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1. Introduction

The numerical solution Of the initial value problem for .k system of

ordinary differential equations

Y , (t) ^ f (y (t) , t)
	

(la)

Y(t^) = yo 	(]h)

can be considered locally as the computation of a sequence of approximations

Y 11 = {yrr-k+l,...,yrr-I,yn) with each y 
1 
being a numerical approximation to

it
y ( t n ) for t ry = to + ), h i . While rrkiny sophisticated packages [ 1, 2, 3, 4 ]

i=1

ixirt which chatty! Lhe stepsize It in order Lo achieve stability and specified

accuracy, the stepsize usually remains constant for a number of steps, ,ind the

the ch,in(Je of stet)size is usually accompanied by au interpolatory change in

the solution sequence Y
n

, although riot always, [ 5 j. I-or these reasons the

local analysis, limited to k steps, given in the sequel wili assume constant

stepsize h. The actual numerical solution element y
n 

is usuall/ computed

from elements of the sequence Yn-1 and f(y,t) using on, of several formulas,

each of which has it local di.::retization error term fi 
11 
chr+l where ;, depends

on f ar!d t
n , 

C is a constant dependent on the formula, and r is called the

order of the method. 'Phis work is concerned wi.:h flow errors are propagated

when numerical methods are applied to a differential function f(y,t) which

is nonlinear in y, w.itrt emphasis on stable propagation of the errors.

The most typical formulas in use are Runge• . Kutta multistage formulas

[6] and Adams type multistep methods. Art s-stage Runge-Kutta formula is

I,	 I

r

k,0	 h1 (Y 
11' 

t11

Kq = hf (y 11+	
! I i Kj 

t 
try+	

lr(!c ijj = 0 	 j=0 

yn+l = y  + F.	 Y(IK(I.
q= 0

(2a)

), q	 1,2,...,s-1
	

(2b)

(2c)

4L,rrA... .r	 ,,.r.	 -



1

"amilies of explicit formulas exist for orders one through t()i

tht order equal to the number of stayer;. Fifth order formulas reel

leas #- r,ix stages, and more accurate implicit formulas formed by r',

(2b) l,y
cl	 #	 cl	 R

Kq - Irf ( yn + ];Q 
q) 

K j , t rr + ]: 110q) 	) , and requiring soli '0	 7_0

systems of uonlinear equat-ions, also exist [71. The Adams-Bash for

Moulton formulas are of the form
k

yn	 yn-1	
i l l	

n-i n-i.

k
+ 11]:	 b. f (y	 ,t	 )	 (•1)

yn 	 yn-1	 i  c ► i	 n-i n - i
respectively. A k-,tep Adams Bashforth formula is of order k, and a k-step

Ad.cros - :Moulton or order ktl. Since the latter may require iterative solution

of a system of nonlinear equations, the initial solution quess may be pre-

dicted by an Adam., ;-Itashforth formulas of the same or one lower order, and

the difference may he used to approximate the discreti;.rtion error [6].

Many methods iterate (4) a set number of times, often one, rather than to

convergence.

'1• lr^ concept of multistep methods is useful :since order of accuracy as

liigli as k+l [8] can be achieved by a stable formula with only a few

evaluations of f(y,t), whereas a correspondingly accurate kunge-Kutta

formula requires at least one evaluation of f(y,t) for each additional

order of accuracy. Newer methods have been developed to handle special

'I

tf
1
1

circum:;tances. The backward

k
a

n	 1
i=1

are useful in solving stiff

known complex time co^istants

differenl_t,rtion implicit formulas

y
n-7 4 h b () f (y

n 
,t n )	 (11)

system, of equations [1]. For systems with

such as are often encountered in r;imul;ttion



of 1 1hysical ayr;trnls; suc•I1 as aircral t , fornutl.r; depondrnt on 111 for constant

it 	 known. S , tch formulas leave t 11t- clenorai form

k k

Ytl	
Y.^ l a i (1t\)	 } n -i

+ b 	 (11	 S'1) f (tt- (G)i'tn-i)' r 0

The coefficients! .1 ,I..	 at - t- c • 11os1Qn	 to fit	 rxactly	 Litt! case y(1.)
i t

C 1 0lt`cos;yt	 + `2elit	
nirtyt. Whore X	 il l i)	 and It 	 c •om;tant .	 The %)I dor of	 these

mothoth;	 in tit-nrr.tl ly	 t wo lower than would be expected :; invo	 two tic`grov,, of

	̂ t	 ►

6,

If

freedom are lost in forcing t11e solution to follow y(t).

'Chr aIx)vr i,ItIiC.Ite:; "01114 , of tilt` wit Io v,lt it`ty of 1 1 1'obluul:; wIIich c.nl lee

handlud by multi.:;Cch forinul,v;.	 However, .t het - ter unders;tandin,t of the

stability ltrohlenl:; .irlhrrrnt ill using thrill would be hr1111-u1.

2.	 St.lbi1it y of :.otut ion Sutluencrs

The standard lint-ar stability rin.tty.,0:; it fortmlla specific .ln;i

de.,cribes the behavior of it liumeric • .11 formula al`1`livd to 1110 complex t, •.t

rclu.ltion y' = ay , Y(t o ) f 0.	 Let F	 (r(tl ► -kll)....,t'(tn-1)' `'tttt)}

be the di t f t • rcnre -tscluerlce for y (t ) -:; (t ) wh0 rr 0,lc11 solves lilt- t r:;tn	 n

et luat ion for a (IiIforent initial valuo y0 ,:a^,	 'Then 0(t tl ) = (y0-i )c At

is nonincrea.;inej .in norm for Ite(.1)<0. Such a condition is calhtd stability.

1._ is des.itahle for the numerical solution y to be stable if Lhe truet ►

s,llat ion is, stabl y , so for a clive

r

n stopsi:..^ h, one t in,i:; all complex X ',uc11

that any Itlltllerlcal sE`quenc o I` _ (t` 
it	 n-k+l , .. ,r	 ,C 

n ) 
ha:; Lilt, property

ct-1 

V
l+l t

1 < I e,
1 I for it l 1 .1 , whort` 0 i 	 )'1 	 1 -, r tho di f ferr1100 ht`t we.`ril t Ile 1111111or i-—	 •l

cal soluLic^n :rynrnrr:; w.it.11 ill.iti.1l v,l:ur:: y , z .
0 0

For Fulor':; formula, yll'=(1+h\)}'tl-1' hence the nU111Clr ical :;t•l tit iotl .is

stahle tol . I1+hXI<1.	 For multistep formulas, linem- stability is character-

i°ud by t he y rnerat.i n,l polyt.om.ia Is



. 	 F I

k	 k-i
h(0 = Z	 .11.	 (7a)

i-0 1
k

i=0

where it and o have no common divi:aor:;. The region of linear stability

is all hA such tha t_ p(t,) + hX 0(t,) leas all roots inside Lite unit circle,

or on the unit circle and simple [6]. For Eu.ler's formullt, NO + h1 a(E,)

is ( - t,+1) 4- ha.	 Since thi, analysis is fOrl4Ula ;prc.ific, to invest:i'l.nte

the formula's effect on an actual f(y,t) one considers: all the eigenvaluea

a i of the Jacobian matrix If (y,t)/;ly; if all 1A. are inside the stability

region for all y il , 
t 1 of interest, then the nunnrrical solution will be

stable. Itrs-aring that such a condition holds is usually not desirable and

often is impossible.

To (lovelop a stability analysis for nonlinear t (y, t ) , let [ (y, t) have

the property

Ile <Y-Z, f (y , t) - f (x , L) "• < ► t l l Y-: 1 2	 (H)

for all t, y, and r of interest. here • u,v - U*Qv for somr, positive

definite liermitian matrix Q, and 11 a II = <u,u>. Them for any two

solution,

y(t ), z(t) = y(t )-,-(t), e(t) satisfies

do (t)	
f(y(t),t) - f(z(t),t-)

dt

and (8) implies th.nt

z
Lit 	 I c (t)1 I' = 2 Re<e(t), `'aft) ' <	 2 ►,I li'(t)

ind thus

le(t) I I _= e lit I l e (t^) I I,

which is non-increasing for U<0.

liowt —er, (S) is again a condition that cannot bo casily verified, :;o

a concept relatinq Lite true solution sequence Y
t
t- - {y(tn-),+1)'	 .,

r'

^tt
l4

I

I`
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Y(t r1-1 ), y(t. n ) } to the computed sequence Y 
	 {}II-k+l'' *Yn-1'Yn} is

presented in the sequel. The follow;ng definitions and theorem are

helpful. They occur in Dahlquist [9) and the theorem proof is presented

in Brown [101.

Definition: a lilWar k-;;tei, formula satisfies

k
0 = F	 [ay	 + h b.f(y	 ,t	 )]	 (9)

j-0
0	 . 11-j-j	 7	 n-) n-j

Definition: a one-leg k-ste p formula corresponding to (9) satisfies

k	 k	 k
0 = F,	 ajyn-j + IIsf(g" 	 bjYn-j, s E	 bjtn-^)

j=0	 )=0	 j=0

where s = a(1), without loss of generality, set s=1.

Theorem 1	 Let n be a sequence which satisfies (10), and let

Y = [yn } be such that
n 

k
y = F.

n	 )
b.yn-j -: u (E) y

n
j =0

where E denotes the back shifting operator. Then Y satisfies (9).
n

Conversely, if Y
n 

satisfies (9) then there exists a sequence Y 
n 

such

that y
n 

= o(E)y 
11 , 
	

n
and y satisfies (10).

This shows that Y
n 

given by the one-leg k-step formula will

have similar stability properties to its corresponding linear k-step

sequence Y. Dahlquist [91 has described a discrete Liapunov function

VC, h which, applied to a sequence Y  , characterizes the stability

(10)

(11)

^	 _z



of that sequence generated by a non-linear system (1). Let

£	 I

VGj,h (Y n )	 - 
T.	 E	

gij <yn-W , 
yn-j+l> where G is a

i-1	 j-1

positive definite, f x X matrix. The structure of G assures that

VGI£,h is positive for Y 10).
sc

Definition:	 The (G,I	 h)-domain of attraction of	 (the numerical

solution to)	 the system	 (1) is all z0 such that AVOIQih	 (z 0)

V(Z 1 )	 -V 1i (Z0 ) <O,	 where ZO 	=	 iz((1-011),...,z(-h),z0),	 L1

(z((2-Z)h),...,z0R	 z 1 ) for the numerical solution and ^ l =	 (z((2-1)h),

...,z0 ,	 z(h)}	 for	 the exact solution.

Def.initi.on:	 The (G,	 C, h)-stability region of	 (the numerical

solution to) the non-linear system (1) is all z 0 such that

V	 (Z ) <inf	 (V,	 (1 )} where aD is the boundary of the
G,Z,h 0 •-	 G,Z,h 0

z 0 E 8D
i

(M-,h)-domain of attraction. 	 f

This has the following application. Nattier than requiring that

Re<y-z, f(t,y)-f(t.z) > < 0, a connected sunset of initial values y 	 ^
0 is	 i

found such that y(h) will be in that subset if y 0 was; this is the

stability region. This insures that the difference y(h)-z(h) is
ft
F	 bounded since both y(h) and z(h) are in the stability region if y0

^I

and z0 were. if f(y,t) is autonomous, y(t n ) will remain in the region

as n-)--. For most well behaved functions f(y,t), the boundary of they

region around a stable point can be approximated computationally.

Once the analytic stability region is known, the numerical stability

region can be calculated using tha one-leg k-step method for the same

Ami
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sequence (y(1-k)h),...,y(-h),y0) to get y l . The two regions can

then be compared.

Analytically, it is possible to form a particular G, based on

the coefficients of a one-ley k-step method, such that all numerical

sequences based on f(t,y) that satisfy (8) will have a stable solution.

Liniger and Odeh [11] have shown how to pick G for second order two-step

formulas, second order three-step formulas, and thir.i order, three-step

formulas.

It is shown below that even ar. arbitrary choice of the positive

definite hermitian matrix G will generate some usable results, and

theorem 2 demonstrates that using some G for a one-leg k-step solution

y will generate the same stability region for the related solution y11	 n

of the linear k-step formula for a modified G. The proof appears in

Drown (101.

Theorem 2 If VG	 11(Yn)	 c for the sym
►netric positive definite

matrix G, then there exists a symmetric, positive definite matrix G,

	

dependent onl;• on G and a(x), such that V^ 	 (Y) = c, where

Y = a(E) Y are the elements of Y an , 1 Y
n	 11	 n	 n

3. Existence of Stability Regions

Sufficient conditions can be developed for the existnece of the

(G,.P_,h)-stability regions based on known techniques such as Liapunov's

direct method [121 and property (8). M important concept in the

development is the equilibrium y (t) of the differential function f(y,t).

While some references define it for an initial value y(t 0 ) = 0 in the

space of the dependent variables, this is accomplished by an unnecessary

F 

i

1

IV



of the form v(y,t) = y*Qy for a positive definite matrix Q, y* tre

F' 1

t^

e	 1	 ^	 (	

it	

•' ^	 '	 '	 j

'	 I	 1	 ^	 I	 r f

change of variables that could be confusing. The important point

is that y(t) satisfies f(y(t 0 ), t0 )
	

so that, if f is autonomous,

then y(t) is a constant, and otherwise, the Taylor series about t0

is given by y(t 0 ) + (t- t0)2f'(z) /2 and is thus slowly varying and

nearly constant for t near t0'

	

Definition: The solution y(t) of y' = f(y,t) for y(t0) 	 y0'

such that f(yo ,t0 )	 0, is called the equi l ibrium of f(y,t).

Definition: The equilibrium of f(y,t) is said to be asymptotically

stable if there exists a T 1 E(t 0 .) such that for every E>O there

exists 6 1 = 6 1 (e,T 1 )>O such '_hat if	 ^O-yo,j1<b l , then Ily(t)-y(t)II <r

in (T 	 ^), and there exists a T 2 c(t 0 , m ) and 6.)(t,,) such that if

IIy O-y o ll<6 2 (T 2 ) then lim Ijy(t)- y(t)Ij - 0, where y(t) satisfies y'(t)
t -+^

f(y,t), y(t0) = y0.

Theorem 3 (Liapunov (12)) The equilibrium of f(y,t) is asymptotically

!	 stable if there exists a function v(y,t ) which is positive definite

in some region D about y(t 0 ) and lim v(y,t) = 0 uniformly in t as

Ily-yll-O there, and whose total derivative is negative definite on D.

With this background, it can be shown that a well behaved f(y,t)

(	 which has a not necessarily unique Liapunov function v(y,t) with region

D implies the existence of a (Ij ,h)-domain of attraction and stability

region of both the exact solution and of a one-let k-step solution

based on a stable multi-step formula. Similar proofs can be developed

fro positive definite matrices G	 I.

Theorem 4: If the equilibrium y(t) of f(y,t) has a Liapunov function

III
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T- r r r '1

I.

transpout, of y, anti f (y,t) is continuously differ ontiable on a convex

domain d whos4 boundary ?V is defined by v'(y 0 ,t 0 )	 0, and if f(y,t)

has the property on p tha t (1'1-y " )•Q(f(Y1 , t)-f(y^•t) ) {UII)',"Y,II^

where 11 <0 an,i x •Qx ` I I x I I Q , their for any point yr	 y (t f ) ► :i . the

interior of D, till (i,f,11)-stability region can be constructc,l using

rays for yf , provided h < h0(f,f).

i'rtx,f Note that the solution trom t 0 to t0 + h is spiraling ill

,11) toward t.ho equilibriwi, which is inside a circle IIy(t) -yoIIF
(hf1	 pt where M	 max f' (x), since the hyl ,othe.ses and (t;) gives

zeD
I)'( t i ) - y(t f )	 I< exh(llfh) I Iy(t 0 )-y(t 0 ) (.	 By dt • finitit n, AVI,t.h(`C)

a I I y (t? I IQ- i Iy(t 0 ) I I^, which occurs when 0 - v(ye, tt)-y(y0,to)

(yt -y 0 )v' (z) by tho mean value theorem. Since	 0 oil

bt,undary 11), altintt , ► n) • ray from y f one can fill-' y (t f ) generated by a

110 on 71 1), provi,lr,1 ht ^ 11 f is small. onoigh that tl o trajectory from
16 	 ti

YO 
to y  is rnt irely in 1?.

The boun,iary of (I,(',h)-domain of attraction D' ,u1 l , t• constructed

of all such rays, The (I, C,h)- :t,thility re-lion D" has a lx , undary of

all ( points such that V I t, 11	 v` _= min Vl f h	 Which %,an also be

constructed.

Theorem 5: If the hypothose5 of theorem •1 are met anti 3y 	
Lit

ti
is cone. i nuous in 11, their for any }- C ill the rotor for of n, ill (I , f , 11) -

Stability region can be constructeki for a p-th ordet one-l(, .; 1.-::ttl

method, for h -, 11 (i , f) .

Piot,f	 AV	 I ( y I I	 - I	 (t^-i h) I I ^^ t,hol,e.

t

it

1

f
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i	 1	 t	 y	

k	 lk	 k
Yt ' 1 a j Y(tz -j ) +hf( [, b j y(t^-j ) ► j )^,tr- j)

	

J
u l	 J-0	 j=0

and y(t
It
) = ye + K1) 111)+l f (p) (z) , the truncation error formula.

If the truncation error varies continuously as y(t 0 ) varies along 3D,

then two solutions yt and z, generated by yo , z o on 3D have the

property that yt-► z (, uniformly as yo- z o , and a :smooth curve 8D' CAists

on the boundary of the (I.L,h,)-domain of attraction. Similar arguments

show the existence of the (Ij ,h)-stability region.

4. Example

The system (121

x' = -x - 2Y + x2 sin (t)
	

(1.!)

y' - 5x - y + y/ (t+4 )

has a Liapunov function for Q = 
qij ► qll	 37/44, qty = 4/11,

q12 = q
21 - 3/44. figure 1 shows D, as well as D', the (I,1,0.1)-

domain and D", the (1,2,0.1)-stability region. The solution was

generated by assuming a power series expansi-n x(t) = 	 a.tl,y(t) =
j=p

j0 b
i t ) for which a o = x 0 , bo = yo , and a i and bi can be generated

recursively. The series converges for it' 1. Figure 2 shows D' and D"

for the numerical method based on the Adams-Bashforth 2-step formula

y
R+1 = Y

11 

+ 11(1.5*f(y 
11' 

t
l

,t 
Il	 Il-1
) - .5*f(y 	, 

11 -1
t	 )).	 (13)

Y

^ti 1

i



ri
J	

8

1

I`

I'

REFERENCES

1. Gear, C. W., Alqorithm 407: DIFSUB for Solution of Ordinary Differential

Equations, CACM 14, pp. ld5-190 (1971).

Nindmarsh, A. C., GEAR: Ordinary Differential Equation System Solver.

UCID-300001, Rev. 2, Lawrence Livermore Lab., Livermore, California (1972).

3. Kroqh, F. T., A Variable Stop Variable Order Multistep Method for the

N ►unerical Solution of Ordinary Differential Equations. In Information

Proces-sing 68, Vol. I, pp. 194-119, A.J. it. Murrell od ., North Holland,

Amsterdam (1969).

4. Shampine, L. F. and Gordon, M. K., Computer Solution of Ordinary Dif°-,r-

ntial Equations: Initial Value Problems, Prooman, San Francisco (1976)

'i'u, K. tie., Stability and Convercli'11C4 of General Mtltistep an.i Multivalue

Methods with Variable St-epsize, UIt1CDS- 3;-7.-526, U. of Illinois, Urbana,

ILL. (1972) .

ky. Gear, C. w., Numerical Initial Value Problems in Ordinary Differential

Equations, Prentice-stall, Englewood Cliffs, N J (1171).

7. Cash, J.R., Semi-Implicit 3tunge-Kutta Procedures with Error Estimates for

the Numerical Integration of Ordinary Differential Equations, Journal ACM

23, pp. 455-560 (1970).

H. Dahlquist, G., Numerical Integration of Ordinary Differential Equations,

Journal ACM 23, pp. 455- 560 (1970).

9. Dalilquist, G., On Stability and Error Analysis for Stiff Non-Linear. Pro-

blems, Report NA-75013, Dept. of Information Processing, Royal Institute

of Technology, Stockholm (1975).

AW
	 -^



I

i^

10. [down, R.L., Stability of Sequences Generated by Nonlinear

Differential Systemic, to appear, Math. Comb.

11. Liniger, W. and Odeh, r., on I.iahuuov stability of Stiff

Non-linear Multi-step Difference Equations, AFOSR-TR-76-1023,

IBM Thomas J. Watson ROGO.Arch center (1976).

12. Lehniyk, S. H., Stability Theorems for Linear Motions' , Prentice-

Hall, Englewood Cliffs, N.J. (1966)



_ ?" 
~ 

5~ 
< 
0.. 0 - .... 
<0;::: 
z~ 
~ ~ 

~:... 
--:;1 

-0. f: 

F G. O. !J '. 0 1 o .. 

!! 
0 

l'! 
0 -

0 -

o · 

a 
0 -

8 
'f 

0.1 0 



-
-
-
7
-
 
'
T
	

^ 
- 
- 
-	

-p
r.
- 


 
-
7
!
.
	

-
w

IL
1	

1. 1

.	r

N C
D

C
D

n C
^ `D C
= rn 0 C
^

f- C z

I
5

1'
1'

Y

o.
ae
	

o.
io

^	
1


	GeneralDisclaimer.pdf
	0001A01.pdf
	0001A02.pdf
	0001A03.pdf
	0001A04.pdf
	0001A05.pdf
	0001A06.pdf
	0001A07.pdf
	0001A08.pdf
	0001A09.pdf
	0001A10.pdf
	0001A11.pdf
	0001A12.pdf
	0001A13.pdf
	0001B01.pdf
	0001B02.pdf

