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OF THE MULTIGRID METHOD FOR SOLVING PARTIAL



DIFFERENTIAL EQUATIONS
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Williamsburg, Virginia 23185
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SUMMARY



Several aspects of multigrid methods are briefly described
 

in this report. The main subjects include the development of


very efficient multigrid algorithms for systems of elliptic


equations (Cauchy-Riemann, Stokes, Navier-Stokes), as well as


the development of control and prediction'tools (based on local


mode Fourier analysis), used to analyze, check and improve these


algorithms.



Preliminary research on multigrid algorithms for time


dependent parabolic equations is also described. This report


deals also with improvements in existing multigrid processes


and algorithms for elliptic equations.



Some partial and typical results are given. More complete


and detailed information will be presented in the author's


Ph.D. Thesis, to appear at the Weizmann Institute of Science,


Rehovot, Israel.



I. INTRODUCTION



This report deals with several aspects concerning multigrid
 


methods for fast solution of partial differential equations. It



covers the research on this subject for the period August 1977 -


August 1978, when the author was spending his sabbatical at the



NASA, Langley Research Center. This research is part of a Ph.D.



*Research Assistant, Department of Mathematics
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Thesis to appear shortly at the Weizmann Institute of Science,



Rehovot, Israel, including more detailed results and conclusions.



The research on multigrid methods began in the early 1970's



by the initiative of Professor A. Brandt. He is today supervising



several projects on these subjects, including the present research.



The multigrid method can be applied to a wide range of



problems and, therefore, it interests many people. It is known



to be one of the most powerful and advanced methods used today.



The multigrid method uses the fact that the numerical



discrete equations we usually want to solve are not independent.
 


They are derived from a continuous problem whose solution we



want to approximate. In the process of the solution of the



discrete equations it is convenient to keep in mind the differ­


ential origin of the problem. The use of discrete operators



on several levels of meshes, interacting strongly in the process



of the solution, allows us to solve the problems on the finest



grid very efficiently, with a minimum number of arithmetical



operations (0(N)), where N is the number of equations in the



the finest grid.



The multigrid method consists generally of several



processes, performed in a given order, and defining an iter­


ative cycle. These processes include generally:



Relaxation: (Usually of Gauss-Seidel type) Used only to



smooth the errors, i.e. to reduce these high



frequencies in the error that are not described



in coarser grids.
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Transfer of Residuals to a Coarse Grid: This allows us to



define a problem on a coarse grid, that is



similar to the original one. The solution on



the coarse grid is used to improve the approxi­


mate solution given on the finer grid.



Interpolation : Used to define a new approximation on a



finer grid, given an approximation solution on



a coarse grid.
 


Moreover, we can intermix the principles of the multi­


grid method with the grid adaptivity principles, which mean



adaption of the order of discrete approximations and mesh
 


size, using total smoothness of the solution. This keeps



N as small as possible.



These basic ideas and others, as well as treatment of



theoretical and practical aspects have been extensively



covered in the papers of Brandt I'2 '3'



This report deals with a-wide spectrum of problems



involved in the development of multigrid methods and multi­


grid software and the principal parts are the following:



a) Development of multigrid methods and software



for elliptic systems of equations. (Including



Cauchy-Riemann equation, Stokes equation, and



Navier-Stokes equation.



b) Development of control and prediction tools for



various steps and processes involved in the
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multigrid method. (Based on local mode Fourier



analysis).



c) Development of multigrid methods for time



dependent parabolic equations. (Heat equation



on rectangular domains).
 


d) Improvement and changes in existing multigrid



processes and algorithms (mainly on Poisson



equation) and treatment of new ideas in relaxation



methods.



II. MULTIGRID METHODS FOR SYSTEMS OF EQUATIONS



The basic ideas of the multigrid method are not



restricted, of course, to a unique equation, and from a



theoretical point of view no special problem could be



expected in implementing multigrid ideas to a system of



equations. However, special and detailed algorithms for



this problem did not exist, and it was extremely important



to get sharp and practical proofs of the efficiency of



multigrid methods for systems of equations. One of the



questions we did not know the answer in advance, was for



instance, what is the appropriate method of relaxation for



a system?



In order to answer this and many other important



questions, we developed multigrid algorithms for three
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typical problems, starting with a simple one, and each



subsequent problem involving more and new complications,
 


relative to the former. Moreover, since it is usually



wise and necessary, in this kind of research, to isolate



different questions which may arise, we developed the



algorithm for simple geometrical domains (rectangles).



The past experience showed that more complicated geometries
 


did not affect the efficiency of multigrid methods (see



for instance Shiftan4). For complicated geometries there



are, of course, more programing problems.
 


2.1 Cauchy-Riemann Equations 

The equations are:



Sx-Vy fl (x,y) (i) 

Ux+Vy = f3(x'Y) (2) 

for 05xsl; Osy.ll. 

And the boundary conditions: 

U(O,y) = U0 (y); V(x,O) = V0 (x) (3) 

U(ly) = Ul(y); V(x,l) = Vl(x) 

Figure 1.



y V (x) 

U (y) !iU(y) 

v0 )x) 
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The data must fulfill an additional condition, due to



the continuity equation (2), in order to assure-a solution



to the system. This condition is



0V fIvj- 0 )dx f3 ,y)dxdy(
I 
c 0



The discretization of the problem was accomplished



on a staggered grid. This method has several advantages



in problems of this type. For instance, it allows us to



define easily second order conservative finite differences.



The grid is described in figure 2a.



Figure 2a.



V
V
kV 
 

U U2 "f3 J3 U



U U V U



% V V V



The finite differences approximations for equation-()



are defined at grid intersections (X), for instance:



71 P 
jJ3t 1-(v2 V1 J



And the finite differences for equation (2) are defined in



the middle of the cells (.), i.e.:



1u 3 -U 2 +V3 vk = f3 (6) 

As in the continuous case, the data must fill an additional



discrete condition equivalent to (4) in the finest grid, i.e.:
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(Ulj1 -U 0 j)+ L (Vii-Voi) = J f3;i,j (4a) 

Several relaxation schemes appropriate to this system



were considered and all these schemes have a good smoothing
 


factor*, around .7=.5. The most convenient scheme was chosen



because of its simplicity and its small number of arithmetical



operations. This method belongs to a new approach of relax­


ations, developed by Professor A. Brandt, and is called



"Distributed Relaxations".
 


This approach is characterized by the fact that when



passing through a point (or cell) in the grid, for which



the difference equations are defined, we change the value



of more than one unknown, in order to make zero residual



on this point.



In the Cauchy-Riemann equations separate relaxations



are performed to each one of the equations, according to



the schemes discribed in figures 3 and 4.



*Efficiency of relaxation in a multigrid process is measured


by the "smoothing factor," which is defined as the asymptotic


ratio between the fast components of the errors after a relax­

ation sweep, and the same errors before the relaxation. A more



exact definition can be found in Brandt 2 . More considerations


on this subject can be found in Chapter 3 of this report.
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Figure 3: Relaxation of Ux-V = f1 

u2+ 

C 

Figure 4: Relaxation of Ux+Vy



2 

4f3 U-1i-+ 

The values U+j0 and V+ C in figures 3 and 4 represents the



new values after the sweep of this point. 0 is always chosen
 


to make the residual zero at the point. The relaxation is a



Gauss-Seidel type relaxation and it passes through all the points



(or cells) of the grid in a usual natural order. The important



property of this method relies on the fact that when relaxing



each of the equations, the residual of the other equation



remains unchanged.



Mode Fourier Analysis shows that the smoothing factor for 

this method is i =.5, the same as in Poisson equation, which 

is, of course, equivalent to the Cauchy-Riemann system. The 

multigrid algorithm shows convergence factor 7 @ .56* 
which is about the same value as in the Poisson case. The 

number of operations in the relaxation of the Cauchy-Riemann 

*See Chapter 3 in this report.
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system is, of course, higher than in Poisson equations (about



two times more). On the other hand, we can say that the



information we get from the solution of the Cauchy-Riemann



system (functions U and V) is also two times the information



we get from the solution of the Poisson equation.
 


The main reason for our treatment of Cauchy-Riemann



system was for learning purposes. It is probably the simplest



elliptic system possible and it allows us to treat compli­


cated problems more easily. However, this system is inter­


esting in itself, as we can see in the works of Lomax5 and



Ghil6 These papers describe fast algorithms for the



solution of the Cauchy-Riemann system. We think that the



algorithm just described in this report is preferable,



because it does not depend, in principle, on the simplicity



of the domain, and because it is at least as fast as Chil



algorithm, and even faster asymptotically (for finer and



finer discretizations). The implementation of the algorithms



for nonlinear equation is also much easier in the multigrid



3
method



An example of a computer output is given in the Appendix,



Output No. 1:



2.2 Stokes Equations



The 	 Stokes equation are given by 


AU-px = f (7) 

t1 V-py = f2 (8) 

U +V = f3 	 (9)
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The unknowns are U, V, and P. U and V are given on



boundaries. Like in Cauchy-Riemann systems. The data must



satisfy the condition (4). The discretization is also in the



same staggered grids already described. P and f3 are defined



in the centers of the cells. f1 and f2 are defined in the



same points as U and V, respectively (see figure 2b).



Figure 2b.



V-V -v v 

U P U P U P U PII 

U P U P U P U P 

I -V-u- I --V...- 0 -- -V I- VVI_ 

The difference equations for equation (7) are given by



Aucxtxl&iP (x+~,y)-P(x- S ,Y)] f(x,y) (10) 

for (x,y) where U is defined. A is the usual five 

points discrete Laplace operator: Li ,-

Similarly, for equation (8) 


{
I %CxY+ )-P(x,y- ff2 (x,y) (1i)
(xxyY)- ) 

for (x,y) where V is defined. 


For the continuity equation (9), the difference 


equations were already defined by (6). 


Equations (10) and (11) hold for interior points. Near



the boundary the difference equations are different, but they



are simple and will not be described here.
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The relaxations are based on the same principles already



described. The relaxation of equations (10) and (11), the



Momentum equations, are performed separately, by the usual



Gauss-Seidel method corresponding to the Poisson operator.



The relaxation scheme for the continuity equation (6), is



described in figure 4.



Figure 4.II



&	is chosen so that equation (6) is fully satisfied on the 

current cell, and the changes of the values of the P are 

chosen in a way that preserves the residuals of equations 

(10) and (11) when relaxing equation (6).*



The theoretical smoothing factor in the relaxation



method just described can be shown to be I =.5, like in



Poisson and Cauchy-Riemann equations.



In the numerical experiment we get a multigrid conver­


gence factor** - , .65. This is a very good value, and assures



*This is exact only on unbounded domains. On bounded domains


this property cannot be strictly maintained near the boundary.



**This is the reduction factor of the residuals per unit work


which is equivalent to one relaxation sweep on the finest grid.
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a very fast method for solving the Stokes equations. However,



it was a little worse than our expectations, based on the



previous experience of Poisson and Cauchy-Riemann equations.



In order to check this point, and to reduce the possi­


bility of errors in the computer program, we performed a



complete multigrid Mode Fourier Analysis (with the aid of the



techniques to be described later). The results of this analysis



showed complete agreement between numerical and theoretical



results, leading to the conclusion that the value of .65



is intrinsic to this system, which is characterized by strong



interaction between the equations. The Mode Fourier Analysis



helped to rule out possible programing errors or bad influences



of the boundary on interior regions.



An example of a computer output is given in the Appendix,



Output No. 2:



2.3 Navier-Stokes Equations



Two-dimensional Navier-Stokes equations are given by



[3x(12)



LxR~~x1 1 Vtj.~- 2\1)(13)



)X C (14) 

and the same boundary condition as in Stokes equation. The



parameter R is called the Reynolds number (R=O corresponds



to the Stokes equation).
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These equations are more interesting, from the practical



and physical point of view, than the former equations. The



numerical treatment is more difficult and complicated, due



to several reasons, like the nonlinearity and the fact that



boundary-layers may appear for large Reynolds numbers.



These facts demand a careful choice of the difference



equations, in order to keep the ellipticity of the difference



operator. This can be accomplished in several ways, based



usually on one-sided first differences, instead of central



first differences, that may cause instability, unless we make



a very drastic and unpractical restriction on the mesh size h



1
(h must be of the order h=O(K)). In this work, we define



the following difference approximations to the first derivatives



of U and V, for example for we define



x- 0-a0 definULe (15) 

for 0<axpl (ax = .5 corresponds to central differences). 

a is defined byx 

_i )(16) 

I-- 1 

21 

= LRU(x,y)and 


U >Van - aedfndi 
The approximation for , and - are defined in 

a similar way. It can be shown that with this approximations



we get finite differences with the desired properties. The
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equations, defined on the same staggered grid already



described, are given by
 


MK~ue1) - P F(tI (8 

(19)



(20)

(21



.-k~U ; lRk (22) 

4 4­c-+(23)



(These are the equations for interior points. The operator



is a little different near boundaries).
 


The relaxation method for (18) and (19) are done as in the 

Stokes equation, by freezing U and V in the calculation of 

(9(1) and N). 

The relaxation scheme for equation (20) is described in



figure 5.



ORM1INAL PAGE IS
Q ooR QUALM 



ORIGINAL PAGE IS 
OF POOR QUALITY 
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Figure 5. 

Vt C 

is chosen so that the residual of the continuity equation



in the current cell is zero. The changes in P wouid keep



the residuals on (18) and (19) unchanged if we froze the



coefficients.



Mode Fourier Analysis shows that the smoothing



factor (calculated for equations with frozen coefficients)



will generally depend on the direction of the relaxation of the



Momentum equations. For instance, if the solutions U and V



satisfy U)O; VG, and the direction of the relaxation is as



usual, (say by columns and increasing y, and increasing x)



then :.5. If U or V are negative in some part of the
 


domain, and R is big enough, the smoothing factor will be



higher, and, therefore, the multigrid method less efficient.



These difficulties may be easily overcome by making relaxations



sweeps in different directions, improving in this way the



smoothing factor, or better, by the technique of distributed



relaxations already mentioned.



The first preliminary version of the algorithm does not



include the features just pointed out, and, therefore, it works
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with the full multigrid efficiency only for cases where U and



V do not change sign in the domain, or for general cases with



R not too big (up to R=100).



These first experiments are very important in showing



how the algorithms work in principle independent of secondary



problems, like the direction of the relaxations, mainly



technical.



The numerical results shows a good multigrid convergence



factor, bounded for all R by .7-.75 This provides



a very fast algorithm for solving Navier-Stokes, and



almost the same efficiency as in the linear Stokes case.



The full multigrid cycle (explained later) was also



implemented. Preliminary experiments shows that only



8-9 works units* are needed to solve the equations



to the level of truncations errors. (Execution time



on CDC 6400 for a grid of 64x64, is about 15 seconds,



and the program is not optimized, and includes all kind



of calculations for debugging purposes). An example



of a computer output is given in the Appendix, Output



No. 3.



III. 	 CONTROL AND PREDICTION TECHNIQUES


IN MULTIGRID METHODS



One of the remarkable advantages of the multigrid



method is the possibility of predicting in advance its



efficiency, given the relaxation method, interpolation,



*Equivalent to relaxations sweeps on the finest grid.
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etc. This can be done by means of local Fourier Mode



Analysis in an infinite space, i.e. neglecting boundaries



influence. This can be justified because of the fact that



Fourier Analysis is very accurate in descibing the fast



components behavior, while is less accurate for slower



components. However, most of the calculating work in the



multigrid processes is invested in the reduction of the



fast components of the errors in the finest grid, and this
 


is achieved by means of relaxation. More detailed justi­


fications can be found in Brandt 3 , who shows a very good



agreement between theoretical results based on Fourier Mode



Analysis and between numerical data obtained by multigrid



algorithms.



We can distinguish two levels of analysis that are 

appropriate for multigrid methods. In the simplest one 

we calculate the smoothing factor 4 , which depends only 

on the relaxation process. The more complete and complicated 

analysis takes into account all the multigrid processes and 

estimates theoretically the value of t (definitions of 7 

and 4 are given in the footnotes in Chapter 2), In many 

cases, it is enough to perform the simpler analysis. In 
- i i0 

these cases, the formula I = I , wheref is the 

ratio of the number of points between coarse approximate 

and fine grid, (usually S-), and d is the dimension of 

the problem provides a fair approximation to 
. 
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The calculatibn of the smoothing rate involves the



search for extremum of functions in bounded domains, and the



ca-cu-lation of etgenvalues (defined -­
srally by a gheral­

ized eigenvalue problem Ax=ABx) of complex matrices of 

size q9 , where 4 is the number of equations in the 

system. The estimation of the convergence factor 

involves the same kinds of calculations, but the size 

of the matrices are much bigger ( 2 x 2. where d 

is the dimension of the problem).* 

It is clear that the kind of calculations just



described, cannot be performed in a closed form,



with the exception of extremely simple cases, like the



smoothing rate for Poisson equations and one dimension



simple problems.



Because of this and other important reasons, an



algorithm that performs these calculations was constructed.



A general FORTRAN subroutine was written for this purpose,



and the main inputs are the following:



d - The dimension of the problem. 

q - The number of differential equations = the 

number of unknowns. 

r - The number of relaxations in one multigrid 

iterative cycle. 

*In the relaxation process, the Fourier components are


independent. But when we take into account the transfer


from grid h to grid 2h we get interdependence between



groups of 2d components.





19 

A,B - Complex matrices that are derived from the 

particular difference equations and methods



of relaxations. The size of these matrices



is A and they.depend on the Fourier



component defined by e=(SJ&L, )6A) 

A A function of the Fourier component 0, 

describing the initial distribution of 

amplitudes in the errors. (For a random 

initial distribution of errors, A0 =i 

for all &). 

L - Number of points defining a mesh in the &domain. 

S- The ratio between the number of points on grid 

and the number of points on grid 

The output contains mainly: 

a) The smoothing factor 4 defined by 

4ncz-~(25)



where



d e,E 	 CA V- e0(26) 

and J/:AI.X1 
b) 	 The weighted smoothing factor j given



the number of relaxations r and the weight



function A & .



http:J/:AI.X1
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c) The location (mode) where the smoothing



factor 7 is found.



d) A distribution map of 1/0) (only for the
 


two-dimensional cases, d=2).



The same subroutine, with some changes, can be used



for the complete Fourier Multigrid Analysis. In this case,
 


the user has considerably more work in defining the complex



matrices A and B that include, in this case, the transfer



of residuals from grid h to grid 2h, and the interpolation



from grid 2h 'to grid h.



These programs are very important in the research of



multigrid methods. it can be used for several purposes,



for example:



1) 	 Checking new relaxation methods or new multigrid



processes, before the algorithm is translated into



the computer.



2) 	 Comparison of several algorithms for the purpose



of optimization, i.e. looking for the faster and



stable ones.



3) 	 Debugging of multigrid computer programs.



We used the subroutine in several cases, including



Cauchy-Riemann and Stokes equation. We also used it for the



Poisson equation. In all these cases, we did the complete



Fourier multigrid analysis, checking and comparing various



methods of relaxation, residual weighting and interpolation.



We got full agreement between theoretical and numerical
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results (in all cases considered), and this fact increases,



of course, the reliability and prediction power of this



theory.



An example of these facts are summarized on table 1, which



include theoretical and numerical results for Stokes equation:



Table 1



Comparison Between Theoretical and Numerical Results


for Stokes Equation



(The number of Parameter related ultigrid Convergence Factor 
relaxations on to the degree of 
the finest grid accuracy in solving Theoretical multi- Numerical 
in one iterative coarse grid correct­ grid complete results 
multigrid cycle) ion equations Fourier analysis 

1 	 .4 .661 .638


1 	 .5 .648 .634


2 	 .3 .680 .695


2 	 .4 .710 .125 
3 	 .1 .714 .722



The subroutine was also applied for checking a special approach



to distributed relaxations, that may perhaps be applied to



Navier-Stokes equations. This will be shortly described in



Chapter 5. An example of a computer output is given in the



Appendix, Output No 4.



IV. 	 MULTIGRID METHODS FOR TIME DEPENDENT



PARABOLIC EQUATIONS



A possible quite obvious way to use multigrid procedures
 


for initial value problems is considered in the work of
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Brandt3 . By this procedure we use a multigrid algorithm



for solving the implicit equations usually defined at each



time step. If, for instance, we want to solve the Heat



equation in two space dimensions then for each time step,



an elliptic problem similar to the discrete Poisson equation



is defined (and, in this case, the Gauss-Seidel relaxation



has even better smoothing properties than in the Poisson



case). The typical amount of work needed in advancing each



time step by multigrid procedures will be, accordingly,



equivalent to 5-6 relaxations (see 3). if a solution for



M time steps is required, then the total amount of work



will be about 6M relaxations.



The question which naturally arise is whether we can



use multigrid principles anI ideas to get more efficient



methods for these Problems.



The answer appears to be positive, and Professor A.



Brandt pointed on some apnroaches which eventually can develop



in efficient multigrid algorithms for these problems.



A basic idea is that marching in time can be done for



most of the time steps on coarser grids.



The appropriate equations on a coarse grid are carefully



corrected in a way that assures the correct representation



of the information from the fine grid, so that even when



marching on coarser grid, the accuracy of the finer grid is



kept. To update the information from the finer grid we need



some sporadic and infrequent time steps on the finest grid,
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that constitute, of course, most of the computational work.



The base of this approach relies on the fact that fast



Fourier components of the solution (represented on finer



grids) converge to steady-state after a very short time.



Changes in the solution after this are due mainly to slower



components, that also change slower in time. This allows



us to march on coarser grids with large time steps, after



the influence of fast components have disappeared.



In order to check these and other ideas, we developed



two different algorithms for the Heat equation, in a



rectangular domain with Dirichlet Boundary Conditions. The



first algorithm uses the Crank-Nicholson implicit scheme,



and the second one uses the simplest explicit scheme. It



must be pointed out, that the stability restriction in the



explicit scheme that makes this method very unpractical,



does not appear in this case, because most of the time we



march on very coarse grids, where large time steps are allowed.



a. The Implicit Scheme



The 	 equations to be solved on the finest grid



(with mesh size h0 and time step k0 ) are:



J tL+Pe . X 	 (27) 

and the unknowns are u0(x,y,t+k0) for each (x,y) defined


Id
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the finest grid. Similarly um,hm,km will represent marching



on a grid which is m levels coarser. The equations on coarser



grids are given by



'Ut ~ 	 ~ A ~ ~ ­ /S1L~~r,, 

L(XA 	 7) (23) 

-,,where usually and T represents the appropriate
 

correction. -C has a very important significance, and it 

represents the spacial truncation error of grid m, relative 

to grid 0. TU is given by 

A 	 's (29) 

where n , s,) satisfying S, ' C 

The transfer from a given coarse grid m to a finer grid 

m-i is done by 
rn-i rn-i in-'m rn-i 

uULast + m u -u Last) (29a) 

where lmm I means interpolation (cubic) from coarse
 
m



to fine grid and "Last" renresent the last marching in 

time on the m-i grid. 

b. 	 The Explicit Scheme



The equations on the finer grid are:



jO Lt ,!t ,.)-.,,t1l t - i.,xc y, )= f~ xy) (30) 

(
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On coarser grids the following equations are defined:



t~ (3 1) 

In this algorithm we keep a constant ratio A over 

all grids given by A 1 . The value of A .2 

was chosen as very appropriate from the point of 

view of the fast Fourier components.
? 

" represents 

here the complete relative truncation error (in 

space and time). i­is defined as follows:



For m=l



T .S) L4t'xL sxt/, . xy sV fx ) (32) 

and (t4, Then for general m 

j 1 k- (32a) 

and s is defined as in (29). The transfer from coarse



to finer grids is performed like in (29a).



It must be pointed out that this research, which deals



with new approaches in implementing multigrid ideas, has



a very preliminary character and the principal aim was



to check, potentially, the various promising possibilities.
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In this context, some numerical experiments were performed,



in which we tried some criteria in order to define the



times where we switch from coarse to finer grids and vice­


versa. In addition, we compared the accuracy we got in these



algorithms with the same schemes when we marched in time on



the finest grid only. The numerical results we got from



these experiments, in both algorithms, are good and encouraging.



However, the explicit scheme appears to be preferable in some



aspects. The numerical results in these experiments, and some
 


theoretical considerations arising from the interpretation



of these results, lead to the conclusion that applying these



multigrid ideas with full efficiency, (i.e. solving the problem



in an amount of work comparable with the work invested in



solving elliptic problems), means using adaptive techniques



where we can change and adapt the order of the discrete



approximation.



But even without adaptive techniques we can use the



present algorithms to solve the Heat equation very efficiently.



The amount of work needed will depend on the smoothness of the



solution. For instance, for a problem with smooth initial



conditions, we can save 98% of the work, in relation to the



same numerical scheme defined on the finest grid only (of



size 64x64).
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V. 	 IMPROVEMENTS AND CHANGES IN EXISTING


MULTIGRID ALGORITHMS



In this chapter, we deal with existing multigrid proce­


dures, and we check various approaches in order to improve



their efficiency. The first part deals with the practical



solution 	 of Poisson's equation in a small number of numer­


ical operations. Although in this part we concentrate on



Poisson's equation, for reason of convenience when checking



and comparing numerical results, it is quite clear that the



techniques developed here can be applied to other elliptic



problems as well.



The second part of this chapter deals with a special



approach to distributed relaxations for general five points



difference operators of the form la -s c ; s = a+b+c+d.

b



5.1 The Poisson Equation



The first numerical multigird algorithm and program



was written for the Poisson equation. For this equation



there exists today more information related to multigrid



methods than for any other problem.



In Brandt I , the algorithm called there Cycle "C"



for solving the Poisson equation is described with detail.



In Cycle "C" the multigrid iterative cycle starts at the
 


finest grid, where an initial approximation to the solution



is defined. This approximation is then improved by solving





--
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correction equations on coarser grids. The switching from



fine to coarse grid and vice versa is controlled by some



internal criter±a.



Cycle "C" is very useful in learning and understanding



multigrid performance and several theoretical aspects,



like the asymptotic convergence factor, etc. It is



not generally the most efficient algorithm for solving



real problems, for which we do not know in advance a:



good approximation on the finest grid. In addition, it



is usually difficult to know in advance how many iterative



cycles are needed to get the desired accuracy. One can



perform several iterative cycles and then get very close



to the solution of the difference equations but this will



generally be wasteful, because in a real problem, we do



not need more accuracy than the accuracy defined by the



differential truncation error.



Because of these and other considerations a fixed



algorithm for Poisson equation is described in Brandt3 .



In this algorithm we start with an approximation on the



coarsest grid, and after we perform one iterative cycle



on each level, the solution on each grid is used as a first



approximation on the next finer grid, by means of a cubic



interpolation. This algorithm is based on the knowledge



and past experience in solving Poisson equation by multi­


grid techniques, and provides a solution to the problem



up to an accuracy comparable with the truncation errors





ORIGINAL PAGE IS 
OF POOR QUALITY 29 

accuracy, and this solution is found in a minimal number



of arithmetic operations (we do not even need to calculate



the residual norms, used generally-for.internal criteria).



In the present work a similar but more general algorithm



is constructed. This algorithm can serve for learning



purposes as well as for solving practical problems, It can



also be easily applied to other elliptic operators. The



algorithm was implemented in the FAS (Full Approximation



Storage) mode. (For a detailed description of FAS see



Brandt2). In this mode we can look at the coarse grid



correction equations in a somehow differentpbut equivalent



way, as follows:


2k z 
U 

Tj~(.~. Ljuk(33) 

U2h 
 is a new and better approximation than Uh to the


I 

exact solution Mh of the difference equation



L (34) 

Zk 
T given by (33) describes the truncation error of the 

grid 2h, relative to grid h. It is well known that the exact 

solution u of the differential equation Lu-f satisfy the 

following 
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L2 hU = f+ 2h (35) 

and T2h is the differentia- truncation error of the 2h 

grid. The comparison between (35) and (33), that arises 

naturally during the FAS Multigrid Cycle without additonal 

investment of computational work, shows the remarkable 

differential aspect of the multigrid method. This is in 

sharp contrast with other methods, where the algebraic 

aspect is usually the most important and central one. 

These properities open new and interesting possibilities 

in implementing the FAS algorihm: .z2h in (33) satisfiesh 

the following 

L (36) 

and the truncation errors can be represented iby Tkz kkUdL/ 

(provided additional smoothing conditions). Then we have 

cVk +()(7 

Then we can change the FAS algorithm by defining the 

following correction equation on a coarse grid (instead 

of 33). 

2k 3 (38) 
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A series of numerical experiments were performed to 

check these interesting points,' including printouts of 

and I U -ii(we chose for this purpose problems where 

the exact differential solution u is known). As a result 

of these experiments, we can point out the following 

conclusions: 

a) 	 The assumption that after only one multigrid cycle



(5-6 work units) we get the needed accuracy in the



solution (truncation error accuracy) was confirmed.



In addition, truncation error behaves clearly like



O(h 2 ). 

b) 	 We can get the same desired accuracy without even



performing a complete multigrid cycle, i.e. we can



stop the process before we interpolate back to finer



grids. The solution is then defined on coarse grid



points only, but the accuracy is the finest grid



accuracy. This feature can be very helpful in



the development of multigrid methods that use small



amount of storage, much smaller than the number of



unknowns in the finest grid.



c) 	 Using thd T-extrapolation (38 instead of 33) we can
 


get a much better approximation to the solution of



the differential equation on the finest grid, much



better in fact than the approximation achieved by



ot 06 
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the exact solution of the difference equations



in this grid, where the accuracy is bounded by



truncation errors. In order to get this better



approximation, we do not have to invest any addi­


tional work! Our numerical results do not show,



however, that the approximation is 0(h4), in



spite of (37). This is because of the fact that



at least 5-th order interpolation is needed for



this purpose.



Nevertheless, the improvement we can get by this



small change in the FAS algorithm is impressive.



The improvement will generally depend on the



smoothness of the solution. The more smoothness



the better approximations.



In table 2 we can,compare the results we get in the 

different variations we tried. The problem is Au = f; 

the solution is known, given by u = sin (3x+3y); (04x43; Osy$2) 

Table 2 
LII .i-. tL 

Size of the Experiment Experiment Experiment Experiment


Finest Grid 1 2 3 4



. 9 ) 16 x 24 1.4x10 " 2 (23) l.8xl0 2 (5.9) 5.3x10 - 3(5 2.3x10 3 (9.1) 

" 32 x 48 3.4xi0 (23) 4.2x0 -3 (5.6) 4.7xi0 -4(5.5) 2.3x0 -4 (8.9) 

64 x 96 8.6x10 "4 (23) l.0xl0 3 (5.4) 5.2x105 (5.4) 1.8x0-5 (8.9) 
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Key to table 2:



Experiment 1 ­
 is the exact solution of the difference



equations (up to randoff errors).



Experiment 2 - U is the approximation after only one cycle



in all grids.



Experiment 3 - L is the approximation after only one cycle



in all grids, but using (38) instead of (33).



Experiment 4 - Like experiment 3, but the number of relaxation



in each level was doubled.



The numbers in parenthesis represent the number of work



units which are equivalent to the total number of relaxations



on the finest grid (printed in each line of the table).



5.2 Distributed Relaxation
 


One of the important application of the method of distributed



relaxations is in finding relaxation schemes with good smoothing



properties. This is generally hard for very asymmetric operators.



In these cases, the usual Gauss-Seidel relaxation may be very good



or very bad, depending on the direction in which the relaxation



is performed. The problem is even more complicated in case of



non-linear difference operators, because in this case we may need



one direction for some parts of the domain, and an opposite



direction for other parts. In these cases we can perform,



as we explained in a previous chapter, a series of alter­


nating direction relaxation sweeps, but this cannot generally
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be an ideal solution. If we think, for example, of a three­


3dimensional problem, we need there at least 2 =8 relaxations



O a multigrid iterative cycle, indrder to do
On e&ch level for 
 

relaxations in all possible directions. This may be too much,



because we know that in most multigrid procedures, we use



only 2-3 relaxations for achieving optimal multigrid efficiency.



So, alternating rirection relaxations may in some cases reduce



considerably the efficiency and, in addition, it will cause



more programming difficulties.
 


Because of this and other reasons it is convenient to



find relaxations, with good smoothing properties, that are



to some extent independent on the direction of the relaxation,



so we can relax always in the same direction, no matter how



the operator behaves.



As a first example, we consider the one-dimensional 

operator represented by Ei I - 7- Iti C : C 

which can be derived, for example, from the differential 

equation 5-R'1 (by taking one-sided first differences). 

The smoothing factor can be easily calculated in this case, 

and for extreme values of it behaves in the following way: 

1 Relaxation from left to right.
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Relaxation from right to left.



for . 

In the present work, we check a special principle for



the construction of distributed relaxations. The relaxation



4 
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is always-done from left to right according to the scheme



represented in figure 6.



Figure 6.



Relaxation



LX



and in figure 6 represent the values of the



approximation before relaxing on point i, and the new values
 


after the relaxation on this point are represented by k,



J is chosen so that the residual at point i is
 


zero. The changes performed at points i and i-i make the



residuals at the points i-i and i-2 nonzero, although they



were previously zero when we relaxed these points. So we



can choose the parameter < so that the deterioration of



these residuals is minimal, say in the L2 norm.



If we chose A in this way it can be shown that the



relaxation scheme is always stable and satisfies t

V!,



for all 0 For P7 0 . The optimum parameter 

,t depends, of course, on but satisfies .4l i& .5 

and, in fact, we can chose a constant suboptimal m , say 

= .45, without significant lose of efficiency. 

It must be pointed out that this scheme is not 

necessarily the best one for all values of M . In fact, 

there exists better stable schemes (Brandt7).for large , 
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Using the same principles just stated, we calculated



distributed relaxation schemes for general five points



operators in the form



d 

a -s c 

b 

where a,b,c,d O and a+b+c+d=s.



Operators of this type are typical, for instance,



in Navier-Stokes problem. The relaxation scheme is



described in figure 7.



Figure 7.



Direction of the .


relaxation.



oL and f,are the solutions of an appropriate optmization 

problem. As in the one-dimensional case, A+' ,A+-to ,JA+fA7 

represent the new values after the relaxation of the central 

point of figure 7. 

The results (calculated by the algorithm described in



Chapter 3) show that the smoothing factor is bounded far



below 1, even in the cases of great asymmetry of the operator,



except in the cases where the problem degenerate practically



to a one-dimensional problem (like the case a- cz 0).



In the case of Poisson's equation (a=b=c=d=l)4 =.315, which
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is significantly better than in the normal Gauss-Seidel



relaxation (1=.5). For this Poisson operation we get r:i*



For other nonsymmetrical operators, the comparison between



this distributed relaxation and the usual Gauss-Seidel is



even more remarkable, as we can see on table 3.



Table 3



Operator Smoothing Factor 4 
a b c d Gauss-Seidel Distributed 

Relaxations Relaxations 

. . . .5 .5 .631 J 313 

10.5 .5 10.5 .5 .913 .449 

.5 100.5 100.3 .5 .990 .481 

.5 1000.5 1000.5 .5 .999 .484 

.5 .5 1000.5 1000.5 1.000 .752 

Like in the one-dimensional case, it may be possible to find



more efficient scheme for the extremely asymmetric cases. But



the present methods assures a good smoothing factor in all the



cases, bounded far below 1, and consequently, an efficient multi­


grid algorithm. 
 Moreover, if the problem is nonlinear, we do



not have to know in advance the behavior of the solution, in



order to define an appropriate relaxation scheme. In addition,



*This distributed relaxation scheme for Poisson's equation


was implemented in a multigrid computer program, and we get

perfect agreement with the theoretical smoothing factor



= .315.
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as in the one-dimensional case, it is not necessary to invest



extra work in the exact determination of the parameters and



They can be estimated in a suboptimal way, without significant



loss of efficiency.



It must be pointed out that in the case of the Poisson



equation the Gauss-Seidel relaxation can be still considered



a little more efficient, if we take into account the number of



arithmetic operations needed for each relaxation method. On



the other hand, for all other operators, even if they are



small perturbations of the Laplace operator, the proposed



distributed relaxations are much more efficient than the



Gauss-Seidel re1axation.
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APPENDIX





OUTPUT NO. 1
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