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IONOSPHERIC REFRACTION CORRECTIONS
IN THE GTDS FOR
SATELLITE-to-SATELLITE TRACKING DATA

1. INTRODUCTION

NASA is currently examining techniques for utilizing a Tracking Data
Relay Satellite System (TDRSS) to track low orbiting satellites. Such

a system, employing a relay satellite in a geostationary orbit, has the
obvious advantage of being able to track satellites over a large portion of
the globe with only a minimum number of ground stations. However the
TDRSS cvncept gives rise to other difficulties not otherwise considered

in the tracking of satellites {rom the ground. One such difficulty is in
obtaining refraction corrections through large portions of the atmosphere,
In the TDRSS mode the ray path between target and relay satellites
frequently traverses large distances, and the inhomogeneous nature of the
ionosphere becomes much more evident, presenting a far greater problem
under these circumstances than in ground tracking. One must contend
with geographic as well as diurnal ionospheric effects, for the line of sight

between satellites can cross a day-night interface or lie within the equatorial

ionosphere.

The purpose of this effort was to examine these various effects and to devise

a method of computing ionospheric refraction corrections to range and range -
rate measurements with sufficient accuracy to he of use in orbit determinations,
The ionospheric model for satellite-to-satellite (5ST) refraction corrections
obviously has to be global in scope. The Bent Ionospheric Model (refs. la, 1b, lc)
is ideally suited for this purpose, particularly as it is already incorporated

in the Goddard Trajectory Determination System {(GTDS) for correcting ground
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tracking data. The horizonta! e¢lectron density gradients encountered along
the §ST ray paths can thus be generated using this model. The vertical

density profliles predicted by th: Bent model are of the form shown in figure (1).

Making use of the Bent Tornspheric Model a method of computing refraction
corrections through lar - ospheric gradients was devised and implemented
into the GTDS, Herewith - report on the various considerations taken in
designing and implementing this SST refraction correction algorithm. The
report is structured as follows. Section Il is devoted to a discussion of
satellite to satellite Tay path geoimectries and of their relation to the ionospheric
model. Sections IIl and V describe the development and eval-. “on of the
technique used to integrate the horizontal ¢lectron density grat .ents encountered
along a ray path through the ionosphere. Section IV describes the
implementation of the technique into the GTDS, including program flow

diagrams contained in Appendices B to ¥ .
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II. SATELLITE-TO-SATELILITE RAY PATH GEOMETRIES

One of the first considerations was to define all the possible ray path
geometries which could be encountered in the SST mode. This was
necessary to ensure that all possible ways of traversing the electron density
model could be accommodated by the algorithm. Since numeric interpolation
and integration schemes are employed, discontinuities of any kind have to be
avoided, and particular care must be exercised whenever the ray paths cross
domains where the electron density profiles take on different functional

forms.

Figure 2 represents three of the general categories of orbits considered:

(1) target satellite above the ionosphere, (2) target satellite high in the
ionosphere (above the maximum density layer), and (3) target satellite low

in the ion sphere (near or below the maximum density layer). Two additiona.l
tracking configurations are shown, ground tracking of the relay satellite and
the target satellite. The ground tracking case must also be included, because
the ground to relay satellite leg is an integral part of the S5T tracking
geometry. The important features to note about these various geometries

are discussed below. In addition, five specific satellite to satellite orientations
are taken up in greater detail, including program flow diagrams, in section

IV and Appendices B-F. Figure 3 shows some of the parameters, to be
encountered in the discussion below, which play a significant role in defining
the electron density gradient function and in the integration of the densities along
the ray path. Definitions of other terms and parameters used in this report

can be found in the glossary (Appendix H),

A. Target Satellite Above the lonosphere

This class of orbits gives rise to the longest transionospheric ray paths to be
encountered. The geometry involved is shown in figure 2 and figure 3 ,

Moving from the target to the relay satellite the ionosphere is entered at point

Loy _j!.‘LL e hY % F.
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P1 and left at point * 4. Midway between P1 and P2 lies PZ, the point of
closest approach to the center of the earth. Tracing the target satellite in
its orbit from the time it completes occultation, the following changes in
the segment (P1, P2) are observed, At first, the ray path enters the
ionosphere at P1, encounters a density peak at HM, exits through the bottom
of the ionosphere at PB, reenters the ionosphere at a second point PB,
encounters another density peak at HM and finally exits once more at P2.

In effect two distinct ionospheres are encountered along the ray path. It is
important that the density peaks at HM alcng the ray path be properly placed
and the density correctly evaluated. Errors made at these locations can be
significant, for the densities here are orders of magnitude larger than

at the top and bottom of the ionosphere.

As the target moves on in its orbit, PC rises higher above the surface until .
it crosses HMYM, the bottom of the ionosphere. At this time, the segment
(Pl, P2) lies entirely in the ionosphere, but two density peaks are still
encountered. Care must be exercised to compute the:. .raximum densities
properly in order to minimize possible errors in integrating the total

electron content along the path.

Next, P’C approaches the height of maximum density HM. In this case
a significant portion of (P1, P2) lies within the peak density region and special
attention must be paid not only to obtaining the maximum density, but also ta

calculating accurate density gradients.

As PC rises further, segment (Pl,P2) becomes shorter, and at the same time,
the electron density decreases exponentially. The net effect is a very rapid
decrease in integrated electron content until the satellite to sa’,tellite ray path
leaves the ionosphere entirely. It is difficult to generalize the behavior of

the range an& range rate corrections for satellife to satellite geometries
because of the many variable ionospheric conditions that can be encountered

(day to night gradients, latitudinal variations, equaterial anomaly, variable
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height of maximum density, etc.,). However, for those cases when the target
satellite is above the ionosphere, the corrections do follow a certain pattern.
As the target merges from occultation, the range correction increases from
a non-zero value to a maximum, achieved when PC crosses the peak density
at HM. From this maximum value, the range correction then decreases
monotonically to zero. The range rate is even more difficult to generalize,
for it is obtained from the time rate of change of the range correction. It

attains a maximum value before PC reaches HM, a minimum value as PC rises

into the exponential layers of the ionosphere, and goes to zero as PC approaches

the top of the ionosphere. The sequence is rvpeated, (in reverse with
sign changes on the range rate corrections}), as the target satellite approaches

occultation on the other side of its pass.

B. Target Satellite High In The Ionosphere ( above peak density)

This geometry is similar to the previous case of having a satellite above the
ienosphere, with the difference that the range correction never goes to zero.
When the target satellite emerges from occultation,the range correction
increases until PC crosses HM. The correction then declines to a minimum,
which is achieved when the target passes beneath the relay satelliite. As the
target continues in its orbit a second range maximuwmn is reached when PC
again crosses HM. The magnitude of the peaks wiil depend on factors such
as the height anid inclination of the orbit of the target and, of course, on the
ionospheric state, If the range correction peaks occur on opposite sides of

'a' day-night interface then they could differ in magnitude by a factor of ten.
Under such circumstances it is not possible to discuss the general appearance

of the range rate corrections.

C. Target Satellite Low In The Ionosphere - (below peak density)

The SST configurations, in which the target is in an orbit below the peak
density of the ionosphere, result in the most complex range and range rate

correction signatures. The refraction correction is determined by two factors.

o
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One factor is the ge .etric length of the SS5T ray path through the ionosphere,
and the other is the ionospheric state. The geometric effect is such that
maximum path lengths are achieved near occultation when the point of closest
approach, PC, is still above the bottom of the ionosphere, HMYM, (fig. 3).

In the presence of a2 homogeneous ionosphere, these positions coincide with
the position of the range correction maxima. The maxima wguld be
symmetrically situated about the midpoint of f2ch pass of the target. The real
ionosphere, however, is inhomogeneous and the large scale gradients in

this complex medium will dominate the geometric effects of increased path
length. Hence the presence of a day to night interface or the crossing of the
equatorial ionosphere {in the course of a satellite pass ), will determine

the magnitude and placement of the range correction maxima (or maximum).
Typical icnospheric gradients are illustrated in figures 4. For equatorial target

satellite orbits, the day-night {sunrise or sunset) gradients will be of

greatest significance, while for polar orbits the crossing of the equatorial
ionasphere will be the dominant ionospheric effect. Orbits of intermediate

inclination will be affected by a combination of both of these large gradients

and the resultant range corrections will have the most complex signatures of all ;
S5T configurations. 'L"e range rate corrections are impossible to |

discuss in general terms for these cases.

D, Direct Tracking of Satellites From the Ground

This ray path configuration completes the satellite to satellite tracking loop

gy tr-ragis

by linking the relay satellite to the ground station. The 55T refraction
a.gorithm developed for the GTDS therefore has the additional capability of
computing refraction cerrections for direct tracking of a target satellite
from the ground. When tracking the relay satellite, the ionospheric range
correction to the relay will be nearly constant during the course of one pass
of the target. Since the relay satellite iy stationary relative to the ground
station, the only variation in the range correction will be due to diurnat

variations of the tonosphere.
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For direct tracking of the target,the situation is quite different,for the motion

of the satellite adds a significant factor to the range rate correction. Cornbining
geometric and ionospheric effects one can obtain a variation in the range
correction of a factor of 30 just in the visible sky over one tracking station

(ref, 6). 'The variation in range correction will depend on the orbit of the

target as well as on the ionospheric state, just as it does for SST conﬁgurationé.
The dominant factor in the range rate correction under these conditions is

the velocity of the Larget relative to the ground station. In general the rate
correction should achieve a positive maxinmunm as the satellite rises in the

sky over the station, and a negative maximum as the satellite sets over the
station. The relative magnitude and placement of these maxima depends on

the ionospheric state.
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I, INTEGRATING TOTAL ELECTRON CONTENT ALONG SATELLITE
TO SATELLITE RAY PATHS

The major problem in computing range and range rate corrections lies in
accurately defining the horizontal electron density gradients which are
encountered along the large distances characieristic of satellite to satellite
(SST) geometries, A satellite at 1000 km can achieve SST ray path which
will subtend earth central angles of 80° to 90° totally immersed in the
ionosphere. Figure 4a gives some idea of the magnitude of the gradients.
It is a world map of the ionospheric critical frequency f{0F2 projected onto
a shpere at height 300 km above the surface of the earth. fOF2 is related

to the maximum electron density by the equation

N, =1.24x 1010 x (f0F2)® el/m® (1)

where fOF2 is in MHz, Figure 4b is a world map of the height of the maximum
electron density HIM. It too shows a highly complicated structure. Both of
these parameters play a critical role in predicting the vertical density profile
using the Bent model. In addition to providing N, ,f0F2 is also one of the

key parameters used to compute the thickness of the parabolic regions of the

profile, and the decay constants in the exponential layers (figure 1).

In:..grating the profile vertically gives the vertical electron content

htop
N, = [ N (h) dh 2)
hn 'y.l

Figure 4c shows how this quantity varies globally on a typical day. The
extent to which the ionosphere is inhomogencous becomes strikingly obvious

in this figure.
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A. The Gradient Function

The total electron cpntent between anv two points , Pl and P2, in the

ionosphere is obtained by integrating

P2
Ny = Il N (s) ds (3)

Pl

where N(s) is the electron density function,giving the electron density at
position s= s{x,y,z} or s( ), 8, h) along the path,and ), 6, h are the longitude,
latitude, and height above the surface, respectively. Since N(s) does not
have a simple analytic representation some new means had to be devised to
perform the integration in eq.3. Accordingly we chose a quadrature
integration technique. Using quadrature integration it is not necessary .
to know the exact functional form of the integrand. It suffices to have values

of the integrand at specific "'quadrature'' points.

The problem of dealing with a complicated function like N(s) was then reduced
to computing N(s) at some specific poinvs along the path. To simplify these
computations N(s) was separated into 2 parts. The approach was to consider
the ioncsphere as a three dimensional medium having a vertical electron
density distribution given by the profile in figure 1. If the ionosphere were
hamogeneous then one such vertical density profile would suffice to define the
icnosphere any place on the globe. Hcwever, the ionospher= is not homogeneous,
therefore, ezach location on the globe has its own profile. But, since the profiles
all have the same basic shape it is possible to separate this basic height
dependence from the positional variations. The basic height dependence is
represented by a reference profile Nyef (. )i'ef’ f.af » B}. The positional
dependence is then reduced to perturbations or deviations from the reference
profile which are represented mathematically by a function G(s), called

the gradient function. Along any ray path the line of sight electron density

distribution N(s) is then given by one reference profile modified by a
gradient function, as in eq. 4,
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N(s)=Nref () h) * G(s) (4)

ef’ reef'

Figure 5 may be helpful in illustrating the relationship between the functions

N,N and G. It now remains to evaluate the gradient function G which,

ref
b equation 4, is

N{s)
Nref (%'ef' 1@ef » h)

G(s) = . (5).

B. The Deviation Function

During the course of numerical evaluations of the function G it became expedient

to represent the gradient function as
G(s) = 1+6(s) | (6)

In this form 5&(s) isolates the deviation of the density at s [rom the
reference profile density, For this reason § (s) is called the deviation

function. Now, by equations 5 and 6

_ N (s)
Nt (}ef ' 91:{' » h)

6 (s) ~1 (7a)

Equation 7a is the defining equation of the daeviation function,

If the variable s is replaced by spherical positional parameters }, 8, and

h, it may become clearer how 5 is evaluated in a practical application.

N (A.8,h)

86y =T (.0
ref T

- T -1 ' (Th)
rel
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6(s) is defined at several discrete points {up to 22 points in the SST
formulation ) between the ends of the ray path, thereby producing a table
of values, ﬁl {si ), where

N, (., 8,h.)
SR S S

6. (2.} = -1
L NEE- LN

(7c)

Theoretically any reference profile could be used to evaluate the bi

in eq.7c. However, when defining § (s} using only a few discrete points,

it was found necessary (in order to maximize numerical accuracy) to choose
' fi th int

the reference profile at the poin (%ef ’ 9e£

maximum electron density is encountered. All the profile parameters are

s M) along the ray path where the

generated at the location (ée , 0 e.[) using the Bent lonospheric Model.
r

f

They are later used, as needed, to compute the densities Nref i

Once-the reference profile has been chosen, the densities N’_1

at the
heights hi
are computed. To do this a complete ionnspheric profile, i.e. a complete
set of profile parameters, is predicted by the Bent Model, at each location
{ )s,i , Bi } in turn. Using the profile parameters, the density N, at each
point (A,i, Bi s hi ) is obtained by substituting the height h_1 into the equations
definmg the profile. The profile equations are listed on figure 1.
To obtain values of § at intermediate points of the 6i(si) table,several
numerical techniques were investigated. The first approach was to represent
§ by a simple polynomial. Based on examinations of world maps of f0F2
and Nv (figures 4a and 4c) it appeared that a polynomial of 1st or 2nd
order would suit the mid and high latitude regions of the ionosphere while a
3rd or 4th order polynomial would fit the equatorial regions. Accordiﬁgly,
§was computed at numerous points alemg various ray paths and polynomials
were fitted to these data in a least squaves sense. It was necessary to go to
sixth order fits before numerical results became stable enough to gerform
range differencing.

Fiis of this order would require too many data points,

hence, the polynomial representation of & was
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abandonned, and instead, numerical interpolation schemes were investigated.
Interpolation using a cubic spline technique (ref. 3) was finally chosen as

the most satisfactory means of defining § at intermediate points in the

61 (si) table, Details concerning the number of points needed to
accurately define §, as well as the placement of those points, are discussed in

section V below.

As previously mentioned, the reference profile is always chosen at the

point of highest density along a ray path. For direct tracking of satellites
from the ground, this point occurs when the ray path crosses HM. In the SST
made it is possible for the ray path to cross HM twice. In such cases, the
ray path is divided into two legs, the division being made at .-the point of
closest approach, PC . A separate reference profile and deviation function
are then obtained for each leg. For the cases when PC is above HM, the

reference profile is chosen at PC, for, being the lowest point in the ionosphere,

PC becomes the highest density point on the ray path. For those geometries
where the target satellite itself is the lowest point in the ionosphere, the

reference profile is chosen at the target satellite.

This concludes the description of how the electron density is computed, at any

e o S A e

point along an integration path through the ionosphere, as the product of a

reference profile and a gradient function. Both the reference profile and

it b

the gradient function have been defined and discussed. Let us now turn to the
problem of actually integrating the electron density N{s) from point P1 to

point P2, as required by equation 3.

N e

C. Defining The Integration Path L

The integration of the total electron content now proceeds' according to

v arbde i g S e AT e

equation 8, obtained by substituting eqs. 6 and 4 into eq. 3.

P2

N; =I (N, % (15) ) ds (8)
P1 |
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The integration in eq. 8 is executed sssuming the path (P1l, P2} ic a straight line
(refer to figure 3 for definition of points}). To assume straight Iﬁne radio
propagation means that effects of refractive bending are being neglected.
This assumption is valid for satellite to satellite tracking,sinceat S-band

frequencies refractive bending is negligible.

The integi ‘ion interval (P1,P2) is not always treated as a single interval.
The interval is sometimes split into two intervals (PC, P1) and (PC, P2)

and the integrations then summed. The distinction between these two modes
of integration is made on the basis of the position of the point of closest
approach, PC, relative to the height of maximum density HM. If PC

is above HM, then only one deviation function is defined for the entire path
{with reference profile at PC) and the interval (Pl, P2) is not split at PC.

If PC falls below HM, and PC lies between P1 and P2, the path is divided

at PC into the two intervals (PC, 1) and (PC, P2). Each of these two intervals
has its own deviation function, defined with respect to a reference profile
computed at the intersection of the ray path with HM. In the event that PC
falls below the ionosphere, the intervals become (PB, Pl) and (PB, P2).

For those SST configurations in which the target satellite lies on the near

side of the earth, as seen from the relay satellite, i.e. PC lies outside

the interval (P1l, P2) (see figure 3), then the interval (P1l, P2) is not divided.

A single deviation function is computed in these cases, relative to a reference

profile chosen either at HM, or at the target, if the target is above HM,

The purpose in distinguishing between these various ray path configurations,
is to ensure an accurate définition of the density gradients along the path
(P1,P2), particularly when the path traverses the region a.round the peak
electron density at HM, ' | |

In performing an actual integration, the interval (P1, PZ) is further subdivided

into segments, so chosen as to reflect the boundaries of the seven layers of the




2ol

————

-14-

reference profile {{fig. 1). The end points of these segments correspond to the
layer heights HMYM (bottom of the ionoéphere?, HM, 3G, HI, B2, 1000 km,
2000 km, and 3500 km. This segmentation of the integration interval ir
necessitated by the requirement of quadrature integration that the function

to be integrated ané its derivatives be continuous over the integration interval.
To meet these requirements, the integration of equation 8 by quadrature must
therefore proceed in steps through the layers over which the reference profile

does not change analytical form.

D. Numerical Integration of the Total Electron Content

The Gaussian quadrature method (ref.4) was selected to evaluate the total

electron content according to equation 8. Gaussian integration is performed

as follows:

I
Jlf(y) dy:bz-a z Wif(yi)+Rn (9)
a i=1
v =(b;a)xi+(——b;a) (10)

x, = Zeros of the Legendre Folynomials P_ (x)

2 ’ 2
weights w. = T [Pn (X)]
1

Zn+l
(b - a) (n !_)4 2 2n+i £ {2n) (é)

(2n+1) [(2n) t }°

remainder l{n =

Tables of the values of X, and w, can be found in many standard texts on

numerical techniques, including ref. 4.

Equation 8 can now be rewritten according to equation 9 to produce the form

which is implemented in the GTDS for SST refraction correction calculations,
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1+ = +
Nref (1+86) ds Xt [ N (s) (1+5 (s)) ds
. Pa j= Sj
i
F e / S.+1 -85, nj
, ] 1 .
= + s
2 ( > i w, Nref (si) ( 1+8(3;) ) (11)
N jat i=1
' S -5 S +8
i j+ i jtl i
i: where 8i = 21 —_ x; + —J—?——-‘- (12)
: and Sj = position along the ray path (Pa, Pb) which intersects the height
!
r; of the bottom of the jth layer of the reference profile
‘ 4 = index of the lowest profile layer encountered along the interval
t (Pa, Pb)
}
- i- m = index of the highest profile layer encountered along the interval
? o (Pa, Pb)
3 '
’ ' SI = position corresponding to lowest height attained by path (Pa, Pb)
in traversing the ionosphere
Srn = position corresponding to highest height attained by path (Pa, Pb) A
in traversing the ionosphere
e E
Pa,Pb = limits of integration corresponding to integration intervals
(P1, P2), (PC, P2), (PC, P1),(PB, P1),(PB, P2), as appropriate
for each SST ray path
Nref = reference profile
b = deviation functidn defining density gradients between points ,

Pa and Pb in the ionosphere
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n, = number of quadrature points used to integrate electron density
. in jth layer; n; =4 for j=1 and nj=3 for j=2,3,...7
Equation 11 is the form in which integrations are carried out for SST
configurations. The first step in evaluating equation 11 is to determine
the limits of the j - sum, i.e. the summation over layers, as set by the
configuration geometry. This procedure was described in section I C, above.

5+ I ntegration then proceeds from layer 1 to layer m,

The quadrature weights and points, w; and X, appropriate for each layer are
obtained from tables. The minimum number of points, nj, required to
accurately integrate Nref (1t5 )} through each layer, was determined in a
series of evaluation runs in which quadrature integrations were compared
with ray tracing calculations., In the course of these evaluations it was
found that at least 4 gquadrature points were needed to integrate through the
fir st (bi-parabolic) layer of the ionosphere, and at least 3 quadrature points

were needed for each of the six topside layers (one parabolic and five

exponential layers).

Using the appropriate quadrature points for the layer lying between points
5. and Sj+1 along the ray path, equation 12 provides the positions s; at which

the deviation function & and the reference electron density Nref are to be

evaluated. The reference density is obtained by substituting the height h;
corresponding to the point s; (i.e. s;=s ( )\i ’ .Bi, hi) ) into the ionospheric
profile equations (fig. 1) containing the reference profile parameters. The
deviation function is interpolated at 5. using a cubic spline interpolation as
described in section III-B, above. The products w, Nref (si) * (1+5(s3) )
are then formed and summed, and the totals for each layer added according

to equation 11 . -

If the integration interval (P1l, P2} (see figure 2) has been split into two

intervals, as described in section III-C, then this summation procedure is

repeated seperately for each interval and the results are then added to produce

g s e s 1N T e
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a total electron content, N; , between points Pl and P2. This is the basic
quantity which is used to compute the ionospheric refraction correction to
range measurements. As described in section IV, a simple scaling of Ny

P by the tracking frequency produces the range correction.

b Details of some of the evaluations undertaken during the development of this
refraction correction technique are discussed in section V below. These
include studies of the definition of the deviation function, the selection of
the integration paths, and the definition of the minimum number of Points

required to perform accuarate quadrature integration of equation 8.
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1IVv. RANGE AND RANGE RATE CORRECTIONS

A. Derivation of the Ionospheric Refraction Corrections to Range and

Range Rate

The refraction corrections to range and range rate are obtained according

to the following equations.

40,3 (13)
Range: AR = I N;

. -
Range-rate: AR = AR (t+ A t; - AR (t) -
14

where the ftotal content N; is defined in equation (3) and evaluated according .to
equation 8, [ is the tracking frequency in Hz, At is in seconds and AR and
Af{ are in meters and meters/sec., respectively, The range and the range
rate corrections so defined have opposite effects on their respective
observable quantities because of the different manner of propagation of the

signals from which the ranges and rates are extracted.

Ranges are obtained from the modulation of the carrier wave of the tracking
signal, whereas range rates are deduced from doppler counts (phase measure-
ments). The modulated carrier propagates as a wave group through the
ionosphere and its behavior is characterized by the group index of refraction ng
Since the ionosphere is a dispersive medium the group and phase (n ) indices
of refraction are not equal. FHence, phase propagation must be chafacterized

by the phase index of refraction. Fortunately, at S-band frequencies n_ and

21
n, are simply related (ref.2) by
~ =
ng - np (}.5)
S e T s 2 s el e T g B _e',-,r..,‘;‘,-,}\m.a'.m.‘puum'-"-ﬁ..;m




‘ i, e o
. -19-

For satellite tracking frequencies, the Appleton- Hartree equation (ref. 2)
simplifies to
N
2 _ | —
np 1-k T (16a)
where k=(e®? /4 T° €, m)=80.5 and { is in Hz, By using the binomial

expansion and equation (15), we get

wg&
i N
8 =
i ng = 1tk =3 (16b)
Using the binomial expansion again and substituting for k, eqs. (16)
> reduce to the more familiar
_ 40.3 N
* mp = 1-—75 (17a). ‘
40.3 N
- i :
n, 1 I (17b)
One can now define the radio path R of a signal propagating through the
ionosphere (figure 6)
P2
R= I n ds . (18)
P,
l-' Substituting eqs. (17)
i
]
F : 2 '
. 0.3 N
{ Rm:r (13 4’ﬁ ) ds
; .
P:_
: P |
- - 40.3 2 (19)
: =Rg 4 R N ds
“ P, |
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where R, is the straight line range in the absence of any ionosphere. Equation (19)

' . defines the range correction AR (equation 13), such that
l
’
l‘ R=Ry 3 AR
.
Hence for phase and group measurements the radio paths are
&
=3 = -
i: Rphnse R, — AR (20a)
]
=Ry, + AR {20b)

: R
: group

Range meas.urements are then corrected according to

' Ran‘i"%easured - Ran&?cuurn + AR (21b)

while range - rates (phase measurements) according to the time derivative
of eq. (20a)

Range-rate = Range-rate — AR {21a) :
measured vacuuty: ﬂ

In applying corrections to observations in the GTDS, the convention is such

that the corrections are always subtracted {rom the observations, therefore ]

- = ~rat bl £l = ) -
Ranl%%ag;ﬂ:x‘?ed, corrected Rang%ggs%red (~AR)=Range vlazlaétt?um (22a)
Rahr)lggsured, corrected :Rar}ﬁgasured ~ 8 R:Ra{rlgguum (22b)

Equation {22a) shows why the sign on the range rate correction is always

changed before it is applied to the tracking observation,
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An excellent discussion. of this phenomenon from an electrical engineering

standpoint can be found in ref. lc.

B, Correcting the SST Data

Integration of the total electron content encountered along SST ray paths
through the ionosphere is controlled in the GTDS by subroutine IONSST.
Th~ selection of integration paths and the definitions of gradient functions is
all performed in this subroutine. Program {low diagrams of IONSST can be

found in Appendix B.

For illustration purposes, five test cases have been traced through the flow
diagrams of IONSST for various SST geometries. The flow of the logic for
each case is traced by a heavy line in Appendices B through F. Included are
three cases involving a single integration path but with differently defined
reference profiles, one case involving two integration paths requiring two
separate reference profiles, and one case depicting direct tracking from the
ground. The geometries are illustrated in figures 7 through 11, and the

significant points to note for each case are summarized below.

Case 1 (figure 7) - The target satellite is in the topside ionosphere above HM,

and is located between PC and P2. The deviation function is defined relative to
a reference profile at P1, and from 2 to 9 points are used to define the function
over the interval (Pl, P2). The exact number of points depends on the height
of the point of closest approach, PC,and on the length of the path (P1, P2).

The closer PC approaches HM, the larger the number of points used to specify
the deviation function. The integration interval (Pi,P2) is divided into
segments corresponding to the topside layers of the reference profile, and

three-point Gaussian quadrature is used ts integrate the electron content

through each of these segments. The flow diagram for case | is in Appendix B.
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Case 2 (figure 8) - The target satellite is above the ionosphere. PC lies

above HM so only one reference profile (at PC) is used to define the

deviation function between Pl and P2. Again, depending on the height of PC
and the length of the path (P1l,P2), anywhere from 3 to 17 points, spaced at
intervals of equal earth central angle, are used to specify the deviation
function over the interval (P1, P2)., Integration then proceeds in layer
segment from Pl to P2 using tnis deviation function and the reference profile.
The integration through each segment is executed by a 3-point Gaussian

quadrature. The flow diagram for casec 2 is in Appendix C.

Case 3 {fipure 9} - The target satellite is in the bottomside ionosphere

below the maximum density layer HM. The position of HM along the path
(P1,P2) is obtained by an iterative process. This being the maximum density
encountered along.the path, the reference profile is computed at this location.
Next, a profile is computed at Pl in order to define the deviation function .

at this point. A comparison is made between the bottomside ionospheres

at Pl and at the reference profile, If it is found that the ionosphere at P1
extends to a lower height than at the reference point HM, then the bottomside
of the reference profile is modified te reflect this difference. This is
achieved by setting the reference profile parameter YM (ref) to the value of
YM at Pl. This precaution is taken to avoid divisions by zero when defining the
bottom of the ionosphere. The deviation function definition is then completed
using up to 9 points spaced at equal earth central angles along (P1,P2). An
additional point is placed haliway between Pl and HM to improve numerical
accuracy. In the event that the earth central angle subtended by (P1,P2) is
less than three degrees, gradients are neglected and the deviation function is
seft to zero. Integration proceeds from P1 to P2 in layer segments. The
first segment from Pl to HM is integrated using 4 quadrature points, while
the six topside segments are integrated with 3 quadrature points. The flow

diagram for case 3 is in Appendix D.

Case 4 (figure 10) - The target satellite is within the ionosphere in a position

near occultation. PC falls below the bottom of the ionosphere, HMYM, so

that the ray path =xits and reenters the ionosphere at the points PB. These points

gk
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mv + be solved for iteratively. The path (P1, PZ) i now subd vided into

2 intervals, (PB,Pl) and (PB,P2). Reference profiles for each of these
intervals are computed z: the points HM, which must also be found by iteration.
Tests are made ta determine il the bottomside reference profiles need to be
extended relative to the bottomside at the points PB. This is to ensure
properly ds fined deviation functions in the bottomside ionosphere, as discussed
in the example of case 3. A separate deviation function is defined for each
interval using up to 9 points, spaced at equal earth central angles. An additional
point is placed midway between PB and HM. Two integrations are then
performed, layer by layer, frem PB to Pl, and from PB to P2. The

results of the separate integrations are added to produce a net total electron

content for the path (P1,P2). The flow diagram for case 4 is in Appendix E.

Case 5 (figure 11} — Direct tracking of a satellite from the ground. The

integration interval is {PB, P2). If the satellite is above the ionosphere, P2
corresponds to the top of the ionosphere at 3500 km. If the satellite is within
the ionusphere, P2 coincides with the satellite position. The intersections

at PB and at HM are found iteritively. The reference profile is computed at
HM along the interval (PB, P2),and irom 2 to 7 points are used to define the
deviation function over this interval. For high elevation angles when the earth
central angle subtended by (PB,P2) is less than 3°, gradients are neglected
and the deviation function is set to zero., Integration now proceeds by
quadrature from the first layer up to a maximum of seven layers. The flow
diagrans: for case 5 is in Appendix F.

fias been completed a return is made to subroutine

Once the integration
CORSST. It is here that the one-way range and range rate corrections are
computed and applied to the observations, as specified by equations 23,24 and

4 e
S5,

40,3 N, (reiay) 1 1
2 (= =)
up dwn

40. 3 N; (SST)

2
Fegr (23)

DMR =




DRATE = - DMR (THDELT) - DMR(T)

DELT (24)
OM2 = OM2 - DMR /1000 (Range Observations) (25a)
OM2 = OM2 - DRATE/1900 (Range rate Observations) (25b)
where Ny (relay) = total electron content for the ground to relay
s A , satellite link

N; (SST) = Total electron content for the relay to target satellite
link

¥ {
up
tracling frequencies.

, fdwn . 1,’55,1, = uplink, downlink, and satellite to satellite

DMR =range correction in meters
DRATE = range rate correction in meters/sec

OoM2 = tracking data observation (GTDS notation) in km of range
or km/sec of range rate.

The program flew diagram for subroutine CORSST is found in Appendix A.

Since it takes two successive range observations to compute a range difference,

the range rate correction is set to zero if the {irst observation in any pass

)
P IT P II ETF 1L e s

is a range rate. Furthermore, if the time interval, DELT, between successive

—-T

range rate observations is too large ( > 10 minutes), DRATE is again set to -

zero and the range differencing is reinitialized, as for the beginning of a new

pass. For those cases when the time interval is too small ( € 1 second), i

DRATE is not evaluated, and instead, the last computed value of DRATE

is used.

e e ia”

S A T TR R SR Y T e T T T

e o it X e+ e T ek M _ar o . naim e P e P et s T - B HEw d




s .

L e A el

S, Rl

gt B LT ph e e wa T T

25

C. Accuracy of the Corrections

The ionospheric refraction correction algorithm for szatellite to satellite
tracking data described in this report has not yet been evaluated. Test runs
using tracking data from the ATS-6 to GEOS-3 SST configuration indicate
that the algorithm has been successfully integrated into the GTDS. The
refraction corrections computed by the algorithm, for this configuration,
range from 0.5 to 10 meters for range measurements and from 0.1 to 1.0
cm/sec for range rates, at [requencies near 2 GHz. Although they are of the
right order of magnitude, the corrections appear to be lower than expected
by perhaps a factor of 2 or 3 in the range correction. Some numeric
inconsistencies have also been noted, between the integrations in the ground
to relay link and the relay to target link. Hence, definitive conclusions
regarding the accuracy of the 85T refraction correction algorithm must be put

off pending further testing and evaluations.

Some comments can, however, be made regarding the expected accuracy of
the refraction corrections. The approach of ﬁsing a reference profile, in
conjunction with a gradient [unction, to represent electron density variations
between two points in the ionosphere, was thoroughly tested in a ground
tracking configuration for a satellite above the ionosphere. Though this did

not provide a complete test of the technique, the ground tracking mode did

allow an in-depth evaluation of all the requisite numerical techniques including
quadrature integration through the ionospheric profile, definition of the deviation ;
function and spline interpolation of the deviation function., Furthermore, some
similarities do exist between the two meodes. For example, the longest

path through the ionosphere for ground tracking occurs at 0° elevation when the
path subtends an earth central angle of about 40° . The longest path in the |
S5T mode is about 50° , as measured {rom the point of closest api)roach to

the top of the ionosphere. Although the total path in the SST case is 100° .

for integration purpose it would be treated as two 50° intervals. Hence, the

low elevation angle lines of sight in the ground tracking mode can provide a
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fair approximation of SST g:ometries.

Range corrections in the ground tracking tests were found to agree with ray
trace results tu within 1% (though with some exceptions) when the deviation
function was defined by as few as 7 points. The limiting accuracy in
computing the corrections was entirely dependent on the definition of the

deviation function, and not on the quadrature integration or spline interpolation.

?_““ Hence, with deviation functions defined by using a few more points (up to 9 or 10},
F' it should be possible to achieve the same 1% accuracy in range correction for
any 58T configuration.
; The accuracy of the range rate corrections will vary with the accuracy of the
| ' range corréctions. Experience with ground tracking geometries indicates
that for accuracies of 1% in the range corrections the range rates should be-
v 7 good to within 2% to 4% . Confirmation of this estimate will have to await

further testing.

A more detailed discussion of the ground based evaluation runs can be found

in section V of this report,
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V. EVALUATION OF THE SST REFRACTION CORRECTION ALGORITHM

To date, the refraction correction algorithm as it is implemented in the

GTDS, has not been evaluated, However, the numerical techniques employed

in the algorithm were thoroughly tested in the course of program devel-
opment. The tests were made using a configuration in which a ground sta-
tion tracks a satellite in orbit above the ionosphere (ref.7). At low elevation
angles, ground to satellite ray paths in the ionosphere can be ag large
as 40° of earth central angle. Though this is not as long as some of

the SST ray paths, these low elevation cases traverse enough ionosphere

to encounter substantial density gradients, As a result it, was possible to
confirm the validity of representing the variations in electron density in

the ionosphere as the product of a reference profile and a gradient function.

The ground station at which the evaluation tests were made, was located

at Kashima, Japan (lat = 35795, long = 14077 ) and the evaluations were run
for 12h U.T. on 15 January 1969. The date was chosen to coincide with
solar maximum, and the location was selected because of its proximity to
the geomagnetic equator where electron density gradicents are high. The
ionospheric state for this date and time is illustrated in the world maps

of figures 4., Integrations of total electron content were carried out by

ray tracing along lines of sight selected at 30° intervals in azimuth and for
19 elevations. From 0° to 10° the elevations were incremented in steps

of 1°, from 10° to 30° the elevations were incremented in steps of 5%, and

from 30°to 90° in steps of 15°.

At low elevations, up to 150 density points were computed to define the elec-
tron density variations along each line of sight. The points were generated
at intervals of 20 km along the path, from the bottom of the ionosphere to a
height of 1000 km, then at 200 km intervals from 1000 km to 3500 km. At this
height the ionosphere was cut off. As the line of sight approached vertical

incidence, the total number of generated points decreased to approximately 60.
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The ray tracing program (ref,5) is a double precision arithmetic application

of Snell's Law in spherical form. Numerical integration of the equations,
relating ray bending and electron content to changing local elevation angle
and refractivily, was performed layer by layer through the ionosphere to
provide the total electron content. The integration steps were 1 km in

height below 1000 km and 5 km for heights above 1000 km. Integration of

the density through each step was carried out using a 3-point Simpson's

rule. Electron densities at positions in between the 60 to 150 precomputed

density points were provided to the ray trice program by interpolation.

Below the maximum density the interpolation was of fourth order. Above

maximum density the interpolation was quadratic in the parabolic layer and

logarithmic in the exponential layers. Comparisons with analytic integration

at vertical incidence indicated the ray trace total electron content was

accurate to 1 part in 108,

The ray trace results served as benchmarks for evaluating the gradient

function technique. The main items of interest were to determine the

minimum number of points needed for accurate Gaussian integration through

the gradients and to optimize the calculation of the devixztion function.

A. Optimizing the Tabulation of the Deviation Function

The deviation function & deiiring the electron density gradients between
two points Pl and P2 in the ionosphere is computed at equally spaced
intervals of earth central angle between the t@o points., The number of
intervals to be used is obtained using the empirically determined function,
NOPF. |

48x105 + ECA
H18x105 © 7.5

NOPF =

where ECA is the carth central angle (in dcgreus) subtended by the intervat

{(P1,P2), and H ( in meters) is the height of closest approach to the surface of

the earth of the line segment (P1, P2). The function is integerized in the
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computer so that it returns a fractionless integer. The definition of NOPF

is such that more weight is placed on the lower regions of the ionosphere,
where the gradients are expected to be the most significant. Hence, for

ray paths crossing through or near the peak density, NOPF returns its
maximum value of 8 intervals., For the cases when the point of closest
approach, PC, lies between Pl and P2 (see figure 3), the ECA is measured
from PC, and NOPF is then separately determined for (PC,Pl) and (PC, P2).
This means that as many as 16 intervals may be used in defining & along
some of the longer transionospheric ray paths. Up to two more points

may be added to these, as follows: (1) the point HM, if it lies on the ray path,
and (2) a pointhalfway between HM and the lowest point encountered along

the path. It is therefore possible to have a 5 defined by as many as 22

points {counting end points).

The function NOPF was determined on the basis of comparisons with the
ground based ray tracing calculations. For each line of sight in the benchmark
cases described above, the deviation function was computed at {ifteen

heights. In each case, the reference profile was at the peak electron density.
Different combinations of the heights, varying from as few as 6 to all 15 points,
were then used to define the deviations along the lines of sight. Quadrature
integration produced a set of range corrections which could be compared to

the exact ray trace calculations along each ray path. Some of the results of
these comparisons are presented in Tables 1,2, and 3. The labels in the
tables mean the following:

analytical = analytic integration thru the ionosphere assuming
a homogeneous profile at HM

numerical - Gaussian quadrature integration through the
ionosphere assuming a homogeneous profile at HM

numerical = (least squares) - quadrature integration with
gradients given by 6th order polynomial fitted by
least squares

numerical - (spline) - quadrature integration with gradients
given by cubic spline interpolation through different
sets of points

b
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The range and range difference corrections are in meters. Angle corrections
are in mrad. The percentage difference for each entry is taken relative to

the ray trace result and is given by

computed value -~ ray trace
ray trace

% diff =

The range differences were obtained by differencing the printed value of the
range correction with the value at the previous clevation angle. Below 10°
elevation this meant differencing range corrections over a 1°angle interval,
From 15° to 30° the differencing was over 5° angle interval, and from

45° to 90° the interval was 15°, This exercisc was not meant to simulate
range rate corrections but rather to check for numerical stability in successive

calculations of the range corrections.

The heights at which & was computed were HM-0,75YM, HM-0,58YM,

HM-0.5YM, HM -0.33YM, HM, HM+150 km, HO+H1 , HI, HI4+H2 , H2,
2 2
650 km, 850 km, 1500 km, and 3000 km. The quantities YM, HO,H1, and

H2 are profile parameters as defined in figure 1. In early tests, only one
point was used below HM and the highest point taken was at 1500 km. This
proved to be inadequate to properly define the slopes of & at the end points,
and since the spline interpolation exhibited a marked dependence on the slopes
of & at these points, additional heights had to be included. Therefore the
points at HM - 6. 75YM and at 3000 km were added into the calculation of 5,
for the sole purpose of allowing mere accurate calculations of the first and

second derivatives at HM-0. 58YM .nd at 1500 km.

The combination of points marked 1,2,13,9 and 10 in Tables 1,2 and 3, was

the smallest number of points which still provided a consistently accurate

set of range and range difference corrections at all elevations and all azimuths.
The apparently large relative errors in the range differences seen in Tables 1b,

lc, and ld can be ascribed to the small absolute value of these guantities,
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in that particular azimuthal direction. In other words, percentage errors can

sometimes be deceiving.

The combination 1,2,13,9,10 corresponded to the seven heights HM-0.75YM,
HM-0,58YM, HM, HM+150, 850, 1500, and 3000. It should be noted that this
deviation function,derived at a combination of heights which are not tied

to the reference profile parameters, proved to be numerically more stable than

the deviation functions whose delining heights were dependent on the reference

profile. Furthermore it became evident in the course of this study that

the points which most affected the accuracy of § were the three points

HM-.58YM, HM, and HM+150. This indicates that great care must be taken

to properly define the gradients along that portion of ray path which traverses

the ionosphere within I 150 km of the peak density.

The optimum number of points needed for ground tracking at low elevation
angles is seven. Since SST ray paths may be as much as 20% longer than
such low angle cases, the optimum number of points for the longest S5T

ray paths was therefore set to nine. This seems a reasonable first guess at
the optimum number of points to use in defining deviation functions in SST
geometries, Further work must be done in this area to properly define the

point function NOPF.

B. Optimizing the Quadrature Integration

The initial evaluations of Gaussian quadrature integration of the Bent
ionospheric profile (fig. 1) were performed assuming a homogeneous
ionosphere with no gradients (ref.8) . Under these assumptions, integration
errors of less than 0, 01% at all elevations were achieved using 3-point
Gaussian quadrature in the bottomside bi-parabolic layer and 2 quadrature points in !
each of the six topside layers {(a total of 15 points). Increasing the number
of quadrature points to 4 and 3, respectively, was sufficient to cut the exrrors

to less than 0.00001%.
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In an attempt to reduce the total number of quadrature points, the integration
limits were modified by merging several layers. Thus, instead of integrating
through 7 distinct profile layers, the number of integration layers was
reduced to 3. The integration tests were again repeated using 4 and 5 layers.
The fewer the number of layers, the more quadrature points were required

to obtain accurate integrations. In fact, it took from 25 to 30 quadrature
points in these tests to achieve the 0. 01% accuracies obtained when integrating
thru the seven analytic layers of the profile. Hence, it was resolved that

all quadrature integration of the Bent ionospheric profile would be carried out

between the limits of the ionospheric layers. As expected, in the presence of

gradients, more quadrature points are required to maintain integration accuracy.

The results of the numerical integrations listed in Tables 1,2, and 3 were
all obtained using 4 quadrature points in the bottomside and 3 points in

each of the topside layers. The range corrections are found to agree with .
ray trace results to within 1% relative accuracy. Increasing the number of
quadrature points to 6 and 5, respectively, had litile or no effect on the

range corrections. The changes that were noted were in no case larger than
0.05% in the range and they provided no net improvement to the corrections.
However, the increased number of points did add some numerical stability to
the calculations, for the range difference error were reduced by as much as

a factor of 2 ! The number of quadrature points used in the GTDS formulation
of the SST refraction correction algorithm has been left at 4 and 3 pending

evaluations using real range rate data, at which time these numbers may

be increased as necessary.

One can conclude from these comparisons that in the present formulation,
it is the spline function and not the quadrature integration which sets the

limit on the accuracy of the refraction corrections.
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VI. CONCLUSIONS

Comparison of the refraction correction algorithm against ray trace
calculations confirms the hypothesis that electron density variations in the
ionosphere can be represented as the product of a reference profile and a

: gradient function. The reference profile represents the basic vertical

distribution of electrons while the gradient function modifies the vertical

. distribution to fit the actuatl density along a particular line of sight. The

Er gradient function is computed, in tabular form at specified points, as the
deviation of the electron density from the reference profile density, Up to
twenty two such points may be used to specify the deviations. Values of the

h“ : deviations at points between table entries are obtained by interpolation

: using a cubic spline. The reference profile for any integration path is

; defined at the point at which maximum electron density is encountered.

Integration of the reference profile and deviation function proceeds in
layers corresponding to the layers over which the reference profile

maintains its analytical form. The integration is performed by Gaussian

quadrature using 4 gquadrature points in the bottomside layer of the ionosphere

and 3 quadrature points in each of the topside layers.

The refraction correction algorithm has been successfully implemented into

the GTDS, and it was used to correct 55T range and range rate observations :

P of the GEOS -3 satellite as relayed from ATS-6. At S-band, computed :

' corrections for this orbit varied from 0.5 to 10 meter for range measurements X

and 0.1 to 1 cm/sec for range rates. The accuracy of these values is not
known at present, and in light of certain inconsistencies which have béen

noted in some range correction calculations, not much more can be said

CETETETELT T W T T

about the GEQS refraction corrections at this time.

Ground tracking of a satellite, at low elevation angles and through regions

of large electron density gradients was vsed to simulate SST geometries,

;
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Comparison of al,orithm calculations with ray trace results at these low
elevations indicates that errors of less than 1% can be achieved for range
, corrections and error levels of 2% to 4% can be achieved for range
i differences. The limiting factor in achieving or improving these error levels
[' is the deviation function. From ground based results it is expected that
b 22 points, properly distributed, should suffice to attain these accuracies
for the worst case SST configurations. Confirmation of this will have to

await further evalution studies.
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The electron density profile of the Bent Ivnospheric Model

Figure 1.
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Figure 2. Example of 3 types of SST configurations and 2 types of ground
track configurations. (FPl,P2), (P1,PB), and (PB, P2) are
those segments of the ray paths for which ionospheric

. refraction needs to be computed.
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Figure 5. A hypothetical situ~tion showing the relationship between the profiles N and N.of?

e

and the corresponding gradient function G =N / N ¢ *
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Figure 3. Definitions of some of the important points and
parameters used in obtaining satellite ~-to-satellite ionospheric
refraction corrections. Further explanations and definitions
can be found in the glossary (Appendix H ).
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Fig. 4a. World Map of lonospheric Critical Frequency fOF2 in MHz at 12 h U.T. on 15 January 1969.
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Fig. 4.b. Workd Map of Height of Maximum lonospheric Electron Density Hmax at 12 h UT. on

15 January 1969. Contours Every 20U km.
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Fig. 4.c. World Map of Integrated Vertical Electron Content N, as Predicted by Bent lonospheric Model
in Units of 10" el/sq. meter at 12 h U.T. on 15 January 1968.
Contours Every 5 x 10 el/sgm.
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Radio propagation through the ionosphere.

Figure 6.
R is the radio path, G is the straight line or in

vacuo path

L s e S e L P R et

—— e — . 'ﬂ?‘ﬁ.‘



3500 km

CASE !

Figure 7, Target satellite in the ionosphere above maximum
density layer HM; single integration path from P1
to P2; reference profile at P1,
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Figure g, Target satellite above the ionosphere; single integration

‘path from Pl to P2; reference profile at PC.
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CASE 3
Figure 9. Target satellite in the lowest layer of

the ionosphere (below height of maximum
density FIM); single integration path from Pl
to P2; reference profile at HM.
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CASE 4

Figure 10.

Target satellite near occultatign so that ray

path exits and reenters the ionosphere through
the bottom (HMYM); two integration paths (PB, Pl) P
and ( PB, P2); two reference profiles at HM 3
along each path. ;
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CASE 5

Ground tracking configuration; single integration

Figure 11,
path PB te P2Z; reference profile at HM.
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Table 2b. Azimuth = 90°, Elevation = 10° T

Comparison of ray trace refraction corrections vs. homogeneous ionosphere modified by a density
gradient function. Test case at Kashima, Japan. 12R U.T. on 15 January 1969,
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Table 2c¢. . Azimuth =90°, Elevation = 20° -,

Comparison of ray trace refraction corrections vs. homogeneous ionosphere modified by a density
gradient function. Test case at Kashima, Japan. 128 U.T. on 15 January 1969.
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' AUMERTCAL{SPLINE} -~
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| Table 2d. Azimuth =90°, Elevation =45° )
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b Comparison of ray trace refraction corrections vs. homogeneous ionosphere modified by a density ,
: gradient function. Test case at Kashima, Japan. 12 U, T, on 15 January 1969. :
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.a?‘._*NUH!EB_U!I_-,LQ!M_IBIIUREI ~0. 8633624912001 . 1 =he 840 .0.533191110680 00 -0.3%4 CoS0C25TCTEBC~Co _ _ __=1.229 . ¢/
: o T
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% Table 2e. Azimuth =90°, Elevation = 60° .
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‘ ] Comparison of ray trace refraction corrections vs. homogeneous ionosphere modified by a density ‘
ij gradient function. Test case at Kashima, Japan. 12" U.T. on 15 January 1969. :
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T Comparison of ray trace refraction corrections vs, homogeneous mnosphere modified by a density '

—_— gradient function. Test case at Kashima, Japan. 128 U, T. on 15 January 1969, g
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. gradient function. Test case at Kashima, Japan. 12b U.T. on 15 January 1969, -
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APPENDIX A

SUBROUTINE CORSST

(Flow diagram)
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APPENDIX B

' ﬁ | SUBROUTINE IONSST

3 Flow diagram for Case 1l (Figure 6) ﬂ
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APPENDIX C

', SUBROUTINE IONSST

: Flow diagram for Case 2 (Figure 7)
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SUBROUTINE IONSST

Flow diagram for Case 3 (IMigure 8)
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APPENDIX E

SUBROUTINE IONSST

Flow diagram for Case 4 (Figure 9)
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APPENDIX F

SUBROUTINE IONSST

Flow diagram lor Case 5 (Figure 10
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APPENDIX ¢
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- S SEQUUT-DD DOSN=(SCR.DISP=IMOL,PASS ),

JCL SETUP TO RUN IONOSPIIERIC
CORRECTION IN S5T MODIE

7/72G6IJKKGLS JOB (GS0031311G, loGOOOOanOBOliﬂoZGuNSGLEVEL'Ilol)
7/70MAIN- CLASSSUVERNLETE- - ;
F7%MALN LINES=2S - ' o
77 EXEC POM=PACRUPDLREGIUN=LIBLK ' -

7/75TEPLIB 00 OSN=GOJLM UTIL.LCAULDISP=3HR - -

s w b B

£75YSPRINT DL SYSUUT=A . - B 4

2/7SYSIN DO DUNAME=DATAS -
FIPACKIN OO ULSN=URBLIT,GTDS, RL‘.FORT.DISP-SHR - et -

- i - — e e

7 SPACE= UYL o {Se 1 Yo RLSE) 4UNIT=DISK - e

ZISUBRLIST OO SYSOUTSA,SPACE=(CYL s 405 ) oRLSE D, unnl-lUlSu.)! - G
F1POSUP.OATAS UL ® - R

$SST
{modifications)

$55TCNS
(modificaticns)

/%
Satellite to satellite subroutines 55T and SSTCNS are modified using the

GINAL PAGE 18
g:lw QUALITY

procedure PACKUPD. 'The sebroutines are members of the data set
ORBIT.GTDS. WD VYORT contatning Lthe source decks of the R&D version
of GTDS. This data set s the provedure input data set as spocified by
the DD card PACKIN. The output data set specilied by DD card SEQOUT
carries the temporary name &SCR and contains the updated routines
SST and SSTCNS, It is passed to the next jub step where other subroutines

are added.

/7 EXEC UCLEG o PARM LINK=S LT LISToMAPUVLY s SI2E=(340K¢56K)?,
i/ REGTIINJLINK=35%0K, ReGICNLGO=550K

/7PUSUP LOATAS DU »

Other subroutines to be modificd are muemboers of the data set ORBIT.
GTDS.SORSLINL. FORT containing the source decks of the operational
version of GTDS. In the tirst step of procedure UCLEG they are moditfied
and added to the data set &SCR. In the scecond step of UCLEG the ‘

subroutines in $5CR are comprled and passed to the linkape aditor.
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(new subroutine) 4]
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$CONX,ADD »

{new subroutine) . .‘

$SPLN2,ADD :

(new subroutine) S
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$SPLIN, ADD DRIGINAL PAGE IS

(new subroutine) OE POOR QUALITY i

$TROPOA ! .

(modifications) i :

$TROCGET g

{modifications - new version is substituted) :

$DEVFCN, ADD

{new subroutine) A :

$TROWRK,ADD .

(new subroutine) ‘4
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e f4 SPACE®(CYL,(35+2)) |

- 1760 FT4SFO0L DL SPALE={LYL .1 35,2))
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X . o 18

A Distance between PC and Pl 1 PC lies between P11 and P2 then i

x

A=0. e

GQUAD Subroutine which performs the sumerical intagration of total elec-
tron content (XN'T) between points Pl and P2 using Gaussian
GQUALD integrates by segments having end points

g quadratura,
% defined by the array P,
| GRS Subrantine used 1o rescguence an arvay of up to 20 values in

monotonically increasing arder Irom targest negative value to

arpest positive value, GREFS can opirate on a single array or

; on a pair of arrays. [ one of the arrays contains positional 3
values along (P11, P2), then GRES will detlute redundant points which ;

are located too close ( Hiin) to cach sther. ﬁ

o HIM Heigbt of maximum clectron density, meters above sarth surface. g
v

HMPR Stores previous value of jonosphoerivc profile parameter HM; used PN Qe
when vconverging on height HM, 1+ _f;‘é

A AR :1

- ol 5
O HMYM Height ol hottom of tonosphere; meters above ed rth surface. o I,;
I

HMYMPR Stores previous value of JIIMY M used when converging on height .3
HMYM., g

3

..,%

Numiber of elements in array P specifying the numbaer of segments

P
to be used to numerically integrate electron content between Pl A
and P2,
LEGS Used in integrating clectron content, 1l PG lies between PLand P2
thoen LEGS 2 and the integration sepments are (P1, PC) and (PC, P2).
If £2C lies oubside (B1, P2) then LGS 1 and integration scgment is
(P11, P2).
N Number of elements in arvays X and Y ausad in calenlating electron
density deviation function.
NOFP Number of segments dividing the interval (1, P2) inte equal carth

contral angles.  Used in dete rtnining the number of points N to

be used in delining the deviation function which deseribes the

variations in electron density belween PLand P2 or any other
_ integration path.
I T T Smere e e e e e e R e S e e Lo e . .
‘ 11 add o point whore (1, PL) crovyed MM o e me oo
N-NOF 1 k ( :

I no additional points
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NOPF Function which upon entry returns the number of points needed
to properly define the elcctron density gradienls between any two
points in the ionosphere. The input parameters are a) the earth
vzntral angle subtended by the line segmen! joining the two points
and b} the height above the surface of the earth of the point of
closest approach of the line segment.

P Array of positions along (P1l, P2) marking the end points of the
segments used to numerically integrate the total electron content
between Pl and P2, The points chosen are the intersections of
(Pl, P2) with the heights HMYM, HM and the five heights
delineating the topside exponential layers.

PB Coordinates of intersection of the line of sight and the bottom of
the ionosphere.

PC Point of closest approach of the line (P01, P02) to earth center.

P Takes on value of coordinates of points Pl or P2, as appropriate.
Used to define line segment end point for integration, either
(PC, Pl) or (PC,P2).

gi PO1, P02 Body fixed XYZ coordinates ol end points of line of sight,
Ground to satellite mode:
P01 is the position vector of ground station
P02 is the position vector of sateilite.
Satellite to satellite mode:
P01 is the position vector of target satellite
P02 is the position vector of relay satellite

PT1,PT2 Body fixed XYZ coordinates of intersections of line of sight
and 3500 km sphere.

Pl, P2 Body fixed XY7 coordinates of end points of that segement of the
line of sight (¥01, P02) which lics entirely within the ionesphere.

SIDE Parameter used to distinguish between path segments on opposite
sides of PC. If PC lies between Pl and P2 then for segment
(P11, PC) SIDE=~1 and for (PC, P2) SIDE=+1, If PC lies outside
(P1, P2) then SIDE =+1. .

SPLN2 Subroutine which computes and sets up arrays necessary to perform
a spline interpolation within an array of vlues. Interpolation is
performed by subroutine SPLIN,

Array of pesitions along (P1, P2) at which the denSLty ratios Y are
computed The positiohisTate il ineter® of Uistantce from. PC

aleng (P1,P2).

;)




Total electron content integrated along the line of sight from
POl to PO2.

Array of electron densiiy ratios used in computing the deviation
function which defines the electron density gradients along (P1, P2),
(P1, PC) or (PC, P2) depending on the geometry.,

_DEN (A, 0,h)

Y”DENREF(h) ,'1

Where DEN indicates electron density at position A, 8,h and
DENREF is density of reference profile at height h.

Ionospheric profile thickness parameter YM of lower ionosphere
at the point PB.
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