
A COMPARISON OF HARDWARE DESCRIPTION LANGUAGES

Prepared by

SAJJAN G. SHIVA

Department of Computer and Information Sciences

I

Final Technical Report

October 1978

Grant NSG-8057

"Evaluation of Digital System Design Languages"

George C. Marshall Space Flight Center

National Aeronautics and Space Administration

Huntsville, Alabama

(NASA-CR-157762) A CCMPARISON OF HARDWARE
 N78-33788

DESCRIPTION LANGUAGES
 Final Report (Alabama
A t9 M Univ., Huntsville.) 115 p HC A06/MF
A01
 CSCI 09B Onclas

Z G3/61 33781

NATIONAL TECHNICAL
INFORMATION SERVICE

-

U.S DEPARTMENT OFCOMMERCESPRINGFIELD, VA. 22161 __!

Alabama Agricultural and Mechanical University
SCHOOL OF TECHNOLOGY

HUNTSVILLE, ALABAMA

%jqCE IT '

1
FOUNDEDALANOAHAL

'

its's-a

A COMPARISON OF HARDWARE DESCRIPTION LANGUAGES

Prepared by

SAJJAN G. SHIVA

Department of Computer and Information Sciences

Alabama A & M University

Normal, AL 35762

Final Technical Report

October 1978

Grant NSG-8057

"Evaluation of Digital System Design Languages"

George C. Marshall Space Flight Center

National Aeronautical an& Space Administration

Huntsville, Alabama

Submitted by;

Saj3an G. Shiva

Principal Investigator

i S

FOREWORD

This is a technical summary of the research work con

ducted since October 1, 1977 by the Alabama A & M University

towards the fulfillment of Grant NSG-8057, from the George C.

Marshall Space Flight Center, Huntsville, Alabama. The NASA

Technical officer for this grant is Mr. John M. Gould,

Electronics and Control Laboratory.

II

A COMPARISON OF HARDWARE DESCRIPTION LANGUAGES

Sajjan G. Shiva

ABSTRACT

Several high level languages have evolved over the past

few years to describe and simulate the structure and behavior

of digital systems, on digital computers. The characteristics

of the four prominent languages (CDL, DDL, AHPL, ISP) are sum

marized. A criterion for selecting a suitable HDL for use in

an automatic Integrated Circuit design environment is

provided.

III

TABLE OF CONTENTS

LIST OF FIGURES --VI

1. INTRODUCTION-- 1

2. COMPUTER DESIGN LANGUAGE------------------------------ 5

2.1 Syntax Rules------------------------------------- 6

2.2 Declaration Statements--------------------------- 7

2.3 Continuations----------------------------------- 13

2.4 Comment Cards----------------------------------- 13

2.5 Operators--------------------------------------- 14

2.6 Micro Statements -------------------------------- 16

2.7 Switch Statements------------------------------- 17

2.8 Labeled Statements------------------------------ 17

2.9 End Statement----------------------------------- 18

2.10 Card Format------------------------------------- 18

2.11 Translator-------------------------------------- 18

2.12 Simulator--------------------------------------- 19

2.13 Design Examples --------------------------------- 24

2.14 Extensions -------------------------------------- 37

3. INSTRUCTION SET PROCESSOR ---------------------------- 42

3.1 Syntax Rules ------------------------------------43

3.2 Operators --------------------------------------- 44

3.3 Arithmetic Representations ---------------------- 44

3.4 Descriptions------------------------------------ 45

3.5 Behavioral Expressions-------------------------- 51

3.6 Qualifiers-------------------------------------- 59

3.7 ISPS Definitions-------------------------------- 60

3.8 Predeclared Entities ----------------------------61

3.9 Reserved Keywords and Identifiers--------------- 62

3.10 The Complete Minicomputer----------------------- 63

3.11 ISPS Simulator---------------------------------- 66

IV

4. HARDWARE PROGRAMMING LANGUAGE-- 69

4.1 Syntax Rules------------------------------------ 70

4.2 Declarations------------------------------------ 71

4.3 Control Sequence-------------------------------- 71

4.4 Combinational Logic Units----------------------- 72

4.5 Comments-- 73

4.6 Simulator--------------------------------------- 73

4.7 Design Example ---------------------------------- 74

5. DIGITAL SYSTEM DESIGN LANGUAGE----------------------- 82

5.1 Syntax Rules------------------------------------ 83

5.2 Declaration Statements-------------------------- 83

5.3 Operations-------------------------------------- 85

5.4 IF-Values Clause-------------------------------- 88

5.5 Identifier-------------------------------------- 89

5.6 Operator Declaration---------------------------- 90

5.7 State Declaration------------------------------- 91

5.8 Automaton and System Declarations--------------- 92

5.9 Advanced Features ------------------------------- 96

5.10 Translator-------------------------------------- 96

5.11 Simulator--------------------------------------- 96

5.12 Design Example---------------------------------- 98

6. COMPARISON-- 101

7. CONCLUSIONS--- 104

REFERENCES -- 106

V

LIST OF FIGURES

2-1 Serial Twos Complementer---- ----------------------- 25

2-2 A Sequential Circuit-------------------------------- 30

2-3 Variable Timer-------------------------------------- 35

2-4 CDL Description of Variable Timer------------------- 36

2-5 A Typical Cell of the Ripple Counter---------------- 38

2-6 A 3 Stage Ripple Counter---------------------------- 38

4-1 Multiplier Block Diagram---------------------------- 75

4-2 HPSIM Program Input File for the Multiplier--------- 76

4-3 HPSIM Output Listing for the Multiplier------------- 76

4-4 HPCOM Output-- 79

4-5 HPCOM Output-- 80

4-6 Multiplier-- 81

5-I DDL Operators--------------------------------------- 86

VI

1. INTRODUCTION

Any digital system can be described in the following six

levels of complexity:

1) Algorithmic level which specifies only the algorithm

used by the hardware for the problem solution;

2) Processor, memory, switch.(PMS) level which describes

the system in terms of processing units, memory com

ponents, peripherals and switching networks;

3) Instructional level (programming level) where the in

structions and their interpretation rules are specified;

4) Register transfer level where the registers are system

elements and the data transfer between these registers

are specified according to some rule;

5) Switching circuit level where the system structure con

sists of an interconnection of gates and flip-flops and

the behavior is given by a set of Boolean equations; and

6) Circuit level where the gates and flip-flops are replaced

by the circuit elements such as transistors, diodes, re

sistors etc.

Logic diagrams, Boolean equations and programming lan

guages have been used as the media of description. The

complexity of logic diagrams and Boolean equations increases

as the system complexity increases and are not suitable for

describing the hardware to a computer in a design automation

environment, although the recent advances in computer graphics

might make the input of logic diagrams to a computer easier.

The common programming languages do not have all the features

required to describe the hardware. Hardware description

languages (HDL) evolved as a solution. An HDL is similar to

any other high level programming language and makes the hard

ware designer's task easier by providing a means of:

-1

-2

1) Precise yet concise description of the system;

2) Convenient documentation to generate users manuals,

service manuals, etc;

3) Inputting the system description into a computer, for

simulation and design verification at various levels of

detail;

4) Software generation at the preprototype level, thus

bridging the hardware/software development time gap;

5) Incorporating design changes and corresponding changes

in documentation, efficiently;

6) Designer/user (teacher/student) communication interface

at the desired level of complexity.

Several HDL's have been reported [1-30]. The translators

and simulators are also written for some of these HDL's. The

tendency has been to invent a new HDL to suit a perticular

design automation environment, basically due to the difficulty

in transporting the translators and simulators on to the new

computing systems and extending these to accomodate the re

quirements of the new design environment. Attempts to stand

ardize HDL's are underway.

Hardware Description Languages are designed to describe

both the structural and behavioral characteristics of a dig

ital system, to a computer. The fundamental properties of

hardware systems and the art of hardware design process

dictate the essential features of an HDL. For an HDL to be a

useful design tool it has to possess the following proper

ties:

1) It has to have a natural way of describing the paral

lelism, nonrecursive nature and timing issues in digital

hardware.

2) The structure and control parts of the hardware should be

easily described and preferably the description of the

two parts be separated so that a user interested in the

-3

behavior of the system need not concern himself with the

structure of the system. This also provides the flexi

bility to use hardware, software or firmware for the con

trol part, whichever is economical.

3) The language should serve as a medium at all levels of

system description.

4) The design changes should easily be incorporated into

the description and corresponding translation should be

done preferably without a complete retranslation. This

feature will be useful for an interactive environment.

5) The language should be easy to learn and remember, to

accommodate the software shy, hardware designer, although

the hardware engineer can not neglect the software as

pects anymore, due to the impact of microprocessors. The

design system should be portable, thus necessitating the

the translators and simulators of HDL be written in

higher level languages.

6) Two approaches to systems design are often pronosed:

The bottom-up approach where the elementary components

are combined to form more complex ones and the top-down

approach where the system is decomposed into collection

of subsystems until the elementary components are re

ached. In practice, the designer may choose a combina

tion of the two approaches. The structural detail at any

design level varies from designer to designer. The HDL

should allow the designer to control the amount of detail

during each design phase.

7) The description of the LSI and MSI modules as system com

ponents should be straight forward, so is the inclusion

of newer modules. If the system is partitioned by the

designer to accommodate standard modules, this partition

ing should be retained by the HDL translators and simula

tors.

All the above requirements are not met by any one HDL now

available. The solution has ,been to design a new HDL to suit

-4

an individual design environment. AHPL, CDL, DDL and ISP have

been the most popular languages, partly due to their early

introduction as general purposes HDL's. These languages were

developed in university environments and are used in teaching

digital logic design. New features are being added to these

languages to make them more versatile. Well tested transla

tors and simulators are available for these languages. A

bibliography of the literature on HDL's is provided in [8].

The characteristics of CDL, ISP, AHPL and DDL are sum

marized in Chapters 2,3,4 and 5. A comparison of these

characteristics to select a language suitable for use in an

automatic integrated circuit design environment is provided in

Chapter 6.

2. COMPUTER DESIGN LANGUAGE (CDL)

Computer Design Language was proposed originally by Chu

[1-3). A translator and simulator were written for a subset of

this language [4]. Several modifications are made to, this

translator and simulator [5,6]. The present version [7] is

implemented on IBM 370/115.

CDL describes the structural and functional parts of a

digital system. The structural components like memory, re

gisters, clocks, switches, etc. are declared explicitly at the

beginning of the description. The functional behavior of the

element are described by the commonly used operators and user

defined operators. Valid data paths are declared implicitly

whenever there is a data transfer. Both parallel and sequent

ial opeations are allowed. Synchronous operations require a

conditional test for an appropriate signal. The language is

easy to understand and is highly readable.

All the variables in a CDL description are global. The

system description can be only at one level, and there is no

subroutine facility in CDL, thus making it unsuitable for

describing hardware in a modular fashion. Gate delays and

asynchronous operations can not be adequately described. It is

not possible to include special hardware components like in

tegrated circuits in a description. However, its simplicity

of structure and its portability resulting from the FORTRAN

implementation, have made CDL a popular language. The

descripton of CDL Syn- tax and Semantics as accepted by the

present version of tran- slator and simulator is presented.

-5

-6

2.1 SYNTAX RULES

Variables - variable names may contain 1 - 4 characters, the

first of which must be alphabetic. The remaining characters

may be alphabetic or numeric. Embedded blanks or special

characters other than "t"-f ,"*[,I/"r"t."""III?," I$ I, and "="

are ignored. Variable names longer than 4 characters may be

used and will appear on the listing, however their signific

ance to the Translator is limited to the leftmost 4 charac

ters. Some examples of variable naming follow:

Valid:

Name CDL Name

A1BC A1BC

ABbCD ABCD b is blank

A1#CD A1CD

STARTi STAR

START 2 STAR

Invalid:

Reason

IB3D Nonalphabetic 1st character

AB.CD contains special character

Reserved words - The following may not be used as variable

names:

IF, THEN, ELSE, DO, CALL, RETURN, and END.

Constants - Constants may be entered in three forms subject

to the following conditions:

Form Max. Digits

Binary 32

Hexadecimal 8

Decimal 9

-7-

Hexadecimal constants are denoted by a colon (:) preced

ing the significant digits. Binary constants are preceeded by

a semicolon (;).

In general, for numeric constants, blanks and special

characters other than those listed in the discussion of vari

able names are ignored. Characters outside the permissible

set for the form used are also ignored. Some examples of

numeric constants follow:

Valid Value

1234 123410

:100F 100F

1 6

,110011
 1100112

;12b101 11012

Invalid Reason

A345 1st character not numeric

(will be treated as variable

name)

2.2 DECLARATION STATEMENTS

The following devices are permitted in CDL:

Registers Terminals

Sub registers Lights

Memories Bus

Decoders Clocks

Switches

The syntax for a declaration statement is:

DEVICE, list

where the type of device begins in column two.

-8-

Mixed notation for devices and other keywords is shown in

the following paragraphs. The first four characters are

significant and must not contain embedded blanks or special

characters. The following table relates keywords and accept

able abbreviations:

Keyword Abbreviation

REGISTER REGI

SUBREGISTER SUBR

MEMORY MEMO

DECODER DECO

SWITCH SWIT

TERMINAL TERM

LIGHT LIGH

BUS BUS

BLOCK BLOC

CLOCK CLOC

Note that the comma trailing the device name is

mandatory.

REGISTER DECLARATION:

REGI,A(0-2) ,R,F(6-1) ,G(O-5)

This declares the following:

W Z_17_F615 1413 121 0 111 2345

A R F G

SUBREGISTER DECLARATION:

SUBREGISTER, G(OP)=G(0-2),F(OR)=F(6-4)

The subregister is always used with a register name, and

it refers to a part of that register. All referenced regis

ters must have been previously declared.

-9-

A general tendency is to give two subregisters the sane name.

e.g. SUBR,R(OP)=R(0-3),A(OP)=A(0-3)

This is incorrect!

A correct statement of the above would be:

SUB,R(OPR)=R(0-3), A(OP)=A(0-3)

MEMORY DECLARATION:

MEMO, M(R)=M(O-77,0-10), N(J)=N(0-6,3-1)

M and N are the names of the memories; R and J are the

corresponding address registers which should have previously

been declared; 0-77 and 0-6 represent the limits of the

addresses of the words in the memories; 0-10 and 3-1 represent

the order of the bits of each word.

DECODER DECLARATION:

A decoder is a logic network which translates each value

of the contants of a register to one and only one of the out

puts;

DECO, K(0,1)=F,L(0,15)=G(2-5)

This declares the following:

K0 KI L0 L1 L15
I J I T

LOGIC LOGIC

F G

Where F and G have been previously declared.

-10-

CLOCK DECLARATION:

A clock may be specified for event synchronization.

CLOCK, P(2)

This declaration defines three clocks, P(0),P(1),P(2). The

impulse diagrams are assumed to be the following:

CLOCK TIME 1 1 1 2 2 2 3

II I I!
I III

P (0) I I ' I I H-P(O) I

I II!
I I

P(2) I III I I
aI I I
II I [I

LABEL CYCLE 1 2 3 4 5 6 7

The time intervals between the impulses given by the

clocks are the same. A clock may be referenced only in the

expression of the label.

During execution, a clock cycle is designated on the

simulation printed results as clock time.

SWITCH DECLARATION:

SWITCH,STRT(OFF,ON),SENS(P1,P2,P3)

The switch names are STRT and SENS the positions for STRT

are OFF and ON and for SENS they are P1, P2, and P3 where OFF

and P1 are the respective initial positions.

In later references a switch is either checked for one of

its positions, or set to one of its positions. When a switch

is checked for a position, it has the form:

NAME(POS) e.g. SENS(P2)

when setting a switch to a position:

-11

NAME=pos e.g. SENS=P2

NOTE: A maximum of 10 switch positions is permitted.

TERMINAL DECLARATION:

A terminal statement can rename a terminal or describe a

logic network.

REGISTER, A(0-2)

TERMINAL, BO=A(0)',B1=A(1) ',

B2=A(2)'

or using subscripted terminals

REGISTER, A(0-2)

TEPINAL, B(0-2)=A(0-2)

Both of these describe the following:

B
 B1 B2

0 1

A

Referring to the decoder example:

TERMINAL, ADD=L(0),

SUB=L (),

JUM=L(2),

etc.

LIGHT DECLARATION

LIGHT, RUN(ONOFF), FINI(OFF,ON)

The lights RUN and FINI, each have two positions, with

the initial position being ON for RUN and OFF for FINI.

A reference where a light is checked for its position,

-12

has the form:

NAME (POSITION) ex: RUN (ON)

When setting the position of a light, the following

format is used:

NAME=POSITION ex: RUN=OFF

BUS DECLARATION

BUS, INTERNAL (15-0), DATA (7-0)

This declares INTERNAL bus with 16 lines and DATA bus

with 8 lines.

BLOCK DECLARATION:

In order to avoid the repeated writing of a group of

microstatements, the block statement and do statement are

created. The block statement declares the name for a group of

microstatements. Whenever these microstatements are declared

in an execution statement, a do statement is used to call

them.

Example: Serial Complement

REGISTER, T(1-5),A(5-1)

SWITCH, START(ON)

CLOCK, P

BLOCK, SERCOM(A=A(1) '-A(5-2))

/START(ON)/T=20

/T(1)*P/ DO/SERCOM,T(1,2)=O1

/T(2)*P/ DO/SERCOM,T(2,3)=01

/T(3)*P/ DO/SERCOM,T(3,4)=01

/T(4)*P/ DO/SERCOM,T(4,5)=O1

/T(5) t P/ DO/SERCOM,T(5)=0

NOTE: DO is followed by a slash'/' and then the BLOCK name.

-13-

Another example of Block Declaration:

BLOCK, PAR(A=B,R=0) ,CYC (A=A.COUNT.,

IF (A.EQ.1)THEN(R=)ELSE(R=0))

All of the microstatements following the block names (PAR,CYC)

will be executed when DO/PAR or DO/CYC are called.

2.3 CONTINUATIONS

ONLY declaration statements may be continued onto other

cards by placing a '1' in column one of the subsequent cards.

Label statements and switch statements may be continued on

subsequent cards by leaving column one blank.

Declaration and Label statements are limited to 250

terms, where a term is considered to be:

a device name, a variable name, a constant, or any of

the following special characters:

"1+11,"f-"I,"11*"1,"' ,1 1t I$,, ," i(, , or if "i

Example:

REGI,A(0-2),

1 B(0-6),

1 C(6-1)

/K*A(2)/ B=B.COUNT.

C=C.COUNT.

2.4 COMMENT CARDS

A comment may be made by placing a 'C' in column one. The

comment will be ignored by the translator. Comments are not

continued in the conventional manner, rather a 'C' in column

-14

one of every subsequent card will continue the comment.

Example:

C SIMULATION OF A SECOND

C GENERATION COMPUTER

2.5 OPERATORS

STANDARD OPERATORS

The following standard operators are available in CDL:

SYMBOL FUNCTION

(Apostrophe) Complement

(Equal Sign) Replace

- (Dash) Concatenate

+ (Plus Sign) Logical OR

* (Asterisk) Logical AND

.EQ.

.NE.

EXAMPLE

A'

A=B

A-B

A+B

A*B

A.EQ.B

A.NE.B

EXPLANATION

Contents of A are

replaced by contents

of B.

Contents of A & B are

placed side by side.

Bit-wise OR (A and B

must be conformal).

Gives '1' if A and B

are equal.

Gives '1' if A and B

are unequal.

SPECIAL OPERATORS

Special operators can be established by the user through
a separate subprogram. It is referenced by a symbolic name

delimited by periods.

Example:

*OPERATOR, X(1-4).COUNT.

// IF (X(4).EQ.O)THEN(X(1-3)-1)

ELSE (IF (X(3).EQ.O)THEN (x(1-2)-1-0)

ELSE (IF(X(2).EQ.O)THEN (X(1)-1-0-0)

ELSE (X(1)'-0-0-0))),RETURN

END

The first line is a heading line of the subprogram:

*OPERATOR (or *OPER) specifies the type of the subprogram, it

is followed by a comma and by the name of the first argument,

the name of the operator enclosed in a pair of dots, and by

the name of the second argument if the operator is binary. If

the arguments represent more than one bit, the bit addresses

must follow the argument's name in parenthesis, e.g., S(1-4).

The subsequent lines are headed by a blank label, i.e.,

two slashes. This indicates an immediate execution of the

operations when the operator is called. Following the blank

label, there must be an expression, which may be a conditional

expression, giving the result of the output terminal. The sub

program must be ended with a RETURN and an END statement.

RESTRICTIONS:

The following special operators are built in for Simula

tion and they may not be defined by separate subprograms.

A.ERA.B performs the exclusive OR of A and B

A.ADD.B performs the algebraic sum of A and B, an

overflow bit is discarded

A.SUB.B performs the algebraic sum of A and the com

plement of B, an overflow bit is discarded

A.COUNT. Adds one to A, an overflow bit is discarded

A.LT.B gives one bit of output: 1 if the conditions

A.LE.B algebraically less than, less or equal

-16-

A.GE.B greater or equal, greater than, are satis-

A.GT.B fied: 0 if the conditions are not met

2.6 MICRO STATEMENTS

An UNCONDITIONAL MICROSTATEMENT consists of a variable

representing a storage element, the REPLACE OPERATOR and an

expression.

Example:

A=1,B(1,3-5)=C*D+E(2,0-2)

NOTE: 	 A given device or portion of a device must not appear

on the left of a 'replace by' operator more than once

in any set of microstatements to be executed during a

given label cycle.

A CONDITIONAL MICROSTATEMENT has the following forms:

(a) 	 IF(expression) THEN (microstatements)

IF (expression) has the value '1' then the opera

tions indicated by the (microstatements) will be

executed.

Example:

IF(A.EQ.B)THEN(R=0)

(b) 	 IF (expression) THEN (microstatements) ELSE (micro

statements) if the (expression) is true then the

operations indicated by the (microstatements) im

mediately following THEN will be executed, other

wise the operations indicated by the (microstate

ments) immediately following ELSE will be executed.

Example:

IF (C.NE.D)THEN (R=0)ELSE (R=1)

-17-

Conditional statements may be nested in order to form a

very powerful decision-making capability. An example of a

nested appears in section 5.2. Note that each of the nested

IF's must be enclosed in parentheses as shown in the following

generalized example:

IF (exp 1) THEN (microstatements)

ELSE (IF(exp 2) THEN (microstatements)

ELSE (IF(exp 3) THEN -(microstatements)

ELSE (IF..........

ELSE (microstatements))))..)

2.7 SWITCH STATEMENTS

The Switch Statement has the following form:

/NAME(POSITION)/microstatements

where Name corresponds to a declared Switch Name.

Example:

SWITCH, STRT(OFF,ON), SENS(Si,S2,S3)

/STRT(ON)/A=O,F=1,SENS=S2

The indicated microstatements here would not be executed

since STRT(ON) is FALSE.

2.8 LABELED STATEMENTS

The Labeled Statement has the following form:

/LABEL/microstateinents

where;

LABEL = expression * clock

RESTRICTION;

The expression must not include any clock reference.

Example:

/K(O)*P/ A=B, B=A

2.9 END STATEMENT

The physical end of the description of a design is in

dicated by the word END.

2.10 CARD FORMAT

HEADING CARD

The main design and the user's defined operators must be

preceded by heading cards as follows:

Col. 1-5 *MAIN

or

Col. 1-...*OPERATOR...

where no embedded blanks are allowed. The Operator card

should contain the arguments and the name of the operator.

OTHER CARDS

Declaration cards, Labeled Statement cards, and the End

Card may be punched anywhere in columns 2-72. Blanks may be

used freely.

2.11 TRANSLATOR

The translator accepts the logical design written in CDL

from punched cards. It translates the design into a form

-19

suitable for simulation. This consists of various tables and

a pseudo program called Polish String. If the $TRANSLATE card

is punched PRIN in columns 14-17, the various tables and Po

lish String will be printed.

The Translator is called by a special control card having

$TRANSLATE (or $TRANS) punched in col. 1-10. This card is

followed by the deck of cards describing the logical design

using CDL. The Translator remains in control until a new

control card with $ in column 1 is read in. A typical deck

set-up should appear as follows:

$TRANSLATE ---Translator is called

*MAIN

END

*OPERATOR,... ---Translator is in control

END

$SIMULATE ---Simulator is called

Simulator is in control

2.12 SIMULATOR

The Simulator consists of 5 parts: Loader, Output,

Switch, Simulate, and Reset routirnes. The Loader accepts test

-20

data from punched cards and stores them into memory or into

specified registers of the designed computer. The Output rou

tine handles the printout of the contents of the chosen regis

ters, memory words and position of switches during the simula

tion. The Switch routine simulates the operation of the

manual switches. The Simulate routine actually executes the

test program. Reset routine reinitializes the Simulator.

The execution of the test program is controlled by a loop

which is called the Label Cycle. During each label cycle, the

following steps are taken: (a) If a manual switch opera- tion

occurs, the corresponding executable statement for the switch

operation is carried out. (b) All label values are evalu

ated. The activated label, i.e., the label expressions having

the value TRUE, are accounted for. (c) The microstatements of

the activated labels are carried out in two steps. First, all

values to be stored in various registers and memory words are

evaluated and collected. Then, the collected values are

stored one after the other. (d) It is checked whether the

simulation should be terminated.

If the Simulation is terminated, the Reset routine can be

called and another set of data can be inserted as a test

program.

Example: The following is a demonstration of a simula

tion with 2 test programs.

$TRANSLATE

*MAIN

END

CDL Design cards

*OPERATOR, ...

END

$SIMULATE

*OUTPUT

-21

*SWITCH

*LOAD

*SiM...

*RESET

*LOAD

*SIM...

LOAD ROUTINE

The Loader provides the storing of test programs. The

data cards should use Col. 2-72, blanks may be inserted

anywhere. Only declared full registers and memory words with

constant addresses can be loaded with data. The format of the

data cards is as follows:

Data loaded into a register: REG = d

Data loaded into memory words M(L)=d

or M(Li-Ln)=di1d 2 , ... n

or M(L 1-)=dl,d 2,.. .,dn

Where REG is the name of the register whose contents must be

set to the value d. M is the name of the memory and L1 de

notes word addresses. In the first case d is loaded into

memory word M(L). In the second case, the words d1-dn are

loaded into memory words with addresses L to Ln consecutive

ly. In the last case, the last address is defined by the

number of numbers punched.

A data card may contain any number of lists separated by

commas. There is no provision for a continuation card, thus

each data card must start with the name of a register or a

memory in column 2.

Example:

*LOAD

R1=O,AC=20,SEP=72,M(O-3)=1,2,3,4,M(77)=345

M(10-)=70,71,72,73,74,75,76,77,100

-22-

OUTPUT ROUTINE

The output routine provides the printed output of the

contents of specified registers, memory words and positions of

switches during the simulation. The following format is

required:

Col. 1-7 *OUTPUT

LABEL

Col. 11-15 or

CLOCK

Col. 16-21 (n,m)=

Col. 22-72 list

Where the label or clock punch specifies the type of output

required, n specifies the start of output and m specifies the

frequency of the output. The list consists of the names of

the registers, switches and memory words whose contents should

be printed.

During the simulation, the output may occur at every mth

label cycle or at every mth clocktime depending on the type,

Label or Clock in Col. 11-15. If the design happens to have

one clock, then the two types coincide.

Example:

*OUTPUT CLOCK (1,10)=RR,START,M(0),M(777),

AC,MQ,M(10),OVER

The list may be continued on the next card(s) provided that

column 1 is left blank on the continuation cards. The output

of all listed devices is given in hexadecimal, regardless of

input format.

SWITCH ROUTINE

Manual switch settings are initiated by the Switch rou

tine. The necessary information is given on *SWITCH cards.

For each switch setting, a separate *SWITCH card is necessary.

It has the following format:

-23-

Col. 1-7 *SWITCH

Col. 11-12 L,

Col. 13- NAME=POSITION

Where L specifies the Lth label cycle before which the switch

operation occurs. The NAME corresponds to the name of the

switch with POSITION as one of its positions declared. During

the simulation, an output will occur after every switch

setting with a heading stating the interrupt.

SIMULATE ROUTINE

The actual simulation starts by calling the Simulate

routine using the control card with the following format:

Col. 1-4 *SIM

Col. 11- n,r

Where n and r are the terminating conditions, n is the maximum

number of label cycles allowed, r is the allowed maximum

number of consecutive label cycles such that the same group of

labels is activated in the CDL program.

Example:

*SIM 400,3

RESET ROUTINE

The Reset routine reinitializes the Simulator to its

initial conditions. It is called by a control card with the

following format:

Col. 1-6 *RESET

Col. 11- (options)

The options may be one or more of the following terms

separated by commas:

OUTPUT, resets the output requested previously, it

is assumed that another *OUTPUT card will be

given

SWITCH, resets the manual switch operations re

-24

quested it is assumed that another *SWITCH

card will be given

CLOCK, resets the counter of the clock cycle

CYCLE, resets the label cycle counter and the clock

cycle counter

Example:

*RESET CYCLE,OUTPUT

The reset card then followed by other OUTPUT card, pos

sibly other LOAD card with data, and by a SIM card.

CDL translator and simulator also have an extensive error

diagnostics capability.

2.13 DESIGN EXAMPLES

The design process using CDL for a serial two's comple

menter circuit is illustrated [8] in Figure 2-1. A similar

design example is provided in [9]. Several CDL descriptions

can be found in [10].

Figure 2-2 shows a sequential circuit along with the CDL

description and simulation results.

A CDL description of a variable timer circuit shown in

Figure 2-3 is provided in Figure 2-4. CDL is highly suitable

for this level of description.

Basically, the circuit consists of a devide by 3600

circuit R along with a counter CT that counts the number of

times R goes to zero. CT is compared with the input setting

IN. IF IN equals CT an output pulse is given and the START

flip-flop is reset to disable the clock. ABORT input clears

-25-

I I I

i , R REGISTER, R (1-6)

2 3

C REGISTER, C (2-0)

2 3. 0

S REGISTER, S

L LIGHT, L (on, off)

SLTCH, SV (on,off)
SW

CA) (B)

(A) Storage structure

(BI CDL description

Figure 2-i Serial Twos Complementer

-26-

SW (on)• ,, " M PAGE IS

c -o Q OR QUALITY

S-0, L- OFF I

3

LR-R()-

N,
RxR (6

4

S

I YES

NoJ L - ON 8

END

Figure 2-1 (C): Twos Complementer Sequence Chart

I T 	 REGISTER, T (1-3)

1 2 3

clock P 	 CLOCK, P

(D)
SW (on)

T=1002

*I

Figure 2-1 (D) Control elements

(E)State diagram

L. 	 T=010 j (F)CDL description of control

sequence

C46

C=6

ST=001_2 PAGE, IS

\ Z tOOR QUALITY

END

(E)

/SW (oN) / T * 1002

/T(1)*P / T 0102

/T(2)*P / IF (C=6) THEN (T 0012) ELSE (T1002)

/T(3)*P./ T 0002

(F)

STRANSLATE fDRTG.NAJ: PACK ?'
---- MA IN......

.TQUA.TYC STORAGE _______ ___
KEGISFE-, R 1'1-%C-7 - ,s
LIGHT,L[ON OFF) I

C CONTROL

--EG STER-TVY=3-

CLOCK, P --

CVROCESSOR

/SW(ON)/T=;IOOC=OL=OFF,S=O

ELSE--.R=(R,(6)'-R(1I-5) I

J
-/?T-''- {T'tJ0I}E C-S vtm- tr;I,-
P/-'F-(C-r.E QJt-rr-O }-TtlT-h

/T (31*P/T= ;003, L=N

ENO

$S IMULA TE

- UT-PU-TttOt-K-itrt) R c -TitL

*SwIrTH
-- -,-LOAD

R=5

SI:

gure- 2-1

1,qSW=ON

20 6

-
(G- -C-DL--omp te-Deck--Set-UP

-29-

DurPur 'If SI 'tULArIJN

OIUGiNAL PAGE Lj

SWITCH INTERRUPT *t~t

S. 	 ON

R = ..05 C .. 0 S =...O T =...4 L = OFI-

LABEL CYCLE I 	 TRUE LABELS CLUCK CYCLE I
/T(II|P/

-

R =.22 - C :.. S		 - :.; - --- ='OFF .

LABEL CYCLE 2 TRUE LABELS CLOCK CYCLE 2
/T (2) 11/

R = ..22 C = I.i S = ... l = ... 4 L = OfI

LALIEL CYCLE ----------- TRUE LABELS- CLOCK CYCLE 3

/I11)*P/

R = ..JI C = . .. 2 S = ... I r = ... 2 t = OFF

LABEL CYCLE 4 TRUE LABIELS 	 CLOCK CYCLC 4

/TL2)*P/

R = .. 31.--.......2. .S = .. 1 T-= .,4-------L-= OFF

LABEL CYCLE 5 	 TRUE LABELS CLUCK CYCLE 5
/T 1)*P/

R=..iS C ... 3 S .. I r =...2 L = U F

LABEL CYCLE T. TRUE LABELS CLCCK-CYCLE --- 6
/1(2)*P/

R = ..18 C .. 3 S= ... I t ...4 L = OF

LABEL CYCLE 7 TRITE LABELS CLUCK CYCLF 7
/r(11*P/

R ..2C--------- ;.-4--- S -- T = .;.2-- L- OFf

LAOEL CYCLE 8 TRUE LABELS CLOCK CYCLE 8

IT(2)*P/

R = ..2C C ... 4 S = I 1 ...4 L = 01-I

LA'3[L CYCLE--- 9- . TRUE- LABELS --.------ CLUCK CYCLE 9
/Tll)*P/

R = .36 C = ... 5 S = ... 1 = ... 2 L = OFF

LABEL CYCLE 10 TRUE LABELS CLUCK CYCLE 10
/TI2}*PI

R =- .. 36- ;.5-. ------------------------------...-----	-.	 OFF -

LABEL CYCLE 11 	 TRUE LABELS CLOCK CYCLE It

/Tll*P/

R = ..38 C ...6 S .. 1 .2 =UFF

LA8EL CYCLE -12--- TRUE LABELS --- CLOCK CYCLE 12

/T(Z)*P/
R = .. 30 C = ... 6 S = ... 1 T ... I L = UIF

LABEL CYCLE 13 TRUE LABELS CLUICK CYCLE [3
/T3)P/

R = C 6 S- 1 0 L = (.. B ..	 I 	

444* SIMULATION TrR'INATED - NO TRUE LAIELS
*RESET CYCLC,CLUCK
,LOAD

R=21

Figure 2-1 (H): Simulation Results for R=510

-30-

F OPJGINAI0 PAGt IS

-f-OF- PORp QUAJItX

'4J;

It I
I

Figue 22 (A: ASequntil Cicui

-31

, , , ORIGINAj PAGE LS

M2 -- (X3 + M4) x 2 (XI-S 1) OFlkOOR QUAJEx

M3 = (X1 * S) x 2 . 3 X5

M4 = (M5 * S + X2) (X 4 + M2) (X 3 + X4)

M5 = X1 + (X 2 X 4)X3

Figure 2-2 (B): Boolean Equations for the Circuit

-32

$TRANSLATE

*MAIN

SWITCH, START(ON]

REGI, FF1l-6), M2,M4,M5, X(I-6),ST(O-1)

CLOC, P

TERM, TI=M2+M4,M3=(XtlJ*X(6)'*FF{I)*FF(2p1*FF(4),

1 T3=M2+M3, T4= M2+M3+M4

/START!ONJ/ST=1

/P*ST I/FF=X,ST=Z

/P*ST(O)/M2=KFF(2)+FF(6))*FF(1)*(X{1*)X(6))I,

M4= (M5*X(U6)+CFF(1)I')*(FF(3)+FF(5))*

IFFIZ)+FF(4)},

M5=Xfl)+(FF(1j*(FF(2})'*(FF(4))'*(FF(6})'),

ST=1

END
$SIMULATE
*OUTPUT
*SWITCH
*LOAD

CLOCKCL,1)=FFM2,M4,M5,X,ST,START
1,START=ON

M2=IM--,M5=1

*SIM 25,2

END OF DATA ON INPUT

NOTES: S is renamed as X(6) in the above description.

Modules 1-6 of the circuit, are named FF (1-6).

Figure 2-2 (6): CDL description of Sequential Circuit

-33

rim0pOU PUT-Oh -imu IO-0 __e

STAR ON ... FF .. OO0 -- M$ -... = 1 .. $5 1 X- = ..o0- ST = ... 1 -SJA(

LABELCTYCLCE - -TRUE LABELS CLOCK CYCLE 1
__P*ST (1)

--- , =2.. = Sc..j S.....2
.. 1 . x... T.-...
s=t***t****a**ts*.*s4=***t=a******=t**===***.fl**flt t,.* *tSfl**t*** 4 *.4t=fl* =ttt..t==

LABEL CYCLE 2 TROE-LABELS CLOCK CYCLF 2

/P'ST(Ol/

FF =..OO $2 - M4O4 ...-. 0 45 = ... O A = ..oJ ST = -...I SIR- =
 -

LABEL CYCLE 3 TRUE LABELS CLOCK CYCLE 3
/P*ST([1/

FF -4..Q-. 0 ZM4-...O M45 _0. X = ..00 ST .. 2 STARjt
=**

LABEL CYCLE 4 TRUE LABELS CLOCK CYCLE 4
/P*ST(O)I

FF = .OO Ma ... G $4 = ... 0 M5 = .0 X = ..O0 ST = . STAR = ON

LABEL CYCLE 5 TRUE LABELS CLOCK CYCLE 5
/P ST[IJ /

FF .-- 8 ...M2 0 M4 = ...O 5..0 X = ..00 ST=...2 STARON

-ABEL CYCLE 6 _ TRUE LABELS CLOCK CYCLE 6

- IP/STLO)/

FF =O0 2 ... 0 M ... 0 M5 . 0. X = .00 ST . I.. STAR ON

~~ ~ ~ ~ ~ ~ ~~~.- ~ ~ 4***l**4***4***4*4***** ** .*4.*...*.......**..

-LABEL CYCLE--s7 TRUE-LABELS - --.- CLUCK CYCLE 77
/P*STL1)/ -

FF ..O00 M2 ... a M = .. O 5 =.0 X - .-OD ST =...2 STAR ON

LABEL CYCLE B TRUE LABELS CLOCK CYCLE a
- - /P*ST(O)/

FF .. OO 2 ... 0 M .. 0 M ... O X =.00 ST ._ STAR 0ON

LABEL CYCLE 9 TRUE LABELS CLOCK CYCLE 9

/P*ST[I3/

FF .00 Z .. O M4 = ... O M5 .0 X = .00 ST .. 2 STAR = ON
.******s**.*.**.*........ *****4****f***...**
****** *4*..........44

LABEL CYCLE 10 TRUE LABELS CLOCK CYCLE 10

/p*ST(O)/

FF - ..00 M2 .a M4 .. 5 =. X .O00 ST STAR =ON

LABEL CYCLE 11 TRUE LABELS CLOCK CYCLE 11
/P*ST1I/

-- fF-- O NZ =...O0 =4..- M5= .. aO X = .. 00 ST = . STAR ON

LABEL CYCLE 12 TRUE LABELS CLOCK CYCLE 12

/P*ST(O)/

FF = .00 NZ ... M4 .. 0 MS= .. 0 X = .00 ST .1 STAR ON

13

LABEL CYCLE =- TRUE LABELS - CLOCK CYCLE LB

- Z- IP*ST41)/ -

FF = .. 0 M2 = .. O M4 - *.0 $5 = .. 0 X = ..00 ST = ... 2 STAR = ON

LABEL CYCLE 14 TRUE LABELS CLOCK CYCLE 14
/P*ST(OI/

FF .OO M2 .O0 M4 = .. O0 M5 = ... XK .. O0 ST = -..STAR TJ

LABEL CYCLE 1s TRUE LABELS CLOCK CYCLE 15

/PRSTtI)L

FF - .. 0Q - 2 °oO0 $4 - ---- a ... = ..00 ST .. 2 STAR =M4 ON

LABEL CYCLE,: 16 . - :TRUE LABELS., LOCK CYCLE 16

- 4- - 'M... o- X ST -.- ON- .0.0.- - .. O08 - STAR

LABEL CYCLE 17 - TRUE LABELS CLOCK CYCLE 17/P*STfIfl
FF -.O. 4 2...0 M. .. 0 M5 ...O X - ..00 ST .. 2 STAR= ON

LABEL CYCLE 1B -- - TRUE LABELS CLOCK CYCLE 18

i--------------uPSTion r f/r t

__FESO--14.-. _-M00..- MS - -X . ._OOs ST .1. STAR. ON

Figure 2-2 (D): Simulation results for the Sequential Circuit

-34-

LABEL CYCLE 20 TRUE LABELS
/P*STIO)/

CLOCK CYCLE 2.

FF =..00 $2 * o.0 M4 - .. O hI .. O X = .. 00 aT = *fi i = t,Uh

LABEL CYCLE 21 TRUE LABELS CLOCK CYCVE - 21

FF = ..
IF1PT(1)/

O0 M2 ... 0 M4 = -.. 0
*tt****t*t~l...............**att..************

5 . J ..Jj
********* ...

ST ...
**.*t..*

STAR
...

ON

LABEL CYCLE 22 TRUE LABELS CLOCK CYCLE 22
/P*ST(tO/

FF - .00 72 . -.. 0 M ... 0 M5 C) ST STAR = ON

LABEL CYCLE 23 TRUE LABELS CLOLK CYCLI 23

FF = .. O MZ a .. 0 $4 . M, .0 X -..U3 ST ... 2 STAR ON

/P*STIOI/

FF = .. 00 2z .. O MA
 O M5 0 X = -.03 ST L STAR a ON-.

LABEL CYCLE 25 TRUE LABELS CLOdK CYCLE----25.

/P*ST(1)/
FF - ..00 Mz2 .. 0 4 ... Q M5 ... 0 X =.. 00 ST a.Z STAR *ON

** SIMULATION TERMINATED AFTER REQUESTED LABEL CYCLES

Figure 2-2 (D): (continued) Simulation results for the

Sequential Circuit

QRIGINA. PAGE IS
MS POQIa QUALITy

-35

121

_ 1

CLOCK

COUNT ICLEAR

- DETECT 3600

tCOMPAREi

IN

ABORT OUT

INPUT

Figure 2-3: Variable Timer

6

-36-

STRANSLATE

*MAIN

REGI, R(12-1), CT(1-6), IN(1-6), START

CLOCK, P

SWITCH, ABORT (ON,OFF)

LIGHT, OUT(ON,OFF)

/ABORT (ON)*P/ R=3575, CT=O, START=1, OUT=OFF,

ABORT=OFF

/START*P/ R=R.COUNT., IF ((R(5)*R(10)*R(11)*R(12)).

EQ.1) THEN (R=3575, CT =CT.COUNT.),

IF (CT.EQ.IN) THEN (OUT=ON, START=Q)

END

$SIMULATE

*OUTPUT CLOCK (1,1)=R, IN, ABORT, OUT, START

XSWITCH 1, ABORT=ON

*SWITCH 2, START=ON

*LOAD

IN=5

*SIM 3600,600

Figure 2-4: CDL description of the Variable Timer

http:CT.EQ.IN

-37-

R, CT and START. START input sets START. In the CDL des

cription, R is counted up from 3575 rather than zero, to save

some simulation steps.

Each cell of R (or CT) consists of an 1-0 edge-triggered

flip- flop F, a multiplexor M and a Nand-gate and the ith cell

(i=1,12) is shown in Figure 2-5.

There is no direct way of describing the internal opera

tion of this ripple counter in CDL. A description for a three

stage counter is shown in Figure 2-6.

This description implies a parallel operation, according

to CDL convention, rather than the ripple action of the

counter.

2.14 EXTENSIONS

Some extensions to the language are reported. Bara and

Born [6] report a version of CDL with the following addi

tions:

ARRAY REGISTER

ARRAY REGISTER, AR(0-2,1-4)

implies
 1 2 3 4

0

1

2

1

-38-

MULTIPLEXOR

FRMRlTRIGGER

RR to
i

Ri+

P

Trigger = (Ri 1) P + (Clock) P

FIGURE 2-5: A TYPICAL CELL OF THE RIPPLE COUNTER

CLOCK

MM 14M

RR 2R3

P

/CLOCK/IF (P.EQ.1) THEN (R=0) ELSE

(R(1) = R(1)', IF (R(1).EQ.1) THEN (R(2) = R(2) ,

IF (R(2).EQ.1) THEN (R(3) = R(3)'))

FIGURE 2-6: A 3 STAGE RIPPLE COUNTER

-39-

MULTIPLEXOR (DATA SELECTOR)

EX: REGISTER, SELECT (0-1)

DATA SELECTOR, DTA(SELECT)= DTA (TO-T3)

implies

0 1

SELECT

TOO--

Terminals

Ti -

Declared

T2 -

Previously

T3

PARTITION

Devides a bus into partitions.

BUS,DATA(0-7)

PARTITION, DATA(OP) = DATA (0-2)

-40-

STACK MEMORY

STACK MEMORY, Name (level, Mar) = Name (size, word

length)

STACK MEMROY, STK (3, MAR) = STK (0-3, 0-2)

Implies

0

MAR

0 1 2

Rl-einnt 1

Element 2

Element 3

IOFLAG

IOFLAG,R declares a 1 bit flag R. It can be set (=1)

or reset (=O). When set, the OUTPUT is enabled for the label

cycle: when reset, the OUTPUT is disabled.

Following are some features of purdue extended CDL [5]

simulator:

SET (M,7) places a 1 in a single bit register M

at the current time plus 7 cycles.

CLEAR (M,7) opposite to SET.

COMP (M,7) complement M after 7 cycles.

EXIT is used to terminate simulation from

design specifications.

/ERROR*P/RUN<0,EXIT

-41-

Both the extensions have a complete set of operators to

include decrement, circular shifts, shifts, ADD, SUB, MPY and

DIV.

3. INSTRUCTION SET PROCESSOR (ISP)

The ISP notation was first introduced by Bell and Newell

[11] as a formalism to describe digital systems at the pro

gramming level. The original notation was used mainly for

publication purposes. A subset of the notation, ISPL [12] was

implemented and was used in the design automation and archi

tecture evaluation applications [131. The present version ISPS

is an extension of ISPL and is implemented on PDP-10 compu

ters. A translator [14] and a simulator [15] are available.

ISP was designed to provide a precise description of

computer systems as seen by the programmer. The description

consists of four main parts: a declarative section, an in

terpreter, an instruction set description and an effective

address calculation. The structural components are described

in the declarative section. The effect of each instruction on

the processor, registers, control flip-flops and memory forms

the instruction set description. The interpreter section de

scribes the fetch and execute cycles. The effective address

part describes the processing of the address part of an in

struction.

The language is suitable for the behavioral description

at high levels, where timing information is absent. It allows

parallel and sequential operations. Modular descriptions are

possible at higher levels. The lower level description of the

system is difficult because of the inability to describe de

tails. The Syntax and Semantics of ISPS are described below.

-42

-43

3.1 SYNTAX RULES

VARIABLES (IDENTIFIERS)

Identifiers must start with a letter, can contain A-Z,

0-9 and "." and can be upto 80 characters long.

CONSTANTS

The following examples illustrate the formats allowed:

NOTATION

4095

BASE

10

LENGTH

13

(bits)

one bit longer
than needed

"1000 16 16

#1000 8 12

'1000 2 4

'110? 2 4 ? is don't care

12? 10 UNKNOWN

COMMENTS

A comment is indicated by a '!' Everything from 'I' to

the end of the line in which it appears is- treated as a

comment.

ALIAS

Alias is an alternate name given to an identifier or a

constant. It follows a "\" in an identifier declaration. It

is a comment, not a usable name in the description.

ex: IR\INSTRUCTION REGISTER

'0110\MASK

#204\AND INSTRUCTION

-44-

NAME-PAIRS (RANGES)

A name-pair is an abbreviated notation for a list of

consecutive constants.

ex: 3:5 is equivalent to 3,4,5

7:2 is equivalent to 7,6,5,4,3,2

4,5:7,8 is same as 4,5,6,7,8

3.2 OPERATORS

The following is the list of operators in increasing

order of precedence:

transfer-op :: E I= I <=
or-op ::= ORI XOR

and-op :: AND I EQV
relational-op ::= EQL I NEQ I LSS I LEQ GTRI

GEQ I TST

add-op :: + I =

mult-op ::* / IMOD

shift-op ::= SLO I SLi I SLR I SLD 1 SRO 1 SRi I
SRR I SRD

concat-op ::@

unary-op ::= NOT I + I

<- and = are equivalent and perform a logical transfer, while

<= performs an arithmetic transfer. Other operators are self

explanatory.

3.3 ARITHMETIC REPRESENTATIONS

Four standard arithmetic representations are available:

Twos - complement, Ones - complement, Signed - Magnitude,

Unsigned - Magnitude. The selection of the representation in

the context of an operation is indicated by,

-45

{TC}, fOCI4 {SMI or (us}.
ex: Y 4Y+{TC} 2 Twos complement addition.

3.4 	 DESCRIPTIONS

ISPS defines the structure and behavior of the components

that make up a digital system. The structure of the components

is defined in terms of the carriers used to transfer and store

information. The behavior of the components is defined in

terms of the sequence of operations that transform values con

taned in the carriers and produce new values.

ISPS-declaration ::= e-declaration

e-declaration ::= e-head I

e-head := e-body

ISPS-definition

An ISPS-declaration is the minimal parsing unit. An

entity declaration (e-declaration) defines a hardware com

ponent which might have a structure and exhibit some behavior.

The entity head defines the structural properties. The entity

body, if present, defines the behavioral properties.

ISPS-definitions are described in 3.7.

ISPS 	 ENTITIES -- STRUCTURE

The structural part of an ISPS entity is defined by the

entity head

e-head

(e-head):

::= identifier fc-set fs-set

fc-set :: nil
() I

fs-set ::=

(e-head-LIST')

nil I
bit-fs-set

word-fs-set bit-fs-set

-46

word-fs-set :: [name-pair]

bit-fs-set ::<>

<name-pair>

The identifier distinguishes the entity from other entities

defined at the same level or scope.

FORMAL STRUCTURE SETS

The formal structure set (fs-set) defines a carrier. The

carrier may consist of a single register or an array of regis

ters (a memory). Syntactically, there is no difference be

tween the structure of a storage carrier (e.g. a register) and

the structure of a non-storage carrier (e.g. a bus). A multi

register carrier specifies the dimensions of the array inside

'P and ']' (the 'P and ']' brackets indicate the presence of

an addressing mechanism whose implemtnation is not specified).

The dimensions of each register are specified inside '<' and

'>'. The elements of the name-pairs (the dimensions) specify

a naming convention for the 'words' and 'bits' of a carrier.

An empty bit-fs-set (<>) stands for a single, unnamed bit.

Examples

Ir\Instruction Register<0:31>

Mp[0:255]<7:0>

The first example above, defines a 'register' (IR) whose

structure consists of 32 bits (0,1,...30,31). The elements of

the name-pair 0:31 specify the name of the bits. The second

example shows the declaration of a 'memory' (Mp) whose struc

ture consists of 256 words, each 8 bits long. The words are

named 0,1,2,..255 while the bits inside each word are named

7,6,...,1,0.

The examples show that the bit and word names can be

specified in ascending or descending order. In fact, the

name-pairs do not even have to begin or end on 0, as the

following example shows:

-47

vma\Virtual. Memory. Address <13:35>

The VMA register is declared to be 23 bits long, the bits

named as 13,14,...,34,35.

FORMAL CONNECTION SETS

The formal connection set (fc-set) defines an interface

for connecting entitles. In ISPS, the default implementation

of a fc-set is by means of storage units which are loaded when

the entity is activated. This default can be overruled and

the interface implemented as a non-storage unit:

Examples:

ALU(Areg<0:15>,Breg<0:15>)<0:16>

F(REG[0:7]<0:7> {REF})

The first example defines the structure of a 'functional unit'

(ALU) which consists of two interface registers (AREG<0:15>

and BREG<0:15>). By default, any activation of ALU implies

the storing of some values into the interface registers. After

this initialization takes place, the interface registers can

be read or written inside the body of ALU without affecting

the registers from which the initial values came. This is the

default mechanism for "parameter" passing in ISPS.

The second example presents a different type of "para

meter". Its interface (REG[0:73<0:7>) has been tagged with the

string "[REF]" to indicate that the interface is not a storage

unit, local to F, but that it is a REFerence to some external

entity to be specified at the activation site. When F is

activated, no transfer of data takes place. REG is simply

"connected" to whatever entity was specified at the call site.

This connection remains in effect throughout the length of the

activation.

-48-

ISPS ENTITIES -- BEHAVIOR

e-body ::= BEGIN section-LIST ENDI

BEGIN b-expression ENDI

e-head-LIST@

section ::= section-header e-declaration-LIST

SECTION=HEADER ::= ** identifier **

An entity body (e-body) defines the behavior of an

entity. The most general case of an e-body consists of a list

of sections (section-LIST), each consisting of a section

header followed by a list of declarations (e-declaration-LIST)

local to the body. This type of body is bracketed by BEGIN/

END pairs which can be substituted by '(/') pairs. However,

BEGIN can not be matched by ')' and '(' can not be matched by

END.

Example:

Mini

BEGIN

Mp\State

MP\Primary.Memory[255:0]<11:0>,

Pc. State

PC\Program.Counter<7:0>,

L\Llnk<7:0>,

ACC\Accumulator<11:0>,

External.State

I0.Reg<7:0>,

Run<0>,

Instruction.Format

IR\Instructon.Register<11:0>,

Address.Calculation

Z\Address.Register<7:0>:=BEGIN END,

Instruction.Execution

Fetch := BEGIN END,

Execute := BEGIN END,

Instruction.Cycle

Icycle := BEGIN END,

END

-49-

The example depicts the body of the declaration of an

entity, in this case a minicomputer. The declarations inside

the sections can be as large or complicated as one wishes to

make them. They can, in fact, have bodies with local sections

to any level of nesting.

Declarations are grouped in sections as an abstraction

mechanism. Application programs which manipulate ISPS

parse trees will require specific sections to be present

while possibly ignoring others.

Simpler bodies are defined by a b-expression (a behav

ioral expression) which can be thought of as a sequential or

combinational network depending on the nature of the opera

tions used and the implementation thereof. As in the previous

case, the BEGIN/END bracketing the body can be substituted by

1(1/1),

Example:

Z\Address.Register<7:0>

BEGIN

DECODE I.Bit => !test the indirect bit

BEGIN

Z<-Adr, ! I.Bit = 0

Z4-Mp[Adr]<7:0> ! I.Bit = 1

END

END

Notice the use of the carrier associated with Z (Z<7:0>)

in the computation of the effective address. Algol-like scope

rules are used in ISPS and non-local carriers can be accessed

from inside a body (e.g. I.Bit, Addr, and Mp).

The third type of e-body is defined as the concatenation

of one or more carriers using the @ operator. This is useful

when defining alternative structures and naming conventions

over previously declared carriers.

-50-

Examples

IR\Instruction.Register<15:0>,

OP\OP.Code<2:0> :=IR<15:13>,

I.Bit\Indirect<> :=IR<12>,

Adr<11:0> :=IR<11:0>,

I0.Bits<4:0> :=IR<12:8>,

Special <7:0> :=IR<7:0>,

MQ\Multiplier.Quotient<0:11>,

ACC\Accumulator<0:11>,

DACC\Double.ACC<0:23> :=Acc<0:11>@MQ<0:11>,

CCodes[0:3]<> :=PSW<15:18>,

In the above examples, several fields of IR have been

defined as if they were independent registers (i.e. each field

has its own name, with an optional alias, and a structure or

dimension specification). The bit (or word) names used on the

left hand side of a field specification are independent from

the bit or word names used on the right had side. Both sides

of a field definition must, however, specify structures of the

same size (# word * # bits/word). The equivalence between the

bits of the right hand side and the bits in the left hand side

is obtained by aligning the leftmost bit of the leftmost word

of the left hand side with the leftmost bit of the leftmost

word of the right hand side. Thus, bit 4 of IO.BITS corres

ponds to bit 12 of IR, bit 3 to bit 11, bit 2 to bit 10, etc.,

etc..

In the second example, DACC<0:23> is defined as the con

catenation of two registers, MQ and ACC. The registers ap

pearing on the right hand side of a register definition might

in turn be defined as subfields or concatenations of regis

ters. Definition chains of this sort can be of arbitrary

length.

The last example shows how different structures can be

-51

mapped on top of a previously declared register. CCODES is

defined as an ARRY of 4 1-bit registers. Thus, one can access

the bits in the field PSW<15:18> using two alternative struc

tures (i.e. an array of 1-bit registers or a 4-bit field). The

equivalence of bits is as follows: The leftmost bit of word 0

of CCODES corresponds to bit 15 of PSW. Since this is the

only bit of word 0, we continue on word 1, whose bit corres

ponds to bit 16 of PSW, etc., etc..

3.5 BEHAVIORAL EXPRESSIONS

b-expression ::= s-action

s-action ::= p-action-LIST NEXT

p-action ::= action-LIST;

A b-expression defines the behavior of an entity. b-ex

pressions are built by specifying the sequence of transforma

tions and transfers of values stored in carriers. Simple

b-expressions (actions) can be combined to build larger b-ex

pressions by activating them in sequence (s-actions separated

by NEXTs) or concurrently (p-actions separated by '').

A<-1; B<-2 NEXT C<-3

In the above example the first two transfers are executed

in parallel and then, after their completion, the third one is

performed. No synchronization must be assumed between paral

lel actions. Actions separated by ';' are considered to be

'order independent' and can be executed in any fashion, even

sequentially. In particular, this means that one can not

assume rules like: "all right-hand sides are evaluated first

an then all transfers take place". The only requirement is

that parallel actions are completed before proceeding beyond

the following NEXT separator.

-52-

ACTIONS

action ::= c-expressionl

identifier := action1

control-actioni

conditional-actionl

BEGIN b-expression END

Actions are used to build complex behavioral expressions

ranging from a primitive c-expression, to conditional or

unconditional control flow operations, to a complex b-expres

sion inside BEGIN/END pairs. The latter type can be used to

build arbitrarily nested b-expressions. As in the case of an

e-body, BEGIN and END can be replaced by '(' and ')'.

...NEXTa<-; B<-2 NEXT (C<--3 NEXT D4--4); E<-5 NEXT...

A<-1 and B<-2 are executed in parallel. Then, the

sequence C<-3 followed by D<-4 is executed in parallel with

E<-5.

Actions may be labelled to allow the description of com

plex activities, including selection and premature termination

or reinitialization of actions.

x := BEGIN END

The BEGIN/END brackets used to build compound actions can

be optionally followed by a quoted-text or block name to

provide the reader with some degree of visual identification

of the levels of nesting:

X :=

BEGIN I this is the outer block f

BEGIN I this is the inner block(

END I this is the inner block I

-53-

END I this is the outer block I

The quoted-texts attached to matching BEGIN/END pairs

must be identical.

CONDITIONAL ACTIONS: IF and DECODE

conditional-action ::= IF c-expression => action)

DECODE c-expression =>BEGIN

numbered-action-LIST' END

numbered-action actionI

name-pair := actionl

[name-pair-LIST'] := action)

OTHERWISE := action

Two operators, IF and DECODE, are used to specify condi

tional actions. If the value of the c-expression associated

with an IF operation is non-zero the action following the =>

operator is executed, otherwise it is skipped.

IF Acc EQL X => PC(-PC+2

IF Z => BEGIN END

In the first example, the operator EQL defines a 1-bit

result (0 stands for FAULSE, 1 for TRUE). -Depending on the

value of this bit, PC is incremented (1) or not (0). The

second example shows that in general, the c-expression does

not have to be 1 bit long. The action following the '=>' will

be executed if ANY bit in the Z carrier is 1 (i.e. ZOO).

The c-expression associated with a DECODE operator is

evaluated and its value used to select one of the actions

specified in the numbered-action-LIST' following the => opera

tor. The c-expression is treated as an unsigned value. As in

previous cases, the BEGIN/END brackets for the list of alter

natives can be enclosed in '(' and ')'

-54-

DECODE OP<1:0> =>

BEGIN

ACC<-O, !OP<0:1> is 0

ACC<-ACC+M[Z], !OP<1:0> is 1

M[Z]<-ACC, !OP<1:0> is 2

PC<-M[Z] !OP<1:0> is 3

END

When the DECODE operation specifies a large number of

numbered-actions, it is sometimes difficult for a reader to

associate the numbered-actions with the values of the c-ex

pression which select them. In ISPS one can explicitly write

the value of the c-expression associated with the action as a

label-lake action selector:

DECODE OP<1:0> =>

BEGIN

0 : ACC<-0, ! IF OP<1:0> is 0

2 : M[Z]<-ACC, ! IF OP<l:0> is 2

1 : ACC--ACC+M[Z] ! IF OP<I:0> is 1

3 PC<-M[Z] ! IF OP<1:0> is 3

Notice that in the example we have altered the order of

the actions. If explicit action selectors are used as in the

example, one is free to write the actions in any order. For

instance, when describing the instruction decoding in a com

puter, one might wish to group all the ADD instructions (half

word, full word, double word, floating point, etc), followed

by all the SUBTRACT instructions, etc. even though the

operation codes are not consecutive.

A constant used to select a numbered-action identifies

the value of the c-expression associated with the action. A

name-pair used to select an action identifies a set of values

of the c-expression associated with the action. The operator

OTHERWISE is used to define a default action if the outcome of

the c-expression is not covered by the other action-selectors.

-55-

If a constant appears in more than one action selector (either

alone or as part of a @ [name-pair]) only the first action

associated with the constant is executed (i.e. exactly one

action can be executed as a result of a DECODE operation).

Another use of the explicit selectors is given below:

Decode F =>

BEGIN

0 CR*-M[S],

1 : CR<-CR+M[S],

2 := ACC<- -M[S],

3 : M[S]<-Acc,

4;5 = ACC-ACC-M[S],

6 IF ACC LSS 0 =>CR<-CR+1,

7 STOP),

END NEXT

Notice that there are two operation codes (4 and 5)

associated with the Subtract operation.

It is a bad practice to mix actions with implicit and

explicit action-selectors. The syntax allows it to handle the

situation in which a designer is not yet sure of the proper

constant action-selectors to use and wants to go ahead devel

oping the ISPS description.

The basic rule to remember is that ALL outcomes of the

c-expression must be acconted for. OTHERWISE must be used in

some action if the number of actions is less than the number

of possible values of the c-expression.

CONTROL ACTIONS: REPEAT, LEAVE, RESTART, and RESUME

control-action ::= REPEAT action!

LEAVE identifierl

RESTART identifierI

RESUME identifier)

-56-

An action that must be executed repeatedly (a loop) can

be described by the use of the REPEAT operator preceding the

action:

ICycle !PDP-10 Instruction Cycle

BEGIN

REPEAT

BEGIN

IR<-Memory[Pc] NEXT

Pc4-Pc + 1;VAM*IR<13:35> NEXT

EA<-VMAo<18:35> NEXT

IExecute()

END

END

A looping action can be terminated by the use of the

LEAVE operator as the following example shows:

I\Indirect <>:= VMA<13>,

X\IndeX<0:3>:=VMA<14:17>,

Y\Offset<0:17>:=VMA<18:35>,

VMA\Virtual Memory Address<13:35> : !PDP-10

BEGIN

REPEAT

BEGIN

IF X=>Y4 Reg [X]+Y NEXT ! add the index register

DECODE I =>

BEGIN

0:= BEGIN VMA<13:17>4-0 NEXT LEAVE VMA END,

1:= VMA<-Memory[YI<13:35> !indirect address

loop

END

END

END

The LEAVE operator is not limited to loop termination. It

-57

can be used to terminate the execution of any labelled action.

The LEAVE operation must occur inside the action to which the

label refers. It causes control to terminate that action, and

continue normally, as if the action had been completed (any

actons initiated during the execution of the action to be

terminated and not yet completed are also terminated by the

LEAVE operator).

The following 'procedure' searches the first 512 words of

Mp for KEY:

S(Key<0:3>)<>

BEGIN

INDEX<-O NEXT

REPEAT

BEGIN

IF MP[Index] EQL Key =>(S<- NEXT LEAVE S)

NEXT

INDEX <-INDEX+1 NEXT

IF INDEX EQL 512 => (S<-O NEXT LEAVE S)

END

END ! end of S

The reactivation of an executing action can be forced by

using the RESTART operation to indicate a termination of the

action (as in the LEAVE operation) followed by a re-execution

of the action. The RESTART operator must occur inside the ac

tion to be restarted (the pseudo LEAVE operation does cause

termination of all actions initiated by the action to be re

started and not yet completed).

S(Key<0:3> <>

BEGIN

INDEX<-O NEXT

-58-

Si 	 BEGIN

IF INDEX EQL 512 => (S<-i NEXT LEAVE S) NEXT

IF MP[INDEX]NEQ Key => (INDEX<-INDEX+ 1 NEXT

RESTART Si) NEXT

S<--i NEXT

END

END 	 ! end of S

The RESUME operator provides another mechanism to termin

ate the execution of an action. As shown above, LEAVE is

followed by the label of the action to be terminated. RESUME

is followed by the label of the action whose execution is to

be continued. As with LEAVE, the RESUME operation must occur

inside the action to which the label refers. Any actions in

itiated during the execution of the action to be resumed and

not completed are terminated. The following example shows the

use of RESUME.

Interpreter

BEGIN

..... NEXT

Icycle() NEXT

IF Error EQL 1 => BEGIN..... END NEXT

END,,

Icycle

BEGIN

PC-PC + 2 NEXT

IR<-Rword(PC) NEXT

DECODE IR<0:3> =>

BEGIN

ACC<-ACC + Rword(IR<4:15>)

END,

Rword(Addr<0:11>)<0:15>

BEGIN

-59-

IF Addr GTR Upper.Bound =>

(Error<- 1 NEXT RESUME Interpreter) NEXT

Rword- MP[Addr]

END,

In the example, procedure Interpreter activates procedure

ICYCLE which fetches, decodes, and executes the instructions.

In doing so, ICYCLE activates procedure RWORD which is used to

access the memory (MP) of the machine. RWORD checks that the

memory address is in bounds before performing the access op

eration. If a boundary error is detected, a flag (ERROR) is

set and the rest of the operation of ICYCLE is aborted (by re

turning to procedure Interpreter, at the point where it acti

vated ICYCLE). It is up to the 'resumed' procedure (INTERPRE-

TER) to take the proper corrective action, if any. Notice

that we could have let ICYCLE handle the error by terminating

RWORD with 'LEAVE RWORD'. However, this would have meant that

the ICYCLE procedure had to check the error flag (ERROR) after

every call to RWORD. Depending on the size or complexity of

the description, this might be undesirable.

Beware that these operators affect the sequence of opera

tions and might be meaningless or unimplementable when used in

parallel actions, e.g.:

X := (...NEXT.. .B-C;LEAVE X NEXT ...)

is ambiguous since no order of evaluation can be imposed on

B<-C: LEAVE X

When 'LEAVE X' is executed, the transfer 'B + C' may or

may not have been executed.

3.6 QUALIFIERS

The qualifier set is used to specify lists of attr

-60

bute/value pairs which are used to define, amplify or modify

the semantics of an ISPS description.

Example:

ALU (F<0:3>, A<0:15>, B<0:15>) <0:15> [SPEED:

250, MODULE: SN741811 :=

3.7 ISPS DEFINITIONS

ISPS-definition ::= 	 DEFINE identifier : q-seti

DEFINE identifier := quoted-text i
DEFINE identifier := constantl

MACRO identifier m-parameter-set

:= quoted-textj

REQUIRE ISP quoted-text

m-parameter-set ::= nil[

()I

(identifier-LIST)

The reserved keyword DEFINE is used to name a q-set, a

constant, or a quoted-text.

Define ROM := {MODULE: SN74187;SPEED: 401,

Define MSIZE := 255,

Ml[0:MSIZE]<0:3> {ROM),

The reserved keyword MACRO provides a simple mechanism to

declare test strings that are to be substituted for instances

of the identifier in the ISPS description. Optional parameters

can be specified by enclosing a list of identifiers inside

parenthesis. These "formal parameters" are matched by corre

sponding 'actual parameters' at the expansion site.

The reserved keyword EQUIRE.ISP is used to signal the

expansion of a an external file inside the ISPS description.

The quoted-text describes the file name. The expansion takes

-61

place at the point the REQUIRE.ISP construct appears:

REQUIRE ISP ZMINLISP[L410-MB25J1,

3.8 PREDECLARED ENTITIES

The following entities are predeclared in the language:

UNDEFINED

UNDEFINED is a predeclared entity which has some struc

ture and exhibits some behavior, both unknown to the user.

UNDEFINED<0:7> defines a carrier, 8 bits long, containing an

undetermined value. Any number of "undefined" bits can be ob

tained by specifying a program bit range.

UNDEFINED() activates an entity with undetermined side

effects. No assumptions about the values contained in ANY

carriers can be made after an activation of UNDEFINED. Activa

tions of UNDEFINED are guaranteed to terminate after some un

determined amount of time.

UNPREDICTABLE

UNPREDICTABLE is a predeclared entity which does not have

a structure but which exhibits a totally unpredictable behav

ior. It is different from UNDEFINED() in that the latter pre

serves the flow of control. An activation like UNPREDICTABLE()

is not guaranteed to terminate or that upon termination, con

trol will return to the activation site.

NO.OP

NO.OP is a predeclared entity which does not have a

structure and whose behavior has no side effects. NO.OP() can

be used as a null action.

-62-

STOP

STOP is a predeclared entity which does not have a

structure and whose invocation, STOP), terminates the

activation of all entities, including the invoking action.

DELAY

DELAY is a predeclared entity which does not have a

structure and whose invocation, DELAY(c-expression), does not

have side effects. DELAY terminates its activation after a

number of application-defined time units given by the value of

the c-expression.

WAIT

WAIT is a predeclared entity which does not have a

structure and whose invocation, WAIT(c-expression), continu

ously evaluates the c-expression. WAIT terminates its acti

vation when the value of the c-expression is not equal to 0.

3.9 RESERVED KEYWORDS and IDENTIFIERS

AND

DECODE

DELAY

EQL

EQV

GEQ

GTR

IF

K when attached to a constant

LEAVE

LEQ

LSS

M when attached to a constant

MOD

-63-

NEQ

NEXT

NOT

NO.OP

OC when used as qualifier

OR

REF when used as qualifier

REPEAT

RESTART

RESUME

SLO

SL1

SLD

SLR

SM when used as qualifier

SRO

SRI

SRD

SRR

STOP

TC when used as qualifier

TST

UNDEFINED

UNPREDICTABLE

US when used as qualifier

XOR

WAIT

3.10 THE COMPLETE MINICOMPUTER

An example description.

Mini :=

BEGIN

** Memory State **

-64

MP\Primary Memory[0:255]<0:11>,

** Processor State **

PC\Program Counter<0:11>,

ACC\Accumulator<0:11>,

IR\Instruction Register<0:11>,

OP\Operation<0:2> := IR<0:2>,

IBIT<-->Indirect Bit<>:=IR<3>,

ADR<-->Address<0:7>:=IR<4:11>,

** Effective Address Calculation **

Z\Effective Address<0:7>

BEGIN

DECODE IBIT =>

0 Z<- ADR,

1 	 BEGIN

IF ADR EQL 0 => Z<- MP[0] + 1;

IF ADR NEQ 0 => Z<- MP[ADR]

END

END

END,

** Instruction Cycle **

IEXEC\Instruction Execution

BEGIN*

DECODE OP =>

0\AND:=ACC<- ACC and MP [Z0),

1\TAD:=ACC<-ACC+MP[Z()], !2's Complement Add

2\ISZ:= !Increment and Skip if Zero

BEGIN

MP[Z]<- MP [ZO] +1 NEXT

IF MP[Z] EQL 0 => PC-- PC +1

END,

3\DCA:= MP[Zo]@ACC < ACC@#0000, IDeposit and

Clear ACC

4\JSR:= BEGIN !Jump to SubRoutine

Mp[0]<-MP[O] + 1 NEXT

MP [MP [0] <-PC NEXT

PC<-Z ()

-65-

END,

5\JMP*= PC - Z() I JUMP

6\RET:= BEGIN !RETurn from subroutine

PC 4- P[MP[0]] NEXT

MP[0] < MP[0] 1

END,

7\CTL:=

BEGIN

IF IR <3> => PC<-- PC +1 NEXT

IF IR <4> => ACC<- NOT ACC NEXT

IF IR <5> => ACC<- ACC +1 NEXT

DECODE IR<6:7> =>

BEGIN

'10 :=ACC<-ACC SRO 1,

'01 :=ACC<-ACC SLO 1,

OTHERWISE := NOOP)

END NEXT

IF IR<8> => IF ACC LSS 0=> PC<-PC+1;

IF IR<9> => IF ACC EQL 0=> PC-PC+l;

IF IR<10>=> IF ACC GTR 0=>PC<-PC+

NEXT

IF IR<11> => STOP()

END

END

END,

ICYCLE\Interpretation Cycle

BEGIN

REPEAT

BEGIN

IR- MP[PC] NEXT

PC<- PC + 1 NEXT

IEXEC ()
END

END

END

-66

3.11 ISPS SIMULATOR

The command set of the simulator is summarized below:

START <label list> begins the simulation of procedures in

label list.

EXIT terminates the simulation.

READ <dev: filename> enables the simulator to read and

execute commands from the specified device.

DUMP is used to save the status of a simulation run.

DEFINE name = command-string $ defines a user command

<name>. After this definition, the user can simply

use <name> as a command to execute the corresponding

command-string.

DDEFINE 	 name deletes the user defined command.

TELLDEFINE prints the list of user defined commands.

Pa 	 command-string $ label, label,.... defines a com

mand-string to be invoked when any of the procedures

listed after the $ is entered.

ADO 	 is similar to DO, but invokes the command-string

when the procedures are terminated.

ECHO (DECHO) command sets (resets) an internal flag control

ling the ECHOing the commands being read from a com

mand file to a user terminal.,

RADIX <base> is used to set the numeric base.

CONTEXT <varname> defines <varname> as a prefix for all names

that are typed in future commands.

CTR <name> displays the value of the counter (s) assoc

iated with <name>.

OPAOUE 	 <label list> and DOPAQUE <label list> are used to in

hibit or enable the variable and label activity

counters. If a procedure is OPAQUE then no activity

counts are incremented during its execution.

VALUE and SETVALUE commands are used to set and interrogate

the contents of ISP variables.

-67-

TRACE (DTRACE) <varlist> enables (disables) the tracing of

variables during simulation.

BRAKE (ABRAKE) <label list> is used to enable the setting of

Break points before (after) a procedure is excuted.

DBRAKE (DABRAKE) disables the break-point setting.

ICONNECT (OCONNECT) <identifier>, <channel>, <variable>

is used to connect ISP variables to the system files

which will act as sources (sinks) for variable values.

EVERY (AEVERY) count label, label,.., forces a breakpoint

every <count>th time one of the named procedure is

entered (completed).

ONCE CAONCE) are similar to above except the breakpoint is

forced only once after the <count>th time.

HELP 	 tells the user about command names and their format.

WAIT 	 makes the simulator to continuosly test the register

used as parameter to wait until it is non-zero and

then continue the execution.

DELAY 	 procedure takes as parameter the number of simulated

time increments that should go by before operations

on this procedure continues.

SERIAL and PARALLEL accept procedure names as parameters and

cause the register transfer code belonging to the

named procedures to be SERIALized or unserialized.

PROCESS 	 label-list (dentifies all procedures in the label

list as processes: DPROCESS undoes PROCESS. Any time

a routine flagged PROCESS is called from ISP, an

autonomous operating environment for that process is

initiated. The caller continues without waiting for

a signal from the called process, and may even ter

minate without further affecting the new process.

CRITICAL <label list> tags the procedures in label list to be

non-interruptable. DCRITICAL clears this tag.

INITIATE (KILL) <label list> initiates (terminates) the list

of processes in the label list.

TIME (DTIME) begins (terminates) the simulator's timing

facility.

-68-

SETCLOCK <procedure> <value> sets the clock for that proce

dure at the new value. Each procedure in ISP has its

own clock which increments as the register transfers

proceed.

OPTIME 	 <op-label> = <value> is used to establish the times

associated with the individual register transfer op

eration. The default value for each is one.

4. A HARDWARE PROGRAMMINNG LANGUAGE (AHPL)

AHPL is based on the notational conventions of APL. Some

special conventions are added to APL to take care of the hard

ware features like parallelism, asynchronous transfers and

conditional transfers [16,17]. AHPL is a clock mode register

transfer level language with the register as the primitive

circuit description element. A hardware compiler capable of

generating a wire list specifying the interconnection of

available integrated circuits and a functional simulator which

interprets the AHPL description and executes the connections

and register transfers [18] are available.

AHPL is based on the philosophy that a digital system can

be divided into two parts: a control section and a processing

section. Specification of the processors is done at one level.

Hierarchical descriptions of both structural and functional

elements are possible through the sibroutine feature of the

language. Both parallel and sequential operations can be de

scribed, either by suppressing timing information completly or

including it to a sufficiently high degree. Synchronous de

scription facilities include tests for pulses and counting of

pulses and delays. Asynchronous operations can be represented

either by conditional statements or by implementing completion

signals and using WAIT to indicate delay. The language as

accepted by the compiler and the simulator [19] is described

below. The simulator (HPSIM) is written in FORTRAN. The compi

ler (HPCOM) is written in SNOBOL. Both are implemented on

CDC-6400 and DEC-10 systems.

-69

-70

4.1 SYNTAX RULES

VARIABLES:

Variable names may contain up to 20 characters, the first

of which must be alphabetic. The remaining may be numeric or

alphabetic. Only the first 10 characters are retained in the

translator and simulator.

CONSTANTS:

Constants may be entered in decimal. A vector of binary

constants should be separated by commas and placed in back

slashes.

Examples:

\1,0,1,0,1\

25

OPERATORS:

The following operators are allowed:

AND &

OR +

Exclusive-OR @

ALL BITS OR +/

ALL BITS AND &/

ENCODE $ Ex: 5$13=/0,1,1,0,1/

TRANSFER <= (2 characters)

BRANCH => (2 characters)

COMPLEMENT -

CONCATENATE

CONNECTION

-71

4.2 DECLARATIONS

Each AHPL module description begins with the declara

tions, the first statement being,

AHPL MODULE: module name.

The rest of the declarations have the format

TYPE: symbol <n> [m]; symbol <n>, [m]; ... ;....

where the TYPE can be MEMORY, INPUTS, OUTPUTS, BUSSES, EXIN-

PUTS, EXBUSSES, or CLUNITS. The integers n and m indicate the

number of rows and columns of the facility. Either one or both

n and m can be eliminated if their value is 1. They can also

indicate a range nl:n2, ml:m2.

MEMORY, BUSSES, ONESHOTS and CLUNITS are local symbols. These

are declared in each module they are used. When redeclared in

other modules, these refer to a new value location.

INPUTS and OUTPUTS are semilocal symbols. When these symbols

are redeclared in other modules, they refer to the same value

location.

EXINPUTS and EXBUSSES declare Global symbols which can be

valued externally and are common between all modules.

4.3 CONTROL SEQUENCE

The control sequence consists of a list of steps; each

step starting with a step number followed by valid operations,

separated by semicolon and ending with a period. For example,

3 AC <=IR&AC; OUT = MD;

=> (AC[0:3])/(2,3,5,6).

indicates a transfer, connection and a branch. The branch is

to the statement 2,3,5 or 6 according to the value of AC [0:3]

-72

is 8,4,2 or 1 respectively. Three formats are possible for

branch operation:

=> (destination) unconditional

=> (expression)/(destinations) multiple branch

=> operator (expressionl, expression 2) (destination)

Where operator is the comparison operator between ex

pressions 1 and 2 and can be NE, EQ, GT, GE, LT and LE.

4.4 COMBINATIONAL LOGIC UNITS (CLUNIT)

User can define combinational logic units at the beginn

ing of the description and can use them later. A partial

CLUNIT description of a 4 bit adder is shown below:

UNIT: CLADD (A,BCIN)

INPUTS: A [4]; B[4];CIN [1].

OUTPUTS: CLADD [5].

CLUNITS: PG [3], SUM [1], CLA [6].

1. I<=4

2. C [I] = CIN [0]

3. I <= I-1
=
4. NOTP[I], P[I], G[I] PG[0:2] (A[I], B[I]).

5. S[I] = SUM[0] (NOTP[I], P[I], C[I+11).

6. => NE (I,0)/(3)

7. I <= 12

END.

The CLUNIT description starts with a UNIT:, followed by

the module's name and the argument list. Input and outputs

for the module are identified. Any other CLUNIT used in the

module is then identified. The description ends with an END.

-73-

Each CLUNIT is a module that can be used in the description of

the system. Facilities exist to imply several copies of the

module (rather than sharing the module) in the description of

the system.

4.5 COMMENTS

Comments can be placed anywhere in the AHPL sequence.

They should be enclosed in double quotes.

4.6 SIMULATOR (HPSIM)

The communications with HPSIM follow the hardware des

cription and include the following commands:

CLOCK LIMIT:

Tells HPSIM, the number of clock periods for which ex

ecution is to continue, if it ioes not reach a DEAD END.

BUSEFFECT -- nn:

Is used to assign values to the external inputs or

busses. nn is the number of clock periods for which the cor

responding line receives the values from the cards following

the BUSEFFECT command.

OUTPUTS:

Enables printing the values of selected variables during

the simulation.

SUPPRESS:

Command is used to suppress the printing of results dur

ing a specified step in the control sequence.

-74

4.7 DESIGN EXAMPLE [19]

To illustrate the preparation of a circuit description

for HPSIM and HPCOM consider a simple multiplier circuit with

nine input lines and nine output lines as shown in Figure 4-1.

In the reset state it waits for a 1 on line DATAREADY, which

indicates that data is on the INPUTBUS lines. The four most

significant bits of INPUTBUS are the first operand and the

other four consititute the second operand. When the operands

are accepted, the BUSY flip-flop is set to one and the multi

plier starts the multiplication process. When done, BUSY is

set back to zero, and the eight bit result is placed on the

eight RESULT lines and a one on the DONE line. Then the multi

plier goes to the reset state waiting for another set of

data.

Figure 4-2 shows the input file to HPSIM. the first line

in this figure assigns a name to the module description. This

is followed by declaration of all lines and registers. The

circuit requires three four-bit registers for the two operands

and the intermediate results, a single flip-flop for the DONE

indicator, and a two bit counter for the number of bits

shifted out of the first operand register. The lines to be

assigned values by the user are DATAREADY and INPUTBUS. These

are, therefore, declared as EXINPUTS and EXBUSES respectively.

The last of the declarations, CLUNITS, indicates the presence

of combinational logic networks implementing a 2-bit incre

menter and a 4-bit adder.

The circuit AHPL sequence follows the declarations. Step

1 receives the operands, resets the intermediate register

(EXTRA). If there is a 1 on the DATAREADY line control pro

ceeds to Step 2; otherwise, Step 1 remains active. Step 2,

-75

4-Isb 1nUTSUS4-sb lPOUTSS
DATARMIDY

Partia =rduact

ADDER

1! I,

(/

Figure 4-1: multiplier Block Diagram

ORIGINAU pAGE

RO -QUALLa

0

AHPLMOIULE:MULTIPLIER. AHPL FUNCT:Zt LEV2L LI-ULATOR OUTPU1 :S LIST:. LL. ..
MEMORY:AClC4J;AC2C42;COUNTE2n,EXTRAE4J;BUSY.

EXINPUTS:DATAREADY.

EXBUSES:INPUTBUSE23.

OUTPUTS:RESULTCS;DfONE,

CLUNITS:INCE2)(COUNT);ADDCSJ(EXTRA;AC).
 INTAn .2
1NFUT:

1 ACIvAC2 <= INPUTBUSEO:33,INPUTBUS[4:72r EXTRA <- 4$0, IUY

-> (- DATAREADY)/(1).
 I DON

2 BUSY <- \1\;
 I EXTRA

-> (-ACtE3)/(4).
 I I I ACI

3 EXTRA <= ADDlCI43(EXTRA;AC2).
 I2 I ACO
4 EXTRA,ACZ <= \0\,EXTRA,ACItO:22; COUNT <- INC(COUNT)I
 II COUNT

=> (C(&/COUNT))/(2). I RESULT

5 RESULT = EXERAACi; DONE = \1\1 BUSY <= \0\; CLOCK 0 1 1-> c1). I
00000001 0 00110111
E SEOUENCE 0 0 0000 0000 0000 00 00000000
00000002 0 00110010 0 0 0000 0011 0111 00 00000000

CONTROLRESET(1).
 00000003 0 00110010 0 0 0000 0011 0010 00 00000000

END.
 00000004 10110010 0 0000 0011 0010 O0 00000000

00000005 010110010 0 0 0000 0011
 0010 00 00000000

CLOCKLIMIT 0030
 00000006 000110010I1 0 0000 1011
0010 00 00000000
EXLINES:
 00000007 0 00110010 1 0 0010 1011 0010 00 00000000
BUSEFFECT 0021
 00000008
 0 00110010 1 0 0001 0101 0010 Ol 00000000
0400010
 00000009 0 10110010 1 0 0001 0101 0010 Ol
 00000000

BUSEFFECT 0021 00000010
0410132 0 00110010 1 0 0011 0101 0010 01 00000000
00000011 0 00110010 1 0 0001
 1010 0010 10 00000000
BUSEFFECT
0021 00000012 00110010 0 0001 1010 0010 10 00000000

0000012
 00000013 0 00110010 1 0 0000 101 0010 11 00000000

BUSEFFECT 0021
 00000014 0 00110010 1 0 0000 1101 0010 11 00000000

7777700
 00000015 0 10111111 1 0 0010 1101 0010 11 00000000

BUSEFFECT 0021
 00000016 00010011 1 1 0001 0110 0010 O0 00010110

7777777
 00000007 0011000 0 0 0001 0110 0010 O0 00000000

-RUSEFFECT 0021
0000132 00000018 11011001 0 0 0000 100l1i000 00 00000000
00000019 0 0010011 0 0 0000 1101 1001 0 00000000

BUSEFFECT 0021
 00000020 0 1010110 1 0 0000 1101 001 00 00000000

4000100
 00000021 0 0010000 0 0 1001 1101 1001 00 00000000

SzFECT 0021
 00000000002 1 011000 1 0 0100 1001
 00000 00000000
0

7"71746
 00000023 0 000100 1 0 0100 1110 001 00 00000000

?USEFFECT 0021
 0000002A 00000000 1 0 0010 0211 10010 00000000

))O914
 00000020 0 0000000 1 0 0010 011 1001 10 00000000

4:0100:
 00000026 0 00000000 1 0 1011 0111 1001 10 00000000

00000027 0 00000000 1 0 0101 1011
 1001 11 00000000

?U,- -CT
 0000002' 00000000 1 0 0101 01l 1001 11 00000000

1,
 00000029 0 00000000 1 0 1110 1011 1001 11 00000000
£
 00000030 0 00000000
 1 1 0111 0101 1001 00 01110101

LEE[[PROGRAM REACHED THE TIME LIMIT SFECIFIED BY USER.

Figure 4-2: HPSIM Program input File
 Figure 4-3: HPSIM Output Listing for

for the Multiplier
 the Multiplier

-77

sets the BUSY flip-flop to I and causes Step 3 to be skipped

if ACI[3], which is the LSB of ACt register, is zero. In Step

3 the addition of the partial products is accomplished. Step

4 right shifts the catenation of the EXTRA and AC registers,

increments the counter and activates Step 2 if count has not

reached (1,1). If the COUNT register contains (1,1), control

will proceed to Step 5 where the catenation of the EXTRA and

ACi registers is placed on the 8 RESULT Lines, a one is placed

on line DONE and the BUSY flip-flop is reset to zero. Step 5

also returns control to Step 1 waiting for another set of

operands.

The communication section of the HPSIM program follows

the AHPL description. Recall, that this section is line

oriented. The first card, "CLOCKLIMIT", indicates how long the

execution is to be carried on. This parameter is set at 30,

so that the multiplication process will be carried out at

least twice. The "EXLINES:" card is a heading for the subsec

tion in which binary values are assigned to the external input

lines. The next 18 cards
 are 9 sets of data for all 9 exter

nal lines. Each data set is headed by a "BUSEFFECT" card

which indicates the number of clock periods for which the cor

responding external line is to receive data.
 The nth data set

corresponds to the nth declared external line.
 For example,

since the first declared external line is DATAREADY, the first

data set, which is 0400010 (octal), is assigned to this line.

This line will receive binary data from this data set for the

first 21 clock periods. The data for the 7th most significant

line of INPUT-BUS is 7777746. This line also receives data

from this set only for the first 21 clock periods. The next

card in the communication section "OUTPUTS", is a heading for

the print request subsection. The next five cards are the

lines or registers for which print is requested. If a row in a

register matrix is to be printed, the row number should follow

the name of the register matrix on the same card. Row number

zero is the default value which is assumed for all one dimen

-78

sional lines or registers. All print requests are unformatted

and the printout format is set by the HPSIM system. The com

plete output sequence is shown in Figure 4-3. Notice that

DATAREADY is 1 during the 4th clock period causing control to

go to Step #2 for period 5, the two operand registers (ACl,

AC2) containing 1011 and 0010. The multiplication starts at

period 5 and ends at clock #16 where a 1 appears on the line

DONE indicating that the 8 RESULT lines have the result of

multiplication. Notice that a new partial product appears at

clock periods 7, 10, and 15 to be shifted right by the next

clock pulse. Only a right shift takes place after period 12.

A second multiplica tion begins at 19 and is completed at Step

30 where DONE = 1 and the product appears on the 8 RESULT

lines.

All but the communication section of Figure 4-2 is the

input file to the HPCOM program.

For this example, the compiler printout in Figure 4-4

lists first the clock and data inputs for the data registers.

Next are the gates realizing each module output, and last are

the D inputs to each control D flip-flop. The remaining com

piler output detailing inputs to each gate is given in Figure

4-5. They are in numerical order showing type on the left, and

the inputs either as control signals or source gates on the

right.

Using the information of Figure 4-4 complete schematic

diagram such as the one shown in Figure 4-6 may be obtained.

Figure 4-4 shows the registers listed first with the segment

under consideration given at the left edge followed on the

same line by the clock enable. This signal is gated with the

clock should the register type used, not have an enable input

provided. (The full schematic of Figure 4-6 shows these gates

with a dot.) Further right are the individual data inputs for

each bit of the register segment. They are listed by bit, on

the left, and gate or signal implementation on the right.

-79

'~~!!rfpGE IS

CC'PILER FOR AHPL HARDUARE ROUTINES. MAY 18, 1977.

REGISTER CLOCK
SEGMENTS ENABLE REGISTER BIT INPUT SOURC

1:0:32 61
ACI0 C4
ACIE1J
ACId2]3
AC1C22:ACI32.

G7
CIO
0103G13

ACSZOJ 614
ACIC13 Q15
AC2C22 016
AC:ZC3 Q17

SUSYC03 GI8
BUSYtOl CSC21

CCUNTCO:1. CSC41
COUNTEO319
COUNTC!) G20

E-TRACO:f3 G21
EXTRACO G=
EXTRACI] G25

EXTRA22 G2S
EXTRACZ3 03i

CONNEC7TON
SEGMENTS OUTPUT BIT T-7NINAL

,PESULTPS:L70

RESULTC13 G2
RESULTE22 G34
RESULTC]3 635
R:SULT:42 C-6
RESULTI] G37
RESULTE2c 633
RESULTC7I G39

=:qE[O3

DONEO C::53

ZCNTCL BIT D INPUT

- ---- - - - - - -

- iur -S

Figure 4-4; HPCOD4 Output

--

- --

-80-

GATE
 GATE
 DATA INPUTS

TYPE
 NO.

OR
 61 Cs5c1 CSr43
AND
 62 CSrn3
 INPUTBUSCO3
-AND
 G3 CSE42
 EXTRACE3

R G4 Q2
AND
 85 ACIro CS43
AND G6 CSri
 INPUTBUSt12

OR
 07 G5
 G6
AND Ge ACIE13 CSC43
AND
 G7 CSEt± !NPUTBUSC2!:

OR GIO Ga
 G9
AND
 Gll ACIC23
 CSC4J
AND
 812 CSC13
 INPUTBUSC33

OR
 . G1 81± 812
AND
 G14 CSC-1
 ZNPUTBUSC43
AND
 GI5 CSE1i
 :N=Ur3'Sr53
AND
 GI6 Csr!n INPUT3USC6J

AND G17 CSrIn INPUT3USr7J

OR Gis CSCZJ CSCZJ

AND
 G19 CSC43
 INCrO
AND
 020 CSC42
OR INC13
021 CSC13
 CSEC3

AND
 G22 ADDC13
 CSCr
AND
 G!3 ADDC2S
 CEC33
AND
 824 CSC43
 EXTrACOj
OR
 G25 023
 824
AND
 626 ADDC 3
 CS-32
AND
 G27 CSC42
 EXTRAC±2
OR
 G23 626
 G27
PND
 29 ADDC43
AND CSE
f30
 CSr4
 £XTRAC2:

OR
 Z-i 629 G30
AND
 632 CSE53
 EXTRPC03
AND
 G'3 CSCS2
 EXTRAC1
AND 634 CS5J "TRAC23

AN
 G:3 CSE3
 EXTPAC3J

AND G36 ACICOJ CSC3
4UD
 6Z7 ACic)
 CSC2
AND 6C3 ACICZ3 G3SC

3 G 1 COUNT:O2
 -

V 341 C40

C:C: -:- -
C- .- 3---DI%?A

z

Figure 4-5: EPCOM Output

CSE4

Y G I

1-81

t zi
I 1 If ,h h2

o t -'- ' --- '

!i - GL

=r

Figure~~il4-'
 Kil-a

- 1

5. DIGITAL SYSTEM DESIGN LANGUAGE (DDL) [20]

DDL was introduced in 1968 by Duley and Dietmeyer [21,

221. A translator and a simulator are written for a subset of

this language in IFTRAN an extended version of FORTRAN [23,

24]. These programs are being implemented in FORTRAN on SEL 32

Computer System. DDL is a "block oriented" language,. Each

subsystem of a system appears as a block in the description of

the system. The following sections introduce the language as

required by the translator and simulator. DDL is suitable for

the intermediate level of description between the extremely

abstract level and the fabrication level.

All structural elements are explicitly declared. At the

lower level of description, functional and structural elements

correspond directly to the actual elements of the system. DDL

is highly suitable for describing the system at the gate, re

gister transfer and major combinational block level.

The logical statements can be formed using the available

primitive operators. The functional specification of the

system consists of these logical statements, in blocks. The

statements describe the state transitions of a finite state

machine controlling the processes of the intended algorithm.

The block then appears as an automaton.

Parallel operations are permitted. Synchronous behavior

is described by either identifying the pulses or by including

delay elements described in terms of multiples of clock

pulses. Asynchronous behavior is modelled by using conditional

statements. Data paths can be explicitly declared by using

terminal declarations.

-82

-83

5.1 SYNTAX RULES

VARIABLES:

Variable name may contain 1 to 6 characters, the first of

which must be alphabetic. The remaining characters must be

letters or digits.

CONSTANTS:

Constants take the general form nRk. n is the number in base

R (R=D for decimal, 0 for octal). k is the number of bits

required for the representation k< or = 32. k is decimal.

5.2 DECLARATION STATEMENTS

The general format of a declaration statement is

<DT> body.

The declaration type (device) is enclosed in angle brackets

and the period terminates the declaration. Body consists of a

list of items separated by commas. Following devices are

allowed:

TErminal Sets of wires

REgisters Sets of synchronized flip-flops

MEmory Sets of synchronized flip-flops

LAtches Sets of asynchronous latches

TIme Clock

DElay Delay elements

BOolean Combinational logic

ELement Off the shelf components

<TE> X, Y(4), Z(0:2), W(3,4:1), A(12) = B "C(0:10)

identifies a single wire X, four wires Y1, Y2, Y3' Y4 with Y1

on the left, 3 wires Z0, Z1, Z2 and 12 wires corresponding to

W, placed in 3 rows, ith row of wires numbered Wi 4, Wi 3, Wi 2,

-84-

Wi. The subscripts always have a left to right interpreta

tion. A single subscript n indicates the range 1 to n while a

range n:m indicates n to m left to right. In the above

declaration, Al is also named B, A(2:12) are named C(0:10).

is the concatenation operator.

REgister and LAtch DECLARATIONS

<RE> IR(16) = OP(0:3)" IX(1:3)" ADRS(9), X(12).

declares a 16 bit register IR and a 12 bit register X.

IR is identified with 3 subregisters OP, IX and ADRS.

<LA> BUF(4).

declares a set of 4 latches BUF.

MEmory DECLARATION

<ME> M(X:Y).

declares X words (numbered from 0 to X-1) of Y bits each

(numbered 1 through Y).

References to the memory must be of the form M(MAR) where

MAR is the same register in all references to M. MAR is de

clared in a RE declaration. Only full words may be accessed

from memories.

TIme DECLARATION

<TI> A(1E-6), Q(20E-9)2.

declares a single phase clock A with a 1 microsecond period

and a two-phase clock Q with 20 nanosecond period.

DElay DECLARATION

<DE> P(10E-9), Q(5E-7).

declares two delays P with 10 nanoseconds and Q with .5 micro

-85

second. The context in which the DElay element is referenced

determines whether its input or output terminal is used.

BOolean DECLARATION

<BO> identifier = Boolean expression.

For example,

<TE> A, B(5), C(0:4), D(6, 5:1)

<BO> D(4) = B+C, D(5) = A*B.

declares that the fourth row of D is formed by ORing termi

nals B and C i.e. (D45= B + C0 etc.) bit by bit; the fifth row

of D is a bit by bit AND of A and B. Since A is 1 wire and B

is a set of 5 wires, A is fanned out to combine with each bit

of B.

ELement DECLARATION

Enables the description of an element in the system whose

logical specifications are unknown or impertinent.

For example,

<EL> JKFF (Ql,NQ1: C, J1, K1), COUNT (K(5:1), ZERO:

UPDWN, CLK).

declares an element JKFF with 3 inputs C,J1,K1 and two output

QI and NQ1; and an element COUNT with two inputs and 6 out

puts. The only information available on these black boxes is

the input/output terminals.

5.3 OPERATIONS

-Figure
 5-1 (a) shows the operations allowed and their

hierarchy; Figure5-1 (b) shows three special operators.

is used to show the connections while <- indicates a data

transfer from one facility to the other. -> is equivalent to

-86-

FIGURE- 5-1 (a): OPERATORS

OPERATOR SYMBOL

Extension $

Concatenation "1

Complementation A

Selection

Reduction /

AND *

NAND A*

NOR A+

XNOR A@

XOR @

OR +

FIGURE 5-1(b):

CONNECTION

TRANSFER

GO TO

TYPICAL SYNTAX

ASk

A"B

AA

A'kDn

p/A

A*B

AA*B

AA+B

AA@B

A@B

A+B

SPECIAL OPERATORS

<

->

COMMENTS

k copies of A

Bit by bit

complement

Selective com

lementation

ApA2P... PAn

where pE[*,A*,

A+,A@,@,+]

Bit by Bit

Opertions

-87

a "GOTO", usually used to show the next state.

The extension operator "$" creates k copies of the ter

minal or terminal set offered as its left operand.

The selection operator ', selectively complements, or not

complements the bits of the facility (left hand operand) de

pending on the value of the corresponding bit in kDn is a

0,1.

For example A' 0101OB5 is equivalent to

i
2

A 	 3 A'0101OB5

4

5 -> -

The operator preceding the reduction operator (/)
determines the nature of the reduction on the right hand

operator of /. Six types of reductions are possible.

*/A implies

A

-88

+/A'3D5 implies

1

2

A 3

4

5-

Boolean expressions (Be) can be formed by using the

operators and variables in the usual manner. Paranthesis

could be used where there is an ambiguity. The expressions

are evaluated from left to right following the operator

hierarchy.

Conditional operations have the format

?BE? OPI . or

?BE? OP1 ; OP2

.

The first form implies: If the value of BE is 1, perform OP1 ;

the second form implies: If BE is 1, perform OP1 else perform

OP2 . "If ... then" operations can be nested:

?A? ?B? OP1 .; ?C? OP2.

5.4 IF - VALUE CLAUSE

"!" is used for "IF" and "#va" is used for the value in

an IF-value clause. For example;

B = !C #0 DO #1 D1 #2 D2.

implies that DO is connected to B if the value of C is 0, D1

is connected to B if the value of C is 1, etc.

As another example,

!X #0D2 A<-B #1D2 A<-C #2D2 A<-AB #3D2 A<-AC

-89

describes a 4 way conditional transfer operation into A

depending on the value of X.

5.5 IDENTIFIER

IDentifier declaration enables the naming of a group of

operations so that they do not have to be written repeatedly

(equivalent to MACROs). The general format of IDentifier

declaration is,

<ID> list

where list takes theform

id = compound facility

id = (CSOP)

For example, <ID> X = C(2:10)"1. names the compound facility

C(2:1V"1 to be X. Then, any reference to X is expanded into

C(2:10)"1.

For example, S = R @ X. is equivalent to S = R (C(2:10)"1.

A compatible set of operations (CSOP) is a set of opera

tions separated by commas. It must be possible for the hard

ware to perform all these operations simultaneously.

The order in which the operations are listed is of no

consequence. For example,

<ID> A = (Y <- X, Z <- Z(2:5)"AZ(1)),

B = (Y <- X, Z <- Y).

names two CSOPS. Note that the operations Y <- X and Z <- Y

in B are simultaneous and are compatible.

-90

5.6 OPERATOR DECLARATION

Blocks of combinational circuitry can be defined with the

OPerator declaration. The body of the OPerator declaration

consists of a BOolean declaration and perhaps a TErminal

declaration. Boolean equations in the body of the BOolean

declaration include Boolean expressions which may involve

conditions and be relatively complex. References in these

Boolean equations may be made to (1) facilities global to the

OPerator declaration. (2) local terminals declared within the

OPerator declaration by a TErminal declaration, and (3) ter

minals declared and dimensioned in the head of the OPerator

declaration. The TErminal declaration may be used to define

local terminals of the operator, and must be used to dimension

"dummy" identifiers listed in the heading, if any.

The head of the Operator declaration consists of one or a

list (separated by commas) of identifiers with or without an

argument list enclosed in $s, with or without parenthetic sub

script ranges. Permitted syntactic forms for heads are:

idI, id2 (i2), id3 $ X1 , X2 ,...Xk$, id4 (i4)$

X1, X2... Xk$

where subscript ranges can also be placed within the paren

thesis. The identifiers name the combinational logic blocks

and their output terminals. Parenthetic integers dimension

the output terminal sets with the same Syntax and semantics as

in TErminal declarations. The arguments are local dummy id

entifiers of input terminals of the combinational blocks. Such

dummy identifiers must be dimensioned via a local terminal

declaration within the OPerator body.

As an example of a time-shared operator block. ALU is

decalred below. This combinational block is able to add two

16-bit binary sequences presented to it on lines X and Y or

form their bit-by-bit EXCLUSIVE-OR. Input signal F determines

-91

which task is performed. The carry into rightmost full-adder

must also be presented to the unit.

<OP> ALU(16) $ X,Y, CIN, F$

<TE> X(16), Y(16), CIN, F, C(16) = CX"CC(15).

<BO> C=X*Y + CC" CIN* (X+Y),

ATLU = (?F? X@Y@ CC"CIN; X@Y)..(end of BO, end of OP)

Note the inline comment capability of DDL (end of BO, end of

OP).

Suppose the following declaration is global to ALU,

<RE> ACC(16), MBR(16), COUNT (12)

we can define several operations using ALU as following:

?LDA? ACC <- ALU$O,MBR,0,0$

?ADD? ACC <- ALU$ACC,MBR,0,1$

?SUB? ACC <- ALU$ACC,AMBR,1,1$

?IKNT? COUNT<- ALU(5:16) $0$4"COUNT,0,1,1$

?XOR? ACC <- ALU$ACC,MBR,0,0$

5.7 STATE DECLARATION

DDL views the operation sequencing (control) circuitry as

a finite state machine. Each state of the control circuitry

is described by a STate declaration:

<ST> State List.

State list consists of a list of state statements (with

out separating commas). Each state statement has one of the

following forms:

Sid (n) : csop.

Sid (n) : Be: csop.

-92-

Sid is a simple unsubscripted identifier. n is the deci

mal state assignment.csops include the state change operations

using the state transition operator ->.

In the first form, csop is performed whenever the auto

maton is in the state Sid.

In the second form, csop is performed when the automaton

is in Sid and also Be is satisfied. The automaton waits in

the state till Be is satisfied.

A 15 bit multiplier control can be described as follow

ing:

<ST> S0(0) :MPY:ACC<-O, CNT<-15D4,->S1.

SI(1) :->S2, DECR$ CNT$,?Q(15)? ACC<-ACC+R..

$2(2) :SHR$ACC"Q$, ?+/CNT?->S1;SO...

(end of conditional, end of S2, end of ST)

SHR is shift right (zero fill) operator and DECR is a

decrement operator assumed to be defined using <OP> declara

tion.

5.8 AUTOMATON and SYSTEM DECLARATIONS

Relatively independent disjoint portions of a digital

system are identified as automata in DDL with syntax.

<AU> head body.

The AUtomaton declaration is the most complex type of

declaration of DDL. Its head may take any of four forms, for

example;

auid:

auid:csop

-93

auid:Be:

auid:Be:csop

First, an automaton identifier, auid, may be subscripted,

but may not include parenthetical arguments; it names the

block only. A compatible set of operations may be included in

the head of an automaton. These operations are to be per

formed whenever the Be of the heading, if any, is satisfied.

Conditional as well as unconditional operations may be in

cluded in this heading csop, so whether a specific operation

is performed or not may depend on conditions throughout the

automaton or system.

Be in the heading of the AUtomaton declaration is a

condition on all operations declared throughout the body of

the declaration except connection operations. Usually Be is

the clock signal that synchronizes the automaton. It is

generally unnecessary and undesirable to include such global

conditions as clock signals in combinational circuits; in

fact, signal propagation in combinational networks usually

precedes clock pulses. If a clock with n phases is used to

synchronize an automaton, then a dimensional Be or a conca

tenation of n Bes appears in place of the single Be in the

AUtomaton declaration head.

The body of an AUtomaton declaration consists of other

declaratons. Each of these declarations is terminated with

its own period; punctuation is not placed between them. The

following declaration types may appear.

<ME>, <RE>, <LA>, <TE>,

<TI>, <DE>,<OP>, <EL>, <ID>, <BC>, <ST>

ME, RE, LA, TE, TI, DE, AND EL declarations are used to

declare the existence of local facilities of the automaton.

The OPerator and BOolean declarations specify combinational

-94

blocks and interconnections of facilities. The IDentifier

declaration may be used to simplify or clarify the overall

AUtomaton declaration. The STate declaration is usually used

to specify the operations of the automaton. If the STate

declaration is not used, then all operations appear in the

csop of the AUtomaton declaration head.

The SYstem declaration has syntax identical to the AUto

maton declaration. The system is identified in the head.

Global coditions and csop may be specified also. The body of

a SYstem declaration may contain AUtomaton declarations as

well as all other types of declarations, but STate declara

tions must appear within AUtomaton declarations. Public

facilities are declared with ME, RE, TE, etc., declarations

outside of all AUtomaton or OPerator declarations.

Example:

A multiplier controller is described below to

illustrate 	 the SYstem and AUtomaton facilities.

The counter is treated as a separate automaton.

Perhaps other unspecified automaton of SYSTEM 1

can use the counter when automaton MC is not.

<SY> SYSTEMi:

<RE> ACC(15), Q(15), R(15).

<TE> SET, DEC, DONE, MPY.

<TI> P(1E-7).

<AU> CPU: P:

<ST>

Q17: DONE: 	 Q <- Multiplier,

R <- Multiplicand, MPY = 1.

(end CPU)

-95

<AU> MC: P:

<ST> SO: MPY: ACC <- 0, SET = 1, -> S1.

Si: -> S2, DEC = 1,?Q[15]? ACC <- ACC+R..

S2: SHR$ACC"QS,?DONE?-> SO; -> S1...

<AU> K: P:

<ST> [i=1:15] T(i): DEC: -> T(i-1)..

T(O): DONE = 1,?SET? -> T(15); -> T(O)...

(end SY)

Automaton CPU is shown only as placing the multiplier and

multiplicand in public registers and issuing command MPY to

multiplier control MC. If the counter automaton K is idle, it

will be issuing DONE = 1. CPU waits in its state Q17 until

this condition is satisfied (perhaps K is still doing a job

for some other automaton). MC clears ACC, but the counter is

initialized by SET = 1. Specifically SET = 1 will cause K to

go from its state T(0) to T(15) where it will remain until it

is told to decrement via public terminal DEC. MC tests the

multiplier, adds or not and shifts repeatedly until it is

informed by K via public terminal DONE that all multiplier

bits have been examined. In the example above interacting

automata MC and K operate in parallel.

NOTE: The "For clause" shown in the Automaton K for the

decremnt operation [i=1;15] T(i):DEC: -> T(i-1) is not allowed

in the present version of the DDL software. This statement

has to be broken up into;

T(1): DEC: -> T(0)

T(2): DEC: -> T(1)

T(15): DEC: -> T(14)

SHR is a single argument operator (assumed to be declared

earlier) that shifts the argument one bit right, and fills

zero on the left.

-96

5.9 ADVANCED FEATURES

The following features of DDL are not accepted by the

present version of DDL software:

(a) Shift and count operations.

(b) SEGMENT declarations, which allow the Automaton

to be broken up into several partitions.

5.10 TRANSLATOR (DDLTPN) [25,26]

DDLTRN translates a restricted DDL description into a set

of tables suitable for simulation of the system. It is a six

pass translator performing a syntax check, facility identifi

cation, syntax reduction, condition distribution, concatena

tion removal, operation gathering qnd disjoining the subfacil

ities. The FLAG statement can be used to control the printed

output of the intermediate steps.

5.11 SIMULATOR (DDLSIM) [27]

DDLSIM uses the tables produced by DDLTRN to simulate the

system. Multiple simulations are possible with the DDLSIM

control statements. The following commands are available:

<CLock> declarations provide a means of specifying or

changing the time period, pulse width and phase of the clock

facilities. New clocks can be declared to control simulation

input and output activities.

<DElay> declaration provides a means for specifying delay

-97

time for delay facilities (old and new).

<INitialize> provides a means for initializing the output

values of delays, registers, memories, element outputs,

primary input signals, terminals and triggers with delays.

<REad> enables input data values for various facilities

in three modes: triggered, periodic and specific time.

<LOad> provides a means for establishing the same input

values repeatedly on specified facilities. The above three

modes are possible.

<OUtput> specifies the printing of the values of various

facilities at various instants during simulation. The values

are printed in octal (default), binary, decimal or hexadecimal

mode by setting the appropriate flag.

<DUmp> dumps,the contents of specified memory locations

at various instants during simulation.

<STop> stops the simulation at a specified simulation

time.

<List> is used to assign a unique name to a list of fac

ilities and can be used when the same set of facilities are

used in various declarations of the simulation deck.

<SImulate> is used to separate different simulation runs

in a simulation job.

<FLag> enables the selection of various options for

simulation runs by setting or resetting the associated flags.

<TRigger> provides a means of declaring new facilities

that can be used as triggering signals to control the

simulation, without altering the DDL description.

-98

5.12 DESIGN EXAMPLE [27]

A MULTIPLIER unit that calculates the product of two

8-bit numbers is described in DDL. A listing of the deck used

for simulating the MULTIPLIER system along with the simulation

report is given on the following pages. The <FLag> declara

tion in the simulation deck specifies that all data-values

specified without radix specification be interpreted in deci

mal (Flag 4), and that output values be printed in binary

(Flag 6). The control unit MPY of the system waits idly in

state Si until it receives a START command. A <INitialize>

declaration is used to initialize the START signal to 1 and

start the MULTIPLIER unit. On receivng the START command in

state S1, the control unit proceeds to load the R register

with the multiplicand obtained from the BUS and proceeds to

state S2. In state S2 the B register is loaded with the

multiplier obtained from the BUS. A triggered READ operation

.with state terminal Si as the triggering signal is used to

supply the BUS with the multiplicand. During simulation,

whenever the control unit reaches state S1, the BUS is sup

plied with a new value of the multiplicand. The multiplier is

supplied to the BUS in a similar manner with another triggered

READ operation using state terminal S2 as the triggering sig

nal. After loading the multiplicand and the multiplier, the

control unit proceeds to state S3. In state S3 the multipli

cand is added to the partial product, if the multipl- ier bit

is logic 1. The control proceeds to state S4 in any case.

The A and B registers are shifted right together and the mul

tiplication cycle counter MCOUNT is incremented. If the count

has been completed, status line DONE is set to logic 1 and the

control unit returns to its idle state S1. If not all bits of

the multiplier have been tested, the control unit returns to

state S3.

-99-

A triggering signal OUTTR defined using a <TRigger> de

claration is used in a triggered OUTPUT operation to control

the printing of the values for MPY, MCOUNT, A, and B. These

values are printed in binary on every trailing edge of the

clock P signal. Another triggered OUTPUT operation using

state terminal S1 as the triggering signal controls the

printing of the values for the multiplicand, multiplier and

the final product. Note that these values are printed only

once, i.e., when the final product is available, during a

given multiplication operation. The two output lists printed

with different frequency make the simulation report more

informative and readable. Since no <CLock> declaration is

included in the simulation deck, default values are used for

period, pulse width and phase. Note that for a single

simulation run a <SImulate> declaration is not required. Since

an EOF condition is expected no explicit <STop> declaration is

included in the simulation deck to terminate the simulation.

$DDLTRN

<CO> DESIGN OF A 8-BIT MULTIPLIER.

<SY> MULTIPLIER:<TI>P.<RE> A(0:8), B(8), R(8),MCOUNT(3).

<TE> START, BUS(8), DONE.

<TE> SUM(8), COUT(8), CSUM(3), CCOUT(3).

<ID> CIN = COUT(2:8)"ODl.

<ID> CCIN = CCOUT(2:8)"1Dl.

<BO> COUT = R*A(1:8) + R*CIN+A(l:8)*CIN,

SUM = R@A(l:8)@CIN,

CCOUNT=MCOUNT*CCIN,CSUM=MCOUNT @ CCIN.

<AU> MPY(2): P:

<ST> S1(0): START: R<-BUS, NCOUNT <-0,->S2.

S2(1): B<-BUS, A<-C, ->S3.

S3(2): ?B(8)? A<-COUT(1)" SUM.,->S4.

S4(3): A(1:8)" B<-A"B(1:7), A()<-0,

MCOUNT <-CSUM, ?*/MCOUNT?DONE=I,

->$1;->S3

-100-

Qu Q143gjv.m ISIMULATION.
<FL> 4,6. IUSE DECIMAL DATA AND PRINT OUTPUT

IN BINARY FORMAT.

<IN> START/l. GIVE A START COMMAND.

<RE> S1/BUS/6,10. DATA VALUES FOR THE MULTIPLICAND.

<RE> S2/BUS/5,13. DATA VALUES FOR THE MULTIPLIER.

<TR> OUTTR/AP. DEFINE A TRIGGER TO CONTROL PRINT-

ING ON

TRAILING EDGE OF THE CLOCK.

<OU> OUTTR/MPY,MCOUNT,A,B/, IPRINT MULTIPLICAND,

IMULTIPLIER

S1/8,BUS,A(1:8), B. I& FINAL PRODUCT.

$EOJ

SIMULATION RESULTS

,OTGITAL DSG'J LA.G"AF S, ILAT- JrF5$ r, - 07.030176 It33:n7 03/29/76 SIrULATIJIN RUN

m

c

u A

TI.,. Y T A R Bus 8

o0O 000 o00Ouoor' nooonn 0000000 'O0"CfoC OCCOoon 00000000 n n
 z 01 no n0o0noooo nononn

4 1I 00o ,0I0,00on nornnl

6 11 coo a.onoulln oOOnll

A in) roi ronooll rononolo

'10 11 001 30n00O011 noon010

14 11 o16 -00000111 101000'1
16 11 oil noonoon 11ono

18 11 011 "onfnoGo0l L1'OoOO

20 t4 100 0000(0001 I1100on0

22 11 100 o00ouo01 1loflnOm

,4 In 101 00o00000n 1111000

26 11 101 0O0O0000 llllno O

?a i) Ii0 0ocotion nillllont

i
28 11 000 0o000o0o 011110o00
12 11i11 noooooo "nol o
4 11 111 ronoru101 oo111ll
fl L 111 0000O000'I 00111136 on roo 11060000oo olillo 0r010o looonln 00C00000 00011110

38 01 000 '000(0001 01Y11110

40 1, 300 C 3Cn000no 00l1l1n

42 11 0001 111cil
30 nooQl'

44 11 roj nO6UIo 00o00110

n
001 aonln

43 11 Cit. 000U(001- 1O-0nOhi

46 i, n 0roruo01n0

s0 1 10 "o0001n Oincnoo

q 6 1, 100 nonori'to Oniono'0

ia 11 101 30
oroc
 oc0010000

&()P, 101 0000010" 000100

1.21 101 0000010" 00r100-'0
1.4 11 Ilf. 'coonuni" 00'01o0

66 11 10: 0nonoil nioo0o

6a I 11 n00AOO0ot 0nrCl

70 11 ill OO000OOlO 00f10

72 0 0n
 o coooo0 1OfinnOinnOnoOlno rooilol oncooooo 10oo0o10
r

.0 OFp PILF REACHED [N I IlT -

IMULATI',N TER' ATEP AT TMr 73

'0OF 51IMI4TIO

6. COMPARISON

All the available Hardware Description Languages satisfy

the basic requirement of describing the hardware in a concise

unambiguous and readable way. But, one language would be

better than the other depending on the design environment.

When designing systems of very low complexity, an HDL can be

used only as a description media; this is because the HDL

description usually is at a high-level and the designer can

usually verify his design without resorting to the simulation.

As the system complexity grows, it will be essential to verify

the design at high levels using the HDL simulator, before

proceeding to the detailed design.

After verifying the design through high-level simulation,

the HDL description of the design can be used as an input to

the programs, that generate the logic diagrams. This logic

diagram data base serves as the starting point for the pro

grams that decide the physical aspects like, placement,

routing, partition etc. of the integrated circuit desiqn.

The following five criteria were used in selecting a

suitable language:

1) Activity

2) Level of Description

3) Software availability and portability

4) Ease of logic generation, and

5) Modularity.

ACTIVITY

It is essential to choose a language which is being used

elsewhere to receive the benefits of the extensions to the

language. Most of the HDLs proposed do not have a translator

and a simulator that is up-to-date and fairly versatile,

though the language itself is versatile. All the four HDLs

described, have been implemented at several locations and

-101

-102

there is a considerable amount of interest in making these

HDLs more versatile.

LEVEL OF DESCRIPTION:

ISP is suitable for comparing systems at the instruction

level. CDL is suitable at the register transfer level and

does not have adequate time and delay facilities. AHPL and

DDL could be used very well in the circuit design work, since

they are capable of description at and slightly below the

register transfer level.

SOFTWARE AVAILABILITY and PORTABILITY:

The ISP software is developed in BLISS on PDP-10 Computer

system and is not portable. CDL software has many implementa

tions. Most of the software is in FORTRAN, with some essential

routines in assembly language of the computer system it is

implemented (IBM 360/370, UNIVAC 1110[6], CDC 6000 [5]). AHPL

hardware compiler is written in SNOBOL and the simulator in

FORTRAN on DEC-10 and CDC 6400 systems. A few changes related

to machine word length are required to make these operative on

the other machines. DDL software is written in IFTRAN (Struct

ural FORTRAN). An IFTRAN preprocessor is available. These

programs also need some changes related to machine word

length, to be operative on other machines.

EASE OF LOGIC GENERATION:

ISP is not suited to generating logic diagrams. CDL

being a pure register transfer level language, does not tend

itself very well to the logic generation. The AHPL hardware

compiler provides a wiring list of the system consisting of

gates and memory elements. DDL translator provides the

Boolean functions for the system as an intermediate step in

the translation process. These could be used to generate the

logic diagrams.

-103-

MODULARITY:

High level modular description is possible with ISP. CDL

is a one-level description language. The subroutine features

of AHPL could be used to describe separate modules. DDL block

structure is more closer to the hardware modularity.

From the above discussion, it is seen that AHPL and DDL

are suitable for an integrated circuit design environment.

However, the block structure of DDL, the right-to-left

conventions of AHPL due to its origination from APL and the

portability of DDLs FORTRAN software, makes DDL more suit

able.

7. CONCLUSIONS

The characteristics of the four prominent HDLs are

summarized. DDL was found to be most suitable among these four

languages for an integrated circuit design environment.

Since there are so many languages proposed [81, it is

very hard to perform a critical evaluation of their capabil

ities. Such a critical evaluation of the language capabilities

might not be of much use, since the implementation issues more

or less influence the selection of the language. The evalua

tion reported here caters more to the implementation aspects

of the selected language.

DDL translator and simulator are currently being imple

mented on the SEL-32 computer system of the electronics and

controls laboratory of the Marshall Space Flight Center. The

future work includes the development Of procedures to generate

logic -diagrams from a DDL description and integration of these

procedurs into the current automatic design system.

Three other languages that are heirarchic in nature, use

a multi-level design philosophy allowing the designer to

specify his design at any level of detail. They are: Language

for Computer Design [28], an Hierarchical Language for the

structural description of Digital Systems [29] and a language

for Automated Logic and System Design [30-32]° The RT-CAD

research group at Carnegie-Mellon University is using ISP in

their registec-transfer level design automation [331.

-104

-105-

The languages described in the literature seem to be used

mostly in the academic environment. Industrial design groups

usually make use of internal, proprietary languages. There

seems to be a growing interest in HDLs. Recognizing the need

for common notations and a standard language, a working group

consisting of professionals in this area [34] has been set-up,

which is trying to develop a consensus language.

REFERENCES

[1] 	 Chu, Y.,"An ALGOL-Like Computer Design Language,"

Communications of ACM, Oct. 1965, pp. 607-615.

[2] 	 Chu, Y., "Structure of CDL Programs," Technical Note

74-58, Department of Computer Science, University of

Maryland, May 1974.

[3] 	 Chu, Y., "A Higher-Order Language for Describing Micro

programmed Computers," Technical Report 68-78, Computer

Science Center, University of Maryland, September 1968.

[4] 	 Mesztenyi, C.K., "Translator and Simulator for the Com

puter Design and Simulation Program, Version 1, "Techni

cal Report 67-48, Computer Science Center, University of

Maryland, June 1968.

[5] 	 Stine L.R. and Mowle F.J., "A Position Paper on Exten

sions to the CDL," pp. 103-114, Proc. International

Symposium on CHDLs and Their Applications, New York,

September 1975.

[6] 	 Bara J. and Born R. "A CDL Compiler for Designing and

Simulating Digital Systems at the Register Transfer

Level", pp. 96-102, Proc. of 1975. International

Symposium on CHDLs and Their Applications, New York,

September 1975.

[7] 	 Cwik T.T., "Multiprocessing Simulation of the Intel

8080 and the PDP-8 using CDL," Masters Thesis, Auburn

University, March 76.

[8] 	 Shiva, S.G., "Hardware Design Languages - A Biblio

graphy", Semi annual Status Report, Alabama A & M

Universty, March 78.

[9] 	 Chu, Y.,"Introducing CDL", Computer, pp. 31-33, December

1974.

[10] 	 Chu, Y., Computer Organization and Microprogramming,

Prentice-Hall, Englewood-Cliffs, New York, 1972.

[11] 	 Bell, G. and A. Newell, Computer Structures: Readings

and Examples, McGraw-Hill, 1971.

[12] 	 Barbacci, M.R., "The Symbolic Manipulation of Computer

Descriptions: ISPL Compiler and Simulator". Technical

Report, Department of Computer Science, Carnegie-Mellow

University, August 1976.

[13] 	 Barbacci, M.R., Siewiorek, D.P., Gordon, R., Howbrigg,

R., and Zuckerman, S.: "An Architecture Research Facil

-106

-107

ity: ISP Descriptions, Simulation, Data Collection".

Proceedings of the AFIPS, Vol. 46, NCC-77, pp. 161-173.

[14] 	 Barbacci, M.R., Barnes, G.E., Cattell, R.G., and Sie

wiorck, D.P., "The ISPS Computer Description Language",

Department of Computer Science and Electrical Engineer

ing Report, Carnegie-Mellon University, August 1977.

[15] 	 Barbacci, M.R. and Nagel, A.W., "An ISPS Simulator",

Department of Computer Science and Electrical Engineer

ing Report, Carnegie-Mellon University, November 1977.

[16] 	 Hill, F.J. and Peterson, G.R., "Digital Systems: Hard

ware Organization and Design, Wiley, New York, 1978,

Second Edition.

[17] 	 Hill, F.J. and Peterson, G.R., Introduction to

Switching Theory and Logic Design, Wiley, New York,

1974, 	 Secod Edition.

[18] 	 Swanson, R.E., Navabi, Z., Hill, F.J., "An AHPL Com

piler/Simulator System," Sixth Texas Conference on

Computing Systems, pp. 1-10, November 1977.

[19] 	 Swanson, R.E., Navabi, Z., Hill, F.J., "User Manual for

AHPL Simulator/Compiler", Engineering Experiment Sta

tion, The University of Arizona.

[20] 	 Breuer, M.A., Digital System Design Automation: Langu

ages, Simulation and Data Base, Woodland Hills, CA.,
Computer Sciences Press, 1975.

[21] 	 Duley, J.R. and Dietmeyer, D.L., "A Digital System

Design Language (DDL)," IEEE Transactions on Computers,

Vol. C-17, September 1968. pp. 850-861.

[22] 	 Duley, J.R., "DDL-A Digital System Design Language,"

PhD dessertation, University of Wisconsin, Madison,

1967.

[23] 	 Arndt, R.L. and Dietmeyer, D.L., "DDLSIM - A Digital

Design Language Simulator, "Proceedings of NEC, Vol.

26, December 1970, pp. 116-118.

[24] 	 Soares, L.E.R., "An Implementation of Digital Design

Language," MS Thesis, University of Wisconsin, Madison,

1970.

[25] 	 Dietmeyer, D.L., "DDLTRN-Users Manual", Department of

Electrical and Computer Engineering, University of

Wisconsin- Madison.

[26] 	 Dietmeyer, D.L., "Translation of DDL descriptions of

Digital Systems," Report No. ECE-77-13, University of

-108

Wisconsin-Madison, September 1977.

[27J 	 Dietmeyer, D.L., "DDLSIM - Users Manual," Department of

Electrical and Computer Engineering, University of

Wisconsin-Madison.

[28] 	 Evangelistic, C.J., Goertzel, G., Ofek, H., "Designing

with LCD: Language for Computer Design," Proc. 14th

Design Automation Conference, June 1977, pp. 369-376,

New Orleans.

[29] 	 Vancleemput, W.M., "An Hierarchical Language for the

Structural Description of Digital Systems," Proc. 14th

design auto. conf; June 1977, pp. 377-385, New Orleans.

[30] 	 Baray, M.B. and Su, S.Y.H., "A Digital System Modeling

and Design Language," Proc. of the 8th Annual Design

Automation Workshop, 1971. pp. 1-22.

[31] 	 Su, S.Y.H., "A language for Automated Logic & System

Design," presented at the Workshop on Computer Descrip

tive Languages, Rutgers University, New Brunswick, New

Jersey, September 6-7, 1973.

[32] 	 Su, S.Y.H., Baray, M.B., and Carberry, R.L., "A Sys

tem Modeling Language Translator," Proc. of the 8th

Annual Design Automation Workshop, 1971, pp. 35-49.

[33] 	 Hafer, L.J. and Parker, A.C., "Register-Transfer level

Digital Design Automation: The Allocation Process",

15th Design Automation Conference Proceedings, pp.

213-219, Las Vegas, Nevada, June 1978.

[34] 	 Su, S.Y.H., "HDL Applications: An Introduction and

Prognosis," Computer, June 1977, pp. 10-13.

GENERAL REFERENCES

[35] 	 Proceedings of the International Symposium on CHDLs and

their Applications, New York, September 1975.

[36] 	 Computer, Special Issue on CHDLs: December 1974.

[37] 	 Computer, HDL Applications, June 1977.

