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FOREWORD

This report is submitted by the Space Systems Group of Rockwell

International Corporation to the National Aeronautics and Space Adminis-

tration, Ames Research Center, in accordance with the requirements of

Contract NAS2-9726. The work was administered by the Project Technology

Branch of the Space Projects Division, with Dr. Craig McCreight as

Technical Monitor.

The program was performed under the direction of J. P. Wright,

Program Manager. Technical and laboratory assistance was provided by

W. S. Robins, C. D. Rosen, and A. L. Striepens. Fabrication of the

rotating joint was provided under subcontract by the Rudolph E. Krueger

Company of Newport Beach, California.
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SUMMARY

The objective of this program was to develop and demonstrate the perform-

ance of two critical technology components required for a continuously rotatable

heat pipe: (1) a low-leakage rotatable coupling for the heat pipe pressure

vessel, and (2) a rotatable internal wick. Performance and leakage requirements

were established based on 12 months operation of a cryogenic rotatable heat pipe

on a satellite in earth orbit.

ROTATABLE JOINT DEVELOPMENT

A rotatable joint test fixture was designed and built to simulate the

rotating section of a cryogenic heat pipe pressure vessel. The joint consisted

of a 1.27 cm I.D. by 24 cm long tube with a 7.3 cm diameter housing in the

center which contained the dynamic seal compone --s and the static close-out

seal. All major components of the housing were made from 17-4 PH stainless

steel to minimize differential thermal contraction at cryogenic temperature.

The 17-4 steel was selected based on machinability, strength, and conduciveness

to plating and polishing.

A schematic of the rotatable joint fixture is shown in Section 2.0

(Figure 2-2). Details of the design are shown in the assembly drawing

(Figure 2-3).

The rotating shaft is mounted on ball-bearing assemblies at two locations.

The shaft has an outside diameter of 1.6 cm, which is hard chrome-plated and

polished in the region of the dynamic seal. The dynamic seal is a 1.6 cm

diameter ring with a cross-section as shown in Section 2.0 (Figure 2-2). The

seal is forced against the rotating shaft and a diaphragm washer by a spring-

loaded wedge ring. The wedge ring and seal are beveled at the point of contact

so that the spring force is distributed against the two sealing surfaces.

Several candidate seal materials were considered including pure TFE Teflonl,

TFE Teflon with 12-15% carbon graphite, KEL-F 2 , Vespe1 2 , lead, and gold. These

1 Tradename—G.I. Dupon De Nemours Company
2Tradename-3M Company
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were evaluated in terms of hardness. ductility, strength, permeability, and

coefficient of friction both at ambient and cryogenic temperatures. Kel-F was

found to have the beat combination of mechanical properties, although none of

the material s were good in every respect. Vespel and graphite -impregnated

Teflon were selected as alternates, although the limited scope of this effort

permitted testing of only one seal material. tither materials were, however,

evaluated and tested under independent research and development efforts at

Rockwell. Essential results of this additional effort are reported herein

along with the results of the test phase of this program.

Performance testing of the rotating joint was conducted under vacuum

conditions at ambient and cryogenic temperatures. Leakage rates were measured

as a function of internal pressure, both statically and at a rotational rate

of 4 rev /hr. Leakage measurements were made prior to and after a 10,000-cycle

wear-in. Prior to wear-in, the static helium teakage rate at ambient tempera-

ture and 0 . 4 Mpa pressure was 1.5x 10- 3 sccs. After wear-in, the leakage rate

increased significantly to 1.7 X10 secs. Inspection revealed that the Kel-F

had worn excessively. After repolishing the shaft, testing was repeated on a

spare Kel-F seal. This time, the wear-in was limited to 42 cycles at 4 rev/hr.

Both static and dynamic leakage rates were lower prior to wear-in and after

20 cycles, but increased by more than an order of magnitude after 42 cycles.

Inspection again showed excessive wear on the Kel-F seal.

Independent tests were run on a graphite - impregnated seal, using the same

test fixture. Prior to wear-in, the static and dyanamic leakage rate at 0.1 Mpa

pressure and ambient temperature was 3.6x 10-3 sees. After a 400-cycle wear-in,

the static leakage rate reduced to 5 \10 -5 sccs. At cryogenic temperature ( 115 K).

the static and dyanamic leakage rates at 0.4 Mpa were 2.6X10 ` sccti and `1.65x10-''

secs, respectively. The higher values at cryogenic temperatures may be due>, to

increased hardness or elastic modulus of the Teflon/graphite.

The Teflon /graphite seal showed lower torque values compared to the

Kel-F (0.1 N-m versus 0 . 6 N-m).

ROTATABLE. WICK DEVELOPMENT

t

1

I

A 0.64 diameter by 12 em long rotatable wick was designed, fabricated, and

functionally tested. The rotating wick assembly, shown in Section 3.0 (Figure

3-7) consists of two sections of tubular screen wick which are joined at the

!
!r -2-
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rotational interface with a two-piece nylon sleeve-type bearing. The wick was

a spiral multiwrap composite, consisting of an inner core of 54-mesh screen

spirally wrapped over a small mandril and encapsulated by a single layer of

200-mesh screen. The nylon bearing aligns the two wicks and maintains them

in proximity such that the interface gap is less than 0.025 cm wide-. This

controlled-width gap assures that the wick will self-prime in a 1-g field. The

nylon bearing provides a smooth low-friction rotational -surface; the sleeve

bearing clearance is small enough (<0.005 cm) to provide at least the same

capillary pumping pressure as the 200-mesh outer screen layer. The nylon

bearings are also designed to support the wick concentrically within a heat

pipe while allowing space for vapor transport.

Two types of functional tests were performed on the rotating wick assembly.

First, a bubble pressure test was performed by submerging the wick slightly in a

methanol bath and pressurizing the inside wick volume with gaseous nitrogen. The

wick held a pressure of 6.6 cm of water. which corresponds to 96 percent of theor-

etical for 200-mesh screen. The maximum bubble pressure was not affected by

rotation of the wick.

The second test was a self-priming test to determine whether the wick

would prime across the rotating interface in a horizontal positon. The test

was conducted with the wick assembly on a scale so that the absorbed liquid

volume could be measured. Priming of the entire wick was observed, with total

priming occurring in approximately two minutes. The absorbed liquid volume

agreed with the theoretical fill within 10 percent.

CONCLUSIONS

The essential components of a continuously rotatable heat pipe have been

developed, although the leakage rates achieved were higher than the 10- 6 secs

design goal. The graphite-impregnated TFE Teflon was superior to Kel-F as a

seal material in all respects (leakage, torque, and wear-resistance). The

rotatable wick joint functioned successfully in terms of capillary pressure,

continuity across the interface, and 1-g self-priming.

In conclusion, the feasibility of a cryogenic rotatable heat pipe for

long-term space operation hinges:, on reducing leakage rates to an acceptable

level. For some heat pipe working fluids, the leakage values achieved may

-3-
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well be acceptable for operation up to one year or even longer. A.i.iicional

testing and development with Teflon/graphite seals is recommended. After

acceptable leakage level-, have been achieved, fabrication and testing of a

rotatable heat pipe based on this rotatable joint and wick technology is also

recommended.

-4-
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1.0 INTRODUCTION

This report summarises the results of Contract NAS2-9726, Lsevelojwk>nt of

a Cryogenic Rotating Neat Pipe Joint. The period of performance for the pro-

gram was from November, 1977, through September, 1978.

BACKGROUND

Flexible cryogenic heat pipes capable of tran»porting heat across movable

interfaces have been developed (Reference 1). Flexible couplings provide effi-

cient heat transfer across hinged joints, such as in a deployable radiator, or

across continuously articulating; joints such as in a scanning radiometer. There

exists, however, a claws of applications which require continuous: rotation in

one direction. Such motion may be required with limb atmospheric scanning rad-

iometers, or with earth or stellar gazing radiometers which must be trained in

a particular direction. Other payload subsystems, such as solar arrays or com-

munications antennas, must be pointed in a different direction and maintained

there as the spacecraft and orbit precess. To accommodate this type of motion,

a heat pipe with a continuously rotatable coupling is required. The rotation

in this case is an axial rotation of one end of the heat pipe with respect to

the stationary end, and thus require.4 dynamic :slip seal couplings for both the

heat pipe container and wick.

RF.QUIRF.1•iINTS	 jC
+7

The one-year life translates into a standard helium leak rate requirement
of roughly 10-3 to 10-6 atm-cc/sec (secs), depending on the heat pipe operating
temperature, working; fluid, wick design, and allowable excess fluid volume. 	 ^r

r;r

Th. design goal leak rate for the rotatable joint was 10-d secs ut helium	 fr

at 77 K and at an Internal pressure of 0.4 M11a (58 psta) In a vacuum environ-

ment. The maximum rotational torque was 3-5 N-m under operating; conditions.
4'1

While leakage rates of this magnitude are achievable with :state-of-the-art
A

rotating; seals at ambient temperature, the concurrent requirements for ergs:,-

genic temperature operation and high internal pressure render this development 	 k`

a rather aggressive effort with respect to the state of the art. Requirements 	 s
for the wick. on the other hand, were felt to be less svvere and, conseyurntly,

the bulk of the effort was ievoted to devetopm, , tnt of the rotatable joint.

-S-t
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2.0 ROTATING JOINT DEVELOPMENT PROGRAM

The purpose of the rotating joint development program was to develop a

rotary joint test fixture which would simulate the rotating portion of a

rotary heat pipe excluding the wick. Requirements for the joint were defined

at the outset of the program based on a heat pipe operating on an orbiting

satellite for at least one year. The most critical part of the fixture

is the seal itself. A number of seal design concepts as well as material

combinations were analytically evaluated. Because of the limited scope of

this program, only a single joint and seal material were tested under this

contract. The following sections discuss the requirements, design concepts,

materials evaluation, the rotating joint design and fabrication, and the test

program and results.

REQUIREMENTS

The primary design requirements for a rotating heat pipe joint include

leakage, pressure containment, rotational speed and torque, operational life,

and materials compatibility between the seal, the container, the working fluid

and the wick. The joint was not designed for any specific working fluid or

temperature, but rather for any fluid in the range of 77 K to 300 K. Typical

heat pipe working fluids in that range include nitrogen, oxygen, methane,

ethane, ammonia, and water. A summary of the design requirements specified

for this development program are summarized in Table 2-1.

The essential requirement for the joint, of course, is leakage. Since

heat pipe performance is generally very sensitive to fluid charge, the allow-

able leakage must be sufficiently small such that at the end of the operational

life, there is still enough fluid to completely saturate the wick with liquid

and the remainder of the internal volume with vapor. This requires that there

initially be some excess fluid in the heat pipe. If the excess fluid occupies

a relatively large volume, a separate excess fluid reservoir would be required

to prevent the excess fluid from blocking off the condenser of the heat pipe.

For cryogenic heat pipes, a large amount of excess fluid will also significantly

PRECEDING PAGE BLANK NUT FILMM
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increase the internal pressure at ambient temperature. For these reasons, it

would be desirable to keep the excess fluid required to a minimum, which means

a low leak rate.

Table 2-1. Rotating Joint Performance Requirements

Parameter Value

Leakage (design goal) 1X10-6sces helium
Operating temperature 77 K to 300 K
Operating pressure 0.4 MPa at 77 K
Non-operating pressure 10.1 MPa at 293 K
Proof pressure 20.28 MPa
Burst pressure (min.) 40.55 MPa
Torque 3-5 N-m at 77 K
Rotational speed 4 rev/lir maximum
Life (design goal) 1 year

Assuming laminar flow through the leakage path, for a given leakage of

liquid in one year, the required leak rate in terms of helium under standard

conditions is given by

a 
1= 3.171X10-8 v (1. 

lie l ( pv

where.

L is the liquid loss per year (cm of liquid/year)

Q is the heliuct leak rate in atm-cc/sec (secs)

UV is the vapor viscosity at operating temperature

uHe is the viscosity of helium under standard conditions

P
is the ratio of the vapor-to-liquid density at operating
temperature

Pv is the vapor pressure (atm) at operating temperature

Assuming an allowable leakage of 1 cm  of liquid in one year under oper-

ating conditions, the required helium leak rate for various working fluids at

typical operating temperatures is shown in Table 2-2.

The design goal leakage rate of 1' 4 10-6 secs is below all of the required

rates shown in Table 2-1 except for nitrogen (0.9' 4 1O-6 secs). At ambient

temperature, however, the leakage rates for all of the fluids shown in

Table 2-2 (except water) will be greater according to the internal pressure

-8-
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Table 2-2. Helium Leakage Requirements for Various Fluids

F lu id
Temperature

(K)
Required Helium Leak Rate

(secs)

t4aLer 300 1.9x10-2

Ammonia 7.50 3.8x10-6
Ethane 170 3.2x10-"
Methane 110 7.3x10-5
Oxygen 90 2.8x10-6
Nitrogen 80 0.9x10-6

for each fluid. For cryogenic fluids, such as oxygen or nitrogen, the internal

pressure at ambient temperature may be up to 100 times greater than at operating

conditions. Storage at cryogenic temperature prior to assembly onto a satellite

would minimize the loss of fluid, but the pipe may still be exposed to ambient

temperature for several weeks or months prior to launch. One possible solution

would be to charge the heat pipe in situ on the experiment or satellite just

prior to launch. Although not specifically addressed in this program, the issue

of long-term ambient temperature storage for cryogenic heat pipes will ultimately

have to be evaluated.

DESIGN CONCEPTS

Literature and industry surveys were made to evaluate the various types

of space and industrial dynamic seal concepts for this application. While a

number of dynamic rotating seal concepts for industrial applications were found,

none were found that could meet all requirements for high pressure containment,

1I
w

r`

i
I

I

1
l

I

lil
I'

I
I

cryogenic temperature operation, and low leakage with helium gas. Conventional

0-ring type seals become hard and brittle at cryogen temperature. A fluid

swivel joint was developed by Vought Corporation for advanced Shuttle applica-

tions using Teflon 0-rings (Figure 2-1). While relatively low leakage levels

were achieved with Freon liquid, down to 145 K, it is doubtful that this concept

could contain a high pressure gas, particularly helium, with acceptable leakage

rates. With a liquid, leakage is reduced considerably compared to a gas due to

capillary surface tension of the liquid in the region of the leakage path.

Another concept would be to use standard 0-rings for the seal, and to

build in a large thermal resistance between the seal and the internal tube

wall such that the seal would remain at near ambient temperature. This concept

-9-
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was developed for a liquid helium flow circuit. Although leakage rates were

on the order of 1X10-6 sccs, the long thin-wall bayonet-type tubing required

to minimize the heat leak to the joint would not be suitable for high internal

pressure containment requirements.

Another concept which proved to be unsuitable for this application is a

ferromagnetic seal. While ideally suited for vacuum-type seals at ambient

temperature, ferromagnetic seals cannot be used with high internal pressures

or at cryogenic temperature due to the properties of the ferro fluid.

The selected concept involves the use of a soft ring-type seal which is

forced against two highly polished sealing surfaces by an internal or external

mechanical spring. This allows the shaft and seal housing to be designed for

high pressure containment with little distortion of the sealing surface due to

either pressure or differential thermal contraction. The use of a metallic

spring overcomes the problem of loss of resilience of the seal material at

cryogenic temperature. The actual seal design selected for development was

based on a design which was developed for the Saturn II J2-S engine;

oxidizer lines (Reference 2). Details of the rotary joint and seal design are

described below.

ROTABLE JOINT DESIGN

To adequately evaluate the cryogenic rotating heat pipe coupling concept,

a rotary joint test fixture was designed based on a 1.27-cm (0.5-in.) I.D.

heat pipe, and the requirements in Table 2-1. A schematic of the rotary joint

test fixture is shown in Figure 2-2. Details of the joint are shown in the

assembly drawing, Figure 2-3. The test fixture was designed to permit para-

metric testing of several seal materials under various conditions of tempera-

ture, pressure, rotational rate, and spring loading of the seal.

Rotary Joint Description

The overall envelope of the test fixture is 7.30 cm (2 975 in.) diameter

by 24.13 cm (9.50 in.) long and is basically determined by the heat pipe I.D.,

the support bearing spacing, and the working pressure. Minimizing heat trans-

fer to the joint from the environment during cryogenic testing was also con-

sidered. As shown in Figure 2-2, the test fixture comprises two main sections

-11-
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24.13

8.64 -

7.3 DIA L 1Q

'Dimensions in cm

lD SEAL HOUSING

Q ROTATING SHAFT

RETAINER CAP

THRUST BEARING

05 INSIDE BEARING

V DIAPHRAGM

0 SPRING SUPPORT

SEAL WEDGE

O DYNAMIC SEAL

10 STATIC SEAL

11 AN PORT

Figure 2-2. Rotating Dynamic Seal ('011.cile
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I Figure 2-3	 Assembly Drawing - Rotating Heat Pipe Joint
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—a stationary housing Ol with a port 11 through which helium gas is intro-

duced during testing, and a rotating shaft 
O 

which allows for evaluation of

the dynamic seal and rotational torque. The shaft and internal components are

secured by a retainer cap 
O 

which is bolted to the housing (Figure 2-3).

The type, number, and spacing of the bolts are determined by the pressure

requirement.

Two precision stainless-steel bearings 
O 

and OS are used to center and
guide the rotating shaft within the stationary housing and are retained by

associated support hardware. Leakage from the stationary housing and support

hardware is prevented by means of a Teflon-coated metallic static seal 0

which is typical of cryogenic space rated seals. Leakage around the rotating

shaft is prevented by a "Delta" seal O9 designed by the R. E. Krueger Company

and was selected specifically for this application. This type of seal concept

has been successfully used in cryogenic space-rated applications and provides

considerable design flexibility in sealing surface configuration and spring

loading capability.

To be completely effective, the dynamic seal must prevent leakage from

the vertical flat face of the diaphragm O as well as around the rotating

shaft. This is accomplished through the use of 16 small helical compression

springs which force a wedge ring 
O 

against the plastic seal and at an angle

such that a portion of the load is transmitted to the flat face and a portion

to the rotating shaft. Should the need arise, tie compression spring load,

as well as the angle at which the load is aplX ed to the seal, can be altered

to change leakage and/or torque. 	
^/""

For test purposes, the rotatable joint has been designed such that a

liquid nitrogen chill block can be secured to the outer diameter of the sta-

tionary housing to permit testing at temperatures as low as 80-100 K.

Materials and Surface Finish

With the exception of the dynamic shaft seal and bearings, the rotary

joint components are fabricated entirely of 17-4 stainless steel to minimize

problems associated with thermal contraction during cryogenic testing. This

A 41	 i	 d/	 latin o erations which arematerial is also con uc ve to app ng an or p	 g p

required on critical sealing surfaces. To provide an adequate sealing surface

,

Pit MENNG PAGE bLANX NOT HU-j"Eb
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for the static seal, the interfaces are machined to a 32 RMS finish as recom-

mended by the seal supplier. For the dynamic seal, the flat vertical seal

support face is hard chrome-plated and lapped flat to three helium light bands

and the shaft is lapped round, chrome -plated and polished to a waviness within

0.0002 cm/cm.

Leakage at the dynamic seal interface is minimized by insuring that the

shaft and its dynamic seal maintain contact during rotation. The concentricity

of the bearing support surfaces has been specified to be within 0.008 cm

(0.003 in.) TIR.

Pressure Containment

The rotary joint test fixture was designed for an ultimate burst pressure

>40.55 MPa (5880 psi) to provide it pressure safety factor greater than 4.0.

The joint is made from 17-4 steel (cond. H1150) which has the following prop-

erties:

Ks  MPa

12 11 862
100 690

9t1 621
79 545

2.85x10" 1.97X105

The calculated burst values and safety factors for the housing and

rotating shaft are shown in Table 2-3. The retainer cap was also .analyzed

for shear of the outer race of the thrust bearing on the inside lip of the

cap and for tensile load on the bolts. As shown (Table 2-3), the tensile

load on the bolts was the limiting case, with a safety factor of 5.4.

Table -3. Pressure Safety Factors

Ultimate tensile strength
Tensile yield strength
Compressive yield strength
Ultimate shear strength
Modulus of elasticity

I
1

.I:,. LocatIon
Stress

Conditions

III timate
Pressure Limit

FactorPsi Ml'a

1 Rotating shaft, thin-wall sceLimi Hoop 49,89.1 344 34
2 Housing,	 large-diameter section Hoop 45,833 316 31.3
3 Housing, small-diameter section Hoop 36,932 255 25.2

4 Retainer cap bolts Tensile 7 ,846 54.1 5.4

5 Retainer cap, inside lip Shear 49,360 340 33.7
6 Retainer cap, inside lip local comp. 20,923 144 14.3

1
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The dynamic seal is the most critical component of the rotary joint

assembly. Material properties of interest for the seal include hardneon ,

resistance to cold flaw, low coefficient of friction, oompatihility with

candidate heat Sipe fluids, and wear resistance.

Candidate Materials

The most feasible candidate materials for the rotating Joint seal include

pure TFI. carhon-impregnated TFts, Ket-F, Vespel, Kv.lar, and rarhon grophito.

Lead and gold were also identified as potential metallic seat materials that

could be plated on a mneltined metallic meal. Those materials worts evaluated
on the basis of physical proportion, past usage experienre,prrmeability, and

compatibility with potential hoot pipe fluids such am ammonia, othano, mrtltane,
oxygon, nit rogen, noon, and hydrogen. Cenrral considerationo such as seal

geometry, machinahl.lity, wear, crystallinity, etc., were also taken into con-

sideration.

Physical pru parties

A list of physieal propertios of candidate seal materials woo gathored

from :available literature and is tabulated in 'Table 2 -4. Coefficiont of

friction data were determined experimentally by the subeontraet or using than

test sot-up shown in Figure 2-4.

From past oxperienco, pure. TFh 'Teflon its known to cold - flow, h:adly oat a
functio .a oC time and is ,4omewhat difficult to machine. Fillod 'TFF: has leog

tondency to cold flaw. is easier to machine, and has higher physical proper-

ties depending upon the filler matortal.

in general, the physical proport too of Karl-F care texceptionallyBond for

this application; however, crystallintty and a high coefficient of friction

make this material Aomewhat questionable. The high strongth of Vnmpol Oomhined

with a low coefficient of friction make this mcateriat an attractive choice for

tho boat pipe rotating Joint. although it is harder than either Teflon or Kel-F.

Mylar its aivaailablo in sheet form (up to 0.025 cm), and is adaptable to "lip

seal" applications for eryogonte. Conditions bait is not availahto in fo rms suit-

able for the *elected teat design. Carbon graphite has manv interesting
	

I
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Table 2-4.	 Physical Properties of Candidate Seal Materials

-- ^ -TiE (15% CAR !^►tG^'ER TY 	 TzE r. El ; O'ofL MIDI LEAL OLC
- GRAPHITE) GRAPHITE

tl- TENSILE

.

STRENGTH (►Apo)	 17.21-20.7 9.0/18.6 31 89,7 158/776 27.6 1.4 .5 13,2

ELONGATION	 25G/350 130MO 165 7/9 100 - 43 45
YIELD POINT (Mpo) 29.7 - - - -
YIELD 0.2% QApo) - 14.5 - - - --

MODULUS (Mpc)	 4 1, 4.-Z, 1,310 3,793 35, 172 13,7-113 82,754

'— IND^!T•	 164 136 192 ,. - - :it -

1r
Got 1RAL

STRENGTH (NW)	 N4 WE" :.9 :5,6 117 - 172

MODULUS V44m)	 620 - 1, ! 3G 3, 173 _ _

„^..	 _ ^MPRfSSIVE ^ _̀ 	 1
{	 ,. STRENGTH (tngo)	 11.7 1,8/! 1 .0 29.7 276 _ X9.0 1

-- O MODULUS (Mpa) 	 - 6E 2/614 910 - - - - -
v `

M SHEAR STRENGTH (I•w^!

- ^ iR DTI	 N

" STATIC (AAG)	 .04 .14 .45 - .21 - M

STATIC (CRYO)	 - - .17 - - - - •
QQ,,

DYNAMIC (AW	 .rA .12 ^?2 .04/.0 - .Ob 1.1 - 2
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of k;INAL PAGE L5
k)F PWR QUALITY

METHOD - ANGLE OF REPOSE
UNIT LOADING - YIELD STRENGTH RANGE
TYPE OF FRICTION - END OF SLIDING - START OF STATIC
T'rl"t OF SURFACE - POLISHED STEEL - UNLLIBRICATED
SURFACE FINISH - 2 tt MAX

RESULTS

TRIAL H C^

1 S° .0144

2 4.S° .039

J 4.3  ° .039
4 4.S° .039

*ANGLE AT WHICH MOTION CEASES

SKETCH Of TEST METHOD

PROCEDURE:

1. INSERT SAMPLE BETWEEN PLATES TO DEPTH GREATER THAN EXPECTED ANGLE
OF REPOSE

2. APPLY LOAD STEADILY UNTIL MOTION STOPS

J. MEASURE ANGLE BETWEEN BARS 1/2 OF ANGLE - ANGLE OF REPOSE

4. CLEAN AND RE-POLISH BARS AFTER EACH CHANGE OF MATERIAL

Figure 2-4. Coefficient of Friction Test Setup and Results
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properties but its permeability to Qasea is unknown. which maker: it somewhat

questionable for this application. Tile only permeability data available were

for Teflon and Kel-F, and are shown in Table 2-5.

Table 2-5. Permeability of Teflon and Kel-F to
Various Gases at 77 K

-:torial

Vcrmeability Rate:	 l(1- T r;ec/lire/cm ,mm /atm

H	 He N. U;

Teflon
Ke1-F

lg	 530
0.7 4 	-

2.4
0 .0025

7.6

Leakage

Total external leakage from the heat pipe coupling will be that from the

static seal plus the dynamte shaft seal and. under ideal conditions, will he

limited by permeability through the plastic seal material. Microscopic seal-

ing surface irregularities as a result of lapping and polishing operations.

as well as slight eccentricities between the .haft :uad real. will contribute

to additional leakage.

If the leakage across the seal interface is sufficiently low after wear-in,

the leakage will approach a limit which is equal to the permeability of tale real

material.

Permeability of Kel-F and Teflon to variou s gases at 293 K is shown in

Table 2-5. It should he noted that Teflon data for thin-film Tef 
loll and the

permeability of the graphite impregnated Neat may he signtficantly different.

It is also likely that the permeability will vary with temperature, although

data at cryogenic temperature s were unavailable.

Order-of-magnitude leakage rates were computed from the data taa Tables

2-4 and _-5, based on the seal cross-sectional area and for the dt ,sigu pres-

sures at ambient and LN: temperature. Resulting leakage rates for Kel-F and

Teflon are shown in Table+ 2-6.
t

1
1

I
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As :shown in Table 2-6, helium leakage rates with Teflon are signifi cantly

higher than the lxIO-i'sces design goal. Kel -F data are expected to he signifi-

cantly better. Helium leakaagt, data for Kel-F are estimated by as suming that
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the ratio of the permeability to helium compared to hydrogen is the same for

Kel-F as for Teflon. Leakage due to permeability with Vespel is expected to

be considerably less due to the structure of the material, although no permea-

bility data could be located.

Table 2-6. Projected Leakage Estimates

r%

F.	 r
i

i

Leakage (secs)

k' -	 10.1 MPa	 ( 99.6 ilLm) P = 0.4 MPa	 ( 3.95 atm)
T = 293 K T = 77 K

Gaff Tefl.,n Kel-F Teflon Kel-F

H2 1.1x10-4 4.5X10-" 4.3X10-" 1.8\10-

He 3.2X10-3 1.3x10-"* 1.3x10-" 5.2 10-6*

N 2 1.5x10-5 1.5x10-8 5.8x10-' 6.Ox10-lo

02 4.6x10-5 1.7x10-7 1.8X10-6 6.7x10-9

*Estimated

Torque

Torque will primarily be a function of the coefficient of friction between

Lie dynamic seal and the rotating shaft. This will be affected by the spring

loading imposed on the seal due to the 16 helical compression springs as well

as the surface finish of the seal and its mating interface. In general, it is

expected that the shaft torque and external leakage will be inversely propor-

tional, and that torque will be a maximum when shaft seal leakage is minimum.
.I

	

"	 The 16 helical compression springs have a spring constant of 89 N/cm

(50.8 lbf / in.). At the nominal compression ( 15.5% of the free length), the

compressive load on each spring is 42.7 N (2.4 lbf). The net load transferred

radially inward to the dynamic sealing surface is 121 N (27.2 lbf). In addi-

tion to the spring load, the internal pressure causes an additional low ing on

	

1 (	 the seal against the rotating shaft. The additional load is 5 . 1 N (1.1 lief)

at 0.4 MPa, and 128 N ( 28.8 lb f) at 10.1 MPa. Coefficient of friction data

and calculated torque values for the ambient and cryogenic pressure conditions

i	 are summarized in Table 2-7. For Kel-F, the calculated torque is 0.2 N-m at

r 0.4 MPa, and 0 . 76 N-m at 10 . 1 MPa, compared to the design requirement of

	

I	 I	 3-5 N-m.

1

I
i
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Table 2-7. Calculated Torque Values

Material

Coefficient of Friction _Torque (N-m)

77 K 293 K 10.1	 MI

Kel-F
Vespel
Teflon/graphite

0.17
0.04*
0.1*

0.32
0.09
0.12

0.2
0.05
0.12

0.76
0.21
0.28

*Estimated

I

Selected Seal Material

Based on the data presented in Tables 2-4 through 2-7, and from extensive
cryogenic valve experience on the Saturn S-II vehicle, it would appear that

Kel-F, Vespel, and graphite-impregnated TFE would all be potentially good seal

materials. Both Kel-F and Vespel have good compressive strengths coupled with

reasonably good coefficients of friction. Graphite-impregnated Teflon has the

most desirable properties except for permeability. Because of the limited

scope of this program, only one seal material could be tested. Kel-F was

selected as the baseline seal material, although spare seals cif Vespel and

graphite/Teflon were purchased for potential future use.

FABRICATION AND ASSEMBLY

The rotary joint test fixture was fabricated under subcontract by the

Rudolph E. Krueger Company, Newport Beach, California. The shaft, housing,

wedge ring, and diaphragm washer were machined from heat-treated 17-4 stainless

steel. The sealing surfaces on the shaft and the diaphragm washer were ground,

hard chrome-plated, and polished to a surface roughness of less than three

helium light bands. The thrust bearing and inside bearings were commercially

purchased aircraft quality bearing assemblies (with no lubricant). Tile

dynamic seals were fabricated to specification by Thermec Engineering Company

of Anaheim, California. The static "K" seal was supplied by Sierracin/

Harrison Corporation, Burbank, California (PN 12195CR1437).

The assembled rotary joint test fixture is shown in Figure 2-5. Figure

2-6 shows the unit disassembled with the internal components.
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Cleaning

Prior to leak-testing with the Kel-F seals, the test article was dis-

assembled and carefully cleaned. All components except the seals were vapor-
	 -PQ

degreased, and then immersed in a hot solution of Turco 4090 in an ultra-

sonic bath. The items were rinsed with hot tap water and deionized water and

finally dried in an oven. Reassembly was accomplished on a laminar flow bench.

The article was assembled with a Vespel dynamic seal and unlubricated "K-seal"

for the purpose of pressure proof testing. The 1/4-28 assembly bolts were

tightened to a torque of 10 N-m.

Proof Pressure Testing

The test article, protected with a Millipore filter, was then pressurized

to 20.2 MPa with nitrogen gas. Leakage was evident, but no distortion of the

housing was noted. As a preliminary leak check, the assembly was pressurized

to 9.9 MPa with helium. A pressure decay of 0.28 MPa in five minutes was

observed. A soap solution test revealed leaking gas originating from behind

the exposed ball bearings, as would be expected.

Final Assembl	
t,

The Millipore filter was removed from the test article, which was then

disassembled on the laminar flow bench. All components were rinsed with

Freon TF and dried with a stream of filtered nitrogen gas. The test article

was then reassembled with one of the Kel-F Jynamic seals. The "K-seal" was 	
i

coated with a light layer of Celvacene high vacuum grease for lubrication and

to minimize the possibility of its leaking, since the performance of the

dynamic seal was of principal interest.

LEAK TEST PROGRAM

A series of tests were run to determine the performance of the rotating

joint assembly with the Kel-F seal under varying conditions. The test set-up,

leakage measurement t6chnique, test procedures, and results are described

below.

Test Set-Up

The test system, pictured schematically in Figure 2-7, consists of four

sections: (1) the test article helium pressurization system, (2) the vactitlm
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system, (3) the sensitivity calibrator, and (4) the leak detector. The helium

pressurization system was designed to provide pressurization up to 0.6 MPa, to

within ±3.4 Pa, or up to 11 MPa to within ±0.14 MPa. An 8-jim Millipore filter

is situated between the pressurization system and the test article. The test

article and connecting line can be evacuated with the mechanical pump provided.

The vacuum system consists of a portable 10.2-cm (4-in.) diffusion pump

with a 45.7-cm (18-in.) diameter feedthrough collar and bell jar assembled on

the baseplate. The sensitivity calibrator is a Veeco standard leak (Q =

1x10-4 atm cm 3 /sec) pressurized with helium. A sintered metal in-line filter

is inserted between the leak and the helium supply, while an isolation valve

is interposed between the leak and the vacuum chamber.

The leak detector used was a CEC Type 24-120A with Type 24-038 Test Port

and Roughing Station. Figure 2-8 is a photograph of the assembled apparatus.

The physical. test arrangement is shown schematically in Figure 2-9, while

Figure 2-10 gives a photographic view. The rotary seal test article was

mounted rigidly on a 45.7-cm-diameter feedthrough collar, between diagonally

opposite feedthrough ports. At one end the shaft was attached to a low-speed

rotational drive, while the other end was connected to the helium pressuriza-

tion line. A liquid-cooled brass collar, which was fitted around the body of

the test article, provided for cooling the housing to 80 K. DC340 heat trans-

fer compound was used at the interface to enhance the heat transfer, which

would otherwise have been poor in vacuum. Two AWG No. 30 chrome l-constant an

(Type E) thermocouples were attached to the test article housing at the loca-

tions indicated in the schematic. As shown in the photograph, the specimen

was supported off the baseplate in such a way as to minimize heat input by

conduction. Although not shown, in the actual testing multi-layer insulation

would have been wrapped around the exposed portion of the test article housing,

also to minimize heat input.

Leakage Measurement

Test article leak rate determinations were accomplished under simulated

usage conditions with a mass spectrometer-type helium leak detector. This

was used to sample the atmosphere in an evacuated bell jar containing; the

I .

r
l

'1
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pressurized test article. A sensitivity calibrator (standard leak) was instal-

I. ,d with its outlet situated in close proximity to the shaft end of the test

.trticle. The purpose was to establish the -nsitivity of the leak detector

un,ler the same conditions which would exh;t when determining the test article

leakage.

Calibration of Standard Leak

The Veeco standard leak used as the sensitivity calibrator had to be

itself calibrated since its nominal value was questionable and the inlet

pressure for which this value was appropriate was not indicated. Since the

operating condition (i.e., leakage into an evacuated volume) was expected to

influence the leak rate, calibration under similar conditions wits desirable.

This was accomplished by a chromatographic accumulation method, described

helow. .

The set-up is shown schematically in Figure 2-11. The Hoke bottle and

connecting lines up to the leak tube orifice were evacuated and isolated from

the vacuum pump. The helium regulator and bleed valve were then adjusted to

provide the desired pressure and the time noted. After an appropriate inter-

val, the Hoke bottle was valved off and removed from the leak. The bottle was

then fill,:i to 0.21 MPa with GN2 and the contents analyzed with the gas chromat-

ograph to determine the mole fraction (N) of helium present. This is related

to the leak rate by the follcwing expression:

Qsc (atm cm 3 /sec) ° NxV'` (^I4u7) x (t' )

where

V = Hoke bottle volume, cm 
0 - Time, sec

The leak rate was determine for the two inlet pressures of interest,

with the following results:

Pressure (MPa)
	

Qsc, atm cm3/see

0.13
	

1.7X10—"

0.20
	

3.1X10—"
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Vacuum Decay Technique

In the event that it became apparent the test article leakage was too

great to be measured with the heliuhi leak detector, the leak rate test proced-

tire was modified to obtain an approximate air leak rate (0.1 MPa pressuri-

zation) by observation of the bell jar pressure rise.

With the valve to the sensitivity calibrator closed, the bell jar was

evacuated with the 10.2-cm diffusion pump system. Simultaneously, the test

article was evacuated with the mechanical pump provided. The evacuated test

article was isolated from its pump, and the main slide valve closed. The

basic bell jar vacuum decay rate was observed. This represents inleakage and

outgassing.
li

The valve isolating the sensitivity calibrator was then opened, as was

the slide valve. After the system pressure dropped to below 1 x 10-5 torr, the	 !

slide valve was closed and the pressure rise again observed. This represents

the calibrator leak rate plus inleakage and outgassing.
i

The sensitivity calibrator was then isolated from the bell jar, the test

article pressurization line vented to atmosphere, and the slide valve again

reopened. After achieving P < 1 x 10-5 torr, the slide valve was closed and the 	 I	 j

pressure rise noted. This represents the test article leak rate and system

inleakage plus outgassing. 	 !
1

t	 If the system volume is known, the leak rate is readily calculated from 	 I

I	 the relation
i

`i	
Q = 5.98x10-3(H)(

Y
  T) atm cm3/sec

where

	

(

dP	
decay rate, ptorr/min.

	

d A)	 ^

V = volume, liters

'	 T = absolute temperature, K
t

r	
The system volume was estimated as 80 liters. Based on the decay rate

i

observed for the sensitivity calibrator, whose leak rate for air into vacuum

was 1x 10-3 atm cm 3 /sec, the chamber volume was determined to be 108 liters. 	 •

An average value of V = 95 liters was used in calculating the test article

leak rat-e.
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Test Procedure

After each set-up, before the bell jar was put in place, the coolant lines

and test article were pressurized to about 15 psig with helium and all connec-

tions were checked with the leak detector using the sample probe.	 If this test

proved negative, the bell jar was installed and evacuated using the leak

detector auxiliary roughing pump. 	 At the same time, the test article was

l evacuated with the other mechanical pump.	 It was then determined if the pri-

mary leak detector vacuum system could handle the bell jar leakage and outgas-

^^ sing with or without assistance from the auxiliary roughing pump. 	 The feed-

through collar was then leak-checked by spraying helium around the feedthroughs

tnd the bell jar seal.	 The coolant line was again pressurized with helium for

t more sensitive indication of leaks at the fittings. 	 If the prelimtnary

j system leak checks proved satisfactory, the leak rate testing could proceed.

.^ The leak detector throttle and roughing valves were closed and the slide

valve to the 10.2-cm diffusion pump system opened. The system pressure was

reduced to P < l x10-5 torr prior to leak rate testing. 	 The leak detector back-

ground reading (Ml) was noted and the roughing valve between the mechanical

4 pump and the test article was closed.	 The throttle valve was then opened

f fully and the bell jar background reading (M2) noted.	 The throttle valve was

' again closed, after which the valve isolating the sensitivity calibrator was

opened.	 After the initial helium pressure surge had been reduced by the 10.2-cm

l
(4-in) diffusion pump, the throttle valve was again fully opened and the meter

reading (M3) observed after equilibration. 	 The leak test system sensitivity	 \

is found from the expression

Qsc

I S = (M3-M2)

Where S = sensitivity, atm cm 3 / sec div.

i Qsc = leak rate of sensitivity calibrator, atm cm3/sec

M = meter reading, divisions

The throttle valve was again closed, the sensitivity calibrator isolated 	 t

from the bell jar, and the desired Helium pressure applied to the test article.

The throttle valve was opened and the meter reading (144) noted.	 The test

^ article leak rate was obtained from the relation

Q - (M4-M2) x S

-.34_.
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The above procedure was used for all leak rate testing except where the

leak rate of the test article exceeded the effective range of the leak detector.

In these few instances, the air leak rate was determined by the vacuum decay
El

technique.

Test Results and Observations

When the assembly was tested statically with the first Ke t -F seal instal-

led, a disappointingly high leak rate at low helium pressures was observed

(see Figure 2-12). The decision was made to proceed with the wear-in in hopes

it would improve the seal performance. The wear-in consisted of 10,000 revolu-

tions at 5 rpm with the assembly at atmospheric pressure, internal and external.

The shaft was rotated counterclockwise as viewed from the drive end. After

wear-in was completed, it became evident as soon as the leak test procedure was

initiated that the leakage had increased considerably. The leak rate for air

was determined by the vacuum decay technique, and the test article was removed

from the fixture, disassembled and inspected with a low-power stereoscopic

microscope. Severe wear of the surface of the Kel-F seal was noted as shown

in Figures 2-13 and 2-14. Numerous flakes of Kel-F were adhering to the shaft.

	

One of them contained a flake of metal which may have been 	 from the chromium	
1

plating. Smear markings were observed on the shaft and load bearing ring

(see Figures 2-15 and 2-16). The shaft was returned to R. Krueger Company for

polishing to remove the smear marks.

The test article was cleaned and reassembled with the second Kel-F seal

and repolished shaft. The initial static leak determination was surprising

in that the leakage was significantly lower than it had been for the previously

tested seal (Figure 2-18). The reduction was felt to be due to the smoother

surface of the shaft after repolishing.

It was decided to wear-in the second Kel-F seal at a rate of only 4 rev/hr,

with leak rate determinations during the wear-in while the shaft was rotating.

The wear-in was interrupted after 5 and 25 revolutions to permit static leak

rate determinations. Although leakage was higher when the shaft was rotating,

static leakage after five cycles of wear-in had increased only slightly

over values obtained prior to wear-in. Interestingly, leakage at all 	 1

pressures was greatly reduced when the static test was repeated, indicating

-35-

--=	 5ll_ 7$yAP-0124



C 

r .. I I	 w

t

U	 lu	 lu	 it)	 40	 SO	 60	 70

ASSOLU71 PRESSURE

11

-- --- ------ -
RUN 02

RUN 01

I

f^

DESIGN
/^ POINTI

0.1 10.2 0.3 0. 0.5
I_	 I t

iMPO

80 Psi o

lr.^

f

f

x

V

19
X
Y

^-	 11

v

	

Satellite Systems Division 	 Rockwell

	

Space Systems Group	 international

Figure 2-12. Helium Leak Rate vs. Pressure, Kel-F
Seal No. 1, As-Received Condition
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Figure 2-14 - Kel-F Seal Specimen No. 1 After Wear-in (110X)
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Ian effect of pressure cycle ( sce Figure 2-18). On continuation of %:c-ii-in,

dynamic leak rates were correspondingly lower, but showed some increase as
Ir;

wear-in continued. Static values, however, reached their lowest values after

	

25 revolutions (Figure 2-19). Wear-in was continued and it 	 dynamic leak

rate was observed after 42 cycles, indicating seal failure. Shaft rotation

was terminated, whereupon a similarly high Leak rate was observed for the

static condition.

The test article wits again removed from the test fixture for inspection.

After disassembly, wear of the Kel-F veal was confirmed, with flakes of Kel-F

adhering to the seal surface. The condition was not as severe as had been

noted in the case of the first seal tested. No damage to the shaft was neted.

A new shaft was fabricated using a harder steel in hopes of obtaining it

smoother shaft surface for the seal to wear against. Discussions were also

held with Thermec Engineering Company, the supplier of Lite Kel-F seals. The

wear problem was felt to he due to the amorphous: Kel-F which wits used for the

seals. While the amorphous material is better than the crystalline material

in terms of ductility at cryogenic temperature, it apparently is much less

wear-resistant. Previous experience with static seals on the Saturn II pro-

gram i. icaCed that better and more reliable seal performance was achieved at

cryogenic temperatures with the amorphous rather than the crystalline seal

material. It is possible that some intermediate level or percentage of

crystallinity in the Kel-1: material would provide acceptable leakage as well

as good wear resistance. Because of the Iimited scope of this effort, addi-

tional materials were not evaluated during Lite program.

Additional testing and evaluat.lon were performed using; this seal test

fixture under independent research and development at Roc kwelI. Results of

this effort are described in Reference 3. A graphite-impregnated Teflon seal

was tested under the same conditions as the Kel-F seal. Static leakage was

measured as a function of pressure prior to wear-in. As shown in Table 2-8,

the static leakage rates were somewhat lower than the initial values for the

Kel-F seal. A slow wear-in consisting of 400 cycles at 4 rev/hr was per-

formed, after which static leakage was rechecked. Results showed that

leakage had improved significantly. The joint was then cooled to 100 K and

the dynamic leakage was measured at a rotation rate of 4 rev/hr. Results

are showli in Table 2-9.
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Celt
No. Description of Test

Sensitivity
atm-cm 3 /sec-div.

Leakage, atm-cm 3 /sec	 ( x 10 3 )	 at P	 'iPa

0.1 O.21 0.69 3.15 6.21 9.

1 5tatic,initial 5.5x10-8 s.h - - -	 -	 -

2 Dynamic, 4 rev/hr 5.5x10-e 1.3 - - -	 -	 -
after 2 rev

3 Dynamic, 4 rev/hr 5.6x10-8
after 6 rev

4 Dynamic, 4 rev/hr 5.0x10-8 1.6 - - -	 -	 -
after 10 rev

5 Static, after 5.2x10-8 0.9 - - -	 -	 -
10 rev wear-in

6 Dynamic, 4 rev/hr 2.4x10-' 0.03 0.06 - -	 -	 -
after 400 rev

7 Static, after 8.0x10
-8

0.02 - 0.08 0.09	 0.16	 0.2"
400 rev wear-in

8 Repeat 7.3x10-8 - - 0.10 0.08	 0.16	 0.20	

I

(0.25)*

9 Repeat,	 2 days later 1.8x10-7 - 0.09 0.05	 0.09	 0.16	 I
(0.07)*	 (0.11)*	 (0.20)*

*F.quilihrtnm
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Table 2-8. Summary of Helium Leak Rate Data--Teflon/Graphite Seal No. 2
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i akagu, atm— cm 3 /sec (x103)
Test Sensitivity

No. Description of Test atm-cm3/sec-div. 0.4 0.69 3.45 6.21 9.9

10 Repeat, 4 days later 3.3X10-7 -	 0.09	 -	 -	 0.09
(0.10)	 (0.35)*

11
I

Static, at temp.	 I 3.3x10-7 25.8	 -	 -	 -	 -

indicated (115 K)

12 Dynamic, at temp. 3.3x10-7 16.6	 -	 -	 -	 -

indicated, after (105 Y.)

<1 rev

13 Dynamic, at temp. 1.8x10-7 9.0	 -	 -	 -	 -

indicated, after (105 K)

] rev

14 Static, after cold 3.5X10-7 -	 0.06	 0.08	 0.15	 0.28

cycle (R.T.) I	 (0.32)-'

15 Dynamic, at temp. 3.1x10-7 0.24 (299 K)

indicated J.24	 (268 K)
9.34 (229 K)

1.8	 (208 K)

2.1	 (195 K)
2.9	 (184 K)
5.1	 (174 K)

11.5	 (166 K)
-	 c	 1153	 K)—

*Equilibriu^-
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Table 2-9. Sli-n-iry of Helium Leak Rate Data—Teflon/Graphite Seal No. 2
(Incl. Cryogenic)
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Rotational Torque

The rotational torque with the Kel-F seal was approximately 0.6 N- m at

ambient temperature, although the static break-away torque was about twice

this high. At cryogenic temperature, the torque was affected by the rotational

feedthrough to the vacuum bell jar. From the coefficient of friction data in

Table 2-7, the torque at cryogenic temperature is estimated to be approximately

2 N-m, still below the 3-5 N-m design goal. With the Teflon/graphite seal,

the turning torque was considerably less. At ambient temperature, the torque

was approximately 0.1 N-m. Under cryogenic operating conditions and 0.4 Mpa

pressure, the torque increased to 0.55 N-m.

Discussion of Results

The tenfold difference in as-received static leak rates between the two

Kel-F dynamic seals tested is difficult to explain. The only significant

difference between the two set-ups and tests was that the shaft had been

reworked in the interim. This rework amounted to simply polishing the shaft

to remove the smear marks produced by wear-in of the first seal tested. It

is, of course, possible that the first seal had a defect that was not dis-

covered in the pre-test inspection.

Wear-in of the seals in both instances led to failure, catastrophic in

the first case where a relatively high rate of 5 rev/min. was used for a total

of 10,000 cycles. In the second test, wear-in at a much slower rate (4 rev/hr)

led initially to some improvement in seal performance, but after only 42 cycles

resulted also in failure. Failure in both instances appeared to be due to the

tearing away of material from the Kel-F surface, as evidenced by the photo-

graphs in Figures 2-14 and 2-15.

As would be expected, dynamic leak rates (i.e., determined while shaft

was rotating) were usually higher than rates determined for the static condi-

tion prior to wear-in. Static values after wear-in indicated improvement in

some instances, as previously described. Unexpected was an observed improve-

ment in seal performance, apparently the result of simple pressure cycling

in the course of leak testing at high helium pressures.

H

i

e

J
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This was observed with the second seal after wear-in, but was not evi-

dent in the as-received condition. The best seal performance obtained was

for the second seal specimen after 25 cycles wear-in at 4 rev/hr. Static 	 it
leak values of 2 X10-5 atm-cm 3 /sec at 0.69 MPa, and 4X10-4 atm-cm 3 /sec at 9.9 MPa

were observed. This seems to offer some promise of achieving the design goal

leakage with this seal concept, perhaps with a different seal material, or

Eby control of the fit or compression of the seal against the shaft.

fi
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3.0 ROTATING WICK DEVELOPMENT PROGRMI

In addition to the rotating container, a rotating heat pipe requires a

wicking system which is capable of transporting the working fluid across the

rotating interface. A separate development program was undertaken to develop

a wick with a rotating interface, and to evaluate its performance in terms of

self-priming and capillary pumping capability. The requirements for a

rotatable wick are discussed below. Tile subsequent sections describe the

design, fabrication, and testing of a wicking system for a rotatable heat

pipe.

REQUIREMENTS

The primary requirements for a rotating; wick are continuity across the

rotating interface, and compatibility with the working fluid. In addition,

the wick must meet the capillary pumping and flow permeability requirements

dictated by the application, and the wick must be able to self-prime from a

dry condition in a 1-g gravity field. The wicking system must also allow

sufficient space for the transport of the vapor across the rotating interface.

ROTATING WICK CONCEPT

A rotating wick concept was designed based on the spiral multiwrap wick

design which was developed for a flexible heat pipe under previous contract

(Reference 1). The spiral multiwrap wick concept. Figure 3-1, consists of a

spirally wrapped core of relatively coarse mesh screen which is encapsulated

by a single layer of fine mesh screen. The coarse mesh interior is sized for

self-priming in 1-g, and provides a high flow permeability, while the outer

mesh provides a high capillary stress for good pumping. Since this type of

wick is concentric with the container, it can easily be adapted to rotation

simply by building in a planar gap at the rotating interface (Figure 3-2).

The width of the gap, however, must be carefully controlled in order to

assure that the wick will self-prime. Relative rotation of the rotating side

of the wick with respect to the stationary side can be controlled through the

use of a sleeve-type bearing as depicted in Figure 3--2. The gap in the sleeve

bearing should be controlled to less than one-half the wire spacing in the

t

1

t^

r
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fine mesh screen in order to provide at least the dame level of capillary

stress as the primary wick.

ROTATINu WICK DESIGN AND FABRICATION

To demonstrate the rotating wick concept, a short (- 12 cm long) wick was

fabricated with a rotating interface in the center. The wick consists of two

lengths of the basic spiral multiwrap wick assembly with a nylon sleeve bear-

ing and support collar at the rotating interface. Figure 3-3 is a sketch of

the longitudinal cross-section through the rotating wick assembly. As shown

(Figure 3-3), the wick assembly is supported inside a plexiglass tube which

also has a rotating O-ring seal to simulate the rotating, heat pipe container.

Beth t ile rotating and the stationa ry wick ends area fabricated by spirally
wrapping 54-mesh screen onto at mandril. on the stationar y side, the mandril

is a 0.21-cm-diameter by 0.025- cm-wall 321 stainless -steel rod. This tube is
slotted on the inside end and is used for filling and for bubble pressure

testing the assembled wick joint. On the rotating end, the mandril is a

0.24 cm (0.093 in.) solid rod. The 54—meosh screen was selected because it

would allow self-priming with most fluids, including methanol which was used

for testing. The assembly was covered with an outer wrap of 200-mesh screen

with an outside diameter of 0.64 cm (0.25 inch). :After each section wa;t out

to length (approximately 6 cm), an end cap was resistance -welded to, ea, • h end.

At the rotating interface, the end crap had four holes (see Figure 1-4) to

allow fluid flaw-through at the rotating interface. The tusk-type end crap

made it possible to control tlae gap to the precise tolerances required for

self-priming ( ,11.025-cm gap width).

To align the wicks and maintain their position on the , • enteri taae of the

container, nylon standoffs were machined to the configuration shown in

Figure 3-5. The 1.0. 1 s of both pieces were hand "honed" too fit snugly on

each wick section.	 The wicks were set inside the nylon standoffs just

enough tau that the interface caps on the inside end of each wick just touched

when the unit was assembled. Figure 3-6 shows the two wick pieces with the

nylon bearing /standoffs attached. Figures 3-7 shows the assembled mitt.

i
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WICK PERFORMANCE TESTS

To verify the performance of the assembled wick, two simple tests were

performed—first, a bubble pressure test to determine the capillary pressure

of the assembly, and finally, a self-priming tes` to verify that the wick

would prime in a 1-g field. For the bubble pressure test, the wick assembly

was submerged in a methanol bath such that the liquid ,just covered the entire

wick. Nitrogen gas was pressurized into the wick through the fill tube, while

the gas pressure was measured on a water nanometer. The test set-up is shown

in Figure 3-8. The wick held a pressure of 6.6 to 6.7 cm of water under

static and rotating conditions. For methanol at 293 K, the theoretical capil-

lary pressure with 200-mesh screen is 6.86 em of water, which agrees closely

with the test data.

For the second test, the wick was allowed to dry thoroughly. A short

piece of double-layer 200-mesh screen was attached to one end of the wick,

and was inserted into a beaker of methanol while the wick was maintained

horizontal on a platform balance (Figure 3-9). Figure 3-10 shows a close-up

view of the self-priming test. Within approximately two minutes, the wick

was thoroughly saturated, and had absorbed 2.6 g of methanol. The theoretical

fill inventory for the wick assembly is 2.5 g, which agrees well with the test

data.

FINAL ASSEMBLY

After the performance tests were completed, the wick was installed in a

rotating plexiglass tube assembly to show how the wick would be held in place

in a rotating heat pipe. The standoff wicks were fabricated from 200-mesh

screen in accordance with the configuration shown in Figure 3-11. The stand-

off wicks would be used in a rotating heat pipe to transport the working

fluid from the primary wick to the tube wall of the evaporator and condenser

sections. These standoffs were resistance-welded onto either end of the

rotating wick assembly. The entire wick assembly was inserted in a plexiglass

tube which simulates the rotating heat pipe container. The plexiglass tube

also has a rotating interface with an 0-ring seal. The wick and tube compon-

ents are shown in Figure 3-12. To keep the wick section positioned longitud-

inally—as well as to prevent rotation slippage — two 0.053-cm-diameter holes

were match-drilled, 180 degrees apart, through the acrylic tube and into the
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nylon standoffs. The holes were countersunk and two steel pins, cut to

0.953 cm, were inserted so that the pinheads were flush with the O.D. surface.

Figure 3-13 is a close-up photograph of this installation that also shows the

0-ring in the machined groove.

To insure contact between the interface caps, a spring was put around

the fill tube so that a slight pressure was exerted on the back of the rotat-

ing wick section when the container plug was installed. Figure 3-14 shows

the assembled wick and plexiglass container.
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4.0 CONCLUSIONS AND RECOMMENDATIONS

In attempting to develop rotatable cotainer and wick components for a

rotating heat pipe, the container proved to be by far the more difficult task.

At the outset of the program, it was known that the design goal leakage rate

of 10-6 atm-cc/sec (sccs) would be difficult to achieve. The primary factors

which render the leakage containment problem so difficult are the combined

requirements for cryogenic temperature operation and high intei:ial pressure

containment. The selected design approach, which involves the use of a spring-

loaded ring seal and highly polished sealing surfaces, was felt to be the most

practical in terms of meeting the pressure and temperature requirements. A

similar concept was used on a rotating pump seal for the Space Shuttle main

engine (SSME) fuel lines. The selected seal material, amorphous Kel-F, was

felt to have the best compromise of physical and mechanical properties. As

it turned out, the amorphous Kel-F material was extremely sensitive to fric-

tional wear, and was damaged after less than 42 revolutions at ambient temp-

erature. Static helium leakage rates were initially high (1.4 X 10-3 secs), but

reduced to <2 X 10-5 sccs at 293 K and 0.4 MPa after 25 wear-in cycles. This is

still over an order of magnitude above the design goal leak rate. Under

dynamic conditions (4 rev/hr rotation), the leakage rates were higher compared

to the static test values. At 293 K and 4 rev/hr rotation, the dynamic leak-

age varied between 10 -4 and 3X 10-4 sccs, well above the design goal. The

rotational torque was approximately .6 N-m at 293 K, although the initial

breakaway torque was almost twice as high.

4 i

	

	 Testing of the Kel-F seal was discontinued when it was discovered that

the seal was damaged after only 42 wear-in cycles. Inspection revealed that

flakes of the seal material had worn off during the wear-in, and adhered to

the metallic sealing surfaces. Discussions were held with the seal manufact-

urer, and it was concluded that the amorphous Kel-F material, while having

good properties at cryogenic temperature, was not conducive to a long-wear

life at ambient temperature. The manufacturer felt that possibly some inter-

mediate between amorphous and crystalline Kel-F would withstand the frictional
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wear-in forces and still have good sealing qualities at cryogenic temperatures.

Because of the limited scope of the program, however, other seals were not

evaluated under this contract. No cryogenic test data were obtained since

both the primary and the spare Kel-F seals were damaged during wear-in.

Independent tests were conducted at Rockwell using a seal made from

WE Teflon with 12-15% carbon graphite added. Initial static leakage levels

were comparable to Kel-F, and reduced to 5 x 10-5 sccs at 0.4 MPa after 400

wear-in cycles. This leakage rate is somewhat lower than the calculated

permeability limit of the Teflon material at 293 K. When the shaft was

rotated at 4 rev/hr, a leakage rate of 6x10 -5 sccs was observed. At cryogenic

temperature, both the static and dynamic leakage rates increased substanti-

ally to 2.6 x10-2 sces and 1.6 x 10-2 sccs, respectively. In the way of explana-

tion, it was hypothesized that the seal may have distorted during thermal

contraction. The increased surface hardness of the material at cryogenic

temperature may also explain to some degree the increase in leak rate. Also,

a change in the Teflon from an amorphous structure to a crystalline structure

at cryogenic temperature may be partially responsible. Additional testing

and development is needed to discern the causes of the increase in leak rate

and, hopefully, to find a combination of seal material and configuration

which will meet the design goal leakage rate of 10-5sccs.

Rotational torque on the Teflon/graphite seal was very low compared to

the Kel-F and to the 3-5 N-m design requirement. At 293 K, the rotational

torque was 0.1 N-m. At 100 K, the torque was less than 0.6 N-m (some of this

torque was due to the rotary feedthrough to the vacuum chamber).

The rotatable wick joint functioned successfully in both the bubble

pressure and self-priming tests. The most critical element of the design was

the gap between the two sides of the wick at the rotational interface. The

required gap width for the 0.64-cm-diameter wick tested was 0.025 cm. A

porous end plug was attached to the opposing surfaces of the two wick sec-

tions to guarantee a smooth, flat surface. The spiral multiwrap wick design

proved to be very conducive to adding the rotating interface, although other

cylindrical composite or homogeneous wick designs could also be used. Ii

	
i
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In conclusion, the feasibility of a cryogenic rotatable heat pipe for
	 I

long-term space operation hinges on reducing the leakage to an acceptable

level. For some heat pipe working fluids, the achieved dynamic leakage rate

of 2x 10-"secs may be acceptable for operation up to one year. Additional

testing and development with Teflon/graphite and other seal materials is

recommended. After acceptable leakage levels have been attained, fabrication

and testing of a rotatable heat pipe is also recommended.
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