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1. Introduction

The numerical solution of the initial value problem for a system of
ordinary differential equations
y'(t) = f(y(t),t) (la)
Y(tol a8 (1b)
can be considered locally as the computation of a sequence of approximations
Y {yn WOLLEETS M l,y } with each Y. being a numerical approximation to

n

y(t ) for E et 4 f=21. while many sophisticated packages [1,2,3,4 |
mxist which change the stepsize hi in order to achieve stability and specified
accuracy, the stepsize usually remains constant for a number of stps, and the
the change of stepsize is usually accompanied by an interpolatorv change in
the solution sequence Yn' although not always (5 ]. For these reasons the
local analysis, limited to k steps, given in the sequel willi assume constan£
stepsize h. The actual numerical solution element Yn is usually computed
from elements of the sequence Yn—l and f(y,t) using onc of several formulas,
each of which has a local di.czretization error term ¢nchr+1 where ¢ depends
on £ and tn' C is a constant dependent on the formula, and r is called the
order of the method. This work is concerned wi:h how errors are propagated
when numerical methods are applied to a differential function f(y,t) which
is nonlinear in y, witn emphasis on stable propagation of the errors.

The most typical formulas in use are Runge-Kutta multistage formulas

[6] and Adams type multistep methods. An s-stage Runge-Kutta formula is

e hf(yn,tn) (2a)
=1 =1
K_= hf(y + 1L B .2 %5 KB . ), qgm 2.2 .:,85]) (2b)
9 n j=o 4 n j=0 9
s-1
Yoy T T, 4 - Y&y (2¢)

q=




ramilies of explicit formulas exist for orders one through four, with

= Rl e T = -

the order equal to the number of stages. Fifth order formulas require at

_: leas* six stages, and more accurate implicit formulas formed by replacing
3 (2b) by

: - SIS - ZECS

‘ Kq - hE(yn + F B - Kj' tn + 5 hB ; ), and requiring solution of

§=0 i=0
systems of nonlinear equations, also exist [7]. The Adams-Bashforth and Adams=-

Moulton formulas are of the form

k
= b . .
Yn = Yp-1 * e bif(yn-i'tn-i)' (3)
i=1
k -
Y D)y F ¥ nei nei) el

i=0
respectively. A k-step Adams Bashforth formula is of order k, and a k-step

AMams=Moulton of order k+l. Since the latter may require iterative solution
of a system of nonlinear equations, the initial solution guess may be pre-
dicted by an Adams-Bashforth formulas of the same or one lower order, and

the difference may be used to approximate the discretization error [6].

Many methods iterate (4) a set number of times, often one, rather than to
convergence.

= The concept of multistep methods is useful since order of accuracy as
high as k+1 [8] can be achieved by a stable formula with only a few
evaluations of f(y,t), whereas a correspondingly accurate Runge-Kutta

_1 formula requires at least one evaluation of f(y,t) for each additional

le order of accuracy. Newer methods have becn developed to handle special

circumstances. The backward differentiation implicit formulas

Y. =L a vy
j=1 *
are useful in solving stiff systems of equations [1]. For systems with

E
n=1 + h bnf(yn'tn) (5)

known complex time coastants A, such as are often encountered in simulation




of physical systems such as aircraft, formulas dependent on hl for constant

h are known, Such formulas have the general form

K K
o f.l“i“m ¥oii !r!;_o b (W) Ely .ot ). (6)

The coefficients ai.bi are chosen to fit exactly the case y(t) =

ic
C ulhcoavt + C e“t

1 2 sinyt where A=utiy and h is constant. The order of these

methods 18 generally two lower than would be expected since two degrees of
freedom are lost in forcing the solution to follow ¥(t).

The above iadicates some of tho{uidv variety of problems which can be
handled by multistep formulas. However, a better understanding of the

stability problems inherent in using them would be helpful.

2. Stability of Solution Scequences
The standard linear stability analysis is formula specific and
describes the behavior of a numerical formula applied to the complex test
» 1 ' = - o ] Uik » A -
equation y Ay , y(to) ¥ 0. Let hn = {L(tn-krl" ,t{l“-l,, ‘(t“)}

be the difference sequence for y(t“)-z(in) where each solves the test

equation for a different initial value Yor#ye Then c(L“) = (yo—zo)ekt

is nonincreasing in norm for Re(A):O. Such a condition is called stability.
It is desirable for the numerical solution Yo to be stable if the true

solation is stable, so for a given stepsize h, one finds all complex A such

hat any numerical sequence E = {e ool e } has the property
’ ¥ ey ™ ( n-k+1 ' n=1'""n" "° i

Iei+1,~|oi| for all i, where ci = yi-zi, the difference between the numeri-

cal solution sequences with initial values Yo%y

For Buler's formula, y"=!1+hk)y" hence the numerical solution is

1'
stable for ]1+hkl§1. For multistep formulas, linear stability is character-

ized by the generating polynomials

L T ] T T L T T S T - St e — ey
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pE) =L a s (7a)
i=0
k

o) = & b ck'i (7b)
i=0

where p and 0 have no common divisors. The region of linear stability
is all h) such that p(f) + hX o(f) has all roots inside the unit circle,
or on the unit circle and simple [6]. For Euler's formula, p(f) + hi o(f)
is (=£+1) + hA. Since this analysis is formula specific, tc investigate
the formula's effect on an actual f(y,t) one considers all the eigenvalues
Ai of the Jacobian matrix af(y.t!/ﬁy; if all hAi are inside the stability
region for all Y, tn of interest, then the numerical solution will be
stable. Insuring that such a condition holds is usually not desirable and
often is impossible.

To develop a stability analysis feor nonlinear f(y,t), let f(y,t) have
the property

Re <y-z, fly, t) = f(z,t)> < ul|| y—:-.||2 (8)

for all t, y, and 2 of interest. lere <u,v> = U*Qv for some positive
definite Hermitian matrix Q, and l[ u ]|2 = <u,u>. Then for any two
solutions
yf{t), z(t) = y(t)-e(t), e(t) satisfies

de(t)

S = fly(E),t) - £(z(t),t)

and (B) implies that

de(t), .

2
3k 2ulleer ||

gt ||u(t)||3 = 2 Re<e(t),

and thus
. ut
et || < e [lete ][],
- o
which is non-increasing for u<o0.
However, (8) is again a condition that cannot be easily verified, so

; - t
a concept relating the true solution sequence Yl = {y(t 1y s
I

n=k+1




e
y(tn_l), y(tn)l to the computed sequence L {Yn-k+1""yn-1'yn} is
presented in the sequel. The following definitions and theorem are

helpful. They occur in Dahlquist [9) and the theorem proof is presented

in Brown [10].

Definition: a linear k-step formula satisfies

K ;
0=t +hb
§=0 3¥n-

fly )] (9)

n-j'tn-j

i

Definition: a one-leg k-step formula corresponding to (9) satisfies

k 1k Lk
0=1 a,y _. + hsf(=L DY as =L bt ) (10)
juo 3 1) 8,0 J10°1'8 ., 3N

where s = ¢g(l). Without loss of generality, set s=1.

Theorem 1 [9] Let Yn be a sequence which satisfies (10), and let

Y = {y ) be such that
n n

y = §=0 by, s = O(E) ¥, (11)
where E denotes the back shifting operator. Then ;n satisfies (9).
Conversely, if Qn satisfies (9) then there exists a sequence Yn such
that ;n = o(E)yn, and ¥, satisfies (10).

This shows that Yn given by the one-leg k=-step formula will
have similar stability propercies to its corresponding linear k-step

sequence Y. Dahlquist [9] has described a discrete Liapunov function

VG t.h which, applied to a sequence Yn  characterizes the stability
r r

1 [} 1 _— =5 | 3 o B kA —— - — e i



S R S S———— S

of that sequence generated by a non-linear system (1). Let

e

positive definite, £ x L matrix. The structure of G assures that

vG,L,h is positive for Y # {0}.

pefinition: The (G,£ h)-domain of attraction of (the numerical

solution to) the system (1) is all z, such that AvG,Z,h (zo) =

- {Z((l-f)h);---,z('h).zo}. 21 =

= {z{(2-0)h),

(20)59, where 2

Ve, 2,n'%) Vg, e,n 0

{z((2=8)h) ,ee0,2 zl} for the numerical solution and 4

o* |

ceerZ, z(h)} for the exact solution.
pefinition: The (G, {, h)=-stability region of (the numerical

solution to) the non-linear system (1) is all Z, such that

v B (%g) < inf {VG,t,h(ZO)} where 3D is the boundary of the

G.L,
zOEBD

(G,£,h)=domain of attraction.

This has the following application. Rather than requiriné that
Re<y-z, f(t,y)-f(t,2z) > < 0, a connected subset of initial values Yo is
found such that y(h) will be in that subset if y, was; this is the
stability region. This insures that the difference y(h)-z(h) is

bounded since both y(h) and z(h) are in the'ﬁtability region if Yo

and z, were. I1f f(y,t) is autonomous, y(tn) will remain in the region

as n*®, For most well behaved functions f(y,t), the boundary of the
region around a stable point can be approximated computationally.
Once the analytic stability region is known, the numerical stability

region can be calculated using the one-leg k-step method for the same



sequence (y(l-k)h).....y(*h).yo} to get ¥y- The two regions can
then be compared.

Analytically, it is possible to form a particular G, based on
the coefficients of a one-leg k-step method, such that all numerical
sequences based on f(t,y) that satisfy (8) will have a stable solution.
Liniger and Odeh [11] have shown how to pick G for second order two-step
formulas, second order three-step formulas, and third order, three-step
formulas.

It is shown below that even an arbitrary choice of the positive
definite hermitian matrzix G will generate some usable results, and
thevorem 2 demonstrates that using some G for a one-leg k-step solution

-

yn will generate the same stability region for the related solution Y,

of the linear k-step formula for a modified G. The proof appears in
Brown [10].
Theorem 2 If vﬁ,t,h

matrix G, then there exists a symmetric, positive definite matrixz G,

(Yn) = ¢ for the symmetric positive definite

-

dependent only on G and o(x), such that V. (Y) = ¢, where
G,B.h n

Y = o0o(E) Y are the elements of Y and Y .
n n n n
3. Existence of Stability Regions
Sufficient conditions can be developed for the existnece of the
(G,£,h)-stability regions based on known techniques such as Liapunov's
direct method [12] and property (8). An important concept in the
development is the equilibrium y (t) of the differential function f(y,t).

While some references define it for an initial value y(to) = 0 in the

space of the dependent variables, this is accomplished by an unnecessary



change of variables that could be confusing., The important point

is that ;(t) satisfies f(;(toi. tol = 0, so that, if f is autonomous,
then y(t) is a constant, and otherwise, the Taylor series about to
is given by ;(to) + (t-to)zf'(z)/z and is thus slowly varying and
nearly constant for t near to.
Definition: The solution ;(t) of ;' = f(;.t) for ;(to) = ;O'

such that f(yo.to) = (0, is called the equilibrium of f(y,t).

Definition: The equilibrium of f(y,t) is said to be asymptotically

stable if there exists a L z(to,n} such that for every €>0 there
exists 6, = §,(e,7,)>0 such that if .Hyo-;o,||<61, then ]|y(t)-;’(t)||<€
in Itl. @), and there exists a t1,e(t,,~) and 62(12) such that if
||yo-§o,1|<azhz) then tﬁ Hy(t)-;'(t)H = 0, where y(t) satisfies y'(t)
= f(y,t), y(to) = ¥y
Theorem 3 (Liapunov [12]) The equilibrium of f(y,t) is asymptotically
stable if there exists a function v(y,t ) which is positive definite
in some region D about ;(to) and lim v(y,t) = 0 uniformly in t as
][y-;|[+0 there, and whose total derivative is negative definite on D.
With this background, it can be shown that a well behaved f(y,t)
which has a not necessarily unique Liapunov function v(y,t) with region
D implies the existence of a (I,{,h)-domain of attraction and stability
region of both the exact solution and of a one-let k-step solution
based on a stable multi-step formula. Similar proofs can be developed
fro positive definite matrices G ¥ I.

Theorem 4: If the equilibrium y(t) of f(y,t) has a Liapunov function

of the form v(y,t) = y*Qy for a positive definite matrix Q, y* ttre



transpose of y, and f(y,t) is continuously differentiable on a convex
domain D whose boundary 3D is defined by v‘(yo.to) = 0, and if f(y,t)
has the property on D that (y =y,)*Q(f(y,,t)=f(y ,t))<u] Iyl--yzl |é
where <0 and X*OX = ||3||;. then for any point ;t - ?(ttl in the
interior of D, an (I,{,h)=stability region can be constructed using
rays for ;t' provided h < hotl.fi.
Proof Note that the solution from to to t0 + h is spiraling in from
3D toward the equilibrium, which is inside a circle ||ylt)-y0||2 <
1%£li M where M = max f'(z), since the hypotheses and (B) gives
||y(tti - Y(GL) lijzgp(uih)lly(tol-;(to)||. By definiticn, Avt,f.htvt,
= ||y(t£||é'||r(t0)||é. which occurs when 0 = v(yz. t£)~y(y0.t0)
= (yt-yo)v'(z) by the mean value theorem. Since v'(z) = 0 on the
boundary 3D, along any ray from ;l one can finA y(tt) generated by a
¥, o= 20, provided h{ < hot is small enovgh that the trajectory from
?0 to ;f is entirely in D,

The boundary of (I,{,h)-domain of attraction D' can be constructed
of all such rays. The (I,{,h)=-stability region D" has a boundary of

all points such that v = y* = min VI t.h which can also be
" L]

L.,h ap*

constructed.

Theorem 5: If the hypotheses of theorem 4 are met and %;- g;%éil
is continuous in D, then for any ;f in the interior of D, an (1,{,h)~
stability region can be constructed for a p-th order one-leg k-step

method, for h < hotfpf).

Proof AV = ||y£|[; - I|Y(t‘-£h)||é where




* jil b s 7 i jio by¥(tp.y) ,Eo P f-y)
and y(ttl -yp * Kp hp+1£(p}",' the truncation error formula.
If the truncation error varies continuously as y{tO) varies along 3D,
then two solutions Yo and zp generated by Yor 2y On 9D have the
property that yz* zp uniformly as yo* 2y and a smooth curve 3D' exists
on the boundary of the (I.{,h,)-domain of attraction. Similar arguments

show the existence of the (I,{,h)-stability region.

4. Example
The system [12]
X' = =x = 2y + x2 sin(t) (12)

y' = 5x = y + y/(t+4)

has a Liapunov function for Q = qij' 9, © 37/44, 9y, = 4/11,

q12 =qy = 3/44. Figure 1 shows D, as well as D', the (I,2,0.1)-
domain and D", the (I1,2,0.1)=-stability region. The solution was

an
generated by assuming a power series expansi n x(t) = Z ajtj,y(t) =

m i j*O

Z b.t’ for which ag = Xy b0 = y_, and a, and b. can be generated

j=0 j 0 0 i

recursively. The series converges for It' i. Figure 2 shows D' and D"

for the numerical method based on the Adams-Bashforth 2-step formula

= - -
Y h(l.S"f{yn,tn) 9 f‘yn-lltn_l))- (13)

n+l
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