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SUMMARY 

\I[ d /i 
A theory is described for the radiation emission from acoustic multipole 

sources. The sources can be stationary or moving at speeds including supersonic 
ir;( and experience stationary or moving disturbances. The effect of finite source 
1. distributions and disturbances is investigated as well as the manner in which 
i they interact. Distinction is made between source distributions that respond 

as a function of time and those that respond as a function of space. 

It is found that motional amplification, for a point source, is given by 
11 - M COS~[-(~+~), where N is the multipole order. Also, that motional attenu- 
ation from finite source distributions can be as high as 11 - M COS~[~~, where 
z depends on the shape of the source distribution (typically between 1 and 2). 

INTRODUCTION 

In the last few years, there has been much interest in the noise from high 
speed sources. Particularly in the new generation of jet engines and in heli- 
copter rotors in high speed flight. One knows from experience that moving 
sources produce a change of pitch as they pass, that whips crack, and that super- 
sonic sources go bang. What we do not know in detail is how these sources radi- 
ate. 

One of the first published works on isolated sources in motion was that 
by Oestreicher (ref. 1) in 1951. Using physical arguments involving the time it 
takes for an emitted sound to travel along a moving source, Oestreicher deduced 
that the effective source length in the direction of motion should change by 
(E'l).i By assuming, without justification, that the effective source density 
(strength per unit effective length of the source) was unchanged, he concluded 
that the total source strength and, therefore, the radiation would change by E-l- 
Although this model now appears inaccurate, it was useful at the time in that 
it predicted some kind of an acoustic beaming effect, when M coso = 1. 

* 
This work was supported by ONERA Chstillion-sous-Bagneux (Paris). Service 
Technique Agronautique, Paris. Aerospatiale SNIAS Marignane (Marseille). 

'E = 11 - M cosol , where M is the source Mach number and (5 is the observation 
angle made with the direction of motion. E is referred to as a zero and &-l 
as a pole, infinity, or singularity. &-l is the inverse of E. 
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Soon after Oestreicher, Lighthill Cref. 2), using formal methods, again 
interpreted that the effective source dimension should change by &'l. He also 
found that each space derivative for the higher order sources produced a fur- 
ther Cl. However, Lighthill, like Oestreicher, assumed that the effective 
source strength density (not the actual source strength) was unchanged by 
motion and that the radiation magnitude change was affected by the effec- 
tive source volume change. Lighthill, therefore, applied the.&-1 singularity 
in blanket fashion to all types of sources. This made the total singularity 
power for a multipole of order N, 
equal to N + 1, i.e., (I?~)~+~. 

where N is the number of space derivatives 

Unlike Lighthill's approach, which uses a moving-stationary coordinate 
transform (Jacobian) to obtain the radiation from moving sources, the fol- 
lowing theory simulates source motion by using a stationary source region of 
appropriately phased elements. 

The main difference between this and Lighthill's theory is that the ac- 
tual source strength in this theory is assumed to be unchanged by motion and 
that motional amplification is affected entirely by temporal transform changes 
between moving and stationary sources; this is contrary to the assumption that 
motional amplification is caused by an apparent source volume change and, there- 
fore, total source strength change as in references 1 and 2. There is, of 
course, an effective source volume change through motion; but, according to the 
following theory, this produces motional attenuation only, the converse to 
what Oestreicher and Lighthill had originally thought. 

In this present theory, it is first found necessary to distinguish 
clearly between multipole sources (sources constructed from an array of dis- 
crete mass displacement sources), aerodynamic sources (sources with source 
strengths in terms of physical quantities such as fluid mass flow and forces 
applied to the propagating fluid), and finite sources (sources whose acoustic 
wavelength is small compared to the source distribution size). When this is 
done, motional amplification in terms of the multipole source is found to be 
(,-l)N+2 where N is the number of dipoles forming the source, i.e., the result 
is one degree higher than Lighthill's series (~-l)~+l. For an aerodynamic 
source, the theory gives (&-ljp, where p = 2, 1, 1, 2, for a mass displacement 
(fundamental source), mass injection (simple source), force, and stress source, 
respectively. 

It can be seen that both theories are in agreement as far as the simple 
source is concerned. (Lighthill makes no comment regarding the fundamental 
source.) However the higher order aerodynamic sources appear to have a singu- 
larity less than those predicted by Lighthill. Note that a multipole source 
and an aerodynamic source in this theory can have the same multipole order but 
a different singularity power. 

wZa 

F$n;ll , motional attenuation for finite sources is found to be 
b ' =c 

I where the z's are the shape orders of the source distribu- 
tions in the three coordinate directions. Typically, the z values are between 
1 and 2 once the acoustic wavelength is less than the distribution size. Thus 
motional amplification is only possible if the singularity power p>za+zb+zc. 
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THEORY DESCRIPTION 

The theory is described in detail in reference 3; only a brief descrip- 
tion of the main points of the theory is given below. 

The radiation equations are first written in terms of multipole analysis, 
except that the mass displacement source is used as the fundamental acoustic 
source. For stationary sources, it is not important whether the fundamental 
source or the time derivative of the fundamental source (simple source) is 
used. However, for motional effects, it is important to make the distinction. 
To reduce the complexity of the radiation equations, far field approximations 
are applied. This enables the directivity effects between acoustic poles and 
source distributions to be effectively separated. 

Source motion is then taken into account by using the concept of a source 
region. Here, a stationary region is defined with respect to the stationary 
propagating fluid. Source motion is simulated within the region by allowing 
the phase of the source region density function to vary with space in such a 
way as to produce waves of finite phase velocity to pass across the region. 
Using this model, individual source distributions and disturbances can be ac- 
commodated with relative velocities between each other and the stationary CO- 
ordinate system. At all times the analysis remains in the far field with 
respect to the stationary coordinate system thus avoiding the use of station- 
ary to moving coordinate transforms such as Jacobian and Lorentz. 

To evaluate the radiation from the source region, the source distribution 
and disturbance functions are Fourier analyzed into spatial harmonics (modes). 
The resulting double Fourier summation is then simplified into sum and differ- 
ence mode pairs. The radiation from a single mode is then evaluated, and the 
radiation from all the modes of the source region summed. In this way, the ra- 
diation from any complex source region structure can be evaluated. 

It is found that each mode has a characteristic radiation pattern. The 
directivity has a dominant lobe corresponding to when the mode phase speed, 
resolved in the direction of the observer, equals the speed of sound, plus 
finer radiation details at least 14 dB lower than the dominant lobe. Beauti- 
ful and complex radiation patterns can result, therefore, depending on the 
modal content and thus the source region structure. 

Fortunately, for most source situations of interest, the finer radiation 
details cancel and only the dominant mode radiation need be considered. This 
reduces the complexity of the problem considerably. In fact, in the dominant 
mode solution, the source region can be considered simply as a "black box" fre- 
quency changer. Source frequencies f, go in, and radiation frequencies f, 
come out, with the simple relationship between the two of E-'. 

This simple frequency changing action, however, has a more profound ef- 
fect. It results in the source radiation emission, for the fundamental source, 
being increased in the direction of motion by ~~2. The effective multipole 
leverage (distance between poles) is increased by c-1 and therefore the acoustic 
interference between poles is reduced giving a further amplification factor of 
E-N. Thus the total multipole motional emission is changed by (s-N)N+2. 
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To convert a multipole source (constant fundamental source strength) into 
an aerodynamic source (constant aerodynamic source strength), it is found that 
the transform (&:-l)n is valid, where n = 0, 1, 2, 2 for the mass displacement, 
mass flow, applied force, and stress source, respectively. Therefore the mo- 
tional amplification for an aerodynamic source becomes (~-')p where p =N+2-n, 
thus p = 2, 1, 1, 2 for sources of the type m, q, fi, and t.., respectively. 

17 

For finite source distributions, the effective source size in the direc- 
tion of motion is also increased by E-1; however, this results in an in- 
creased acoustic interference across the source distributions and, therefore, an 
attenuation effect of E. 
distribution size, 

For radiation wave lengths sm$;ler than the source 
the attenuation can be as great as E , where 3 is for the 

three source dimensions, if all spatially modulated, and z depends on the 
source distribution shape (z is typically between 1 and 2). 

The degree of motional amplification, therefore, depends on the multipole 
or aerodynamic order (number of mathematical poles) and the shape and nature 
of the source distribution (number of zeros z and whether the distributions are 
time or spatially modulated). Thus it appears that source motion alters the 
multipole and distribution size, but not the order. 

Consider now the disturbance function which generates the source fre- 
quencies. Its radiated scale is decreased in the direction of motion by E, the 
converse to the distribution size. For a given radiated frequency, the distur- 
bance gives an acoustic beam, the longer the disturbance the sharper the beam. 
The radiation can be greater for a disturbance of longer duration although the 
rise and fall time is less. Also, sources experiencing finite steady distur- 
bances in motion radiate finite radiation, including an infinite steady dis- 
turbance duration. 

Distinction is also made between source distributions that respond as a 
whole to the disturbance as a function of time, similar to a loudspeaker (time 
modulated), and distributions whose elements respond individually as a function 
of space, similar to aerodynamic sources (spatially modulated). At subsonic 
source speeds, spatially modulated sources are effectively less compact than 
time modulated sources by a factor of M cost. That is, the onset of distrib- 
uted interference across the source distributions can take place at a much 
lower frequency than time modulated sources for the same source dimensions. 
The effect is also experienced normal to the direction of motion in the case of 
a spatially modulated source. 

Further, the fascinating situation is considered where the source is sta- 
tionary and the disturbance is in motion, such as in an open wind tunnel 
(ignoring flow effects). Although there is no Doppler effect (stationary source), 
an acoustic beam is again generated at high flow speeds. Compared with a 
moving source, the logic here appears to be in reverse. For example, the effec- 
tive source distribution size now decreases in the direction of motion by E, 
and the distribution interference now effectively generates the acoustic beam, 
not attenuates it. 
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In general, it is found that there is nothing extraordinary regarding ac- 
celerating or nonrectilinear source motion. The radiation level at any instant 
is proportional to the instantaneous velocity and is not dependent on the accel- 
eration of previous or subsequent flight paths. 

For example, the notion that steady sources rotating in a circle radiate 
through centripetal acceleration is, according to this theory, fallacious. The 
same sources travelling in a straight line will radiate similarly. 

It should be pointed out that the theory derived in this paper is based on 
the observed fact that acoustic propagation is simple, i.e., its propagation is 
at all times relative to the propagating fluid and not with respect to some co- 
ordinate system, moving or otherwise, as in the propagation of electromagnetic 
waves (relativity theory). Thus, there are no relativistic time or space changes; 
all space changes in this theory are related to the radiated scale (wavelength). 

ILLUSTRATIONS 

Figure 1 shows the relationship between an observer and the source region. 
Xi is the observation point and Yi is a source point within the source distribu- 
tion. For far field radiation conditions, i.e., observation distances large 
compared with the source distribution size, Xi >> yi, lxil N R and R becomes the 
representative distance of all the source elements in the distribution. 

Figure 2 illustrates how the radiation at the observer, for far field radia- 
tion conditions, canbe representedbytheproduct of two interference effects. 
Kw represents the interference between monopoles, H represents the acoustic in- 
terference across the source distribution and KwH represents the total inter- 
ference effect. This is a particularly useful concept as we can treat the mul- 
tipole and distributive acoustic properties separately. 

% 

Figure 3 gives some examples of the multipole directivity function K,. 
' are the direction cosines made with the observer and the multipole direc- 

tional vectors. This multipole interference effect between poles is well known, 
and nothing further need be said except to emphasize that these prope_rties 
are independent of source motion. We now need to concentrate on the H function, 
which is not so simple, particularly for sources in motion. 

Figure 4 illustrates how the source and disturbance motion is accommodated 
within a stationary source region. Motion is accomplished by allowing the phase 
Of the acoustic density function h, to vary across the source region. In this 
manner, hr can be made to contain information regarding the number, shape, and 
speed of the source distributions and disturbances. fi is then the summation of 
hr across the source region (total radiation activity). 

Figure 5 shows how the h, function is represented by two functions, a dis- 
turbance function h, and a source distribution function ha. The h, function is 
the instantaneous value of the summation of h, across the source distribution at 
each source position x. The ha function describes how this summation value is 
distributed across each source. 
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In Figure 6, the hw and ha functions are Fourier analyzed into spatial 
harmonics. The resulting double Fourier summation generates a modulated mode 
system shown in the center figure. This system is then simplified further 
into simple mode pairs as indicated on the right. Thus any complicated source 
region structure can be represented by the summation of simple modes, the radi- 
ation from which depends on the mode amplitude and radiation efficiency of 
each mode. 

Figure 7 illustrates how simple spatial functions can be converted into 
spectrum functions, x, where x is a nondimensional Fourier coefficient whose 
maximum value is unity. Each of the disturbance and distribution shape func- 
tions 15 converted into a disturbance and distribution spectrum function Xs 
and &-,B, respectively. The mode amplitude then depends on the product spectrum 
function xsxmB. Thus, a knowledge of the amplitude, duration, and shape of 
the spatial functions will give an idea of the mode spectrum amplitude. 

Figure 8 concerns the other controlling factor which determines the radi- 
ation, i.e., the mode radiation efficiency. Here the radiation is summed for 
each mode travelling across the source region of dimension d. The radiation 
depends on the radiation frequency n/d, the number of mode wavelengths 5 
across d, and the mode speed n/c. 

Figure 9 shows the typical radiation directivity for each mode. The mode 
interference function XE has a maximum value of unity (dominant lobe).; this corre- 
sponds to when the mode speed, resolved in the direction of the observer, 
equals the speed of sound plus finer radiation details at least 14 dB lower. 
Thus the total radiation from a source region is composed of many such mode 
radiation directivities, one for each mode generated. 

Figure 10 illustrates three specifying characteristics of a radiating 
source. Figure 10(a) shows the directivity for a single source frequency, f,, 
which gives rise to whole family of modes, each mode giving a directivity simi- 
lar to that in figure 9. Here it can be seen that the directivity envelope 
containing the dominant lobe is controlled by the distribution spectrum func- 
tion xmB only. Figure 10(b) shows the directivity for a given radiation fre- 
quency f, from a complete disturbance. Here the directivity envelope is given 
by both the disturbance and distribution spectrum functions&-,x Figure 10(c) 
shows the radiated spectrum at a given observation angle CT. "8: In t is case each 
source frequency generates a passband of discrete frequencies with a dominant 
center frequency given by xc. The spectrum envelope (dominant frequencies) is 
given by x,x,- Thus it can be seen that the disturbance and distribution 
spectrum functions,.for a given source speed,control the major acoustic proper- 
ties of a radiating source. 

Figure 11 summarizes the radiation properties for three dif- 
ferent source situations. The first column depicts the properties of a moving 
inphase source experiencing a stationary disturbance (time modulated). Column 

2 is for a moving source whose elements respond individually to the distur- 
bance as a function of space (spatially modulated). The last column shows the 
properties of a stationary modulated source experiencing a moving disturbance. 
The disturbance can be a simple sinusoidal disturbance, in which case the radi- 
ation directivity is given in row a . Or the disturbance can be some arbitrary 

132 



periodic disturbance. In this case, the directivity for a single radiation fre- 
quency is given in row b , and the resulting spectrum at a given observation 
angle is shown in row c . These directivity and spectrum envelopes indicate 
the dominant lobe and radiation frequencies only; the finer radiation details 
given in figures 9 and 10 are not shown. 

Concentrating for a moment on the top left hand square, block la 
represents the directivity for a point source experiencing a single source fre- 
quency. This directivity is given by (~-l)p where E = 1 - Mcoso and p is the 
aerodynamic order. Thus at the Mach angle cos 0 =1/M,& = 0, ED1 = co, the 
directivity has a series of poles or infinities of order p giving infinite radi- 
ation. Block 2a represents the acoustic interference effect across 
finite source distributions given by xmB. This function contains zeros, E, 
of order z,, the power of which depends on the shape of the source distribu- 
tions. This function, of course, gives zero radiation at the Mach angle. Thus, 
motional amplification or attenuation can occur depending on the balance of 
the poles p (aerodynamic order) and on the number of zeros z, (source distribu- 
tion shape). 

Continuing along the top row of Figure 11, the main difference between a 
time-modulated source, la, and a spatially modulated source, 2a, is that the 
distribution spectrum function, in 2a, is also operative at right angles to the 
Source motion. Whereas in la, at 90' to.the source motion, xmB is unity, i.e., 
there is no distributive source interference effect. In the case of the sta- 
tionary spatially modulated source experiencing a moving disturbance, 3a, there 
are no poles in the point source term as the source .is stationary. Here the 
directivity is given by the distributive interference effect xmB only. At the 
Mach angle,. xmB has unities of order za giving the acoustic beam. Thus the 
sharpness of the beam is given solely by the shape of the source distributions. 

Moving along the second row of Figure 11, the radiation directivity at a 
given radiation frequency from a periodic disturbance is considered. For a 
time-modulated source, lb, the directivity is given by both xs and xmH, where 
disturbance spectrum function xs is responsible for generating the acoustic 
beam. This function has unities of order zw where zw depends on the shape of 
the disturbance function. Thus the disturbance shape determines the shape 
(sharpness) of the acoustic beam. The main effect of the disturbance spectrum 
function xmB is to attenuate the acoustic beam in the direction of source mo- 
tion. In the case of the moving spatially modulated source, 2b, the XmB func- 
tion is omnidirectional, thus giving no attenuation of the acoustic beaming 
effect given by xs. In the last situation, 3b, ys is now nondirectional and the 
acoustic beaming is given by xmB. Note that situations 3a and 3b are the same, 
as the source is stationary making both the source and radiation frequencies 
identical. 

Finally the radiation spectrum characteristics arising from a periodic dis- 
turbance are given along the bottom row of Figure 11. The spectrum is the 
product of the three functions xs, xmB and (fr)p. The disturbance and distribu- 
tion spectrum function depress the acoustic spectrum after the "start" of the 
decay of these functions, given by (fr)w and (f,),, have been exceeded. The 
decay rate then depends on the order zw and z, of the disturbance and distribu- 
tion functions, respectively. Thus the acoustic spectrum rises at low frequencies 
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according to the frequency multiplier (f,)p, where p depends on the aerodynamic 
order, and finally decays according to (fr)p'zwcza. It can be seen that the 
spectra can be quite different for each source situation depending on the in- 
dividual break frequencies (frJw and (frja. Here v is the disturbance speed 
with respect to the source, u is the source speed and a, is the speed of sound. 
Note that in situations lc and 2c, the radiated disturbance scale wr in compari- 
son to the actual disturbance scale w, in the direction of motion, is reduced 
by cu and the radiated source distribution size a, in comparison to the actual 
size a, is increased in the direction of motion by E-l. In the last situation, 
3c, the radiated and actual disturbance scales are t e Ii same, and the radiated 
distribution size is now decreased in the direction of motion by G. 

THEORETICAL BASIS 

To help indicate the differences between this and other theories, the es- 
sential principles on which the theory is based are summarized below. The de- 
tailed analysis of the following statements can be found in reference 3. 

(a) Fundamental source. 

The mass displacement source m is considered as the fundamental or basic 
acoustic source. The simple source q, usually taken to be the simplest acous- 
tic source, is, in fact, the time derivative of the fundamental source. 

m and q are the mass displacement and mass flow source strengths,respectively; 
p, is the density of the displaced propagating fluid and v. is the displaced 
volume. For a stationary harmonic source of the form 

m 
S 

= i?l cos ws t +3 
= 2lTf, 

where 6 is the amplitude and ws is the source frequency. The acoustic 
strength hs is then 

(2) 

(3) 

(b) Moving fundamental source. 

The only basic effect of source motion is to change the radiation fre- 
gUacY? fs + fre The source strength 6 remains unchanged by motion 

m 
r 

= P cos "';t w =E -lw 
r S 
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The acoustic source strength then becomes 

hr = 

. 
I.e., the radiation amplitude between a stationary and moving fundamental 
source, all other things being equal, is 

i-i,= E -1 
( ) 

2 i; 
S 

(5) 

(6) 

(c) Multipole source. 

I 
A multipole source is defined as an array of 2N discrete equispaced 

fundamental sources where N is the multipole order (number of dipoles). The 
acoustic strength is given by 

N+2 
ms (7) 

where di is separation distance between monopole sources. The acoustic strength 
of a moving multipole source is then 

I.e., 

N+2 N+2 
m = dN uN+2 m = 

r ir 
dN uN+2 

r i s mr 

N+2 
(6 constant) 

(8) 

(9) 

(d) Aerodynamic source. 

If g represents the source strength of an aerodynamic source, such as 
mass flow q, applied force fi, and 
tween these sources is 

gr = d; 

g 

n 

m cl f i t.. 
=I 

012 2 

and the acoustic strength in terms of g becomes 

stress t.., then the acoustic relation be- 
17 

0 012 
(10) 

P 
gr ' P =N+2-n 

=qgr= E ( 1 -lPwp g s r 

l.e., iir = (c-1) p i; 
S 

($ constant) 

(111 

(12) 

(13) 
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(e) Sound pressure. 

The sound pressure for an aerodynamic source, is then given by 

SP =&CR[hr] , ~= 

[t] = t - " , wr = E-l us 
0 

1 

%eZP%etween poles: an%+ are 
-term gives the sphfjrical spreading effect; KN gives the interference 

-the direction cosines made with the source 
directional vectors and the observer. 

Or in a more familiar form: 

(1) Wave equation. 

a2[tij] 
axi axj 

Far field solution 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

aN[d = X. 

( 1 
ax N ( > -+$N(~)Ygl 

i 
0 

SP = 

=+5&r bl 

Equations (19) and (22) are valid only for a stationary source. 

(2) Moving harmonic source. 

(22) 

By using a stationary source region of elements with varying phase, 
the effect of source motion can be simulated. In this case, the solution (22) 
above is valid provided 
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- . . . . . 

St.. gs = tj cos wst 

m:> - gr = lj cos art 

. . 

-1 w=E w r ( ) s 

where sta. and mov. are for stationary and moving sources. This gives 

Sp = -L 
47rR KN (%)" cgr] 

(3) Stationary source equivalence for a point source. 

lh,l = 1(&y? grl = I (E-l)" ($I" gsl 

s^Pmov = . HP S^Psta 

ZP 
mov. 

= & I$ (& ti + p) 2&g- + (E-pT$ 

I at2 

( ) + E 
-1 2 a2pij] 

at2 i sta. 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 

The main difference between equation (29) and other general results is that it 
makes a clear distinction between the mass displacement source (m) and the mass 
flow source (q) indicated by the first two terms and that the last two source 
terms, fi and tij in equation (29), have a singularity (E-~) less than other 
general results. 

PRINCIPLE CONCEPTS 

In summary, the main concepts used in the finite source theory are listed 
below. 

(1) Radiation equation. 

= / [h&ix 

(30) 

(31) 
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l.e., the radiation equation can be represented by two separate interference :' 
effects: (i) the interference between poles, represented by RN, which is in- 
dependent of motion; (ii) the interference effect, represented by H,, across 
finite source distributions. .- 

(2) Relation between hr, mr, and g,. 

hr = dy 

ml0 0 2 

q 011 

fil 2 1 

hr = t ij 2 2 2 

(32) 

(33) 

(34) 

p+n=N+2 (35) 

h = acoustic strength, mr 
s&rce strength. 

= fundamental source strength, gr = aerodynamic 

(3) Disturbance and distribution function. 

hr = hw . h 
a (36) 

For a source region of finite source distributions and periodic disturbances, 
the acoustic activity (h,) can be represented by the product of a disturbance 
function (hw) and a distribution function (ha). 

(4) Modal analysis. 

hr=hwha=ChsC hti== hS , hg=hshmR 

S mE3 SmB 

(37) 

The disturbance and distribution functions are Fourier-analyzed into a double 
summation of simple modes (spatial harmonics). 

(5) Radiation integral. 

fir = ; fh,] dx = ' ' XS X, xc [Hrl 

iHrJ = 
H cos (2$: Or + $)r H = (&)" G 

G=F ; l?J,l dx gW = i Is,1 dx 

(38) 

(39) 

(401 
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The radiation integral (total acoustic activity) ;I, is the summation of the 
acoustic radiation from all the modes of the source region. & and xmD are the 
disturbance and distribution spectrum functions which give the mode amplitude. 

xc is the mode acoustic interference function which gives the mode radiation ef- 
ficiency. 

(6) Dominant mode solution. 

h 
xg = 1 8 0 

- Mr cos u 
= 

r mB = ’ ’ 3 - Mr cos (5 (41) 

(42) 

In the dominant mode solution, the mode interference function xg becomes unity, 
and the radiation phase angle 8, becomes zero. Thus, the complexity of the 
radiation integral H, is reduced considerably. 

(7) Sound pressure. 

[Hr] = (x&)' G cos (2,fr[t] + $) 

= Z& %J (2.rrfr)P x~ b CGr] single fr 

= Tk 54 ('ii')" (271f 5)' xs %IB tGr3 single fs 

(43) 

(44) 

(45) 

(46) 

The sound pressure (dominant mode solution) for a given radiation frequency is 
given by equation (45) and for a given source frequency by equation (46). 
The total radiation foi a complete disturbance is given by c (f,) or c (is). 

S S 

(8) Motional amplification. 

(point source) 

(finite source) 

i 

(47) 

(48) 

(49) 

(50) P'z z=z +z +z 
a b c 
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A finite source is considered to be one whose source frequencies are greater 
than the source distribution cut off frequencies (fs)a,b,c and less than the 
multipole leverage cut off frequencies (fs)di. Motional amplification, for a 
finite time-modulated source, occurs only if the aerodynamic order p is 
greater than the sum of the source distribution order z in the three coordi- 
nate directions. 
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Observation point 
Xi 

Source point 

Figure l.- Source-observer definition. 

Figure 2.- Separation of source terms into two interference effects. 
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(a> Kg simple source. 
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(b) K1 dipole. 
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(c) K2 lateral and longitudinal quadrupole. 

Figure 3.- Equivalence of aerodynamic sources in terms of simple sources. 

Figure 4.- Source region description. 
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Figure 5.- Representation of density function by a disturbance 
and distribution function. 
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Figure 6.- Decomposition of density function into simple mode pairs. 
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Figure 7.- Spectrum function Xn -for some simple shape functions. 
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Figure 8.- Mode radiation details. 
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Figure 9.- Directivity properties of the mode interference function xg. 
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Figure lO.- Three specifying characteristics of a radiating source. 
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