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AN INVESTIGATION OF WING BUFFETING RESPONSE
AT SUBSONIC AND TRANSONIC SPEEDS:

PHASE I F-IlIA FLIGHT TEST DATA ANALYSIS

VOLUME I - SUMMARY OF TECHNICAI, APPROACH, RESULTS AND CONCLUSIONS

by
David B. Benepe, Aclee M. Cunnlngham, Jr.,

and W. David Durunyer

_4

'-. SU)@_ARY

The structural response to lerodynamlc buffet during moderate

to hlgh-g maneuvers at subsonic and transonic speeds was investi-

gated. The measurements which consisted of shear, bending moment

and torque at four wing span stations, vertical accelerations at

the wing tips, center of gravity and pilot's seat and lateral

accelerations at the center of gravity and pilot's seat had been

previously obtained during the Loads Demonstration flight program

on a variable sweep flghter-bomber aircraft.

Existing flight data for one wing sweep were extracted from

magnetic tape records and subjected to statistical analyses to

determine the power spectra and root-mean-square values of re-

sponse for each of the measurements at several angles of attack

for each of seven maneuvers. The frequency content of the vari-

ous responses is correlated with results of ground vibration

test.q to identify the response modes. The rms values of response

are plotted against angle of attack to show the variations of

intensity of response during the maneuvers.
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The investigation showed that the structural response to

._ffet is very complex. Almost all of the natural vibration

mod_s of the aircraft, both symmetric and antisymmetric, are ex-

_ited during buffet encountered in a moderate to high-g maneuver.

Some of the sensors show pronounced •changes in the relative modal

'__ contributions to the total response as penetration beyond buffet •

" onset increases. The fluctuating shear and bending moment loads

on the wing are small in terms of design loads except near the

wing tip. The wing structural response in torsion is larger than 4

anticipated on the basis of prev'ously published buffet studies

and amounts to between 1/3 and 1/2 of the rms values of wing •

bending response at high angl_s of attack. For the particular

aircraft geometry and structure examined, there is some evidence

of bending-torsion coupling starting at angles of attack between

9 and 12 degrees at Mach numbers of 0.80 and 0.87.

The investigation is reported in three volumes. NASA

CR_52109 presents a summary of tLte technical approach, the results

and conclusions drawn from the results. NASA CR-152110 presents

plotted variations of Power Spectral Denslt 7 (PSD) data with fre-

quency for each structural response item for each data sample

analyzed during the course of the investigation. NASA CR-152111

presents Power Spectral Density (PSD) data in tabular form for the

convenience of those who might wish to perform additional analysis. •

2
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SYMBOLS

Note: Quantities are presented in the international System of
Units (U.S. customary units in parenthesis). The work
was performed using U.S. customary units.

b wing span - m, (ft)

,_ B.M.DE S design value of wing bending moment. N-m, (in - Ib)

'_-: c.g. ,C.G. "center of gravity"
L-

f frequency, hertz

fo spectral base frequency or analysis bandwidth, hertz

Fz wing vertical shear as measured by strain gages -
N, (Ib)

g gravitational acceleration

M Math number

MX Wing Bending Moment as measured by strain gages N-m,
(in - lb)

My Wing torsional moment - N-m, (in - ib)

Dmax maximum maneuver load factor - g's

S theoretical wing are (leading and trailing edges o_
swept panel extended to airplane centerline m=, (ftz)

T length of input frame in spectral analysis - seconds

T1 start time of interval for spectral analysis - seconds

T2 stop time of interval for spectral analysis - seconds

AT time interval used for spectral analysis = T2-Tl,sec

VDE S design value of wing vertical shear, N, (ib)

lateral acceleration g's

vertical acceleration g's

3
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!

S_BOLS (Continued)

a indicated angle of attack referenced to wing manuFac-
turing chorJ Fiane

maximum indicated angle of attack - deg.
_1 max

anom nominal angle of attack representing tLme interval tiT

.-_ a indicated angle of attack at time T1, deg

Aa increment in indicated angle of attack during time
, interval AT, de_

/8 indicated sideslip angle, deg

rms value of acceleration fluctuations - g, rmso a

maximum rms value of wing vertical shear fluctuations -
°Vmax N, rms, (lb, rms)

maximum rms value of wing bending moment fluctuations -
°'_nax_ N-m, rms, (in- lb, rms)

ql T average rms value determined from power spectral
analysis

4
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i.

i

A BBREVL_ r IONS

Art aititude

Asym ant is v_metric

B.H. bending moment

- • CrossopSD,XPSD Cross power spectral density

dB decibel

Dyn Press dynamic pressure

_ frequency modulat ion

Hz hertz

_r,hori horizontal

in°Ib, I_-I.B inch-pound

inb'd inboard

L left

I b, LB pound

L/H left hand

IMr left wing tip

m meter

N newton

N -m,l_-M newton-meter

outbd outboard

P.S. pilot seat

PSD power spectral density

R right

R/t_. right hand

_4
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ABBREVI.ATIONS, (Continued)

rms root -mean-square

righ¢ wing tip

Svm svmmet ric

, TOl_ to rs ion

h'.S. _;ing Station for strain gage measu_.-ements

6
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SECTION I

INTRODUCTION

The phenomenon of aerodynamic buffet has been a challenge to

aircraft design teams for many years. With the advent of truly

,-_ high performance fighter aircraft which are capable of operating

at high angles of attack, the intensity of buffet and the magni-

tudes of the aircraft structural responses to buffet have become

important design considerations.

The state-of-the-art of buffet research is such that devel-

opment of a valid method of predicting aircraft structural re-

sponse to buffet appears feasible in the near future. A signifi-

cant problem that exists is the dearth of published flight data

to provide an adequate test of the validity of a prediction

method.

The i,lvestigation described in this report is an attempt to

supply data of sufficient scope in terms of the number and types

of flight measurements and in terms of the depth of analysis of

the measurements to use for correlation with predicted response

characteristics. A secondary, though no less important, objective

of the investigation is to add to the aeronautical community's

understanding of buffet phenomena which has advanced rapidly in

recent years.
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Consicierable effort has been expe tied in research programs

conducted by the National Aeronautics and Space Administration's

Ames, Langley, and Flight Research Centers (Refs. 1-7), by the

armed services (Refs. 8-14), and by airframe manufacturers (Refs.

15-17). Each of these previous efforts has contributed something

.- _ of significance to our understanding of buffet and of aircraft

responses to buffet.

Results of various flight test programs have shown that a

most reliable indicator of maneuvering buffet onset is the abrupt

change in ms response of a wing-tip accelerometer. It can also

be inferred that wing-tip accelerometer response is a good indi-

cator of the variation of buffet intensity with angle of attack.

However, measurements need to be obtained of accelerations at

several points on an aircraft and of the spanwlse distrlbu:ions

of dynamic structural loads on the wing to obtain a true test

of a prediction method. Additionally, the power spectra data

are needed for each measurement over a range of frequencies

which covers the important natural vibration modes of the air-

craft structure.
Recent developments in flight test instrumentation and data

recording and data processing systems permit the use of power-

ful techniques of random data analysis to study the buffet prob-

lem. Power spectral density (PSD) plots can be readily constructed

to obtain the needed variations of response with frequency and

8
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calculate root-mean-square values (rms) of the accelerations and

loads to obtain statistical measures of the variations of re-

Sponses with angle of attack.

The duration of the flight maneuvers is short, therefore the

data samples are usually not long enough to strictly satisfy the

mathematlcal criteria for obtaining a high level of =onfidence in

the spectral or rms estimates. Nevertheless, spectral estimates

and rms values are much more meanlngful quantities than the peak-

to-peak or half-amplitude measurements prevalent in early studies

of the buffet problem.

It is appropriate at this point to describe the philosophy

of this report. The main body of this report serves to describe,

in detail, the techniques used in obtaining the fllght data, the

instrumentation, the data reduction and data analysis procedures

and discuss and interpret selected results which illustrate the

major findings of the investigation. Included in the appendix

are time histories of pertinent data items in plotted form.

9
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The flight program from which data have been extracted for

use in this study was primarily for F-IlIA flight loads demon-

stration. The test aircraft was therefore instrumented with

numerous straln-gage sensors and accelerometers. Flight maneuvers

included wind-up turns, pull-ups and roller coasters at various

-- _ altitudes, Mach numbers, and target load factors. Nhile it was

not a particular goal of the flight program to investigate buf-

feting, many of the flight test conditions were such that signif-

icant levels of buffeting occurred. An opportunity thus existed

to subject the extensive flight data to analyses specifically

aimed at providing detailed buffeting response characteristics.

The basic approach used in the study is described in the

following paragraphs.
!

The various records pertinent to the Flight Loads Demonstra-

tion program were surveyed to identify candidate flight points

for the investigation. About 90 combinations of wing sweep, Hath

number, altitude ana target load factor were selected for initial

investigation. Analog strip-chart playouts of thirty items of

instrumentation were then made for each candidate flight point.

The strip charts were used primarily to identify the particular

fllght maneuvers in which the wing responses were of sufficient

magnitude to be meaningful in the study and to eliminate points

10
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in which excessive wing spoiler activity might "contaminate" the

response data.

Since the investigation was aimed at providing flight data

for comparison with predictions an additional criterion in the

setection of flight points for detailed analysis was the exis-

tence of corresponding wind tunnel data in terms of wing sweep._

and Nach number. The investigation finally was concentrated on

seven flight maneuvers all of which were performed at one nominal

wing sweep. Existing digital data for the selected flight points

were then reviewed and plots were made of the variations of Mach

number, angle of attack and load factor as functions of time dur-

Ing the particular maneuvers. Specific time intervals corre-

sponding to nominal average angles of attack were selected for

each maneuver and stochastic (statistical) analyses were per-

formed on the outputs from seven accelerompters and twelve

straln-gage sensors for each selected time interval.

The major _ffort in tLe stochastic analysis was devoted to

obtaining power spe_;tral density (PSD) plots as a function of

frequency and root-mean-square (rms) -llues of the magnitudes of

wing shear, bending moment, and torque at four wing span stations

and acceleratlons at the wing tips, center of gravity and pilot's

seat. These PSD and rms data are essential for correlation with

prediction methods. In addition the PSD plots were used to

II I
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',. identify the frequencies and magnitudes of the major responses

for each time interval. The particular vibration modes associ-

ated with the _aJor responses were then identified insofar as

possible from the results of extensive ground vibration tests

performed at an earlicr time on F-IlIA aircraft (References 18

i.._ and 19).

The variations of rms values of the various outputs (for

specific ranges of frequencies) of instrumentation were plotted

against angle of attack and comparisons made to observe trends

with changes of altltude or Nsch number.

12

1978025170-022



SECTION 2

AIRCRAFT DESCRIPTION

The test aircraft was F-IlIA Number 13. A drawing showing

the general features of the aircraft is presented as Figure I.

- _ Detailed geometry associated with the aircraft and its components

appears in Table I. The aircraft has a variable sweep wing and i

a convention was adopted early in the development program that

all aerodynamic coefficients would be referenced to geometric

characteristics at a specific wing sweep, namely, ALE - 16 de-

grees. The variations of some key geometric characteristics of

the wing with wing leadlr_-edge sweep angle are presented in

Figure 2.

Although the aircraft is fitted with a high llft system

consisting of multlsegment leadlng-edge slats and multlsegment

double-slotted traillng-edge flaps, these devices were in their

retracted positions for all maneuvers analyzed in this study.

Two-segment upper surface spoilers on each wlng are used at

low wlng sweeps in addition to differentially controlled all-

movable horizontal tails to achieve roll control.

The aircraft has a three-axls stability augmentation system

which was operational on all maneuverb analyzed in chls investl-

i

gatlon. I
[

13
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SECTION 3

AIRCRAFT INSTRUMENTATION

The instrumentation system installed ir the aircraft consis-

ted of two 30 track and one 14 track FM analog magnetic tape re-

_ corders and various transducers throughout the airplane. IRIG B

"_ time reference signals were recorded on each tape recorder to

provide time correlation. The general locations of the accelero- :

meters pertinent to the buffet study are shown in Figure 3. ThE

actual locations in terms of aircraft geometry references are

listed in Table 2.

The characteristics of the accelerometers most of which were

commercially available units, are indicated in Table 3. T_._eaccu-

racies quoted refer to the nominal flat frequency response up to

the limit frequency quoted. No calibration data exist above the

quoted limit of flat fre uency response, however, the natural

resonant frequencies are well beyond I00 hertz for all of the

accelerometers. There is no reason to suspect a significant

deviation from the basic calibration factors quoted for

frequencies up to I00 hertz.

The locations of the strain gage sensors pertinent to the

17
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buffet study are shown in Figure 4. Shear, bending moment and

torque were measured at each of the four indicated wing stations

on the right wing. The sensitivities of these measurements were

governed by the fact that the wing loads were to be measured

.. , during maneuvers at load factors up to the maximum capability of

the aircraft. As a consequence the signal-to-noise ratios for

the present buffet studies were lower than is desirable. The

calibration slopes for each channel of information are shown in

Table 4.

In several cases the frequency response upper limit for the

measurements was set by the subchannel characteristics of the

flight recording system. Table 5 lists the appropriate nominal

limit of frequency response for each item of instrumentation I

based on the recorder subchannel arrangements for each flight

selected for detailed analysis.

Correlating items such as angle of attack, airspeed, Hath

number, altitude, gross weight, and control surface position

indication of the spoilers and horizontal tail surface deflec-

tions were also recorded on the FM tapes.

A special test nose boom was fitted to the aircraft to

obtain angle of attack, sideslip angle, altitude and Mach number

data.
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SECTION 4

BASIC DATA PROCESSINC METHODS

During the Loads Demonstration Flight Program, the FM analog

magnetic tapes containing raw flight test data were processed by

automated techniques. The real time data were first disp yed

_- on strip chart recorders for instrumentation verification. Next,

the data were digitized at sample rates of 1 to 20 samples per

second under computer control. The specific sample ratio de-

pended on user group requirements. The digitized data were

then scaled, calibrated and output in computer listings and

computer tapes for additional processing on an IBM System/360.

Second generation computer runs were madeto obtain corrected

flight conditio, data such as gross weight, Mach number, alti-

tude, dynamic pressure and fuel distribution at 1-second intervals.

Microfilm records of the computer listings from the original

flight program data reduction were used in the present program to

make plots of angle of attack, normal load factor, Math number

and dynamic pressure as functions of flight time and to identify

the gross weights and altitudes for the st'lected flight maneuvers.

The Mach number, altitude and dynamic :_ressure data include cor-

rections for position error. The angles of attack are indicated

angles and do not include the effect of upwash at the nose boom.

%
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The following formula can be used to obtain an estimate of the

true geometric angle of attack values if desired:

a T = 0.318 + 0.931a(degrees)

This correction was not applied to the data presented in this

report because the magnitude is not large in the range of angles

: of attack covered by the flight data and is within the uncertainty

of the flight measurements taken under buffeting conditions with

an aeroelastic aircraft.

Time histories were made of about 30 items of instrumentation

which were considered pertinent to the buffet study. Examples of

each of the strip chart records are presented in Figure 5. Addi-

tional time histories for the selected flight maneuvers are con-

tained in the appendix. The particular groupings of items on the

strip charts permit assessment of the time phasing of the build-

up of the wing responses to buffet as angle of attack increases

during the maneuver. The chart speed was nominally 20 mm/sec and

the frequency response limit of the pen recorders is about 50

hertz. For correlation purposes, a time reference trace with pen

deflections each second appears in the lower border of the strip

chart. The flight times associated with the particular maneuvers

are annotated below the time trace.

The Mach number, altitude and angle of attack traces repre-

sent uncorrected indicated values. Occasionally these items

show finite jumps from one bound of the record to the other.
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Figure 5. TIIqE HISTORIES OF INSTRUMEI_TATIO_ OUTPUT FOR WINDUP TURN
FLIGHT 77D RUN S&C-R
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Figure 5. Continued
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(d)

Figure 5. Continued
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Figure 5, Concluded
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This situation occurs because the calibratio_ is a _ulti.-stepped

function and th__ measurements cross the boundaries of orle or

more ranges of values.

._S-
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SECTION 5

FLIGHT COI¢i)ITIONS SELECfED
FOR DETAILED ANALYSIS

The time histories for the ?0 candidate flight maneuvers

were studied thoroughly to determine which maneuvers Right pro-

_ _ vide a set of flight buffet da_ that would serve as a good test

_" of a prediction method. Five basic criteria were used in the

selection process:

First, the wing responses should be Large enough

._ to make a detailed analysis mningful.

Second, :he noDiual flight conditions should closely

approximate l_ch mmber and angle of attack conditions

which had already been obtained in a wind tunnel test

program.

Third, effects of Nach number (flow field) and altitude

(seroelasticity) should be included, if possible.

Fourth, the selected maneuvers should be free

froa effects of spoiler deflection, _f possible. _

Fifth, one of the selecr__d points should closely

approximate a flight point that had already been ob-

tained in a NASA/PRC flight test progrm which used

F-IlIA Number 6 (Reference 5),
.J

i;

L.
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The seven maneuvers selected for detailed analysls are

listed in Table 6. They con, Ast of two wlnd-up turns, Pour pull

ups and one roller coaster, all performed at a nominal ring sweep

of 26 degrees. The Nsch ambers are approximately 0.70, 0.80,

and 0.87 for the three high altitude maneuvers (above 6000

• _ meters). At the two higher l_ch numbers the selected maneuvers

are for three altltudes, noxlnally I$00, 3700 and above 6000

meters. The gross we/ghts range from 266,000 N to 330,500 II.

= Variations of angle of attack, load factor, Math number and

dynamic pressure wlth flight time are presented in Figure 6 for

each of the selected maneuvers. Inapection of Figures 6(a)

through 6(g) slmsm that the ulnd-up turns are graclual maneuvers

whereas the pult ups and roller coaster are rather abrupt maneu-

vers. As a consequence, it was feaslble to select more points

vlthln each of the wlnd-up turns for stochastic analysis than
\

for tlm other maneuvers.

Table 7 Usts the segments of each maneuver selected for

detalled analysls. In most cases the time duration of the rec-

ords is one second, but sow longer records were used partlcu-

larly for the vlnd-up turn of Flight 77, S&C-R. The table also

lists the indicated angle of ettack at the start of each record

(al), at the end of each record (a 2) and in a few cases the ml- ,

mum indtcated angle of attack (aaax) occurring during the recoed.
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Also presented is the increment in angle of attack during the

record (&o) which is re14tlvely large for the pullup and _oller

coaster maneuvers. A nominal angle of attack (ann m) has been

assigned to each segment vhich is used later to plot trends in

the variations of instrument responses with angle of attack.

-; _ An adJtmct to the point selection process tms the deterwins-

tion of the buffet onset characteristics for each of the maneu-

vers from the time histories. The criterion used for bullet

onset was the first detectable change in level of response from

any of the winB instnmentation which was follot_d by an ever

increasing level of response. The results of the buffet onset

determinations are presented in Figure 7. It was possible to

obtain buffet onset points for six of the seven maneuvers. The

aircraft was slightly into buffet even at l-g trim conditions

for Flight 78, Run 4. Figure 7(a) shows thac the variation of

angle of attack for buffet onset with lq_ch mJmber is smooth de-

spite the significant differences in dyr_mlc pressure and pitch

rates for the various maneuvers. Figure 7(b) sho_s that the

normal force coefficients for buffet onset show a s/ight trend

of increasing vith a decrease in altitude (increase in dynamic

pressure). ;his result is likely due to the fact that less

horizontal tail deflection is required to produce the maneuvers

and the loss in lift due to tail deflection is then smaller at

the lower alti_udes.
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SECTION 6

STOCHASTICAI_LYSIS TECHNIQUES

The analysis techniques used in this study are compatible ,

with Amerlcan National Standard (AMS $2.10-1971) reco--ended

17 methods for analysis and presentation of shock and vibration

data. & qulck-look examination w_ performed on each tlme-hls-

tory measurement to deteralne the data classlflcatibn; degre_ of

statlonerlty, record lqth, and recoverability.

M_asure_ents

Data reduction was performed on the foltowtn8 data:

1. Shear, bending moment, and torsion at tour wing

stations (12 measurements).

2. Two wlng-tip accelerometers (vertical)

3. Teo C.G. vertical an_.',one C.G. lateral accelero- _-_
J

meters, j

&. Pilot seatverttcal and lateral accelerometers.

The analysis performed on these items consisted of PSD (includ-
J

ing an average ms value), cross-PSD, and Probability Density

and was distributed as follows:

PSD (all Item) 779 plots

Cross-PSD (Ah_Ol and ,_002) 7 photosraphs _.

Probability Density 126 photographs

I
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In addition to the plots and photographs, a digital magnetic

tape recording was -:de of spectral coefficients of all PSD's

and Cross-PSD's. The magnetic tape format (shorn in Fig. 8) for

a single PSD consists of t_o adjacent records; the first record

for identification and the second for raw data.

Speclal°Purpose Processing

A block diagram of the speclal-purpose stochastic equlp_ent

is shown in Fig. 9. The FN slgnal is dlscr/mlnsted to recover

the analog signal. Band-pass filters at 3 Hz and 100 Hz (&8 dB

pet" octave) were used to reject unwanted frequencies and to

minimize allaslng effects on the sampled data. The data is

callbrated at this point and converted to non-dimensional quantt-
?

ties. The I/D I00 Analyzer was used to compute the PSD's, cross-

PSD's, and Probability Densities. The stochastic algorlthms

utilized by the T/D I00 to perform these functions are discussed

below.

After each PSD n_ cross-PSD was plotted, the spectral coef-

ficients were punched, in ASCII format, on perforated paper

tape. This paper tape was then fed into an SEL-810A mini-com-

puter for transcription to magnetic tape. This was done to in-

!
crease storage density, for ease of handllng, and for speed of

subsequent playback.

i
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Auto-Spectral Density (PSD)

The T/D 100 computes the PSD coefficients by first approxi- i
i"

mating the complex Fourier transform of the input signal. The t

Fourier transform of the time-domain input function x(t) is given

by: i

• C(Jf) = x(t)(cos 2_ft - J sin 2_ft) dt (I) _
:.-t. _ i-

|

where J = _-. Since the time-domain input is sampled and _:_

i

quantitized in the analyzer, and only a finite number of samples i

are available, the finite transform is used, and separated Into

its real P(f) and imaginary Q(f) components can be written :'

as follows : i_

TI2

x(t) cos 2_'ft dt (2) ,,
PT(f) " -T/2

TI2

x(t) sin 2_ft dt (3) :
qT(f) = -T/2

where T is the length of the input frame, which is assumed to be

centered about time t-O. ':

Replacing the continuous input, x(t), wlth a set of 21_1

1
discrete samples at intervals of to = _-_, and replacir_ the

i;
sinusoidal functions by corresponding values, the continuous i

I

integrals may be expressed as the sum of products: J:
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+N

P(kfo) " n_" x(nt o) cos [2 kfo(nto) ] (4)-N

+N

Q(kf o) = -n_ x(nto) sin [2 kfo(nto) ] (5)-N

where k is a series of 2N integers and fo is the base frequency

. which is equal to _.
r o

P _

The PSD coefficients
[S(kfo)j are then computed from (4) and

(5) by the equation:

(6)

, Cross-Spectral Density (XPSD)

: The T/D 100 computes the XPSD (SAB) by slmultaneously com-

putlng the complex Fourier transform of channel A (PA + JQA) and

: channel B (PB + JQB) and multiplying the channel A transform by =

the complex conjugate of the channel B transform as follows:

: SAB " (PA + JQA)(PB " JQB)

= PAPB + QAQB+ J(PBQA - PAQB) (7)

The spectrum is then separated into its real (Sp.AB) and imagi- I

nary (SQ.AB) components as follows: !
- !

Sp. AB PAPB + QAQB I"

SQ'AB = PBQA + PAQB (8) ,_

t
• 54
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The T/D tO0 then puts the real component into the channel A output

buffer and the imaginary component into the channel B output

buffer.

Probability Density,

, On the T/D 100 the Probability Density of a time-domain in-

L_ put is ascertained by performing an Amplitude Histogram on the

input function. This algorithm counts the number of times that

each of 255 discrete amplitudes occurs at the input. Zero-ampll-

,_, tude occurrences appear mld-scale of the output display with

negatlve-amplitude occurrences increasing to the left of mld-scale

and positlve-amplltude occurrences increasing to the right.

Average rms (_T)

The average rms of the input signal is calculated from the

PSD coefficients [S(kfo) ] by the following equation:

T = fo S(kfo)

1

where fo =_-_ is the base frequency or analysis bandwidth.
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SECT ION 7

DISCUSSION OF RESULTS

This discussion will review the major findings of the inves-

tigation and illustrate each of these findings with appropriate

examples of the stochastic analysis results.

_" The major findings of this study are as follows:

I. The structural response of the aircraft to buffet

during moderate-g and high-g maneuvers is very

i complex. Almost all natul-al vibration modes of

the aircraft (symmetric and antlsymmetrlc) can

be excited to a significant intensity level at

some time during the maneuvers.

2. As a consequence of l, above, several different>

types and locations of instrumentation are needed

_ to obtain an adequate description of the struc-

' tural responses.

3. Some of the sensors show p_onounced changes in

the relative modal contributions to the total

response as penetration (angle of attack) beyond

buffet onset increases.

4. The fluctuating shear and bending moment loads

for the test conditions examined are small in

, terms of design loads except near the wing tip.

;,
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5. The wing structural response in torsion is much ii

larger than anticipated on the basis of previous I

buffet studies , amounting to between 1/3 and '_
z

1/2 of the rms values of wing bending response

at high angles of attack.

: _ 6. There is some evidence of bending-torsion

b-

coupling starting at angles of attack between

9 and 12 degrees at Math numbers of 0.80 and

0.87.
Oh

7. The stochastic analysis techniques employed in

this investigation provide useful and consis- i

tent sets of data despite the short sample

times and the abruptness of some of the maneu-

vers. Proper interpretation of the analysis

results must include consideration of the ranges

of angle of attack, Math number and dynamic pres-

sure that occur during the time duration of each

record.

Characteristics of the Structural Responses

During the course of the study ap_oximately 800 power spectral

density plots were obtained. These data have two primary uses.

First they permit identification of the significant modal contri-

butions through comparison with the ground vibration test data

57

1978025170-067



q

• obtained in the F-Ill development program. Second they provide

the data base for future assessment of prediction methods.

Natural Vibration Modes

A summary of measured natural vibration modes of the F-IlIA

-_..
at 26 degrees leading-edge sweep is presented In Table 8. Most

of the values were taken from tests previously conducted on Air- _

" plane No. 12 which is structurally the same as Airplane No. 13
J
,!

' (Reference 18). A few of the measurements were taken on Airplane

No. 1 and were not repeated on Airplane No. 12 because the parts -:

and associated structure had not changed (Re_erence 19). Data 5

, are presented for two fuel loading conditions: fuselage empty,
• ;_

wing empty and fuselage full, wing empty. Note that the differ- _},

• ence In fuselage fuel load affects some of the natural frequencies. _:

_ Table 9 presents calculated values of symmetric vibration

. mode frequencies obtained using a math model of the aircraft :

structure for two gross weight conditions which represent specif-

ic .!oadings occurir_ on maneuvers investigated in this study.

These calculated mode frequencies serve the purpose of clarifying

some measured responses which were not clearly Identified in the i.

ground vibration tests because of the close proximity of other _

"_ modes . _
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POwer Spectra
t

Representative examples of power spectra will be presented I"

and discussed to illustrate several of the major findings of the i:

invest/gatlon. All of the plotted PSD's are presented in Appen-

,-_ d/x B and tabulated PSD data are presented in Appendix C for

=_ future comparisons with predictions.

power spectra are presented on a consistent semi-log

format in which normalized values of pover spectral density are

_* plotted against frequency over the range from 0 to tO0 Ilz (see

Figure lO(a)). The normalizing factor (scale factor) in each

case is the sum of the spectral est/mates at each frequency from

I to tO0 Bz. The scale factor is presented above each plot in

both S.I. units and U.S. customary units (if appropriate). The

values plotted at 0 and I Rz are flcticious and are used only to

set the scales for tie aucomati, plotting routine that was ,reed ,_

to generate these presentation_. Any data point which falls on

the lower bound of the plot at frequencies other than 1 Hz actu- _

ally represents a value below the threshold of the dynamic range

of the analysis system for the particular analysis. Finally,

although all the power spectra estimates are plotted froQ 2 to

100 Hz, the valid upper limit of frequency for each tnstrua_nta- _,

tion item and flight condition is approx/mmtely that indicated

previously in Table $ because of the flight recorder frequency

01

,,' _ .... III I I II1 1 IIn ....
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response characteristics. VaLues for frequencies much above the
!

Limits indicated in Table $ probably are caused by cross-talk

between recorder channels and should be ignored.

Near Buffet Onset

_,._ The particular set of PSD data presented in Figure LO is for

:," point 8 of FLight 77, Run S&C-R. The nominal angle of attack is

7.1 degrees and the length of the sample record is _ seconds.

The aircraft is sIightly beyond buffet onset at this condition.

" The win 8 shear strain-gage data are presented first for each of

the four wing stations, followed by the b_ng hendlng gage and

° torsion gage data. The various accelerometer data complete the

presentation for this point. Each plot is annotated with the

vibration ._ode at which each of the major responses occur.

Examinati ,, of the shear data shows that at Ming Station 1

the major responses are in the first and second wing bend/_ 8

modes, the ._irst fuselage bending mode, the first wing torsion

mode and i combined wln_-taiL mode. Further outboard on the w/rig

some additi.,_al _c_,des can be identified including the second

antisymm-.tric wing bending _ode and several horlzoatal tat1 pitch

and torsion modes. In addition, the levels of the power spectra

at the higher frequencies increase to the point that the first . •

wlng bending and first fuselage verticaI bendlng"mode are _ "

Ionser the _omlnant modes at _ng Station 4. _
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The responses shown by the wing bending gages at each wing

station crack the responses shown by the shear gages at the

corresponding stations, except that at the inboard two stations

the first wing bending mode dominates the responses.

The wing torsion responses are strong at the first wing :,

!

torsion frequency with a major contribution occurring also at the

first wing bending frequency. There is some response shown at a

frequency of about 20 Hz which can be attributed to a fuselage

bending mode.
¢

The wing tip accelerometers show responses in most of the

modes already identified from the strain gage sensors plus sever-

al responses at higher frequencies between 40 and 80 Hz. Note !

that while the PSD p ,ts for the left-hand and right-hand wing I

tip accelerometers are similar they are not identical in detail. .....

The fuselage mounted accelerometers show very llttle re-

sponse in the first wing t,endlng modes. The two C.G. vertlcal

accelerometers show very similar responses and the dominant re-

sponse is in a band of frequencies from 40 to 45 Hz which in-

cludes some higher order horizontal tall pitch modes. The other

significant responses are attributable to first fuselage vertical

bending, wlng-tail, horizontal tail second bending, first

antlsymmetric wing torsion and lower order horizontal tail pitch
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modes. The dominant responses shown by the pilot station verti-

cal accelerometer include the wing-tail, horizontal tail second

bending, first wing torsion, and lower order horizontal tall

J

pitch modes. Only small responses occur at first wing bending

and first fuselage vertical bending modes. The lateral accelero-

=_ meters at the C.G. and pilot's seat respond at frequencies for
B.

first and second fuselage lateral bending, antisymmetrtc wing-

tail, first wing torsion, second wing antisymmetric bending, and

horizontal tail pitch modes. Responses are also noted at high

frequencies between 60 and B0 tiz but these are not readily

. identifiable modes.

Near Maximum Buffet

From the data just presented it can be seen that the aircraft

responses just beyond buffet onset are quite complex and many

vibration modes are excited. It is observed that a higher angle

of attack condition where the rms values of response are much

larger, the relative model contrlbutlons change significantly.

Figure II presents the power spectra fo_ point I0 of

Fl_ght 77, Run S&C-R which corresponds to a nominal angle of

attack of 12.2 degrees. Examination of the shear data at Wing

Station 1 reveals a very large response in first wing bending,

some contributions in the wing second bending mode axed new major

contributions in the first wing torsion and second antisymmetric

wing bendi_ mode. Ar Win_ Station 2 the contributions due to

I.

1978025170-092



J

FL|II4T 77, FIIAi_ 153522.S0, Itl[C01t0 LENGTH " 2 S(C. --_._ _DA, /3
I_AL[ IrACT01t = .47|'1 (N)**2 = .2N*? (LI)**2

I *iliI *ii

].st:s_ wlng"Be.dlng"

IIi 2nd Sym Wing BendLngo I I

• ; " "

f-2nd Asym Wing BendJ.ng

l:I .fill _If

0g
I • eO

o

• o o • o

i"""-++....":" °-t
•• I •. oi_ _'" o• " •

• 0 • • _ • o

O0 • , o " °I
• 0 • gO

® Ioo -o ° °.

_ o ., ol °° °°°
_' • @ •

o

i.IIII *ll OO O U 0 O 0

I 0 , o '
I t

| I *Limit

1 '
, I ,ilil "114 I,, _ . . . t

li 4I il II Iii

_RF.OU(N(:Y ( HZ )

(a) lVlII IH[AR AT VINO ITATION |

Figure 11. POWERSPECTRA, FLIGHT 77, RUN S&C-R, POINT 10

H~0.80, h~6035 • (19,800 ft_, O NOM- 12.2 dee

_ 83

/

1978025170-093



++

6

m.2... co,m Lr,,.-, - 2 .Ec.
SCALE FACTOR - .31S*I (N)e*2 - ,|SI*? (L01**2 t-_c

I IIII il

• --1st I na Wing .Bending J.
I

• | • ,

-- IJt Sym Wing Torllon

.2r, dI Aiym•ging I Bend_'ng
t , +/

--Hort. Tail Pitch
° .i. I I :

"_'"_ _ --Horl. Tall Pitch
i ++"

.......... ,i_ • +o.i: • .
• I *

N i + +
I" , , +
%

I ' +u

,i o o +i

o

,,- "oo_ ° e
m o
Z
I_ I Onlo "I_ • I •

41

" * ° t * * " O.

..l o. .e
< : :o: :°" "o" ++
ll_ '0 * • 0 *riD"
I,,,- ' • "J I* • U"
¢J @ ....... 4)
LU
eL . cop ..... _ , . ? oo.
in

C 0 OD •

I" ....
I*J

0 • • O_ • +04 • IOO0l 41
o
O+ I Olll _If j

/"h 0 • -O • • O•
U,I
N

.J

E
d_
0
z Limi *.

L
I llll "II .... _ _ t. +__

gO 41 il lli ill

Irl_EOUENC+ ¢ NZ )

(b) IvI21 IHEAtl AT VT_ QY_Y|Oqq

+.

Figure 11. Continue ] ._+

84
i+:

++

1978025170-094



, - _ t _

Ftlli04Y ??. FII_POE1S_i322.S0. ItEC0ga0t._0_TN • 2 NC,

KALE ;ACT0il • .ill'? Cl_loo2 • .llO'l Cl,ligoe2
II. ellis OeOg

-Hor£. Tall IPifich

"0 ! I- .po. lg.ode
/ " |

-Hor£. Tall Node

• ) '
:__ _-. ,.,,,,'" ----_ ....... - Spoiler Hode

- gg'.

| , o
o 0

_ °
O" O "0

;-:_ • _o i% • * t,
" O" Ir O" O' • ' • •• • G,

o
• qlY 0" O...... •

0 0 . 0 0 _ i 0

• • @ •

IP • B" • 0

• . ooooooiota® •t ,8|t8 "B|

'o ' i .... i

| ...... i
g _ . . .

" I ,(lllll O°114 _
Bil 4I (1(I 4_ ,-4_- M---_. toe

B'ItEOUENCY C HZ )

(c) llI_i INEAII AT V|NO 8TAT|ON _l

Figure 11o Continued

85
4

1978025170-095



,+!

i

]

'. FLTGHT 77, FRAME 153322.50, _CORO LENGTH • 2 |EC. _
SCALE FACTOR - .633+7 (N)ot2 • .3_O*g (LO),o2

O.QBIQ eot

r .Ii I '
-Ist S_Wing Bendipg I i ,_-wi._-Taill I ' . . ,+

I I

2ridS_ Win R Bendin_ I I.--2nd As_Wing Bending' t
, I r Hori. Tall Pitch I, | il t
_" _ l rIlorl. Tall Pitch !

• _.0

' _ !

° !_ _ 1 • • o e

t o

U oo o

+ I t I oo .o •

1 :I :

!° I
w 1 :
o I

_ J

z t +1
I Limit

z I I i ',
i I

I .lllV "t4 ..... }"

II It II ii lit

r_EOUENCV( .z )

(d) IV152 SHEAR AT VINO STATION 4

+_

Figure 11. Continued _

z"

i+

i0

t

i

] 978025] 70-096



)

ICALE FACTOR • .312+9 (fl-N)ee2 a.310*ll (IN-LB)ee2_-___ _ _'_
I .lI*O eoO

-t,t.s_wl,s_en_Igg' " "
, ,' l:t,ts.>_,w?,_V,_,on:: •

' I, --2nd Asy_ _,)ing Bending
i r , 1

• r-Horl. Tall Pitch• ./. I ; , . : •

' I ri°rJi" ,.ii ,itch",_, ,..,,..,,

, ,,_ li i i _ , , ,.• ' i ,-I, • ,_ ''
C o a

,O I () 0 •
o

_ _ " • o' o' -- , o+- t--) . (l'-+o' 'oo'eo •

,. o.o' (' ®odo o_o]oo" • . _. •
) , • t ) | _ , ) ' -I r • ", ....

!_/_ ': !;.I .....

.- i l,i."_ _ l.iIiO "If

_ .!!!l!!!ii!_i_ i!- '

I ......_, ' " I . , I _i i .-
I Ol|O "04

JI 4I 16 Jl "_ III '

" _EOUENCY( XZ ) _

(e) IVl)4 IENOI_8 _OHENT AT VINA ITAT_ON I

t_,

Fi&uze 11, Continued ,',_

%

_f

I

_978025_70-097



rt.IIP4T 770 I:ItAN[ 153322,$0, Itl[COitO LENOTN • 2 li[¢, "

SCALE FACTOi_ • .717-1 (N-NI**2 d,_J82*lO (IN*Llllee

| .llll II *ltl * _d_V: l:FoI
, * J

• 2nd Sym Wing Bending :

._'" I'_
Z

e.o b • , , :

n

: _ .oo o i.
kl_ 8 OllO *18 •

_" 0 o_oo ;o , : | : : :_ . , • I
-: ,,j ........... j-

r_

Ib- O © _ o Om o0o o o _! U .......
ll&l _

, ,n I_
,o i

L n olao "el .... ';:'

' ] ,3

W C

_ ...... 1 !°
E .... i :

z ' i__
I !,

, -,.-" . .................. L.......... !.............. i!
II 41 II I II l'_-

I

FR[OUENCY ¢ HZ ) J_!

(f) iV|27 IENDIN8 MOH[NT AT V|NI ITATION l

FJ.gure 11. Contlnued .?

]978025] 70-098



i

i

i "41, r'
P ,

FLIIMT 77, rlIAN[ 111:1322,50, OiCOIIO i.ENGTN • 2 IEC, . _ ;

" .. '_I_T_
: SCALE FACTOR = .2_11"11 (M-NIo*2 =.20t1"|0 ([N-LOIo*2 ,t,t,_ .

I Ilil

• r i'*,+_'w"°g"i"*°_:n" ....:I:
* '2nd Sym Wlns Bending

' ' i._
Ist Sym,.Wlns Torsion ].

++* Ii_"" N 1

* fi
I "a .... •

• I,- @ @O • .O • ....
, o o° !!

_> lU i m., o_ . • e o•

° .... "' _ . : z : : ', : :: : : " : _ " _ ' " _O * 0. I • *_
.J ....

• • e. : .......... i

ILl e. • .... • ++.+
lid •

O. • • o, _'_+

_i[ -o • k - 0-4)4_o _eo. 0_)¢-oo _+

O. l ,llll "l| i _.

+" 0 ' ' _ !
| ; _,

P,I,I
N t

I[
+ o ........ 1 +;

z Limlt

+ . _ + ........
ll 41 IO II III ++,

PPmEOUENi:Y¢ ,+Z )

(&) lVl30 BENDING IIOIIENT AT lllNI STATION _

Figure 11, Continued _+

89

_ ,

,,2 ;_

1978025170-099



_. FLIGHT 770 FRAHE 153322.50, ItECORO LENSTH • 2 SEC, ._'¢'

SCALE FACTOR - ._412*7 (H-N)eo2 v.472,9 (IN-LB)ee2

| .i|18 *il
I . . . "r .

--lsi: Sym Wing Bending' T
• .. . I . . . /

" 4 2nd Sym W.<..ngBending.
-1st sym Wing Torsion

• 2nd Asym Wlng Bending
i I

-Horl. Tall Pitchf.ori. T.,I,,toh
I .eI$ • "el

- o_-t-- ...............

_-
_.,-

2C O

• "" " "0 O @ "0_ '
•'_ | • .O0

• _ • cO o

k.,. o •
_" W o o

• ), Z • o o
" _ I II|O "Oj 0 •

O • • • •
.j 'oo o • 0

o' " o" ;o "
o" c o'o'o Io '

In O 0 0 O
U

_" a. o . o coo

_I_ o o 0 o o so o so o Is o
_+ UJ i

2B
ID i

Q" t oJttl "°s J

0 "
t|J
f',,J

.J
4C

-!, s-
o

_. z Limit

l lllI °11 -- ...................

II 4_ II II III

FNEOUENCY ( XZ )

(h) |i133 8EN0|NO HOMENT AT VlNll |TATION 4

Fisure 11. ConCinued

:_ 90

1978025170-100



t

FLliII4T 7"7. FRAIq[ |53322.50. RECORD LENGTH - 2 GEC. "'_"('

,c,LE"¢TO,-.G,., C.-N)..2..,,-1o cl.-_G)..2 o_e_,.,,....• ' . • . ' : : : - : : - _W_
-isi $_nn Wln& Bending : : : • " :

ng Bendlngj " i 2 .. " _'"." ._._i ......
, Ii Fz,,s_,,,i.g_.o.,,o.• • .

I I rr-1st As_, Win& Torsion " '
', ii ii " , . . . _

,_, , :% • . .......

*
0

N ' ' !
_ •nl.goIu|O"OI

, , , , ,
O i N : '., ;o ! • .

; oi . ,oo'. o_

_ , . o . o , . .

; _ | *ORll * ||

_ " ..... i , . .

_ , , ° ..... • . ° .

I ........... Limit

|11 411 Ell OQ eO0

FPIEOUENCY ¢ 14][ )

< (t.) IlIV|2_ T§It||ON AT VXNO |TATION |

FJ.S,_:e 11. Continued

91

?

Z

h

¢

1978025170-101



FLISHT 77, IrRAIqE |53322,S0, IIEC0110 LEN6TH • 2 K¢. ....

• SCALE FACTOR - ,_J2*O (H-NIoo2 8.310+'10 (IN-L|leo2 "

I ,O|! Oeel

• --IsC S _ Wing Bending ' ' . .

., t , t_1,t s_ WingTot-ion: _r.... _--Ist Asym wlns Torslon
i , + ,. .-2nd Asym Wlng Bending .

'-Horl. Tall Pitch+: I t

11 ..,
I ' : ' + ; ', )

I.Olll "el
I *

1 , _ *oo ' ;I ! T + ' "

- . _o., t°i t +i ' '
::" J o i _ ' ! +

, ++ +!t+_i+ ++z_ o i olo ,o , _ t +
+

,.,"',.,,.-., ;, + ;o_- + Io o o++i I , +
+

+ ++'++ _ _ +!i....
. ,. .. -_ +o + " + .....

..... ++--.I+ 4 - _ • •

<-, ++.:++_=_ + +++::+ +a,, I'm'o +--'t -

+..," +o o+ .; , + +_.. o_+" .. :ui 1 :°i° ;' o' • ++o. + ' + ' - I o+ o':o, oJo ; +,o" "
= "0, , • + + -+ .... -4, -. ......
III t ' t F ': 31 ' +
O 0 0 +_ 0 i_ 0 0 0 0 0

!11 1,1111 "ll

0 : ; " + ' " ; • " "+.... . . . , .....
III
N , + ........ 41, • o"

•-. ++
,.I ' +; ° "

0
z

|D I0 O0 O| |00

IrNEOUENCY ( HZ ) :

(J) lll_ TORSION AT VINE STATION |

+

Figure 11. ContLnued

92 :

_ .
:"

i
L.

1978025170-102



+

' +++oo.j+._I' ,+
FL|I_T 77. FRAME 153322.50. RECORDLENGTH = 2 KCo

SCALE FACTOR • 0219,7 (M-N)e*2 -.243*9 [IN-LS)ee2
_+

_ I • IIIJl O°Ill

- 1.t ;_ m.g .J,ding ! • 1
: " + r: 2nd Sym l,/_.ng Bending. i ++

.... [; .-Ist Sym Win8 Torsion ,I. ,+-, • • • ii . , i , • • I • I

I! --lst Any: Wlng Torsion i "+

" IL F _+2nd is_m Win ending l

" " It ' I -"°if" T,it Pi'tch i +_
/I " r--Hor:l.. Tail 'Pitch i

& ,..,,.'" -- |I o --M-- HorI. Tail Pitch ',

.i0! !I_J J lllO °ll ++

.,I

= i " 2 2 i " o 2 o1oo1 . • o! +.
_ 2

_' 2". 22 .0 . °_ • •
• o o o _o • o f.

I_ • o • ,o ._

•_ _I , ..,.-.i o • ........... o_oo.c, oo +

w ";

0

.: ?

I *llll - 14 4.

II II II ll II _

I[REOUENCY( HZ ) _'

(k) lVI+4 TORIIOM AT VlN| |TATION 4

Fisure 11. Continued i.

:+

93
tf

]97B025170-]03



, FLII_T 77. FRAPI[ 153322.50. _[CO_O LENSTH - 2 IE,¢_.__+. .+ SCALE FACTOR • ._0"2 (6)*.2
| ,011 i *IO

Ii! !!! '+
Wing-Tail Mode . ! • • "

; Lrd Fus. Bending + Ist Sym Ning Torsim _,
-Ist As'ymNing Torsion" " 1 " "

• _2nd _ Wing Bending. I • • ' '
I ?_Horl. Tall Pitch I

,_. i I |j' r'H°r£" Tail+ 2rid Win_ Torsion
""'"" i + _ [ e+Hor£. Tail PItch-i-'.-y-----

=-  iII:,I II: F od Io To"I°°:
+" _ ;111,1_,o iilir n°rI'Talt I '

; °
(- !

_> _ | I|| O'l_ OO ---

a !':Oo:' + )"! -:: _'07!

I-,,.1[ ' o o + _ , ,o . l • "oU
III
_L , . e- O.

" @)
0 • 0 @ o0o

ILl o 0 0 o_i

I[3 o
I_ I fill *l} 0

I_ ' " + '
Iii
line
.J
<
s- +

ID
z i__

l

II li Ill II Ill -

FQEOU[.'+CVt .z 3 ,:
(l) AMO01 L/H ¥IN8 TIP VEIITIC_,I. _CCELEIO_ETER

+

Figure 11. Conl:Inued

*j

94
P

_ .+
+,

+ +i.

]978025]70-]04





u

, FLIGHT 77, FRAME 153322.50. RECORD LENGTH ,, 2 SEC. '

SCALE FACTOR • .32G*0 (6)**2 ,_, t_+_
I .111110ill

......, + Ist. S,_mWing,. Torsion.. ......
. • , "7" 2nd Asym Wlng Bending

.... ;-_, Hori. Tail Pitch" ', + + , _ , ; I . '.
t i--'HorI. Tail Pitch

..+.+,_, _ t ! +, '+ '

S.01110 °05

• ' ' t _'0 * + * I *

"r , ; , + ,_ ,
% , I t '

- ' ' + to T i ; .......
| t , , o , . , . . .

/ :,- I ° 4

I-- I O 0 0
' " I ', O" •

+_ _I) ; :' O: O+ 0 4' 00
z t oo
I11 I ,lllO "11 ++ + 0 0

.... ; ; . .o. :o , _ + + , _.
0.0 i

,,.I ' ' " * " ; <+ '
lO + '%

, • . , • • -p+ ) 4- + .... _o° ..o
'_ _+ •
_, ,t ,P , • I 'P + 0 ' 0"0
It,- + ,+ 0.0 40 , O. • • O.

O • 0 O"
(,J c+ • _ , t + ,.+ + O" 0 + 15 ....v l&l +

IL +, • , , i . 090 .0 .0 . •

U) • o + : •
01. " ; ' ' ' ' + " "o ..... oIll

ID O0 'o e+ • _ ; • •

IL ,.,,,,.ol
0 , : _ " • •
LU + * " +

N O" + D/to"
.... + .+ , ....

41:
11" " + " * +

ID • " ° • + *
z

• . + o . •

_REOUENCY ( HZ )

(n) AIO|O C.ll, Y[RT|CAL ACCEL|ROIqETEII

Figure 11. Contt.ued

96

1-

1978025170-106





i

i

FLIIHT 77, FRAME 15$322,S0, K¢0_0 LENGTH • 2 K¢, ....

SCALEFACT_It= .11_-1 161,,2

,.,,.... __ _:'_'+
_l.t s_ wing_,nd_gi i I _ : _--: __'ilr-,.t^l_w+n_.+ndtn+: I : : [::
!iirlst FuS Vert. Bendlng + i ' • I " "

:111''r .2hasT WingBe°dinS: ....
.illl . I il IG-'2rid; Asyl Wing .Bendlng , . .| ,l--LHori. Tall Pitch

_,_i._ 'Ill' I ' +I :i--" orl. Tall Pitch ' " ".111/ I !1r Ho:i.i.il +ln<,wi°gio:.ion
i ;!i!! i i i i i _ ; ; ;

•,r Wll. i I _l _'o tl II I + , + I .....

" ' ',o , ..... t ' " " "
+ . i _0 7| • ' " t i

I i I . i -+,,. 71[ *, to I I

0 O+ I I ,!ill+ . , 1 ! II IIII i@

ib:i -+i,
i + !" : ; o; t

7t! -i- i 1 +@i . .

.o', o ' l l I° "i O" • ' _ + #

o + , 0 I f ! • II •

..... " + , _+-o-ii, ....

O : ; • 410 @ • • @ @@ • m @mo. • IIII "i

_..N ",: ,_,: l : : ; ".:. i : : :
. . . . • • . , . . . • . . .

: i " ' " i . . . • . . .

el /
I IIII .... l l i ............................

II El • ii- it#

FREOUENCY { Hi ) 7:

(P) AFO01 PILOT'I HAT VERTICALACCELE_ON[T|I -,+
,+

_lure 11. Continued

98 :

1", +

1978025170-108



i

v

o_.
. KAI.| FACTOII • , lld-I (ll)ee2

I .oln Oellll

; "eus Lateral Sendinsl '
. _ !2nd Sym _i.n8 bendinsI ,
, ' Id PuS Lateral Bendin S •

•' +'°'_"F'**_°*°'..... t!_ 1+ ' .

i ! t + . .

j + IP,
f!

I 1; °_ to! : " '

+ ' °
s ols• le i 1 ; _ ; _ •

i-* 1 .-o',o i : o_o' I°t ° I '° °"
i ,_o I "

! _ +'.... ,+.......
iO ' • ' , • •

eloO o, i , io0o' ooo olwo

• 2 iI ; 1 I• IIIIIII "I

O • . + , + "_." '. . : + . • • . _ _.

_I_ ! + ._, ,+ o . • • .+i 4 I . * • - • • +

4 - _ ++ + + + + +. - •

i . _ + + . .....

• _ , • 4 • • , °

s"elle'e*I_-- --4 ; [ ..........
Ill 40 Ol llO Ill

(q) AIro,_O P|l, OT'i_ O|AT LATEIIAt. ACC|_EIIONI[T|II

Filurt 11. Continued
/

I

99

!

1978025170-109



J.. FI-|IHT ?'7, FRAHI[ 1S3322,S0, N[CORO LENGTH = 2 SI[C.

SEAL[ I_ACTOR " ,2n-| (8)0e2 *'.

J oelll IItilll

•, " ". IsC Asym Wing Bending!

[i _-Is_ Fus Lateral, Bendlng, .
' i " --is_ As N _i-_g Torslon,

"--2nd Asym Wing Bending*

x

!!

r.._ t .11111II*111

• + . _ . . _ * 9 • • • • +

' _'J ' ° ' • ....... |+

" * ' "o " •....... n+
,_ l 0 _ ' • • , • , .

i ' t + I ipO

: N . • / •
"lllllll'_l| -O'_ _ : _ @ . , _ J +

• o" * • : ) • 41. ....

<_ O+' • • •• + '+ o +, 9 4,, • °'o •
'00 ' O" ' " • ' O"• O o O. • .0 + . • * . 41. i

+_ • 0 @ •

_1_ O ' 040 ' O" " 6" •

, _ .9 * • .0 0 . .O . 9 ++
• I// • 0110 •

" • + "0 _ ........ O' 0

oo • ooo • • ct,o • o oo c
I1,, n.enoo"°l '. . . , . _

_" _ i:

' r

l ,plIIlI*ll _-- [+ + . i .
I Ik 41t ,Oq Ill I Ol

FN[OUENCY ( 14Z )

(z') AID20 C,O, I.ATENAI. A¢¢EI.[IROHI[T[I_

2+

Ftsure 11, Concluded :
s_

!
2

,)
{

2_
4
N

I00 +_
.?

]97B025170-] ]0



I

first wing bending mode and the second antisymmetric wing bending!

mode predominate with significant response occurring in tWO hori-

zontal tall pitch modes at higher frequencies. The response in

• the wing-tail and rocond wing bending modes are now small ccm- ,.i

pared to the other modes. At Wing Station 3 the first wing bend-
!

_'_ log response predominates with some response shown in wing second .

"'" bending and higher order horizontal tail modes. Relatively small :

response is noted at t'.e wing first torsion and the second wing

• antlsymmetric bending frequencies. At Wing Station 4 the peak
O_

power value occurs at the second wing antisymmetric bending fre-
t

quencywlth somewhat smaller responses in first wing bending,

wing-tail, second wing bending, first wing torsion, and the . :

horizontal tail pitch modes.

The wing bending gage data at the four wing stations show r

responses that are somewhat different from the shear gages. At !

i

Wing Station I the first wing bending mode predominates with

small responses occurril_ in first wing torsion, second antisym-

metric wing bending, and two horizontal tail pitch modes. At

Wing Station 2, the first wing bending response is very strong

and a small response is shown for second wing bending. Very

little response is indicated at higher frequencies. At Wing Sta-

tion 3, the first wing bending mode and the second antisymmetric

wing bending mode responses are both large; and significant re-
?

i01

L
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sponses occur at second wing bending, first wing torsion, and the

horizontal tail pitch modes. At Wing Station 4 the predominant

mode is the second antisymmetric wing bending mode and smaller

responses occur at first wing bending, second wing bending, first i

wing torsion, and the horizontal tall pitch mode frequencies.
J

;_ A most significant finding of this study is indicated by the o

=:- wing torsion responses. At WIN Stations I, 2 and 4 a small re-
,¢

sponse is noted in first wing bending, and the major response Is

in a broad band of frequencies varying from about 16 to 35 Hz _

with the major peak corresponding to first wing torsion at Wing

Stations 1 and 2 and to second anttsym_etTic wing bending at Wing

Station 4. This type of response is indicative of a very strong

bending-torsion coupling. No torsion response data were available

at Wing Station 3 for this flight, however, the response Is ex-. i

pected to be similar in modal content to those at the other wl_@ ,

i stations on the basis of responses noted for Flight 79, Run 9R. ',
?

The wing tip accelerometer responses for point I0 indicate

i
_ that the left wing and right wing may not be receiving the same J_

t

type of excitation. The left wing tip accelerometer shows a !

broad band of response b_ cween 40 and 80 Hz, a fairly large peak ,!,

In a horizontal p._tch mode at about 37 Hz and smaller peaks in i''_

the first wing bending n_de end a lower order horizontal tall I}I

pitch mode. The right-hand wing tip accelerometer response shows t_
!:
I.,
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!
f

peaks in a wing-tall mode, second wing bending and second anti- I

r

symmetric wing bending mode in addition to the peak in first wing

bendi_j and the broad band of responses between 40 and 80 Hz. i

The responses in first wing torsion are not large for either tip

accelerometer which is somewhat surprising in view of the strong

:_.-_ response indicated at Wing Station 4 on the right-hand wing.

_:_ The two vertical C.G. accelerometers show about the same !

,- responses with the major excitation occurring at the second anti-

symmetric wing bending mode and the horizontal tall pitch modes.

Some significant response occurs at higher frequencies between

70 and I00 Hz. The pilot's seat vertical accelerometer shows a

moderate response in a band including first wing bending and

first fuselage vertical bending, and major responses in second

wing bending, first wing torsion, second antisymmetrlc wing bend-

ing, and the horizontal tall pitch modes. The largest peak is at

• the second antlsymmetrlcal wing bending frequency.

The lateral accelerometer at the pilot's seat has maJo=

: responses at the second fuselage lateral bending, second anti- "

symmetric wing bending, and a high order horizontal tail mode

with only moderate responses in the first fuselage lateral bend-

ing mode and a wlng-tall mode. Ehe responses of the C.G. lateral

accelerometer are similar in modal content to those at the pilot's

seat except the wing-tall and second fuselage lateral bending

mod_ responses are much smaller.

103
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• In terpre tations
/

The right wing exhibits large responses in several modes and

in particular undergoes a strong bendlng-torslon coupling. The

, C.G. and pilot seat accelerometers respond primarily at frequen-

,_,_ cies above 16 Hz despite the fact that large wing respgnses are _

•;_ noted at lower frequencies. A significant amount of the wing

_ excitation occurs in antlsymmetrlc modes despite the fact that

the maneuver is nominally a symmetric maneuver. Further Inves- iD

tigation brought out the fact that points 9 and I0 each include

a brief roll disturbance and recovery. Figure 12 shows the
.... ..=

roll-rate time history of the maneuver under study. After initial

entry into the wlnd-up turn the roll-rate decays in a slightly :

oscillatory manner and just after 18 seconds a small spoiler in-

put drives the roll rate positive. The rate decays rapidly to

near zero and then just after 22 seconds another small spoiler

input again drives the roll rate positive. Referring back to the

other time histories in Figure 5(b)it canbe seenthateach spoiler

input is preceded by a change in character of the torsion re-

sponses. This fact is particularly evident Just before 22 sec-

onds. In the sideslip angle trace in Figure 5(e)It can be seen that

some oscillation occurs. All of these indications point to the

occurrence of mild wing rock which possibly induces the antlsym-

metric responses noted in Figure II.
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It is appropriate now to review information learned so far

First, the structural responses during maneuver well into buffet

are complex. Many of the natural vibration modes of the aircraft
?

are excited and develop significant responses. Second, several

different types of sensors and sensor locations are required to

_. obtain an adequate description of the aircraft structural re-

sponses. Third, the modal content of the responses can change

significantly as the penetration beyond buffet onset increases.

._ As a consequence of these three findings it appears unlikely "

that a simplified prediction method will produce accurate _

estimates of buffet loads and accelerations, but there is a need _:

to assess how severe the buffet loads and accelerations are before

making any Judgment on what degree of accuracy may be needed.

Magnitudes of the Structural Responses

The complexity of the modal responses makes it difficult to

comprehend the variations in magnitude of the structural responses _'
9

_ by attempts to compare mode by mode. Therefore, the concept of -_)

root-mean-square (rms) values is used for this purpose. By summing :_
I

the magnitudes of the power spectra over a range of frequencies i

and taking the square root of the sum, a measure of the total

response for each item of instrumentation is achieved.

In the following discussion the rms values are evaluated over "_

the frequency ranges from 1 to 50 Hertz or from 1 to the limit of '*

106 _
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|

recorder response if less than 50 Hertz for a particular item.
e

If ms values over a different frequency range are desired they

can be calculated using the tabulated PSD data presented in

NASA CR 152111.

One purpose of the rms analysis was to investigate effects of

: Math number and altitude on the magnitudes of the responses. To )2o

do so, first the results of the wind up turn at M-0.70 are examin- ;

? ed, followed with comparisons of the data for the three M=0.80 _

maneuvers, and i_ tly, with comparisons of the three maneuvers _

[ at M'O. 87. :

•M-O. 70 Results 1

, Figures 13 through 15 present the wing strain gage responses

at each of the four instrumented wing stations. The rms values .

i are plotted at the nominal angles of attack previously assigned _

: ; in Table 7 (remember, however, that each data point represents

' data taken over a discrete interval of time and therefore a range

,_ , of angles Of attack). The curves shown in Figures 13 through

2
- 15 show a remarkable consistency in the variations. In every

case the trend with angle of attack is similar. In particular

: an inflection occurs between 11 and 12 degrees nominal angle of _:.

i attack. Referring back to Figure 6(a) it can be seen that an

i inflection also occurs in the variation of angle of attack wlth

time. The implication is that a wing panel leading-edge stall

i lO7 :

,;
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0

has occurred. Figures 13 and 14 show th&t the rms values of

shear and bending moment decrease rather abruptly beyond ii degrees

and then rise again somewhat. Figure 15 shows that the torsion

values tend to remain nearly constant above ii degrees. Inspection

of the PSD data for this maneuver (NASA CR-152110) revealed

that between ii and 12 degrees there is a shift in bending moment

_ response from the first wing bending mode to higher frequency

bending modes, particularly outboard on the wing. Finally the

time histories for the right-hand wing spoilers presented in the

Appendix show that a small and _hort duration spoiler deflection

occurs just after the time sample associated with the data point

, represented at II degrees angle of attack. All this evidence

points to a mild wing rock occurring during development of the

leadlng-edge stall.

Figure 16 presents the accelerometer responses obtained

during the wind up turn_aneuver of Flight 48, Run 6. Figures

16(a) thro'agh 16(d) show the vertical acce!erometer responses at

the right-hand wing tip, the center of gravity and the pilot's

seat. The similarity of the trends in variations of the re-

sponses with angle of attack is again noted. All the vertical

accelerometers show an inflectlon occurring between 11 and 12

degrees Just as the wing strain gage responses did. The struc-

tural characteristics of the aircraft ara such that a significant

iii
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i

reduction in rms magnitudes of the response occurs between the

wing tip and L_e center of gravity and a further reduction occurs

between the center of gravity and the pilot's seat.

Figures 16(e) through 16(h) present the vertical eccelero-

meter responses for both the right and left hard wing tip and

?

_ the lateral accelerometer responses at the pilot's seat and the

.... center of gravity. Comparing Figures 16(e) and 16(f) it is seen

that the responses at the two wing tips are similar at the lower

angles of attack and then diffe_ somewhat at the higher angles
y'

of attack. The differences may be attributed to a slightly

different progression of flow separation on the two wings which

is accentuated by the spoiler deflection on the right hand win_

between the data points shown for II and 12 degrees angle of

attack.

Figures 16(g) and 16(h) show that the lateral accelerations

are small at the pilot's seat and particularly so at the center

of gravity.

i

M = 0.80 Results

Figures 17, 18, and 19 present the wing strain gage re-

sponses and Figure 20 the accelerometer responses for the three

maneuvers performed at approximately M - 0.80 but at different

altitudes. Four sets of data are shown because bouh one-second
J

and two-second samples wer,_ analyzed for the wind up turn maneu-

114
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ver of Flight 77, Run S&C-R. These are shown on the plots as the

circles and squares, respectively. These results will be discussed

first before considering the responses for the other maneuvers.
%

; _lle the one-second and two-second data are generally similar

In magnitude, some differences do exist particularly in the high _

_ angle of attack region at about 12 degrees for the shear and

bending moments. The fact that a mild wzng rock occurs during

this maneuver has previously been discussed under th_ power
i

Spectral density analysis. It is apparent that the two-second

samples tend to smooth the variation of response with angle of

attack for Wing Stations I, 2, and 3, but there Is little dif-

ference at Wing Station 4. The tccsional responses tend to be '_

more neazly the same for the one-second and two-second sample

data at each angle of attack.

_' The general trends of the variations in response with angle _

of attack are different from the trends at M- 0.70 in two ways.

First buffet onset occurs at lower angle of attack (about 5 de-

grees) which is expected for this particular wing leading-edge

sweep. The Initial flow separation is shock-induced at this

condition. Second, the increase In the responses with angle of

attack is generally more gradual even though the maximum measured _;

rms values are much larger than those at M- 0.70. Comparison ,_

of the shear and bending moment response magnitude variations

i

I
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• with wing station indicate that the flow separation is primarily

outboard of Wing Station 2, since there is little change in ms

values of shear between Stations 1 and 2 but a large change in\

rms values of bendir_,_ moment between those stations. The torsion

responses at Wing Stations 1, 2, and 4 all have maximums at about

_ 12 degrees angle of attack and then decrease, whereas at M = 0.70 •

the torsion data indicated a nearly constant response level ac

high angle of attack. Torsion data are not available at Wing

Station 3 for Fllght 77.

-_: The vertlcal accelerometer responses shown in Figures 20(a)

, through 20(d) show llttle difference in the rlght-hand wing tip

•', accelerations for the one- and two-second samples, fairly signif-

icant differences for the center of gravity measurements and

_ smaller differences for the pilot's seat measurements.

", The wing tip responses are three times larger st M = 0.80

ii than they were at M -0.70, whereas the center of gravity re- :

, sponses and the pilot seat l'esponses are about twice larger. ;

The variations with angle of attack are similar to each other i
l

,t
with peak magnitudes occurring at about 12 degrees.

{'

Figures 20(e) and 2O(f) show the accelerations a_ t_e right- !_
[;

hand and left-hand 'wing tips in a side-by-side presentation to i_

allow comparison by inspection. Note that the variations with !i
F

avgle of attack and the peak magni_udes are generally similar for !'_

! 121
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beth wing tips for Flight 77, Run S&C-R, but the left-hand wing

shows somewhat more response than the rlght-hand wing at the

• highest angle of attack. /"

Figures 20(g) and 20(h) present the lateral acceleration

: ' responses at the pilot's seat and the center of gravity, respec-

tlvely. For this maneuver the responses show similar trends with
r

angle of attack and the magnitudes are nearly the same at the two

locations. The lateral accelerations also peak at about 12 de-

"-' grees angle of attack, and are about one-fourth of the value of _

• the vertical acceleration at the center of gravity and one-thlrd -_

the values of vertical accelerations at the pilot's seat. The

peak magnitudes of the lateral accelerations are about 3 times _

the values at M _ 0.70. :

Summarizing the differences between responses obtained dur-

: ing the wind up turn maneuvers at M=0.70 and M-0.80 it was found

that the differences in flow separation conditions leads to bur- :

let onset at lower angle of attack at M = 0.80, and more grldual

increases in the responses with angle of attack. The minimum

measured responses, however, are much larger than those measured =

at M- 0.70 and cannot be explained solely on the basis of the

increase in dynamic pressure.

Next,the effects of altitude (or dynamic pressure) on the :i

responses are examined. Figures 17 through 19 also present :'

122
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t

wing strain gage data and Figure 20 the accelerations for two

' pull up maneuvers performed at approximately M = 0.8 - one at

about 3800 m and the other at about 1500 m. Data for these

• maneuvers are shown as triangles and diamonds, respectively. In

i general the responses for the lower altitude maneuvers are higher

._ ! for a given angle of attack• A cursory examination of the bend-

ing moment and torsion responses indicates the magnitudes are

''J i

approximately related between the two pull up maneuvers by the

dynamic pressure values. Since the power spectra indicate the

i bending moment responses for the two inboard stations are pre- ,-:

_ dominantly in the first wing bending mode, one can apply the

, ; simple linear elastic system analysis described in Reference 20.

i That analysis indicates that damping is (1) primarily structural

i if the response relationship is a direct function of dynamic

pressure or (2) p_imarily aerodynamic if the relationship is a

_ square root function of dynamic pressure. The measurements dis-
• ¢

_ cussed above would indicate that structural damping predominates i

In the first wing bending mode for the two high-g pull up maneu-

vers at M - 0.80.

It is obvious that the response data for the wlnd up turn
?

do not belong to the same family of curves as the data for the

two pull up maneuvers. There are several pertinent factors which

can alter the response such that the expected relationship did not

: 123
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apply. First the difference in pitch rate between the wlnd-up

turn and the pullups is a possible cause. Second, the gross

2

weight for the wlnd-up turn was much lower than those for the _i:

pullups. Third is the fact that the wing has a different :
\

aeroelastic shape (twist distribution) for each maneuver altitude

. ) and the progression of flow separation can be significantly diff-
=

erent. This aspect of the problem will be explored further as

: we examine the higher Mach number results.

M "_ 0.87 Results

Figures 21 through 24 present the wing strain gage and .,
I

accelerometer responses for the three maneuvers performed at Mach

numbers of about 0.87. Because these maneuvers were all rather

abrupt, the r_s magnitudes of response were expected tO be similar _

in trend with angle of attack and to correlate with altitude. How= i:

ever, that did not happen. The results of the roller coaster

maneuver performed ,at high altitude will be examined first, follow- J

ed by further examination of the effect of Mach number on the var- _

iations of response with angle of a_:tack.

The maximum magnitudes of shear and bending moment response

are about the same as those measured at M-0.80 but the values

for torsion response are somewhat lo%er. There is an indication

that a peak might o_cur in some of the responses Just above the

_r

'2.
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last data point or at about 15 degrees angle of attack. The

accelerations are in general lower than at M = 0.80 and do not

peak in the angle of attack range measured.

Turning now to the data for the pu]lup performed at about

3700 m which are represented by square symbols in Figures 21

.:-- through 24, it _al I-_seen that, in general, the variations in response
i

are similar to those for the roller coaster maneuver. The higher _

initial levels of response are caused by the fact that the wing _

was in buffet even at trim conditions for l-g flight. It is

interesting that the change in slope of the responses still

, occurs above 9.3 degrees angle of attack. At the higher angles _

of attack the magnitudes of response for the shear and bending

moments are slightly smaller than those for the roller coaster

maneuver despite the fact that the dynamic pressure is much

larger. The fuselage vertical accelerations follow a similar

trend but the wing tip accelerometer responses are slightly higher

than those for the roller coaster maneuver.

Data for the pullup maneuver performed at 1500 m are pre-

sented as triangles in Figures 21 through 24. Because this

maneuver was so abrupt only three points are shown, one at l-g

trim conditions and two at high angle of attack. The wing strain

gage responses at high angle of attack are larger than can be i

accounted for by a dynamic pressure effect. The probable c:_use
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is the fact that the Nach number is about 0.04 lower than the

other maneuvers at this angle of attack. The acce!erometer re-

spo_Lses are only slightly higher than those for the other pullup

maneuver.

When the responses for the three maneuvers are compared, it

is again obvious that they do not correlate with aItitude. In this

comparison, two of the three factors mentioned in the discussion

of the M=0.80 comparisons have been minimized. The pitch rates

are more nearly the same for the present comparison and the gross

weights are also nearly the same. As a consequence we must

attribute the anomalous trends with altitude primarily to differ-

ences in aeroelastic deformation of the wing which can cause

significantly different shock patterns and thus differences in

the progression of flow separation with angle of attack.

L

Summary Analyses

Before moving on to a discussion of the significance of the

measured responses with respect to design loads, a brief review of

what has been learned about the effects of Math number is in order.

Figure 25 presents comparisons of the shear,bendlng moment and

torsion responses at Wing Station I and the pilot's seat verti-

cal accelerometer responses as functions of angle of attack

for each of the three high altitude maneuvers. Three features

of these comparisons ace of particular interest.
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First is the different response v_riations with angle of

attack as Math number increases. At M = 0.70 the variation is

• typical of that produced by leadlng-edge flow separation, which

starts outboard on the wing and then progresses rapidly across

the wing as angle of attack is increased. The peak respotlse

_,
J apparently occurs when the progression is completed. At M = 0.80

" the variation is represertative of shock-induced separation under

conditions where the outboard shock is located very near the

crest of the airfoil and moves ahead of the crest as angle of

attack is increased. At M ffi0.87 the variation is representative

of a shock induced separation in which the outboard shock is well

aft of the crest at low angle of attack and then moves forward

slowly wlth angle of attack until the shock passes forward of the

crest.

Second is the fact that the torsional responses tend to peak

_,, and the angle of attack for the peak increases as Mach number In-

creases. This behavior may be a manifestation of the breakdown

of the flow from a shock-lnduced separation to a leadlng-edge

separation at the higher Mach numbers as described by Pearcey

in Reference 21.

i Third is the fact that the pilot's seat vertical accelero- :

meter response tends to track the wing torsion response more so

than it does wing shear or bending responses both in terms of ,

!
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curve shape and relative magnitudes. _is finding could lead to

a whole new approach to predicting pilot's seat response if the

same trends continue for other wing sweep angles. In any event,

' it indicates that scal_ng of the first wing torsion frequency, in :

, addition to the first wing bending frequency, may lead to more

__ accurate predictions of full-scale responses from small-scale :

wind tunnel model measurements.

-4

Normalized Accelerometer Responses
h

In order to gain a perspective of the relative magnitudes of )

the accelerometer responses during buffet, the maximummeasured
L

' responses were normalized by the maximum maneuver load factor for

each maneuver. The normalized responses are presented in Figure

26. The various symbols designate nominal values of altitude and
,

the Math number values represent the average Mach number for each

particular data sample. The analysis shows three pertinent i_

results. _i

First, the relative responses at high altieude are larger

than those at lower altitudes. This result was expected since :_

the aircraft must operate at h_her angle of attack for a given

load factor and therefore penetrates farther above buffet onset

at high altitude than it does at low al_tude.
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Second, the maximum relative response for the wing tip and

pilot's seat vertical accelerometers increases with Math number,

reaches a peak between 0.80 and 0.85 Mach number and then de-
\

creases again whereas the center of gravity response continues to

increase at high aItitude. As a consequence, the center of

gravity response is probably not the best measurement to use as _

: an indicator of buffet intensity effects.

:i Third, the structural arrangement of the aircraft is such

/ that response levels attenuate considerably between the wing tips

_" and center of gravity and also attenuate betwezn the center of

gravity and the pilot's seat. A major factor contributing to the :\

attenuation is the fact that very little response is excited at :!.

those two fuselage locations at the low frequencies associated 7

i _ith the first symmetric and first antisymmetric wing bending _.
:; :

modes with the wing sweep set at 26 degrees.

,_ Normalized Wing Buffet Loads ':
fi ::

-_ One of the key questions that was to be ans,_ered by this

investlgation was Just how significant are the buffet loads o:

encountered In high-g maneuvers. It was possible to obtain an ?

answer to this question for the wing _hear and wing bending loads

because M-.88, ALE-26 was one of the anticipated limit loading

I conditions for the structural design of the aircraft and detailed
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. analyses of the "steady" (mean) loads produced during the Loads

Demonstration Program for the F-111A aircraft. The wing torsional

moment at this same condition is not a critical loading for the

" F-IlIA aircraft. The maximum rms values of shear and bending

moment measured at each wing station during the three maneuvers

_-- performed at about Mffi0.86have been normalized on the basis of
b:,-

the design load factor "steady" airloads for the specific dynamic

pressure values associated with the measured buffet loads. The

"steady" airloads were obtained from an analysis presented in _-

Reference 22 in which values of shear and bending moment per unit

dynamic pressure were plotted against dynamic pressure for A-26 °,

M _0.88.

The results of this analysis are presented in Figure 27 !
-' _.-

which shows the spanwise variations of normalized maximum shear :

i and bending moment buffet loads. The symbols designate the

" different maneuvers. The plots show that there is an important :

¢ spanwlse variation of buffet loading and that the highest rela- )

rive values occur a_ the most outboard measuring station. The

effect of aititude is essentially similar to that for the accel-

erometer responses. At high altitude the dynamic response is a

larger percentage of the "steady" airload than at lower altitudes.

While the relative buffet loads are small they are not insignlf-

._ icant.
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: SECTION 8 _:

CONCLUDING REMARKS

This investigation has provided some valuable new information

about aircraft structural response to aerodynamic buffet at sub- :

; %

sonic and transonic speeds• In particular,lt was found that the :;
,mr,

_7 structural response to buffet during moderate-to-high-g maneuvers 0

is very complex• Nearly all the natural vlbratJon modes of the ;

alrcraft,both symmetric and antlsymmetric, are excited during a i_

_ maneuver• As a consequence, an extensive array of instrumentation !_

ks needed to obtain an adequate description of the structural re- ,_
5

sponses. As the penetration (an_le of attack) beyond buffet on-

set increases, significant changes in the modal contributions to

the total root-mean-square responses can occur. Therefore, no

single vibration mode can be selected as an indicator of the

variation of buffet intensity during a maneuver.

In general, the fluctuating shear and bending moments on the

wing are small except near the wing tip where the rms values
l

approach 15 tO 20 percent of the design "steady" loads. The rms
;i

values of torsion response are higher than expected on the basis ':

of previous buffet studies and amount to between 1/3 and 1/2 of

the corresponding wlng-bending response values. Some evidence

of strong wing bending-torsion coupling was obtained at high
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angle of attack at transonic flow conditions.

The effects of Math number on the variations of wing responses
f

with angle of attack were about as expected from previous buffet :_

studies. At M = 0.70 the progression of response intensit T with
i

., angle of attack is quite rapid and reaches a peak about four de-

, grees after onset and then decreases. At M - 0.80 onset occurs-- y

at a lower angle of attack than at 0.70. The progression is

somewhat less with angle of attack but the maximum measured

values are significantly larger and occur at the highest angle

of attack. At M _ 0.87 onset occurs at a still lower angle of
,\

attack than at 0.80. The initial rate of increase of response

is low for several degrees and is followed by a larger rate of ._

increase such that the maximum measured values are about the same

?
_ as those measured at M = 0.80.

Attempts to correlate the responses at the various alti- :

tudes as functions of dynamic pressure generally failed.

, ,, There is an indication that damping in the first wing bending ,!

mode is primarily structuzal at low altitude but not ac high "!

altitude where the "steady" air loads are much smaller in ab- '_

: solute magnitude. On the basis of the limited data available

it was concluded that the differences in "steady" aeroela_tlc _

deformation (twist) of the wing alter the progressioT, _f ftow
r

_z

separation as angle of attack is increased at the different

altitudes, i,,

 .40
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J. G. Jones has shown in Reference 23 that the "apparent

: damping" in the first wing bending mode is highly nonlinear with

angle of attack for a small fighter aircraft• It is possible

then that the variations in the aerodynamic damping with angle of

attack are different for the F-Ill wing at different altitudes

due to the differences in twist distribution. That situation

could account for the inability to correlate the effects of

altitude with functions of dynamic pressure.

_ It is now appropriate to review what impact the results of

this investigation might have on future flight programs to inves-

, tigate buffet characteristics and also on the development of

methods to predict structural responses to aezodlmamic buffet.

First, with respect to future flight programs, it is clear

::, that a significantly larger array of instrumentation is needed to

i adequately assess aircraft structural response than has been used

• on most previous flight programs. In addition the sensitivities

, of straln-gage-bridges used to measure buffec loads should be

- significantly larger than those used to measure total aircraft

loads in order to obtain an optimum signal-to-nolse rat:_o £or

proce3slng the dynamic data. In-flight measurement of the
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fluctuating pressures and the aeroelastic deformations of the

wing could considerably enhance the value cf flight measurements

• of buffet characteristics that are to be compared with predictions.

The twist distributions are of primary interest although chordwise

deflections at several span statluns would be of significant

_,
value if fluctuating pressure measurements are obtained in addi-

tion to loads and accelerations.

_: All measurements that are pertinent to a buffet analysis

_ should be recorded on FM tape recorders and subchannel recording

frequency limits should be no lower than the second wing toralon

frequency. If leading and/or trailing edge flaps are a part of

the configuration, frequencies associated with flap modes should

also be within the recorder frequency limits. Finally, it is reco-

mmended that very gradual windup turn maneuvers be used to acquire
?

' buffet measurements so that sample times will be adequate for

statistical analyse_.

Second, with respect to development of predlctlonmet_.ds,

one must consider the objective of the prediction. If it is

desired to obtain detailed estimates of the aircraft vlbratloual

i enviror,_ent due to buffet, i.e., loads, accelerations, and dis-

i placements, then the predlctlcn method should probably include

considerations of all aircraft symmetric and antisymmetT_c vib_.a..

tion modes up to and including that associated with second wi:_

142
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torsion. If the objective is to obtain crmparative rms accelera-

tions at the pilot's sest at different flight conditions, it

would probably be sufficient to consider symmetric and antisym-

metric modes up to and including first wing torsion and symmetric

and antisymmetric wing-fuselage-horizontal tail modes in the

_ range of frequencies covered by the wing modes. The horizontal

tail modes appear to be particularly important with respect to

damping of the fuselage motions. /
5
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, APPENDIX _

TI_ HISTORIES OF INSTRUMENTATION OUTPUT '

/

In this Appendix time histories of the instrumentation output
\

are displayed in analog form for the following maneuvers: ?

Figure Flight Run Maneuver

- A-I 48 6 Windup Turn e
D" 7

A-2 78 5 Pullup

, A-3 79 9R PUlIup

A--4 60 10 Roller__ Coaster

" A-5 78 4 Pu!lup 2

, A-6 70 2 Pullup '_'

' The time histories for the Flight 77, Run S&C-R windup turn maneu- ::

ver are presented in the main body of the report. _

Each set consists of several records and each record contains

the output from several instrumentation channels. The top channel

on each record shows the output for the same item - AI_02, the R/N

wing tip accelerometer (except Figure A-3 which has DH001C, angle

of attack). The particular groupings of items presented are those

used in the study and some items appear more than once. The flight

time (actually frame number) which is the correlating item appears

at the lower boundary of each record Each second is indicated

i by a tick in the time trace.
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Figure A-6. Continued
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Figure A-6. Continued
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Figure A-6. Continued i'
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Figure A-6, Concluded
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