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ORIGINAL PAGE l5
OF POOR QUALITY

1. Intreducticn x.11 nistoricals

The object of the present paper is to introduce an expli-

cit	 integration scneme	 for the Luler egaations of gas dyna:aics
which, at'ter extensive tests,	 I	 consider	 the	 best	 among	 all

schemes available so far.

According to Y. Gordon, from whom I got the first sugges-

tion of the scheme [1J, its basic idea could be found in an early

paper by Courant, lsaacscn and Rees [2J. In 1907, alter doing my

homework on Gordon's scheme [3J, I dropped it, giving my prefer-
ence to MacCormack's scheme L 4 ) which was also welcomed	 by a
large number of numerical gas dynamicists.

Three reasons prompted me to adopt MacCormack's scheme

instead of Goraon's:

1) The former has second order accuracy, the latter nay

only first order accuracy,

2) The former could be easily coded for any number of

space-like	 variables,	 the latter was limited to one-dimensional

problems, and, on a minor scale,

3) The former seemed to need simpler codes.

A couple of years ago, L. 'Lannetti rediscovered the basic

idea of the integration, scheme independently. He was, however,

in a more advantageous position than Gor g on because he had a gcod

experience of two-level schemes and he knew how to maintain

second order accuracy despite using one-sided approximaticns 	 to

space derivatives 151.	 The first public appearance of Lannetti's

scheme [bJ snowed that the first objection above had been re-
moved;	 the	 scheme,	 however,	 was	 still	 essentially	 one-
dimensional.

Since then, 1 have been working on the scheme, 	 in	 order

to	 test	 it	 in tr,o widest possible range of flow parameters and

- 1 -
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Introduction and historicals

under the most exacting circumstances.	 I did also work out a

multi-d'mer.sional	 version of	 the	 scheme and I consider, thus,

that the second objection above can also be removed.	 As	 far as

the third objection is concerned, the code turned out to ba not

as complicated as I thought and it can be provided now in the

form of a 'black box $ which maKes its application very simple.

Therefore, 1 believe that the scheme whieh'1 am going to

describe aeserves recognition.	 It is superior to any other from

a physical standpoint and it provides results of great	 accuracy.

The second statement is an obvious consequence of the first!

To	 identify	 the	 scheme,	 1	 decided	 to	 call	 it	 the

a-scheme, since I could not attribute to it a we'll-defined pater-

nity.	 In fact, most of our recent progress in numerical analysis

seems to be the product of a natural evolution, occurring in dif-

ferent places at almost the same pace. A paper by F. inalkden, P.

Caine and G. T. Law:.. which dust appeared in print L171, seems to

overlap a good part o" the present one although the Authors may

nave missed what I consider a very important improvement over the

Gordon scheme. The scheme, as outlined by walkden, has indeed

only first order accuracy, and seems to make heavy use of averag-

ings whose damaging influence cannot be evaluatea a priori but

union smell strongly of artificial viscosity.

2. Recasting _QL Euler '.1 eauation s

In what follows, we will denote by T a time-like coor-

dinate,	 and	 by X, Y two space-like coordinates.	 Such :oordi-
nates are in general not Cartesian, but obtained from Cartesian

coordinates through a series of mappings and stretchings, as re-

quired by the problem.

As the main thermodynamical unknown we will assume the

logarithm of pressure, P. In time-dependent proolems, we will

assume, as the main kinematic unknowns, the velocity components

along	 the computational grid	 lines in the physical plane.	 in

steady, supersonic flow proolems, it is more convenient to assume

- 2 -



Hecast!ng of tuler's equations	
iICI(ilNAI, YAM: l5

(W PWR DUALITY

the slope of the velocity vector or two angles defining the velo-

city vector.

Beginning with one-dimensional problems, tr.at 	 is,	 prob-

lems	 whicn contain only one spa,:r-like variable, the typical un-

steacy flow is Jef_ned by the equations:

P+ a P+ a u+ c	 = 0
T	 11 k	 12 X	 1

(1)

u+ a P. a u+ c	 = 0
T	 21 X	 22 A	 2

and the typical steady, supersonic flow	 is defined	 by similar

equations,	 where	 u	 plays the role of the velocity slope. 	 The

coefficlents,a_ depend on the conputatior.al grid.	 Tne terms, c
1	

1,may	 also depen^ or. other conditions or assumptions; for example

in unsteady flows c 1 is not zero if cnar.ges	 in a	 duct	 cross-
sectional area are considered, c 2	 is not zero it' the frame of

reference is accelerating.

The simplest pcssible case of :snsteady flow	 is	 obtained

it' the frame of reference is fixed and Cartesian, if there are no

area effects and no stretching of coordinates is used.	 In that

case,	 for a perfect gas with a constant ratio of specific he.ts,

y, t 1 ) become

	

Pr + u p x + YU	 = 0

(2)
2

a
U +	 P + uu = 0

T	 y	 X	 X

Similarly, the simplest possible case of steady, supertonic 	 flow

is	 obtained if the frame of reference is fixed and (:artesian and

no stretching of coordinates is used. 	 In	 this	 case,	 if	 (for

better clarity)	 we write o instead of u fcr the slope of the

velocity vector, and	 I and X are the horizontal and the vert-

- s -
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Recasting of Euler's equations

i
izal Cartesian axes, respectively, (1) become

P T + (a/K)P X + (Y/K)a	 = 0

a  + (a 2 /yu 2 )(1 + o 2 1K)P X + (o/K)a X = 0

where	 u is the velocity component in the T-direction, and

K = 1-a l /u 2	 (4)

Tne slope of the characteristics of system 	 (1)	 in	 the

(X,Y) plane,	 I = dX/dT, is obtained by solving the equation:

a -a	 a

	

11	 21

0	 (5)

	

a 12	 a22-a

There are, in general, t l,o	 roots	 to	 this	 equation.	 we	 will

denote	 by 7, 1 and 71 2 tht smaller and the larger root, respective-

'.y.	 It is well-known that the system (1) cat, be re p laced by	 the

equivalent system:

(a	
1 22- ). 1	 T	 1 X	 12	 T	 1 X	 22 -2

)(P +a P ) - a	 (u +a u ) + (a	 -a 
1 

)c.	 - a 
12 2

c	 = 0
(b)

(a 22 -A, 2 )(P T +a 2 P X ) - a 12 ( u T +a 2 u X ) + ( a 22 - 1 2 ) c I - a 12 c 2 = 0

Gbviously,if the secona equation (6) is subtracted from the first

and	 the second	 equation.,	 multiplied by a2^-a , is subtracted

from the first, multiplied by	 a 2 -71 , we obtain ^1) again. 	 If,

however,	 we	 write P
X1 

and u X1 for 
^X 

and u 	 in the first of (o)

and, similarly, P X2 and uX2 in the second, we obtain

P + A S P -A a P	 + D	 u -A	 +	 =

	

l

T	 1 1	
(X	 u

1	 2 2 X2	 12	 2 X2	 1 X1 )
	 c 

1	
0

u + D	 ( a P	 -a P	 )+ A m u -A a u	 + c	 = 0

(7)

	

T	 21	 2 X2	 1 X1	 1 2 X2	 2 1 X1	 2

where

- 4 -
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ORIGINAL PAGE 1^

Ul'' P( ► R OUAIxrY

	

_ aL	
a

2 - I,

	

Ai	
x, -a	 01,)	 a _a

	

2	 t	 2	 ^	 (o)

rrom the viewpoint of partia l. differential	 equations,	 PX1	 PX2
and	

uX1 
s u

X2	
;	 it	 is easy to verify that (7) are, once more,

laentical with ( 1).	 Not so from the viewpoint of finite	 differ-

ence	 equations,	 if we decide to approximate PX1 ana P Xi in dif-
ferent ways, and similarly do with u 1 and uX2.

Again, in the sis.;jle unsteady flow defined by (2),

2

	

a ll = u	 a12 = Y ,	
a21 = a 

/Y	
a22 = u

	

a 1 - u-a	 a2 = u+a

and (7) become

1

P 'f + 2 ( 1 P X1 + 
	

2 P X2 ) Y a^ i 2 u x2 i1uA1) 
= C

	

uT + 2tr (X 2 P X2 i 1 P Xt ) + 2 (X t u X2 + 
	

t u X1 )	 G

whereas, in the simple supersonic flow defined by (3),

482

	

a ll = o/K , 
a12 = 

T/	 , 
a21 =
	

4	
, a22 = o/ K

Y 'J K

	

2	 L

	

ii = K(o- 2 	 1 2 = K(o +	 ) , B = \IM2-1

u	 u

and (7) become

2

	P+ 1 (a P	 + A P	 )-	 6 (a o	 -a o)= 0
T	 2	 1 X1	 2 X2	

2yu2	
2 X2	 1 X1

2

	

o + ^2 (a P -a N	 ) + 1 (a o	 + a a	 ) = 0r
2 X2	 1 X1	 L	 2 Xl^	 1 X1

2a d

(9)

(10)

(11)

(12)

- 5 -
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Mecasting of tuler's equations

j. Discretizat:on

From tn•

are	 the slopes

mation necessary

point. For suc

defined by point

defined by AC

two examples abo v e, it is

of the two chara-%,(eristics

to define P and u (or

h a point, A (Fig. 1) the

B and point C,	 the two

and	 Ab, respectively, to

	

clear that a	 and	 a

	

1	 2

which carry the itfor-

P and o) at every

domain of depenaence is

characteristics being

a first degree of accu-

Fig. 1

racy.	 When discretizing the partial differential 	 equations for

ccmputational	 purposes,	 point A must be made depend on poi,.ts

distributed on a segment which brackets bC (7), for example on

points	 D,E and F of Fig. 1.	 Such a condition is necessary for

stability but it must be interpretea with a grain of salt. 	 Sur,-

pose,	 indeed, that one uses a scheme in which a point such as A

is always made depend on D,E and F,	 indiscriminately	 (this	 is

what happens in most of the schemes currently used, including the

MacCormack scheme).	 Suppose, now, that the physical domain of

dependence of	 A	 is the segment BC of Fig. 2.	 The information

carried to A from F is not only unnecessary; it is undue and

therefore the numerical	 scheme, whilst not violating the CFL

rule, violates a law of physics, the law of 	 forbidden	 signals.

Pnysically,	 it would be murh better to use only information from

D and t to define A,	 even if this impliea lowering the nomi-

nal degree of accuracy of the scheme. 	 In other words, to say

that a given scheme, using points D, E and	 F,	 has a	 second
order accuracy is meaningless since a wrong scheme has no accura-

- b -
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Oiscretization

X1, YAC,h11Y
ov, fit

cy w;:aLsoever.

In transonic problems treated by relaxation nethoas,	 the

need for a switcning in the C13cretizatiOn scheme in passing from

subsonic to supersonic points was felt from	 the	 beginning	 (bj,

and	 It	 is evidently	 relatea	 to the law of forbidden signals,

although we find it ,justified in the literature as a	 gimmick	 to

avoid expansion shOCAS or to dive the proper c rection tc the in-

crease In entropy (9] (a curious statement, indeed, for	 a	 tecn-

nique which is, by definition, isentropic!).

T

0A

o-6	 o— 0	 0

D 8	 C E	 F	 X

Fig. Z

The sensitivity of results to 	 the numerical domain of

dependence as related	 to the physical domain of aependence ex-

plains why computations which use 	 integration schemes su:n az

Mz^Cormack's show a progressive deterioration as the	 AC	 line c:'

Fig. 1 tends to become parallel to the T-axis ( a t • 0), even if	 X 
is	 still	 negative (10].	 The information from	 F	 actually aces

not reach A;	 in a coarse mesh, such information may be arasti-

cally different	 from	 the actual values (from C) 	 which affect

A.	 On the other hand, since the CFL rule must be satisfied ana

F	 is	 tr.e nearest point to C on its right, the weight of such

information should be minimized.	 The	 a- scheme, relying on	 (7),

prcvioes us with such a possibility.

ke stipulate that every aerivative 	
fX1	

be approxi-naten

by using points	 which lie on the same sine of t as C,	 ana

that every derivative	 f	 be approximated by using points
which lie on the same Aide of E as b.	 by so doing, not only
we relate each characteristic with information which is found on

- 7 -



D13cretization

the same side of A from which the characteristic 	 proceels,	 but

we welgn such informa ton witn factors which , ontain a 1 and 12 so
that the contribution of points located too far outside the	 phy-

sical dcmain of dependence is minimized.

A one-level scheme which defines

(f -f )/ax	 (a <0)
F t	 i

f xi =	 ( t3)

is Uordon's scheme (1), accurate to the first order. 	 To obtain a

scheme with second-order accuracy, we consider two levels, in a

manner very similar to MacCormack's.	 He must, however, introduce

more points, as 'n Fig. 3. 	 At the predictor level, we define

( f F -f g )/AX	 (k <0)

fxi =	 ( t4)

At the corrector level, we define

(-2f A + 3f N -f P )/AX	 (ai<0)

f	 =	 (15)
X1

(fA-fM) /ex 	 (X >0)

It is easy to see that, if any function 	 f	 is updated as

T = f + f T a T	 (16)

at the predictor level, with the T-derivatives defined as in (7)

and the X-derivatives defined as in (14), and as

NT + AT). = 2(f + ? + ?' T AT)	 (17)

-a-



	

Discretization	 ORIGINAL PA,,

at the corrector level, witn the T- derivatives defined again as

In (7) and the	 X-derivatives Defined as in (15), the value of	 f
at T ♦ al	 is obtained with second order accuracy.	 The	 Up.atlng

T

M	 A	 N	 P
0	 0	 0	 0-	 0 ----

AT

0	 0	 0	 0-	 0

G	 D	 E	 F	 x

Fig. 3

rules (16) and (17) are the same as in the uacCcrmack scheme.

4. Adcitic %1 : emarfs A" 3 ' black Ilia' simle

	

In the simple examples above, 	 the computational	 grid

coincides	 with	 the	 physical grid, which is fixed. 	 The charac-

teristics are the physical characteristics of the flow. 	 For ex-

ample, in the unsteady case, the domains of dependence are relat-

ed to	 the	 simple	 concept	 of	 subsonic	 flow	 (for	 u)u,	 u<a,

a 1 <O,a 2 >0) 	 and	 supersonic	 flow (u>a, a t >O,a
2
>0); similarly, in

the case	 u<0.	 Tne system (1), however, a. well as (7), is 	 much

more	 general.	 The	 computational grid, in the (X, T) plane, is

fixed but its counterpart in the physical plane generally varies

witn	 T.	 Tne discussion of the domain of dependence is carried

on and the slope of the characteristics	 is determined	 in	 the

(X,T) plane, with reference to the fixed grid. 	 Therefore, it may

happen that a flow which is physically supersonic has to be con-

sidered	 as 'subsonic' in the computation. (Fig. 4); conversely, a

physically subsonic flow may have to be considered as	 'superson-

Jc' in the computation (Fig. 5).

	We conclude our analysis of the	 a- scheme by showing	 (in
Fig.	 6) an	 example of a FORTRAN subroutine to compute the 	 X-

- 9 -
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o	 0

COMPUTATIONAL PHYSICAL

Ao

\B
 0—^

PHYSICAL

_4EI/
U---

COMPUTATIONAL

Additional teat-':;, e nd a 'black box' sample

Fig. 4

Fig. 5

derivatives according co the conventions outlined above.	 There,

LOOP=-1,	 + 1 '.n the predictor and corrector stage, respectively,

N	 cenotes	 the	 grid	 point	 location,	 LAP_(LOOP + 1)12,	 and

ALAM(1),	 ALAM(2)	 are	 -a t and a 2 , respectively.	 Special provi-

sions are made at N_1,2 and at N=NA, NC where	 NC	 is the last

grid	 point and	 NA=NC-1	 to account, in this case, for the pres-

ence of two rigid walls.

.5. 1,0&,eouation 21 energy

The equation of energy is conspicuously absent from our

analysis, so far.	 Indeed, written in terms of entropy, it simply
states Lile invariance of S on a particle path:

- 10 -
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the equation of energy

ORIGINAL J'A(,r, 16
()F' 

E X)1? QUALITY

l-1
N CL-N-L(x?P
LX -LAP+I
LX1-3-Lx
NO-N-LOOP
N1-N+LOOP
N2-NI+LOOP
PN-P (N)
UN -U (N)
PNU-k'(NO)
UNO w U (NU)
PNI -P(N1)
UNI-U(N1)
PN2-P(N.)
UN -U ON Z)
IF(N'CL.NE.- 2. AND. N'PL.NE.NA)GO TO 9
PN2-3.*(VN1-PN)+PNJ

UN2wj.*(UN1-UN)+UHJ
9 1F (AL,%`I(LX) .LT.QICO TO 1

IF(NTL.CC.1.OR.NTL.EQ.-NC)GO TC 3
PX(LX)-(P(:-PNJ)*DDXJ
UX(LX) a (UN-UN0 *CDXJ
IF(NTL.LQ.-1.3R.NTL.EQ.NC )GO TO 7
IF(ALAC1(LX11.LT.U.)G0 :0 7
LSAV n LX
LX-LX1
LX1-LSAV

1 1-LX*LAI'
3 PX(LX)-(-2.*PN~ 3.*VNI -PN2)*DDXD
UX(LX)-(-2.*UN*3.*UN1-UN2)*D3XD
IF (I .EQ.21 RETURN

7 PX(LX1) n PX(LX)
UX(Lxl)-UX(LX)
RETURN

k-

Fig. b

DS/Dt=O
	

(1d)

where	 t	 is real time	 (in the two simple examples 	 above,	 (ib)

becomes

S,r ^	 5 x _0	 ( 19 )

and

ST + 06 x _0	 (20)

respectively).

At each integration step, the other equations of motion

can	 and	 should be integrated independently of (16); the latter,

in turn, should be integrated by approximating the	 X-derivative

of	 0	 in such a way that information is never carried b3cmwar^ds
on a particle path 1113. 	 Ubviously, the rules for the approxima-

tion	 of 
6x	

are different from the rules for , the approximation

- 1 1 -
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The equation of energy

of PX,uX, °X, and any conceptual or coding mixup should be care-
fully avoideu. Tne only interaction between entropy and the oth-

er dependent variables of a flow problem occurs via the value of

a 2 	in	 unsteady	 t'lows (see(2)) or a 2 ,u 2 ,rc in steady flows	 (see

(j)) since, in general,

a 2 = Y expL(Y-1)P/Y + S/ Y )	 (21)

and, for steady flows,

	

q2 = ' 2	 2-a2)
Y-1	 0

where a is the stagnation speed of sound, and q	 is the modulus

of the velocity.

sa. i<xtension " multiQimensional problems.	 Unsteady flows

Let us consider now a problem with two space-like vari-

ables, X and Y. The typical unsteady flow is describea by the

equations:

P T
 + a11PX + a12uX + b11YY + b12vY + g11uY + g12vX . c

1 = 0

u 
	 + a 21 P X + a 22 u X + h 21 P Y + h 22 v Y + d 2 

u 
Y	 + g22vX + C

2 = 0 (2.))-

y r + h31PX + .`. 32 u X 
+ b21PY + b

22 v - 
+ 831uY + d

; v X	+ C 3 = 0

The zimplest possiule casa of unsteady flow 	 is obtained

it' the gas is perfect, the frame of reference is fixed and Carte-

sian, ana no stretching of coordinates is used. 	 In	 that	 case,

(?j) become

PT + uP X + vP Y + YU + YvY=0

u	 + uu	 • vu	 . (a 2 /Y)P =t)	 (^LLl

(22)



Extension to multidimensiona l problems.	 Unsteadj flows

t NIGINAI, k'AGK I 
OF P( X )R of \ I i.1.Y

we see that not only the c	 terms but also tt:e terms affected	 'Yi	 "
the coefficients g	 and	 n	 depend on the choice Of the compu-

tational K-_d.	 Lor i 	well-chîsen grid, we expect suet, 	 terms	 to

play a minor role	 in	 the computation.	 Most of the regaining

terms can be arranged	 in two matrices,	 one formed with A-

..erivatives	 of P and u, the other with Y-derivatives of P and v.

Two terms are left out, d 
2 
u Y and d 3 v X , wtlich, as % een from	 (24),

ar- pnysically relevant.

We will now rearrange the equations (23) in two sets, one

essentially related	 to	 X	 and the other essentially related to

Y:

X
P T
 + a11PX + a1^uX + g11uY + c 1

 20

(25)
lu  + a 21 P X 

+ a22uX + d 2 
u Y + h 2 P Y + c2:0

and

Y
Pr 

♦ 
b11PY + b12vY 

♦ g12JX 0	 (2b)

IV
T	 21 Y	 22 Y

+ b 	P	 + b	 v	 + d 
3 X

v	 + h, P 
X 

+ C3s0
-3

The meaning of PX and PT is simply that P T , in (23), is intended

toY be obtained as the sum of two separate contributions, P T and

P T ; ;nerefore, if the first of (25) and the first of (2b) are ad-

deO together, one obtains the first of (23) again. 	 The distribu-

tion of the terms, 0;	 u , g 22 v X and c 	 the first of	 (25)
and	 the first of (2bls arbitrary, but the arbitrariness is ir-

relevant, as we will see socn.

Both (25) and (2b) show a strong resemblance to (1), par-

ticularly if we rewrite them in the form

°i + a 11 P X + a
12

u X + C^ c 0

X	 (27)

1 uT > a21PX * a22uX + C
2 = 0

- 13 -
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and

PT + + + C b 11 P Y
b12vY

+
+  + 0

v T b21PY
b 22 C 2

^k

with

X

C1=811uY + c1

Y

C I g12vx

C X ad u . h P + c
1	 2 Y	 2 Y

Y
C 2 =d 3 v X + h 

3 
P X .f c

:nerefor=, we can proceed as in Section 2

(26), separately, to obtain two sets of equations

+ A111P
A2i2PX2

+ D12 (A2uX2 - a luA1 ) + C1

l

P

u x

xi -
=0

+ 02 1 (a2PX2 - a 1P X1 ) + k 1 X 2 u X2 + CL .0
T -A 2 a 1 xi

and

I

P	 I
T	 1	 Y1
Y + B X P 	 -B 

2 
a 

2
2P 

Y2 
+ DY

12 
(X 

2
Yv 

Y	 1
2-X1 

Y	 1
V 1) + C1=0

V
T
 + D2 1 (), 2P Y2 - I P Y1 ) + B 1 4 Y V 2-B 2 XY V 1 + C2=0

where

X
%+Ya b

22 1 _22_1

Ai

_
B1

-

a	 -a a -a
2 1 2 1

a	 b
X	 _ij_	 Y 

	
ii

D i,j	 iX- X X	 Di,j	 iY- XY

2	 1	 2	 1

(30)

( 31 )

( 32 )

- 1 4 -
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Extension to multidimenalonal problems. 	 Unsteady flows

r

and	 Ai,Ai are solutions of equations similar to (9):

X	 Y

+ 11 -A 1 	a21	 b11 A l 	 b21

s0

	

_ x	 _ Y

a 12	 a22 A l	 b12	 b21 Al

in d13cretizing (30) and (31), we will	 use	 the	 same
stated in Section 4.

=0	 (33)

rules	 ss

We turn our attention now to the discretlzation of the X-

and	 Y- der i 	Yvatives 	in	 (29).	 The most important terms, u	 in C 

ana v X in C 22 , shoula be diacretized recalling that they come	 from

Lagrangian	 derivatives	 in momentum equations.	 Therefore, it

seems proper to discretize them the sate way the entropy 	 deriva-

tives are approximated in the energy equation.	 specifically, the

sign of d 3	must be tested; then, at the predictor level,

(v
F - 

v G )i eA	 (d3<0 )

vX=	 (34)

(2v C 3v p - v G )/AX	 (d3>0)

and, at the corrector level,

(-2v A • 3v N -v P )/AX	 (d3<0)

vX=	 (35)

(v A -v `t )/AX	 (d3>0)

Similar formulas are used for u 
	

with reference to the	 sign of

d 2	1'he same apprpximations can be used for ttic aerivatives ap-
pearing in l; 1 and C

11
1

((
.	 he recall that trey are affected by 	 coef-

ficients which	 should	 be	 small;	 therefore, any approximation

should serve the purpose.	 For the same reason, any approximation

to	 P
X
 ana P Y appearing in the grid corrective terns in 0 X and CZ

should work.	 Cne can cnocse to use centerea aifferences or a

- 15 -
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MaeCormac g -type of alternating backward and forward differences.

Once P T and P Yr have been evaluated, P T ma y be obtained as

	

X	 Y
P:P	

` P
T	 r	 r

Jbvtously, the same result is obtained uy coding P T in one single

equation:

P	 + A A 
X 
P	 -AX X P	 + b a Y 	 -b X Y P	 +

T	 1 1 X1	 2 2 X2	 1 1 Y1	 2 2 Y2

37X	 X	 X	 Y	 Y	 Y	 ()
♦ D 12 ( a 2 u X2 - a I u X1 ) ♦ D 12 ( A 2 v Y2 - a I v Y1 ) + C1_0

This shows that the scheme does not belong to the class of frac-

tional step schemes [12,13]. 	 The initial separation of the equa-

tions was introduced to allow two 	 independent	 sets of charac-

teristics to be defined, one in the (X, T) plane and the other in

the (Y, r) plane.	 Attempts of the late fifties and early sixties

to define aru use an optimal set of three-dimensional cha-ac-

teristics proved to be cumbersome, difficult 	 to	 apply	 and,	 at

times, u:ztable or inaccurate. The present approach may not be

appealing from a formal viewpoint but it fulfills the purpose of

defining the domain of dependence of the point to be evaluated as

far as pressure and any other variable having the same domain of

dependence as the pressure are concerned.

I. Three- dimensional, head y , supersonic flows

Three-dimensional,	 steady,	 supersonic	 flows must	 be

treated	 in a different way, although the basic concepts remain

unaltered.	 This is because the physical nature of the three	 in-

dependent variables is the same, despite one playing a time-line

role.	 We begin by observing that, after introducing two angular

variables,	 a	 and n, defining the direction of the velocity vec-

tor, the hauler equations can be written in the matrix form:

(30)



Three-simensional, steady, supersonic t'lo:.s

b
12

b22

0

sys

where

P	 a	 a
11	 12

f= ° , A = a, 
1 

a._
1	 c2

L	 a st	 0

we can split the system

a	 o
1^	 11

0	 8 z oG 
t

a G2	 bjt

(3b) into two

b	 0
1j

0	 as c 2 ,k = k2(39)

b	 c_	 K_
22

terns:

x
P T
 + a11Px + a

,2% . a 13 n x + c 1 	0

o x + a P + a o	 + c- k P x	 0
T	 21 x	 22 X	 2	 2 T

n  + a P	 + a n	 + c- k P x = 0_
T	 j1 x	 22 X	 3	 T

and

P,YY + b 11 P Y + b12 	
+ b13nY	

= 0

°Y + b	 P	 + b °	 - k P  = 0
T	 21	 Y	 22 Y	 2 T

Y
n Y	+	 b pi P Y	+ be2 n Y -

 
k
3 P T

= 0

so that, if each equation (40) i s added	 to	 its	 counterpart	 in
(41), (36) is obtained again, provided tnat

P _ P  + 
P 	 X	 Y	 X	 Y	

42
T	 T	 T	 °T	 °T + °

T	nT = nT + n 	 ()

For each new system two values of a can be found, defined by

( a i) 2 — (a
lt +a 22 +a 13 k 3 +a 12 k 2 )x i +(a 11 a 12 a lj a jl a 12 a 2'; )-U	 (43)

and

2
(ai)-(b11+b22+b13K3+b12k2)11+(b11b22-b13b31-b12b21) 0

	 (44)

respectively, and a third value, defined by

	

A x =a	 (45)
3 22

- 17 -
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Three-dimensional, steady, supersonic flows

ar.a

Y
A x 
3 22

respectively.	 The direction defined by a_	 plays the role of a

streamline	 in	 (X,r, plane or the (Y,f) plane. 	 ton-trivial sets

of multipliers can be found in connection with each of the a i to

build two sets of compatibility equations. 	 Specifically,

u X	 _ a	 _i X 	 u	 _ b -iY

11	 22	 1	 it	 22	 i
X	 Y

u i2 = -a 12
	 ui2 = -b

12	 (u7)

X	 Y

ui3 
= -a 13	

W 1
	 -b13

for i=1,2, and

X	 Y

u 31
=0	

u31
=0

X	 Y
U=- (a	 + k a	 )	 u--(b	 + k b	 )
32	 31	 _I22	 j2-	 j1	 3 22

X	 Y
u	 =a	 + k a	 u	 =b	 + k b
33	 21	 2 22	 33	 21	 2 22

The compatibility equations, ir. which we write 	 f xi and	
fYi

steaa of f  and f 	 (see Section 2), are

a X (PT + X x P Xt ) - a 12 ( a x + ax a Xl )- a 13 ( n x + a x n Xl ) + LuX^c3=0

-ax(Px + a x P	 )-a	 (a x +	 x 	 )-a	 (n x + a x  	 ) + Lux	
j
c=0

,jT	 2 X2	 12 T	 2 X2	 13 T	 2 X2	 2

-6 X (PT +a 22 P x3 )+uj 2 (o x +a 22 a x3 )+u3 3 (nT +a L2 n x3 ) + Lu3^c 03=

where

(4b)

(4tl)

in-

(u9)

X	 X
a_u 11 -u t2 k 2 -u

13 k^	
'	 6 =aG1kj a31k2

Similar equations can be written with respect	 to	 Y.

(50)

From the

- 10 -



lcree-dimensional, ateaay, supersonic flows

first two equations (49) we get one equation for PjX:

20
X P X

 + a X (a X P	 + x X P	 )-a	 ( aXa	 - aX0	 )-	 (51)
T	 1 X 1	 2 X2	 12	 1 X1	 2 X2

-3 13 (7► xn Xi - azn X2 ) . (a2-4x)c1.0

X
and another equation for the unknown t

-2s x + 
aX(i 1 P X1 -a

2 P X2 ) 
a12(XxaXt + 4

x a X2 )-	 (52)

	

-a	 (X x n	 + ax 	 ) + L(uX
	
+x )c :0

13	 1 X1	 2 X2	 1	 2,)	 j

where

mX-a12aT + a13nT	
(5^)

Finally, considering PT as aefined by (51), 	 the	 third	 of	 (49)

yields

WX
- dX(P 

T	 22 X3
X ♦ a	 P	 ) + uX 

32 
a 
22 

o
X j 

♦ v
33 2
X a, 

2 
n
X3 

+ Lu 
s,)
X C 

i
=0	 (54)

where

40	
u32GT + P3 n,	

(55)

and a X , nT can be obtained by solving the system (53),(55).	 Une

should	 proceed in a similar way for tine second set (41) and tnen

apply (42) to get PT 
a 	

and nT.

The rules for discretization arP the same as outlined 	 in
Section 3.	 The	 f	 and f	 approximations coincide with f 	 and

f	 if the signs oi 3 7^	 and Ya A	 coincide;	 otherwise,	 tneyXlwill

coincide with f X2 ane^f Y2 .	 j

In the simple case of Cartesian coordinates with no

- 19 -



X 32 	 2	 2	 c	 112
B = 2 [w (1 + o )/a

w

2

d Y =A- [w 2 (1 + n2)/a2-1]1/2

w

(56)

(55)

Y	 Y
u	 =n -a
11	 i

11 Y 20
i2

11is K

X	 X
u	 =0-a
11	 1

ui2=-y/K

11i3=0

Three-dimensional, steady, supersonic flows

stretcning,

a	 =o /K,	 a	 sy/K ,a	 =0
11	 12	 13

a21 a
2 /y w 2 ,a 22 o,	

a23 
0, k 2 a L a1

a31-0,	
a32 0 p a33 

0, k3 
a21n

b 11 2n / K f	 b12 0 , b13=y/K.

b2tto,	
b22

=n , b23=0, k2:aG1a

b	 =a	 ,	 b	 =0 , b_ =n, k_=a	 n
31	 21	 32	 j3	 1	 21

and'all c 1 = 0.	 Then,

( ^ 6 )

(57)

for i=1,2, and

X
u^1=0

X
is	 = -a	 no
}c	 21

113 3 	a21(a2 + 1)

so tnat

Y
1131=0

Y2
=-a21 	 + 1)

113 3 = aZina

(60)

- 20 -
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Tnree-dimensional, steady, svpers,.nf	 flows

o x : a x /c	 CL Y s a Y /c	 (61)

i x 	 ro1/K	 tY z Yn YT /rc	 (62)

Z	 2
W x=^- l( oZ . 1)n x -o no X). R Y = A— ^onn X -(n 2 . 1)o Y)

Yw.2	
T	 T	 Tw2	 T	 T	

(03)

All complications appearing in the general formulation

above depend on the geometry of the computational grid and should

not be relevant from a physical viewpoint.

A. Tests s= results

Some examples should make clear the ability of the scheme

to	 represent difficult transonic flows. 	 we will begin with two

one-dimensional cases, one of which is	 ' + nsteady and	 the other
steady and supersonic.

AL PAGE I;
PWR QUALITY

I	 ^	 I

I	 i	 I

- C-+- ^^ - - ^-4- -	 x
I

I	 I
'	 I	 I

Fig. 7

The first example is illustrated	 in Fig. b, wnich	 sn;;ws

the Mach. number distribution over a stretch of an infinite duct

having a variable cross-section (Fig. 7). 	 in the portion of the

pipe considered	 in the figure the flow, wnich started from rest

and passed through an unsteady evolution, has already reached a

steady state.	 A shock was originated and moved to a final steady

position.	 The calculation used to get Fig. 8 has no	 provision

- 21 -
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rests and results

Fig. b

for	 fitting a shock;	 therefore	 the	 flow	 is	 homentropie.

Nevertheless, the results are surprisingly close to the results

obtained using a shock-fitting technique (Fig. 9) which, in turn,

coincide with the close-form solution of a steady, quasi-one-

dimensional flow.	 A single figure cannot provide too many ae-

tails;	 a more minute analysis can be found in (10) where the en-

tire range of Mach numbers is explored and the unsteady evolution

leading to the asymptotic steady state it analyzed. 	 I would like
to warn the reader against concluding, fro g a glance to Fig.	 b,

that	 the	 A-scheme has shock-capturing virtues; such a feat is

made impossible by the inability of the scneme to provide entropy

jumps. It is undoubtedly true, however, that the scheme remains

stable and accurate under very exacting transonic circumstances,

even when the computational mesh is very coarse; in Fig. 10

asymptotic results obtainea with the mesh of Fig. C and	 a much

coarser mesh are shown, ana no deterioration can be observed.

The second example is illustrated in Fig. 11, which shows

the Mach number distribution in a channel opening into vacuum.

- 22 -
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Tests ani results

Fig. 9

The flow at the channel inlet is uniform; its Mach number equals

1.04.	 Tae	 calculation [14] is performed advancing on a grid of

which Fig. 12 shows typical l.nes.	 On each grid	 line crossing

the channel, 21 points are considered.	 In this case, the accura-

cy of the scheme and itz ability to handle difficult 	 situations

is demonstrated	 by the	 perfect splitting of the computed flow

into two regions, a simple wave adjacent to the lower wall and	 a

source-like pattern in the re,	 of the channel.	 Such a splitting
is due to the fact that no down-running characteristic can reach

the lower wall. In Fig. 11, line AL is the first significant

down.-running characteristic.

An impressive example of the ability of the scheme to

handle two-dimensional, unsteady flows is shown in Fig. 13. In

it, we see the steady snocic-and-isobars pattern reached asymptot-

ically about	 an zDlated blunt body via an unsteady calculation.

The free stream Mach number	 is	 12.	 The	 computational grid

(wrapped around the bony by conformal mapping L15]) has 30 inter-
vals along the body and 1 5 intervals between body and snook. 	 In

- 2: -
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Tests and results

"1

Fig. 10

the figure, in addition to isobars, two sonic lines are shown. 	 A

thin suhsonic	 layer appears in the concaviLy of the body.	 The

bow mock shape matenes the one obtained experimentally [1oj.

	

Finally, an example is given of the application of 	 the

technique to three-dimensional,	 heady, supersonic flows.	 In

Fig. 14 the bow shock and the isobar pattern about	 an elliptic

cone,	 with a 14:1 axis ratio acid a leading edge angle of 20 0 are
shown. The free stream Mach number is 2 and the angle of attack

is equal to 5 0 . Despite the coarseness of the computational mesh

(24 intervals around the body anu 12 between body and bow shock)

the pressure distribution on the body is remarkably accurate, as

shown in Fig. 15. The results are part of an extensive series of

tests involving vehicle shapes of increasing complexity, to be

publishad in the near future.

24 -
1)
	 1'J l5

OldOIN AL ll ALyI,Y
P(Mit

k



Q

^o

i

P
A
G
E
 
L
S

- - - .-m
ss

-
 2

5
 -

k
_



NO
O

+
d

La.

-
 
2
6
 -



MQ
O

.y

-
 
2
7
 -



0

z_~o^
^^ z

J O
u

L
)a

O
J

2
N

U
 -

r
-e
o

..fir

0

a
^

m
t

N

o
f
 
i
	

O
	

I
^.	

O
	

-
	

N
K

'f 	
N

I 	
I 	

aU

P
 A

vg'• ^^
O

,itw
jh A

t,	
,l r'Y



rests and results

A knowlelgments

The research descrit , d in the p-esent paper waz undertak-

en	 as a necessary background for a host of different applica-

tions.	 Some of these are sponsored by the NASA Langley Research

Center,	 hampton,	 Virginia, under Grant No. NSG 1246, and others
by the Army Research Office, under Grant No. 	 DAAG 29-77••G-0072,

Project N0.	 P14369-6 and by the Cffice of Naval Research, under

Contract No. N00014 -75-C-0511, Project No. NR 061-135.

The typing of the Report is our first attempt to a fully

computerized processing of the original manuscript, which I keyed

directly into a minicomputer and successively edited using a Tek-

tronix 4000-1 terminal.	 The printer is a Diablo 1620-2. the su---

cess of the attempt is the result of the intelligent and dedicat-

ed	 labor of two undergraduate students, David Shmoys ani Fred

Richter, to whom I am pleased to extend a warm word of tharks.

All computational work, including the processing of the

examples reported above,	 has been performed on a minicomputer,

the PD? 11-40. Miss Catherine Fahy has proaigated her skill2 to

assure a smooth and efficient operation of a large number of

oversized programs on a machine having a maximum of 32000 aa-
dressable words and no virtual memory.

ORIGINAL PAGE 15
,F POOR (JUAL[TY

- 29 -


	GeneralDisclaimer.pdf
	0001A02.pdf
	0001A03.pdf
	0001A04.pdf
	0001A05.pdf
	0001A06.pdf
	0001A07.pdf
	0001A08.pdf
	0001A09.pdf
	0001A10.pdf
	0001A11.pdf
	0001A12.pdf
	0001A13.pdf
	0001A14.pdf
	0001B01.pdf
	0001B02.pdf
	0001B03.pdf
	0001B04.pdf
	0001B05.pdf
	0001B06.pdf
	0001B07.pdf
	0001B08.pdf
	0001B09.pdf
	0001B10.pdf
	0001B11.pdf
	0001B12.pdf
	0001B13.pdf
	0001B14.pdf
	0001C01.pdf
	0001C02.pdf
	0001C03.pdf
	0001C04.pdf
	0001C05.pdf
	0001C06.pdf

