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Abstract
 

A model is developed to predict the shape of the distribution of
 

granular agricultural particles applied by aircraft. The particle is
 

assumed to have a random size and shape and the model includes the effect
 

of air resistance, distributor geometry and aircraft wake. General
 

requirements for the maintenance of similarity of the distribution for
 

scale model tests are derived and are addressed to the problem of a non

general drag law. It is shown that if the mean and variance of the
 

particle diameter and density are scaled according to the scaling laws
 

governing the system, the shape of the distribution will be preserved.
 

Distributions are calculated numerically and show the effect of a random
 

initial lateral position, particle size and drag coefficient. A listing
 

of the computer code is included.
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NOMENCLATURE 
ORIGINAL PAGE IS 

b wing semispan (m) OF POOR QUALITY 

CD particle drag coefficient 

CL aircraft lift coefficient 

d particle diameter (m) 

g acceleration due to gravity (m/sec ) 

g* non-dimensional acceleration due to gravity 

K constant in drag relation 

Kv constant in initial velocity relation 

m particle mass (kg) 

t time (sec) 

U aircraft speed (m/sec) 

u non-dimensional x-velocity of particle 

ua x-velocity of air (m/sec) 

up particle x-velocity (m/sec) 

v non-dimensional y-velocity of particle 

va y-velocity of air (m/sec) 

v 0 initial y-velocity of particle 

vp particle y-velocity (m/sec) 

Vr magnitude of relative particle-air velocity (m/sec) 

w non-dimensional z-velocity of particle 

wa z-velocity of air (m/sec) 

w initial z-velocity of particle 

w particle z-velocity (m/sec) 
p 

s longitudinal particle coordinate 

y lateral particle coordinate 



yG lateral ground intersection point 

YO initial lateral coordinate of particle 

z vertical particle coordinate 

z initial vertical coordinate of particle 

a modified ballistic parameter 

$ ballistic parameter 

8 non-dimensional particle diameter 

I non-dimensional y-velocity of air 

p mean (expected) value 

V kinematic viscosity of air (m2/sec) 

C non-dimensional z-velocity of air 

p non-dimensional density of particle 

Pa air density (gm/cm
3) 

Pp particle density (gm/cm ) 

a square root of variance (standard deviation) 

T non-dimensional time 
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I. INTRODUCTION
 

Aerial application of material has played an increasingly significant
 

role in United States agriculture, forestry, and other related industries
 

since the Second World War. One of the major problems associated with the
 

use of aircraft in this field has been the difficulty of obtaining desired
 

distribution patterns with present equipment. This problem has been
 

addressed by several groups in the academic and research fields, notably
 

Henry (1962) and Yates, et al. (1970). However, most of this work has
 

been of a trial and error nature with only sketchy guidelines being offered
 

by theoretical considerations, mostly with regard to particle trajectories.
 

It would appear, then, that an investigation of the factors which
 

go to make up the structure of the distribution and which directly affect
 

its shape would be of some use in designing better aircraft/distributor
 

systems. Accordingly, this paper presents a model of the distribution of
 

dry agricultural material which is based on the application of basic
 

probability theory. The model takes into account the random nature of the
 

size and shape of the particles, air resistance, distributor geometry and
 

the effect of aircraft wake. Some results, based on data obtained for
 

three grains (wheat, corn and oats), are presented in order to demonstrate
 

the applicability and to show the effect of certain parameters on the
 

distribution. In addition, a discussion of the effects of scaling on the
 

distribution is presented and requirements for maintaining similarity in
 

the distribution are discussed.
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II. PARTICLE CHARACTERISTICS
 

One of the first requirements in the development of a method for
 

predicting the distributions of agricultural particles is a knowledge of
 

the physical and aerodynamic characteristics of these particles. A
 

literature search revealed that the necessary data were available for
 

some particles but would have to be collected from numerous individual
 

sources and investigations. An attempt was made to gather as much
 

information as possible on these characteristics from the literature.
 

No attempt was made to make additional measurements.
 

It was found that fairly complete characteristics could be assembled
 

for several of the grains (corn, oats and wheat), while the same infor

mation was almost totally lacking for all of the solid fertilizers. The
 

data presented here were collected from references (3-9), and were reduced
 

via the method outlined below.
 

The delineation of physical characteristics which best suited the
 

point of view of this study was to assume the particle to have three
 

fundamental characteristics which define its physical properties. They
 

are: density, size (which together determine the weight) and shape (which
 

determines the drag coefficient relation). A sample collection of one
 

type of particle will contain specimens possessing a wide range of each
 

of these characteristics. That is, the characteristics will possess an
 

apparent random nature, even though each individual specimen will have a
 

fixed density and size, and will possess a definite relation between its
 

drag coefficient and Reynolds number. The form of this relation is
 

dependent on the shape of the particle (just as- a streamlined body possesses
 

a different drag coefficient from a flat plate or a sphere) and thus
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allowing the drag coefficient to be a random variable will reflect the
 

random nature of the particle shape.
 

Here the drag coefficient is defined in the conventional way
 

D
 
CD' 2
i paV S
 

where V is the magnitude of the particle velocity relative to the air
r 

around it and S is a characteristic area associated with the particle,
 

commonly taken to be its frontal area. As stated before, the drag co

efficient is a function of the Reynolds number of the particle, given as
 

Vd
 
Re = 

V 
r
 

where d is a characteristic linear dimension of the particle. Above, pa
 

and v are the density and kinematic viscosity of the air, respectively.
 

With this approach, then, the actual particle shape and its random
 

nature is important only to the extent that it affects the drag coefficient
 

relation and hence is completely independent of the size of the particle.
 

Therefore, any convenient and consistent method for sizing the particles
 

is acceptable. The approach taken here is one proposed by Garrett and
 

Brooker (1965). The particle size is determined by considering a sphere
 

which has the same volume as the particle in question and using the
 

corresponding diameter of that sphere as the characteristic linear dimension.
 

The characteristic area then is simply the cross-sectional area of the same
 

sphere. The drag coefficient, measured by any of several methods described
 

in the literature (the most conon being a measurement of the terminal
 

velocity of the particle), then corresponds to a Reynolds number calculated
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using the diameter of an equal volume sphere. Thus, a drag
 

relation can be constructed by a statistical analysis of the
 

data.
 

A least squares method was used to fit a general relation
 

of the form
 

CD = A Re + B/Re + C (1) 

to the data and the results are shown in Figures 1-3. This 

relation was taken to be the mean, or expected value, for the 

drag relation. A log-normal distribution function was used to
 

describe the random variation of CD about this mean. This dis

tribution has two primary properties: First, if a random var

iable X is lognormal, then in X is normal, or gaussian.
 

Second, the function goes to zero as X approaches zero and is
 

undefined for X less than zero. We should not expect any
 

particles to have drag coefficients less than zero.
 

In addition, this distribution, like the gaussian dis

tribution, is completely characterized by its mean value and its
 

variance. The small amount and large scatter of the data for
 

the variance makes any attempt at curve fitting questionable,
 

however a least squares fit of a cubic
 

aCD = D R 3 + E R + F Re + G (2) 

was made. The results are presented in Figures 4-6. 

The particle size, as determined by the diameter of an
 

equal volume sphere, was also held to be described by a lognormal
 

distribution. However, the analysis was of a more straightforward
 

nature and the results are
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tabulated in Table 1. It was found that the density of thes6 particles
 

did not vary significantly from specimen to specimen (probably for
 

biological reasons) and so it is safe to assume the density to be a
 

deterministic quantity. The values used are also presented in Table 1.
 

In the calculation of the standard deviation of the drag coefficient,
 

each point on the graph represents at least six data points, as it was
 

necessary to group neighboring points on the drag curve in order to obtain
 

a standard deviation for a particular range of Reynolds number.
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Table 1 

Physical Characteristics 

Diameter (microns) 

Standard 
Mean Deviation 

3 
Density (g/cm3 ) 

Oats 

Corn 

Wheat 

3594 

8133 

3573 

426 

338 

189 

1.369 

1.234 

1.320 
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III. TRAJECTORY EQUATIONS
 

Each particle, as it is ejected from the aircraft, becomes a free
 

projectile and is subject to Newton's second law of motion. The equation
 

of motion, in vector form, describing the trajectory is
 

dV
 
m-+D +L +mg =0 (3)
 

where L refers to the lift force generated by the particle. Since the
 

particles studied here are irregular in nature (in particular, oats have a
 

flattened profile), they will, in general, produce a force perpendicular
 

to the direction of motion, as well as one opposite the direction of motion.
 

These forces are termed lift and drag, respectively. Though, as shown in
 

the preceding section, there is information regarding the drag experienced
 

by these particles, predicting and representing the lift forces is a more
 

complex matter. It is felt that, by ignoring the lift force, the sub

sequent simplification will be of such a degree as to offset the relatively
 

small loss of accuracy.
 

With this simplification, then, the single vector equation can be
 

written more revealingly as three scalar equations, with the component of
 

the drag force in the ith direction being
 

U -U 
D I 2$ ja 

so that the drag acts in the opposite direction to the velocity vector
 

du 
m + D= 0 (4) 
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dv 
t+ y (5)mdt 

dw 
m t + -mg 0 (6) 

It is apparent, however, from the work of Bragg (1977), that the
 

motion of the particle remains predominantly in a plane perpendicular to
 

the direction of motion of the aircraft (the x-direction) and since the
 

distribution is dependent only on the motion in this plane, a two
 

dimensional model will be used for this study.
 

Rewriting the y and z equations of motion with the three fundamental
 

particle characteristics explicitly shown, gives, after dividing through
 

by the particle mass
 

dv + (v2.Va)C D ~(~)+(ww = 0 (7)d_ 3 Pa 3 P (WW) 2 
dt 4p p d (Vp-Va)2 (Wp-Wa
 

dwP3Pa (wpwa C (vv)2 +( .12 =0 1S
 
dt - g + -Z pp d % VPa +( -)(8 

Since the wake system of the aircraft is dependent primarily on the
 

aircraft geometry and velocity, the nondimensionalization was carried out
 

with respect to the aircraft flight speed U and the wing semi-span, b.
 

The equations then become
 

+ I a (v-1) CD J(v-f) 2 + (w-C)2 = 0 (9)
dr 4 pp 6 

D
dw g. 3 -La( 8 C (v 2 + (w_ 2 = 0 (10) 
p a d f n in Table 2
 

wh r 4 6 

where the nondimensional variables are defined in Table 2.
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Table 2 

Nondimensionalization
 

V w 
= -2vw 


U 'U 

v w 
a a 

tU
S= b 

d 
b 

gb
g* _ 
2
 u 
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Detailed numerical studies of the above system have been carried out
 

by Reed (1953) and Bragg with respect to liquid droplets. Although the
 

trajectories predicted in both cases seemed to indicate good agreement
 

with experiment, these analyses could only yield distributions by the time
 

consuming and costly method of a numerical compilation of trajectories
 

calculated using a matrix of initial conditions and particle parameters.
 

It seemed desirable to construct an approximate solution to the above
 

system which would offer a simple method of constructing the distributions
 

while preserving some of the accuracy of the previous analyses.
 

Returning to equations (9) and (10), one of the most striking aspects
 

revealed there is the fact that the particle-dependent parameters can be
 

grouped into a single variable, and it is this variable alone which affects
 

the solution of the system. This parameter bears a close resemblance to
 

the ballistic coefficient, which is used in the study of projectile motion,
 

and so it can be referred to as the ballistic parameter, 5, where
 

3 Pa CD 

4pp 6 

Because of the presence of the drag coefficient, the ballistic parameter
 

is a function of the particle Reynolds number. However, extensive
 

simplification of the entire system can be achieved by observing that a
 

simple drag relation of the form
 

= K/Re (11)
CD 


offers nearly as good a fit to the data as equation (1).
 

Substitution and further manipulation with this result yields the
 

following system:
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dv + a(v-J) = 0 (12)
 

._w- g* + c(w-Q)= 0 (13)
dr
 

where a modified form of the ballistic parameter, a, has been used
 

3 v Pa1K K (14) 
a= 'U- - c -U p 8 2 =( 

Although it appears that much simplification has been achieved, this
 

system still requires numerical solution due to the complex nature of the
 

dependence of I and C on position.
 

The range of values assumed by a for the grains studied in this 

report necessitated the use of two approximate solutions to this system. 

The first is to consider C to be vanishingly small. This corresponds to 

the case where the particle is quite large and dense, or the medium 

through which it travels is quite rarified and the drag coefficient
 

low. This results in the classical case of a body in free fall in
 

a constant gravitational field. The solution for the trajectory is
 

simply
 

Y Y +v0 (15) 

2 
z =z + Wor- g* . (16) 

The lateral position at which the particle strikes the ground can be
 

calculated by letting z = 0 and solving equation (16) for T, and sub

stituting into equation (15). The result is
 

+
YG - Yoy ++*- O (w0W+ W + zz 0g*) . (17) 
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Comparison of this result with a numerical integration of equation (12-13)
 

showed excellent agreement for values of a up through about .20
 

corresponding to a diameter of about 3500 microns, as shown in Figure 7.
 

The second approximation was arrived at by considering initially
 

the case of a particle falling through still air, that is, neglecting the
 

aircraft wake. A study of this system revealed that the smaller particles
 

(larger a) tended to be carried further outboard and also have a
 

significantly lower flight time in the numerical computation than in this
 

approximation. It is apparent that the effect of the wake behind the air

craft is to draw the particles downward and outward from the aircraft
 

fuselage. This effect is primarily due to the pair of vortices which are
 

shed from each wing tip as a result of the lifting action of the wing and
 

which cause the air in the vicinity of the vortices to rotate in the
 

manner shown in Figure 8.
 

In accordance with these observations, a modification to the still

air model was made which extended the range of validity to cover the grains
 

being studied. This modification consists of adding a constant air
 

velocity whose magnitude and direction is consistent with those found in
 

an aircraft wake and which result in the best agreement with the numerical
 

calculation. The adjusted equations then become
 

dv
r (18) 
T; + av - = 0 

dw
 
d- g* + cw a = 0 (19) 

where I and C are constants. The solution for the trajectory is simply
 

+
Y Y (e ) (20) 

-0 
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Figure 8. Wake Structure
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+ +~wo - C+ (21" o € a c (l-e ) . (21)
0 a. a. 

Sample comparisons between the trajectories calculated with equations
 

(15-16) and (20-21) and those arrived at numerically are shown in
 

Figures 9-14. Since the cases with larger a had longer flight times, an
 

expression for the lateral position of the ground intersection can be
 

derived by assuming
 

e 0
 

resulting in the expression
 

v +izo0 a + w°0 

0) (22)
YG Yo + -2 

Comparison of this result with the numerical calculation is also
 

shown in Figure 7. It will be seen later that this extensive approximation
 

is necessary in order to conduct the probability analysis.
 

OF3
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IV. THE DISTRIBUTION MODEL 

As stated earlier, this model makes use of results from basic
 

probability theory.
 

In general, the ground intersection point, YG, of a particle which is
 

ejected from an aircraft is a function of the initial conditions of its
 

trajectory, its particle parameters, the aircraft geometry and flight
 

conditions. For the system defined here, with the appropriate non

dlmensionalizations, this can be written as
 

YG = F(Yo0'z'Vo'Wo$aCL) (23)
 

where CL, the aircraft lift coefficient, is a measure of the magnitude of
 

the wake velocities induced by the tip vortices. In the sense that these
 

variables can assume a range of possible values for any given type of
 

particle and aircraft/distributor system, they can be thought of as random
 

variables. As such, they will possess a joint probability density function
 

(PDF) characterizing their random nature of the form
 

)
Pyo,Z,Vo,W A,CL (yo,zovw,,CL


This is the most general representation of the probabilistic system in
 

that the individual PDF's can be derived from it by first fixing the values
 

of the other variables, then multiplying by the probability that each will
 

assume that fixed value, and finally integrating over all possible values
 

of the fixed variables, so that, for instance,
 



2 

0 

OR1GU' FA&tM 13 
OF TYVY29YOOR Q 

= y (Yol oVo'%W'""CL)px((S ;" Iv ,A,C 

o 0 o 0 L 
zaVtwoC L 

X PZ V W AC (zo0 vOWos'CL)dzdv dwodCLACL 

or more simply
 

py CSo) - Py Z ,W AC (Y 0',ovO'wo'0CL)
 

Xdzodvdwda
duL%
 

Further, since it is known that if a function of a random variable defines
 

a one to one mapping onto another random variable, the PDF for the second
 

variable is defined as
 

py(y) = Px(x) iq I 

so that by again fixing all the variables in equation (23), an expression 

for the PDF of yG can be derived. Writing first 

pyG zoVo WoAC(yG IZo'°v w±'% CL)
 

dy
 
Yo010IVo'W' C(y Iz,'%vo aCL)" dYG 

then multiplying through and integrating as before, the result is
 

pyG(YG> I .. S' , PY ,ZoIV jW ,A,CL (yo'Zo'voIWO'asc
 
L

0 0 00
ZO.'%O'.D% CL 


dyo
 
x w-y21dzodvdwdC L (24) 

X7GVC~vd 
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Considering that many particles go to make up a single deposition, the
 

probability density function will give a good representation of the actual
 

deposition shape. Note also that the same result can be arrived at by
 

fixing any combination of the variables and integrating over those. In
 

addition, since it can be assumed that the particle ballistic parameter
 

is independent of the initial conditions, that is, the particle character

istics do not depend on the distributor geometry, the joint PDfcan be
 

split and equation (24) can be rewritten as
 

PY (YG) = PY ,Z ,V W 'C (yo 'Zovowo'C L) 
ZVow,C LCL o 0' 0 L 

X pA(L)IdYG, dzodvdwdadC (25)
L 


This, then, is the general equation describing the ground distribution.
 

The necessity of an analytical expression for YG in terms of the other
 

parameters is apparent due to the presence of the term dyo/dy0 .
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V. SOME DISTRIBUTIONS 

In the interest of demonstrating the applicability of the model
 

derived in this study, only two parameters were considered to have a
 

random nature, y and Ca. The other parameters were represented as
 

functions of these, or as constants. Extension to the more general case
 

is straightforward and merely requires additional integration.
 

Specifically, z0 and CL were held as constants, and v and w are
 

represented by
 

VO = KY 

go = W (a) 

The resulting simplified expression for the PDF of yG is
 

dy dL(6
 
Py (YG) py (yo)PA()d~2 Ida (26)
 

where 
i 

-+(w + wz + 2zg*) 

dy0 g 

(27) 
G I > .20 

1 +K 

and the PDF for M can be derived as follows. Equation (14) can be
 

rewritten as
 

in a = In C + In K - 2 In 8 (28) 

A basic result of probability theory is that the sum of any number of
 

gaussian random variables is also gaussian. It can then be concluded
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that, since in K and In 6 are gaussian, in a is gaussian. The effect of
 

the constant is merely to shift the mean. Finally, since in cL is
 

gaussian, a is lognormal. Its mean and variance are computed as follows.
 

Let
 

Z = In a
 

Y = in K
 

X = in 6
 

C* = In C 

Then 

Z = C* + Y -2X 

and the expected value of Z, or the mean, written as E[Z], is simply 

E[Z] = c* + ECY] - 2E[z] , 

a more common notation for the mean is ji,so that 

= - 2v .P2 C* + i.jy (29) 

The variance, written as EE(Z-P) 2] is simply
 

E[(Z-P ) 22 I =z 
2 

or
 

+ %2 = E[Z I - P 2E[( 2_2Zi+%A]= E[Z2 2E[Z]%w 

Substituting for Z and expanding as above 

2 2 2 2 2 
Cz = E[Y ] + 4E[X ] + C* + 2C*Ely] - 4C*E[X] - 4E[Y]E[XI 
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Further substitution gives
 

az2 2 + 4aX2 +y)2 2+=ay + (c*- " 2 

or
 

2 2 2
aZ = ay + 4 X (30) 

The general formula for the lognormal PDF is
 

P (t) = 1 expEin t - 0 2 t > 0 (31)
t at r27na 

where the values for a and p are those used above. The actual expected
 

value of t is given by
 

EEt] = t P (t)dt 

which results in
 

2 

=tE[t] e r - (32) 

2.
 
and the variance of t, t2 is given by 

2 2 
2= E[(tt)2] = S t2pttdt 2 

0 

and the result is
 

= 2 (e a (33)
t 


Equation (32) and (33) furnish relations between the actual mean and
 

standard deviations of a random variable t (pt and at) and those values
 

used in the lognormal PDF (p and a). With these results, then, the PDF
 

for m can be written as
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p (aC) = 1 exp[(In C 2 2 (34) 

a v2cT 2c2 

where
 

= in C + p, - 2p2 

2 2 2a =aT12+ 4a2 

and
 

2 o°K. 2
01 = in[l + -) 

2 a6)2]
 
a2 
 = n[l + )2 

O1

Inl.K"aT 

2 
02 
02
P2 in 

A computer program was written to numerically integrate equation (26),
 

applying the above results. It is called DEP and a listing is provided
 

in the Appendix. The variation of y is protided in the form of FUNCTION
 

subroutines PYOF and PYOG which can be easily modified to account for any
 

type of variation of yo. For the case in which y is a constant, that is,
 

there is a single orifice or nozzle, the resulting distribution for wheat
 

is shown in Figure 15.
 

For the case in which the PDF of y0 is constant across a given width,
 

results are shown in Figures 16-20 in which the type of material, then the
 

width of the distributor is varied.
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VI. SCALING CONSIDERATIONS
 

In order to facilitate experimental verification of these results and
 

also to aid in obtaining viable results from test programs where scale
 

model aircraft are used, it would be useful to investigate the effect of
 

scaling the entire system on the probabilistic aspects of the problem.
 

Specifically, it would be desirable to be able to predict probability
 

density functions for the scaled values of the parameters in a given test
 

which would result in distributions which are geometrically similar to
 

those in a corresponding full scale system or a test of a different scale.
 

The problem of obtaining proper scaling for a deterministic system
 

has been addressed by Ormsbee and Bragg (1978) and the derivation will not
 

be presented here. Instead, a heuristic argument will be presented in
 

order to gain insight into the nature of the probability problem, and then
 

a formal approach will be undertaken.
 

Consider a collection of particles which are to be ejected from an
 

aircraft. If two individual specimens are singled out, one possessing the
 

mean diameter of the collection and the other possessing a diameter which
 

is smaller by one standard deviation, and the trajectories of these
 

particles are mapped, they would appear similar to those in Figure 21(a).
 

In this argument, all other factors (i.e., the drag relation, the initial
 

conditions and the density) are held to be deterministic. In order to
 

obtain tra3ectories which are geometrically similar to each of these from
 

a scale model test, it would be necessary to obtain two specimens from a
 

collection of a different type of particle such that the requirements
 

for scaling are met. These particles would describe trajectories similar
 

to those shown in Figure 21(b).
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YF 

Figure 21(a). Full Scale
 

gr2-- (-S-


Figure 21(b). scaled
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It seems to follow that if the second collection of particles
 

possesses mean and standard deviation values corresponding to the diameters
 

of the specimens chosen, scaling of the distribution will have been
 

achieved if the nondimensional lateral ground positions indicated in
 

Figure 21 are identical. This presupposes that the shape of the prob

ability density function has not changed so that it is sufficient only to
 

insure that its width (a measure of which is the variance) has remained
 

the same. This can be shown to be true if the scaling laws are observed.
 

More formally, proper scaling of the distribution will obtain if the 

probability density function for the modified ballistic parameter, a, 

remains identical. The only other possible inputs to the system are the 

geometry and the wake system and these have been accounted for by the 

deterministic scaling laws. A probability density function is completely 

determined by the values of its moments, the ith moment about the mean 

being given by 

Ili = (X-) i Px(x)dx 
x 

Since there are an infinite number of moments associated with a PDF, in
 

general it is not possible to insure complete similarity. However, for
 

the special case of the gaussian distribution (from which the lognormal is
 

derived), all of the moments are not independent and, in fact, all the
 

higher order moments can be written in terms of the first two: the mean
 

and the variance. Thus the problem of distribution scaling is reduced
 

to the question of maintaining the mean and standard deviation of the
 

ballistic parameter.
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In order to retain as much generality as possible, the earlier
 

assumption that the density is deterministic will be removed and it will
 

be assumed to have a lognormal PDF. Equation (28) can be rewritten to
 

include this change as
 

In a In C' + in K - in p - 2 In 6 (35)
 

where p is a nondimensional density obtained by dividing the particle
 

density by the density of air. Letting
 

r = in p 

and proceeding as before, the mean and variance of a can be determined,
 

resulting in
 

2
 
P+a
 

Il =e (36)
 

a2 = 2(e a2 (37) 

where
 

= In C' + py - 1- 2px
 

2 2 + 2 0 2+ 


and
 

2 K 2
 =lnl + ( -) J 
lay + () 

GX
="P8
 

2 ( 2
 

or in[l + (aP2Ip
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2 

2 

2 

P6 2 

2 
ar
 

r 2
 

Thus scaling will be achieved if the values of the mean and variance
 

as given by equations (36) and (37) are the same for the scaled system as
 

for the full scale.
 

In the case of a general drag law, the deterministic values for the
 

particle diameter and density necessary to insure scaling, if the aircraft
 

is reduced in size by a factor of s, are as follows:
 

ds = df s 

3

2 

PPs
p=pPf S 
5 f 

The corresponding nondimensional variables will have the following values:
 

3 
~ 6f s26S 


3 
2
Ps =of s 

For this case it is necessary for the scaled particle to retain the same
 

Reynolds number as the full scale and for the drag law to remain identical.
 

The values required for the mean and variance of the scaled diameter and
 

density which will insure scaling can be derived in the manner below.
 

However, since both transformations are of the form
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xs = Xf S 

it will suffice to carry through the derivation for just the diameter.
 

First, observe that
 

in 6s = In 8f +3 In s 

Since In 8f is gaussian, this demonstrates that In 8 must be gaussian
 

and, consequently, 6s must be lognormal. Letting
 

Z = In 6 

X = in 8f 

C 31n 
C = -2 in a2 

and rewriting
 

Z=x--+C
 

The mean and variance of Z can be computed as before, giving
 

lz = + C 

2 2 
az aUX
 

and, since 8 is lognormal 

2 
I±z 

=e1z 2 2
 

- e 

C 
=e 61 
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or
 

=3/2 

Likewise
 

2 
2 FZ )2 

= 3 P6 2 ( 2 - 1) 

s f
 

3 2 

= s af 

or
 
s3/2
 

= /aa s 


The derivation for the density proceeds 
identically, and results in
 

s-3/2

Ipt =8 p 

-3/2 
a =8 aPf
Ps 


Substitution back into equations (36) and (37) will verify the
 

scaling since
 

Cs ' = s3/2 C
 

2 2 
CS 
 af 

33 

- r +! ins - 2,f - 3 ins
ls+y
is= ln C' + 

= f 
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If the analysis is restricted to the case where a simpler drag
 

relation of the form
 

K
 
CD 
 Re
 

is used (as in this study), a different result is obtained. As discussed
 

by Ormsbee and Bragg, an approximation such as this frees the investigator
 

from the separate requirements on density, diameter and drag relation and
 

allows him instead to consider only their combination in the ballistic
 

parameter. Similarly, in the probabilistic situation, it is not necessary
 

to meet the requirements in the analysis immediately preceding, but only
 

the more general ones defined by equations (36-37). Thus, as long as the
 

PDF's for the density, diameter and drag relation are lognormal, any
 

combination of means and variances for these parameters which satisfy
 

equations (36-37) could be used in a scale test and still preserve the
 

shape of the'distribution.
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VII. CONCLUSIONS
 

For granular particles which are larger than approximately 2500
 

microns in diameter, considerable simplification of the trajectory equations
 

can be achieved due to the limited influence of the aircraft wake. The
 

use of an approximate drag relation, which allowed further simplification,
 

does not restrict the applicability as much as would at first appear,
 

since numerical calculations show that the particle Reynolds number is
 

maintained near the value associated with its terminal velocity for the
 
t 

entire time span of the trajectory, except for an initial acceleration
 

which is of short duration. Thus the drag relation used need only
 

approximate a small part of the drag curve in the range of the terminal
 

Reynolds number.
 

In the case of smaller particles (below 2500 microns) the probability
 

analysis could still be used if an empirical relation of the form
 

YG = f(yo0,) 

is used instead of the algebraic expressions derived here. It is only
 
dy 

necessary to compute the Jacobian of the transformation, d-G, and to be
 

able to write the above expression in a form
 

' )Yo = g(YG 

so that the distribution of yG can be calculated.
 

The usefulness of this analysis can be demonstrated by noting that a
 

distribution can be calculated by a single integration, whereas a
 

compilation of trajectories would require one integration for each
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trajectory. Moreover, if more than one initial condition is allowed to
 

vary, the cost of producing a distribution by this method will increase
 

by a factor equal to the number of initial conditions varied. On the
 

other hand, the cost associated with a compilation of trajectories will
 

increase by the power of the number used -- a geometric, rather than an
 

arithmetic, increase.
 

It was shown that the shape of the distribution for a scale model
 

test will be similar to that of a full scale test if, in the most general
 

case, the mean values and variances of the particle parameters are scaled
 

just as the deterministic values would be. Moreover, it was shown that
 

if a drag relation of the form
 

-K
C
D Re
 

is used instead of a more general one, similarity could be maintained in
 

any number of ways simply by observing a restriction on a combination of
 

the means and variances of the particle parameters, rather than requiring
 

separate concurrence with the scaling laws. This simplification offers a
 

greater freedom in the choice of particles to be used in tests verifying
 

these results and in any further work in which scale models are used. In
 

view of the fact that particles meeting the requirements of the more
 

general set of scaling laws have proved to be rather difficult to locate
 

and/or implement, the simplified procedure for scaling offers a versatility
 

which, hopefully, will more than offset any inaccuracies involved.
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APPENDIX
 

The computer code DEPOSIT was written to calculate the distributions
 

by numerical integration using a FORTUOI catalog subroutine entitled
 

GQU3Z. The input, where dimensions are required, can be done in any
 

the fact that all values are nonconsistent system of units, due to 

dimensionalized within the program, except the particle diameter, which 

must be input as the nondimensional 8, where 

8=;. d 
b"
 

A sample printout is shown, depicting the form of the output. By
 

manipulating the variables RES and SC, the code can deliver any resolution
 

of the distribution and can extend the range of calculation to cover any
 

length of the lateral ground coordinate, yG. Various types of distributor
 

geometries can be analyzed by modification of the FUNCTION subprograms
 

PYOF and PYOG. PYOF covers the approximation that
 

>> 1
 

while PYOF assumes that
 

I o<<1 

OF pu
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PROGRAM DEPOSIT(INPUT,OUTPUT)
 
REAL NU,MD,MK,MA,MD1,MK1,MA1,KV
 
EXTERNAL AUX
 
COMMON/COMl/ YG,MA1,SA1,PI,MA
 
COMMON/COM2/ ETA,XI,KV,WO,ZO,G,YI,YF
 
READ2,MARK
 
PRINT4,MARK
 
PRINT5
 
READ3,U,B,ZO,NU,RA
 
PRINT6,U,B,ZO,NU,RA
 
READ3,RP,MDMKSD,SK
 
PRINT7,RP,MD,MK,SD,SK
 
READ3,YI,YF,KV,WO SC
 
PRINT8,YI,YF,KV,W0,SC
 
READ3,UP,H,RES,ETA,XI
 
PRINT80,UP,H,RES,ETA,XI
 
PRINT9
 
PI=3.14159265
 
G=9.808*B/(U*U)
 
C=0.75*NU*RA/(U*B*RP)
 
SD1=SQRT(ALOG(1.0+(SD/MD)**2))
 
SK1=SQRT(ALOG'(I.O+(SK/MK)**2))
 
MD1=ALOG(MD)-SDI*SDI/2
 
MKI=ALOG(MK)-SKI*SK1/2
 
PRINT10,C,SD1,SKl,MDI,MK1
 
SA1=SQRT(4*SD1*SD1+SK1*SK1)
 
MA1=AL0G(C)+MKl-2.*MDl
 
MA=EXP(MA1+SA1*SA1/2 )
 
SA=SQRT(MA*MA*(EXP(SA1I*SA)-I.))
 
PRINTi1,SA1,MA1,SA,MA
 
PRINT12
 
FYG=O.OEO
 
NRES=IFIX(RES)+l
 
D01 I:,NRES
 
YG=(I-1)*SC/RES
 
CALL GQU3Z(O.OEO,UP,AUX,H,PYG)
 
FYG=FYG+PYG*SC/RES
 
PRINT13,I,YG,PYG,FYG
 
CONTINUE
 
STOP
 

2 FORMAT(A10)
 
3 FORMAT(5E10.4)
 
4 FORMAT("1",///10X,"GROUND DEPOSITION OF ",A1O)
 
5 FORMAT(//13X,"INPUT PARAMETERS")
 
6 FORMAT(/"U =",F5.1,9X,"B =",F5.2,9X,"ZO=",F5.3,9X,"NU=",El2.6,2X,"
 

&RA=",E12.6)
 
7 FORMAT(/"RP=",El2.6,2X,"MD=",E12.6,2X,"MKz",E12 6 2X,"SD=",E12.6,2
 

&X,"SK=",E12.6)
 
8 FORMAT(/"YI=",F5.3,9X,"YF=",F5.3,9X,"KV=",F7.5,7X,"WO=",F8.5,6X,"S
 

&C=",F5.3)
 
80 FORMAT(/"UP=",F6.3,8X,"H =",F7.3,7X,"RE=",F7.3,7X,"ET=",E12.6,2X,"
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&XI=",E12.6)
 

9 FORMAT(//,11X,"CALCULATED PARAMETERS")
 
10 FORMAT(/" C =",E12 6,2X,"SD1=",E2.6,2X,"SK1b",E12.6,2X "MD1=",E12
 

&.6,2X,"MK1=" ,E12.6)

11 	 FORMAT(/"TSA1=",El2.6,2X,"MA1=",EI2.6,2X,"SA =",E12.6,2X,"MA =",E12
 

&.6)
 
12 FORMAT("1",///3X," I 11,6X," TG ",9X,"PYG(YG)",8X,"FYG(YG)")
 
13 FORMAT(3X,I3,3X,E12.6,3X,E12.6,3X,E12.6)
 

END
 
SUBROUTINE AUX(A,FY)
 
REAL MA1,MA,KV
 
COMMON/COM1/ YG,MA1,SAI,PI,MA
 
COMMON/COM2/ ETA,XI,KV,WO,ZO G,YI,YF
 
IF(A.LT.Q.230) GOTO 1
 
DYDG=1./(1.+KV/A)
 
PYO=PYOF(YG,A)
 
GO TO 2
 

1 DYDG=1./(I.+KV*(WO+SQRTCWO*WO+2*ZO*G))/G)
 
FYO=PYOG(YG,A)
 

2 PEX=(ALOG(A)-MA1)**2/(2*SA1*SA)
 
IF(PEX GT.600.) GOTO 21
 
PA=EXP(-PEX)/(SA1*A*SQRT(2*PI))
 
GOTO 22
 

21 	 PA=O.OEO
 
22 	 CONTINUE
 

PY=DYDG*PYO*PA
 
RETURN
 
END
 
FUNCTION PYOF(YG,A)
 
REAL KV
 
COMMON/COM2/ ETA,XI,KV,WO ZO,G,YI,YF
 
YO=(YG-ETA*(ZO*A+WO)/(A*(G/A-XI)))/(1.+KV/A)
 
IF(YO.LT.YI) GOTO 1
 
IF(YO.GT.YF) GOTO 1
 
PYOF=1./(YF-YI)
 
COTO
 

1 PYOF=O.OEO
 
2 	RETURN
 

END
 
FUNCTION PYOG(YG,A)
 
REAL KV
 
COMMON/COM2/ ETA,XI,KV,WO,ZO,G,YI,YF
 
YO=YG/(.+KV*(WO+SQRT(WO*WO+2*Z0*G))/G)
 
IF(YO.LT.YI) GOT0 1
 
IF(YO.GT.YF) GOTO I
 
PYOG=1./(YF-YI)
 
GOTO 2
 

1 PYOG=O.OEO
 
2 RETURN
 

END
 

http:IF(YO.GT.YF
http:IF(YO.LT.YI
http:IF(YO.GT.YF
http:IF(YO.LT.YI


GROUND DEPOSITION OF WHEAT 

INPUT PARAMETERS 

U = 30.5 B = 6.77 Z0= .500 NU= .146700E-04 RA= .122500E-02 

RP= .132040E+01 MD= .528100E-03 MK= .127400E+04 SD= 279200E-0 SK= .226500E+03 

YI=O.OOO YF= 300 KV=1.O0000 WO= .10000 SC=2.000 

UP= 2.000 H = 48.000 RE=100.O00 ET= .1600OOE-01 XI=- 180000E-01 

CALCULATED PARAMETERS 

C = .494673E-10 SDI= .528319E-01 SK1= .176405E+00 MDI=-.754762E+01 NK1= .713436E+01 

SAt= .205630E+00 
1 

MA1=-.150011E+01 SA = .473571E-01 MA .227873E+00 

I 
1 
2 
3 
4 
5 
6 
7 
8 
9 

YG 
0. 
.200000E-01 
.40000O0-01 
.600000E-01 
.8000OOE-01 
.100000E+00 
.120000E+00 
.140000E+0 
.160000E+0O 

PYG(YG) 
.290713E+00 
.290713E+00 
.290713E+00 
.600057E+00 
.603464E+00 
.603464E+00 
.603464E+00 
.603464E+00 
.603464E2+00 

FYG(YG) 
.581426E-02 
.116285E-01 
.174428E-01 
.294439E-01 
.415132E-01 
.535825E-01 
.656518E 01 
.777210E-01 
.897903E-01 

U,
L" 
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26 .500000E+00 .603464E+00 .294968E+00 
27 .520000E+00 .603464E+00 .307037E+00 
28 .540000E+00 .603464E+00 .319107E+00 
29 .560000E+00 .603464E+00 .331176E+00 
30 .580000E+00 .603464E+oo .343245E+00 
31 .600000E+00 .603464E+00 .355315E+00 
32 .620000E+00 .603464E+00 .367384E+00 
33 .640000E+00 .603464E+00 .379453E+00 
34 .660000E+00 .603464E+00 .391522E+00 
35 .680000E+00 .603464E+00 .403592E+00 
36 .700000E+00 .603464E+00 .415661E+00 
37 .720000E+00 .603464E+00 .427730E+00 
38 .740000E+00 .603464E+00 .439800E+00 
-39 .760000E+00 .603464E+00 .451869E+00 
40 .780000E+00 .603464E+00 .463938E+00 
41 .800000E+0o .603464E+00 .476007E+00 
42 .820000E+00 .603464E+00 .488077E+00 
43 .840000E+00 .603464E+00 .500146E+00 
44 .860000E+00 .603464E+00 .512215E+00 
45 .880000E+00 .603463E+00 .524285E+00 
46 .900000E+ 0 .603461E+00 .536354E+00 
47 .920000E+00 -.603457E+OO .548423E+00 
48 .940000E+O0 .603448E+00 .560492E+00 
49 .960000E+oo .603429E+00 .572560E+00 
50 .980000E+00 .603392E+00 .584628E+00 
51 .100000E+01 .603329E+00 .596695E+00 
52 .102000E+01 .603217E+00 .608759E+00 
53 .104000E+01 .603032E+00 .620820E+00 
54 .106000E+01 .602748E+00 .632875E+00 
55 .108000E+01 .602319E+00 .644921E+00 
56 .110000E+01 .601672E+00 .656955E+00 
57 .112000E+01 .600782E+00 .668970E+00 
58 .114000E+O1 .599501E+00 .680960E+00 
59 .116000E+01 .597838E+00 .692917E+00 
60 .118000E+o1 .595683E+00 .704831E+00 
61 .120000E+01 .592904E+00 .716689E+00 
62 .122000E+01 .589319E+00 .728475E+00 
63 .124000E+O1 .584761E+00 .740170E+00 
64 .126000E+01 .579571E+00 .751762E+00 
65 .128000E+01 .573285E+00 .763227E+00 
66 .130000E+O1 .566227E+00 .774552E+00 
67 .132000E+01 .557848E+00 .785709E+00 
68 .134000E+01 .548213E+00 .796673E+00 
69 .136000E+01 .536765E+00 .807409E+00 
70 .138000E+0l .525223E+00 .817913E+00 
71 .140000E+01 .512360E+00 .828160E+00 
72 .142000E+O1 .498569E+o0 .838132E+00 
73 .144000E+01 .482121E+00 .847774E+00 
74 .146000E+01 .467171E+00 .857117E+00 
75 .148000E+O1 .451056E+00 .866139E+00 
76 .150000E+01 .432445E+00 .874787E+00 
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77 .152000E+01 .415287E+00 .883093E+00 
78 
79 
80 

.154000E+01 

.156000E+01 

.158000E+01 

.396127E+00 

.377620E+00 

.358334E+00 

;891016E+oo 
.898568E+00 
.905735E+00 ORIGINAL PAGE IS 

81 
82 

.160000E+01 

.162000E+01 
.339880E+00 
.318155E+00 

.912532E+00 

.918895E+00 
OF POOR QUALITY 

83 .164000E+01 .301217E+00 .924920E+00 
84 .166000E+ol .290713E+00 .930734E+00 
85 .168000E+01 .290713E+00 .936548E+00 
86 .170000E+01 .290713E+00 .942363E+00 
87 
88 

.172000E+01 

.174000E+01 
.290713E+00 
.290713E+00 

.948177E+00 

.953991E+00 
89 .176000E+O1 .290713E+00 .959805E+00 
90 .178000E+01 .290713E+00 .965620E+00 
91 .180000E+01 .290713E+00 .971434E+00 
92 .182000E+01 .290713E+00 .977248E+00 
93 .184000E+01 .290713E+00 .983062E+00 
94 .186000E+01 .290713E+00 .988877E+00 
95 .188000E+01 .290713E+00 .994691E+00 
96 .190000E+01 .290713E+00 .100051E+01 
97 
98 

.192000E+01 

.194000E+O1 
0. 
0. 

.100051E+01 

.100051E+01 
99 .196000E+01 0. .100051E+01 
100 .198000E+o1 0. .100051E+01 
101 .200000E+01 0. .100051E+01 
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