 1 

has been used to reduce the number of variables under consideration. 

However, using Equation (5.12) in a recursive equation such as 

P (k)p (r 
P (k+l) = 1 l(2.22b)
1 Pl(k)p(r1 ) + (l-P 1 (k))p~r2 ) 

can result in very poor accuracy due to roundoff. Thus, on a computer



6with 6-digit accuracy, this roundoff will occur for P 2 ( -) = 10- re

sulting in P2 ( ' ) becoming exactly zero and remaiAning there unless some 

form of lower limit is placed on the probabilities as discussed in



Section 5.1. Thus, using P2(.)= (1-Pl(-)) places severe restrictions



on the choice of a lower limit on the probability, which may be un


desirable. The following three conclusions then are apparent.
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1) Use of separate equations for P1 C.) and P2 (-
) is desirable if 

a recursionon P is to be performed as in Equation (2.22b). Thus, in 

place of Equation (2.22b) it is preferred, to use the pair of equations 

I )P1 k)p (r 


1 P1(k)p(r 1 ) + P 2 (k)p(r 2 )



P2 (k)p(r 2 )



2 (k+1) = PI(k)p(r I ) + P 2 (k)p(r 2 )



which avoids the direct recursive calculation of [1-P 1(k)]. Thus, 

when using a floating point representation with finite precision P ( ) 

in the above may be nonzero even when [1- P1(k)] is zero. Note that this 

does not significantly increase the computational load since both the



numerator and denominator of the second equation are contained in the



first. An alternate approach to solving this problem is discussed in 

the next section.



2) Due to the fact that large variations- in both the probability and 

the states estimates often occur, the maximum number of digits possible should 

be maintained. It should be noted that this is very important for the 

probabilities but less so for the other variables since the rounding



off of the state does not adversely affect the overall system.



3) There is a direct relationship between the smallest possible



value for PLIM and the possible range of exponents in the floating



point representation. This tradeoff between design freedom (i.e.,



choice of PLIM) and computational complexity (i.e., needing large 
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magnitude exponents) must be recognized in any application.



As shown in the first section of this chapter, the achieving of



a lower limit by the probability can result in some change in the



behavior observed in a system. Also, a number of the precision aspects



of the problem have been shown to most directly affect the probability



variable. It thus is of some advantage to develop an implementation



which minimizes the effects of such phenomenon. Such an implementation



is discussed in the next section.



5.3 Proposed Implementation



As shown in the previous sections of this chapter, the form of



the equations used to implement the MMAC algorithm can affect the achieved



results. The major area in which problems occur has been seen to be



in the calculation of the probability. In this section an alternate



form of the probability equation is proposed which, although not elimi


nating the problems, does tend to minimize their effect.



The existance of a lower limit on the probability, although somewhat



artificially imposed, is a necessary result of using a computer with



finite precision. Thus, in any application of the MMAC method, a lower 

limit is present, in one form or another. The form of the probability



equation about to be presented does not eliminate the lower bound problem



but instead reduces the smallest possible value beyond that possible



with the form given in Chapter 2. It thus allows increased freedom of



choice for the designer.



From Section 5.2, one possible implementation of the probability



calculation is
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P. (kc)pr) 

P. (k+l) = 1 r-1, 2 
1 Pl(k)p(r!) + P 2 (k)p(r 2 ) 

It is argued there that this form is to be preferred to the form given 

by Equation (2.22b) in that the subtraction 1-P (.) is avoided. In 

Section 4.4, it is shown that Equation (2.22b) is entirely equivalent 

to I.


1 - (k)



P!(kc) 1 k)(4.11l)



P (0)e + P 2(0) 

with 

k -1 
a(k) = SEr'(i)l6 r () - r'(i) lir (5.13)2
-
-1 -l
-1 
 

It is believed that Equation (4.11) is numerically superior to either 

of the other approaches. Note that, while a term such as [I-P1(0)] is 

still required to compute P2 (-) for the calculation of the control, any 

errors in this computation do not get accumulated in the probability. 

Thus, the real advantage of using Equation (4.11) is that it is static,



involving no recursive calculations. Thus, while roundoff obviously
 


will occur, it will not influence future values as would happen with the 

other approaches. It should be pointed out that the recursive nature 

of the probability has, in effect been retained in the calculation of 

a(-) and that now care must be taken to guarantee its numerical accuracy. 

However, by its nature, it tends to be a better-behaved function. For 

example, a change in P from 1 to 10 - 5 0 corresponds to a change in a(*) 
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from approximately +225 to -225. Thus, the recursion has effectively



been moved to the exponent (i.e., the Log Likelihood Ratio) rather than



in the probability itself. The importance of this can best be seen by 

considering the following problem. Assume one wishes to calculate the



(e b ) quantity (eae ). Once approach is to compute (e a ), then compute 

and finally (ea ) eb ). This is effectively the kind of approach Equation 

(4.22b) uses. However, it is more accurate (for finite precision calcu


(a+b) 
lations) to compute e , which is analogous to what Equation (4.11)



does.



-A further advantage of using Equation (4.11) is that it can be approxi


mated by any one of a number of functions without having to be overly con


cerned about the accuracy of the approximation. This is due to the fact



that Equation (4.11) itself is not recursive and thus errors made in ap


proximating P do not accumulate except through the true states. One ex

ample of such an approximation is a switch such that P(-) = 0 for a (C) >0 and 

P 1 for a(*) < 0 while another has been presented in Section 4.5. 

Note that for the variations of the MMAC algorithm which use the control 

for the most probable model rather than the weighted control, a switch



is an exact representation and not an approximation.



It should be pointed out that this approach can be generalized to an 

N model situation. In this case, one can define the N-I log likelihood 

ratios based bn, for example, model N as 

k -1 
 -1


a.(k) SE r'.j)e. r Cj) -r'C)EC)


3. j1 1.-1i-i -N M-8 N 
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where all terms are defined analogously to their two-model-case counter


parts. Repeating the derivation in Section 4.4 yields the N-1 nonlinear



equations for the probabilities



1
P-i-(0)ie 2 -(k)



Pi.(k) = i1



j ( k 
 NlP (0) je- P +fP()
1 1



N~



5.4 Summary



In this chapter a number of issues relating to the behavior of the
 


MDMAC algorithm when implemented on a digital computer have been examined.



The most important of these as contained in Section 5.1 in which the



effect of -placing a lower bound on the probability is discussed. The



principle conclusion of that section is that during oscillatory periods



in which the lower limit is achieved, the conclusions of Chapter 4 are



still valid except that the peaks of the tra3ectories of 11y.11 are con


stant even during stable operation. Table 5.1 thus summarizes the con


clusions about the stability whenever the lower limit is achieved. These



results are seen to agree well with the simulation studies in Section



3.2.2.



It should be born in mind that, as discussed earlier in the chapter,



there are philosophical reasons for choosing a relatively large value 

for the variable PLIM* Note that such a choice results in a tendency to 

reduce the amplitude of oscillations as well as the period since the 

unstable state must now change less to cause a(*) to change by Clim 
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ala 

<1 

=i 

>1 

Peaks of 

I yiII 

constant 

constant 

constant changing 
to increasing 

Period 

increasing 

constant 

decreasing 
changing to 
indeterminant 

Stability 

stable 

just stable 

unstable 

TABLE 5.1 

Stability Summary - P Limited 
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(i.e., cause P to reach PLIM) .



Section 5.2 has presented a brief discussion of the numerical



properties of various forms of the probability equation. The principle 

conclusion is that the MMAC algorithm, if implemented using the straight



forward equations such as Equation (2.22b), places large demands on a 

digital computer due to the recursive nature of the calculations, the



use of a term such as (1-P(k)) at each iteration, and a possibly large 

dynamic range of the probability. An alternate formulation, based on 

the analysis of Section 4.4 is presented in Section 5.3. It is shown 

that this formulation tends to be superior to the others presented in 

that the recursion is done on the exponent where accuracy can be better 

controlled. 



CHAPTER 6



COMMENTS AND CONCLUSIONS



Tis thesis has presented an analysis of the behavior of the Multiple



Model Adaptive Control algorithm through both analysis and simulation.



Extensive use has been made of a canonical system (see Section 3.1) in



which certain assumptions on the structure of the true model are made,



chief of which is that it is diagonal. While somewhat extreme, this



sample structure has been carefully chosen to display what we feel are



the critical characteristics of the method as observed in more general



applications and which, unlike the more general problem, also has been



amenable to detailed analysis.



The purpose of this chapter is twofold. First of all, various 

ad hoc modifications have been proposed for the MMAC algorithm which 

are aimed at overcoming some of the undesirable behavior observed in 

applications. An example of such a modification is the introduction of 

a low pass filter to smooth out the probabilities. Section 6.1 contains 

a brief discussion of the most prominent modifications along with three 

methods for improving the response which are suggested by the results 

of the analysis of this thesis. The basic conclusion is that with any 

of these modifications great care needs to be taken to ensure that the 

response is not degraded. 

The second purpose of this chapter is to provide a sumnary of the
 


major conclusions of this thesis. This is done in Section 6.2 in which



the specific conclusions of the analysis contained in this thesis are
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summarized. Also in this section are a list of qualitative conclusions



regarding the MMAC system when applied to general systems. These result
 


from extrapolating the specific conclusions to more general systems.



The chapter concludes with a list of suggestions for future research in



understanding the MMAC algorithm.
 


6.1 Modifications



Various ad hoc modifications have been proposed-to overcome some of



the undesirable properties of the MMAC algorithm which have been observed



in applications. In this section two of the most prominent of these are



discussed. First of all, in order to make the algorithm more sensitive



to changes in the true model, a form of the MMAC algorithm which possesses



a finite memory property can be used. In the first subsection, it is



shown that most of the properties of the MMAC method apply in this case.



The exception to this is that no convergence property can be given due



to the finite memory.



The next subsection contains a brief discussion of the addition of



a low pass filter in the probability calculation. This modification 

has been proposed [233 to smooth out the rapid probability transitions 

and oscillations which can occur and thereby attempt to get a smoother 

state response. It is argued in Section 6.1.2 that, especially when no 

model matches the true system, this can result in at best no change in
 


performance and at worst in a destablilizing effect. This section then



concludes with a discussion of three modifications which have been



suggested by the analysis of this thesis.
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6.1.1 Finite Memory MMAC 

One of the many ad hoc modifications to the MMAC method which has 

been proposed has been termed Finite Memory MMAC (FM-MMAC). It can best 

be understood by considering the form of the probability equation given



in Section 4.4:



_ (k) 

P(k) = P(0)e 2 (4.11) 
1 a (k) 

P(0)0e 2 + (l-P(0)) 

where



k -1 
 -1


a(k) = Z r' (j)8 r i) - r2 (i)Or (i) (4.10) 

i -1 _ -l -2 -2 -2 

This form of the equation makes it clear that all of the past data are 

equally weighted in determining the present probability. This is not 

necessarily what one would desire in an adaptive controller since data 

from the far past may not be relevant to the current operating conditions. 

There are, of course, many ways to modify the method so as to make it 

more responsive to the immediately past data than it is to the more 

remote data. For example, one may exponentially weight the past data:
 


k ( - ) S - 1 
 - 1l

&(k) = a(k-) [r (i)8 r (i) - r'(i)O6 r (i) (6.1)

i=ll - l -2 -2 -2 

for some a < 1. An alternative is to merely use the last M values of



the residuals. Thus, one could use



k -


a(k) E [r'(i)O r (i) - r'(i) r i)] (6.2) 
i= k-M+l - -l -1 -2 -2 -2 
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where M is a free design parameter which would be chosen partly on the



basis of how fast the parameters of the true model are expected to



change. This is referred to as the Finite Memory MMAC algorithm.



It should be noted that a significant amount of the analysis of



systems of these types has already been done in Chapter 4. To illustrate



this, a discussion of the second of the proposed schemes with M=l is



given. Thus, take



&k) = r' k)i r (k) - r' (k)e r (k) (6.3)-1 -l l2 -r2-2 

First of all, from Section 4.1, the basic linearized analysis con


clusions such as the neutral stability are unchanged as are the results



of Sections 4.2 (Universal Stability). Note that the state convergence



results of Section 4.3 do not carry over in this case. The technical



reason is that PlC.) is no longer non-decreasing. In fact, it is easy



to show that



k!J& - 0=> P ()) II 1 

I N 

where N is the number of models. Thus, if the closed loop system is not



stable for the case in which all models are equally likely (i.e., the 

N-model extension of the condition that X(P) is stable for P = 1/2), 

then I jwl can not approach zero. This is a direct result of the finite 

memory assumption and occurs for any finite M. This is not, however, 

necessarily bad for an adaptive controller. It roughly corresponds to 

the notion that without information as to which model is correct, 

(i.e., r. = 0) one can assume that each model is equally likely. 
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The results of Section 4.4 on the analysis of the probability 

equation also hold since they do not depend on how a(-) is computed. 

Thus, Figure 4.1 is again useful as are the approximations 

a() >> > P() 0


S



(4.12) 
<< a 	 => P(-) 1 

s 

and (4.14), where a is as in Equation (4.13). The qualitative behavior

s 

can best be appreciated by noting that combining Approximation (4.12) with



Equation (6.3) yields



L.1 (k)II -l >> jjLr2 (k)jj -1 > P Wk)0 

-1 -2(6.4) 

<<  E(k)I 	 8-1 a 
 => P(k) 1jl 	 r 2 (k)JI 

-1 -2



where, 	 as in Chapter 4 we have assumed a = 0. (Removing the assumption
s 

that a 	 = 0 merely results in aL being added to the appropriate term in5 	 s 

-
Approximation (6.4).) Thus one can expect that, compared to the infinite



memory case, the period of oscillation for the M=l case will be shorter



due to a lack of the accumulation of the residuals over time. Effectively,


by removing the summation of the residuals (the discrete time analogue 

of an integrator), a lag has been removed from the system. Thus, one 

would expect the peaks of the state curves to be smaller than when the 

summation is included. Note that it is possible, following the analysis 

of Chapter 4, to calculate approximations to the switching times T1 and 

T2 . In fact, it becomes somewhat easier to compute since no summation
 


is involved, Note, however, that care must be used in applying the results
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due to the assumption that P is always near zero or one.



Simulation results of this case are shown in Figure 6.1. The con


ditions of this simulation.are identical to those of Figure.3.2 except-...



that RM=1 is used in the probability calculation. Note, however, that



the character of the response has changed miarkedly. The probability



(Figure 6.1a) changes much more rapidly and takes on intermediate values



occasionally as it transitions between zero and one. This, of course, 

complicates any analysis such as the computation of the switching times 

T1 and T . The state trajectories are shown in Figure 6.1b. Note that 

they are also much more oscillatory and in fact appear to limit-cycle. 

It is unknown at present if this is in fact a true limit cycle. Also, 

clearly shown is the reduction in the peaks of the state tra3ectories 

from about 17 for the unmodified situation to about 1.2 for the M-1 

case. 

The variable in(x x 2), shown in Figure 6.1c, also is highly 

oscillatory and does not exhibit the negative slope which is evident 

in the unmodified case (Figure 3.2). This is further evidence of a 

limit cycle and indicates that the closed loop system is only neutrally 

hyperbolically stable. It should be noted that the analysis of' Sections 

4.5 and 4.6 on the conditions for hyperbolic stability required that 

the probability be always near zero or one. As long as this condition



is met, the results of those sections still apply to the Finite Memory



case. Note, however, that the assumption on the probability may not



be as reasonable due to the presence of the high frequency oscillations.
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6.1.2 Low Pass Filter



As seen in Section 3.2, the probability often exhibits a zero-one



type behavior, rapidly changing between these values. In an attempt to



smooth out these probability transitions, it has been proposed that a low



pass filtered version of the probability be used for the control calcu


lation. In this section a brief argument is presented which concludes



that this may result in a degrading of the response.



As seen in Chapter 4, when A(P) is an unstable matrix for all fixed 

P, the oscillatory behavior is necessary if hyperbolic stability is 

to be achieved. Thus, one can easily imagine cases in which low pass 

filtering the probability would result in a degradation in response. 

Although no detailed analysis has been done, the results of this thesis 

indicate that at least during the initial period, including a low pass 

filter on the probability would cause the probability to,lag behind 

what it would be otherwise. This in turn would result in the unstable 

state growing to a larger value before the probability switches. Although 

the effects in later periods are unknown, it is reasonable to conclude 

that the net result is an increase in the values of the peaks of the 

state trajectories compared to the case in which no extra filtering is 

done. 

6.1.3 Miscellaneous Modifications



In this section three relatively smple modifications to the MMAC



algorithm which have been suggested by the analysis contained in Chapters



4 and 5 are introduced and discussed. The three modifications are:



scale the residuals, increase the lower limit on the probability and take
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the square root of a(*) in the probability equation.



In Chapter 4 it is shown that a discrepancy between the probability 

equation and the state equation exists in that for P near 1/2 the rate 

of change of the probability is proportional to the square of IInI while 

the rate of change of 11LIJ is only proportional to IfwJI to the first 

power. This suggests that one way of smoothing the probabilities is 

to replace Equation (2.22b) by



P! (k)P(r ) 

P1 (k+l) p(k) (r)I + P 2(k) (r) (6.) 

where



1 --l



(r 2= je (6.6) 

Note that p(*) is no longer the Gaussian density function. This version



will be referred to as the square root modification of the MMAC algorithm.



Simulations using this redefined function (shown in Figure 6.2)



indicate that the probability still behaves in a zero-one fashion.
 


Furthermore, note that the peaks of the state trajectories have increased



significantly compared to the results using the normal probability



function. (See Figure 3.2). This is believed to be due to the effective



delay which results from a(*) changing linearly rather than quadraticly.



Thus, this modification does not accomplish the goal of smoothing the



probability and results in degraded state responses. It is further



concluded that the dominant nonlinearity in so far as the oscillatory



behavior is concerned is that of Equation (4.11)
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- 1 ca(k) 
P(k) P(0)e 2 (4.11)


1 a~k)-
P(0)e 2 (k+ (1-P0 (0))



and not those of the a(*) term.



Finally, note that as predicted by the results of Chapter 4, the



closed loop system is hyperbolically stable. This is best seen by con


sidering the plot of ln(x x2) given in Figure 6.2c in which this variable



is seen to decrease linearly. This indicates that the states behave in



such a fashion that



Xl1X 2 
bt = e 

where b is the slope of the line in Figure 6.2c.



The second possible modification is to change the lower limit on



the probability, Plim, discussed in Section 5.1. In that section it



is shown that during periods when the lower limit is achieved, then the



peaks of the state trajectories are given by al1m/R where



=l 2 n in (5.3) 

and R1 is given by Equation (5.7). Thus it is possible to reduce the 

peaks merely by increasing the value of Plim as long as the approxima


tions



il -1 li
Xo) = P 
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are valid. Even when these approximations are not valid, the approach



is still valid if the effect on R1 is accounted for by replacing



SI i(1)11 with (-P ) II(see Section 5.1). 

Simulations in which Plim is changed have been done and they confirm


this observation. However, two points need to be recognized in exploiting


this fact. First of all, if Plim is reduced too much, the assumption



that alim/R is greater than IIY2(0) 1 2 (see Section 5.1) is violated



resulting in the peaks not being as predicted by aLIM/R1 . Also, by



Equation (5.3), the value of the peak varies as the natural logarithm of



Plim and so large changes in Plim are necessary to make moderate changes



in the peaks.



A third modification, suggested by the analysis of Section 4.4,



is to scale the residuals. As seen in Section 4.4, the value of the



probability is determined by a(*). Thus, if the calculation of a(4) is



replaced by



&(*) = a a(*) (6.7) 

with a>l where a(*) is given by Equation (4.10), then the changes in 

a,') are amplified. This, when combined with the existance of a lower 

limit tends to reduce the peak value of the state trajectoreis and



the period (see Section 5.1). A simulation of this, shown in Figure



6.3, indicates that significant decreases in the peak amplitudes are



possible. The simulation conditions are identical to those Of Figure 3.2



except that the residuals are scaled by a factor of 10. This corresponds



to letting a = 100.in Equation (6.7). As a comparison, the unmodified
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MMAC algorithm had a peak of about 17. (see Figure 3.2b), the FM-MMAC



algorithm had a peak of about 1.4 (see Figure 6.1b) but oscillated rapidly,



while scaling with a value a = 100 results in peaks of about 1.6 (see



Figure 6.3b). Note also that the quantity In Xlx2 for the case when



a(,) is scaled (Figure 6.3c) behaves exactly as in the unmodified case



while the FM-MMAC algorithm results in neutral hyperbolic stability
 


(i.e., in ln xlx2 being constant). 

This modification only reduces the peaks of the state trajectories 

when the lower limit on the probability is achieved. In fact, it follows 

directly from the anslysis of Section 5.1 and thus all of the analysis 

of that section can be repeated. In particular, the results on the 

hyperbolic stability and the calculation of the switching times follows 

analogously with the use of Equation (6.7). One drawback of this



approach is that since a(*) is scaled without modifying the associated



KF's, a(*) will tend to be affected more by noisy inputs than before.



This in turn could significantly alter the response to noise in the



observations (see Section 6.3).



6.2 Summary of Results



The major results of this thesis are of two basic types. The



first type is the specific conclusions which have been derived for the



special cases discussed in Chapter 3 and 4. These result in specific



criteria for each type of behavior but, strictly speaking, apply only



to the associated special case. Of-possibly greater importance are



the qualitative results which, while not proved in this thesis are
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reasonable extrapolations of the specific conclusions. Both types of



results are summarized below. For the details of the specific conclusions,



the reader is referred to the appropriate section of the body of the thesis.
 


The major specific conclusions of this thesis are:



1. At best the MMAC system is neutrally stable about an equilibrium 

point in that the probability has no tendency to return to its initial



value following a perturbation. (See Section 4.1).



2. if R(P) is an unstable matrix for P=1/2, then for the structure 

of Section 3.1 small perturbations result in the probability oscillating 

which in turn results in behavior which is either bounded or unstable. 

If i(P) is a stable matrix for P= 1/2 either oscillatory or nonoscillatory 

behavior may occur depending on the size of the perturbations and the 

stability of i(P) for P= 0 and 1 (see Section 4.1). A procedure has 

been presented in Section 4.7 for determining a lower bound on the set 

of perturbations which yield oscillation-free responses. This procedure 

is valid for any two model structure with slight modification. 

3. The rate of change of P is proportional to 11w12 while the 

rate of change of I IA I is proportional' to I jH4 Ito the first power (see 

Section 4.1). This results in P changing faster than iwKII for i 1ii 

large and slower for-1 H I small. This partly causes the square-wave 

behavior often noted for P.



4. A necessary condition for 11wIl - 0 has been shown to be that 

iCP) be a stable matrix for some value of P (see Section 4.1, 4.6). 

5. A sufficient condition for the exonential convergence of the



state has been shown to be that i(P) be a stable matrix for all values





of P. (see Section 4.3). This, of course is very restrictive. Lacking



this condition, the possibility of at least short term oscillations



in the probability which cause the states to increase must be recognized.



Thus, the MMAC method is probably a poor choice when such oscillations



can not be tolerated.



6L If one model matches the true system and each model is diagonal,



then 1W1 -)-0 (see Section 4.3). This says nothing about the behavior



of P(.) however.



7. Whenever the MMAC method is used with two models, the equation



for the probability can be divided into a scalar, static nonlinearity and



a summation (i.e., the log likelihood ratio) (see Section 4.4). Although



not done here, this can be generalized in the N-model case to an N-1



variable static nonlinearity and N-1 log likelihood ratios. This ap


proach is important as it emphasizes the switching behavior of the prob


ability, allows relatively simple analysis to be done for the often



seen case when P is nearly piece-wise constant and provides a slight



numerical superiority in applications (see Section 5.3).



8. For two special cases specific conditions for the stability



or instability of the oscillatory mode have been presented (see Sections



4.5 and 4.6). These results agree well with simulations and with 

each other. The basic result is that stability results when the slowest 

decaying stable eigenvalue and the most rapidly growing eigenvalue



are such that their product.is less than unity.



9. The oscillatory mode of response may be hyperbolicly stable 

in that the quantity ln(x1 x2 ) is decreasing even if !(P) is an unstable 

http:product.is


matrix for all constant values of P (see Section 4.6). This is seen to 

correspond to the observation that the states are alternately controlled 

in a manner such that



bt 
x1x2 = e



where b is a constant which is negative for hyperbolicly stable systems.



In this case the phase-plane plots resemble hyperbolas (see Figure 3.5).



This illustrates the nature of the controller in that it attempts to



achieve stability by alternately controlling each mode of the true system.



10. For the special case of Section 3.1 with 4 = 0, it has been



shown that v(-) is decreasing for P=O and 1 as long as the LQ design



procedure is used with a nonzero state weighting penalty.



11. In contrast to the previous conclusion, there are many values



of the control gain which yield satisfactory matched behavior but which



will result in unstable behavior in the MMAC system. Thus, care must



be exercised in the choice of control gain.



12. The existence of a lower limit on the probability slightly



affects the results. When the limit is consistently achieved, the



peaks of the state trajectories tend to a precomputable constant (see



Section 5.1).



13. Various forms of the equation for the probability have been



examined as to the effects of numerical roundoff (see Section 5.2)



resulting in the proposal in Section 5.3 of a form which is believed to



be superior to others in that it is less sensitive to roundoff effects.
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14. Five ad hoc modifications to MMAC algorithms have been



examined (see Section 6.1). The Finite Memory MMAC resulted in a



significant reduction in the amplitude of the peaks of the state



trajectories but also resulted in a significant increase in the fre


quency of the oscillation. Adding a low pass filter was seen to be



possibily detrimental to the simulation results as was using the



square root of a(,) in the probability calculation. Two approaches



which appear to improve the response have been given. These-are to



increase the smallest value that the probability as allowed to assume



(i.e., increase P1i.) and also to scale the residuals by a scalar which



is greater than one.



The qualitative results are:



1. If one of the'models matches the true system, good behavior



(as.defined by the design cost function) probably results. Some



doubt must remain due to the fact that convex combinations of stabi

lizing controls do not necessarily yield stabilizing controls. 

2. If none of the models match the true system but if at least 

one model results in a stabilizing control (that is, if A(P) is the 

extension of !(P) to the N model case, then this results when there 

exists some i such that P = 1 > A(P) is a stable matrix) then 

stability probably results. However, it is clear that the quality of 

the response may still be poor in that it may be signnfiantly different 

from the design performance specifications as measured by the response



of the control system under perfectly matched conditions. Furthermore,
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it is possible to get oscillations in this situation. Consider, for



example, the case with two models where one model stabilizes the closed



loop system but has a slow filter while the other destabilizes the system



but has a fast filter. One could then expect a cycle to develop in which 

the system alternates between the stable and unstable control laws.



3. Even if no constant value for the probability results in



a stabilizing control, the overall system may still be hyperbolically



stable (where hyperbolic stability would have to be redefined for the



general case). In this case, the probabilities would tend to rapidly



change alternately controlling the various modes of .the true system.



4. Even when a constant value of P results in a stable control,
 


oscillations in the probability are likely to occur. In fact, the
 


oscillations are a natural and necessary attribute of using the MMAC



algorithm when perfect model matching does not occur.



5. The MMAC algorithm can be expected to provide good response



in conditions in which the set of possible models is closely approxi


mated by a finite set of models. An example of this would be the
 


control of a system subject to discrete failures in various components.
 


6.3 Suggestions for Future Research



Many aspects of the behavior of the MMAC algorithm remain to be



studied. A partial list follows.



1. Ljung et al [24, 25] have considered closed loop identification



for some specific model structures and identification methods. Appli


cation of their results to the MMAC method remains to be done. This



may result in the extension of Baram's results [15] to the closed loop



case.
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2. In Section 4.5, the analysis produced the conclusion that the 

peaks of the state trajectories decrease and the period increases if 

ala2 is less than unity. However, this eventually results in the 

violation of the assumption that the probability is either zero or one. 

Furthermore, if the closed loop system with P constant is unstable for 

all values of P, then the state can not approach zero since, as seen in 

Chapter 4, this would imply that P approaches zero even faster than the 

state. Simulation results to date have been of little help in that in 

all simulations in which long term behavior was explored an underflow 

to zero occurred for at least one of the components of the state. Thus, 

the asymptotic properties of the MMAC method remain to be determined.


3. All of the analysis and simulation results of this thesis are 

based on a noise-free case. The effect of noise needs to be determined. 

Note that this is a non-trivial task since even if all the r (-) are 

assumed zero mean, a(,) is then Chi-Squared resulting in a very complex 

distribution for the probability. 

4. Many of the qualitative properties discussed in Section 6.2, 

while substantially based on the specific conclusions of this thesis, 

remain to be proved in general. An example of this is the proof of the 

general convergence of the probabilities when one of the hypothesized 

models matches the true system but when the assumption that the'true 

system is diagonal is not satisfied. 

5. Much of the analysis contained in this thesis has been based on 

the canonical problem structure of Section 3.1 in which the true system 

is assumed to be diagonal with two states. Extensions to non-diagonal 
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systems and/or systems with more than two states are needed.



6. Much of the analysis has included the assumption that there



were two hypothesized models. Extensions to the N-model case are needed.



7. In the analysis of Section 4.6 on hyperbolic stability it is



assumed that the control gain corresponding to the mismatched state



(9) is zero. Extensions to the more general case have been attempted



without success (see Section 4.6). However, such results would yield
 


useful insight into the general MMAC system.



8. In Section 4.6 it is noted that for the special case under



consideration, the LQ methodology is guaranteed to produce a control



which meets one of the criteria for hyperbolic stability. It remains



to determine if this is a general property or merely a result of the
 


conditions of the special case.



9. Recall from Section 4.6 that-hyperbolic stability is guaranteed 

when Conditions (4.41) and (4.42) are met. The first of these guarantees 

hyperbolic stability for P=0 and 1 while the latter does so for P = 1/2. 

If it can be shown that in cases in which Condition (4.41) is met but



(4.42) is not that P oscillates in such a fashion that it never takes



on intermediate values, then Condition (4.41) would itself be sufficient



to guarantee hyperbolic stability.
 


10. In Section 6.1 it is seen that using the finite memory MMAC 

algorithm with M=l results in what appears to be a limit cycle. Simula

tion results indicate that the characteristics of the limit cycle are 

dependent on the system parameters and not on the initial conditions. 
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For example, when initialized with extremely small initial conditions



,o-10 -20 
(i.e., true states of 1 x 10 and I x 10- respectively) behavior 

very much like that in Figure 6.1 has been observed in that oscillations



of the same amplitude and period start after about 200 time steps. It 

would thus be useful to examine the characteristics of this case to 

determine the amplitude, bias (see Figure 6.1) and frequency of this 

oscillation.



11. Throughout this thesis, extensive use has been made of the
 


matrix norm IIa112 = Max X(AA'). This results in conservative estimates,
 


for example, for the domain of attraction in Section 4.7. Calculations



in which MaXIlX(A) is used in place of the norm have been done and



estimates which agree better with simulation results thus obtained. How


ever, this quantity is not, in general, a norm for the matrix A. Research



into using MaxIA(A) j in place of the norm may result in the improvement 

in the estimates used throughout this thesis.
 


12. In this thesis, the concept of hyperbolic stability is intro


duced for the two-state diagonal system. Extensions of this useful



concept to more general system structures needs to be done.



13. A few design modifications have been proposed and analyzed.
 


It is believed that the results of this thesis can be used to develop



additional design modifications which lead to improvements of the



response.



14. The results of this thesis strongly indicate the types of



behavior which a general MMAC algorithm can cause. Although no con

sistent general methodology has been developed, the qualitative results 
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of this thesis provide a basis for such methodology. Specifically,



important design ground rules are needed for selecting an appropriate



hypothesized model set given the expected range of parameters of the
 


true model and for the selection of the control gains for each of the



hypothesized models. our analysis in Chapter 4 provides insights into



the constraints which must be imposed upon such choices and thus should
 


help form the basis for such a design methodology.





APPENDIX A



DEVELOPl'2NP OF THE ALGORITHM FOR THE RANGE 
2LJ w FOR EXPONENTIAL BEHAVIOR 

In Section 4.7 an algorithm has been presented which allows one to



compute a bound on 11H(O) H such that exponential (non-oscillatory) 

behavior results. This appendix contains a more detailed development
 


of that algorithm.
 


Consider Equation (2.22) 

w(k) = A(P) w(k) 

P(k) p(rl) 
P(k)p(rl) + (-P(k))p(r2) 

We make the following assumptions as in Section 4.7:



1) P(O) = 1/2 and Bl= i.e,, Cs=QL 

2) ACP) is such that there exists an C < 1/2 such- that 

IIA(F)II < 1 ~ P_C/2 -, l/2+s61 

IIKCWII > 1 ather~ise. 

Define 6 to be the value of a(-) corresponding to P 1/2- s; that is, 

define S as the solution of 

2
'" 
 
.5 e- (A.1) 
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Thus, by the definition of s and a it can be shown (see Section 4.4) 

that



P(-) E (1/2-E, 1/2+e) <--at(-) s (a + 6, a -a) (A.2)
s s 

Combining Equations (4.48) and (A.2) with the definition of a(-) from



Equation (4.10), it can be shown that 

IIX(r(k))II < 1 Vk > 0 (A.3) 

Ia i=l Eri -22 6-2 22
i=3. -l= 1 r1 (r)l-ir'(ir_ r Ci_] 

This condition merely states that for A(P(.)) to remain a stable matrix 

P(-), and therefore also a(.), must remain close to their initial values. 

It is now necessary to examine (-). Equation (4.10) can be rewritten 

as 

k i 
cz(k) = () A U W(0) (A.4)[(P

i=1 == 

where



-1 
 
0



0 

Define a such that



II (PC1))I1 2 <_a Vi =,2,...,k 

Taking norms in Equation- A.4) then yields 
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kc i(k)l< F - 112 (A. 5) 
il 

where G = MIN{( ), X(%)} with X(.) representing the set of all eigen

values of e. Evluating the summation in Equation (A.5) then yields 

l (k) < ((- a) a ja (k) < a I (A.6) 

Thus, the approach in the remainder of this section is to bound changes



in a(-) so that A(P (-)) is always a stable matrix. If A(P(.))is always



stable, then a is less than one and Inequality (A.7) can be replaced by
 


<Ic(k)I a )1 Vk (A.7) 

since the right hand side of Inequality (A.7) is an increasing function 

of k. IThis leads to the procedure of Section 4.7 for finding l lHl j2 

such that Ia(-) <6 Vk. 
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