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ABSTRACT

The expected motion characteristics of the real earth are sys-
tematically analysed based on available dynamiéal theories for the rigid
model, the elastic earth model and thé earth model with liquid core.
The various axes which are implicit in the dynamical theories are
investigated regarding observability on the basis of astronomical obser-
vations and suitability for defining reference directions. The observa-
tional insignificance of the "diurnal polar motion' is demonstrated. A

special effort 1s made to clarify customarily used terminology.
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LIST OF SYMBOLS

This list of symbols gives definitions for the symbols used

throughout the text.

e = Xies Xzp, XSE)T

© = (Ux, Uz, Ua)'

(U)e

&r

3

g Wy

S

Geoceniric and inertially oriented coordinate system.
The third axis coincides with the north pole of the
fixed ecliptic at a standard epoch. The first axis is
fixed arbitrarily to the fixed ecliptic.

Body-fixed geocentric coordmate system. Its orien-
tation within the body is given in a "prescribed” way.

The axes of this coordinate system coincide with the
principal momenis of inertia axes of the earth,

Same system as (U, but the first axis coincides
with the node line of the fixed ecliptic and the
equator of figure.

The third axis coincides with the angular momentum
axis (H}. The first axis coincides with the node line
of the fixed ecliptic and the plane orthogonal to (H).
Vector of luni-solar torque on the earth,

Angular momentum vector.

Instantaneous angular velocity of the earth.

Mean angular velocity of the earth,

Instantaneous rotation axis.
Axis of figure.

Axis of angular momentum.



(Eo)

(C)

"

(C")

©)

—

Ly, = (Lnx, Lexg ]'-n:ax,,)T

Ly, = Lax; tilex,

(ulFs UzrF, 1)
U = War +1IUgr

Iy

A-l! Ae, A-S

Cij

GMST

Axis of Eulerian pole of rotation.

Axis of celestial pole for rigid and elastic earth
model ,

Axis of celestial pole for the liquid core model,
Axis of celestial pole,
The components of L in the (X)r system. The same
notation is used regarding other axes and coordinate
systems. If no subscript is given, the components
refer to the (U)-system.

-
Complex form for eguatorial component of torque L
in {(X)r system. The same notation is used regarding
other axes and coordinate systems. If no subseripts

are given, the components refer to the (U)-system.

Direction cosines of the axis (¥) in the (U)-system
whereby second-order terms in uy are neglected,

Complex notation for the equatorial component of a
unit vector along (¥) in the (U)-system.,

Inertia tensor in (U)-system.

Least, mterﬁediary, and maximum moments of
inertia. These are the elements in the diagonal of
the inertia tensor if the coordinate system is selected
such that the off-diagonal terms of the inertia tensor
are zero,

Small term in inertia tensor at position (i, j).
Tide-generating potantial.

Greenwich mean sidereal time.

Tidal effective Love number,

Secular I,ove number.



(G, e, ©F) Euler angles relating the fixed ecliptic and the (U)-
system, If no subsecripts are given, the Euler angles
refer to the (U)-system. P is counted positive
eastward,

He Position of (F} in (X)¢ In complex notation. Simiiar
notations are used for other axes.

Hen Free motion of (F) in (X)e.

Hrp Forced motion of (F) in X)e.

Hrp Precession of (F).

Hrn Nutation of (F).

U = Ware T ilU3fe Complex notation for equatorial components of unit

vector of forced motion of (F) in (U)-system.

Urt Same as above except for free motion of (F).
Ors, Yrr Forced motion of (F) in obliquity and longitude.
O¢p, Yrp Precession of (F) in obliquity and longitude.
Orn, Uiy Nutation of (F) in obliquity and longitude .

Co Frequency of Euler motion (rigid body).

O Frequency of Chandler motion (elastic body).



1. INTRODUCTION

The strong increase in measurement accuracy, which is expected from
the new laser generation, makes it necessary to look anew at the underlying
principle of astronomical frames and their suitability for lunar laser ranging.
No attempt is made 1n this study to introduce a new dynamical theory; rather,
extensive use is made of available theories. Special efforts are made to
identify the various axes, to discuss their relative body-fixed (with respect to
the body) and space-fixed (with respect to inertial space) motions, and to
invegtigate their dependence on defining constants, fime varying parameters,
suitability for providing a defining direction of reference, eic,

The simplest theory is that of the rigid body earth model. The earliest
investigations on this subject are several centuries old. The theory was
essentially completed by Oppolzer [1882] when he included small secgnd-order
terms in his solution and thus derived the expressions for the diurnal body-fixed
motions of the instantaneous rotation axis (I), which are a result of luni-solar
aftraction, Unfortunately, he re-emphasized an older concept, saying that the
astronomical observations refer to that equatorial plane which is orthogonal
to the instantaneous rotation axis (I) and neglected to investigate the question of
observability anew in view of his expanded and more complete rigid earth theory.
See [Oppolzer, 1882, p. 155], Subsequenily, the officially adopied set of nuta-
tions has always been given for the instantaneous rotation axis (I}. It was only
very recenﬁy’ that the question of observability was tga.kenf up again by Atkinson
[1978, 1975, 1976] and Ooe and Sasao [1974]. Severe difficulties of an habitual
as well ds a practical nature (since a large amownt of astronomical data has
been reduced in a certain manner) surfaced at two recent international meetings
at which this subject was discussed. In an attempt to correct the situation the

General Assembly of the International Astronomical Union at Grenoble in 1976
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[TAU Transactions, 1977] passed a resolution to adopt the forced rigid body
nutations of the axis of figure (F) instead of those of the mstantanecus rotation
axis (I). However, in a subsequent meeting [IAU Symposium No. 78, 1977], at
which a set for the nutations of the nonrigid earth was adopted, the resolution of
Grenoble was ignored. If is thus appropriate to discuss the question of observa-
bility in this study and to elaborate on the observational significance of the
periodic diurnal body-fixed motions of the instantaneous rotation axis (I). The
most accurate rigid earth theory available at this time is that by Woolard [1952]
which was officially adopted.,

Besides the rigid model the motion characteristics of more elaborate
" models such as the elastic model and models with liquid core will be inves-
tigated. The long history of research in the various earth models has not only
produced more realistic models but also ap amazing amount of confusion in
terminology. In Tablel.1 a summary of those phenomena which will be dis-
cussed in great detail in this report is given including a2 summary of terms
which can be found for them in the literature. Note that the terms in each box
describe one and the same motion. No guarantee is given that the lists are
complete, Table 1.1 is divided into two groups of motions. The body-fixed
and space-fixed motions are called polar motion and nutation, respectively.
This basic classification is the same as that given in [Munk and MacDonzald,
1960]. The characteristic is that polar motion changes latitudes, whereas nuta-
tion changes declination. The subdivisions are made according to the earth models
and the cause of the motion. The force-free motions are similar in character to
constants of integration and can exist independently of the forced motions It is
also seen that the term "wobble" is associated with force-free body-fixed motions.
The word''free' generally denotes force-free motions. In some cases even the
body-fixed motions are called a "nutation.™ Such terminology is used to illus -
“trate that any periodic motion should be called a nutation. If such conventions
were tolbe followed, a unique idenifification of the motion coimponents would
reguire information as to whether 1;he motions were body- o?jspace-flxed and as

to their periods. The'liquid core model introduces new motfons in addition to
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Table 1 1

Terminology Related to the Motions of the Instantaneous Rotation Axis (N

Model Excita;:ion Polar Motion ! Nutat:,ion
, (Body-Fixed Motion) (Space-TFixed Motion)
la. Chandler motion (elastic model)
.8 force-free Ib. Euler motion (rigid model) free nutation
I 2. wobble
4 1. Oppolzer terms 1, astronomical nutations
g luni-solar 2. forced dirunal motions 2. forced nutations
, B : 3 dynamical variation of latitude 3. nutations
= attraction -
(longitude)
4, diurnal pélar motion
© 1: nearly diurnal free wobble (NDFW) 1. associated free nutation
5. force—free 2. nearly diurnal free polar motion to NDFW
Q 3. nearly diurnal free nutation 2, free principal core
E nutation
2
=

Core resonance

causes changes in diurnal polar motion and nutation (no name given)




those of the rigid-body model. These are motions of the shell which result from
interactions between the shell and the liquid core. The motions depend on the
assumed structure of the shell and the core. If the core is assumed to consist
of several layers of equal density then there exist§ thé possibility of several
nearly diurnal free wobbles. The free nutation due to the presence of the core
is sometimes referred to as "free principle core nutation." The word "core'
should be interpreted in such a way that the core is responsible for the particular
nutations of the shell. This motion, therefore, should be detectable from
instruments located on the surface of the shell, Despite the many names in
Table 1.1, the motions in each row are related by very simple kinematical
relations. According to the classical theory of Poinsot any rotational motion

of a body around a fixed point can be represented by the rolling of a body cone
onto a space cone. The line of contact is the instantaneous rotation axis (I).

In Section 2.3.5, Poinsot's kinematical representation is discussed in detail.

It is not only the motion of the instantaneous rotation axis (I} which is of
concern here. The following axes also have important body-fixed and space-fixed
motion characteristics which will be investigated:

(a) angular momentum axis (H)

(b) axis of figure (F)

{c) axis of Eulerian pole of rotation (Eo)

(d) axis of celestial pole (C)

The angular momentum axis (H) has the useful property that its spatial motion is
nearly independent of mass redistributions of the magnitude which is expected
for realistic earth models [Fedorov, 1958]. The axis of figure (F) coincides

at any instant with the direction of the maximum moment of inertia. The term
"Eulerian pole of rotation' was introduced by Woolard [1952]. It corresponds to
the position which the instantaneous rotation axis (I) would occupy if there were
no external forces acting on the body. The term "Celestial Pole C" is used in
this study to denote that pole to which astronomical ochservations and also lunar
laser range observations refer. Its defining property is that it has neither
periodic diurnal body-fixed nor space-fixed motions. It is now evident that the

4



expression "'polar motion" is not unique; rather it is necessary to.name the axis
to which it refers.

* The various motion components are explained most easily in terms of
the corresponding mathematical expression. Therefore, a rather complete
mathematical derivation is presented for the rigid and elastic models. Both
models are treated together. With some simple specifications one c;n modify
the results for the elastic body so as to obfain those of the rigid body. The
derivations make heavy use of the works by Fedorov [1958] and McClure [1973]
who gave a comprehensive derivation of diurnal polar motion. First, the nuta-
tions of the axis of angular momentum (H) are computed. Since the spatial
motions of (H) are nearly independent of mass redistributions inside the earth,
the simple rigid earth model suffices for the compufations. In fact, the deri-
vations were done by Woolard [1952], However, the most important steps in the
derivation will be repeated using Doodson's [1921] tidal development in order to
compute the limi-solar torques. This procedure can be found also in Melchior
and Georis [1968] It has the advantage that it demonstrates the relationship
between the nutations and the earth tides. In a second step the diurnal polar
motions of the axes (H), (I) and (F) are derived and their observational signifi-
cance is analyzed. The spatial motions?che axes (I), (F) and (C) will be
obtained by i{ransforming their diurnal polar motions relative to (H) into correc-
tions which are to be added fo the space-fixed motions of the angular momentum
axis (H).

The liguid core model is treated in a merely descriptive manner. Any
rigorous mathematical treatment of such models is beyond the scope of this
study. The various new motions are analyzed for their observability and the way
in which they influence the choice of a reference axis, Probably the most clagsi~
cal mathematical development for liquid core models in recent times is that of
Jeffreys and Vicente [1957a, b].

The analysis regarding observability is based purely on geometric con-

siderations. The observations are assumed to be reduced correctly (tidal



corrections, aberrations, etc.). In many cases the question of observability
. is analyzed concepiually, regardless of whether or not a particular measure-
ment system is capable of reaching the required accuracy. In this report,
the classical astronomical cbservations are analyzed. In[Leick, 1978] the

analysis is extended to lunar laser ranging.



2. MOTION SPECTRUM FOR RIGID AND
ELASTIC EARTH MODEL

2.1 Fundamental Differential Equations of Motion

2.1.1 Axis of Rotation (I)
In a geocentric inertial frame (X} the motion relative to the center of
mass is at every instant a rotation around an axis through the center of mass,
in which the rate of change of the angular momentum vector E about the center

-
of mass is equal to the resultant torque L.

= -
(;1_11-_:1_) = L @.1-1)
Xe

The time derivatives refer to components on the inertial axes since this form of
the equation of motion holds only in an inertial system,
The equation of motion involving the time derivatives of components

with respect to the moving axes (U) is [Goldstein, 1965]

- >
(g—f) = (%) + & XH 2.1-2)
X U

E
@ is the angular velocity vector of the moving frame with respect to the inertial

frame. The angular velocity vector lies along the axis of infinitesimal rotation,

a direction which is also called the instantaneous axis of rotation (I).

The equations (2.1-2) are a system of three linear first-order differen-
tial equations They are usually referred to as Euler's dynamic equations,
Substituting equation (2. 1-1) in equation (2.1-2) and making use of the usual
summation convention, which calls for a summation over repeated indices,

equation (2. 1-2) is eguivalently written as

‘Li - % + €i.1kw.i Hi i!jsk = 12,3 (2-1_3)



All components in the equation above refer to the moving axes. €ix is the

"g]lternating" tensor, defined by the following properties:

0 if any two subscripts are equal
€k = 1 for even permutdtion

-1 for odd permutation

Equations (2.1-3) are quite general. They represent the rotational motion for a
rigid or elastic body. The standard expressions for the angular momenium, the

tensor of inertia, and the relative angular momentum are, respectively
Hy = Tiy0; -+ hi

Iiyy = f(Uk: Uy 813 - Uy Uj) dm ‘
M (2.1-4)

hi = f €13z Uj I}k dm
M
The symbol 0.y above denotes the Kronecker delta., The relative angular mo-
mentum iscaused by internal motions of the mass particles themselves, The
dot in Uy denotes differentiation of Uy with respect to time, The integration is
taken over the whole body of mass M.
Substituting equations (2.1-4) in (2.1-3) leads to yet another form of the

equations of motion, usually referred to as the Liouville equation
d
Ly = E(Iijwj-i*hi) + Eljka(Iklwl-f'hk) (2.1-b)

The orientation of the rotating coordinate system (U) is arbitrary at this point.
An extensive discussion on the possible choices can be found in [Munk and
MacDonald, 1960]. Obvious candidate axes are the principal axes for which
the products of inertia are zero. The body-fixed system (U) to be used in this
study 'is attached in a "prescribed way' to some chservatories, and its origin
is at the center of mass. Thus the (U)-system and the axis of figure system
(U)r do not necessarily coincide. The introduction of the (U)-system allows a

slightly more general formulation of polar motion inasmuch as it introduces



constant components in the off—diagonai positions in the moment of inertia
tensor. These terms are responsible for a constant polar motion component
which is equal to the angle between the third axis of the (U)-system and the
axis of maximum moment of inertia, The periodic polar motion components
are independent of the specific choice of the (U)-system ‘This fact justifies the
use of the term inertia "tensor.'" Tt is thus permissible to select the coordinate
system according to its advantages in formulating a specific motion most
simply. At this stage of the development if is only required that the third axis
of the system (U) be nearly aligned with the rotation axis such that the products
and squares of certain small quantities are negligible.

For evaluating the Liouville equation, the inertia tensor has fo be known.
In order to emphasize that the constant components are included in the off-

diagonal terms, the subscript U is used. Thus,

Aiten Ciz €13
v = Ci Azt cop Co3 (2.1-86)
13 Cm Az¥eCxm

Ay and As are the least and the maximum moments of inertia. The cy are small

guantities compared fo A; and Az. The angular velocity components in (U) are

Wy U1
wU = wg = Q g1 (2.1—‘7)
Wa 1+ usg

-

£ is the mean angular velocity of the earth rotation The dimensionless numbers
ug are very small. In fact, uir as well as c1y/As and hy/§2A5 which appear in the
Liouville equation are of the order 10™° or even smaller for realistic earth
models. Neglecting second-order terms in these quantities gives a first-order

theory accurate to order 107°, Equation (2.1-5) reduces to

Tn = ArupQ + @ + W + usr(As-An Q% - 02 Q® - e
Lz = Ay uzrQ + ¢2a$) + ha - uu(A3-~A1)Qz+ C:LaQ‘a'f'th (2.1-8)
Is = cas$) + Asusr§) + ha



U7 and ugy appear only in the first two equations of (2. 1-8), whereas ua; 18 only
present in the third equation. This makes it possible to separately solve for
the guantities (wy, ugy) and (us1), respectively. Using complex notation, the

first two equations in (2 1-8yare combined as
ar = i0:qu-9) (2.1-9)

The symbols have the following meanings:

i o= -1
ur = wy + iuer
As-A;
O, = —=§
F A;

__iL . e _i¢_ . h ____ ib
Az -ADSY” T As-A1 (As-A)Q  (As-A)Q  (As-ANQT

The complex quantities are:

v =¥ +id,
L =14 +ile
c = ¢ + icm

=h +ihg

The dimensionless function V¥ is called the excitation function. Tt is a function
of the torque, the inertia tensor, and the relative angular momentum, The

third equation in (2,1-8) becomes

Uszy =

¥} ___C@_ he

A0 A RO (2.1-10)
The complex variable ur completely describes the body-fixed motion of the
instantaneous rotation axis (I) in the .-frame (U). The direction cosmes of (I)

are cbtained from equation (2.1-7) as

& = (np uep, 1) (2.1-11)

ﬁ,
[ew]
where second-order small quantities are omitted.

10



i

. 2.1.2 Axis of Angular Momentum (i)

' The motion of the angular-momentum vector in the (U)-system is given
by equation (2.1-4). Neglecting, once again, the second-order terms, equation
{2.1-4) becomes-" o

H- = Alé ur + Qc +h

Hs = Asf(l+usp) + cas® + hg (2.1-12)
with

H = H; +iHz

Thus, substituting the solution of equation (2.1-9) for the instantaneous rotation
axis (I) into equation (2, 1-12) gives the body-fixed motion of the angular momen-
tum in the (U)-system. The direction cosines, accurate to the first order, are
-9
H _ Hi Hz =
>0 (AaQ - Sk 1) - (e e D) 1719
=]
The position of the angular momentum vector in the terrestrial system is
largely a function of the position of the instanianeous rotation axis which is given

by ur. But the relative position of these two axes is, in addition, directly

dependent on the disturbances of the tensor of inertia’ and the relative angular

momentum. Equations (2.1-12) and (2,1-13) give

As-A, . h
Ay ur Az " Az ©

Ug - Uy = =~

An estimate for the coefficient of uy on the right-hand side is

Az-Ay
=== = 0.0033
Al
For an elastic earth model or in any other nonrigid model for which cand h
are not zero, a more significant separation is expected between the angular

momentum’axis (H) and the instantaneous rotation axis (I).

! . -~ i
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2.1.83 Axis of Figure (F)

Themotion of the axis of figure ié a funetion of the disturbances of the
inertia tensor. In the principal axis system -(U)r, in which the third axis coin-
cides with the aXis of figure (maximum moment of inertia axis), the off-diagonal
elements of the inertia tensor are zero. 'The third axis of the two systems (U)r

and (U) are related by two small orthogonal rotations as follows:

@F = Re(ue) R (-ter) @) = R(ur, ) (0)

wr and uzr are the direction cosines of the axis of figure (F) in the terrestrial
system (U), Next, the inertia tensor Iy of equation (2.1-6) is transformed to the
principal axis system. The transformation properties of the components of the
inertia tensor are determined by the fact that the matrix Iy transforms under R

by a similarity transformation [Goldstein, 1965, p. 147].
Ir = RIyR*

To the first order, the inertia tensor in the (U) system is, therefore,

5

I

Ay + enn Ciz Jwr(Ay-Agz) + ci3]
Ir = Ciz Al + Cpz [UzF (A1 ~As) + ca] (2.1-14)
[mar (AL ~Az) + c13] {usr(Ax - Az)+ Cag] Az + Cas

The diagonal elements remain unchanged after the transformation. Since the
off-diagonal elements are zero in Ir at all times, the following relations for

the direction cosines are taken from (2.1-14):

u - Cia
1F Az-Ay
= '023 (2.1-15)
F A~ Ay

The small terms ¢, ¢1z and ¢z which are present in Ir do not enter the
excitation function ¥ explicitly, . In.case.ciz #.0, an additional rotation around
the third axis will complete the diagonalization of the inertia tensor. Such a

rotation, however, is not of concern here when treating only the aspect of polar

12



motion, Eguations (2.1-15) clearly show how a constant term in ci3 and cga
causes a constant component in ur, i.e., a constant offset between the third
axis in the (U)-system and the axis of figure. In complex notation the direction

cosines are written as
W = wr + iugr

With the help of (2.1-9), equations (2.1-15) which determine the direction of the
axis of figure (F) in the terresirial system (U) are written as

¢ (2.1-16)

2.1 4 Coplanar Motion

Combining the equations (2,1-11), (2,1-12), (2.1-13) and (2.1-16)

gives an interesting relation:

ug - W = il(ur-w) + AshQ (2.1-17)

The presence of the relative angular momentum in equation (2. 1-17) is some-
what disturbing in view of the geomefrical-interpretation. If
h=0 (2.1-18)

then the angular momentum vector, the axis of figure, and the instantaneous

rotation axis are located in one plane, as is expressed by

Uy ~ ur = A2 (uz - wr)
F A-.?. T
or (2.1-19)
Ur — 4y = Aa‘;aA1 (uz - ur)

Such a motion is certainly true for a rigid body motion whereh = c¢= 0. The
separation between the various axes is a function of the moments of inertia.
For a spherical body with A; = As, the separation between (I) and (H) vanishes.

Since for a realistic earth model the ratio Ai/Asis smaller than unity, the
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angular momentum axis lies always between the axis of figure and the instan-
taneous axis of rotation. These motion characteristics are valid whether or

not external torques act on the bhody,

2.2 Spatial Motions of the Axis of Angular Momentum -

2.2.1 Euler's Kinematic Equations

The relationship between the coordinate system (U) and the inertial
system (X), i.e., the ecliptic system at a standard epoch To,is given by

Euler's kinematic equations. The situation is demonstrated in Figure 2.1,

Fixed
Ecliptic

Figure 2.1 Euler's Kinematical Relations
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The Euler angles (6, ¥, ©) and their time derivatives ( é, :,'b, t,b) repre-
sent the motion of the (U)-system in space. But since this system is rigidly
connected to the body, the angular veloeity components W, as per eguation
(2. 1-7) describe the same motion. The relation between the two sets of angular
velocities is found by resolving each of the angular velocities é, !;b, qo along the

(U, Uz, Us)-axes and adding the components along each axis as follows:

—écos<p - ibsinesintp

wl =
Wy, = Osine - Psin Bcos (2.2-1)
Wz = 22) cos 6 + @

The inverse relations are

z;bsine = ~w;sing - WscosyY
8 = -WicosP + Wasing (2.2-2)
® = Wz - Pcosh

2.2.2 Poisson's Equation of Motion

The spatial motion of the angular momentum vector is the least sensitive
axis regarding internal mass movements. Mass redistributions affect the
motion of (H) in space'only through their effect on the luni-golar torques.
Fedorov [1958] made an exfensive analysis of these disturbances, His calcula-
tion showed that the luni-solar torques as computed for a rigid and perfectly
elastic earth model differ only in the order of 107%, Within such an accuracy
level, therefore, the computation of the nutation of the angular momentum can
be based on a rigid earth model.

Here a rigid model with equal least and intermediary moment of inertia
is selected. Although the system (U) was used in Figure 2.1 for the purpose of
a more general representation, permitting a separation between the Ua-axis
and the axis of figure, the following derivation refers to the X)r-system, whose
third axis coincides with the axis of figure (F) and whose first axis is along the

node line as defined by the fixed ecliptic and the equator of figure. There should
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be no confusion about the various coordinate systems used here. The (X)r or
(U)r-systems are especially useful for dynamical purposes since the tensor of
inertia is diagonal.in this system. (U)r and (U} are related via eguation (2,1-16).
A further simplification is achieved by assuming the same magnitude for the
least and intermediary moment of inertia, i.e., A; = A;. In such a case the
selection of the first axis in (U) is arbifrary.

The coordinate system (X)r does not take part in the daily rotation of the
earth, Iis orientation in space changes only due to precession and nutation,
which is being expressed by the small rotational velocity @ ', The components of

& 'ontheaxes of (X)r areobtained by substituting =0 and =0 in equations (2. 2~1):

w1’ = - .eF
Wy = - Pesind; (2.2-3)
w3’ = Pr cos B

These velocities can be substituted in Euler's dynamic equations (2. 1-3).
The angular momentum is

o, = Ay Wy i=1, 2

Ha As(w:s’ +@) = AzWs

(2. 2-4)

The velocities w, in these equations are due to the motion of the frame (X)r with
respect to (X)e, and Ws is the velocity component of the earth rotation about the
third axis with respect to the same system. Equations (2.2-4) are valid at any
instant. Since the moments of inertia about all the axes perpendicular to the
axis of symmetlry are the same for the model to be considered here,. the moments
of inertia As; do not change with time even though they are not referred to an axis
attached to the body. .

Euler's dynamic equations (2.1-3) in the X)r system are

Aay + Wz Ag (W3 + qb) - W3AIWs = Laxp
Mg - 0 As@s+ @) - WIA WY = Igx, (2.2-5)
As@a+ @) +WiA Wa - WIA W7 = Tox,
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These equations are rigorous. Their solution, in combination with (2.2-3)
would yield the nutation of the axis of figure. No attempt is made fo solve this
system of equations, rather the motions are investigated which result if
certain simplifications are introduced, such as neglecting the product of small

quantities « . and their derivatives. The first two equations of (2.2-5) then

give Tax
ws = s
2 As
(2.2-6)
-
* T Az

The third component Igx, is identical to zero because of symmetiry relative to

the equator (compare Section 2. 2, 3), Therefore, the thirdequationin (2. 2-5) gives

Asp = 0
which has the solution

qb = constant

é is the mean velocity of the earth rotation, Previously we denoted this mean

velocity by & so that we have the identity in notation
¢ =Q @.2-7)

Using equations (2,2-3) and (2.2-7), we obiain from (2.2-6) the well-known

Poisson equations of motion

. Taxg
P sin @ -
As €l (2.2-89)
. Loax,
o = Lo

These equations are of fundamental importance for describing the orientation
of the earth. Indeed, the Poisson equations are the virtually rigorous equations

for the nutation of the angular momentum axis (H). To show this, consider the

coordinate system (X)x in which the third axis coincides with (H) and the first
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axig is along the node line of the fixed eliptic and the plane orthogonal to (H).

Introduce the Euler angles $» and 6y in order to relate the two systems by
N >
®)e = Ra(-¥u) Ra(Bn) Km (2.2-9)
The cc;mpon;ants of H in the X)e system are

-sindu sin B4
Hy = Azf cos Pu sin B4

cos Oy

e
where | H[ = A2 ). Equation {(2.1-1) can now be solved directly for the motion of

the angular momentum axis in space. The first two equations are
d . i By =
E%(“ASQ sm?bnsm M) = leE
d .
s (Asfd cosyw sinby) = Iox,

Iax and Izx  are toxrgue components in the ecliptic system (X)e. The two

equations above are solved for the rates of the Euler angles,

ég = (Lax, COS bu - Tax, sinl,bH)/(Aa £ cosBy)
. (2.2-10)
Yy = (~leEcoslI)H - Lng sinl,bu)/(Aa £ sin8x)
The torgue in the X)r system is related to the torque in X)¢ according to
(2.2-9) as
-3 =
Lxy = Ri(-84)Rs@n) Lx_ (2.2-11)

The difference in E"H and EXF is negligible for all practical purposes because the
systems X)r and (X)u are closely aligned. In anticipation of later discussions on
the free and forced motions, it is noted that in the present context, only the
effect due to the difference in forced position enters. With this approximation

and knowing that Lax, = 0, equation (2.2-11) gives

Lax, = Tax coshn + LngSin?,bH

Lay, . (-Lax sindu + Lzx, cosPu)/cosOx

18



Solving these equations for L, X and Ty £ and subst{tuting them in equafions
(2.2-10) results in the Poisson equations (2. 2-8).

The most thofough solution of Pois'son's equations can be found in
[Woolard, 1952]. He made use of a second-order force function for the gravita-
tional attraction. The positions of the moon and the sun were taken from the
respective theories of Brown and Newcomb. Woolard's form of the Poisson
equation is his equation (30). The verification of identity between his form and
equations (2.2-10) can be made almost by inspection. T;) be more explicit, take
the right-hand side of Woolard's equation (4) which gives the torgue components

in the (U)r ~system as follows:

. - . a"‘"
L 56
‘ d
Ta = - Ra(p) -a%/sine
L LB- Ur L 0 ,

where TJ is his force function. The third torque component is again zero

because of symmetry.

The torque components in the X)r system are

In
-9
LXF = Ra (—(P) )
La Ur
or
[ ~
2%
Y
- 3T
Lx, = -‘é"g" / sin8
i 0 1.~

Substituting the equation above in (2.2-8) gives exactly Woolard's form of the
Poisson equations,
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Historically, the Poisson equations have played an important role in
deriving a nutation set. The presently adopted set of nutations is that of the
angular momentum axis (H) based on Poisson's solution [AENA Supplement,
1961, p. 441. Officially-the adopted set is termed the "nutation of the rotation
axis' based on a rigid earth model. Buf as will be demonstrated in great detail
in later sections of this study, the separation between the angular momentum
axis (H) and the rotation axis (I) based on a rigid earth model is smaller than
0''0002, which is the accuracy with which the adopted set of nutations are given.
The fact that the angular momentum axis (Poisson solution) is a good approxima—
tion to the rotation axis can readily be understood by considering equation (2.1-19).
This relationship was first pointed out by Oppolzer {1882]. In fact, in earlier
times one dealt only with Poisson's equation when computing the nutation and,
therefore, one was not able to discover the nearly diurnal polar motion terms
of the instantaneous rotation axis (I}. It was Oppolzer [1882] who pointed out
the importance of the small terms which wereneglected whenderivingthe Poisson
equations from the dynamical equations (2.2-5). He included these small terms
in his calculation and demonstrated that the rotation axis and the angular momen-
tum must have a diurnal periodic body-fixed motion. The expressions which
describe these periodic motions in a body-fixed frame are since called the
"Oppolzer terms" {Woolard, 1952, p. 1591, The corresponding expressions
which have to be added to the nutations of the Poisson solution in order to arrive
at the nutations of the axis of figure (¥) or axis of rotation (I) are unfortunately
called "diurnal nutations, ' although they do not have any diurnzl period whatso-
ever [Woolard, 1952, p. 132]. In Section 2.3 a detailed representation is given

for all phenomena mentioned above.

2.2.3 Development of External Torques

The gravitational potential of the earth at a distant point D (rp, ®o, Ao)
of unit mass is [Heiskanen and Movritz, 1968]:
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Vv =

ZZ ( ) [Jnm an (QD’ D) + Kun Snm (éDs AD)] (2.2"12)

The symbols have the following meanings:
@, Ap latitude, longitude of the distant body in the axis of figure
system (U)r ~

Tp geocentric distance ot the distant body
a mean earth radius

G constant of gravitation

M mass of the earth

Jomn, Kon potential coefficients

The functions R and S are

an (@Ds A D)
Sae (o, Ao)

Pua (cos @) cos m Ap

Pun{cos Pp) sin m A,

k)

where Pun are associated Legendre functions.
Since the origin ot the coordinate system (U)r is at the center of mass of
the earth, the first-order potential coefficients are zero:

me;: Jan = EKw = 0

Using this condition one can rewrite equation (2.2-12) as follows:

v = SM ;1 —Z(—f’;)n Ju Pa (sin @p)

To =2
Z E(f;) Pun (Sinqlo) [Jon Rae + Kan Spn]
=0 n=1

The coefficient Jp is approximately 16° times larger than any of the other coeffi-

cients. The second-order approximation of the potfential is

21



2
V == -G—-M" ;1—(’3{;’) Jng(Sin¢D)‘

Tp

This equation.can be modified by using the-well=known relations

Ay + A
As _.._}_2_2_
Jz = M a®
and
1 U. 1
. @ = = SFD o=
Pz(S]Il o) 2(3 TS 2)
as
v = f _ 3GM aJ U 2
(rp) Eﬁ"a 2 Uar,
or

3
V = f (o) —-51% (As - A1) Usre

(2.2-13)

(2.2-14)

(2.2-15)

It ig assumed, as usual, that the least and intermediary moments of inertia are

equal, i.e., Ay = As, Us I8 the third coordinate of the distant body in the (U)r-

system, The potential field f(xp) is a central field; it has no effect on the torques.

The expression of the potential (2., 2-15) is identical to the one used by Woolard.

The general expression for the torques is now readily obtainable. The

gravitational force between the element dM and the mass of the disturbing body

Mp, taken as a point mass, according to Figure 2.2, is
ﬁ

- )
dF = GMp; dM -;zg = - Mpgrad (dV)
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Figure 2.2 TLuni-Solar Torgue

This differential force causes a forque about the center O

ar 3 x 4dF

With

2 = ?D—Z)

-2 - -> -2
the differential torque is dL =rp, XdF - £ XdF. The last term in the equa-

tion above is zero. The total torque is after integration

> =

- - > - -
Ly~ 1o X dF = vo X [ dF =1y XF
i M

or

- >
Ly=-Mor, X gradV (2.2-18)

The gradient of V is according to equation (2.2-14)

0
srad V = - 3G5M a®*Jd, | O
Tp
Usp

Substitu%ing this expression in (2.2-16) one obtains the torque components
along the axes of (U)f as

L 3MpGMa®J. T .
LUF = I‘Ds (YDZD » "XDZD L] O) (2.2"“17)
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The third torque component is zero. The total torque is orthogonal to the
earth-moon line, and zero when the moon crosses the equator. Evaluating
the torques requires knowledge of the time~dependent positions of the disturb-
ing body 11 the systend (U)r . Such positions are iﬁlplicit in Doodson' s [iQél] -
tidal development. Doodson's development is used here not only because it
gives the positions of the disturbing body in the system (U)s , but mainly
because it 1s anticipated to express the torques, and thus the nutations, in
terms of harmonic series containing the tidal frequencies. This procedure
will make if possible to study the relations between nutation and tidal theory.

In order to make the comparison in the subsequent development

easier the Cartesian coordinates in (2.2-17) are replaced by spherical

coordinates. Usmg the well-known relation
Pz, (sin®p) = 3singp cos o

the forque in the (U)f system is

i T
Ly, = % MMpa®>Jz [sinAy Po) (singsp), ~ cospy Pay (sin@s), O]
r§ (2.2-18)

Doodson's [1921] expansion of the tide generating potential is now

given in the notation of McClure [1973]:

n

- 1
u= 8% > (f‘-) R (S0 Anstp €OS [Cugp + MA+ (1-m) T
D =2 m= D
b J (2.2-19)

The tesseral coefficients Ap) o are related to Doodson's original coefficients

by -
Azipp = -FAzip (2.2-20)

The index j denotes individual tabular entries. The other symbols in

(2.2-19) have the following meaning:
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D..- -  Jdisturbing.body (sun,.moon)

Mp -+ -»mass of disturbing body

¢ . - -mean distance.of disturbing body from.geocenter
G - .constant of gravitation.

a mean earth radius

®ynip tidal argument of body D

©, A latitude and longitude of a station in the axis of *
" Higure system (D)

T ~ constant 3,14.° ,

The tidal argument c%m be computed‘ﬂ'om the relation [McClure, 1973]
¢ Upgy + mA=d; T+ (de-5) s + (dz - B)h .
+ (da-5)p+ (ds-5)N + (ds-5)p, ' (2.2-21)

where all di's are integers. For diurnal tide components d, is equal to one.
The other symbols on the right hand side of (2.2-21) are Doodson's
standard variables, which are sometimes referred to as the mean longitudes.

They are related to Brown's fundamental arguments (1, 1/, F,D, Q)as

mean longitude of the moon ~— 8 = F+

mean 1ongi_tude of the‘sun h =F-D+§

longitude (:;f lunar pe-r‘i‘gee p =-1+F+8

Iongituée of ascending , - (2.2-22)
node of the moon(ﬂ)_. N'=_ -0

longitude of the I;ei'ihelion P, =~ '+ F-D+ 0O

The mean longitudes are measured from the mean vernal equinox, Expres-
sions for Brown's fundamental arguments are given in AENA Supplement
[1961, p. 44] in terms of polynomials of time. T is the local mean lunar
time; it is reckoned from the lower transit of the moon, Finally, the Green-

wich mean sidereal time is [Doodson, 1921]
GMST = T + 8§ - @ - A ' (2.2-23)
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This relation assumes that the zero longitude is at Greenwich. Such an identi-
fication is possible because the least and intermediary moments of inertia
are equal in our basic-dynamical model. For reasons of abbreviation the

tidal argument (2.2-21) is sometimes given in the code form
dr dz ds. da ds ds.

Ascan be verified with the help of equations (2.2-21}) and (2.2-23), the code
form, e.g., 165.555, denotes the tidal argument with sidereal frequency,
which sometimes is also symbolized by K. or "Ki depending whether it
results from solar or lunar attraction. The positions of the disturbing body
in (U)s are obtained by comparing a formal spherical harmonic expansion

of the tide generating potential with equation (2.2-19). Such a formal expan-
sion is [Melchior, 1966, p. 15},

U=y =23 2 p (cos y) (2. 2-24)

The angle ¥ is the spherical distance between the station vector and the

vector to the digturbing body, so that
cos V= sin ¥ sin @o + cos ¥ cosPo cos (AA,)

Using the decomposition formula (Heiskanen and Moritz, 1966, p. 33) the tide

generating potential (2.2-24) is written in the general form

nn
G
U Z MDX;E (ra:,) W, B, (sin¢) Pw (singv)cos mA-A,), (2.2-25)

Co p=
4 L 2 n-m !
her
where W (nrm) !
s',nd Wo}, = 1
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Substituting

cos m(A-Ap)= cos mA cos m Ay+ sin m A sin mA,
) into equatiogh(z‘: 2—.‘?:5) a;?d rep@acing the tidal argument in equation (2.2-19) by
. Co8 (Upy 4p +..I;.1A+ {n-m) g) = ‘

= cos(md) cos [a,,mjb + (n~m) g]—sin(mA)sinExnm + (n~m) g:]

a comparison can be made of the coefficients of sinm Aand cosm A in the
equations (2.2-25) and {2.2-1%). The following relations are found:
) n+l

(_1) “gxm E!ﬂ (Sin(PD)

Ty

cos m A,
sinm A,

(2.2~26)
n+1

= (;Dl) EA na3p

cos [anmjb * (n—m)g

. - T
~sin [agnm + (n-m) é_

Only the terms with'n =2 and m = 1 enter into the torque equations
(2.2-18). Combining equations (2.2-18) and (2.2-26) finaliy gives

axpressions for the torques

a® i
J

2
a_
3
D

Loy, = GMM, 2

.3Jaz Agiyp sin (a2 190) (2.2-27)
j

LaUF = O

If Jz is replaced by (2.2-13) and the equation (2.2-20) is used then the
'equatorial components of the torque in the (U); -system are in complex

form;:

Ly, = Z: Ajpe “He) (2.2-28)
j
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where

o

M

Ap = 'E;é"o‘ (As-Ay) Azyp (2.2-29)
4]

LR L

The subscripts 2 and 1 are omitted in the exponent of (2.2-28). As an
intermediary result it is seen that the torques and thus the nutations
depend only on the tesseral harmonic coefficients Kgl . The torque com-
ponents in the system (X)p are

ip

Ly = ILye

.-.i(a —
_ Z Ape P
)

(2.2-30)

¢ is the Euler angle which measures the earth rotation.

The expressions (2.2~30) can be modified fo express the torque in
terms of freguencies which are symmetric with respect fo the earth rota-
tion (sidereal frequency). Combining equations (2.2-21) and (2.2-23) and
taking only the second order tesseral, i.e., n =2 and m=4d, =1, gives

the tidal argument

05 = GMST + 7 + (de—-6)s + (da-5)h + {(da-5)p

2.2-
+ ([@-B)N' + (de-5)pg @.2-31)

Combining the latter terms this tidal argument can be rewritten as
o = GMST + 7 + Ay (2.2-32)

where Agy is called the nutation argument. The mean sidereal frequen-
cy is
Q= (GMST) © (2.2-33)
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Two frequencies are symmetrie to £ 1if

a.‘!_g_ = 0 + AOEJ—]—

a;- = Q + Aa. (2.2~34)
and

Ao.t - = "‘ACMJ-{-

hold.  The positive sign in A, denotes that & > . In terms of the

tidal arguments the symmetry is expressed as

)

GMST + T + AG@-{-
GMST + T + Ag-

o+ (2. 2-35)

Q-

Such a splitting up of tidal frequencies is implicit in Doodson's develop-
ment. The respective symmetric frequencies in the expression (2.2-30)

can now be combined with the help of equations (2.2-35) as follows:

. —1(¢¢; +-¢p) + Ae ity -~}

Agr
= Ajr e "'l(GMST"‘QO'i'mA O14) + A,‘i e -i(GMST-@r7-A 0€3+)

(2. 2-36)
— o UCMST-g) [~ (A4 A;_Jeos Layy + i{A,+ -~A;) sin Ag,+]

The small difference beiween the Greenwich mean sidereal time, GMST,
and the Euler angle ¢ is due to luni-solar nutation and planetary preces-
sion. It causes the coefficients in the expansion of the torque to have a
minor time dependent variation. The most important of these is due to
planetary precession because it is secular. ¥ is responsible for small
secular terms which can be found in the nutation tfables [Woolard, 1952, p.
153]. For the purpose of discussions in this study, the approximation

GMST = ¢ (2.2-37)

is made whenever forques are computed. It may be emphasized that the addi-
tional differencebetween GMST and¢ whichis dueto the free motion is not
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important in calculating the torques. In fact, all our derivations, so far
as they are dealing with the forced motion, correctly assume that polar

motion is zero., Polar motion, a result of the homogeneous solution, is
independent of the forced solution.

From equations (2.2-30) and (2.2-36) the expression for the forque

becomes
Ly, =y [ (Ae T A) cos Aage+ i(Ap - Ay sinaye]  (3,3-3)
j .

Thus, two tidal waves which are symmetric to the diurnal frequency form
only one constituent in the torque. It is understood that the summation

includes both the lunar and solar terms contained in Doodson's tidal

expansion.

2.2.4 TIntegration of Poisson's Equations

The solution of the Poisson equations gives the nutation of the
angular momentum axis (H). Denoting the derivatives in the Euler angles
by

By = By + iPy sin O (2.2-39)

then from the Poisson's equations (2.2-8) it follows
iL}‘F

£ As

= -
The homogeneous solution (force free, £= 0) is
My = €© (2.2-40)

where € 18 a complex constant. This expresses the simple fact that the
angular momentum vector forms an invariant direction in space if no external

forces act on the body.
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-)
A particular solution (forced motion, L5 0) is given by
t

g = A:Q f L (T) dr

(2.2-41)

= i-bfz [-(Ay +Ay _Ycos A gy, +i{Ay+-Ay)sind o, ,] dr
]

where the luni-solar torque of equation (2.2-38) is substituted. Ag; is“a
polynomial in time. Before integrating, sidereal terms with ..y = 0 are
separated. The sidereal terms have per equation (2.2-31) the argument
number 165.555. They cause the secular terms in the expressions of the
Fuler angles and constitute theluni-solar precession. There are two
waves with sidereal frequency called "K; , and °K, , which are due to
lIunar and solar attraction, respectively. Thus, e.g. (2.2-41) gives for

precession and nutation

Mue = Hup + Hpn
i
= + A t 2.2-42
(~(Ay+-Ay-) Ayt Ay)
p— : cos Aqy, + I———— sin 4@y
Aa (2 - 1 Aa5+ + AOL.;_;_ .l
3

Using the torque in the form (2.2-30) and substituting equations (2.2-31)

and (2.2-37) an equivalent expression for the nutations can be found
" =__1_.E_A.1._ o ~1A0; (@.2-43)
uA AsQ LAy '
J

The summation goes over all j, excluding those for which Agy = 0 .
The luni-solar precession #,, of the angular momentum axis (H) is
according to equations (2.2-39) and (2.2-42)

1

Yae = 1.0 s 6
BHP = eo

(Ang + As )
* (2.2-44)
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The two tidal amplitudes of equation (2.2-44) are related fo the actual
values given in Doodson's table by equation (2. 2-29). Doodson's
coefficients are negative so that one obtains a circular westward motion
of the angular- momentum axXis die to precession. The subscript' HP
indicates that the elements of precession refer to the angular momentum
(H). This is especially important for the obliquity &, . I will be
demonstrated laterthat the obliquity of the celestial equator (Section 2.3.4) has
a slightly different value. Since 8 4, is a constant it appears as if there
is no luni-solar precession in obliquity, i.e., the fixed ecliptic and the
mean equator always subfend the same angle. But this is only true
because the planetaryprecession was neglected when computing the torques,
as is implied by the approximation (2.2-37). The inclusion of the planetary
precession results in small non~linear precessional terms in both longi-
tude and obliquity. A more complete expression for luni-solar preces-
gion is

bup, = Ht + fot® + e

Oup = B¢+ B 5t° + -

(2. 2-45)

iy is called the constant of luni-solar precession and can be identified

with the corresponding factor in equation (2.2-44). The coefficients £z and
8. are computable from theory. The Tespective expressions are given in
[Woolard and Clemence, 1966, p.242]. Note that there is no linear term in ob~
liquity. For the sake of completeness it is mentioned that the use of 8y instead
of 9 in the first equations of (2. 2-44) and (2.2-45) implies that the nutations Ay
should be amended by very small periodic terms whose arguments are those of
the nutations but whose coefficients change linearly with time. Regarding the

nutation, the following observations are made from (2.2-42) and (2.2-43):

1. EFEach mutation eonstituent is in general an elliptic motion.
It can be separated into two circular motions which have

opposite angular velocities, If Aj~ = A;., the mutation is
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circular. There will Be no term in the obliquit'y. An
example of such a motion is the annual nutation term

due to the solar tides.

Because of the presence of Aq; in the denominator the
contribution of a particular tidal wave to the nutation
depénds not only on the magnitude of the tidal wave but
also on the location of its frequency relative to the gidereal
frequency. Thode waves which are close to the sidereal
frequency 165.555 have an amplified effect on the nuta-
tions. ) -

The nutations are officially tabulated in the form

P =Z (as cos Aoyy + iby sin Agyy) (2.2~-46)
i .
' 1 Ajg __Ad-
M T A0 Aayy
with
Ty At Al

It is customary in astronomy to count the Euler angles
¥ positive westward., This is contrary to the convention

adopted here.

The metpod chosen here for deriving the nutation, i.e.,
us‘.ing the precise numerical e}‘:pressions from Doodson's
dex}élopment, colncedes an important relationship between
the constant of nufation N and the luni-s‘folar precession
Yup. N is the nutation coefficient i;l obliquity associated
with g lﬁ.é year period. U:..sing_a series expansion for

ALY X

‘the ecéentricity and inclination when computing the
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lunar and solar coordinates the following literal expres-

sions can be shown o hold [Kulikov, 1956]:

Az-A;
boe =~ 008 B (K 3o+ K)
Aa-Ay

M
1" n . =
Ao (4871 140 + 86619510 -7

H Az -A, (2.2-47)
N = H cos 8y oy . .

Az-A,
. E
Ao 231 981.8 T

& is the mass of the moon in units of the earth mass and
the coefficients K, K', and H' are functions of the orbit
elements of the moon and the sun. The latter can be com-
puted from theory with sufficient accuracy. The numer-
ical values which are given here refer to the standard

epoch 1900.0, Combining equations (2.2-47) gives

!

H
1. K -1
N=—"" {4 (T+77+ 1)
Kf g K
(2.2-48)

_ 47.8237 f,
-1

=+ 178822

H

The importance of these formulas is that given the observa-
tions for ¥, p' and N one can compute the dynamical flatten-
ing and the mass ratio p. Howfever, the mass ratio obtain-
ed in this manner is not consistent with the values based

on recent data from lupar and planetary space craft. This
discrepancy is one of the outstanding problems in the sys-
tem of astronomical constants. I indicates that the under-
lying éimple nutation theory is not adequate. A partial answer
is given when considering earth models with liquid core

(See Section 3).
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2.3 Relative Motions

2.8.1 The Complete Excitation Function

In order to proceed with the solution of equation (2.1-9) for the
motion of the rotation axis (I) the disturbances ¢ in the inertia tensor
and the relative angular momentum h, which are to be used in the excita-
tion function (¥)need to be computed. For a completely elastic body
(Hooke body) the derivations can be found in the standard literature. The
following expressions for the disturbances of the inertia tensor are taken
from McClure (1973).

The perturbationsdue to rotational deformation are

k
" Cizpp ~ & (As - A;) uy
E:

. k
Cazrp = {Az ~ Ay) uar
8

In complex notation the perturbation is writien as
.k
Cro = 3 Az — A;) ur (2.3-1)
a8

The secular Love number k. is

3G(As - A,)

5
a> Q=

K, = (2.3-2)

and Kk is the tidal effective Love number. The perturbations due to tidal

gieformation are

kM,
5 .
Ciap = a g A, sina,
@
° i
kMD
=
Caamp = a EAQH coS O
Cp s

or



kM . -ie
ep = T a > lAmye (2.3-3)
03 .
o i
The misa:li'gnment of the third axis of (U) with the maximum moment of

inertia axis (F) is expressed by the constant corrections

Co = Cizp T icCzmp (2.3-4)

Only those perturbations are given above which directly effect the
equations of motions (2.1~9)., These perturbations result from the second
degree tesseral harmonic coefficients of the expansion of the earth's
gravitational and tidal potential. The zonal coefficients effect only the
diagonal terms of the inertia tensor, and accordihg to equation (2.1-10),
the velocity of rotation of the earth. The sectorial coefficients contri-
bute only ¢, , cg, and c,,. The excitation due to the relative angular

momentum h in ¥ is according to eguation (2.1-9)

O o= h - ih
A, - AN (As-AQ 2

An estimation of ‘l‘h m the case of an elastic body is given in [Heitz,

1976, Appendix 3] . He found that \I’h is negligibly small,

2.3.2 Body-Fixed Motion

The complete solution for the body-~fixed motion of the instantane-
ous rotation axis is the sum of the homogeneous solution (force free,
V= 0) and a particular solution (forced solution, ¥ 750) of the differen-

tial equation (2.1-9)

The complete solution ig

£
io.t io -ic,T
W = we UTt L O icrf\IJ rye 9T gr (2. 3-5)
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u, 18 a complex constant of the homogeneous solution. The excitation
function ¥ in (2.1-9) is given by equations (2. 2-20), (2.2-28), (2.2-29), and
(2.3-1) to (2.3-4). The solution for u, after integrating (2.3-5) and
some lengthy algebraic rearrangement is

(44

-1
- _1 A :
ur = uselci’t* Tp + 1 Z S ° , (2.3-6)
] AP
where
(- 5)
Co = s
1:+9 K
f ks
Co
W, = A, - A, (2.3-7)
k
17
g‘:
s, _ Q° Or
L be k T 79
S VR

The motion of the angular momentum axis (H) in the system (U) 1s

according to equation (2.1-12)

A c ., h (2.3-8)
u, = Tur+ +

A3 AB A3 Q

The term due fo the relative angular momentum h can be neglected again,
Thus, substituting the expressions (2.3-6), (2.3-1), (2.3.3) and (2.3-4} m
(2.3-8) gives the body-fixed motion of (H)

A, A, - AN. k igat . st A s
uy =-it (7B Y Juge O ﬂ'é"‘lZSJSJ : elaj
A, .

2

. k 4
Ay s , ! s (2.3-9)
1 — —
S N -
where s, = 1+A10_!3 K (2.3-10)
Q k

[7:3
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The motion of the axis of figure is according to equation (2.1-16) and equa~-
tions (2.3-1) - (2.3-4) ",

T " L]

_ _1_{. iﬂ'ot - 1_15 S-jl S; ’ —LCE‘ e ms
U = ks Uy € + ¥ ] -5ks iz 0z (Aa_Al) Aje o {2.8-11)
where " a,
s = 85, - _
s s Py (2.3-12)

The basic equations (2.3-6), (2.3-9), and (2.3~11) for the respective
motions of the instanta_neous rotation axis (I) , the angular momentum
vector (H), and the axis of figure (F) can be re-written in terms of the
nutation argument Aqy with the help of equation (2.2-32). The forced
components are
ug, = - Z s} A, o1 (GMST + Ay)
i A 0F

S-l

'
Uy, =-ijz _ﬁaié?Aje

-i(GMST + Aoy) (2.8-13)

k st g
Upe = iES 3 A
] 0% (Az-A1)

-i (GMST + Aay)

The homogeneous, or force-free, motions have a concepiual import-
ance in defining polar motion. They give the hypothetical positions of the
axes which would be occupied if there were no external forces acting on
the earth. These motions, already contained in the complete solutions,

are separately given by
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ifcot+T) +

Uty = Yo e To
Wn = Yo [ﬁal i (Aaé;Al) 'E"} g0t g,

‘ s (2.3-14)
e = Y i_ el(O'ot +1") + 0,

where the complex constant u, is written as
ir
Ug = %o &
I" denotes the phase angle for t = 0.
The direction cosines u are transformed to the local components,

defined by the direction of the local meridian and the direction orthogonal

to it, by

u = ue (2.3-15)

An equivalent procedure is to replace GMST by mean sidereal time MST
in equations (2.3-13). Then, the along-meridian component is Re(’) = u}
and the across-meridian component is Im (u’) =ug .

Figure 2,3 displays the body-fixed motions for the elastic model
as discussed so far. The figure represents a tangent plane on the unit
sphere, the point of tangency is the point where the third axis (Us) of
the coordinate system (U) passes through the sphere. Each of the

motions indicated is the equivalent of a mathematical expression

developed above. The following observations can be made:

a) The separation Us - ¥, , which is given by the second equation of
(2.3-T7), is a linear function of the constant component ¢y in the
inertia tensor. (¥,) is not identical with the axis of figure (F).
For the rigid (k= 0) model the axis of figure (¥) will be at T

at any time.
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b)

c)

The radius of the cirele with center at ¥, and which passes through
(S) is given by the first term of ufy in equation (2.3-14). Thus,

the position of (S} is given by_ ur, in (2.3-14). Similarly the

points (C') a:nd_ (Eo) are found by plotting u,y and uy., respectively.
E, has been termed in Woolard {1952, p. 160] the "Eulerian Pole
of Rotation™ . T corresponds to the hypothetical surface point which
the instantaneous rotation axis (I) would occupy if no external forces
were present. The prograde (in the sense of the earth rotation)
body-fixed motion of (E,} and (C) is sometimes called 'wobble".
The amplitude and phase cannot be predicted from theory. The
period is either the Chandler (elastic) or the Euler (rigid) peried,
as is well known.

The nearly diurnal motion of the axes (I) and (H) around (Ep) and (C)
are retrograde motions. They are a result of luni-solar attraction
as expressed by equations (2.3-13). In case of the elastic body even
the axis of figure (¥) has a non-zero diurnal motion uy,. The
motions m Figure 2.3 are approximated by the exact circular diurnal
constituent corresponding to the fide K, which causes the precession.
In actuality each tidal freguency has a corresponding diurnal motion
component. Numerical values for these motions are given in McClure
[1973] and Woolard [1952]. The equations (2.2-29) and (2.3-13) show
that these forced motions are proporticnal to the difference in the
principal moments of inertia.

The complete solution as well as the homogeneous and forced solu-

tion separately fulfill the relation (2.1-19)

A
Uy - up = "'_l(uI'uF)

Az
as can be verified from the respective equations. Thus, all three
axes are in a plane at all times.
The axes through the points (S), (C'), and (E,), which result from
the homogeneous solution, exhibit no periodie diurnal body-fixed

motions. 40
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Figure 2.3 Body-Fixed Motions for the Elastic Body
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e) The magnitudes of the various motions in Figure 2.3 are given in

Table 2, 1.
Table 2,1
Magnitudes in Polar Motion
Forced Motion
Model I-Eo I-H sS-~F
elastic < 62 cm s 2l cm = 60m
rigid = 6l cm 1.5 cm F=T
Free Motion
Model Radius Frequency ¢’ - Eo
. Az - Ay k
0‘ v —— — —
elastm' Yo o Yo e (1 ks)
- A
rigid Yo Or yo a1 e L

f) The separation Ey - C’' is due to the difference in the homogeneous

solutions of the rotation axis (I) and the angular momentum axis

(H).

Its magnitude

- ) -3

can only be indirectly obtained through the observed value of ¥e.

1.5 cm

In the next section this distance will be verified as the amplitude

of the free nutation.

As already mentioned the -motions of the rigid earth model are obtained by

putting k = 0. Equations (2.3-6), (2.3-9), and (2.3-11) are then
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_ _ itg.t +I) . Ay ~ie,
ur. = Yo ‘ “I”IZAlﬂ(dﬁcr)e
3
A, (ot + 1N Z A -1

= =1 . + ¥, - - 2.3-16

Uy ',voAse r =i AsQ(&J-LUr)e ( )
J
Co

= \I’t‘ =

w As - Ay

For a rigid model the axis of figure (F) is, of course, body-fixed. Figure 2.3
can easily be modified for the riéid body case. The separation between the
instantaneous rotation axis (I) and the angular momentum axis () is much
smaller than for the elastic body because the coefficient s} in u4; of equation

{2.3-13) 15 equal to 1. The following ratio holds:

u, , elastic _ _k
U Hye rigid kS

The "forced" terms of wuj; are usually called the Oppolzer terms. The

most important ones are for the rigid model [Woolard, 1952]:

0.0087 sin (GMST)
-0.0062 sin (GMST-2s)

Urrs =~

Uzry =

-0.0029
+0.0012

0.0087
-0.0062
-0.0029

sin (GMST-2h)
sin (GMSI-))

cos (GMST)
cos (GMST-2s)
cos (GMST-2h)

(2.3-17)

+0.0012 cos (GMST-$)

The arguments are explamed in (2.2-22).

2.3.3 Space-Fixed Motion

The spatial positions of the various axes are determined with respect
to the angular momentum axis (H) , whose position ( 84, ¥u) is known

from the solution of Poisson's equations. The direction cosines u,; which
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were derived in the pr_evious section are fransformed into changes of the
corresponding Euler angles. J

Consider the previously used coordinate system (X)y and (U). The
position of the first‘ syste;n relative to the system (X). is given by the

pair of Euler angles (8, , ¥, ) and the relation (2.2-9)
e = B ($n) R En) By

The body-fixed system (U) is related to the inertial system by
Re = R ($) B (6) B (@) ()

These two equations readily give the direction cosines of the axis (H) in
the (U) system. TFor small differences in the Euler angles the direction
cosines of the angular momentum vector (ﬁ) are to the first order of

small quantities

Uy 6 ¥ sin Bu
Uz h = Ra(®) -66 (2.3-18)
Usy 1
where
6 = ¥ - P
66 = 8- 64

The first two equations of (2.3-18) can be writien in complex notation as

follows:
. _ =i . .
Wy + iugy = e 6y sin 6, - 16 6) ,
which is rewritien as

§n = g+ 1igphsinbs, =1 eim(ulﬁ +iuy (2.3-19)
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Note that the correction is given in the. . sense of

&n = -
Ua Us xH

where the subscript Us is used to emphasize that ?f-US determines the
space-fixed position of the Us - axis relative to H.
The space-fixed position of the various axes can now be given.
Using (2.3-19) the instantaneous rotation axis (I) is obtained as follows:
Ny =%y + 0%,
=yt OUg, + S,
=ty + 68 + 1 5y sin gy

=n, t+ ie iqo(U_H - uy)
Substituting equations (2.3~6) and (2.3-9) the Euler angles become

_ fAs-A k i(gott ) A,-A, -i Ay
Ay —%H—l( 3A 1)(1 - I%)‘Yo e 0 EJ:_AI—- B,e

; (2.3-20)
where
B, (ﬁ)zs-} (Az-A, s)) By
A, AA, O°
The space-fixed motion of the axis of-figure (F) is with equations (2.3-9)
and (2.3-11)

KF ZXH + 67‘(1:

. Al k (g t+1 D) -iAa;
=R, + i1 - —lyye 0 + ). B.e (2.3-21)
4 As ( ks) ¢ 7 !
Fipally, the spatial motion of Us - axis is
=M% on
)tUa nt Us

= ie'®
=K, +ie’ uy

k

- = 7 s
= xﬁ+i[£*i +(§3;A_1.) li_]yoel(cot*‘f‘”phrzsiss Ae ida, 3.3-22)
As Az s - Aa(?e

. i©
+id, e
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Note that during the derivation of these equations we have used the

approximation (2.2-37), i.e., the Euler angle ¢ has.been equated to

Greenwich sidereal time.

The following observations can be made regarding the space-fixed

motions:

a)

b)

The homogeneous term

o = afl A E) ptentE
Ay k,

of equation (2.3-20) is called free nutation. It gives the hypo-
thetical path of the instantaneous rotation axis (I) in space which
would occur if no external forces were present. Its frequency

1s pearly diurnal. The amplitude, based on the observed values of
Yo: 1S approximately 1.5 c¢m. The free nutation is not included

in the officiaily adopted set of nutations of the rotation axis.

Special considerations will be given in Section 2.4,2 asto the
obgervational significance of the free nutation. In any case, a frame
connected fo the instantaneous rotation axis (I) will perform a nearly

diurnal "rocking™ in ineriial space.

The forced periodic terms in equation (2.3-20} which are fo be added
to those of equation (2.2-43) of the angular momentum axis (H) in
order to obtain the forced motion of the instantaneous axis ofrotfation
(I), are of significantly large magnitude for the elastic model. They
account for the 21 cm separation between (I) and (H) already indicated

in Figure 2.3. The ratio with respect to the motion of the angular

momentum axis :' K K
‘! -
9% 15 = [As (”Tz')ﬂs 'Al(l - Ej’*aa

% . by, k
EM Al[a5+0'r(1+ﬁ.iﬂ.s.):]

demonstrates the dependencies on the elastic properties.
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¢} The axis of figure (F) has, of course, a diurnal nutation component
too, which results from the homogeneous solution. The forced
motion is very large;.it describes the 60 m motion indicated in
Figure 2.3. The axis of figure is the most sensitive axis with
respect to mass redistribution among all the axes considered so
far. It is, therefore, unlikely to be chosen as a defining direction

for a reference frame,

d) The equations give immediately the ratios:

R 0%, A, - A
O ey o Kl

F?

The motions for a rigid model are obtained by puiting k = 0. They are:

Ky = Uy + OHen + O gy
- i t+T+ - = -ido \
= Ay- - i(A——"aASAl) Yo el( t+ I+ _ZA——-—--"SAlAl By e 1A%
3
where
- A
B, = 1 3

Ag Q (0-[3 + 0'1-) (2 23)
o

He = Ky + O%pn + ONpp

Hu * ii—; Yo & Ot I +0) + 3 B; o 1A
: 3

Ay + +
Us . 6 xUsh 6 an T

=
n

e + i=— Y

i +T+ i _ Ao
il RICEAE S I i% e + Y Bye 1A,
3 3

In this case the ratio

e _ As-Ay Ao
Ry Aa O'lj + Ur

is extremely small, The largest periodic term in 6%y has a coefficient

of 0!'00002 .[Woolard, 1952, p, 133]. The terms are, consequently, not

47



included in the officially adopted set of nutations for the instantaneous
rotation axis (I) since terms smaller than 0% 0002 are omitted [AENA
Supplément, 1961, p. 44]. The coefficients ﬁj for the rigid model are
given in Woolard [1952, p. 132]. The largest terms are

8der = 0.01615 sin(2s)
+0.00753 sin(2h)
+0.00338 sin ()
+ e
' (2.3-24)
58, =. -0.00868

+0.00590 cos (2s)
+0.00275 cos{(2h)
-0.00100 cos (£2)

The arguments are explained in equations (2.2-22). The constant term in
8 6., is caused by the sidereal term in 6%, . I is actually a combina-
tion of two sidereal terms, one resulting from the moon,the other from
the sun. The motions 6%, and 8%, are referred to as "luni-solar
diurnal nutations' in the astronomical literature [Woolard, 1952]. This
terminology seems an unfortunate choice since these motions have no

diurnal period whatsoever.
2.3.4 The Celestial Pole (C')

The pole to which the mutations refer is denoted by (C). This
pole fulfills the following criteria:

1) The pole (C') should exhibit no nearly diurnal periodic body-fixed
motions . '
2}y The position of the (C') in space should be computable af any time

from the motion theory of the underlying models, i.e., no free

solution component is permissible,

“fror ideal bodies, such as the rigid or perfectly elastic earth
model, both criteria are easy to fulfill. Considering Figure 2.3, there
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appear to be several choices for selecting the (q') . All points along
the line \.T.fonEq in Figure 2.3 satisfy criterion 1, e.g. equations (2.3-14)

give Ug = Uy = \:A_l + (Aa"AJ.) E]Vo Lo TH0) NI

AB Aa ks

and

g~ Ury © Q

Q

The spatial motions of the axes passing through these points are

Kot = Ny ke Uy - W) = %y +ie (Ua) (2. 3-25)
= wy +0x U2
and i i
e, = %y tie (U - Ugy) =y tie (@, * uyp - )

= Aer F Ongn
The expressions are arrived at by identifying the body-fixed components
in Figure 2.3 and using their itransformed values in terms of corrections
to the Euler angles.

Only the celestial pole (C’) qualifies under criterion 2. Its position
in space can be computed from equation (2.2-43) for %, and from equa-
tion (2.3-22) for 53L'U3f.‘ The north celestial pole thus defined has no
periodic diurnal body-fixed motion due to external forces. Its body-fixed
motion results solely from force-free motions. Ifs space-fixed motion
is entirely due to external forces; it has no space-fixed motion resuliing
from a homogeneous solution component. The point, Ep , which is called
by Woolard the Eulerian pole of rotation, exhibits a diurnal motion in
space which is exactly equal to the free nutation given in equation
(2.3-20), The amplitude and phase of §ny, cannot be determined from
theory. i

The term & ,,, is the transformation of us, in equation (2.3~i3).
As equations (2.2-29) and (2.3-22) show, the amplitude of by g is pro-
portional to the mass of the disturbing bt;dy Mp, and the form factor
(As-A,)/As. ‘ Another in‘;eresting feature of the pole (C’) is seen if we,
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for reasons of simplicity, assume a zero iree motion. This is the case
of the steady state motion. The; pole (C') has no body-fixed moi:ion in
this case. But, the angular momentum axis (H) and the instantaneous
rotation axis (I) still have the n‘early diurnal motions w,: and U,
whose magnitude is proportional fo Mp and (As-A;)/As. I one constructs
various models with different‘ form factors, i.e., a;iding mass pm:nts
symmétrically around the equator; the pole (C') will remain at the same
body-fixed position whereas (H) and (I) change the radius of their circular
motions. K is thus clear that the celestial pole (C') and the instantaneous
rotation axis () do have different properties and should conceptually always
be separated. However, from a merely descriptive point of view, the
pole (C') may be considered as a "rotation axis" as well.

It is worth noting that in the case of the rigid earth model the

spatial motion of the north celestial pole is

=%, + O

S_— (2. 3-26)

Hor ..
rigid

since according to equations (2.3-23) the equality

Pugs rigid = 0% rigid

holde for the rigid body. The spatial separation between the pole (C')
of the elastic and the rigid model is
Al = o

— H ..
v, felagtic 0 Yt rigid

The maximum separation is 21 cm (see Figure 2.3).

& is probably because of equation (2.3-26) that in the literature one
finds frequently the statement that the nutation should be computed for
the axis of figure [Atkinson, 1973, 1975, 1976].

There is no doubt that in all "ease's the axis as expressed in equa-~

tion (2.3-26) was intended. But, once again, for clarity's sake, one
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ought to distinguish between the axis of figure (¥), which is defined as
the direction of the maximum moment of inertia at any epoch, and the
north celestial pole (C') as has been defined above. Even for the rigid
earth model the axis (C') generally does not coincide with the axis of

figure (F). Only when the homogeneous solution is zero the identity

H = M.

F c

holds. In case of rigid motion the intermediary role of the insiantaneous
axis of rotation becomes quite obvious. ‘When setting up the Euler dynamic
equations (2,1-3) or (2. 2-5)the concept of instantaneous rotation axis is

needed since ¢y are the velocity components of the instanfaneous rotation
axis (I) in the frame (U)r. Symbolically Euler's dynamical equations can

be written as
EDEq= fi(w; &) = Ly

Euler's geometric equations relate the velocity componets w, to the
derivatives of the Euler angles 8. , 4 , «. The Euler angles relate
the frame (U)r 1o the inertial system. Substituting

Wy = gi( Gp,z{)F,_tD?)
in the dynamical equations gives
EDEQd = f1(g (Ar» drs ¢¢)s L) = Ly (2.3-27)

These equations can be solved for the Euler angles. The angles 8¢ and
Yr give the "orced position" of the axis of figure in space. For a rigid
body the axis of figure (¥) has no body-fixed motion, hence

e frigid =0

5

The space-fixed motion is strictly computable from equation (2.3-27).
Therefore, the so-defined axis fulfills both requirements for the pole (o))

which were set up above. In fact, the solution of equation (2.3-27) is

51



identical to equation (2.3-26). One can now add the homogeneous solution,
which results in the deviation of the (C’) from ‘the axis of figure, but this
aspect is not of concern here. Rather, it is noted tI{at fzfter subs_timting
Euler's kinematic equatioil into "eqﬁé,tic;n (2.3-27) one does not have to
worry about the instantaneous rotation axis (I) anymore. The instantaneous
rotation axis (I) is conceptually needed only at the initial stage when
formulating the dynamical equations.

At present the rotation axis (I) is adopted as the reference pole
instead of (C'). The practical complications arising from that convention
are dealt with in Section 2.4.4 Tn Section 2.4.% the observational signifi-
cance of the homogeneous component which separates (C) and (Bo) in
Figure 2.3 is discussed. The additional complications arising from the

liguid core are the subject of Section 3.

2.3.5 Poinsot's Kinematical Representation

Poinsot showed in 1857 that a continuous rotational motion of a
rigid body about a fixed point is always geomeirically equivalent fo the
rolling without slippage of a body cone (polhode cone) on a space-fixed
cone (herpolhode cone). The line of contact between these two cones is
the instantaneous rotation axis (I) of the body. Mathematically, Poinsot's
representation is related to the motion of the inertia ellipsoid. An
extensive treatment on this subject is given in the standard literature.

Here only a simple intuitive explanation is given.

Any .continuous motion of a body about a fixed point can be repre-
sented by dividing the time into infinitesimal elements and considering
the motion of the body during each element of time as a rotation abhout
the corresponding instantaneous axis of rotation. During the motion, the
position of the instantaneous axis in the body and in space is gradually
changing., To show this, consider the case of a cone rolling on a plane

and rotating about its fixed vertex 0 (Figure 2.4):

52



Figure 2.4 Poinsot's Kinematical Representation

At any instant, the motion of the cone consists of a rotation about
the line of tangency OA, which is the instantaneous axis in this case. Asg
the cone rolls, various lines of its surface come into contact with the
plane, and the instantaneous axis has different positions in the moving
cone. At the same time, consecutive positions of the instantaneous axis
in space form the plane on which the cone is rolling. This example can
be generalized. Instead of a circular cone rolling on a plane, a cone of
arbitrary shape is rolled on a surface of another cone. One can assume
also that the rolling cone is not a physical body but a geometrical sur-
face formed by consecutive positions of the instantaneous axis in the mov-
ing body of any shape as indicated by dotted lines. Likewise, the space
cone is formed by successive positions of the instantaneous axis in space,
and the motion of the body is visualized by rolling the cone connected
with the body on }:he cone fixed in space. By varying the shapes of both
cones, all possible motions of a rigid body about a fixed point can be

obtained.
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In case of the forced motion of the earth, the Z-axis coincides with
the pole of the ecliptic and the space fixed cone has a mean radius equal
to the obliquity. The cone is not circular but has-'ripples' superimposed
on it due to the nutation.( The time varying siz—e of the body-fixed cone
is determined at any instant through the diurnal polar motion fterms of the
rotation axis, e.g., ur, of equation (2,3-13)! I is understood that the
term "body-fized'' cone refers only to an infinitesimal time span. With
this in mind, the two cones describe the forced position of the instantane-
ous rotation axis completely at any instant. The center of the body cone
can be associated with the pole (C’). But it is known that the body cone
or its representative, the axis (C'), moves within the earth due to the
Chandler motion (force-free motion). This motion itself can be represent-
ed by a pair of rolling cones. This leads to an alternative representa-
tion of the motions, i.e., inﬁstead of using one pair of general cones in
infinitesimal time intervals several pairs of circular cones are used in a
finite time interval. This allows the separate interpretation of the various
motion components. Each of these pairs of cones defines a particular
component ZJJ of the instantaneous rotation axis in magnitude and in
direction. The real physical instan@ous rotation axig in space is the

sum of all components:

-

w=zc3
j

L

Besides separating the free and forced motions the latter is once more

gplit up in precession and circular nutations. Thus

- - - =
W o= oW v oW, o+ Wy
i

It is more convenient to deal in this context with the cirecular nutations
rather than with their elliptical combination since the former are directly

accessible to the cone representation. As a type of classification a
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motion is called prograde if it occurs in the direction of the earth rotation,
otherwise it is called retrograde. The thI:ee types of motions which occur
in the earth motion spectrum are shown in Figure 2.5. The angles s and
r are the vertex semi-angles of the space-fixed and body-fixed cones,

and v and 4 are the angular velocities of the instantaneous rotation axis
component on the respective cone. The vertex of all cones is at the
geocenter. The magnitude of the resulting rotation axis component is

w, = p,g + P - 2uv cos & ,

The two €quations, as depicted in Figure 2.5,

sinr _ gsin 8
v w

sins _ sin b .
7 w

give the relation between the vertex semi-angles and the angular velocities

smr o _ Y (2.3-28)
sin s L

This equation implies that the cones move on each other without slipping.

For small vertex angles the relation simplifies to

£ . -
. (2. 3-29)

14
7

The various motions can now be clasgified.
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Space
Cone

0
Case 1: Case 2:
Retrograde internal rolling Prograde external rolling
W
Space
Cone Body
Cone

Case 3: Prograde rolling on the
outside of the space cone

Fignre 2.5 Cone Representation of the Earth's Motion Spectrum
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A)

B)

Force-free Motion: Case 3

Z = gngular momentum. axis (H)
N = axis of figure (F)
From the first equation of (2.3-14) and equation (2.3-20) the

ratio (2.3-29) is Vo Og +

A -A K\ g
'yo( s 1)( ) _) ° 2. 3~30)
A, K, .

Here we have used §= ¢ which results from the approxima-

tion GMST = ¢. The validity of (2.3-30) can be verified by

rearrangements on the left hand side.
Precession: Case 1 ; AaKl =0
Z

fixed ecliptic pole
N=C (precession only)
From wuy;r of eguation (2.83-13) the vertex semi-angle of the body

cone for Agy = 0 is
t A

r=_=X

1
QE

The vertex semi-angle of the space cone is §, as is seen from sim-

ple geometric considerations. The spatial frequency p is faken from
equation (2.2-44} as
.. A
V=g 5
' Az Q) sin g,
The body-fixed frequency is, of course, equal to the sidereal fre-

quency (. Thus, equation (2.3-28) gives

A:el A,
92A3 _ A Q si1.1 Bs
sin g, - Q
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C) Nutation: Case 1 if A, >0
Case 2 if AO‘ZJ‘ <0

7 = ig located on the space cone of the p?ecession

N = ¢ (nutation only)

.
-

13053 is the nutatft;n frequency.' It was first defined in equation
(2.2-32). " The nutation frequency is either positive or negative, de-
pending whether the corresponding tidal frequency is larger or smaller
than the sidereal frequency . The vertex semi-angle and frequency
for the body-fixed motion is given by eguation (2.3-6), and those for
the space~fixed motion are taken from_equations (2.2-43) and (2. 3-20).

Inserting these quantities in (2.3-29) gives the ratio:

Ay syt
A, @ _ Aay 2.3-31)
A, A s (4, —Als;) T ey
A, 0Aw,  PA, A,

The validity of equation (2.3-31) can be verified by re-arrangements
on the leit-hand side. The equation holds for the rigid and elastic
models.

In general, then, all circular nutations and precession will result in
retrograde body motions because the exponent in the expressions for u.,
in; equation (2.3-6) is always negative. Similarly, those circular nutations for
which A& 3 < 0 will cause prograde spatial motions of the rotation axis,
whereas the others give retrograde spatial motions.

I has been demonstrated above that all known motions for the rigid
and elastic model can berepresented by pairs of cones rolling on each
other without slipping. Each type ‘of motion is completely identifiable by

its period and its occurrence in either space or body.

58



2.4 Coordinate System Definition and Observability

2.4.1 Relationship Between Coordinate Systems

The Poisson equation for the spatial motion of the angular momentum
axis was solved in an inertial frame which was taken to be the ecliptic at a
fixed (standard) epoch. The physical realization of the ecliptic can be thoughl
of as the plane defined by the solar center, the earth-moon barycenter and the
velocity of the barycenter., The orientation of this plane changes secularly and
periodically due to the planetary perturbations. The periodic variations are
computable from theory, That fictitious plane which has only a secular motion
in inertial space is the exact definition of the ecliptic.

The relationship between the ecliptic and the celestial system whose
pole is (C) is given by the dynamical theory of the rotation of the earth
in combination with some constants of definition.

The mean position of the celestial equator (C') relative to the fixed
ecliptic 1s implicit in equation (2.3-25). Using equation (2.2-45) and the
constant term of 6’Mu3f in (2.3-22), which is identical to the constant
term in (2.3-24) in case of the rigid body, the precession of the celes-
tial pole (C') is

Yerp = Yup = Ht + HE+ ..
(2.4-1)
Bue = Byp + O08° = Go+88°+ Bt% + ...
f, is the constant of luni-solar precession. I can be derived from ob-
servations or from theory. The latter possibility is indicated through equation
(2.2-47)., The mean obliquity at the standard epoch is found by obser-
vations. This constant includes the small constant §8° of equation (2.3-22)
or (2.3-24) which is equal to the mean separation between the angular
momentum (H) and the celestial pole (C'), For abbreviation, the equations
(2.4-1) can be rewritten as follows:
Hetp = Agp T 6%%3, - (2.4-2)

The superscript ¢ denotes the constant term in §yy , .
3
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The nodal line T, in Figure 2.6 betwéen the fixed ecliptic and the
mean equator of date does not coincide with the direction of the meanvernal
equinox T,, The laiter is equal to the nodal line of the ecliptic of date
and the mean equator of date. The motion of the ecliptic on the moveable

mean equator is called the planetary precession in right ascension a, with

a=g,t+ g t®+ ...
The g,'s follow from the planetary theory. The transformation due to

precession is

8 = Ry@) B, (-6c1,) Ry Py ) By(B, + 88 (2.4-3)

Mean Equator

of Epoch To=1=0

Mean Equator T ot
of Date !

and the remaining transformation from the mean celestial system 1o the

true celestial system (X), is

N = Ra (a'l) RE, ("ecf p 9,-;! N)RS (?]-’C'N )Rl(ec" p)Rg (_a‘)
(2. 4-4)
where

a, = a + Aa

1
and Aa is a small computable term [Woolard and Clemence, 1966, p. 240].
6y and gy, are the nutation angles of the celestial pole (C'). With equa-

tion (2.3-25), the nutation angles can be written as

Yory = day T OOHY ¢
a
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where the superscript denotes the periodic terms in & xy ot
With a few minor changes, Figure 2,6 can also serve for setting up equa-
tion (2.4-4).
In practical astronomical work one tends to select a different set
of rotation angies in the transformation (2.4-3) [Mueller, 1969, p. 65].
One also prefers to use the so-called "reduced" nutation in longitude
and obliquity, g, and 9¢s,, which relate the frue equator to the
mean equator of date. Then the transformation N becomes
N = Ryl-¢ = Bpsy)Bs (“ihery )Ry (o)
The reduction of the nutations is carried out in Woalard (1952, p. 167).
¢ is the mean obliquity of date,
€= B+ 68° +a,t+aytt+ ..,
The coeificients a, follow again from theory,
Fipally, the motion of the vernal equinox due to the combined motion

of the ecliptic and the equator is called general precession in longitude

s

I

h,t+ ht? + ...

th

where
h, =1, - g, cos(, + 66°
Since g, and h, follow from theory there is no additional new constant

which is to be determined by observation,

2.4,2 Fundamental Declinations and Latitudes
The fundamental declinations and latitudes are the true obgervables

in observatory astronomy. They give the position of the observatory
and the star in the true celestial system (X),. The procedure consists
of observing zenith distances of stars at upper and lower culmination.
At no stage of the procedure will the star position or an adopted series

of nutations be needed.
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¥or the following description it is assumed that the Chandler motion
is zero for the period of 12 hours. This assumption, of course, will
not be fulfilled since one has no conirol over the actual free motion.
This simply demonstrates that all efforts to determine the orienta-
tion of the earth in space are ultimately limited by the amount of Chand-
ler motion which occurs during the inferval which is needed to carry
out the basic observations. The progressive Chandler meotion is approx-
imately 5 em for 12 hours.

The left and the right picture in Figure 2.7 show the situation
at upper and lower culmination of the same star. The pole (C') remains
body-fixed during the 12 hour interval., In particular, it has no nearly
diurnal free nutation as was shown in Section 2.3,4, The body-fixed
motion of the angular momentum axis (H) is represented as a circle in
the loyver two pictures. There is no need for (H) or the axis (U;) to
be in the meridian during the observations. The body-fixed position
of (H) for upper transit at epoch T is shown in the lower left piciure.
The lower right picture shows the body-fixed position of (H) at lower
and upper transit. For the sake of completion, a possible body-fixed
position of the Eulerian pole of rotation (E;) is also shown. The
angle ¥ is the along-meridian polar motion component. % and ¥ are
the periodic diurnal body-fixed mlotion components of (H) along the
meridian. &, denotes the adopted station latitude in the (U)-system.
d is the declination in the true celestial system (X). whose third
axis is identical with (C’). The observed zenith distances at culming-~
tion are z, and Zye From the upper two pictures in Figure 2.7, the
following two basic relations are readily seen:

90 - 8 = (g, - z,)/2 .
(2.4-5)

90 - (cpu3 +oyy= (2, + zl){z
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It is now clear that the declination and the latitude in the true celestial system

(X)c’are the observables., The position of (H) at the time of observation has

no importance in this context. More import?,ntly, the mnstantaneous rofation

axis (I} does not enter the observation geometiry at all. It is therefore concluded

that, on the basis of the observational procedure discussed above, the instan-

taneous rotation axis (I) and the angular momentum axis.(H)are not observable.
The observaiional ingignificance of the Fulerian pole of rotation

E, is readily demonstrated with the belp of Figure 2.7. As has been

pointed out previously, the only difference between the north celestial

pole (C’) and the Eulerian pole of rotation (E,) is a homogeneous solution

component, so that the latter still exhibits a nearly diurnal space-fixed

motion due to free nutation. Consider the body-fixed point E, in Figure

2.7. In the upper figures, E, performs a similar motion relative

to the (C') as does, for example, the axis (U;). DBut the presence

of such a fixed crust point, and there are infinitely many possible

choices all laying on the line ¥, - ¢’ of Figure 2.3, does not efect

the principles expressed by equations (2.4-5) at all. Thus, the FEulerian

pole of rotation is not observable either.

2.4,3 Determination of the Constants of Definition
The relationship between the .celestial system (X). and the fixed
ecliptic system (X), is expressed by the standard expressions
sin § = cos g sin) sing,s + sing cos g
and ) (2.4-6)
cos b sin® = cos R sin ) cos §,» - sin g sin B,
0 and § are the right ascension and declination in X)er. 3 and R are
the ecliptic longitude and latitude in the fixed ecliptic system. g., is
the true obliquity of date, which is split up according to equations
12.4-1) and (2.4-2) as
Bt = Borp F Bury (2.4-7)
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whereby the small constant 06° is included in 6,,,. Eliminating the
longitude ) in (2.4-6) gives )

sin R

' sinatan g, =tand - (2-4-8)

cos b cos B,/

The ecliptic latitude g of objects close to the ecliptic such as the sun,
planets, etc. are known from theory accurately enough in order to be
treated as a known quantity. Since at the meridian transit the right
ascension o is equal to the sidereal time, the right ascension is ex-
pressed in terms of the reading, t', of a clock which keeps uniform
time, as \

o =k +kt+t | (2.4-9)
where k, and k, are the constant and the rate correction, respectively.
Equations (2.4-7) to (2.4-9) can serve as a mathematical model to
compute the right ascension and obliquity g, from repeated observa-
tions of declinations according to the procedure given in Section 2.4, 2,
Consequently, the right ascension will refer to fthe true celestial
equator defined by the pole (C'), atid the true vernal equinox, i.e.,
it will be independent of the instantaneous rotation axis (I). In view
of equation (2.4-7), the solution for the constant 6.7, will include the small
constant 50°, f

The constant of luni-solar precession is principally derivable from the
secular variation in right ascension. Detailed procedures for determining
the constants of precession are foumd in the literature.

The constant of nutation, N, which is the coefficient of the 18.6
year nutation in obliquity is another constant needed in order to be able
to completely give the true position of (C') in space at any time,

It is a function of the astronomical constants (As - A1)/As, the

lunar mass, and the obliquity. The constant of nutation determines
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the common multiplier (scalar) for all other nutation terms. Various
determinations of the constant of nutation are discussed in the literature.
One of the most complete -determinations is™ that by Fedorov E1958]-. One
should note that the observational determimtion of N includes the small
term with the same period in 0@, (equation 2,3-24). This fact has

to be taken into account when computing the common multiplier of the
mitations or when one attempts to verify a relation of the type of equa-

tion (2.2-47).

2.4.4 Practical Aspects for Adapting a Set of Nutations
In the usual astronomical work one does not observe the same
star at upper and lower culmination as discussed earlier; rather, one

observes stars at either their upper or lower culmination. The latitudes

resulting from such a scheme are

=6+ z (2.4-10)
in case the upper culmination occurs south or north of the observatory
zenith. Latitudqs computed by this formula always refer to the equa-
tor of date to which the declinations are- counted, i.e., the colatitude
is the instantaneous angular distance between the observers' zenith and
the pole as defined by the set of adopted nutations. According to the
definition of the celestial pole (C*y any latitude computed by

Ger, = Oort oz
varies only due to the progressive Chandler motion, The use of any
other set of nufations will result in a computable variation of the lati-
tude.

Consider the change in declination due to nutation [Mueller, 1969,

p. 4],
A{SC; = s, Sin Betp cos® + g, sina (2.4-11)

This formula is m agreement with our sign convention for j, i.e.,
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positive from west fo east. @ is the right ascension of the star.

Equation (2.4-11) can be written as
Ab,, = Re(i nere 1% 2.4-12)

The difference in latitude based on, for example, the nutations of the

pole (C’) and the instantaneous rotation axis (I) is

G -~ By = O - bg

-
= Refi (Hern — Hm) € ! 1
-1t
= Rel[i (Muy + OuBr - Huy - O%m)e |
) -
= Re[i (Ot - M) e ] (2.4-13)

With equation (2.3-20) and (2, 3-22) this difference becomes

Ay sy Hl(Aas+a

e (2.4-14)
J

q)c"'q)I = Rei

The summation is to be talken over all tidal waves except those
having sidereal frequency. As was mentioned earlier, the waves of
sidereal frequency are responsible for the small constant from gg°.
In case of meridian observations the @t ascension ¢ in (2.4-14)
can be replaced by the mean sidereal time MST. Thus, from equation
(2.4-14), the first equation in (2,3-18) and equation (2, 3-15) the latitude
difference is the negative of the meridignal diurnal motion component of
the rotation axis ()

e’ - ®r= ~Re (uy) = -uip (2.4~15)

The difference is usually referred to as 'dynamical variation of latitude."

Again, the term with sidereal frequency is excluded in (2.4-15), Equa-
tion (2.4 ~14) clearly shows that latitude determinations as derived from
zenith distance measurements to stars at transit exhibit a nearby di-
urnal variation. If one observes the same star at consecutive {ransits,

the latitude variation shows periods equal to those of the nutations and
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with respective amplitudes as given in equation (2.4-14).
The situation is very similar for longitude observations. The

usual formula for correcting the right ascensions due to nutation is
Ay = )14 COS Bosp + (—dry SID Gvp SIN® - gy, cos@)tan & (2.4-16)

where yj is again counted positively eastward. The first term, which
is a correction o the verpal equinox, is called the equation of the
equinox

Eq. E = by €08 Gvp
% is equal o the difference between the mean and true right ascension
of a body on the equator. The other terms, which are a function of
the position of the star, can be rewrii_:f;en as

~ —1&
Agy =Im(-irn e ) tan il (2.4-17)

The basic longitude equation is
A= MST - GMST
= AST - GAST
For reasons of compatability both the local and the Greenwich sidereal
times are corrected for polar motion. Polar motion, of course, is
understood to consist only of the motion of the pole (). Meridian

observations give

Ac’ o - GAST

% tan & - GMST - Eq.E

= Q, + Eq. E +Im@i%e, e

-~
o, + Im(-i%s e )tand - GMST

&, denotes the mean right ascension of date. The longitude computed
in this manner will vary only due to the progressive Chandler motion.
Computing the longitude based on the nutations of the instantaneous

rotation axis (I) gives the, difference
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Ac - A = Iml-i(tch - xm)i e tand
_ N Ajysy - (Ao +a)
= Im (-1 A‘Qg e s tan & (2.4-18)

i

For transit observations, this difference, according to the first equation in

{2.3-13) and equation (2.3-15) becomes
A - Az = Im@uz)tand = uk tan 6 (2.4-19)

where up is the component of the diurnal motion of the rotation axis {I)
orthogonal to the local meridian. When verifying the longitude difference
from observations, one has to account again for the fact that the obliquity,
as derived from observations, coéntains the small constant term &8°.

Thus the sidereal terms are excluded in (2.4-18) and (2.4-19}.
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3. MODELS WITH LIQUID CORE

3.1 Brief Historical Review

The desire to explain the discrepancies between the observed and pre-
dicted motion of the earth resuited in a long history of a search for better
earth models, The first efforts to investigate earth models with liguid core
date back to Hopkins [1839]. Affer Chandler'*'s explanation regarding the basic
period in polar motion, Ht;ugh [1895] and Sludskii [1896] discovered indepen-
dently the possibility of a nearly diurnal free wobble (NDF¥W} for a rotating
container with liquid core. Poincare [1910] published his investigation on the
precession of the deformable earth, giving an elegant accounting for possible
movements of the core. Hig theory is reproduced in [Melchior, 1966].
Takeuchi [1950] carried out numerical integration of the equations for a hetero-
geneous and compressible globe by utilizing different models of the earth's
interior, these models being constructed according to seismological resulis,
Jeffreys and Vicente [1957 a, bl continued the studies of Sludskii and Poincaré
and proved, based on the work by Takeuchi, that an effect of resonance due to
the movements in the liquid core (core resonance) appears on the waves whose
period is close to that of the NDFW, Molodenskii [1961] published an analogous
study with results similar to those of Jeffreys and Vicente. This theory is
also reproduced in [Melchior, 1966]. Recently, Shen and Mansinha [1976] pre-
sented an extension of Molodenskii's theory. McClure [1976] studies the effect
of transverse meridional core-flow relative to the mantle on the separation be-
tween the total angular momentum vector and the rotation vector of the shell
based on a generalization of Poincaré's model. Smith [1977] investigated,
theoretically and numerically, the free modes based on geophysically plausible
rotating, slightly elliptical earth models.
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The above review is necessarily incomplete in view of the large
amount of work which has been devoted to the subject. The degree
of difficulties in the mathematical treatment depends on the specific
assumptions regarding the structure of the core and shell, the core
boundary, etec. In this section only a discussion of the additional
characteristic motions is given. For any derivations the reader is

referred to the literature.

3.2 Shell and Core Interactions

The interactions between the core and the shell effect the orienta-
tion of the shell in space. Determination of the orientation of the
shell, therefore, can give valuable information about the core motion

spectrum.

3.2,1 TFree Mode

The nearly diurnal free wobble (NDFW) is a possible free mode

which is given by the homogeneous solution of the equations of the
combined motion of shell and core. It can be categorized as a body (shell)-
fixed motion of the instantaneous rotation axis (I) having a nearly
diurpal period. In the astronomical literature it is sometimes refer-
red to simply as nearly diurnal free 'nutation." Its observational sig-
nificance has been explained recently, It was Toomre's [1974] contribu-
tion to strengthen the point that even this nearly diurnal free "wobble"
must be accompanied by a free nutation in space whose amplitude and
period is approximately 460 fimes larger than that of the NDFW. These
motions can formally be visualized agamn by Poinsot's kinematical repre-
sentation. The motions occur regardless of whether the shell is taken

rigid or elastic. The mathematical derivations of this mode can be
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found in, for example, [Rochester, et al., 1974] or[McClure, 1976].
The frequency of the nearly -diurnal free' wobble, a”’ is primarily a
function of the ellipticity of the core as is indicated by the relation

I !
o’ = ——Q(l + A _As”Al) ,

A° Al

which holds for a rigid shell and ideal fluid core. The symbols A; and
A; denote the moments of inertia of the core, A® is the eguatorial
moment of inertia of the shell alone, and the other symbols have tn-
changed meaning. The frequency of the accompanying free nutation is
equal to «” plus the earth's sidereal motion. This is a property of

Poinsot's kinematical representation. Thus, the ratic (2.3-29) is

I
ro_oo’xQ 1 (8.2-1)
s '+ R 460

Both the nearly diurnal free wobble and the accompanying
nutation are retrograde motions as shown in Case 1 of Figure 2.5.
These notions are super-imposed on those discussed earlier. In par-
ticular, the shell-fixed motion of the instantaneous rotation axis of the

shell is
ot

U, = U t Tre (3.2~2)

L3

The space-fixed motion of the instantaneous rotation axis of the shell

I8

is Lot t

' 7160

My =N+ 460 Te (3.2-3)

The spatial change, as expressed in equation (3.2-3) is the same for

‘the north celestial' pole (C'); thus, p

Her = N + 460 T e (3.2-4)
¢" stands for "north celestial pole of the shell." Probably the most
" meaningful and unique labeling of the two harmonic motions discussed
here is "retrograde free principal core nutation." The word “core"
indicates the origin of the motion and the adjective "principal impiies
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that more motions of this type are possible depending on the assumed
core structure. Jeffreys ‘and Vicente [1957b], for example, 'founq
another free but prograde mode because of the density structure in
their core model. This clearly demonstrates the importance of the
assumptions about the form and siructure of the core .m this type of

calculation.

3.2,2, Core Resonance

Another geophysical phenomenon respongive fo the presence of
the free mode is the tides of the solid earth. Jeffreys and Vicente
pointed out that nearly diurnal tides whose freguency is close to &’
should experience amplifications. This phenomenon is called "core
resonance.” It is presenied mathematically in terms of a factor
which depends on the tidal frequency and by which the tidal amplitudes
A ; are multiplied. The factor increases as the tidal frequency ap-
proaches a”, Jefireys and Vigente, as well as Molodenskii, gave es~

timates for the change 1n the tidal amplitudes A,, which can, via equa-

tion (2.2-43), easily be converted to changes in nutation. An exten-
sive analysis of tilt‘ase effects based on various models can be found in
Melchior [1971]. Some of the larger effects are given in Table 3.1.
The values; are to be added to the nutation of the rigid earth. The
signs are such that the amplitudes of the nutations increase in magni-
tude. The first column in Table 3.1 denotes the tidal waves in terms
of their code number, which is explained in Section 2.2. In addition,
the commonly used symbol is given for each tide. The significance
of these symbols in terms of systematizing the tidal waves is found
in [Melchior,1966]. Thus the waves 00 and O; form the semi-monthly

elliptical nutation.
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Table 3.1 Corrections for Rigid Earth Nutations
in Arcsec Due to Core Resonance

Period {days) dy sing dg

semi-monthly (13.7)

001 ; 185,555
0.0020 0.0026

0,; 145.555

semi-annual (183)

©,; 167.555
0.016 0.020

P ; 163.555

1;

annual (365)

B, 3 166.554
-0.0077 0.0056

S,; 164 556

As was mentioned above, it is the relative position of the tidal
frequency with respect to the frequency of the nearly diurnal wobble,
a”, which determines the magnification of the tidal amplitude. o’
is not identical to the diurnal frequency of the K, tide but it is closer
to that of the ), tide. Since the elliptical nutations consists of two
tidal waves whose frequencies are symmetric with respect to K, the
two waves experience dissymmetric resonance effects. An example is
the annual nutation which is formed by the tidal waves i, and S;. Both
tidal amplitudes are of equal magnitude, which results in a zero annual
nutation in obliquily according to equation (2.2-42)., But the liquid
core model requires a nutation in obliquity solely due to the dissym-~
metric correction.

The corrections of Table 3.1 have to be added to both the nutations

of (I) and (C’). This is so because tidal analysis gives corrections to
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the tidal amplitudes which enter in both sets of nutations according

to equations (2.3-23).

3.3 The North Celestial Pole of the Shell (C”) and Ks Generalization

The discussion of the section above demonstrates that for the real
earth somewhat different terrestrial motions of the instantaneous rota-
tion axis and a slightly different orientation in space have fo be expected
compared to ideal models, such as the rigid and elastic model or even the
model with liguid core. Since all geomeiric observations (directions,
ranges) take place on the shell one may define the orientation of the
earth in terms of the orientation of the shell.

Similar to the definitions of Section 2.3 .4, the orientation of the
shell in space is based on the direction of the pole (C”), i.e., the

direction which has neither periodic diurnal motions relative to the shell

nor to space. A generalization of this definition is obvious. stead
of investigating specific models. for an axis which has the desired proper-

ties of the celestial pole one can simply define the celestial pole with-

out reference to any model. Thus,

the orientation of the earth is based on the direction

of the celestial pole (C), i.e., the axis which has

neither periodic diurnal body-fixed nor space-fixed

motions. The body-fixed motions of (C) are called

polar motion.
This definition can be related to the actual measurement procedures.
One can now say that the observations take place on the surface of the
earth and that the term "body-fixed" is to be understood as a motion
relative to a "rigid' surface on which the stations are located. It is
noted that the effect of the motion of the crust due to rigid body tides
has been assumed {0 be removable by computations. Another type of

relative station motion, which is very slow and occurs over long periods
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of time usually referred to simply as 'erustal motion" or '"plate motion,"
is left out of consfderation here. Their implications regarding coor-
dinate system deﬁxii_tion are studied extensively inlLeick; 1977].- The
" realization of the direction (C) in the body—-fixed frame and in space
is principally possible through observation of fundamental latitudes
and declinations (Section 2.4.2). Fach term in the set of nutations
for the pole (C) 1s empirical and has to be determined from observa-
tions; whereas, the relative magnitude of the nutation coeffipients for
a specific model result from the motion theory. Fortunately, the rigid
or the elastic model approximates the actual motion of the earth very
well. It is, therefore, not necessary to attempt to observe the whole
spectrum of nutations; rather, one can limit the investigations to specif-
ic frequencies whose amplitudes are most likely to deviate from the model
values. The frequencies of Table 3.1 are certainly among such "danger-
ous' frequencies.

Formally, one can write the space-fixed position of the celestial
pole (C) as

He = et Doeey + Bueg ¥ AW (3.3~1)

where w.s (equation 2.3-25) can be considered the first order approxi-
mation of the pole (C); whereas, the remaining empirical terms are of
second order. The term Ay, denotes the contribution of the free core
nutation. This term is entirely empirical. Neither its magnitude nor
its phase is known since it is a result of the homogeneous solution. The
term Apx ., denotes the resonance effect on the nutation due to core
motions. In this case, the frequencies and estimates of their amplitudes
are obtained from theory (Table 3.1), but depend strongly on the assump-
tions of the core structure. Therefore, these terms are essentially

also of empirical nature. The last ferm, Ay, stands for all effects

which are not yetf accounted for,
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In the usual latitude observation work where a star is observed

only at one culmination, as represented by equation (2.4-10),
® = & =z

the computed colatitude refers to the axis defined by the adopted set of nuta-
tions, This axis has no physical meaning. It only serves to transform the
actual, observable into a latitude-like quantity. Thus, the additional shell~
fixed motion of the instantaneous rotation axis (I) which is due to the nearly
diurnal free wobble (equation 3,2-2) is irrelevant for this observational proce-
dure. Therefore, regarding the determination of the nearly diurnal free wobble,
the only thing one can do is to determine the associated free nutation from the
analysis of the observed zenith distance and conclude then via equation (3. 2-1)
the actual size of the nearly diurnal free wobble, Using equations (2.4-10),
(2.4-12), and (3.3~1), the computed latitude variation will be

A = @c - {bc’

= Re i(AxFCN + A}LCR + A?f.u) e—i(MST)
(3.3-2)
= Abrey + Aber + Aby

B u‘i':‘rdialrnzzw,l

In principle, any adopted set of nutations can serve in this type of
analysis. Instead of taking equation (2.3-25) for the pole (C'), one could
just as well select the nutations of the rotation axis () of (2.3-20) or the
angular momentum axis (H) of (2.2-43). In these cases, additional
computable terms would appear on the right-hand side of equation (3.3-2).

The corrections in declination in equation (3.3-2) are identical to the
negative of the component of the diurnal motions of the adopted pole (C')around
the pole (C) along the local meridian, It is emphasized that this diurnal motion
strictly refers to the pole (C') as defined by the adopted set of mitations. Tthas
nothing to do with the diurnal hody-fixed motion of the actual instantaneous ro-
tation axis (I) or angular momentum axis (H). These latter motions are not

\
observable! o



It is realized that the latitude variation of eguation {3.3-:2) is very slow
if zenith distances are observed at culmination of the same star. I is, there-
fore, permissible fo approximate the; diurnal motion by a circle of constant
radius over an interval of, say, one day, five days, etc. A® has then the
same magnitude for each station's observation., This difference is part of the
Kimura [1202] term which was introduced in order to represent the 'mon-
polar variation in latitude.' The Kimura term also absorbs other constant
effects which are specific to astronomical observation, such as errors in
proper motion, aberration, etc. In any case, it is important to note that the
introduction of Kimura's term makes it, at least conceptually, possible to
determine the celestial pole (C) even from observations at one culmination
only. One only needs the zenith distance observations from several stations
of the same star at culmination in order to determine polar motion and the
constant non-polar term in the least squares sense. ILet @y be the adopted

latitude, then the eguations are in the usual notation:

&, = @P.-mccos A - uaesin A

G - e cos A - e sin A + AGeey + Aber + Ay

This expression can be rewritten as

by, - &y =-maccos A - usecsinA + Z

where

!
= - I
7z N1ic di 1

is the Kimura term. The subscript C’ denotes the adopted set of nutations .
Since in all computations, the rigid earth nutations of (I} have been
used, the analysis of Kimura's term should give information on core reso-
nance, etc, In faect, the International Latitude Service introduced in 1955 a
special observation program, which is called the three-group observations,

in order to make an effective analysis of the Z-term possible.
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3.4 Observational Evidence - TAU (1977) Proposed Nutation Series

Reports claiming to have observed the nearly diurnal free wobble,
NDFW, based on above or below pole cbservations, were given at
gseveral occasions. A summary is given in Yatskiv [1972]. The earliest
observation, related to this second free mode, seems to have been re-
ported by Popov [1963]. He found an amplitude of 0'.016 from a long
series of latitude observations of two stars culminating approximately 10
hours apart. Until the clarification made by Toomre [1974] the astron-
omers, apparently, being unaware of the associated large free nutation,
interpreted their observations indeed as those of the NDFW. Exam-
ining the method of analysis of Popov along the lines discussed in pre-
vious sections, it becomes immediately clear that the reported variations
actually represent the change in nutation. The latest report on the NDFW
is [Yatskiv et al., 1975]. They not only confirm the presence of the
refrograde mode, but alsoc find that the existence of the prograde mode
is quite possible on the basis of the available data.

Some of the effects of core resonance have also been confirmed
by observations. A correction of 002 for the semi-annual nutation
was obtained from analysis of Kimura's term [Wako, 1970]. The
presently adopted constant of nutation for the epoch 1900.0 is N = g".21,
Uging the current best estimates of the mass of the moon and the con-
stant of precession, the relation (2.2-48) yields a somewhat larger value
of N = 9".22, But from observations one arrives constantly at a smaller
value N = 9'.20 [Fedorov, 1958]. Applying the correction due to core-
resonance to the computed value reduces the latier to the observed value.
This is certainly one of the nicest features of the liquid core models.

It explains one of the longest known incoherencies in the system of

fundamental constraints.,
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An astronomical determination of the fortnightly term was reported
by Guinot [1970] for longitude observations and by Morgan [1952] for
latitude observation. Morgan's analysis was based on P.Z.7T. cbserva-
tions at Washington. While using the adopted set of nutations of the
rotation axis (I) for the rigid earth, he obtained a fortnightly correction
equal to that of the Oppolzer term, just as rigid model theory prediets.
More complete analyses were carried out by Fedorov [1958] in terms of
the fortnightly diurnal motion term, and recently by McCarthy [1976], who
computed the corrections to the fortnightly nutation directly. Both ob-
tained values which are in agreement with those predicted by the co-
resonance model (Table 3.1). They used the nutations of the angular
momentum (H) as computed from Poisson's equation, as their reference
pole. One may add that McCarthy used (H) as an approximation to the
rotation axis of the rigid model and corrected the ohservations for the
Oppolzer terms (equation 2,4-15); whereas, Fedorov specifically intended
to use (H) because its position in space islrelatively independent of
mass redistribution. But from the merely analysis point of view, this
distinction is unimportant since the adopted set of nutatiops (Poisson
solution) serves only as an intermediary reference standard. McCarthy's
corrections should be inferpreted as corrections to the nutations of (C' )
in order to get the nufation of (C). Fedorov's corrections need to be
added to the nutation of (H) in order to get the nutation of (C). This

is so because astronomical observations give the motion of the pole,as
defined by the adopted set of nutations, with respect to (C). The
fortnightly correction term of Table 3.1 can be readily converted to

a corresponding diurnal body-fizxed motion term. The derivation of its

radius follows from equation (2.2-46)
Has = Bgg €COS (28) + 1by sin (2s) (3.4-3)
where 25 denotes the fortnightly term, and from equation (2,3-19),
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Uos = —iA Mgy & 0 (3.4-2)
Neglecting the subscripts and combining equations (3. 4-1) and (3. 4-2), one gets

- b

ues=—[a;b sin @ - 25) + 2

sin (¢ + 28)]

-1 [a;—b cos (P - 28) + i F=—= cos (@ * 2s)
(3.4-3)
Substituting the coefficients from Table 3,1 and neglecting their differences
gives
Buss = -0,0023 sin o - 2s) - 1 0.0023 cos(@ ~ 2s) (3.4-4)

Fedorov found a radius for the fortnightly term of 0''009, As far as
the model is concerned, this radius formally corresponds to the rigid earth
mutation plus the core resonance effects, i.e., as predicted by Jeffreys and

Vicente [1857, a, b]l. Equations (2.3-17) and (3.4-4) give
luzs| = 0.0052 + 0.0023 = 010085

The perfectly elastic model, however, predicts a fortnightly diurnal term of
approximately -:23- 0!'0062, as is seen from the second equation in (2. 8-18).
We may therefore conclude that, at least for the fortnightly nutation, the
perfectly elastic model does not seem to conform with observation. Since
the BIH [1975] has currentlyadopted the nutation of the pole (C') of the elagtic
model (equation (2.3-25)),their procedure may require revision at some
future time.

It appears, based on the results of Table 3,1 and the method implied,
that the actual diurnal radius of the motion of (I) around the pole (C) does not
change significantly because of core resonance effects. This statement is
possible because it can be shown that the same corrections to the tidal ampli-
tudes cause nearly identical corrections for both (I) and (C’) (see equations
2.3-23). However, this fact cannot be proven from astronomical observations

since (I) is not observable,
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The IAU-Symposium No. 78 (1977) recommended that the following
set of coefficients be substituted for the corresponding coefficients in

Woolard's series for the nutations in-order to provide a moTe accurate
3 D

representation of the forced nutation of the axis of rotation of the

earth due to the luni-solar perturbing forces:

Table 3.2 IAU (1977) Proposed Nutation Coefficients

Period {(days) ] ¥ sing 8
6798 -6.843 9.206
3399 0.083 -0.091
365 0.058 0.006
183 -0.520 0.569
122 . -0.020 0.022
27.6 0.028 0.000
13.7 ~0.083 0.091

The sign convention in Table 3.2 is the same as in the AENA Supplement
[1961, p. 44]. The coefficients are obtained by adding the tidal cor-
rections to the nutation of the instantaneous rotation axis (I) of the

rigid body. The thus modified nutation series does not describe the
position of the celestial pole (C). The theoretical corrections for the

dynamical variations are still needed!
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4, SUMMARY AND RECOMMENDATIONS

The motion characteristics of the rigid, the elastic earth model
and the model with liquid core have been reviewed. An attempt has been
made to strictly distinguish between motions due to external forces and
the free motions. The dynamical theories of the rigid and elastic earth
model involve various axes, such as the axis of rotation (I), the angular
momentum axis (H), fthe axis of figure (F) and an axis called the celes-
fial pole (C’). Special efforts have been made to investigate the sig-
nificance of these axes regarding observability. It has been found that
even for these ideal models, where the stations do not change due to
crustal motions, only the celestial pole (C’) is observable through
fundamental astronomical observations. "Observable" is to be under-
stood in the sense that the direction between the observatory and the
celestial pole (C')can be measured without using any hypotheses or models.
The pole (C') moves with respect to:the body only because of the pro-
gressive Chandler motion. H 1s understood that fundamental astro-
nromical observations, where the same star is observed at both cul-
minations, give only the mean positions for the twelve hour time span.

The diurnal motions of the ipstanianeous rotation axis (I), and the
angular momentum (H) have been investigated. The periodic diurnal polar
motions of (I) are strictly related to the spatial nutations of (I). The
correspondence between those motions can be demonstrated most easily
in terms of two cones rolling on each other, having characteristic
vertex angles and speeds. It has been shown that the instantaneous
rotation axis (I) is needed only at the initial step when formulating the

motions. From the descriptive point of view, one can associate with
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a rotating body which is subject to external forces two instantaneous
rotation axes. One of the two axes is (@), which must have per@odic
diurnal body~-fixed motions. ~The other axis is (CY; it is effected

only by the progressive motion (free motion). Since the Chandler
(Euler) motion, at least concepfually, represents the inifial conditions,
it can assume any magnitude. (Please remembher that we are talking
about ideal bodies.) ¥ its magnitude is zero, then the celestial pole
(C') does not move with respect to the model surface; whereas, (I) still
has the diurnal motions around (C'). This type of explanation 1s
strictly valid since the forced and free motions are independent, as
they represent two independent solution components to the differential
equation of motion. As for adopting a set of nutations, clearly, pref-
erence has to be given to the celestial pole Cl, not only because it is
observable (in case of rigid and elastic bodies) but alsc because the
posttional elements which refer to it have no diurnal periodic variations
and do not require a correction for the so-called dynamical variations.

The differences and commonalities between the rigid and perfectly
elagtic model have been discussed at length, the main characteristic
being that the angular momentum axis remains virtually unchanged in
space whereas the direction of the (C') changes somewhat. But it
was pointed out that the observational evidence does not entirely confirm
the predicted changes.

The liquid core model is the most general model considered in
this study. I introduces a new spectrum of motions, such as the nearly
diurnal free wobble (NDFW) and its associated change in nutation, both
resulting from the free solution. In addition, certain frequencies change
their amplitudes due to core resonance. The observations fit such a
model quite well. Similarly, as in the case of the rigid.and elastic
bodies, the celestial pole of the shell (C“) was defined as that pole
having neither shell-fixed nor space-fixed periodic diurnal motions. Thus,
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in the case of the liquid core model, the celestial pole of the shell (C”)
is observable.

Above it has been said that the celestial pole (C') or (C”) is
observable depending on the mathematical model under consideration.
The real earth, of course, -does not behave exactly as these models in-
dicate although the liquid core model fits the observations better than
the other two models. Yet, the concept of the celestial pole, or even
better that of the celestial pole of the shell can he extended so as to
denote that pole which is observable in actuality. This pole can then
simply be called the "Celestial Pole (C)." It has the property of having
no body-fixed and 1e space-fixed diurnal periodic motionts. The naming of
this observable pole correctly does not give any hint as to the best
fitting theoretical model since, anyhow, each model is only an approxi-
mation. The point of view is taken that the nufations and, of course,
the polar motions of the celestial pole (C) can only be determined from
observations. The possible adoption of the TAU - 1977 set of nutations
is a step in this direction. WUnfortunately, this set of nutations does not
include the theoretical Oppolzer terms; therefore, the dynamical cor-
rections are still needed.

It is recommended that in the future the ferms "polar motion' and
"nutation' be only associated with the body-fixed and space-fixed
motions of the celestial pole (C), respectively. If the motion of any
other axis is meant, the name of this axis should be given explicitly.

The celestial pole (C) gives the natural reference direction not only
for astronomical observations but also for laser ranging to lunar reflec~
tors. More details on this subject are given in[Leick, 1978].

Finally, it is sometimes suggested that the nutations be given for
the angular momentum (H). But 1t is clear that such a procedure violates
the concept of observability. It may be true that the direction of (H) in

space is the same for the rigid, elastic, or any other reasonable earth
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model. But this property is not of much interest to the astronomer
or geodesist who tries to determine the orientation of the earth. It

is conceptually simpler to réfer t0 an axis which is observable.

Both representations are actually equivalent, i.e., determining the nuta-
tions of the celestial pole (C) or using the adopted (rigid model) nuta-
tions of (H) but then determining the periodic diurnal body-fixed motions

of the angular momentum (H).
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