General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)



NASA Technical Memorandum 78781

GEOMETRY REQUIREMENTS FOR
UNSTEADY AERODYNAMICS 1IN
AEROELASTIC ANALYSIS AND
DESIGN

E. Carson Yates, Jr,.
and
Luigi Morino

METRY

N (NASA) ol oo 1A

September 1978

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665




IN AERO

E. Carson Yat

ELASTIC ANALYSIS AND DESIGH

es, Jr. and Luigy :orino



N

T

INTRODUCTION

Accurate calculation of aeroelasti

¢ charecteristics required for the snalysis and design of hi
performance ai

gh-
reraft requires accurate and efficient evaluation of steady

and unsteady aerodynamic loads
on aircraft having arbitrary shapes and motions,

including structural deformations. This presentation
will address the aircraft geometry requirements for unsteady aerodynamic computations and will emphasize
differences between requirements for steady and unsteady flow.



COMPARISON OF STEADY AND UNSTEADY FLOW REQUIREMENTS

(Figure 1)

Requirements for aeroelastic analysis and design are In several respects more complicated and more
severe than for the more conventional steady-state aerodynamics. For example: (1) The aercelastician
deals with flexible structures so that even in steady-state conditions. the aerodvnamic load is a functiom
of structural deformation, and vice versa. (2) The unsteacy aerodynamic fprmulations required in dynamic
aercelasticity involve complex quantities (e.g., normalwas. velocities, aerodynamic influence functioms,
and pressure) that manifest time- or frequency-dependent actenuations and phase shifts relative to steady
state. (2) In dynamic aeroelasticity--flutter, for example--the aeroelastician must evaluate pressure
distributions for “ibration mode shapes that are much morz wiggly than a typical steady-state mean-camber
surface. The corresponding pressure distributions will also be more wiggly than those for steady state
so that conputational convergence requirements are usually more severe than for steady state. (4) Flutter
analyses, as well as iterative structural resizing, reguire evaluation of pressure distribution= for a
multiplicity of mode shapes, frequencies, aircraft loading conditions, etc. Consequently, comnutational
efficiency is vital, and it is essential to minimize the amount of recomputation required when mode shapes

and/or frequencies are changed.

-

With these thoughts in mind, we shall discuss geometry requirements within the framework of the
SOUSSA aerodynamic formulation because it is the most general potential-flow program that we now have
under development (with regard to aircraft geometry, motion and deformations, and speed ranges) and
because present and future SOUSSA geometry requirements are as stringent as those for any aerodynamic
program that we now anticipate. Ceometry required is considered to be composed of three parts: (1)
chape of vehicle, (2) orientation of vehicle, (3) deformation(s). Orientation involves little more
than a rotaticon of coordinate axes and consequently will not be emphasized here. Deformations can be
finite but are more usualiv taken to be infinitesimal and approximated by a linear combination of the
natural undamped vibration modes of the aircraft. As many as two dozen modes or more may be required
to converge the aeroelastic solution. A related geometrical requirement is determination of wake
shape which is not known a priori although it may be assumed to be flat for many applications.
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STEADY, OSCILLATORY AND UNSTEADY SUBSONIC AND SUPERSONIC AERODYNAMICS

(SOUSSA)

Objective: An accurate, general, unified-method for caiculating steady and unsteady loads on
complete aircraft with arbitrary shape and motion in subsonic or supersonic flow,

with emphasis on application in computer-aided structural design

Approach: Green’s theorein is used to formulate exact integral equation for notential.

where @ = perturbation velocity potential

G = Gret_an's function
F = nonlinear terms

Six,y,z,t) = 0 defines body surface
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STEADY, OSCILLATORY AND UNSTEADY SUBSONIC AND SUPERSONIC AERODYRAMICS
(soussa)

(Figire 2)

To set the stage, a brief review of SOUSSA formulation is in order. Application of Green's theorem

leads to an integral egquation for the perturbation velocity potential ¢ at any point P in the flcw

or on the flow boundary (i.e., on S). Note that the second integral contains only ..near terms which

are integrated over the boundary surface S, whereas the first integral contains nonlinear terms F,
involving products of derivatives of ¢, which must be integrated over the fluid volume.
The boundary condition clearly shows the effect of time variation of S.
as

harmonic, for example, the N term becomes

If the variation is
iwS so that the normalwash at S = 0 becomes complex.
The imaginary part, however, involves only surface ordinates (including displacements and deformations),

whereas the real (steadv-stats) part involves derivatives of surface ordinates. Thus, introduction

of unsteadiness does not impose more stringent reguirements on surface definition as far as quantities

required are concerned. It may, huwever, require greater accuracy and grezter amounts of geometrical

information (e.g., for more points on the surface) in order to define ac'equately the wiggly modes of

deformation referred to previously.

The influence of nonlinear terms F is being studied in the development of SOUSSA aerodynamics for

the transonic range. However, these terms are not included in the Present ccmputer program.
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SOLUTION OF INTEGRAL EQUATION

Solution by spatial discretization with arbitrary nonplanar quadrilateral
sur face panels and time solution by Lapliace transform results in

[UAH } [./5]{%}

where @ = Laplace transform of perturbalion velocily potential

Q% Laplace transform of normalwash

o -S(O‘n ?
T =8 =(C +s D)% = Z (50 45G) 55 €
¥t 8. e

= Laplace transform variable
= integrals over surface panels, independent

S
B . C D F G =

h?* h hs in n

4 s < i d of normalwash and s
6, TTjn = lag functions
th =+

Surface pressures are obtained from Bernoulli's equation,

Figure 3



SOLUTION OF INTEGRAL EQUATION
(Figure 3)

Assuming that the effect of the motion of the surface is negligible except in the boundary
condition (infinitesimal unsteady deformation) and neglecting the nonlinear terms, then surface
paneling and Laplace transform solution yield a matrix =quation relating the unknown potential ¢
on the vehicle surface to the normal wash . Elements of the coefficient matrices are independent
of normalwash (and hence deformation) and are simple functions of the Laplace variable s. For a given
paneling arrangement, they depend only on Mach number.

Use of arbitrary nonplanar quadrilateral panels permits matching node: of the aerodynamic panels to
the nodes of a structural finite-element model, if desired, in order to use the nodal coordinates and
calculated displacements directly without requirement for interpolation. In gencral, however, solution
for the velocity-potential matrix requires the following geometrical input: (1) Coordinates of panel
nodes usually cbrained by interpolation (lofting) from aircraft shape information. (2) Time-dependent
normalwash at control points which usuvally do not coincide with panel nodes. Normalwash involves
coordinates and slopes obtained from aircraft shape plus orientation plus deformation.

Note that increasing the number of deformation modes used involves only adding columns to the ¢ and
¢ matrices, and that updating the entire set of deformation modes, as in a structural design applicatienm,
involves only replacing the ¥ matrix. The Y and Z matrices are unaffected in either case.

Surface pressures are obtained from Bernoulli's equation. Generalized aerodynamic forces, including
aerodynamic coefficients and stability derivatives, are determined from weighted integrals of the pressure
which require values of surface displacement (due to rigid-body rotation and/cr modal deformation) at a
set of integration points which may not coincide with the panel nodes nor control points.

The geometrical information required by SOUSSA can, of course, be generated with any suitable
geometry preprocessor as long as the results are cast in required SOUSSA inputr format. It is evident,
however, that automatic paneling capability is essential to the efficient processing of complicated
shapes and deformations that may require many hundreds of panels. Such capability should include not
only automatic calculation of the coordinates of nodes, control points, and integration points, but
also automatic identification numbering fur these points as well as for the panels and systematic
identification of which nodes go with which panels.
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GENERAL POTENTIAL-FLOW AERODYNAMICS
(SOUSSA)

GENERAL FINITE-ELEMENT METHOD:
© ARBITRARY COMPLETE A/C CONFIGURATION
© STEADY AND GENERAL UNSTEADY MOTION
© SUBSONIC AND SUPERSONIC
© COMPUTATIONAL EFFICIENCY

CURRENT DEVELOPMENTS:

© NONLINEAR EFFECTS (TRANSONIC FLOW,
WAKE DEFORMATION) '

© IMPROVED FINITE ELEMENTS (HIGHER ORDER,
SPECIAL PURPOSE)

© ROTATIONAL FLOW (TURBULENCE, VISCOSITY)

Figure 4
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GENERAL POTENTIAL-FLOW AERODYNAMICS
(SOUSSA)
(Figure L)
The upper part of this figure lists some of the fea ures of the SOUSSA aerodynamic formulation.

The lower part indicates some expanded capabilities and imprcvements that are under development and
that will influence surface geometry requirements.

These are discussed in the following figures.
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SURFACE OF INTEGRAi iON S
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SURFACE OF INTEGRATION S

(Figure 5)

In the integral equation for the velocity potent‘al (previousiy shown) the surface integration extends
over the surface of the aircraft plus its wake, and the no-penetration boundary condition DS/Dt = O
applies over both. Morecver, the pressure “ust be continuous across the wake although the potential is
discontinuous. The forward cdge of the wake of a lifting surface is Loasidered to be located at the
lifting-surface trailing edge, but the position of the rest of the wake is not known a priori, is va~isble,
time-dependent, and must be determined in the calculation. This variability requires relocation and
reorientation of the wake and its panels during the calculation, perhaps many times if the calculation

is iterative.

This figure also shows a shockwave which is isolated from the flow field by a portion of the surface
S. Over this portion of S the no-penetration boundary condition must be replaced by Rankine-Hugoniot
conditions or other shock conditions which quantify shock-induced discontinuities in derivatives of
the potential although the potential itself is continuous across the shock. These discontinuities make
it desirable to have panel edges lie along the foot of the shock. But shock location, shape, extent,
strength, and velocity relative to the vehicle surface are time dependent. Moreover, motion of finite
amplitude--even small amplitude--that is needed to investigate limit-cycle aeroelastic response can
lead to large-amplitude shock motion and even discontinuous shock location. Consequently, requiring
panel edges to coincide with the foot of the shock can require extensive repaneling in the vicinity
of the shock during calculations for unsteady motion. In contrast, nonlinear calculations for shock-
free transonic flow require no repaneling and impose no special requirements for surface geometry.

40
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WAKE-FUSELAGE INTERSECTION
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WAKE-FUSELAGE INTERSECTION

(figure R)

Shocks and wakes frem 1ifting surfaces impinge upon fuselages or other portions of the
vehicle along lines that are time dependent. Because of 'he discontiauities in potential or
its derivatives at these impinpement lines, it is desirable that panel edges coincide with
them. Hence, time dependent repaneling in these vicinities is also indicated.

For simplicity in its development, che present SNUSSA program contains zeroth-order
(constant-potential) aerodynamic elements. However, it has been intended from the beginning
that the program would employ higher-order elements in order to reduce the number of elements
required to converge the solution. Such 2lements have been developed and will soon be
incorporated into the program. In addition, special-purpose elemenrs are being develoved
for paneling in regions where correct variation of poteatial is theoretically known. These
elements have built-in shape functions to produce the correct variation of potential, for
example, adjacent to normalwash discontinuities such as control-surface hinge lines and side
edges, or correct variation of potential derlvatives as at subscnic trailing edges. In additiom,
flow-through elements are required tc model engilne thrust in nacelles and tc panel shockwaves.
Such elements impose no new requirements for surface peometry information. Note that no special
panels are required adjacent to shnock or wake impingement on the body surface. Use of higher-
order and special-purpose eclements should reduce computer time and storage requirements but
probably will do little to reduce the amount of geometrical input information required.

Although fewer elements are used, more information is required per element. Detailed accuracy
of information out requi~.s detailed accuracy of information in, irrespective of the level of
sophistication.

Finally, incorporaving the effects of viscosity and rctational flow will impose a
requirement for relativeiy high accuracy of computed pressure gradients and hence will require
higher—-order elements (at least third order) than would be required for most potential-flow
problems. Alternatively, it is possible that required accuracy and order of continuity may be
attained from solutions usi:g lover-order elements followed by spline (or other) interpolation of
the calculated potential.

Specific treatment of aircraft geometry in the SOUSSA program itself will next be described.
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POTENT!AL-NORMALWASH RELATIONSHIP
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POTENTTAL-NORMALWASH RELATIONSHIP
(Figure T)

The rest of this presentation is devoted to the specific geometry
requirements for the program SOUSSA P (Steady, Oscillatory and Unsteady,
Subsonic and Supersonic Aercdynamics; Production Version). As presented
above, the Green's function method yi.lds an integral equation over the
surface of the aircraft and its wake (with differential-delay dependence
on time). Dividing the surfaces in quadrilateral elements and assuming
the potential, the normalwash and the potential discontinuity to be
constant within each element, one obtains Eq. (1).

The coefficients B W etc., are evaluated analytically, with

n* ©

the original surface o, approximated by a hyperboloidal paraboloid

h
(hyperboloidal element). Low-order numerical quadrature is used for
distant elements.
In order to complete the formulation three additional relationships
are required:
1. Boundary conditions, relating normalwash | to the generalized
coordinates q (Eq. 2)
2. Bernoulli's theorem relating pressure coefficient Cp to
potential ¢ (Eq. 3)
3. Definition of generalized forces, e,s as functionals of the
pressure coefficient Cp (Eq. U4)

Finally combining Egqs. 1 to 4 one obtains the matrix E relating

the generalized forces, e to the generalized coordinates, Q-

17
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SOUSSA P 1.1
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SOUSSA P 1.1
(Figure 8)
This figure shows the flow chart for the program SOUSSA, and it is presented i order to indicate
how the geometric information is used in the program. The check points will be discussed later. Here
only the function of each module is briefly described.

Interfaces

BODYG, CONTG and WAKEG: Elaborate the geometry input of checkpoints 1 and 2 (user oriented) into the
checkpoints 5, 6 and 7 as needed in the rest of the program.

Potential-Normal wask relationship (mode independent)

COEFB: evaluates the body coefficients th, th & Djh and th
COEFW: evaluates the wake coefficients an, Gjn 5 th, Chn and Hh

YZMOD: combines the above frequency-independent coefficients to yield the frequency-dependent

matrices Ejh] and ?jh]

Boundary conditions (mode dependent)

EIMOD: evaluates the matrix E; relating § to q

Bernoulli's Theorem (mode independent)

relating C to &
3 E -
Generalized Forces  mode dependent)

E3MOD: evaluates the matrix E

E4MOD: evaluates the matrix E; relating € to ER
Combining
EMOD: evaluates the generalized-aerodynamic-force matrix
E=EEEE
TRIEREE i s e |

ADMOD: implements an aerodynamic design method which yields the shape from a prescribed pressure distribution.
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CHECKPOINT #1

—

o Cartesian coordinates of modes, 7, .

e 1';1 (1.5 4 1:“) © matrix rc/aﬁna node number o
e/emm/' and corner numbers.
o 6od7-s7mmaF7 code numbers.

® code numbn-/m- elemenh (6.3, TE, hmac,.-j

a9 Figure 9 OF P



CHECKPOINT #1
(Figure 9)

This figure presents the contents of Checkpoint #1 (input to module
BODYG), which consists of information describing the geometry of the
aireraft body. It is user-oriented in that the quantities required are
compatible with the output of state-of-the-art geometry preprocessors.
Also, if the aircraft is symmetric w.th respect to the x-z plane, then
only the right half need be supplied. The same is true for the x-y plane.

Regarding the individual components of Checkpoint #1:

o The Certesian coordinates of the nodes are assumed to be those of

the aircraft already oriented as desired by the user.

o Referring to the example depicted in the figure, element number 1,

corner 1 yields rode number 2.

o The body-symmetry code numbers reflect whether symmetry is

considered with respect to the x-z and/or y-z planes.

o The element code numbers provide information such as whether

or not a wake emanates from an edge of an element, or if an edge

coincides with a hinge line, etc.

21




CHECKPOINTS #2, 3 AND 4

CHECKPOINT 42

o« Cartesijan coordi nates of corners of wake shps

° Scfmmef"7 codes for cach shp

PY Maf'n'x r’e/ﬂfl'na eac/v S/"rfp 7o f'h ADW
corresponding éraa'/a'né ¢dﬂ:. elements.

o Number of element per .s/—n'p.
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CHECKPO/NTS # 3 AND 4

3-0 (V'cc/or) rrwﬁk shapcs, MM(P‘.)) al nomla

ot Figure 10



CHECKPOINTS #2, 3 AND U
(Figure 10)

This figure presents the contents of Checkpoints #2 (input to Module
WAKEG), #3 (input to Module EMMOD) and #4 (input to Module EIMOD).

Checkpoint #Z consists of information describing the geometry of the
wake, By describing the wake as a collection of strips, many different
forms of input can easily be made compatible. If a wake strip is symmetric
with respect to the x-z plane, then only the right half need be supplied
(same for the x-y plane).

Also,

o Desired orientation of the wake with respect to the aircraft is
assumed to already be satlisfied.

o The matrix which relates each wake-sgtrip number with the
corresponding four trailing-edge element numbers is used in
evaluating the trailing edge values of the potential and for
determining the values of the pressure discontinuity at the
centroid of the trailing-edge elements.

Checkpoint #3 corresponds to the generalized-forces deformation modes,

and Checkpoint #4 corresponds to the boundary-condition deformstion modes.

23



CHECKPOINTS #5 AND 6

CHECIKPO/INT #5

o Jame g uan Tifies as cheek point 44, buf
for co»v,ble[‘e aireratt

e base vectors a eamd g

- -
, @nmd normal a xa,

at cen bFroids a/' elements /rr comphh q,.'rcraiat

CHECKPOINT # &

o Cartesian coordinates of the cenlroids of the

elements
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CHECKPOINTS #5 AND 6

(Figure 11)

This figure presents the contents of Checkpoints #5 (input to module COEFB)

and #6 (input to modules COEFB and COEFW). These checkpoints are at a
lower level than checkpoints #1-h 1if one views the SOUSSA P flow diagram
as a top-down representation. The implications of this are that these
checkpoints are not as "user-oriented" as higher-level checkpoints, since
program execution has progressed to this point. This is evidenced by the
fact that for Checkpoint #5, the same quantities as Checkpoint #1 are
required except that symmetry conditions (and their advantages in preparing
geometrical input) are not considered. Furthermore, geometrical quantities
such as the base vectors and normals of surface elements are not as readily
available from geometry preprocessors as the information contained ia
Checkpoint #1, These considerations must be accounted for by ithose
users desiring to begin execution of SOUSSA P at this level.

For version 1.1 of BOUSSA P, the location of the control points must
be specified as the geometrical centroids of the body elements. For
future versions (first-order finite element formulation), the location

of the nodes will be the necessary input.
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CHECKPOINT #7

o Curtesian coordinalkes of #the corners of the
Wake elements for the entire wake.

o Matrix re/af’:na cach wake element vo He
Younr :‘ra/h}g—cdaa_ elements (e check po/nt 4 2),
for the entre wake.

e Mamtx re!af:'ng ecach wake element fo e cocth e'evd
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CHECKPOINT #7

(Figure 12)

This figure presents the contents of Checkpoint #T (input to module

COEFW).

This is also not a top=level checkpoint, hence, its contents may

not be as "user-oriented" as, say, Checkpoint #2. For instance, at this

level:

()

The coordinates of the wake elements (as opposed to the wake
strips) are required, and no symmetry conditions may be taken
advantage of (i.e., all the elemenis must be input).

The matrix used in correction for the trailing-edge potential
values, for example, must be given for the elements comprising
the complete wake.

Most geometry preprocessors would not provide the matrix of the
coefficients of influence of the trailing-edge elements that
determines the value of the potential discontinuity for each wake
element. Note for SOUSSA P 1.1 these coefficients are simply 1
and =1, but for later versions, splines could be used to determine

these coefficients.
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CURRENT DEVELOPMENTS
FIRST-ORDER FINITE ELEMENT (UNDER DEVELOPMENT)

eS/MILAR Fiow eHART

0 ALMOST ,DENTICAL INPUT (CHEck PuNTS 4 To 4)

TRANSONIC UNSTEADY Fiow (VWNOER consiDERATION)
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CURRENT DEVELOPMENTS
(Pigure 13)

Work now under consideration includes higher-order finite-element
formulations. In particular, work on firsteorder finite element is now
underway. Splines are ulso teing considered for various modules,

Also under consideration is the extension to transonic unsteady flow.
This requires the addition of two terms, the first is due to the non-
linearities in the differential equation, the second to the presence
of shocks. The equation is solved step-by-step in the time domain. The

location of the shock and its intensity are obtained at each time step.
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