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ABSTRACT 

The expected motion characteristics of the real earth are sys­

tematically analysed based on available dynamical theories for the rigid 

model, the elastic earth model and the earth model with liquid core. 

The various axes which are implicit in the dynamical theories are 

investigated regarding observability on the basis of astronomical obser­

vations and suitability for defining reference directions. The observa­

tional insignificance of the "diurnal polar motion" is demonstrated. A 

special effort is made to clarify customarily used terminology. 
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LIST OF SYMBOLS 

This list of symbols gives definitions for the symbols used 

throughout the text. 

(X)E= (XiE, XPE, XsE)T Geocentric and inertially oriented coordinate system. 
The third axis coincides with the north pole of the 
fixed ecliptic at a standard epoch. The first axis is 
fixed arbitrarily to the fixed ecliptic. 

(U) = (U, U2 , U3 ) 
T Body-fixed geocentric coordinate system. Its orien­

tation within the body is given in a "prescribed" way. 

() F The axes of this coordinate system coincide with the 
principal moments of inertia axes of the earth. 

(X)F Same system as (U)F, but the first axis coincides 
with the node line of the fixed ecliptic and the 
equator of figure. 

(X)H The third axis coincides with the angular momentum 
axis (H). The first axis coincides with the node line 
of the fixed ecliptic and the plane orthogonal to (H). 

L Vector of luni-solar torque on the earth. 

H Angular momentum vector. 

-Instantaneous angular velocity of the earth. 

Mean angular velocity of the earth. 

(I) Instantaneous rotation axis. 

(F) Axis of figure. 

(H) Axis of angular momentum. 
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(Eo) Axis of Eulerian pole of rotation. 

(C') Axis of celestial pole for rigid and elastic earth 
model. 

(C") Axis of ceiestial pole for the liquid core model. 

(C) 

LxF = 
__> 

(Lix LsxF 
)T 

LXF) 

Axis of celestial pole. 

The components of L in the (X)F system. The same 
notation is used regarding other axes and coordinate 
systems. If no subscript is given, the components 
refer to the (U)-system. 

LXF Li Xr + i L2 XF Complex form for equatorial component of torque L 
in (X)p system. The same notation is used regarding 
other axes and coordinate systems. If no subscripts 
are given, the components refer to the (U)-system. 

(uij, uSF, 1) Direction cosines of the axis (1) in the (U)-system 
whereby second-order terms in up are neglected. 

u= = ui + i U2 F Complex notation for the equatorial component of a 
unit vector along (F) in the (U)-system. 

Iu Inertia tensor in (U)-system. 

A,, A2 , A3 Least, intermediary, and maximum moments of 
inertia. These are the elements in the diagonal of 
the inertia tensor if the coordinate system is selected 
such that the off-diagonal terms of the inertia tensor 
are zero. 

cj Small term in inertia tensor at position (i, j), 

U Tide-generating potential. 

GMST Greenwich mean sidereal time. 

k Tidal effective Love number. 

ks Secular Love number. 
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(eF, OF, Pr) Euler angles relating the fixed ecliptic and the (U)F­
system. If no subscripts are given, the Euler angles 
refer to the (U)-system. 4 is counted positive 
eastward. 

XF Position of (F) in (X)s in complex notation. Similar 
notations are used for other axes. 

XFr Free motion of (F) in (X). 

Xrr Forced motion of (F) in (X)E. 

XFP Precession of (F). 

XFN Nutation of (F). 

UFf = UlFf + iULF Complex notation for equatorial components of unit 
vector of forced motion of (F) in (U)-system. 

U~h Same as above except for free motion of (F). 

6 Ff, $rf Forced motion of (F) in obliquity and longitude. 

6 FP, 4 FP Precession of (F) in obliquity and longitude. 

6 FN, 4 FN Nutation of (F) in obliquity and longitude. 

9o Frequency of Euler motion (rigid body). 

0>rFrequency of Chandler motion (elastic body). 

xi 



1. INTRODUCTION 

The strong increase in measurement accuracy, which is expected from 

the new laser generation, makes it necessary to look anew at the underlying 

principle of astronomical frames and their suitability for lunar laser ranging. 

No attempt is made in this study to introduce a new dynamical theory; rather, 

extensive use is made of available theories. Special efforts are made to 

identify the various axes, to discuss their relative body-fixed (with respect to 

the body) and space-fixed (with respect to inertial space) motions, and to 

investigate their dependence on defining constants, time varying parameters, 

suitability for providing a defining direction of reference, etc. 

The simplest theory is that of the rigid body earth model. The earliest 

investigations on this subject are several centuries old. The theory was 

essentially completed by Oppolzer [1882] when he included small secqnd-order 

terms in his solution and thus derived the expressions for the diurnal body-fixed 

motions of the instantaneous rotatioin axis (I), which are a result of luni-solar 

attraction. Unfortunately, he re-emphasized an older concept, saying that the 

astronomical observations refer to that equatorial plane which is orthogonal 

to the instantaneous rotation axis (1) and neglected to investigate the question of 

observability anew in view of his expanded and more complete rigid earth theory. 

See [Oppolzer, 1882, p. 155]. Subsequently, the officially adopted set of nuta­

tions has always been given for the instantaneous rotation axis (I). It was only 

very recently that the question of observability was taken up again by Atkinson 

[1973, 1975, 1976] and Ooe and Sasao [1974]. Severe difficulties of an habitual 

as well ds a practical nature (since a large amount of astronomical data has 

been reduced in a certain manner) surfaced at two recent international meetings 

at which this subject was discussed. In an attempt to correct the situation the 

General Assembly of the International Astronomical Union at Grenoble in 1976 
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[IAU Transactions, 1977] passed a resolution to adopt the forced rigid body 

nutations of the axis of figure (F) instead of those of the instantaneous rotation 

axis (I). However, in a subsequent meeting [IAU Symposium No. 78, 1977], at 

which a set for the nutations of the nonrigid earth was adopted, the resolution of 

Grenoble was ignored. It is thus appropriate to discuss the question of observa­

bility in this study and to elaborate on the observational significance of the 

periodic diurnal body-fixed motions of the instantaneous rotation axis (I). The 

most accurate rigid earth theory available at this time is that by Woolard [1952] 

which was officially adopted. 

Besides the rigid model the motion characteristics of more elaborate 

models such as the elastic model and models with liquid core will be inves­

tigated. The long history of research in the various earth models has not only 

produced more realistic models but also an amazing amount of confusion in 

terminology. In Table .1 a summary of those phenomena which will be dis­

cussed in great detail in this report is given including a summary of terms 

which can be found for them in the literature. Note that the terms in each box 

describe one and the same motion. No guarantee is given that the lists are 

complete. Table 1. 1 is divided into two groups of motions. The body-fixed 

and space-fixed motions are called polar motion and nutation, respectively. 

This basic classification is the same as that given in [Munk and MacDonald, 

1960]. The characteristic is that polar motion changes latitudes, whereas nuta­

tion changes declination. The subdivisions are made according to the earth models 

and the cause of the motion. The force-free motions are similar in character to 

constants of integration and can exist independently of the forced motions It is 

also seen that the term "wobble" is associated with force-free body-fixed motions. 

The word"free" generally denotes force-free motions. In some cases even the 

body-fixed motions are called a "nutation." Such terminology is used to illus ­

trate that any periodic motion should be called a nutation. If such conventions 

were to.he followed, a unique identification of the motion components would 

require information ae to whether the motions were body- oIJspace-fixed and as 

to their periods. The'liquid core model introduces new motions in addition to 
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Table 1 1
 


Terminology Related to the Motions of the Instantaneous Rotation Axis (I)



Polar Motion 	 Nutation
Model Excitation 	 (Body-Fixed Motion) (Space-Fixdd Motion) 

la. Chandler motion (elastic model) 
force-free lb. Euler motion (rigid model) 	 free nutation-

2. wobble 

1. Oppolzer terms 	 1. astronomical nutation§
luni-solar 2. forced dirunal motions 2. forced nutations 

CA attraction S3 dynamical variation of latitude 3. nutations
P4 	 (longitude) 

4. diurnal polar motion 

1: nearly diurnal free wobble (NDFW) 1. associated free nutation 
force-free 2. nearly diurnal free polar mbtion to NDFW 

O 3. nearly diurnal free nutation 2. 	 free principal core


nutation



core resonance causes changes in diurnal polar motion and nutation (no name given) 



those of the rigid-body model. These are motions of the shell which result from 

interactions between the shell and the liquid core. The motions depend on the 

assumed structure of the shell and the core. If the core is assumed to consist 

of several layers of equal density then there exisft the possibility of several 

nearly diurnal free wobbles. The free nutation due to the presence of the core 

is sometimes referred to as "free principle core nutation." The word "core" 

should be interpreted in such a way that the core is responsible for the particular 

nutations of the shell. This motion, therefore, should be detectable from 

instruments located on the surface of the shell. Despite the many names in 

Table 1.1, the motions in each row are related by very simple kinematical 

relations. According to the classical theory of Poinsot any rotational motion 

of a body around a fixed point can be represented by the rolling of a body cone 

onto a space cone. The line of contact is the instantaneous rotation axis (I). 

In Section 2.3.5, Poinsot's kinematical representation is discussed in detail. 

It is not only the motion of the instantaneous rotation axis (I) which is of 

concern here. The following axes also have important body-fixed and space-fixed 

motion characteristics which will be investigated: 

(a) angular momentum axis (H) 

(b) axis of figure (F) 

(c) axis of Eulerian pole of rotation (Eo) 

(d) axis of celestial pole (C) 

The angular momentum axis (H) has the useful property that its spatial motion is 

nearly independent of mass redistributions of the magnitude which is expected 

for realistic earth models [Fedorov, 1958]. The axis of figure (F) coincides 

at any instant with the direction of the maximum moment of inertia. The term 

"Eulerian pole of rotation" was introduced by Woolard [1952]. It corresponds to 

the position which the instantaneous rotation axis (I) would occupy if there were 

no external forces acting on the body. The term "Celestial Pole C"I is used in 

this study to denote that pole to which astronomical observations and also lunar 

laser range observations refer. Its defining property is that it has neither 

periodic diurnal body-fixed nor space-fixed motions. It is now evident that the 
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expression "polar motion" is not unique; rather it is necessary to.name the axis 

to which it refers. 
. The various motion, components are explained most easily in terms of 

the corresponding mathematical expression. Therefore, a rather complete 

mathematical derivation is presented for the rigid and elastic models. Both 

models are treated together. With some simple specifications one can modify 

the results for the elastic body so as to obtain those of the rigid body. The 

derivations make heavy use of the works by Fedorov [1958] and McClure [1973] 

who gave a comprehensive derivation of diurnal polar motion. First, the nuta­

tions of the axis of angular momentum (H) are computed. Since the spatial 

motions of (H) are nearly independent of mass redistributions inside the earth, 

the simple rigid earth model suffices for the computations. In fact, the deri­

vations were done by Woolard [1952]. However, the most important steps in the 

derivation will be repeated using Doodson's [1921] tidal development in order to 

compute the luni-solar torques. This procedure can be found also in Melchior 

and Georis [1968] It has the advantage that it demonstrates the relationship 

between the nutations and the earth tides. In a second step the diurnal polar 

motions of the axes (H), (I) and (F) are derived and their observational signifi­

cance is analyzed. The spatial motions of the axes (I), (F) and (C) will be 

obtained by transforming their diurnal polar motions relative to (H) into correc­

tions which are to be added to the space-fixed motions of the angular momentum 

axis (H). 

The liquid core model is treated in a merely descriptive manner. Any 

rigorous mathematical treatment of such models is beyond the scope of this 

study. The various new motions are analyzed for their observability and the way 

in which they influence the choice of a reference axis. Probably the most classi­

cal mathematical development for liquid core models in recent times is that of 

Jeffreys and Vicente [1957a, b]. 

The analysis regarding observability is based purely on geometric con­

siderations. The observations are assumed to be reduced correctly (tidal 
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corrections, aberrations, etc.). In many cases the question of observability 

is analyzed conceptually, regardless of whether or not a particular measure­

ment system is capable of reaching the required accuracy. In this report, 

the classical astrdnomical observations are analyzed. In [Leick, 1978] the 

analysis is extended to lunar laser ranging. 
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2. 	 MOTION SPECTRUM FOR RIGID AND 

ELASTIC EARTH MODEL 

2.1 Fundamental Differential Equations of Motion 

2. 1. 1 Axis of Rotation (I) 

In a geocentric inertial frame (X)E the motion relative to the center of 

mass is at every instant a rotation around an axis through the center of mass, 

in which the rate of change of the angular momentum vector H about the center 

of mass is equal to the resultant torque L. 

L 	 (2.1-1) 

The time derivatives refer to components on the inertial axes since this form of 

the equation of motion holds only in an inertial system. 

The equation of motion involving the time derivatives of components 

with respect to the moving axes (U) is [Goldstein, 1965] 

d1t)XE 	 (tU\dt} (}+ X H 	 (2.1-2)-

W is the angular velocity vector of the moving frame with respect to the inertial 

frame. The angular velocity vector lies along the axis of infinitesimal rotation, 

a direction which is also called the instantaneous axis of rotation (1). 

The equations (2.1-2) are a system of three linear first-order differen­

tial equations They are usually referred to as Euler's dynamic equations. 

Substituting equation (2. 1-1) in equation (2.1-2) and making use of the usual 

summation convention, which calls for a summation over repeated indices, 

equation (2. 1-2) is equivalently written as 

Li - + C ak & Hk i,j,k = 1,2,3 (2.1-3) 
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All components in the equation above refer to the moving axes. Eijk is the 

"alternating" tensor, defined by the following properties: 

0 if any two subscripts are equal 

Eljik 1 for even permutation 

-1 for odd permutation 

Equations (2.1-3) are quite general. They represent the rotational motion for a 

rigid or elastic body. The standard expressions for the angular momentum, the 

tensor of inertia, and the relative angular momentum are, respectively 

Hi = hj W + h 

IIJ = 	 f(UkUk 61j - U Uj) dm 
N (2.1-4) 

hi = 	 f Eik Uj Uk dn 
M 

The symbol 6 jabove denotes the Kronecker delta. The relative angular mo­

mentumiscaused by internal motions of the mass particles themselves. The 

dot in IUk denotes differentiation of Uk with respect to time. The integration is 

taken over the whole body of mass M. 

Substituting equations (2. 1-4) in (2.1-3) leads to yet another form of the 

equations of motion, usually referred to as the Liouville equation 

Li dt(ItiWj + hi + Eljk Wj (IkI W,+ hk)(21) 

The orientation of the rotating coordinate system (U) is arbitrary at this point. 

An extensive discussion on the possible choices can be found in [Munk and 

MacDonald, 1960]. Obvious candidate axes are the principal axes for which 

the products of inertia are zero. The body-fixed system (U) to be used in this 

study 'i's attached in a "prescribed way" to some observatories, and its origin 

is at the center of mass. Thus the (U) -system and the axis of figure system 

(U)F do not necessarily coincide. The introduction of the (U)-system allows a 

slightly more general formulation of polar motion inasmuch as it introduces 
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- - 

constant components in the off-diagonal positions in the moment of inertia 

tensor. These terms are responsible for a constant polar motion component 

which is equal to the angle between the third axis of the (q)-system and the 

axis of maximum moment of inertia. The periodic polar motion components 

are independent of the specific choice of the (U)-system This fact justifies the 

use of the term inertia "tensor." It is thus permissible to select the coordinate 

system according to its advantages in formulating a specific motion most 

simply. At this stage of the development it is only required that the third axis 

of the system (U) be nearly aligned with the rotation axis such that the products 

and squares of certain small quantities are negligible. 

For evaluating the Liouville equation, the inertia tensor has to be known. 

In order to emphasize that the constant components are included in the off­

diagonal terms, the subscript U is used. Thus, 

-i +cIeC1e2 013 

Iu = c2 Ai+c2 c2 j (2.1-6) 

C13 C23 A3+ cM



A1 and As are the least and the maximum moments of inertia. The cij are small 

quantities compared to A1 and As. The angular velocity components in (U) are 

Wu = = uU21 j (2.1-7) 

f is the mean angular velocity of the earth rotation The dimensionless numbers 

utn are very small. In fact, uiz as well as cij/As and hi/As which appear in the 

Liouville equation are of the order i0 - or even smaller for realistic earth 

models. Neglecting second-order terms in these quantities gives a first-order 

theory accurate to order I0- 6. Equation (2.1-5) reduces to 

Li = Alu110 + c1s0 + h + usi(As-Al)0 can' h-

L2 = Aiu 2xQ + C*Ps + i - un(A3-AI)0 2 + c1 0 2 +h1 26 (2.1-8) 

Las= cm &I+ A3 nar0+bia 



u31 and ui appear only in the first two equations of (2. 1-8), whereas 1b is only21 3 

present in the third equation. This makes it possible to separately solve for 

the quantities (uli, u21) and (usi), respectively. Using complex notation, the 

first-two equations in (2 1-8y)are comribined as 

t = o (ul - IJ) (2.1-9)a, 

The symbols have the following meanings: 

II = 11r + i1121



r,= A3-A
Ai


iL c ic h ih 

+ ­(As -A1 )C 2 As-Aa (A-A,)f (As-A)ijC (As-A)-

The complex quantities are: 

"'I, = 'P1 + it2



L = Li + iL2



C = C13 + ic 2 3



h = h1 +ih 2 

The dimensionless function 'If is called the excitation function. It is a function 

of the torque, the inertia tensor, and the relative angular momentum. The 

third equation in (2.1-8) becomes 

La _m - 3 (2.1-10)
A3 fl A AfL 

The complex variable u completely describes the body-fixed motion of the 

instantaneous rotation axis (I) in the -frame (U). The direction cosines of (I) 

are obtained from equation (2.1-7) as 
=-___(ui , u21, 1) 

where second-order small quantities are omitted. 
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•2.1.2 Axis of Angular Momentum (H) 

'The motion Of the angular-momentum vector in the (U)-system is given 

by equation (2.1-4). Neglecting; once again, the second-order terms, equation 

(2. 1-4) becomes., I. 

H = Ai6 u+ Qc +'h 
(2.1-12)

H3 = As (+u3i) + cmD + b3 

with 

H = H1 + iH2 

Thus, substituting the solution of equation (2. 1-9) for the instantaneous rotation 

axis (I) into equation (2. 1-12) gives the body-fixed motion of the angular momen­

tum in the (U)-system. The direction cosines, accurate to the first order, are 
it Hi HaH = - - A 1 (uiN, U2H, 1) (2.1-13) 

The position of the angular momentum vector in the terrestrial system is 

largely a function of the position of the instantaneous rotation axis which is given 

by ur. But the relative position of these two axes is, in addition, directly 

dependent on the disturbances of the tensor of inertia"and the relative angular 

momentum. Equations (2.1-12) and (2.1-13) give 

hur+c+-uUH- A3 -A As As-Ui A:L 

An estimate for the coefficient of u on the right-hand side is 

As-A 1 _ 0.0033


A1



For an elastic earth model or in any other nonrigid model for which c and h 

are not zero, a more significant separat16n is expected between the angular 

momentum'axis (H) and the instantaneous rotation axis (I). 
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2.1.3 Axis of Figure (F) 

Themotion of the axis of figure is a function of the disturbances of the 

inertia tensor. In the principal axis system()F, in which the third axis coin­

cid, s with the axis of figure (maximum moment of inertia axis), the off-diagonal 

elements of the inertia tensor are zero. The third axis of the two systems (U)r 

and (U) are related by two small orthogonal rotations as follows: 

(U)F = R 2 (111F) R (-u2r) (U) R(uir, 112F) ( 

uIF and UF are the direction cosines of the axis of figure (F) in the terrestrial 

system (U). Next, the inertia tensor I u of equation (2.1-6) is transformed to the 

principal axis system. The transformation properties of the components of the 

inertia tensor are determined by the fact that the matrix lu transforms under R 

by a similarity transformation [Goldstein, 1965, p. 147]. 

" i - RIu RIF 

To the first order, the inertia tensor in the (U)F system is, therefore, 

A1 + cii c12  [uIr(Ai -A 3 ) + cr3] 

IF = c1 A1 + c22  [usr(Ai -As) + c23] (2.1-14) 

[ULF(Ai -As) + cis] [ntU(Ai -A) -+ cm] A3 + ca I 

The diagonal elements remain unchanged after the transformation. Since the 

off-diagonal elements are zero in Ip at all times, the following relations for 

the direction cosines are taken from (2.1-14): 

013


11F-As-A, o (2.1-15) 

liar = 

A-Ai 

The small terms cii, ci and cs which are present in IF do not enter the 

excitation function T explicitly. - In-case cr3 #0, an additional rotation around 

the third axis will complete the diagonalization of the inertia tensor. Such a 

rotation, however, is not of concern here when treating only the aspect of polar 
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motion. Equations (2.1-15) clearly show how a constant term in cis and c2s 

causes a constant component in u , i.e., a constant offset between the third 

axis in the (U)-system and the axis of figure. In complex notation the direction 

cosines are written as 

UF = U1F + i11F 

With the help of (2.1-9), equations (2.1-15) which determine the direction of the 

axis of figure (F) in the terrestrial system (U) are written as 

c (2.1-16) 
UF

 As -A1 

2.1 4 Coplanar Motion 

Combining the equations (2.1-11), (2, 1-12), (2.1-13) and (2.1-16) 

gives an interesting relation: 

- A1 h (2.1-17) 

The presence of the relative angular momentum in equation (2. 1-17) is some­

what disturbing in view of the geometrical- interpretation. If 

h = 0 (2.1-18) 

then the angular momentum vector, the axis of figure, and the instantaneous 

rotation axis are located in one plane, as is expressed by 

A1 

or (2.1-19) 
U. A3 -A, Fu 1 -uH As (u 1 -ur) 

Such a motion is certainly true for a rigid body motion where h = c = 0. The 

separation between the various axes is a function of the moments of inertia. 

For a spherical body with A1 = A3 , the separation between (I) and (H) vanishes. 

Since for a realistic earth model the ratio Ai/As is smaller than unity, the 
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angular momentum axis lies always between the axis of figure and the instan­

taneous axis of rotation. These motion characteristics are valid whether or 

not external torques act on the body. 

2.2 Spatial Motions of the Axis of Angular Momentum 

2.2.1 Euler t s Kinematic Equations 

The relationship between the coordinate system (U) and the inertial 

system (X)E, i. e., the ecliptic system at a standard epoch To,is given by 

Euler's kinematic equations. The situation is demonstrated in Figure 2. 1. 

Fixed



Figure 2. 1 Euler's Kinematical Relations 
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The Euler angles (6, 0, P) and their time derivatives (b, 4, P) repre­

sent the motion of the (U)-dystem in space. But since this system is rigidly 

connected to the body, the angular velocity components W± as per equation 

(2. 1-7) describe the same motion. The relation between the two sets of angular 

velocities is found by resolving each of the angular velocities 6, , , along the 

(U),U2, U3)-axes and adding the components along each axis as follows: 

6- cos - sinesin 

Wc2 = Osin4, - 4sin cos P (2.2-1) 

W'S = cosG+ 

The inverse relations are 

sine = -wsinp - W2 cos4p


B - O (2.2-2)Cos(P + W2sinp
 
=p W3- cos 6 

2.2.2 Poisson's Equation of Motion 

The spatial motion of the angular momentum vector is the least sensitive 

axis regarding internal mass movements. Mass redistributions affect the 

motion of (H) in space only through their effect on the luni-solar torques. 

Fedorov [1958] made an extensive analysis of these disturbances. His calcula­

tion showed that the luni-solar torques as computed for a rigid and perfectly 

elastic earth model differ only in the order of 107r. Within such an accuracy 

level, therefore, the computation of the nutation of the angular momentum can 

be based on a rigid earth model. 

Here a rigid model with equal least and intermediary moment of inertia 

is selected. Although the system (U) was used in Figure 2. 1 for the purpose of 

a more general representation, permitting a separation between the Us-axis 

and the axis of figure, the following derivation refers to the (X)F-system, whose 

third axis coincides with the axis of figure (F) and whose first axis is along the 

node line as defined by the fixed ecliptic and the equator of figure. There should 
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be no confusion about the various coordinate systems used here. The (X)F or 

(U)F-systems are especially useful for dynamical purposes since the tensor of 

inertia is diagonal-in this system. (U)F and () are related via equation (2.1-16). 

A further simplification is achieved by assuming the same magnitude for the 

least and intermediary moment of inertia, i.e., A, = A2. In such a case the 

selection of the first axis in (U)p is arbitrary. 

The coordinate system (X)F does not take part in the daily rotation of the 

earth. Its orientation in space changes only due to precession and nutation, 

which is being expressed by the small rotational velocity W '. The components of 

w' onthe axes of (X)p are obtainedby substituting= and =O in equations (2.2-1): 

W2)' = - 4F sinOF (2.2-3) 

Ct)3 = 4COS OF 

These velocities can be substituted in Euler's dynamic equations (2. 1-3). 

The angular momentum is 

H1 = A±Ct4 i=l, 2 (2.2-4) 

HaI = As (Ca' + ) = AaCAW3 

The velocities C)[in these equations are due to the motion of the frame (X)F with 

respect to (X)E, and W3 is the velocity component of the earth rotation about the 

third axis with respect to the same system. Equations (2.2-4) are valid at any 

instant. Since the moments of inertia about all the axes perpendicular to the 

axis of symmetry are the same for the model to be considered here,. the moments 

of inertia A± do not change with time even though they are not referred to an axis 

attached to the body. 

Euler's dynamic equations (2.1-3) in the (X)F system are 

1+ W 2'A (+ ) - W 2'' = tix,3 

Wa'Ai (2.2-5)A16J 2' - W1A,(W;±+)- &= 
 LWx' 


A4s a'+ 0") +CIAi2'-WL&AW IS3XF
16 = 
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These equations are rigorous. Their solution, in combination with (2.2-3) 

would yield the nutation of the axis of figure. No attempt is made to solve this 

system of equations, rather the motions are investigated which result if 

certain simplifications are introduced, such as neglecting the product of small 

quantities Wi and their derivatives. The first two equations of (2.2-5) then 

give Lix 

(2.2-6) 

The third component IS XF is identical to zero because of symmetry relative to 

the equator (compare Section 2. 2.3). Therefore, the third equationin (2.2-5)gives 

A3 = 0 

which has the solution 

S= constant 

is the mean velocity of the earth rotation. Previously we denoted this mean 

velocity by 2 so that we have the identity in notation 

-- (2.2-7) 

Using equations (2.2-3) and (2.2-7), we obtain from (2.2-6) the well-known 

Poisson equations of motion 

-
sin U 

A's a (2.2-8) 
L2x F 

A30 

These equations are of fundamental importance for describing the orientation 

of the earth. Indeed, the Poisson equations are the virtually rigorous equations 

for the nutation of the angular momentum axis (H). To show this, consider the 

coordinate system (X)H 'in which the third axis coincides with (H) and the first 
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axis is along the node line of the fixed eliptic and the plane orthogonal to (H). 

Introduce the Euler angles 04 and OH in order to relate the two systems by 

P)E = HRs(-1) (2.2-9)R(6H) (X)H 

The components of H in the (X)E system are 

Sil*H sinSH


HX E =A30 C0 HSin.4



ExE COS4JOrnS-

cos e 

where IH = AsQ. Equation (2.1-1) cannow be solved directly for the motion of 

the angular momentum axis in space. The first two equations are 

d(-A1shinOH sin%@) = LiXE 

d(Ancos0H sinGH) = L2XE 

Li x Eand L2 xE are torque components in the ecliptic system (X)E. The two 

equations above are solved for the rates of the Euler angles. 

0.= (L~xEeOS4)H - LlxEsfIn*H)/(Aafl cosSA) 

(2.2-10) 

H = (-LixEcOO -HL2XE s in H)/(As 62 sinH) 

The torque in the (X)H system is related to the torque in (X)E according to 

(2. 2-9) as 

LXH = W(-G@)R (OH) Lx E (2.2-11) 

The difference in Lx H and LxF is negligible for all practical purposes because the 

systems (X)F and (X)H are closely aligned. In anticipation of later discussions on 

the free and forced motions, it is noted that in the present context, only the 

effect due to the difference in forced position enters. With this approximation 

and knowing that LsxF = 0, equation (2.2-11) gives 

LixF = LixE COS4H + L2xEsin)H 

L2YF = (-LxESinH + L2X EOS H)/COS H 
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Solving these equations for Ia xE and L2xE, and substituting them in equations 

(2. 2-10) results in the Poisson equations (2. 2-8). 

The most thorough solution'of Poisson's equations can be found in 

[Woolard, 1952]. He made use of a second-order force function for the gravita­

tional attraction. The positions of the moon and the sun were taken from the 

respective theories of Brown and Newcomb. Woolard's form of the Poisson 

equation is his equation (30). The verification of identity between his form and 

equations (2.2-10) can be made almost by inspection. To be more explicit, take 

the right-hand side of Woolard's equation (4) which gives the torque components 

in the (U)F -system as follows: 

Li 

L2 R(P) -/sin6 

iLua 0 

where U is his force function. The third torque component is again zero 

because of symmetry. 

The torque components in the (X)r-system are 

LxF = (-(P) L2 

Ls

11UF 

or 

LxF = - - / sin@ 

0 

Substituting the equation above in (2.2-8) gives exactly Woolard's form of the 

Poisson equations. 
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Historically, the Poisson equations have played an important role in 

deriving a nutation set. The presently adopted set of nutations is that of the 

angular momentum axis (H) based on Poisson's solution [AENA Supplement, 

196-1, p. 44]. Officially-the a optedset is termed the "jjjtation of the rotation 

axis" based on a rigid earth model. But as will be demonstrated in great detail 

in later sections of this study, the separation between the angular momentum 

axis (H) and the rotation axis (I) based on a rigid earth model is smaller than 

O'0002, which is the accuracy with which the adopted set of nutations are given. 

The fact that the angular momentum axis (Poisson solution) is a good approxima­

tiontothe rotation axis can readily be understood byconsidering equation (2.1-19). 

This relationship was first pointed out by Oppolzer [1882]. In fact, in earlier 

times one dealt only with Poisson's equation when computing the nutation and, 

therefore, one was not able to discover the nearly diurnal polar motion terms 

of the instantaneous rotation axis (I). It was Oppolzer [1882] who pointed out 

the importance of the small terms which wereneglected whenderivingthe Poisson 

equations from the dynamical equations (2.2-5). He included these small terms 

in his calculation and demonstrated that the rotation axis and the angular momen­

tum must have a diurnal periodic body-fixed motion. The expressions which 

describe these periodic motions in a body-fixed frame are since called the 

"Oppolzer terms" [Woolard, 1952, p. 159]. The corresponding expressions 

which have to be added to the nutations of the Poisson solution in order to arrive 

at the nutations of the axis of figure (F) or axis of rotation (I) are unfortunately 

called "diurnal nutations," although they do not have any diurnal period whatso­

ever [Woolard, 1952, p. 132]. In Section 2.3 a detailed representation is given 

for all phenomena mentioned above. 

2.2.3 Development of External Torques 

The gravitational potential of the earth at a distant point D (rD, C D, AD) 

of unit mass is [Heiskanen and Moritz, 1966]: 
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V = GM 1I- [Jnm &m (4'o,AD) + Km Sm (D, AD)] (2.2-12)rD -- m J 

The symbols have the following meanings: 

'Do, AD latitude, longitude of the distant body in the axis of figure 

system (U)r 

rD geocentric distance ot the distant body 

a mean earth radius



G constant of gravitation



M mass of the earth



Jnn, Knm potential coefficients 

The functions R and S are 

Rn (D, AD) = P (COs 4D) cos m AD 

Sm. (&, AD) = Pn- (cos "D) sin m AD 

where Pam are associated Legendre functions. 

Since the origin ot the coordinate system (U)F is at the center of mass of 

the earth, the first-order potential coefficients are zero: 

J3.= Jn = KID 0 

Using this condition one can rewrite equation (2.2-12) as follows: 

V = GM i@ J P (sin (D)
rD Fo 

n 

- L Pnn (sin@o) [Jum Pm + Km Sum] 

sThe coefficient J2 is approximately 1& times larger than any of the other coeffi­

cients. The second-order approximation of the potential is 
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V a! GM a J2P2(sin D) 
rD 
 -Y 

This equation.can be modified by using-the-wellknown relati -

A j + A2A-

J2 Ma (2.2-13) 

and 

P 2 (sin@D) - !( 3tFD2 rD 2 

as 

3GM 2 2
V = f(rD) - -ra J2 tU (2.2-14) 

or 

V f(rD) - 2r- (As -Al) USF (2.2-15) 

It is assumed, as usual, that the least and intermediary moments of inertia are 

equal, i.e., A, = A2 . US% is the third coordinate of the distant body in the (U)F­

system. The potential field f(rD) is a central field; it has no effect on the torques. 

The expression of the potential (2.2-15) is identical to the one used by Woolard. 

The general expression for the torques is now readily obtainable. The 

gravitational force between the element dM and the mass of the disturbing body 

MV., taken as a point mass, according to Figure 2.2, is 

dF = GMDdM7 -MDgrad (dV) 
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l 0


F d U3F 

Figure 2. 2 aDLuni-Solar Torque
doM

r 
 

JU3 
 
This differential force causes a torque about the center 0 

With 

--) -- ---­the differential torque is dL r XdF - XdF. The last term in the equa­

tion above is zero. The total torque is after integration 

L uF-. rD X dF = ro x dF = r XF 
M M 

or 

LuF =-MDrD X gradV (2.2-16) 

The gradient of V is according to equation (2.2-14) 

2grad V -- a f o 

Substituting this expression in (2.2-16) one obtains the torque components 

along the axes of (U)F as 

-> 3MDGMa 2J T 
5LuF ro (YDZO , -XDZO , O) T (2.2-17) 
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The third torque component is zero. The total torque is orthogonal to the 

earth-moon line, and zero when the moon crosses the equator. Evaluating 

the torques requires knowledge of the time-dependent positions of the disturb­

ing body m the system (U) F . Such positions are implicit in Doodson' s [1921] 

tidal development. Doodson's development is used here not only because it 

gives the positions of the disturbing body in the system (U)F , but mainly 

because it is anticipated to express the torques, and thus the nutations, in 

terms of harmonic series containing the tidal frequencies. This procedure 

will make it possible to study the relations between nutation and tidal theory. 

In order to make the comparison in the subsequent development 

easier the Cartesian coordinates in (2.2-17) are replaced by spherical 

coordinates. Using the well-known relation 

P21 (sin(PD) = 3sin p cos(PD 

the torque in the (U) F system is 

- G T


LUF = r MMDaJ2 [sinAo P2 1 (sinPD), - cosAa P21 (SinPD), 0]

 (2.2-18) 

Doodson's [1921] expansion of the tide generating potential is now 

given in the notation of McClure [1973]: 

U = G-. I )P (sin(P)ZAJD COS [SmJD + mA+ (n-m)-T] 

D CD =-2m0\M-7 (2.2-19) 

The tesseral coefficients A2 I jD are related to Doodson's original coefficients 

by 
A21J= -tA21JD (2.2-20) 

The index j denotes individual tabular entries. The other symbols in 

(2.2-19) have the following meaning: 
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D.*, .disturbingbody (sun,, moon) 

,MD -mass of disturbing body 

CD , -meandistance- of disturbing body from, geocenter 

G - . constant of gravitation. ­

a mean earth radius 

U~nMJD tidal argument of body D 

(p,A latitude and longitude of a station in the axis of ' 

figure system (ThF 

constant 3.14.'.. 

The tidal argument can be computed from the relation [McClure, 1973] 

Cxnmj + mA= d T + (d2 -5) s +,(ds - 5)h 

+ (d4-5)p+ (ds-5)N' + (ds-5)ps (2.2-21) 

where all di's are integers. For diurnal tide components dl is equal to one. 

The other symbols on the right hand side of (2.2-21) are Doodson's 

standard variables, which are sometimes referred to as the mean longitudes. 

They are related to Brown's fundamental arguments (1 , 1 F,D, 2)as 

mean longitude of the moon s = F + 

mean longitude of the sun h = F-D + 

longitude of lunar perigee p = -1 + F + 2 

longitude of ascending (2.2-22) 

node of the moon(O) N1= -O 

longitude of the perihelion ps =- l'+ F-D+O 

The mean longitudes are measured from the mean vernal equinox. Expres­

sions forBrown's fundamental arguments are given in AENA Supplement 

[1961, p. 44] in terms of polynomials of time. T is the local mean lunar 

time; it is reckoned from the lower transit of the moon. Finally, the Green­

wich mean sidereal time is [Doodson, 1921] 

GMST = T + S - - A (2.2-23) 
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This relation assumes that the zero longitude is at Greenwich. Such an identi­

fication is possible because the least and intermediary moments of inertia 

are equal in our basic ,dynamical model. For reasons of abbreviation the 

tidal argument (2.2-21) is sometimes given in the code form 

di d2 da. d4 ds de. 

As can be verified with the help of equations (2.2-21) and (2.2-23), the code 

form, e.g., 165.555, denotes the tidal argument with sidereal frequency, 

which sometimes is also symbolized by sK1 or mKi depending whether it 

results from solar or lunar attraction. The positions of the disturbing body 

in (U)F are obtained by comparing a formal spherical harmonic expansion 

of the tide generating potential with equation (2.2-19). Such a formal expan­

sion is [Melchior, 1966, p. 15], 

go 

-GMDZ-- P (cOS ') (2.2-24)
D = 

The angle Y is the spherical distance between the station vector and the 

vector to the disturbing body, so that 

cos Y = sin (sin D +Cos (cos PD cos (A-A) 

Using the decomposition formula (Heiskanen and Moritz, 1966, p. 33) the tide 

generating potential (2.2-24) is written in the general form 

U =/- n=;DEm W.. (sinPP (sin )cos m(A-A 0), (2.2-25) 

W 2n-m).where 
(n+m) ! 

dnd W01  1 
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Substituting 

cos m(A-A0 )= cos mAcos m AD+ sin m A sin mAD 

into equation (2.2-25) and replacing the tidal argument in equation (2.2-19) by 

cos (a. +jmA+ (n-m)-)
2



=cos (mA) cos nmD+ (n-rn) .9-i~n~i~amn+(-n



a comparison can be made of the coefficients of sim Aand cos m A in the 

equations (2.2-25) and (2.2-19). The following relations are found: 

n+1 

Wm (sin o) cos mA 0c 
_I V sn siam AD 

(2.2-26) 

I nan cosCoZ + (n-rn)

D D-sin [anai + (n-m)' J


Only the terms ivith' a = 2 and m = 1 enter into the torque equations 

(2.2-18). Combining equations (2.2-18) and (2.2-26) finally gives 

expressions for the torques 

LlF = 0MM0 eL."J 2 A cos(a 

L, FGMDC 0D.3J A21JS~D CO(I2D)
a2



= GMM a2 3J2 E . *A2,i o sin (a21,4) (2.2-27)I 4CD j 

LSUF = 0 

If J2 is replaced by (2.2-13) and the equation (2.2-20) is used then the 

equatorial components of the torque in the (U) F-system are in complex 

form: 

Lu= Aj 0 e -i(aq ) (2.2-28) 
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where 

3 G (2.2-29) 

The subscripts 2 and 1 are omitted in the exponent of (2.2-28). As an 

intermediary result it is seen that the torques and thus the nutations 

depend only on the tesseral harmonic coefficients A2,. The torque com­

ponents in the system (N)F are 

Lx r = LUFe 

(2.2-30) 
e

A4De.'(UD 

qo is the Euler angle which measures the earth rotation. 

The expressions (2.2-30) can be modified to express the torque in 

terms of frequencies which are symmetric with respect to the earth rota­

tion (sidereal frequency). Combining equations (2.2-21) and (2.2-23) and 

taking only the second order tesseral, i.e., n = 2 and m = d1 = 1, gives 

the tidal argument 

= GMST + IT + (d1-6)s + (ds-5)h + (d-5)p 
(2.2-31)

+ (d 8 -5)p s+ (d5 -5)N' 

Combining the latter terms this tidal argument can be rewritten as 

a = GMST + IT+ Aaj (2.2-32) 

where 4aj is called the nutation argument. The mean sidereal frequen­

cy is 

(GMST) (2.2-33) 
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Two frequencies are symmetric to 0 if 

=2+ 

_ = (2 + A&1 _ (2.2-34) 
and 

A - -A_ 

hold. The positive sign in A!it+ denotes that & > 2. In terms of the 

tidal arguments the symmetry is expressed as 

GMST + IT + A (2.2-35) 

j_-= GMST +" Ir + A j 

Such a splitting up of tidal frequencies is implicit in Doodson's develop­

ment. The respective symmetric frequencies in the expression (2.2-30) 

can now be combined with the help of equations (2.2-35) as follows: 

A,+e -i(aZ +-) + Aj _e i(cj _(p) 

= A + e -i(GMST-p+r+A aj+) + A2 -e -i(GMST-(p IT-A 1j +) 

(2.2-36) 
- (GMST - (p) [ -(A , + = e +A j _ )cos Aa2 + + i(Aj+ -Aj_) sin Aa +] 

The small difference between the Greenwich mean sidereal time, GMST, 

and the Euler angle op is due to luni-solar nutation and planetary preces­

sion. It causes the coefficients in the expansion of the torque to have a 

minor time dependent variation. The most important of these is due to 

planetary precession because it is secular. It is responsible for small 

secular terms which can be found in the nutation tables [Woolard, 1952, p. 

153]. For the purpose of discussions in this study, the approximation 

GMST qi (2.2-37) 

is made whenever torques are computed. It may be emphasized that the addi­

tional differencebetweenGMST andp whichis dueto the freemotion is not 
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important in calculating the torques. In fact, all our derivations, so far 

as they are dealing with the forced motion, correctly assume that polar 

motion is zero. Polar motion, a result of the homogeneous solution, is 

independent of the forced solution. 

From equations (2.2-30) and (2.2-36) the expression for the torque 

becomes 

Lx =- [- (Aa++ A3-) cos AaJ++ i(Aj+ - A3 -) sin aj+] (2.2-38) 

Thus, two tidal waves which are symmetric to the diurnal frequency form 

only one constituent in the torque. It is understood that the summation 

includes both the lunar and solar terms contained in Doodson's tidal 

expansion.



2.2.4 Integration of Poisson's Equations 

The solution of the Poisson equations gives the nutation of the 

angular momentum axis (H). Denoting the derivatives in the Euler angles 

by 

k = OH + i OH sinG (2.2-39) 

then from the Poissont s equations (2.2-8) it follows 

i LAF 

-e 

The homogeneous solution (force free, L 0) is 

XHU = c (2.2-40) 

where c is a complex constant. This expresses the simple fact that the 

angular momentum vector forms an invariant direction in space if no external 

forces act on th'e body. 
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A particular solution (forced motion, L =# 0) is given by 
t 

(2.2-41) 

- iE - [-(Aj++A 3_)cosAa 3 ++i(A 3+-A,_)sinAa+] dr 
AsQf 

where the luni-solar torque of equation (2.2-38) is substituted. Aaj is'a 

polynomial in time. Before integrating, sidereal terms with -a = 0 are 

separated. The sidereal terms have per equation (2.2-31) the argument 

number 165.555. They cause the secular terms in the expressions of the 

Euler angles and constitute theluni-solar precession. There are two 

waves with sidereal frequency called ' K, , and 8 K , which are due to 

lunar and solar attraction, respectively. Thus, e.g. (2.2-41) gives for 

precession and nutation 

XHf -XH P XHN



- (A, + A , )t (2.2-42) 

- (A + -A - ) (A ++ A4)1 ' Usng+ &--Z+ cos Aa + + I A& 3 sin - + 

Using the torque in the form (2.2-30) and substituting equations (2.2-31) 

and (2.2-37) an equivalent expression for the nutations can be found 

XHN I L -iAajAsO . oje (2.2-43) 
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The summation goes over all j, excluding those for which A aj = 0 

The luni-solar precession XHP of the angular momentum axis (H) is 

according to equations (2.2-39) and (2.2-42) 

t 

H P =4 As5 sin A(mK+ A
Ao ) (2. 2-44) 

OHp = 0o
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The two tidal amplitudes of equation (2.'2-44) are related to the actual 

values given in Doodson's table by equation (2. 2-29). Doodson's 

coefficients are negative so that one obtains a circular westward motion 

of the angular- momentum axis due 'to -precession. The subscript HP 

indicates that the elements of precession refer to the angular momentum 

(H). This is especially important for the obliquity O p. It will be 

demonstrated laterthat the obliquityof the celestial equator (Section 2.3.4) has 

a slightly different value. Since 6 HP is a constant it appears as if there 

is no luni-solar precession in obliquity, i.e., the fixed ecliptic and the 

mean equator always subtend the same angle. But this is only true 

because the planetaryprecession was neglected when computing the torques, 

as is implied by the approximation (2.2-37). The inclusion of the planetary 

precession results in small non-linear precessional terms in both longi­

tude and obliquity. A more complete expression for luni-solar preces­

sion is 

OfHP = fit + fSt 2 + (2.2-45) 

t2 +eHp = 60+ e ' 

f1 is called the constant of luni-solar precession and can be identified 

with the corresponding factor in equation (2.2-44). The coefficients f2 and 

6, are computable from theory. The 'respective expressions are given in 

[Woolard and Clemence, 1966, p.242]. Note that there is no linear term in ob­

liquity. For the sake of completeness it is mentioned that the use of 6 o instead 

of 0 in the first equations of (2.2-44) and (2.2-45) implies that the nutations XMN 

should be amended by very small periodic terms whose arguments are those of 

the nutations but whose coefficients change linearly with time. Regarding the 

nutation, the following observations are made from (2.2-42) and (2.2-43): 

1. Each nutation constituent is in general an elliptic motion. 

It can be separated into two circular motions which have 

opposite angular velocities. If Aj- = Aj+, the nutation is 
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circular. There, will be no term in the obliquity. An 

example of,such a motion is the annual nutation term 

due to the solar tides. 

2. 	 Because of the presence of Aa in the denominator the 

contribution of a particular tidal wave to the nutation 

depends not only on the magnitude of the tidal wave but 

also on the location of its frequency relative to the sidereal 

frequency. Those waves which are close to the sidereal 

frequency 165. 555 have an amplified effect on the nuta­

tions. 

3. 	 The nutations are officially tabulated in the form 

XN= (aj cos Aaj+ + ib1 sin A a+) 	 (2.2-46) 

a; j+ -Aj.1 
 

AsO Aaj+



with


Aj 	 _Aj + +bj A+Ab=-'1 

AaL2 Aa(ij 

It is customary in astronomy to count the Euler angles 

4 positive westward. This is contrary to the convention 

adopted here. 

4. 	 The method chosen here for deriving the nutation, i.e., 

using the precise numerical expressions from Doodson's 

development, concedes an important relationship between 

the constant of nutation N and the luni-solar precession 

OHp. N is the nutation coefficient in obliquity associated 

with a 18.6 year period. Using a series expansion for 

the 	 eccentricity and inclination when, computing the 
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lunar and solar coordinates the following literal expres­

sions can be shown to hold [Kulikov, 1956]: 

As -A, -Hp A- cos Hp (K + K') 

As -A 

- -A (4871.' 140 + 866195".0 - P) 

As 1 

(2.2-47)
N =rucos6e~ 1+-. 
 AsA-A,N 

l~ji As


As -A,
- A 231 981.8



As 1+A



g is the mass of the 	 moon in units of the earth mass and 
,the coefficients K, K and HI are functions of the orbit 

elements of the moon and the sun. The latter can be com­

puted from theory with sufficient accuracy. The numer­

ical values which are given here refer to the standard 

epoch 1900.0. Combining equations (2.2-47) gives 

H' 1K _-11 
N=4C HP (--7+~ 

(2.2-48) 
47. 6237 f


-1+ 178.822



The importance of these formulas is that given the observa­
4tions for OH p, and N one can compute the dynamical flatten­

ing and the mass ratio pt. However, the mass ratio obtain­

ed in this manner is not consistent with the values based 

on recent data from lunar and planetary space craft. This 

discrepancy is one of the outstanding problems in the sys­

tem of astronomical constants. It indicates that the under­

lying simple nutation theory is not adequate. A partial answer 

is given when considering earth models with liquid core 

(See Section 3). 
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2.3 Relative Motions 

2.3.1 The Complete Excitation Function 

In order to proceed with the solution of equation (2.1-9) for the 

motion of the rotation axis (I) the disturbances c in the inertia tensor 

and the relative angular momentum h, which are to be used in the excita­

tion function (kP)need to be computed. For a completely elastic body 

(Hooke body) the derivations can be found in the standard literature. The 

following expressions for the disturbances of the inertia tensor are taken 

from McClure (1973). 

The perturbations due to rotational deformation are 

k


c13RD - ks (A3 - A,) ul1



k 

c23RD =k (As -A 1 )u21 

In complex notation the perturbation is written as 

k (A3 -A) u(2.3-1) 

The secular Love number k. is 

k= = 3G(A 3 - A,) (2.3-2) 
5a 

and k is the tidal effective Love number. The perturbations due to tidal 

deformation are 

kM0 
CISM a 5 ZA, sina, 

0 

kM0


C2 3 TD a A,Aij cos a,



or 
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CT 	 =- MD- a5 D A2,je (2.3-3) 

The 	 misalignment of the third axis of (U) with the maximum moment of 

inertia axis (F) is exrressed by the constant corrections 

=Co Cio + i C20 	 (2.3-4) 

Only those perturbations are given above which directly effect the 

equations of motions (2.1-9). These perturbations result from the second 

degree tesseral harmonic coefficients of the expansion of the earth' s 

gravitational and tidal potential. The zonal coefficients effect only the 

diagonal terms of the inertia tensor, and according to equation (2.1-10), 

the velocity of rotation of the earth. The sectorial coefficients contri­

bute only Cn , cm, and c, 2 ' The excitation due to the relative angular 

momentum h in 11, is according to equation (2.1-9) 

h 	 . h ih 

(As - A1 )n (As -A1)0 

An estimation of h the case of an elastic body is given in [Heitz, 

1976, Appendix 3] He found that Th is negligibly small. 

2.3.2 Body-Fixed Motion 

The complete solution for the body-fixed motion of the instantane­

ous rotation axis is the sum of the homogeneous solution (force free, 

'I = 0) and a particular solution (forced solution, ' #0) of the differen­

tial equation (2. 1-9) 

, = iUr(ut-'1 ) 

The complete solution is 

t 
u = unoe rt - eirt icrf4 (7) e ia dr (2.3-5) 
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u. is a complex constant of the homogeneous solution. The excitation 

function 'I in (2.1-9) is given by equations (2.2-20), (2.2-28), (2.2-29), and 

(2.3-1) to (2.3-4). The solution for u, after integrating (2.3-5) and 

some lengthy algebraic rearrangement is 

iaot ~ s Ae-liaZ 
uX+ (2.3-6)I 

S A- q 

where 

go -. (1- k) 

i , k 

co 

= A3 - A, (2.3-7) 
1 -- k­

+ 

k 

The motion of the angular momentum axis (H) in the system (U) is 

according to equation (2.1-12) 

Al U c h (2.3-8) 

1ur+ As A 

The term due to the relative angular momentum h can be neglected again. 

Thus, substituting the expressions (2.3-6), (2.3-1), (2.3.3) and (2.3-4) in 

(2.3-8) gives the body-fixed motion of (H) 
+ -~ ' '~ A -Ax s A . kuoeio.t+ x q6+~ici Z ­[.A , I (AM -A s isj e-ja 

k Q2 (2.3-9) 

where s -- (2.3-10)
1+-AP k 

(2 ks 
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The motion of the axis of figure is according to equation (2.1716) and equa­

tions (2.3-1) - (2.3-4) 

!S icrot ik s-Is" Aj-L
kF Uoe + T6 I A 2--1 
-ks ks 2(A 3 _A)-

where 	 ,, = S - ,-­
Sa 

(2.3-12) 

The basic equations (2.3-6), (2.3-9), and (2.3-11) for the respective 

motions of the instantaneous rotation axis (I) , the angular momentum 

vedtor (H), and the axis of figure (F) can be re-written in terms of the 

nutation argument Aa 4 with the help of equation (2.2-32). The forced 

components are 

1 (GMST + Auj)
Ul -i 	 Z - A, e 

j A, n2


u~t 	 -i siI Aje - i ( G M S T + A a ) (2.3-13) 
1.--1 

s.S- -i (GMST + Aaj)
ksj 	 [?' (As -A, A) 

The homogeneous, or force-free, motions have a conceptual import­

ance in defining polar motion. They give the hypothetical positions of the 

axes which would be occupied if there were no external forces acting on 

the earth. These motions, already contained in the complete solutions, 

are separately given by 
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UIh = YOe i(o t + r) + 11o 

UHh = Ao + A-A) IL] ee1(art+ +o)
iI (A s(2.3-14) 

Sk e i(aot +r) + 

where the complex constant uo is written as 

ir 
Uo = yo e 

r denotes the phase angle for t = 0. 

The direction cosines u are transformed to the local components, 

defined by the direction of the local meridian and the direction orthogonal 

to it, by 

u = ue -iA (2.3-15) 

An equivalent procedure is to replace GMST by mean sidereal time MST 

in equations (2.3-13). Then, the along-meridian component is Re(u') = ul 

and the across-meridian component is Tm (u') = UP . 

Figure 2.3'displays the body-fixed motions for the elastic model 

as discussed so far. The figure represents a tangent plane on the unit 

sphere, the point of tangency is the point where the third axis (Us) of 

the coordinate system (U) passes through the sphere. Each of the 

motions indicated is the equivalent of a mathematical expression 

developed above. The following observations can be made: 

a) The separation Us - IR , which is given by the second equation of 

(2.3-7), is a linear function of the constant component co in the 

inertia tensor. (4o) is not identical with the axis of figure (F). 

For the rigid (k = 0) model the axis of figure (F) will be at T 

at any time. 
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b) 	 The radius of the circle with center at 'I'o and which passes through 

(S) 	 is given by the first term of uF in equation (2.3-14). Thus,31 

the position of (S) is given by UFh in (2.3-14). Similarly the 

points (C') and (Eo) are found by plotting udh and ujft, respectively. 

Eo has been termed in Woolard [1952, p. 160] the "Eulerian Pole 

of Rotation" . It corresponds to the hypothetical surface point which 

the instantaneous rotation axis (I) would occupy if no external forces 

were present. The prograde (in the sense of the earth rotation) 

body-fixed motion of (E) and (C') is sometimes called "wobble". 

The amplitude and phase cannot be predicted from theory. The 

period is either the Chandler (elastic) or the Euler (rigid) period, 

as is well known. 

c) 	 The nearly diurnal motion of the axes (I) and (H) around (Eo) and (C) 

are retrograde motions. They are a result of luni-solar attraction 

as expressed by equations (2.3-13). In case of the elastic body even 

the axis of figure (F) has a non-zero diurnal motion uF,. The 

motions in Figure 2.3 are approximated by the exact circular diurnal 

constituent corresponding to the tide Kl which causes the precession. 

In actuality each tidal frequency has a corresponding diurnal motion 

component. Numerical values for these motions are given in McClure 

[1973] and Woolard [1952]. The equations (2.2-29) and (2.3-13) show 

that these forced motions are proportional to the difference in the 

principal moments of inertia. 

d) 	 The complete solution as well as the homogeneous and forced solu­

tion separately fulfill the relation (2.1-19) 

uH - u - A, (I- uF) 

as 	 can be verified from the respective equations. Thus, all three 

axes are in a plane at all times. 

The axes through the points (S), (C'), and (Eo), which result from 

the homogeneous solution, exhibit no periodic diurnal body-fixed 

motions. 40 
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e) 	 The magnitudes of the various motions in Figure 2.3 are given in 

Table 2. 1. 

Table 2.1



Magnitudes in Polar Motion



Forced Motion 

Model I- E I-H 	 S- F 

elastic <62 cm 21 	 cm 5 60 m 

rigid <61cm 1.5 cm F= T 

Free Motion 

Model Radius Frequency C' - Eo 

(O A3 -AYO
elastic 

YO 	 A3rigid YeOr 

f) 	 The separation ED - C' is due to the difference in the homogeneous 

solutions of the rotation axis (I) and the angular momentum axis 

(H). Its magnitude 

YO 	 (-A (i-j R_ 1.5 cm 

can only be indirectly obtained through the observed value of Yo. 

In the next section this distance will be verified as the amplitude 

of the free nutation. 

As 	 already mentioned the-motions of the rigid earth model are obtained by 

=putting k 0. Equations (2.3-6), (2.3-9), and (2.3-11) are then 
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"ul.=o t +. r) +T' -Iri A1 n(dA- + a)e -i 
= r i(ae 

A3 Ar eO (2.3-16)U14 = L + - I EA3 & + Cr') 

Coo 


UF = =iA s Ao 

A3 - Ai 

For a rigid model the axis of figure (F) is, of course, body-fixed. Figure 2.3 

can easily be modified for the rigid body case. The separation between the 

instantaneous rotation axis (I) and the angular momentum axis (H) is much 

smaller than for the elastic body because the coefficient si in uf of equation 

(2.3-13) is equal to 1. The following-ratio holds: 

ut , elastic 1- k


u8 I, rigid ks



The "forced" terms of u If are usually called the Oppolzer terms. The 

most important ones are for the rigid model [Woolard, 1952]: 

uirt = 0.0087 sin (GMST) 
-0.0062 sin (GMST-2s) 
-0.0029 sin (GMST-2h) 
+0.0012 sin (GMS2-0) 

(2.3-17) 
u21f= 0.0087 cos (GMST) 

-0.0062 cos (GMST-2s) 
-0.0029 cos (GMST-2h) 
+0.0012 cos (GMST-Q) 

The arguments are explained in (2.2-22). 

2.3.3 Space-Fixed Motion 

The spatial positions of the various axes are determined with respect 

to the angular momentum axis (H) , whose position ( 6,j, OH ) is known 

from the solution of Poisson's equations. The direction cosines whichu4 
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were derived in the previous section are transformed into changes of the 

corresponding Euler angles. 

Consider the previously used coordinate system (X)H and (U). The 

position of the first system relative to the system (X)E is given by the 

pair of Euler angles (08 , ) and the relation (2.2-9) 

(X)E R3 (-j,) R (0w) (X)q 

The body-ftxed system (U) is related to the inertial system by 

3=(- ,)(6) - (U)(-P) 

These two equations readily give the direction cosines of the axis (H) in 

the (U) system. For small differences in the Euler angles the direction 

cosines of the angular momentum vector (14) are to the first order of 

small quantities 

(2.3-18)u[H =6 

where 
60 = -OH 

68 = - OH 

The first two equations of (2.3-18) can be written in complex notation as 

follows: 

ulj+ iH1+ = e - i(P (6 0 sinG - i6 e) 

which is rewritten as 

6x = 60+ i 6?bsinS0 = i ei (u1$-1 iuS ) (2.3-19) 
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Note that the correction is given in the sense of 

Us Us­

where the subscript Us is used to emphasize that XUs determines the 

space-fixed position of the Us - axis relative to H. 

The space-fixed position of the various axes can now be given. 

Using (2.3-19) the instantaneous rotation axis (I) is obtained as follows: 

X1 	 =X + 6X, 
=X H + 6%,h+ 6Xzf 

=X+ 6 + i 6 & sin 91 

=X H + ie'V(u. - ui ) 

Substituting equations (2.3-6) and (2.3-9) the Euler angles become 

-khIY eIAhei(ot+r"-)_ A-'A, 3lBLiAa7 	 X 
SA 	 (2.3-20) 

where 

\KAlA}A		 s () 

The space-fixed motion of the axis of-figure (F) is with equations (2.3-9) 

and (2.3-11) 

XF 	 =X 1 + 6X 
=/ k'- i-0e(a t+%+( )+ -Aaa 

+ ( 	 Al -l -1 e 0 ~r ZB'e 	 (2.3-21)
H As ),4 

Finally, the spatial motion of Us - axis is 

XUs XH 	 + 6 Us



=XH + ie' 0 uH


t 
 = [Ae +( f (o--)ot+Th-s)+Lss AeiAa" (2.3-22) 

+ iT ei 
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Note that during the derivation of these equations we have used the 

approximation (2.2-37), i.e., the Euler angle P has.been equated to 

Greenwich sidereal time. 

The following observations can be made regarding the space-fixed 

motions: 

a) The homogeneous term 

6%rr = .(As A)(1 ) Vo e(ao t' +P) 

of equation (2.3-20) is called free nutation. It gives the hypo­

thetical path of the instantaneous rotation axis (I) in space which 

would occur if no external forces were present. Its frequency 

is nearly diurnal. The amplitude, based on the observed values of 

0o, is approximately 1.5 cm. The free nutation is not included 

in the officially adopted set of nutations of the rotation axis. 

Special considerations will be given in Section 2.4. 2 as to the 

observational significance of the free nutation. In any case, a frame 

connected to the instantaneous rotation axis (I) will perform a nearly 

diurnal "rocking" in inertial space. 

b) 	 The forced periodic terms in equation (2.3-20) which are to be added 

to those of equation (2.2-43) of the angular momentum axis (H) in 

order to obtain the forced motion of the instantaneous axis of rotation 

(I), are of significantly large magnitude for the elastic model. They 

account for the 21 cm separation between (I) and .(H) already indicated 

in Figure 2.3. The ratio with respect to the motion of the angular 

momentum axisF M k / 

j~I A + (, Q;] 

demonstrates the dependencies on the elastic properties. 
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c) 	 The axis of figure (F) has, of course, a diurnal nutation component 

too, which results from the homogeneous solution. The forced 

motion is very larige;t describes the 60 m motion indicated in 

Figure 2.3. The axis of figure is the most sensitive axis with 

respect to mass redistribution among all the axes considered so 

far. It is, therefore, unlikely to be chosen as a defining direction 

for a reference frame. 

d) 	 The equations give immediately the ratios: 

Kb f = As - Al 

The 	 motions for a rigid model are obtained by putting k = 0. They are: 

XI 	 = Hj + &Xzh + 8 1 

.H(As-Ai)y i(a t +r+(P) As- Al.- -i aj 

where 
1 	 A



(2.3-23) 
= XH + 6X + 6+ 	 B e 

= 7t H + i4 Ye-/e i(aIr t+r+9P) +ZE e iAai 
I As 

XUs =H + 6xUsh +6xUf



i


= 

2t H + .A Ve i(Qt++) + iTO e +As. 

Inthis case the ratio 

6x, = As -A1 A&, 

is extremely small. The largest periodic term in 6xi has a coefficient 

of 0"00002,[Woolard,, 1952, p. 133]. The terms are, consequently, not 
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included in the officially adopted set of nutations for the instantaneous 

rotation axis (I) since terms smaller than 0'.1 0002 are omitted [AENA 

Supplement, 1961, p. 44]. The coefficients B, for the rigid model are 

given in Woolard [1952, p. 132]. The largest terms are 

= 0.01615 sin(2s) 
+0.00753 sin(2h) 

+0.00338 sin (Q) 

(2.3-24) 
6 OF = 	 -0.00868



+0.00590 cos(28)


+0.00275 cos(2h)


-0.00100 cos (a)



The arguments are explained in equations (2.2-22). The constant term in 

6 %r is caused by the sidereal term in 6Xf . It is actually a combina­

tion of two sidereal terms, one resulting from the moon,the other from 

the sun. The motions 6xI, and 6;f are referred to as "luni-solar 

diurnal nutations" in the astronomical literature [Woolard, 1952]. This 

terminology seems an unfortunate choice since these motions have no 

diurnal period whatsoever. 

2.3.4 The Celestial Pole (C' 

The pole to which the nutations refer is denoted by (C'). This 

pole fulfills the following criteria: 

1) The pole 	 (C') should exhibit no nearly diurnal periodic body-fixed 

motions. 

2) 	 The position of the (C') in space should be computable at any time 

from the motion theory of the underlying models, i. e., no free 

solution component is permissible. 

'For ideal bodies, such as the rigid or perfectly elastic earth 

model-, both criteria ire easy to fulfill. Considering Figure 2.3, there 
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appear to be several choices for selecting the (C') . All points along 

the line I0o-E 3 in Figure 2.3 satisfy criterion 1, e.g. equations (2.3-14) 

give uAcL =u 11Hh = A+(At+ )+ To 

and 
i c t l"
 
uE urt oe ) + 'Ito 

The spatial motions of the axes passing through these points ,are 

X/ = XH + iei ,(uH - u4h) = +ei(um) (2.3-25) 

= XH + 6Xue? 
' E. = XH + ieRP(uH - UIh) = + I((UK + UHh ­+ie Uth) 

= Xcg + 8 ih 

The expressions are arrived at by identifying the body-fixed components 

in Figure 2.3 and using their transformed values in terms of corrections 

to the Euler angles. 

Only the celestial pole (C') qualifies under criterion 2. Its position 

in space can be computed from equation (2.2-43) for X and from equa­

tion (2.3-22) for 65CuX. The north celestial pole thus defined has no 

periodic diurnal body-fixed motion due to external forces. Its body-fixed 

motion results solely from force-free motions. Its space-fixed motion 

is entirely due to external forces; it has no space-fixed motion resulting 

from a homogeneous solution component. The point, E0 , which is called 

by Woolard the Eulerian pole of rotation, exhibits a diurnal motion in 

space which is exactly equal to the free nutation given in equation 

(2.3-20). The amplitude and phase of 6 xrb cannot be determined from 

theory. 

The term 6X df is the transformation of uit in equation (2.3&- I). 

As equations (2.2-29) and (2.3-22) 'show, the amplitude of 6Xuu is pro­

poitional to the mass of the disturbing body MD and the form factor 

(As-A)/A3 . Another interesting feature of the pole (C') is seen if we, 
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for reasons of simplicity, assume a zero free motion. This is the case 

of the steady state motion. The pole (C') has no body-fixed motion in 

this case. But, the angular momentum axis (H) and the instantaneous 

rotation axis (I) still have the nearly diurnal motions uhf and ur , 

whose magnitude is proportional to MD and (A3-A)/A3. If one constructs 

various models with different form factors, i.e., adding mass points 

symmetrically around the equator, the pole (C') will remain at the same 

body-fixed position whereas (H) and (I) change the radius of their circular 

motions. It is thus clear that the celestial pole (C) and the instantaneous 

rotation axis (I) do have different properties and should conceptually always 

be separated. However, from a merely descriptive point of view, the 

pole (C') may be considered as a "rotation axis" as well. 

It is worth noting that in the case of the rigid earth model the 

spatial motion of the north celestial pole is 

7XcIrigid = X + 6,Frigid (2.3-26) 

since according to equations (2.3-23) the equality 

6 xustrigid 65 rigid 

holds for the rigid body. The spatial separation between the pole (C') 

of the elastic and the rigid model is 

A(X,/) = 6X, 3felastic - 6XUSfrigid 

The maximum separation is 21 cm (see Figure 2.3). 

It is probably because of equation (2.3-26) that in the literature one 

finds frequently the statement that the nutation should be computed for 

the axis of figure [Atkinson, 1973, 1975, 1976]. 

There is no doubt that in all cases the axis as expressed in equa­

tion (2.3-26) was intended. But, once again, for clarity's sake, one 
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ought to distinguish between the axis of figure (F), which is defined as 

the direction of the maximum moment of inertia at any epoch, and the 

north celestial pole (C') as has been defined above. Even for the rigid 

earth model the axis (C') generally does not coincide with the axis of 

figure (F). Only when the homogeneous solution is zero the identity 

X F = I 

holds. In case of rigid motion the intermediary role of the instantaneous 

axis of rotation becomes quite obvious. When setting up the Euler dynamic 

equations (2.1-3) or (2. 2-5)the concept of instantaneous rotation axis is 

needed since uN are the velocity components of the instantaneous rotation 

axis (I) in the frame (U)r. Symbolically Euler's dynamical equations can 

be written as 

EDEq f±(w, IF) = LwF 

Euler's geometric equations relate the velocity componets &)i to the 

derivatives of the Euler angles OF , ?I) q. The Euler angles relate 

the frame (U)p to the inertial system. Substituting 

= I'1 

in the dynamical equations gives 

EDEq = ft(g(F,4I,F$ ),),= L11  (2.3-27) 

These equations can be solved for the Euler angles. The angles Gr and 

Of give the "forced position" of the axis of figure in space. For a rigid 

body the axis of figure (F) has no body-fixed motion, hence 

UF frigid = 0 

The space-fixed motion is strictly computable from equation (2.3-27). 

Therefore, the so-defined axis fulfills both requirements for the pole (C') 

which were set up above. In fact, the solution of equation (2.3-27) is 
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identical to equation (2.3-26). One can now add the homogeneous solution, 

which results in the deviation of the (C') from 'the axis of-figure, but this 

aspect is not of concern here. Rather, it is noted that after substituting 

Euler's kinematic equation into equation (2.3-27) one does not have to 

worry about the instantaneous rotation axis (I) anymore. The instdntaneous 

rotation axis (I) is conceptually needed only at the initial stage when 

formulating the dynamical equations. 

At present the rotation axis (I) is adopted as the reference pole 

instead of (C'). The practical complications arising from that convention 

are dealt with in Section 2.4A.4 n Seetion 2.4.2 the observational signifi­

cance of the homogeneous component which separates (C') and (Ec) in 

Figure 2,3 is discussed. The additional complications arising from the 

liquid core are the subject of Section 3. 

2.3.5 Poinsot's Kinematical Representation 

Poinsot showed in 1857 that a continuous rotational motion of a 

rigid body about a fixed point is always geometrically equivalent to the 

rolling without slippage of a body cone (polhode cone) on a space-fixed 

cone (herpolhode cone). The line of contact between these two cones is 

the instantaneous rotation axis (I) of the body. Mathematically, Poinsot's 

representation is related to the motion of the inertia ellipsoid. An 

extensive treatment on this subject is given in the standard literature. 

Here only a simple intuitive explanation is given. 

Any continuous motion of a body about a fixed point can be repre­

sented by dividing the time into infinitesimal elements and considering 

the motion of the body during each element of time as a rotation about 

the corresponding instantaneous axis of rotation. During the motion, the 

position of the instantaneous axis in the body and in space is gradually 

changing. To show this, consider the case of a cone rolling on a plane 

and rotating about its fixed vertex 0 (Figure 2.4): 
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Figure 2.4 Poinsot's Kinematical Representation 

At any instant, the motion of the cone consists of a rotation about 

the line of tangency OA, which is the instantaneous axis in this case. As 

the cone rolls, various lines of its surface come into contact with the 

plane, and the instantaneous axis has different positions in the moving 

cone. At the same time, consecutive- positions of the instantaneous axis 

in space form the plane on which the cone is rolling. This example can 

be generalized. Instead of a circular cone rolling on a plane, a cone of 

arbitrary shape is rolled on a surface of another cone. One can assume 

also that the rolling cone is not a physical body but a geometrical sur­

face formed by consecutive positions of the instantaneous axis in the mov­

ing body of any shape as indicated by dotted lines. Likewise, the space 

cone is formed by successive positions of the instantaneous axis in space, 

and the motion of the body is visualized by rolling the cone connected 

with the body on the cone fixed in space. By varying the shapes of both 

cones, all possible motions of a rigid body about a fixed point can be 

obtained. 
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In case of the forced motion of the earth, the Z-axis coincides with 

the pole of the ecliptic and the space fixed cone has a mean radius equal 

to the obliquity.. The cone is not circular but has -"ripples" superimposed 

on it due to the nutation. The time varying size of the body-fixed cone 

is determined at any instant through the diurnal polar motion terms of the 

rotation axis, e.g., uT of equation (2.3-13). It is understood that the 

term "body-fixed" cone refers only to an infinitesimal time span. With 

this in mind, the two cones describe the forced position of the instantane­

ous rotation axis completely at any instant. The center of the body cone 

can be associated with the pole (C'). But it is known that the body cone 

or its representative, the axis (C'), maveswithin the earth due to the 

Chandler motion (force-free motion). This motion itself can be represent­

ed by a pair of rolling cones. This leads to an alternative representa­

tion of the motions, i.e., instead of using one pair of general cones in 

infinitesimal time intervals several pairs of circular cones are used in a 

finite time interval. This allows the separate interpretation of the various 

motion components. Each of these pairs of cones defines a particular 

component w, of the instantaneous rotation axis in magnitude and in 

direction. The real physical instantaneous rotation axis in space is the 

sum of all components: 

W 4 

Besides separating the free and forced motions the latter is once more 

split up in precession and circular nutations. Thus 

W = Wh + &P + L% N 

It is more convenient to deal in this context with the circular nutations 

rather than with their elliptical combination since the former are directly 

accessible to the cone representation. As a type of classification a 
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motion is called prograde if it occurs in the direction of the earth rotation, 

otherwise it is called retrograde. The three types of motions which occur 

in the earth motion spectrum are shown in Figure 2.5. The angles s and 

r are the vertex semi-angles of the space-fixed and body-fixed cones, 

and v and g are the angular velocities of the instantaneous rotation axis 

component on the respective cone. The vertex of all cones is at the 

geocenter. The magnitude of the resulting rotation axis component is 

9 2 - 2gvcos 6 

The two dquations, as depicted in Figure 2.5, 

sin r sin 6 
V WO 

sin s sin6 

give the relation between the vertex semi-angles and the angular velocities 

i r(2.3-28) 
sin s A 

This equation implies that the cones move on each other without slipping. 

For small vertex angles the relation simplifies to 

r - A (2.3-29) 

The various motions can now be classified. 
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Figare 2.5 Cone Representation of the Earth's Motion Spectrum 
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A) Force-free Motion: Case 3 

Z = angular momentum axis (H) 

=N axis of figure (F) 

From the first equation of (2.3-14) and equation (2.3-20) the 

ratio (2.3-29) is I O.g + Q



/As-_AI) k g
fo 
Y(Ari - (2.3-30) 

Here we have used (2 = which results from the approxima­

tion GMST = p. The validity of (2.3-30) can be verified by 

rearrangements on the left hand side. 

B) Precession: Case 1 ; Aal = 0 

Z = fixed ecliptic pole 

N = C' (precession only) 

From ujf of equation (2. 3-13) the vertex semi-angle of the body 

= cone for AaK 0 is


r = AKI



The vertex semi-angle of the space cone is 0o as is seen from sim­

ple geometric considerations. The spatial frequency v is taken from 

equation (2.2-44) as



v-= lip AK1



As sin go 
The body-fixed frequency is, of course, equal to the sidereal fre­

quency 0. Thus, equation (2.3-28) gives 

A I AKj 

2A A3 Q sin 6.3 

sine o 
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C) Nutation: Case 1 if Ad3 >0 

Case 2 if Aj,< 0 

Z = is located on the space cone of the precession 

N = C' (nutation only) 

Ao is "the nutation frequency. It was first defined in equation 

(2.2-32). -The nutation frequency is either positive or negative, de­

pending whether the corresponding tidal frequency is larger or smaller 

than the sidereal frequency n. The vertex semi-angle and frequency 

for the body-fixed motion is given by equation (2.3-6), and those for 

the space-fixed motion are taken from equations (2.2-43) and (2.3-20). 

Inserting these quantities in (2.3-29) gives the ratio: 
Al six 

A1 Abe (2.3-31) 

-IA ± Ai s '(A - A s ) 0e 
A . 0 A a, CPA , A . 

The validity of equation (2.3-31) can be verified by re-arrangements 

on the left-hand side. The equation holds for the rigid and elastic 

models. 

In general, then, all circular nutations and precession will result in 

retrograde body motions because the exponent in the expressions for ul, 

in, equation (2.3-6) is always negative. Similarly, those circular nutations for 

which Ah 5 < 0 will cause prograde spatial motions of the rotation axis, 

whereas the others give retrograde spatial motions. 

It has been demonstrated above that all known motions for the rigid 

and elastic model can be-represented by pairs of cones rolling on each 

other without slipping. Each type of motion is completely identifiable by 

its period and its occurrence in either space or body. 
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2.4 Coordinate System Definition and Observability 

2.4.1 Relationship Between Coordinate Systems 

The Poisson equation for the spatial motion of the angular momentum 

axis was solved in an inertial frame which was taken to be the ecliptic at a 

fixed (standard) epoch. The physical realization of the ecliptic can be thought 

of as the plane defined by the solar center, the earth-moon barycenter and the 

velocity of the barycenter. The orientation of this plane changes secularly and 

periodically due to the planetary perturbations. The periodic variations are 

computable from theory. That fictitious plane which has only a secular motion 

in inertial space is the exact definition of the ecliptic. 

The relationship between the ecliptic and the celestial system whose 

pole is (C') is given by the dynamical theory of the rotation of the earth 

in combination with some constants of definition. 

The mean position of the celestial equator (C') relative to the fixed 

ecliptic is implicit in equation (2.3-25). Using equation (2.2-45) and the 

constant term of 6xu3 f in (2.3-22), which is identical to the constant 

term in (2.3-24) in case of the rigid body, the precession of the celes­

tial pole (C') is 

OC=P : OHP =fIt +f-f2 + ... 
(2.4-1) 

+@Cp = OHP 60 = Go+560+ 62 t
2 + 

f, is the constant of luni-solar precession. It can be derived from ob­

servations or from theory. The latter possibility is indicated through equation 

(2.2-47). The mean obliquity at the standard epoch is found by obser­

vations. This constant includes the small constant 66 of equation (2.3-22) 

or (2.3-24) which is equal to the mean separation between the angular 

momentum (H) and the celestial pole (C'). For abbreviation, the equations 

(2.4-1) can be rewritten as follows: 

=XcIP XHP + 6Wu (2.4-2)



The superscript c denotes the constant term in 6 Xu t
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The nodal line T, in Figure 2.6 between the fixed ecliptic and the 
mean ecfuator of date does not coincide with the direction of themear-vernal 

equinox T M, The latter is equal to the nodal line of the ecliptic of date 

and the mean equator of date. The motion of the ecliptic on the moveable 

mean equator is called the planetary precession in right ascension a, with 

a = g 1 t + g2t2 +



The g 
 's follow from the planetary theory. The transformation due to



precession is



S = 3 (a) f 1 (-6C,') R (-4cy ) 1N(0 + 660) (2.4-3) 

0O+8C Mean Equator To=t=0
C' Epoch
/of 
 

of Date =CTPa c'p/Tjj ,Mean Equator T 

Figure 2.6 Transformation to Mean System 

and the remaining transformation from the mean celestial system to the 

true celestial system (X)c, is 

N = R(a,) B3 (-(c, P - @C.)P ( Rj(%,p)R (-a) 

(2.4-4) 

where 

a, - a + Aa 

and Aa is a small computable term [Woolard and Clemence, 1966, p.240]. 
OcN and 6,t . are the nutation angles of the celestial pole (C'). With equa­

tion (2.3-25), the nutation angles can be written as 

'CN = XN + 6 ??f 
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where the superscript denotes the periodic terms in 6 xu f.



With a few minor changes, Figure 2,6 can also serve for setting up equa­


tion (2.4-4).



n practical astronomical work one tends to select a different set 

of rotation angles in the transformation (2.4-3) [Mueller, 1969, p. 65]. 

One also prefers to use the so-called "reduced" nutation in longitude 

and obliquity, $'N and 0 '., which relate the true equator to the 

mean equator of date. Then the transformation N becomes 

N = R(- E ,/)%(-)R 

The reduction of the nutations is carried out in Woolard (1952, p. 157). 

E is the mean obliquity of date, 

C = 0o + 60 + alt + a~t8 + 

The coefficients a follow again from theory. 

Finally, the motion of the vernal equinox due to the combined motion 

of the ecliptic and the equator is called general precession in longitude 

N=ht + h 2 t2 + 

where 

h= f1 - gcos(00 + 60) 

Since g, and h, follow from theory there is no additional new constant 

which is to be determined by observation. 

2.4.2 Fundamental Declinations and Latitudes 

The fundamental declinations and latitudes are the true observables 

in observatory astronomy. They give the position of the observatory 

and the star in the true celestial system (X)c,. The procedure consists 

of observing zenith distances of stars at upper and lower culmination. 

At no stage of the procedure will the star position or an adopted series 

of nutations be needed. 

61 



For the following description it is assumed that the Chandler motion 

is zero for the period of 12 hours. This assumption, of course, will 

not be fulfilled since one has no control over the actual free motion. 

This simply demonstrates that all efforts to determine the orienta­

tion of the earth in space are ultimately limited by the amount of Chand­

ler motion which occurs during the interval which is needed to carry 

out the basic observations. The progressive Chandler motion is approx­

imately 5 cm for 12 hours. 

The left and the right picture in Figure 2.7 show the situation 

at upper and lower culmination of the same star. The pole (C') remains 

body-fixed during the 12 hour interval. In particular, it has no nearly 

diurnal free nutation as was shown in Section 2.3.4. The body-fixed 

motion of the angular momentum axis (H) is represented as a circle in 

the lower two pictures. There is no need for (H) or the axis (U8 ) to 

be in the meridian during the observations. The body-fixed position 

of (H) for upper transit at epoch T is shown in the lower left picture. 

The lower right picture shows the body-fixed position of (H) at lower 

and upper transit. For the sake of completion, a possible body-fixed 

position of the Eulerian pole of rotation (Eo) is also shown. The 

angle y is the along-meridian polar motion component. VI and ) 2 are 

the periodic diurnal body-fixed motion components of (H) along the 

meridian. ciu denotes the adopted station latitude in the (U)-system. 

6 is the declination in the true celestial system (X),/ whose third 

axis is identical with (C'). The observed zenith distances at culmina­

tion are z1 and z2 . From the upper two pictures in Figure 2.7, the 

following two basic relations are readily seen: 

90 - = z- 2 

(2.4-5) 

90 - ((Dj + = (Z + zi)/2 
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It is now clear that the declination and the latitude in the true celestial system 

PC, are the observables. The position of (H) at the time of observation has 

no importance in this context. More importantly, the instantaneous rotation 

axis (I) does not enter the observation geometry at all. It is therefore concluded 

that, on the basis 	 of the observational procedure discussed above, the instan­

taneous rotation axis (I) and the angular momentum axis,(H) are not observable. 

The observational insignificance of the Eulerian pole of rotation 

Eo is readily demonstrated with the help of Figure 2.7. As has been 

pointed out previously, the only difference between the north celestial 

pole (C') and the Eulerian pole of rotation (E.) is a homogeneous solution 

component, so that the latter still exhibits a nearly diurnal space-fixed 

motion due to free nutation. Consider the body-fixed point Eo in Figure 

2.7. In the upper figures, Eo performs a similar motion relative 

to the (C') as does, for example, the axis (U3 ). But the presence 

of such a fixed crust point, and there are infinitely many possible 

choices all laying on the line 'Po - C' of Figure 2.3, does not effect 

the principles expressed by equations (2.4-5) at all. Thus, the Eulerian 

pole of rotation is not observable either. 

2.4. 3 Determination of the Constants of Definition 

The relationship between the -celestial system (X)ct and the fixed 

ecliptic system (X), is expressed by the standard expressions 

sin 6 = cos 13 sin sinBO. + sin3 cos Oct 
and 	 (2.4-6) 

cos 6 sina = cos R sin X cos Oc - sin 8 sinec0 

a and 6 are the right ascension and declination in (X),/. I and R are 

the ecliptic longitude and latitude in the fixed ecliptic system. OC/ is 

the true obliquity of date, which is split up according to equations 

t 2 . 4 -1) and (2.4-2) as 

0ec = G9p + OCIN 	 (2.4-7) 
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whereby the small constant 6 6 is included in 0., p. Eliminating the 

longitude X in (2.4-6) gives 

sina tan ec,= tan 6 - sin (2.4-8) 
cos6 cos Oc' 

The ecliptic latitude 8 of objects close to the ecliptic such as the sun, 

planets, etc. are known from theory accurately enough in order to be 

treated as a known quantity. Since at the meridian transit the right 

ascension a is equal to the sidereal time, the right ascension is ex­

pressed in terms of the reading, t', of a clock which keeps uniform 

time, as 

a =k+ kt' + t' (2.4-9) 

where k1 and k. are the constant and the rate correction, respectively. 

Equations (2.4-7) to (2.4-9) can serve as a mathematical model to 

compute the right ascension and obliquity %, P from repeated observa­

tions of declinations according to the procedure given in Section 2.4.2. 

Consequently, the right ascension will refer to the true celestial 

equator defined by the pole (C'), afid the true vernal equinox, i.e., 

it will be independent of the instantaneous rotation axis (I). In view 

of equation (2.4-7), the solution for the constant 6 c' p will include the small 

constant 6&'. 

The constant of luni-solar precession is principally derivable from the 

secular variation in right ascension. Detailed procedures for determining 

the constants of precession are found in the literature. 

The constant of nutation, N, which is the coefficient of the 18.6 

year nutation in obliquity is another constant needed in order to be able 

to completely give the true position of (C') in space at any time. 

It is a function of the astronomical constants (A3 - A)/A3 , the 

lunar mass, and the obliquity. The constant of nutation determines 

65 



the common multiplier (scalar) for all other nutation terms. Various 

determinations of the constant of nutation are discussed in the literature. 

One of the most complete -determinations is- that by Fedorov [1958]. One 

should note that the observational determination of N includes the small 

term with the same period in 6e. (equation 2.3-24). This fact has 

to be taken into account when computing the common multiplier of the 

nutations or when one attempts to verify a relation of the type of equa­

tion (2.2-47). 

2.4.4 	 Practical Aspects for Adapting a Set of Nutations 

In the usual astronomical work one does not observe the same 

star at upper and lower culmination as discussed earlier; rather, one 

observes stars at either their upper or lower culmination. The latitudes 

resulting from such a scheme are 

I 6 ± z (2.4-10) 

in case the upper culmination occurs south or north of the observatory 

zenith. Latitudes computed by this formula always refer to the equa­

tor of date to which the declinations are-counted, i.e., the colatitude 

is the instantaneous angular distance between the observers' zenith and 

the pole as defined by the set of adopted nutations. According to the 

definition of the celestial pole (C') any latitude computed by 

Cc'p = 6 c+ z 

varies only due to the progressive Chandler motion. The use of any 

other set of nutations will result in a computable variation of the lati­

tude. 

Consider the change in declination due to nutation [Mueller, 1969, 

p. 	 74], 

A6 C, = -Oci sin e., cosO + Op,, since 	 (2.4-11) 

This formula is m agreement with our sign convention for d, i.e., 
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positive from west to east, a is the right ascension of the star. 

Equation (2.4-11) can be written as 

A6 , = Re(i x, e- i ) (2.4-12) 

The difference in latitude based on, for example, the nutations of the 

pole (C') and the instantaneous rotation axis (I) is 

"'c' - I 6C, - 8, 

= Re [i (XcN - Xrj) ei 

-= Re [i (XHN + 6X"3 f - XHN - 6X) e 

= Re [i (6X's - 68xf) (2.4-13) 

With equation (2. 3-20) and (2.3-22) this difference becomes 

c' - (bi Re 1 A 5 i 1(Aa3 U) (2.4-14) 

The summation is to be taken over all tidal waves except those 

having sidereal frequency. As was mentioned earlier, the waves of 

sidereal frequency are responsible for the small constant from 66c . 

In case of meridian observations the right ascension a in (2.4-14) 

cah be replaced by the mean sidereal time MST. Thus, from equation 

(2.4-14), the first equation in (2.3-13) and equation (2.3-15) the latitude 

difference is the negative of the meridipnal diurnal motion component of 

the rotation axis (1) 

T - (I, - Re () Ui (2.4-15) 

The difference is usually referred to as "dynamical variation of latitude." 

Again, the term with sidereal frequency is excluded in (2.4-15). Equa­

tion (2.4 -14) clearly shows that latitude determinations as derived from 

zenith distance measurements to stars at transit exhibit a nearby di­

urnal variation. If one observes the same star at consecutive transits, 

the latitude variation shows periods equal to those of the nutations and 
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with respective amplitudes as given in equation (2.4-14). 

The situation is very similar for longitude observations. The 

usual formula for correcting the right ascensions due to nutation is 

Aac, = -bC' cosOC'p + (-ZC'N sin 6Cg sin - Ov. cosa)taa 6 (2.4-16) 

where $' is again counted positively eastward. The first term,which 

is a correction to the vernal equinox, is called the equation of the 

equinox 

=Eq. E -CbeN Cos %dp 

It is equal to the difference between the mean and true right ascension 

of a body on the equator. The other terms, which are a function of 

the position of the star, can be rewritten as 

Aac =Im(-iXe ) tan 6 (2.4-17) 

The basic longitude equation is 

A= MST - GMST 

= AST - GAST 

For reasons of compatability both the local and the Greenwich sidereal 

times are corrected for polar motion. Polar motion, of course, is 

understood to consist only of the motion of the pole (C'). Meridian 

observations give 

Ac / = - GAST 

= aM + Eq. E +Im(-iXCJN e )tan 6 - GMST - Eq.E 

- GMSTOMR + Im(-iXN e-iu)tan6 

a. denotes the mean right ascension of date. The longitude computed 

in this manner will vary only due to the progressive Chandler motion. 

Computing the longitude based on the nutations of the instantaneous 

rotation axis (I) gives the, difference 
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- iAc' - A 	 = Im [-i (XC'N - XIN)] e a tan 6 

= Im (iL j1e4 (A a ) tan 6 (2.4-18) 

For transit 	observations, this difference, according to the first equation in 

(2. 	3-13) and equation (2.3-15) becomes 

Ac, - A, = Im (uff) tan 6 = u'Uf tan 6 (2.4-19) 

where u 2 ITis the component of the diurnal motion of the rotation axis (I) 

orthogonal to the local meridian. When verifying the longitude difference 

from observations, one has to account again for the fact that the obliquity, 

as derived from observations, c6ntains the small constant term 6 6. 

Thus the sidereal terms are excluded in (2.4-18) and (2.4-19). 
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3. MODELS WITH LIQUID CORE 

3.1 Brief Historical Review 

The desire to explain the discrepancies between the observed and pre­

dicted motion of the earth resulted in a long history of a search for better 

earth models. The first efforts to investigate earth models with liquid core 

date back to Hopkins [1839]. After Chandler's explanation regarding the basic 

period in polar motion, Hough [1895] and Sludskii [1896] discovered indepen­

dently the possibility of a nearly diurnal free wobble (ND FW) for a rotating 

container with liquid core. Poincare [1910] published his investigation on the 

precession of the deformable earth, giving an elegant accounting for possible 

movements of the core. His theory is reproduced in [Melchior, 1966]. 

Takeuchi (1950] carried out numerical integration of the equations for a hetero­

geneous and compressible globe by utilizing different models of the earth's 

interior, these models being constructed according to seismological results. 

Jeffreys and Vicente [1957 a, b] continued the studies of Sludskii and Poincare 

and proved, based on the work by Takeuchi, that an effect of resonance due to 

the movements in the liquid core (core resonance) appears on the waves whose 

period is close to that of the NDFW. Molodenskii [1961] published an analogous 

study with results similar to those of Seffreys and Vicente. This theory is 

also reproduced in [Melchior, 1966]. Recently, Shen and Mansinha [1976] pre­

sented an extension of Molodenskii's theory. McClure [1976] studies the effect 

of transverse meridional core-flow relative to the mantle on the separation be­

tween the total angular momentum vector and the rotation vector of the shell 

based on a generalization of Poincar 4 's model. Smith [1977] investigated, 

theoretically and numerically, the free modes based on geophysically plausible 

rotating, slightly elliptical earth models. 
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The above review is necessarily incomplete in view of the large 

amount of work which has been devoted to the subject. The degree 

of difficulties in the mathematical treatment depends on the specific 

assumptions regarding the structure of the core and shell, the core 

boundary, etc. In this section only a discussion of the additional 

characteristic motions is given. For any derivations the reader is 

referred to the literature. 

3.2 Shell and Core Interactions 

The interactions between the core and the shell effect the orienta­

tion of the shell in space. Determination of the orientation of the 

shell, therefore, can give valuable information about the core motion 

spectrum. 

3.2. 1 Free Mode 

The nearly diurnal free wobble (NDFW) is a possible free mode 

which is given by the homogeneous solution of the equations of the 

combined motion of shell and core. It can be categorized as a body (shell)­

fixed motion of the instantaneous rotation axis (I) having a nearly 

diurnal period. In the astronomical 'literature it is sometimes refer­

red to simply as nearly diurnal free "nutation." Its observational sig­

nificance has been explained recently. It was Toomre's [1974] contribu­

tion to strengthen the point that even this nearly diurnal free "wobble" 

must be accompanied by a free nutation in space whose amplitude and 

period is approximately 460 times larger than that of the NDFW. These 

motions can formally be visualized again by Poinsot's kinematical repre­

sentation. The motions occur regardless of whether the shell is taken 

rigid or elastic. The mathematical derivations of this mode can be 
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found in, for example, [Rochester, et al., 1974] or [McClure, 1976]. 

The frequency of the nearly -diurnal free, wobble, a U, is primarily a 

function of the ellipticity of the core as is indicated by the relation 

=- +" A l As -_Al) 

which holds for a rigid shell and ideal fluid core. The symbols Al and 

A. denote the moments of inertia of the core, Al is the equatorial 

moment of inertia of the shell alone, and the other symbols have un­

changed meaning. The frequency of the accompanying free nutation is 

equal to a" plus the earth's sidereal motion. This is a property of 

Poinsot's kinematical representation. Thus, the ratio (2.3-29) is 

r a±(+ a1 1­ (3.2-1!) 
s a " 460 

Both the nearly diurnal free wobble and the accompanying 

nutation are retrograde motions as shown in Case I of Figure 2.5. 

These notions are super-imposed on those discussed earlier. In par­

ticular, the shell-fixed motion of the instantaneous rotation axis of the 

shell is 

u = uT + re (3.2-2) 

The space-fixed motion of the instantaneous rotation axis of the shell 

is . /It 

XIS = Xr + 460 re 760 (3.2-3) 

The spatial change, as expressed in equation (3.2-3) is the same for 

the north celestial' pole (C'); thus, . a/t
1-

Xc""+ 460 r e 460 (3.2-4) 

C" stands for "north celestial pole of the shell. " Probably the most 

meaningful and unique labeling of the two harmonic motions discussed 

here is "retrograde free principal core nutation." The word "core" 

indicates the origin of the motion and the adjective "principal" implies 
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that more motions of this type are possible depending on the assumed 

core structure. Jeffreys 'and Vicente [1957b], for example, 'found 

another free but prograde mode because of the density structure in 

their core model. This clearly demonstrates the importance of the 

assumptions about the form and .structure of the core in this type of 

calculation. 

3.2.2, Core Resonance 

Another geophysical phenomenon responsive to the presence of 

the free mode is the tides of the solid earth. Jeffreys and Vicente 

pointed out that nearly diurnal tides whose frequency is close to aU 

should experience amplifications. This phenomenon is called "core 

resonance." It is presented mathematically in terms of a factor 

which depends on the tidal frequency and by which the tidal amplitudes 

Ai are multiplied. The factor increases as the tidal frequency ap­

proaches a". Jeffreys and Vipente, as well as Molodenskii, gave es­

timates for the change in the tidal amplitudes A,, which can, via equa­

tion (2.2-43), easily be converted to changes in nutation. An exten­

sive analysis of these effects based on various models can be found in 

Melchior [1971]. Some of the larger effects are given in Table 3.1. 

The values are to be added to the nutation of the rigid earth. The 

signs are such that the amplitudes of the nutations increase in magni­

tude. The first column in Table 3. 1 denotes the tidal waves in terms 

of their code number, which is explained in Section 2.2. In addition, 

the commonly used symbol is given for each tide. The significance 

of these symbols in terms of systematizing the tidal waves it. found 

in [Melchior, 1966]. Thus the waves 001 and 01 form the semi-monthly 

elliptical nutation. 

73 



Table 3.1 Corrections for Rigid Earth Nutations 

in Arcsec Due to Core Resonance 

Period (days) dD sin@ de 

semi-monthly (13.7)



OO1 ; 185.555


0.0020 0.0026



01; 145.555



semi-annual (183)



167.555


0.016 0.020



P; 163.555



annual (365)



01; 166.554


-0.0077 0.0056



S,; 164 556



As was mentioned above, it is the relative position of the tidal 

frequency with respect to the frequency of the nearly diurnal wobble, 

a" , which determines the magnification of the tidal amplitude. aeI 

is not identical to the diurnal frequency of the K. tide but it is closer 

to that of the tide. Since the elliptical nutations consists of two 

tidal waves whose frequencies are symmetric with respect to K1 , the 

two waves experience dissymmetric resonance effects. An example is 

the annual nutation which is formed by the tidal waves ), and S1 . Both 

tidal amplitudes are of equal magnitude, which results in a zero annual 

nutation in obliquity according to equation (2.2-42). But the liquid 

core model requires a nutation in obliquity solely due to the dissym­

metric correction. 

The corrections of Table 3.1 have to be added to both the nutations 

of (I) and (C'). This is so because tidal analysis gives corrections to 
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the tidal amplitudes which enter in both sets of nutations according 

to equations (2.3-23). 

3.3 The North Celestial Pole of the Shell (C#) and Its Generalization 

The discussion of the section above demonstrates that for the real 

earth somewhat different terrestrial motions of the instantaneous rota­

tion axis and a slightly different orientation in space have to be expected 

compared to ideal models, such as the rigid and elastic model or even the 

model with liquid core. Since all geometric observations (directions, 

ranges) take place on the shell one may define the orientation of the 

earth in terms of the orientation of the shell. 

Similar to the definitions of Section 2.3.4, the orientation of the 

shell in space is based on the direction of the pole (C"), i.e., the 

direction which has neither periodic diurnal motions relative to the shell 

nor to space. A generalization of this definition is obvious. Instead 

of investigating specific models, for an axis which has the desired proper­

ties of the celestial pole one can simply define the celestial pole with­

out reference to any model. Thus, 

the orientation of the earth is based on the direction 

of the celestial pole (C), i.e., the axis which has 

neither periodic diurnal body-fixed nor space-fixed 

motions. The body-fixed motions of (C) are called 

polar motion. 

This definition can be related to the actual measurement procedures. 

One can now say that the observations take place on the surface of the 

earth and that the term "body-fixed" is to be understood as a motion 

relative to a "rigid" surface on which the stations are located. It is 

noted that the effect of-the motion of the crust due to rigid body tides 

has been assumed to be removable by computations. Another type of 

relative station motion, which is very slow and occurs over long periods 
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of time usually referred to simply as "crustal motion" or "plate -motion," 

is left out of consideration here. Their implications regarding coor­

dinate system definition are studied extensively in[-Leickj 197-7]- The 

realization of the direction (C) in the body-fixed frame and in space 

is principally possible through observation of fundamental latitudes 

and declinations (Section 2.4.2). Each term in the set of nutations 

for the pole (C) is empirical and has to be determined from observa­

tions; whereas, the relative magnitude of the nutation coefficients for 

a specific model result from the motion theory. Fortunately, the rigid 

or the elastic model approximates the actual motion of the earth very 

well. It is, therefore, not necessary to attempt to observe the whole 

spectrum of nutations; rather, one can limit the investigations to specif­

ic frequencies whose amplitudes are most likely to deviate from the model 

values. The frequencies of Table 3.1 are certainly among such "danger­

ous" frequencies. 

Formally, one can write the space-fixed position of the celestial 

aspole (C) 

c= + AxFcN + AXCR + Axu (3.3-1) 

where Xc' (equation 2.3-25) can be considered the first order approxi­

mation of the pole (C); whereas, the remaining empirical terms are of 

second order. The term AXFCN denotes the contribution of the free core 

nutation. This term is entirely empirical. Neither its magnitude nor 

its phase is known since it is a result of the homogeneous solution. The 

term A CR denotes the resonance effect on the nutation due to core 

motions. In this case, the frequencies and estimates of their amplitudes 

are obtained from theory (Table 3. 1), but depend strongly on the assump­

tions of the core structure. Therefore, these terms are essentially 

also of empirical nature. The last term, AXu, stands for all effects 

which are not yet accounted for. 
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In the usual latitude observation work where a star is observed 

only at one culmination, as represented by equation (2.4-10), 

= 	 6a z 

the computed colatitude refers to the axis defined by the adopted set of nuta­

tions. This axis has no physical meaning. It only serves to transform the 

actual, observable into a latitude-like quantity. Thus, the additional shell­

fixed motion of the instantaneous rotation axis (I) which is due to the nearly 

diurnal free wobble (equation 3.2-2) is irrelevant for this observational proce­

dure. Therefore, regarding the determination of the nearly diurnal free wobble, 

the only thing one can do is to determine the associated free nutation from the 

analysis of the observed zenith distance and conclude then via equation (3. 2-1) 

the actual size of the nearly diurnal free wobble. Using equations (2.4-10), 

(2.4-12), and (3.3-1), the computed latitude variation will be 

A(D = 41C - (PC, 

-
= 	 Re i(AXFCN + AXCR + AXu) e (ST) 

A 6 (3.3-2)= CN + A6cR + A6U 

udirnal 

In principle, any adopted set of nutations can serve in this type of 

analysis. Instead of taking equation (2. 3-25) for the pole (C'), one could 

just as well select the nutations of the rotation axis (1) of (2.3-20) or the 

angular momentum axis (H) of (2.2-43). In these cases, additional 

computable terms would appear on the right-hand side of equation (3. 3-2). 

The corrections in declination in equation (3.3-2) are identical to the 

negative of the component of the diurnal motions of the adopted pole (C') around 

the pole (C) along the local meridian. It is emphasized that this diurnal motion 

strictly refers to the pole (C') as defined by the adopted set of nutations. Ithas 

nothing to do with the diurnal body-fixed motion of the actual instantaneous ro­

tation axis (I) or angular momentum axis (H). These latter motions are not 

observable! 



It is realized that the latitude variation of equation (3.3-2) is very slow 

if zenith distances are observed at culmination of the same star. It is, there­

fore, permissible to approximate the diurnal motion by a circle of constant 

radius over an interval of, say, one day, five days, etc. AD has then the 

same magnitude for each station's observation. This difference is part of the 

Kimura [1902] term which was introduced in order to represent the "non­

polar variation in latitude." The Kimura term also absorbs other constant 

effects which are specific to astronomical observation, such as errors in 

proper motion, aberration, etc. In any case, it is important to note that the 

introduction of Kimura's term makes it, at least conceptually, possible to 

determine the celestial pole (C) even from observations at one culmination 

only. One only needs the zenith distance observations from several stations 

of the same star at culmination in order to determine polar motion and the 

constant non-polar term in the least squares sense. Let 41u be the adopted 

latitude, then the equations are in the usual notation: 

41u= c-ulccos A - u 2 CsinA 

= De, - uccosA ucsinA + AcN+AcR+A6u 

This expression can be rewritten as 

cu - =c,-ulc cos A - ue sinA + Z 

where 

U1C/diurnal 

is the Kimura term. The subscript C' denotes the adopted set of nutations. 

Since in all computations, the rigid earth nutations of (I) have been 

used, the analysis of Kimura's term should give information on core reso­

nance, etc. In fact, the International Latitude Service introduced in 1955 a 

special observation program, which is called the three-group observations, 

in order to make an effective analysis of the Z-term possible. 
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3.4 Observational Evidence - IAU (1977) Proposed Nutation Series 

Reports claiming to have observed the nearly diurnal free wobble, 

NDFW, based on above or below pole observations, were given at 

several occasions. A summary is given in Yatskiv [1972]. The earliest 

observation, related to this second free mode, seems to have been re­

ported by Popov [1963]. He found an amplitude of 0" 016 from a long 

series of latitude observations of two stars culminating approximately 10 

hours apart. Until the clarification made by Toomre [1974] the astron­

omers, apparently, being unaware of the associated large free nutation, 

interpreted their observations indeed as those of the NDFW. Exam­

ining the method of analysis of Popov along the lines discussed in pre­

vious sections, it becomes immediately clear that the reported variations 

actually represent the change in nutation. The latest report on the NDFW 

is [Yatskiv et al., 1975]. They not only confirm the presence of the 

retrograde mode, but also find that the existence of the prograde mode 

is quite possible on the basis of the available data. 

Some of the effects of core resonance have also been confirmed 

by observations. A correction of 0"02 for the semi-annual nutation 

was obtained from analysis of Kimura's term [Wako, 1970]. The 

presently adopted constant of nutation for the epoch 1900.0 is N = 9" 21. 

Using the current best estimates of the mass of the moon and the con­

stant of precession, the relation (2.2-48) yields a somewhat larger value 

of N = 9".22. But from observations one arrives constantly at a smaller 

value N = 9".20 [Fedorov, 1958]. Applying the correction due to core­

resonance to the computed value reduces the latter to the observed value. 

This is certainly one of the nicest features of the liquid core models. 

It explains one of the longest known incoherencies in the system of 

fundamental constraints., 
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An astronomical determination of the fortnightly term was reported 

by Guinot [1970] for longitude observations and by Morgan [1952] for 

latitude observation. Morgan's analysis was based on P.Z.T. observa­

tions at Washington. While using the adopted set of nutations of the 

rotation axis (I) for the rigid earth, he obtained a fortnightly correction 

equal to that of the Oppolzer term, just as rigid model theory predicts. 

More complete analyses were carried out by Fedorov [1958] in terms of 

the fortnightly diurnal motion term, and recently by McCarthy [1976], who 

computed the corrections to the fortnightly nutation directly. Both ob­

tained values which are in agreement with those predicted by the co­

resonance model (Table 3. 1). They used the nutations of the angular 

momentum (H) as computed from Poisson's equation, as their reference 

pole. One may add that McCarthy used (H) as an approximation to the 

rotation axis of the rigid model and corrected the observations for the 

Oppolzer terms (equation 2.4-15); whereas, Fedorov specifically intended 

to use (H) because its position in space is relatively independent of 

mass redistribution. But from the merely analysis point of view, this 

distinction is unimportant since the adopted set of nutations (Poisson 

solution) serves only as an intermediary reference standard. McCarthy's 

corrections should be interpreted as corrections to the nutations of (C') 

in order to get the nutation of (C). Fedorov's corrections need to be 

added to the nutation of (H) in order to get the nutation of (C). This 

is so because astronomical observations give the motion of the pole, as 

defined by the adopted set of nutations, with respect to (C). The 

fortnightly correction term of Table 3. 1 can be readily converted to 

a corresponding diurnal body-fixed motion term. The derivation of its 

radius follows from equation (2.2-46) 

7(s =a 23 cos (2 s) + i b., sin (2s) (3.4-1) 

where 2s denotes tbe fortnightly term, and from equation (2.3-19), 
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U2 - = - i A X2 e- (P (3.4-2,) 

Neglecting the subscripts and combining equations (3.4-1) and (3. 4-2), one gets 

a 2 b a -- b=-I sin()- 2s)+ sin ((P + 2 s)j 

2 2 2 
(3.4-3) 

Substituting the coefficients from Table 3. 1 and neglecting their differences 

gives 

6u 2 , = -0.0023 sin(- 2-s) - i 0.0023 cos( -2s) (3.4-4) 

Fedorov found a radius for the fortnightly term of 0'.'009. As far as 

the model is concerned, this radius formally corresponds to the rigid earth 

nutation plus the core resonance effects, i.e., as predicted by Jeffreys and 

Vicente [1957, a, b]. Equations (2. 3-17) and (3.4-4) give 

Iu2S = 0.0052 + 0.0023 = 0.0085 

The perfectly elastic model, however, predicts a fortnightly diurnal term of 

approximately 1 0t.10062, as is seen from the second equation in (2.3-13). 

We may therefore conclude that, at least for the fortnightly nutation, the 

perfectly elastic model does not seem to conform with observation. Since 

the BIH [1975] has currentlyadopted the nutation of the pole (C') of the elastic 

model (equation (2.3-25)), their procedure may require revision at some 

future time. 

It appears, based on the results of Table 3.1 and the method implied, 

that the actual diurnal radius of the motion of (I) around the pole (C) does not 

change significantly because of core resonance effects. This statement is 

possible because it can be shown that the same corrections to the tidal ampli­

tudes cause nearly identical corrections for both (I) and (C') (see equations 

2.3-23). However, this fact cannot be proven from astronomical observations 

since (1) is not observable. 
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The IAU-Symposium No. 78 (1977) recommended that the following 

set of coefficients be substituted for the corresponding coefficients in 

Woolard's series for the nutations in -order to provide a more acdurate­

representation of the forced nutation of the axis of rotation of the 

earth due to the luni-solar perturbing forces: 

Table 3.2 IAU (1977) Proposed Nutation Coefficients 

Period (days) $ sin 09 

6798 -6.843 9.206



3399 0.083 -0.091



365 0.058 0.006 

183 -0.520 0.569



122 -0.020 0.022



27.6 0.028 0.000



13.7 -0.083 0.091 

The sign convention in Table 3.2 is the same as in the AENA Supplement 

[1961, p. 44]. The coefficients are obtained by adding the tidal cor­

rections to the mitation of the instantaneous rotation axis (I) of the 

rigid body. The thus modified nutation series does not describe the 

position of the celestial pole (C). The theoretical corrections for the 

dynamical variations are still needed! 
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4. SUMMARY AND RECOMMENDATIONS 

The motion characteristics of the rigid, the elastic earth model 

and the model with liquid core have been reviewed. An attempt has been 

made to strictly distinguish between motions due to external forces and 

the free motions. The dynamical theories of the rigid and elastic earth 

model involve various axes, such as the axis of rotation (I), the angular 

momentum axis (H), the axis of figure (F) and an axis called the celes­

tial pole (C'). Special efforts have been made to investigate the sig­

nificance of these axes regarding observability. It has been found that 

even for these ideal models, vhere the stations do not change due to 

crustal motions, only the celestial pole (C ) is observable through 

fundamental astronomical observations. "Observable" is to be under­

stood in the sense that the direction between the observatory and the 

celestial pole (C') can be measured without using any hypotheses or models. 

The pole (C') moves with respect to the body only because of the pro­

gressive Chandler motion. It is understood that fundamental astro­

nomical observations, where the same star is observed at both cul­

minations, give only the mean positions for the twelve hour time span. 

The diurnal motions of the instantaneous rotation axis (I), and the 

angular momentum (H) have been investigated. The periodic diurnal polar 

motions of (I) are strictly related to the spatial nutations of (I). The 

correspondence between those motions can be demonstrated most easily 

in terms of two cones rolling on each other, having characteristic 

vertex angles and speeds. It has been shown that the instantaneous 

rotation axis (I) is needed only at the initial step when formulating the 

motions. From the descriptive point of view, one can associate with 
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a rotating body which is subject to external forces two instantaneous 

rotation axes. One of the two axes is (1), which must have periodic 

diurnal body-fixed motions. The 6ther axis is (C'); it is effected 

only by the progressive motion (free motion). Since the Chandler 

(Euler) motion, at least conceptually, represents the initial conditions, 

it can assume any magnitude. (Please remember that we are talking 

about ideal bodies.) If its magnitude is zero, then the celestial pole 

(C') does not move with respect to the model surface; whereas, (I), still 

has the diurnal motions around (C'). This type of explanation is 

strictly valid since the forced and free motions are independent, as 

they represent two independent solution components to the differential 

equation of motion. As for adopting a set of nutations, clearly, pref­

erence has to be given to the celestial pole C', not only because it is 

observable (in case of rigid and elastic bodies) but also because the 

positional elements which refer to it have no diurnal periodic variations 

and do not require a correction for the so-called dynamical variations. 

The differences and commonalities between the rigid and perfectly 

elastic model have been discussed at length, the main characteristic 

being that the angular momentum axis remains virtually unchanged in 

space whereas the direction of the (C') changes somewhat. But it 

was pointed out that the observational evidence does not entirely confirm 

the predicted changes. 

The liquid core model is the most general model considered in 

this study. It introduces a new spectrum of motions, such as the nearly 

diurnal free wobble (NDFW) and its associated change in nutation, both 

resulting from the free solution. In addition, certain frequencies change 

their amplitudes due to core resonance. The observations fit such a 

model quite well. Similarly, as in the case of the rigid, and elastic 

bodies, the celestial pole of the shell (C") was defined as that pole 

having neither shell-fixed nor space-fixed periodic diurnal motions. Thus, 
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in the case of the liquid core model, the celestial pole of the shell (C") 

is observable.



Above it has been said that the celestial pole (C') or (Cu) is 

observable depending on the mathematical model under consideration. 

The real earth, of course, -does not behave exactly as these models in­

dicate although the liquid core model fits the observations better than 

the other two models. Yet, the concept of the celestial pole, or even 

better that of the celestial pole of the shell can be extended so as to 

denote that pole which is observable in actuality. This pole can then 

simply be called the "Celestial Pole (C)." It has the property of having 

no body-fixed and no space-fixed diurnal periodic motions. The naming of 

this observable pole correctly does not give any hint as to the best 

fitting theoretical model since, anyhow, each model is only an approxi­

mation. The point of view is taken that the nutations and, of course, 

the polar motions of the celestial pole (C) can only be determined from 

observations. The possible adoption of the TAU - 1977 set of nutations 

is a step in this direction. Unfortunately, this set of nutations does not 

include the theoretical Oppolzer terms; therefore, the dynamical cor­

rections are still needed. 

It is recommended that in the future the terms "polar motion" and 

"nutation" be only associated with the body-fixed and space-fixed 

motions of the celestial pole (C), respectively. If the motion of any 

other axis is meant, the name of this axis should be given explicitly. 

The celestial pole (C) gives the natural reference direction not only 

for astronomical observations but also for laser ranging to lunar reflec­

tors. More details on this subject are given in [Leick, 1978]. 

Finally, it is sometimes suggested that the nutations be given for 

the angular momentum (H). But it is clear that such a procedure violates 

the concept of observability. It may be true that the direction of (H) in 

space is the same for the rigid, elastic, or any other reasonable earth 
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model. But this property is not of much interest to the astronomer 

or geodesist who tries to determine the orientation of the earth. It 

is conceptually simle! to refer tb an axis wlich is observable. 

foth representations are actually equivalent, i.e., determining the rnta­

tions of the celestial pole (C) or using the adopted (rigid model) nuta­

tions of (H) but then determining the periodic diurnal body-fixed motions 

of the angular momentum (H). 
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