A COMPARISON OF HARDWARE DESCRIPTION LANGUAGES

Prepared by
SAJJAN G. SHIVA

Department of Computer and Information Sciences

4

Final Technical Report

October 1978

Grant NSG-8057
"Evaluation of Digital System Design Languages"
George C. Marshall Space Flight Center
National Aeronautics and Space Administration

Huntsville, Alabama

e e

{NASA-CR-157762) A CCMPARISON OF HARDHARE W78-33788

DESCRIPTION LANGUAGES Final Report {alabama

A & M Univ., Huntsville.) 115 p HC AQ6/NF

A01 CSC1 08B Onclas
G3/61 33781

—— - r - . PR

“

~ T REPROBUCESEY T Tt T —
| NATIONAL TECHNICAL | |
| INFORMATION SERVICE '

|

V.3 DEPARTMENT OF COMMER|
SPRINGFIELD, VA, 22161 o

Alabama Agricultural and Mechanical University
SCHOOIL OF TECHNOLOGY
HUNTSVILLE, ALABAMA

A COMPARISON OF HARDWARE DESCRIPTION LANGUAGES

Prepared by
SAJJAN G, SHIVA
Department of Computer and Information Sciemnces
Alabama A & M University
Normal, AL 35762

Final Technical Report
October 1978

Grant NSG-8057
"Bvaluation of Digital System Design Languages"”
George C. Marshall Space Flight Center
National Aeronautical and Space Administration
Huantsville, Alabama

Submitted by;

oy S

Sajjan G. Shiva
Principal Investigator

]
*
"

FOREWORD

This is a technical summary of the research work con-
ducted since October 1, 1977 by the Alabama & & M University
towards the fulfillment of Grant NSG-~8057, from the George C.
Marshall Space Flight Center, Huntsville, Alabama. The NASA
Technical officer for this grant is Mr. John M. Gould,

Electronics and Control Laboratory.

1z

A COMPARISON OF HARDWARE DESCRIPTION LANGUAGES

Sajjan G. Shiva

ABSTRACT

Several high level languages have evolved over the past
few years to describe and simulate the structure and behavior
of digital systems, on digital computers. The characteristics
of the four prominent languages (CDL, DDL, AHPL, ISP) are sum-
marized. A criterion for selecting a suitable HDL for use in
an automatic Integrated Circuit design environment is

provided.

IIT

TABLE OF CONTENTS

LIST OF FIGURES———mm o mm st e e e o e e e e e VI
1. INTRODUCTION==—=—mwm———— - ———— e ot e e e 1
2. COMPUTER DESIGN LANGUAGE=mmm e o e oo m e sm e om et e e 5
2.7 SYNLaX RULES— - m e e ot o e e e e e o i e 6
2.2 Declaration Statements—-- ot e e e 7
2.3 Continuations=——————m—e e 13
2.4 Comment CardS————————mm— e e 13
2.5 Operatorg————=———— 14
2.6 Micro Statements—————————m—mm e 16
2.7 Switch StatementsS-———————rrmm e — e 17
2.8 Labeled Statements—————m—————— e 17
2.9 End Statement-e———mmm—— e e 18
2.10 Card Formatme—— i o e o e e e e e e s e e e 18
2.171T Translator————m— e e e 18
2.72 SimUlator— e e i e e 19
2.13 Design EXamples—m————m——m— o e e e 24
2.14 Extensions——————————— e e e 37
3. INSTRUCTION SET PROCESSOR=—m—mmm e o mm e omm o e e 42
3.7 Syntax Rul@S«=mm—m o e e e e e e e e 43
3.2 OpPEratOrSmmm o e e s i e e e e e e e e 44
3.3 Arithmetic Representations—-—-———————e—mmememmmewa= 44
3.4 Descriptiongs—————==——mm e e e e 45
3.5 Behavioral Expressiong-—m=—————me—e——ee—c— e n————— 51
3.6 Qualifiers—-—————rmme— e e 59
3.7 ISPS Definitions-——=——==——=emmmem e 60
3.8 Predeclared Entitiesw———e———emc e 61
3.9 Reserved Keywords and Identifierg--——w——m——mmaw— 62
3.10 The Complete Minicomputer—————m———o———em———————— 63
3.11 ISPS Simulator——————— e e e e 66

v

4, HARDWARE PROGRAMMING ILANGUAGE- - ~-59

4.1 Syntax Rules=——s o e e e 70
4.2 Declarations-- - - ———71
4,3 Control Seguence-- e e e e e e e 71
4.4 Combinational Logic Units=—————-— - ~=72
4.5 Comments=——=———wme—m———————— —_— e et 73
4.6 Simulator————m———————— - - -—73
4.7 Design Example—————m—meme—aaa- - - -—=74
5. DIGITAIL, SYSTEM DESIGN LANGUAGE-—————— - 82
5.1 8Syntax Rules————=sormeomm e —-—— --83
5.2 Declaration Statements——-——s——m—re oo o 83
5.3 Operations———=————- e e e e e e e e e e e 85
5.4 TIF-Values Clause-—=—————————————- —— ~-~388
5.5 TITdentifier~———————eemmrm e -89
5.6 Operator Declaration-=——————————— e 90
5.7 State Declaration-—=—=————mesmmmom e 91
5.8 Automaton and System Declarationg—————=————————-- 92
5.9 Advanced Features=————s o s oo 96
5.70 Translator———m oo e e e e 26
5.11 Simulator——m— e e 96
5.12 Design Bxample—————e o 98
6. COMPARISON= == o et e e e e e e e e 101
7. CONCLUSIONS==mmmm e e e e st o e e e e e 104
REFERENCE S e m e e e o e e e e e e 106

LIST OF FIGURES

Serial Twos Complementer———— —m——mme——— e 25
A Sequential Circuit——————— e 30
Variable TiMer————— e e e e e 35
CDL Description of Variable Timer—-————mmeemome—————— 26
A Typical Cell of the Ripple Counter———————emmmeee 38
A 3 Stage Ripple Counter———————m—— e o 38
Multiplier Block Diagram—————=—=s———cm e e 75
HPSIM Program Input File for the Multiplier—----—-——--—- 76
HPSIM Output Listing for the Multiplier—--—-——————————- 76
HPCOM Output————— e e 79
HPCOM Output-———w—=—m—m———— - —————— s i 30
Multiplier-—~————— e —_— —_— ———381
DDL Operators—————s e o e e e e 26

VI

1. INTRODUCTION

Any digital system can be described in the following six
levels of complexity:

1} Algorithmic level which specifies only the algorithm
used by the hardware for the problem solution;

2) Processor, memory, switch.{PMS) level which describes
the system in terms of processing units, memory com-
ponents, peripherals and switching networks;

3) Instructional level (programming level) where the in-
structions and thelr interpretation rules are specified;

4} Register transfer level where the registers are system
elements and the data transfer between these registers
are specified according to some rule;

5) Switching circuit level where the system structure con-
sists of an interconnection of gates and flip-flops and
the behavior is given by a set of Boolean equations; and

6) Circﬁit level where the gates and flip-flops are replaced
by the circuit elements such as transistors, diodes, re-

sistors etc.

Logic diagrams, Boolean equations and programming lan-
guages have been used as the media of description. The
complexity of logic diagrams and Boolean equations increases
as the system complexity increases and are not suitable for
describing the hardware to a computer in a design automation
environment, although the recent advances in computer graphics
might make the input of logic diagrams to a computer easier.
The common programming languages do not have all the features
required to describe the hardware. Hardware description
languages (HDL) evolved as a solution. An HDL is similar to
any other high level programming language and makes the hard-

ware designer's task easier by providing a means of:

1) Precise yet concise description of the system;

2} Convenient documentation to generate users manuals,
service manuals, etc;

3} Inputting the system description into a computer, for
simulation and design verification at various levels of
detail;

4) Software generation at the preprototype level, thus
bridging the hardware/software development time gap;

5) Incorporating design changes and corresponding changes
in documentataion, efficiently;

6} Designer/user (teacher/student) communication interface

at the desired level of complexity.

Several HDL's have been reported [1-30]. The translators
and simulators arxe also written for some of these HDL's., The
tendency has been to invent a new HDL to suit a perticular
design automation environment, basically due to the difficulty
in transporting the translators and simulators on to the new
computing systems and extending these to accomodate the re-
quirements of the new design environment. Attempts to stand-

ardize HDL's are underway.

Hardware Description Languages are designed to describe
both the structural and behaviocral characteristics of a dig-
ital system, to a computer., The fundamental properties of
hardware systems and the art of hardware design process
dictate the essential features of an HDL. For an HDL to be a
useful design tool it has to possess the following proper-
ties:

1) It has to have a natural way of describing the paral-
lelism, nonrecursive nature and timing issues in digital
hardware.

2) The structure and control parts of the hardware should be
easily described and preferably the description of the
two parts be separated so that a user interested in the

4)

5)

6}

7)

behavior of the system need not concern himself with the
structure of the system. This also provides the flexi-
bility to use hardware, software or firmware for the con-
trol part, whichever is economical.

The language should serve as a medium at all levels of
system description.

The design changes should easilyv be incorporated into

the description and corresponding translation should be
done preferably without a complete retranslation. This
feature will be useful for an interactive environment.
The language should be easy to learn and remember, to
accommodate the software shy, hardware designer, although
the hardware engineer can not neglect the software as-
pects anymore, due to the impact of microprocessors. The
dééign system should be portable, thus necessitating the
the translators and simulators of HDL be written in
higher level languages.

Two approaches to syvstems design are often provosed:

The bottom-up approach where the elementary components
are combined to form more complex ones and the top-down
approach where the system is decomposed into collection
0f subsystems until the elementary components are re-
ached. 1In practice, the designer may choose a combina-
tion of the two approaches. The structural detail at any
design level varies from designer to designer. The HDL
should allow the designer to control the amount of detail
during each design phase.

The description of the LSI and MSI modules as system com-
ponents should be straight forward, so is the inclusion
of newer modules. If the system is partitioned by the
designer to accommodate standard modules, this partition-
ing should be retained by the HDL translators and simula-
tors.

All the above reguirements are not met by any one HDL now

available. The solution has been to design a new HDL to suit

an individual design environment. AHPL, CDL, DDL and ISP have
been the most popular languages, partly due to their early
introduction as general purposes HDL's. These languages were
developed in university environments and are used in teaching
digital logic design. New features are being added to these
languages to make them more versatile. Well tested transla-
tors and simulators are available for these languages. A

bibliography of the literature on HDL's is provided in [8].

The characteristics of CDL, ISP, AHPL and DDL are sum-
marized in Chapters 2,3,4 and 5. A comparison of these
characteristics to select a language suitable for use in an
automatic integrated circuit design environment is provided in
Chapter 6.

2. COMPUTER DESTIGN LANGUAGE (CDIT)

Computer Design Language was proposed originally by Chu
[1~3]., A translator and simulator ware written for a subset of
this language [4]. Several modifications are made to, this
translator and simulator [5,6]. The present version [7] is
implemented on IBM 370/115.

CDL describes the structural and functional parts of a
digital system. The structural components like memory, re-
gisters, clocks, switches, etc. are declared explicitly at the
beginning of the description. The functional behavior of the
element are described by the commonly used operators and user
defined operators. Valid data paths are declared implicitly
whenever there is a data transfer. Both parallel and seguent-
ial opeations are allowed. Synchronous operations require a
conditional test for an appropriate signal. The language is

easy to understand and is highly readable.

All the wvariables in a CDL description are global, The
system desgcription can he onl% at one level, and there is no
subroutine facility in CDL, thus making it unsuitable for
describing hardware in a modular fashion. Gate delays and
asynchronous operations can not be adequately described. It is
not possible to include special hardware components like in-
tegrated circuits in a description. However, its simplicity
of structure and its portability resulting from the FORTRAN
implementation, have made CDL a popular language. The
descripton of CDL Syn~ tax and Semantics as accepted by the

present version of tran- slator and simulator is presented.

2.1 BSYNTAX RULES

Variables - variable names may contain 1 - 4 characters, the
first of which must be alphabetic. The remaining characters

may be alphabetic or numeric. Embedded blanks or special
characters Other than ll+!|’ r T _ 1t n ’ 1" r imtLn r Tl/ll’ r u 1 min ’ " $ 1] . and |I=ﬂ

I * 4
are ignored. Variable names longer than 4 characters may be
used and will appear on the listing, however their signific-
ance to the Translator is limited to the leftmost 4 charac—

ters., Some examples of variable naming follow:

Valid:
Name CDL Name
ATBC A1BC
ABbCD ABCD b is blank
AT#CD A1CD
START1 STAR
START 2 STAR
Invalid:
Reason
iIB3D Nonalphabetic 1st character
AB.CD contains special character

Reserved words - The following may not be used as variable

names:

IF, THEN, ELSE, DO, CALL, RETURN, and END.

Constants - Constants may be entered in three forms subject

to the following conditions:

Form Max. Digits
Binary 32
Hexadecimal 8

Decimal 9

Hexadecimal constants are denoted by a colon (:) preced-

ing the significant digits. Binary constants are preceeded by
a semicolon (;).

In general, for numeric constants, blanks and special
c¢haracters other than those listed in the discussion of vari-
able names are ignored. Characters outside the permissible
set for the form used are also ignored. Some examples of
numeric constants follow:

valid vValue

1234 123410

:100F TOOF16

;110011 1100112

:12b101 11012

Invalid Reason

A345 1st character not numeric

{will be treated as variable

name)

2.2 DECLARATION STATEMENTS

The following devices are permitted in CDL:
Registers Terminals

Sub registers Lights

Memories Bus
Decoders Clocks
Switches

The syntax for a declaration statement is:
DEVICE, list

where the type of device begins in column two.

-8~

Mixed notation for devices and other keywords is shown in
the following paragraphs. The first four characters are
significant and must not contain embedded blanks or special

characters. The following table relates keywords and accept-
able abbreviations:

Keyword Abbreviation
REGISTER REGI
SUBREGISTER SUBR
MEMORY MEMO
DECODER DECO
SWIiITCH SWIT
TERMINAL TERM
LIGHT LIGH
BUS BUS
BLOCK BLOC
CLOCK ‘cLoc

Note that the comma trailing the device name is
mandatory.

REGISTER DECLARATION:
REGI,A{0~2),R,F(6-1) ,G(0=5)

This declares the following:

SUBREGISTER DECLARATION:
SUBREGISTER, G(OP}=G{0-2) ,F(OR)=F(6-4)

The subregister 1is always used with a register name, and
it refers to a part of that register. All referenced regis-

ters must have been previously declared.

A general tendency is to give two subregisters the same name,
e.g. SUBR,R{(OP)=R(0-3),A(0P)=A(0-3)
This is incorrect!

A correct statement of the above would be:
SUB,R{OPR)=R(0~3), A(OP)=A{0-3)

MEMORY DECLARATION:
MEMO, M(R)=M(0-77,0~10), N(J)=N(0-6,3-1)

M and N are the names of the memories; R and J are the
corresponding address registers which should have previously
been declared; 0-77 and 0-6 represent the limits <of the
addresses of the words in the memories; 0-10 and 3-1 represent
the order of the bits of each word.

DECODER DECLARATION:

A decoder is a logic network which translates each value
of the contants of a register to one and only one of the out-
puts;

DECO, K(0,1)=F,L(0,15)=G(2-5)

This declares the following:

Ky Ky

AJ] Lf Lf L15
LOGIC LOGIC
2 3 4 5
F G

Where F and G have been previously declared.

-10-

CLOCK DECLARATION:
A clock may be specified for event synchronization.
CLOCK, P(2)
This declaration defines three clocks, P(0),P(1},P(2). The

impulse diagrams are assumed to be the following:

CLOCK TIME 1 1 1 2 2 2 3
i I I 1 i t !
I 1 I 1 | 4 i
H 1 1 i
| 1 1 I
i 1 1 I
2 (0) ? ! ! !
I I i i H {
I I I i 1
I 1 1 I [
P(1) ! l | ! !
| [! i 1
| I f 1 i
| I [| i
P(2) o+ ; i ! ;
{ I 1 | H | I
1 i 1 | 1 | 1
. 1 I i] I t 1
LABEL CYCLE 1 2 3 4 5 6 7

The time intervals between the impulses given by the
clocks are the same. A clock may be referenced only in the

expression of the label.

During execution, a clock cycle is designated on the

simulation printed results as clock time.

SWITCH DECLARATION:
SWITCH,STRT (OFF,0ON) ,SENS(P1,P2,P3)
The switch names are STRT and SENS the positions for STRT
are OFF and ON and for SENS they are P1, P2, and P3 where OFF

and P1 are the respective initial positions.

In later references a switch is either checked for one of
its positions, or set to one of its positions. When a switch
is checked for a position, it has the form:

NAME (POS) e.g. SENS (P2)

when setting a switch to a position:

-1

NAME=pos e.g. SENS=P2
NOTE: A maximum of 10 switch positions is permitted.

TERMINAL, DECILARATION:

A terminal statement can rename a terminal or describe a
logic network.
REGISTER, A{0-2)
TERMINAL, BO=a(0)’',B1=A(1)",
B2=A(2)"
or using subscripted terminals
REGISTER, A(0-2)
TERMINAIL., B(0=2)=A{0-2)}"
Both of these describe the following:

B B

$ 71 7
% > |
te [1 | 2}
A

Referring to the decoder example:
TERMINAL, ADD=L(0),
SUB=L (1),
JUM=L(2),
etc.,

LIGHT DECLARATION

LIGHT, RUN{ON,OFF), FINI (OFF,ON)
The lights RUN and FINI, each have two positions, with
the initial position being ON for RUN and OFF for FINI.

A reference where a light is checked for its position,

=-12=

has the form:

NAME (POSITION) ex: RUN (ON)

When setting the position of a light, the following
format i1s used:

NAME=POSITION ex: RUN=CFF

BUS DECLARATION
BUS, INTERNAL (15-0), DATA (7-0)
This declares INTERNAL bus with 16 lines and DATA bus
with 8 lines.,.

BLOCK DECLARATION:

In order to avoid the repeated writing of a group of
microstatements, the block statement and do statement are
created., The block statement declares the name for a group of
microstatements. Whenever these microstatements are declared
in an execution statement, a do statement is used to call
them.

Example: Serial Complement
REGISTER, T(1-5),A(5-1)

SWITCH, START {(ON}
CLOCK, P
BLOCK, SERCOM (A=A (1) "-A(5-2))

/START (ON) /T=20
/T(1)*P/ DO/SERCOM,T(1,2)=01
/T(2)%P/ DO/SERCOM,T(2,3)=01
/T(3)*P/ DO/SERCOM,T(3,4)=01
/T(4)*P/ DO/SERCOM,T(4,5)=01
/T(5)*p/ DO/SERCOM,T(5)=0
NCTE: DO is followed by a slash'/' and then the BLOCK name.

-13-

Another example of Block Declaration:
BLOCK, PAR(A=B,R=0),CYC{A=A.COUNT,,
IF (A.EQ.1) THEN(R=1)ELSE{(R=0))
All of the microstatements following the block names (PAR,CYC)
will be executed when DO/PAR or DO/CYC are called.

2.3 CONTINUATIONS

ONLY declaration statements may be continued onto other
cards by placing a '1' in column one of the subsequent cards.
Label statements and switch statements may be continued on

subsequent cards by leaving column one blank.

Declaration and Label statements are limited to 250

terms, where a term is considered to be:

a device name, a variable name, a constant, or any of

the following special characters:

T 11} 1l — 17 LU 1] 1 1 m 1] T 11} n m " T 17
+°, ’ r PUET/ MM, o T

Example:
REGI,A(0-2),
1 B(0-6),
i c(6~1)
JEK*A (2} / B=B.COUNT.
C=C.COUNT.

2.4 COMMENT CARDS

A comment may be made by placing a 'C' in column cone. The
comment will be ignored by the translator. Comments are not

continued in the conventional manner, rather a 'C' in column

—-14~

w
one of every subsequent card will continue the comment,

Example:

C SIMULATION OF A SECOND

C GENERATION COMPUTER

2.5

STANDARD OPERATORS

OPERATORS

The following standard operators are available in CDL:

SYMBOL FUNCTION
' (Apostrophe) Conmplement

I

(Equal Sign) Replace

~ (Dash) Concatenate

+ (Plus sign) Logical OR

* (Asterisk) Logical AND
cEQ-

.NE,

SPECIAL QPERATORS

EXAMPLE
Al

A+B

A*B
A.EQ.B

A.NE.B

EXPLANATION

Contents of A are
replaced by contents
of B.

Contents of A & B are
placed side by side.
Bit-wise OR (A and B

must be conformal).

Gives '1'" if A and B
are equal.
Gives !1' if A and B

are unequal.

Special operators can be established by the user through

a separate subprogram. It is referenced by a symbolic name

delimited by periods.

~ 15~

Example:
*OPERATOR, X(1-4) ,COUNT.
// IF {(X{(4).EQ.Q)THEN(X(1-3)-1)
ELSE (IF (X(3).EQ.O)THEN (X(1-2)-1-0)
ELSE (IF(X(2).EQ.O)THEN (X(1)-1-0-0)
ELSE (X(1)'-0-0~0))),RETURN
END

The first line ig a heading line of the subprogram:
*0PERATOR (or *OPER) specifies the type of the subprogram, it
is followed by a comma and by the name of the first argument,
the name of the operator enclosed in a pair of dots, and by
the name of the second argument if the operator is binary. If
the arguments represent more than one bit, the bit addresses

must follow the argument's name in parenthesis, e.g., S(1-4).

The subsequent lines are headed by a blank label, i.e.,
two slashes. This indicates an immediate execution of the
operations when the operator is called. Following the blank
label, there must be an expression, which may be a conditional
expression, giving the result of the output terminal. The sub-
program must be ended with a RETURN and an END statement.

RESTRICTIONS:
The following special operators are built in for Simula-

tion and they may not be defined by separate subprograms.

A.ERA.B performs the exclusive OR of A and B

A.ADD.BR performs the algebraic sum of A and B, an
overflow bit ig discarded

A.SUB.B performs the algebraic sum of A and the com-
plement of B, an overflow bit is discarded

A.COUNT, Adds one to A, an overflow bit is discarded

A.LT.B gives one bit of output: 1 if the conditions

A.LE.B algebraically less than, less or equal

...‘16...
A.GE.B greater or egqual, greater than, are satis-
2.GT.B fied: 0 if the conditions are not met

2.6 MICRO STATEMENTS

An UNCONDITIONAL MICROSTATEMENT consists of a wvariable
representing a storage element, the REPLACE OPERATOR and an

expression.
Example:
A=1,B(1,3-5)=C*D+E(2,0-2)

NOTE: A given device or portion of a device must not appear
on the left of a 'replace by' operator more than once
in any set of microstatements to be executed during a

given label cycle.

A CONDITIONAL MICROSTATEMENT has the following forms:

(a) IF(expression) THEN (microstatements)
IF (expression) has the value '1' then the opera-
tions indicated by the (microstatements) will be
executed.
Example:
IF(A.EQ.B}THEN (R=0)

(b) IF (expression) THEN (microstatements) ELSE (micro-
statements) if the (expression) is true then the
operations indicated by the (microstatements) im-
mediately following THEN will be executed, other-
wise the operations indicated by the (microstate-
ments) immediately following ELSE will be executed.

Exanmple:

IF{C.NE.D) THEN (R=0) ELSE (R=1)

-17-

Conditional statements may be nested in order to form a
very powerful decision-making capability. An example of a
nested appears in section 5.2. Note that each of the nested
IF's must be enclosed in parentheses as shown in the following
generalized example:
IF (exp 1) THEN (microstatements)

ELSE (IF(exp 2) THEN (microstatements)

ELSE (IF(exp 3) THEN -(microstatements)

BLSE (IF 4 & o o o o « s « =

ELSE (microstatements)))}..)

- » - - L4

2.7 SWITCH STATEMENTS

The Switch Statement has the following form:
/NAME (POSITION) /microstatements
where Name corresponds to a declared Switch Name.
Exanmple:
SWITCH, STRT(OFF,ON), SENS(S1,52,53)
/STRT (ON) /A=0,F=1,SENS=S2

The indicated microstatements here would not be executed
since STRT(ON) is FALSE.

2.8 LABELED STATEMENTS

The Labeled Statement has the following form:
/LABEL/microstatements
where;

LABEL = expression * clock

-18-

RESTRICTION;

The expression must not include any clock reference.
Example:
/K(Q)*P/ A=B, B=A

2.9 END STATEMENT

The physical end of the description of a design is in-
dicated by the word END.

2,10 CARD FORMAT

HEADING CARD

The main design and the user's defined operators must be
preceded by heading cards as follows:
Col. 1-5 *MAIN
or
Col., 1-...*QPERATOR...
where no embedded blanks are allowed. The Operator card

should contain the arguments and the name of the operator,

OTHER CARDS

Declaration cards, Labeled Statement cards, and the End
Card may be punched anywhere in columns 2-72, Blanks mav be
used freely.

2.117 TRANSLATOR

The translator accepts the logical design written in CDL

from punched cards. It translates the design into a form

-9

suitable for simulation. This consists of various tables and
a pseudo program called Polish String. If the $TRANSLATE card
is punched PRIN in columns 14-17, the various tables and Po-
lish String will be printed.

The Translator is called by a special control card having
$TRANSLATE (or $TRANS) punched in col. 1-10. This caxrd i1s
followed by the deck of cards describing the logical design
using CDL. The Translator remains in control until a new
control card with $ in column 1 is read in. A typical deck

set-up should appear as follows:

$TRANSLATE —-—=Translator is called
*MAIN
END
*QPERATOR, ... —-~~Translator is in control
END
$SIMULATE —~-=Simulator is called

. Simulator is in control

*

2,12 SIMULATOR

The Simulator consists of 5 parts: Loader, Output,
Switch, Simulate, and Reset routines. The Loader accepts test

~20-

data from punched cards and stores them into memory or into
specified registers of the designed computer, The Output rou-
tine handles the printout of the contents of the chosen regis-—
ters, memory words and position of switches during the simula-
tion. The Switch routine simulates the operation of the
manual switches., The Simulate routine actually executes the

test program. Reset routine reinitializes the Simulator.

The execution of the test program is controlled by a loop
which is called the Label Cycle. During each label cycle, the
following steps are taken: (a) If a manual switch opera- tion
occurs, the corresponding executable statement for the switch
operation is carried out. (b) All label values are evalu-
ated. The activated label, i.e., the label expressions having
the value TRUE, are accounted for. (c) The microstatements of
the activated labels are carried out in two steps. First, all
values to be stored in various registers and memory words are
evaluated and collected. Then, the collected values are
stored one after the other., (d) It is checked whether the
simulation should be terminatad. '

If the Simulation 1s terminated, the Reset routine can be
called and another set of data can be inserted as a test
program.

Example: The following is a demonstration of a simula-

tion with 2 test programs.
$TRANSLATE
*MATN
END

CDL Design cards

*QPERATOR, ...
END
$STMUTATE.
*QUTPUT

-21=

*SWITCH
*LOAD
*SIM...
*RESET
*TLOAD

> e s 8

*SIM...

LOAD ROUTINE

The Loader provides the storing of test programs. The
data cards should use Col. 2-72, blanks may be inserted
anywhere, Only declared full registers and memory words with
constant addresses can be loaded with data. The format of the
data cards is as follows:

Data loaded into a register: REG = 4
Data loaded into memory words M(L}=d
o¥ M(L1~Ln)=d1,d2,....,d
or M(L.I—)=d1,d2,...,dn
Where REG is the name of the register whose contents must be

n

set to the value d. M ig the name of the memory and L1 de-
notes word addresses. In the first case d 1s loaded into
memory word M{L). In the second case, the words d1~dn are
loaded into memory words with addresses L, to L, consecutive-—
ly. In the last case, the last address is defined by the
number of numbers punched,

A data card may contain any number of lists separated by
commas. There is no provision for a continuation card, thus
each data card must start with the name of a register or a
memory in column 2.

Example:

*LOAD
R1=0,AC=20,SEP=72,M(0~3)=1,2,3,4 ,M(77)=345
M{10~)=70,71,72,73,74,75,76,77,100

-22=

OUTPUT ROUTINE

The output routine provides the printed output of the

contents of specified registers, memory words and positions of
switches during the simulation. The following format is
required:

Col. 1-=7 *QUTPUT
LABEL
Col., 11-15 or
CLOCK
Col. 16-21 (n,m}=
Col. 22-72 list

Where the label or clock punch specifies the type of output
required, n specifies the start of output and m specifies the
frequency of the output. The list consists of the names of

the registers, switches and memory words whose contents should
be printed.

During the simulation, the output may occur at every mth
label cycle or at every mth clocktime depending on the type,
Label br Clock in Col. 11-15., If the design happens to have
one clock, then the two types coincide.

Example:

*QUTPUT CLOCK (1,10)=RR,START, M(0) ,M(777),
AC,MQ,M(10) ,OVER
The list may be continued on the next card(s) provided that
column 1 is left blank on the continuation cards. The output
of all listed devices is given in hexadecimal, regardless of
input format.

SWITCH ROUTINE

Manual switch settings are initiated by the Switch rou-

tine. The necessary information is given on *SWITCH cards.
For each switch setting, a separate *SWITCH card is necessary.
It has the following format:

-23~

Col. 1-7 *SWITCH
Col. 11-12 L,
Col. 13- NAME=POSITION

Where L specifies the Lth label cycle before which the switch
operation occurs. The NAME corresponds to the name of the
switch with POSITION as one of its positions declared. During
the simulation, an output will occur after every switch
setting with a heading stating the interrupt.

SIMULATE ROUTINE

The actual simulation starts by calling the Simulate
routine using the control card with the following format:
Col. 1-4 *SIM
Col. 11~ n,xr
Where n and r are the terminating conditions, n is the maximum
number of label cycles allowed, r is the allowed maximum
number of consecutive label cycles such that the same group of
labels is activated in the CDL program.
Examples
*SIM 400,3

RESET ROUTINE
The Reset routine reinitialiges the Simulator to its
initial conditions. It is called by a control card with the
following format:
Col. 1-6 *RESET
Col. 11~ (options)

The options may be one or more of the following terms
separated by commas:
OUTPUT, resets the output regquested previously, it
is assumed that another *OQUTPUT card will be
given

SWITCH, resets the manual switch operations re-

-2

quested it is assumed that another *SWITCH
card will be given
CLOCK, resets the counter of the clock cycle
CYCLE, resets the label cycle counter and the clock
cycle counter
Example:
*RESET CYCLE, OUTPUT
The reset card then followed by other OUTPUT card, pos-
sibly other LOAD card with data, and by a SIM card.

CDL translator and simulator alsoc have an extensive erroxr
diagnostics capability. ‘

2.13 DESIGN EXAMPLES

The design process using CDL for a serial two's comple-
menter circuit is illustrated [8] in Figure 2-1. A similar

design example is provided an [9]. Several CDL descriptions
can be found in [10].

Figure 2-2 shows a sequential circuit along with the CDL
description and simulation results.

A CDL description of a variable timer circuit shown in
Figure 2-3 1s provided in Figure 2-4. CDL is highly suitable
for this level of description.

Basically, the circuit consists of a devide by 3600
circuit R along with a counter CT that counts the number of
times R goes to zero. CT is compared with the input setting
IN, IF IN equals CT an output pulse is given and the START
flip-flop is reset to disable the clock. ABORT input clears

-25-

GE ROOR &

‘ ; % : ' R REGISTER, R (i-8)
S S N A
2 3 Ty
o
i , ; P C REGISTER, C (2-0)
i N ,l t
| : t
2 1 9
f - REGISTER, $
e
|h-'_-'-—""
f L LIGHT, L (on, off)
u—._._____:l
/ SWITCH, SW (an,off}
b SW
(A) (8)
T (&) Storage structure

(B} CDL description

Figure 2-1 Serial Twos Complementer

-26=-

sH (on)

ORIGINAL PAGE 1S
OR POOR QUALITY

C-0

50, L= 3G

n
-n
-t

o

R-w- R(G)I"R(l“s

L« ON 8

|
\/
END

-

Figure 2-1 (C): Twos Complementer Seauence Chart

REGISTER, T (1-3)

P
1 2 3
1
clock . X P CLOCK, P
I
(D)
. SW {on)
\i.
TN
—> T=100,
| v
: !
/i\ Figure 2-1 (D) Control elements
Pl \ {g) State diagram
b T=0102 (F) COL description of control
v sequence
C#6 !
| =6
N
S \\
{ T=001 - BRISINAT PAGE 1S
N BF POOR QUALITY
EMD
(=)

/S n) /T« 100,
/T(L)* /T « 010,

/T(2)* / IF (C=6) THEW (T+001,) ELSE (T+100,)
/T(3)*P /T « 000 '

2
(® '

-28-

STRANSLATE ORICINAT: PARE i
e R MA TN ‘
REGISTEXZR{1=8 17 CI2=017S ~

LIGHT,L(ON,OFF} !

SWITCH,, SALUN]
£ CONTROL

TREGISTERTTILI=37
CLOCK, P

" PROCESSTR
FSWION)/T=3100,0=J,=0FF:5=0

T e/ T O L =T U ST S TR ST B U THENT SRS vy R R (G =R IT=5 71T

ELSE{R={R{8} "-R{1-5))1}

T2 F P/ IR CTEG T TTOITHER{ =700)V ELSET=7100)
JTL{3)*P/T=3003, L=0N

£ND

SSINMULATE

+FUTPUT —CLOCKIIFT) =R 7757 77¢L

*SWITCH 1,5W=0H

=t BAD

i

-————Figure 2-1 (G):—EPt—6omplete-Deck-Set-Up

— o~ o~ = - o= PR W e e e R W e = TR e

~29-
ORICiNAL PAGE I

- OF POOR QUALEEA

JUTPUT b STHMULATT.IN

sxRd SYUITCH INTERRUPT =3¥%

Sd = ON —_—

R = ..05 C = «..0 S = va.0 T = ...t L = OFF
A R B At T R AT R T RN RN S ERE R G R RAT ST P L LR LSS LSS T R LR, &
LABEL CYCLE 1 TRUE LABELS CLUCK CYLLE 1

/TLY+PY

R = 3.22 TC = .l T STE ,ell TTT R YTE D.3277 T L o= CQFF Tt
Y T Ll L T DRE” L P e e E
LABEL CYCLE 2 TRUE LABELS CLOLK CYCLE 2

T2} =P/

R = ,a22 C = avel S = seal T T aeel L= uir
RS R F S F S A R AT E R RS S SRR AR E T RN TR LR F LT ST AF T F LA SO SR RRT L E S
LAJEL CYCLE 3 -~ - -—-" TRUE LABELS— -~ -~ =~ - CLOCK CYCLF - 3

JTLLY*p/

B o= L.41 = anel S % aael [= 4aa2 L = OFF
LR L R L L T e g g L At
LABEL CYCLE 4 TRUE LABELS CLOCK Cy(CLLC 4

IT{2)*p/

R = a3l ~—C = .28 = .5l -—— T-=-,.34 -~ —-L-= (OFF -
EE R T A T - P e I Tl T T o B o b N T
LABEL CYCLE 5 TRUE LABELS LLULK CYCLE 5

fTLlYy*p/

2 = ,.18 C = ...3 S = .esl ~ I = Ll 2 L = OIF
B R ey S T R e LR L L L e
LABEL CYCLE - H-——— === TRUE tLABELS—-— == = =~ ~—~CLCLK- CYCLE "6 -

friz2r%p/ -

R = .18 C = easal S = .asl T = ceat L = OFF
T et A R SR AR R C R R R e PR RN R T P A S R TR S T S E S v b
LABEL CYCLE 7 TRUE LABLCLS CLUCK CYCLK 7

/TLLI%P/
TR T 4,20 m- cCeEtingm— S =wiulo s=T o= .3l.2--- L= OFF
R T T e T T R P P T e e e e S AL LA T L R P b AP
LAUEL CYCLE 8 TRUE LADBCLS CLOCK CYCLEC 3
/Ti2V%p/

® = ,.2C R R R 5= .e4l T = caat L = Gkk
L L R L e L Ly e LT
t AREL CYCLE-—— 99— —— —— TRUE-LABELLS - == = CEUCK CYCLLE -

/TiL)=p/

R = .36 L = easl S = eesl T = aeal L = OFF
B Tl T T T R AP e T I P PP T S p S S g B 11" JUPUC AL o
LAREL CYCLE 10 TRUE LABELS - LLOCK CYCLE 10

IT(2)%p/

R o= L3867 - =0 =".3.9 " ST seelT T T T oSeTh T “L = Ore - -
R Ak R M R R R R S R AR R R AN R L AT TP RS AP ST IS EL ST R G o RS EES IR L
LABEL CYCLE il TRUE LABELS CLUCK CYCLE 1l

/TLLY%py

R = ..38 L = e.ab . S = aeal I = eea2 L = UFF
B e LR R T R R - e e R P e
LADEL CYCLE - -12 - == ———— === -~ TR{I LABFLS - - o= - (CLOCK CYCLE 12

fT2)%P/

R = ..38 C = esub R T = «a0l L = WFF
A R R RN R R AL A RE AR ARV SRR E R L AP RN AR R AEE N EL S F L EEEE Ty
LABEL CYCLE 13 TRUE LABELS CLIICK CYCLE L3

fTI3)*p/ f

R = J.30 C = 4aeb §°= el - T = asal L =
R R P R R P R RS F R P AT R R R EF T ORI T ORI BT oA T AT T LA m] T F L
erda SEMULATEON TTRMINATED — NU TRUE LAHLELS
*RESET CYCLL,CLUCK
«LOAD
R=21

~f Taa N

Figure 2-1 (H): Simulation Results for R=510

~30-

‘
lunk_ E h .IFC_
€t Sor [1}]

- Lo

ORIGINAL PAGE I¥
OE POOR QUALITY

.

4 2
e O P
T T - . X
_ (|_|.ﬂ...4 - sl F __— 40!
'
L
TaEx|, m. =T mM._
/ o B N. Sy
(L i Lz
lr.ﬂ
a 'x [= NHM_
‘ T |

Figure 2-2 (A):

A Seguential Circuit

-31-

. ORIGINAL! PAGE Ig

T T [P —
M, = (X3 + M) - X, - (Z;:5) OE POOR QUALITY
_ 1 R t
M3 = (X1 . S) X2 . X3 . XS
g 1 1 ! '
M4 = (M5 . S+ Xz) . (X4 + M2) . (X3 + Xé)

Figure 2-2 (B): Boolean Egquations for the Circuit

-32-

$TRANSL ATE

*MAIN
SWITCH, START{ON]

REGI, FF{l—-86), M2,M4,M45, X{1-6},ST{0~1)

CLOC, P
TERMy TI=M2+M4yM3={X(L)#X{6}) " *FF{LI*FF{2)'*FF({4),
! T3=M2+M3, T4= M2+M3+M4

/START{ON} /5T=1

SPESTI1I/FF=X,53T=2

/PEST{O) /M2={FF{2i4FF LB})FFFIL)F(X{1)%EX{8)) ",
Mg= {MSEX{HI+IFF{1)IVI=IFF(3)4FF{(5]}*

[FFLZ)+FF{4]) 1)
MS=XT1)+(FF{1)*{FE(2})*X(FF({4))TX{FF{6})}'),

S1=1

END

$SIMULATE
*QUTPUT CLOﬁK[l)l)=FF1M21M4|M59X157757ART

*SWITCH 1,START=0ON

={ 0AD
MZ2=1,M4=1,M5=1
*SIM 2542

END DF DATA ON INPUT

NOTES: S is renamed as X(6) in the above description.
Modules 1-6 of the circuit, are named FF (1-6).

Figure 2-2 (6): CDL description of Sequential Circuit

-33-

ORIG}N'AQ
i TR
QUTPUT OF SinuUlAFION

Txxs® SHITCH TNTERRUPT *kww - -
. _STAR =_gN _ N o)

TFF = 2500 M2 = aa.d Ma =000 M5 = ...l X = ..00 ST = ...l 51a1 =
ttl‘tttt‘t*tttttf’g*““.‘Utl“‘l#t}::ft"'t::‘tﬂ-_l_ﬂ:-:‘t_:ff!ttiU**lSlltft**?*#i‘s'#‘#tiutttrrtetrt
LABEL CYCLE 1 TRUE LABELS CLDCK CYCLE 1

L _ _ _ sPESTI1)}/ ; .

FF = ..00 MZ = LL.T T THR = 00T “y = L1 X = ..03 ST = mae2 8T&w = o
l*ttli*‘l!l'*"ttt.{ft!33ttts:sttttttttttttttttt==t#=$t#ttt:#:3::*:::?{i?:f::f::tttix:tazttatttat
LABEL CYCLE 2 ~ TRUETLABELS T 7 CLOCK CYCLE 2

e /P*STI0)/ e i

FF = 4.00 K2 = a0 7 HMe = L0077 us = L_.C A= .00 ST = .ael STA- = o
PRREXXEEEEE LR EEE AN R EE X R XTI RS RIS E R NS AN X R A R A S A AT SN C A TR PR A T F S AT RS AR T AL A CFECT N EFT O
LABEL CYCLE 3 TRUE LABELS CLOCK CYGCLE 3

FP*STILS/ -~

FF = ..00 B2 = ...0 Mé = .o.0 NS = ...0 X = ..00 ST = was2 STEAR = uh
k! § 3 * EE T s FTER PR S L E TS RS TH T PR Rt R IR S A LI S R S
LABEL CYCLE [TAUE LABELS CLOCK CYCLE &

/pEST{0)/

FF = .00 MZ = +..0 M = ...0 M5 = ...0 X = ..00 ST = <.aul STAR = ON
g*g;*xgtystngg;g;tttttssa*c:*tttmtait:t-ﬂm&ssstttttt***ttttt*ttt*tc#sez*tuttttttst**ta:tstt:t_t_t
LABEL CYCLE 5 TRUE LABELS CLOCK CYCLE B -

/PESTL1)/ e
- FF & .00 N2 = J..0 Met = .00 M5 = ...0 X = ..00 5T = ...2 STAR = ON
= RpEF R REEEE R A FFEEREREELNE X REEE R FE TR EETEF
- LABEL TYCLE _ & TRUE LABELS CLOCK CYCLE [
- ST 7p*STL0)
FF = «200 M2 = .. .0 Ms = ...0 M5 = L..0 X = ,.00 5T = wwsl STAR = OM
- et g ok o =g kol
=LABEL CYCLE = =7 _ - _ TRUE LABELS - . --LLOCK EYCLE . 7 _.
N /peST(1}/ ~— °
FF = ..00 M2 * o..0 He = ...0 M5 = L..0 X = ..00 5T = awe2 STAR = ON
* 5 i i i i it s b i i sindn i % b e
LABEL CYCLE 8 TRUE LABELS CLOCK CYCLE 8
- - JPEST{0}/

FE = ..00 M2 = ...0 e = ...0 M5 = .0 X = ,.00 ST = .--1 STAR = ON
EI e A Rt R P T PR P I T L e 2 E R XY 4 b L e e T L e e s T YT
(ABEL CYCLE E] TRUE LABELS CLOCK CYLLE 3

/P*ST(1)7
FF & .00 NZ = ...0 B4 = ...0 M5 = ...0 X = ..00 ST = ...2 STAR = ON
EFEN KK E: 3 *EXEEX EEXEEEX. XAFXELTEXTERIERTEER
LABEL CYCLE 10 TRUE LABELS CLGCK CYCLE 10
/P*5T{0)/
FF = «.00 M2 = _..0 My = .0 M5 = ,..0 X = ..00 ST = ..l SIAR = ON
=y et 2 1Lt g xR EXRKEXEEXEXERXEEEXEREERY
LABEL CYCLE 11 TRUE LABELS CLOCK CYCLE 11
/PESTE1Y/ -
_; ~FE-= .00 _HZ = ...0 Mh =_L..0 - M5 = L..0 X = 200 ST = .eeZ STAR = ON
Rk *: xx e
LABEL CYCLE 12 TRUE LABELS CLOCK CYCLE 12
/P*sTL0}/
FF = ..00 MZ = ...0 Wa = ...0 M5 = +..0 X = .00 ST = wee-l STAR = ON
Lzt 2 *REEEEEER EEEEXREXEEEE TR
LABEL CYCLE ~ 13=- TRUE LABELS _ - CLOCK CYCLE 13
SRS e e - /PESTL1)/ .
FF = ».00 M2 = JI00 He = L2.0 H5 = .aa0 X = ..00 5T = a2 STAR = ON
TEEEXEFE LE 2l 3t L 23 L L 3 it d FEEEEXREXENFEEXFETXERXERER R EFLEE
LABEL CYCLE 1% TRUE LABELS CLGCK CYCLE 14
FPASTLD)/ e
FF = ..00 M2 = ...0 M4 = _..0 M5 = ...0 X = .00 5T = ... STir = (W
et 2 & L R kwkk RN WXL KR AEEEEERAXEXRXXEXEERE F AR XX TAX R EF T
LABEL CYLLE 15 TRUE LABELS CLOCK LYCLE 15
/P*STL13/ .

FF = a0 ~ M2 = waal Ma m L D -~ H5 = L..0 X = ..00 ST = ..=2 STAR = ON
EXEREE T¥EEEEEREXF EREEEEKE REFREEER TR REENES
LAaEL CTCLE-— 16 e .- _TRUE LABELS = . - . . -~ _.u‘CLGCK CYCLE = L& -

= R IP*ST;OM-' - e -
— e ,..00___52_:_.-.0- MR X w0 T M5 Wrgull -~ - X w L 00T ST ® ousl STAR = ON
e e s Fhkdd ERAXEXTEFEETR
LABEL CYCLE 17 ° TRUE LABELS CLOCK CYCLE 17 -
iy IPESTILIS -
FF = .80 HZ = J..0 He = L0 M5 = ...0 X = ..00 ST = -..2 STAR = OK
i ERRER EECRERBRRZER RS REREEEETRIREERE .n.-tu. EFXXEFESTIRRRXLEETIE
LABEL LYCLE _18 __ . - TRUE LABELE c:.ocx CYCLE -
P i T FPRSTION, e e e P v _~‘§‘
- —FE @ RaD0m~=M2 = .l R4 = .0 — RS -mopall —=-X = .00 5T = ...} STAR = ON

L

Y LN el did

Figure 2-2 (D): Simulation results for the Sequential Circuit

't't'tt"‘.‘**t*t—‘ttt#*‘-"*ﬁt“"‘*“‘..'t*‘#?*t&‘ EARPA RSV BAE EE SR EDL S L SRS aN .lﬁl‘-‘“ tizlhﬁlut

TLasEL EYCLE T 20 TTTTTT TTTIRUE LABELS CLACK CYCLE 2u
e /PESTIONS e .
FF = ..00 Mz = ,..0 MG = ...0 M5 = L..0 X =" ..00 AT = J..1 ST47 = uh
‘*l*ttlt‘ll‘tl“'-'?t'.lCltltt‘&t*!"l‘!“!ttrttte0931 EIETnAEER t&t!ﬁrt‘*a&gst #ﬂ_:i::‘ﬂft_::‘ttttﬂilttﬁ
T TABEL cYCLE 7T T TIRUE LABELS T 7 cLoock fycrr T2k
. N e _IPESTILIY . .
FF = ..00 M2T=TLLLd Kb = 4.0 5 = L..0 ERE R 37 = o.72 TSTAR = D

:tttt*tilﬂlt*ttt*ttt#t#_ﬂttttt-tssss:nttst:tttts:r:nans-s::ta:szxss:ngut:tta—m#ttzz*tc#a:ttx:stg;z
LABEL CYCLE 22 TRUE LASBELS CLOCY CYCLE 22

— FPESTIONS e e e e e _

FF = ..00 M2 = ..,.0 My = aaaD M5 = L,.0 ¥ = ..C) 5T = ...l STAR = DA
-'t‘ll#%tl‘ﬂ'#'.ttit‘tttttt#ltll-‘*‘ttt*at‘tt-kﬂ‘#*ztcetﬁttittﬁtza g1ats:ut-tax::::x::xtst*ttm
TLABEL CYCLE 23 TRUE LABELS CLuUL® CYCLF 23

S . e e L SPESTILLYS/

FF = ..00 MZ 2 J0L0 0 Ma = ,..D Mo = ..a0 X = ..ud 5T = L(..2 STA% = ON
TEE tt*t"*#tttttt#txsnit#::tttt:all:stttaattsmt*k#*#qttttta?ttttsaaeax::::#tut#:sa:tas:#t:tu;ssc
UABEL CvCLe 7 2% TRUE LABELS CLOCK CYCLE 24

/PESTLONS ee - _ - _—

FF = ..00 HZ = a..0 M4 = .L.0 M5 = JU.0 X="..03 ST = ..l §5TaR = ON
*‘***‘t***ttsl‘*‘tt*‘*t*8*'.‘I#“'lt!*ltiltat’*:**ﬂt*tt*ttttt#*‘tt'tt#‘cst=t#*&'tttt!#tltt‘t#3‘xl
“TLABEL CYCLE : 25 TRUE LABELS CLOCK CYCie™ 2s T

/P*ST{1}/

FF = 4400 MZ = aael He = 4.0 M5 = aual A = +.00 3T 2 paad STAR = ON

BREEEREEEEEREEEN AR L LS

REEEEEXREEEERERRAEXFETE XX EEREREF S SRR EEE R R ST KB TR EETERR SN
®®*& SIMULATION TERMINATEG AFTER REQUESTED LABEL CYLLES

Figure 2-2 (D): (continued) Simulation results for the
Sequential Circuit

ORIGINAL PAGE 15
OE POOR QUALITY,

CLOCE_

~35

12

START

COUNT

Te1LEAR

L

DETECT 3600ﬁJ
CoUNT 1}
N

N | CT
1S ¢ 1 L
3 R 6
COMBPARFE
y -
1
IN
A [~ /‘\ AN
. }
) N
J N
| , BEEE
ABORT ouT TNPUT

Figure 2~3: Variable Timer

-36=-

$TRANSLATE

*MAIN

REGI, R(12-1), CT(1-6), IN(1-6), START

CLOCK, P

SWITCH, ABORT (ON,OFF)

LIGHT, OUT{(ON,OFF)

/ABORT (ON)#*P/ R=3575, CT=0, START=1, OUT=OFF,
ABORT=0FF

/START*P/ R=R.COUNT., IF ((R(5)*R(10)*R(11)*R(12)).
EQ.1) THEN (R=3575, CT =CT.COUNT.),
IF (CT.EQ.IN) THEN (OUT=ON, START=0)

END

$SIMULATE

*QUTPUT CLOCK (1,1)=R, IN, ABORT, OUT, START

*SWITCH 1, ABORT=0N

*SWITCH 2, START=ON

*LOAD
IN=5

*SIM 3600,600

Figure 2-4: CDL description of the Variable Timer

http:CT.EQ.IN

-37-

R, CT and START., START input sets START. In the CDL des-

cription, R is counted up from 3575 rather than zero, to save

some simulation steps.

Each cell of R (or CT) consists of an 1-0 edge-triggered
flip- flop F, a multiplexor M and a Nand-gate and the ith cell
(i=1,12) is shown in Figure 2-5,

There is no direct way of describing the internal opera-
tion of this ripple counter in CDL. A description for a three
stage counter is shown in Figure 2-6.

This description implies a parallel operation, according
to CDL convention, rather than the ripple action of the
counter.

2.14 EXTENSIONS

Some extensions to the language are reported. Bara and
Born [6] report a version of CDL with the following addi-
tions:
ARRAY REGISTER
ARRAY REGISTER, AR(0-2,1-4)
implies 1 2 3 4

-38—

CLOCK MULTIPLEXOR
M
FRoﬁrigzrﬂ i) TRIGGER
. R. >
i i
P
Trigger = (Ri-1) P + (Clock) P
FPIGURE 2-5: A TYPICAL CELL OF THE RIPPLE COUNTER
CLOCK
M M M
B R1 R2 R3
P
/CLOCK/IF (P.EQ.1) THEN (R=Q) ELSE
(R(1) = R(1)', IF (R(1).EQ.1) THEN (R(2) = R(2)*),
IF (R(2).EQ.1) THEN (R{3) = R(3}"))
FIGURE 2-6:

A 3 STAGE RIPPLE COUNTER

~39~

MULTIPLEXOR (DATA SELECTOR)
EX: REGISTER, SELECT (0-1)
DATA SELECTOR, DTA(SELECT)= DTA (T0-T3)

implies
0 1
SELECT
TOﬂ“ﬁ%
Terminals
T1 o—>x
Declared —o
T2 o—
Previously
T3 o—3
PARTITION

Devides a bus into partitions.
BUS,DATA (0-7)
PARTITION, DATA(OP}) = DATA (0-2)

=-40-

STACK MEMORY
STACK MEMORY, Name (level, Mar) = Name (size, word

length)
STACK MEMROY, STK (3, MAR) = STK (0-3, 0-2)

4

MAR
Aifi////, ///////, //////
3
0 1 //////:/

Element 1

Flement 2

Element 3
IOFLAG

IOFLAG,R declares a 1 bit flag R. It can be set (=1)

or reset (=0). When set, the QUTPUT is enabled for the label
cycle: when reset, the OUTPUT is disabled.

Following are some features of purdue extended CDL [5]
simulator:
SET (M,7) places a 1 in a single bit register M
at the current time plus 7 cycles.
CLEAR (M,7) opposite to SET.
COMP (M,7) complement M after 7 cycles.
EXIT is used to terminate simulation from
design specifications.
/ERROR*P /RUN<(Q ,EXIT

Y.

Both the extensions have a complete sot of operateors to
include decrement, circular shifts, shifts, ADD, SUB, MPY and
DIV.

3. INSTRUCTION SET PROCESSOR (ISP}

The ISP notation was first introduced by Bell and Newell
[11] as a formalism to describe digital systems at the pro-
gramming level. The original notation was used mainly for
publication purposes. A subset of the notation, ISPL [12] was
implemented and was used in the design automation and archi-
tecture evaluation applications [13]. The present version ISPS
is an extension of ISPL and is implemented on PDP-10 compu-

ters. A translator [14] and a simulator [15] are avalilable.

ISP was designed to provide a precise description of
computer systems as seen by the programmer, The description
consists of four main parts: a declarative section, an in-
terpreter, an instruction set description and an effective
address calculation, The structural components are described
in the declarative section., The effect of each instruction on
the processor, registers, contrel f£flip-flops and memory forms
the instruction set description. The interpreter section de-
scribes the fetch and execute cycles. The effective address
part describes the processing of the address part of an in-
struction.

The language is suitable for the behavioral description
at high levels, where timing information is absent. It allows
parallel and segquential operations. Modular descriptions are
possible at higher levels. The lower level description of the
system 1s difficult because of the inability to describe de-

tails. The Syntax and Semantics of ISPS are described below.

-4

~43~-

3.1 SYINTAX RULES

VARIABLES (IDENTIFIERS)

Identifiers must start with a letter, can contain A-7Z,

0~9 and "." and can be upto 80 characters long.
CONSTANTS

The following examples illustrate the formats allowed:

NOTATION BASE LENGTH (bits)
4095 10 13 one bit longer
than needed

*1000 16 16

#1000 8 12

1000 2 4

1102 2 4 ? is don't care

122 10 UNENOWN

COMMENTS

A comment 1s indicated by a '!'., Everything from '!' to

the end of the line in which it appears is- treated as a
comment.

ALTAS
Alias is an alternate name given to an identifier or a
constant. It follows a "\" in an identifier declaration. It
is a comment, not a usable name in the description.
ex: IR\INSTRUCTION REGISTER
'0110\ MASK
#204\AND INSTRUCTION

-4 4-

NAME-PAIRS (RANGES)

A name-pair is an abbreviated notation for a list c¢f

consecutive constants.
ex: 3:5 is equivalent to 3,4,5
7:2 is equivalent to 7,6,5,4,3,2
4,5:7,8 is same as 4,5,6,7,8

3.2 OPERATORS

The following is the list of operators in increasing
order of precedence:

transfer-op ci= & = <=

or-op ::= ORl XOR

and-op ::= AND [EQV

relational-op ::= EOL | NEo | Lss | LEo | TRl
GEQ | TsT

add-op ti= 4+ | =

mult-op ::= * |/ | MOD

shift-op 22= 5.0 | sn1 | strR | sup | sro | smri |
SRR | smD

concat-op 1= @

unary-op c:=wor |+ | -

<~ and = are equivalent and perform a logical transfer, while
<= performs an arithmetic transfer. Other operators are self-
explanatory.

3.3 ARITHMETIC REPRESENTATIONS

Four standard arithmetic representations are available:
Twos - complement, Ones -~ complement, Signed - Magnitude,
Unsigned - Magnitude. The selection of the representation in

the context of an operation is indicated by,

-4 5=

{rc}, {oc}l, {sM} oxr {US].
ex: ¥ «¥+{TC} 2 Twos complement addition.

3.4 DESCRIPTIONS

ISPS defines the structure and behavior of the components
that make up a digital system. The structure of the components
is defined in terms of the carriers used to transfer and store
information. The behavior of the components is defined in
terms of the sequence of operations that transform values con-
taned in the carriers and produce new values.

ISPS-~declaration ::= e-declaration
e-declaration ::= e-head |
e-head := e-body |
ISPS~definition

An ISPS~declaration is the minimal parsing unit, An
entity declaration (e-declaration) defines a hardware com-
ponent which might have a structure and exhibit some behavior.
The entity head defines the structural properties. The entity
body, if present, defines the behavioral properties.

I5PS—-definitions are described in 3.7.

ISPS ENTITIES -~- STRUCTURE
The structural part of an ISPS entity is defined by the
entity head (e~head):

e~head ::= identifier fc-set fs-set
-fo-set ::= nil |

O

(e~head-LIST!)
fs-set ::= nil |

bit-fs-set |

word-fs—-gset bit-fs-set

word-fs-set ::= [name-pair]
bit-fs-set ::= <> |
<name-pair>
The identifier distinguishes the entity from other entities

defined at the same level oxr scope.

FORMAL STRUCTURE SETS

The formal structure set (fs~set) defines a carrier. The

carrier may consist of a single register or an array of regis-
ters (a memory). Syntactically, there is no difference be-
tween the structure of a storage carrier (e.g. a register) and
the structure of a non-storage carrier (e.g. a bus). A multi-
register carrier specifies the dimensions of the array inside
'I" and ']" (the '[" and ']' brackets indicate the presence of
an addressing mechanism whose implemtnation is not specified).
The dimensions of each register are specified inside '<' and
'>', The elements of the name-pairs (the dimensions) specify
a naming convention for the 'words' and 'bits' of a carrier.
An empty bit-fs-set (<) stands for a single, unnamed bit.
Examples
Ir\Instruction Register<0:31>
Mp[0:255]<7:0>

The first example above, defines a 'register' (IR) whose
structure consists of 32 bits (0,1,...30,31). The elements of
the name-pair 0:31 specify the name of the bits. The second
example shows the declaration of a 'memory' (Mp) whose struc—
ture consists of 256 words, each 8 bits long. The words are
named 0,1,2,..255 while the bits inside each word are named
7:,6,...,1,0.

The examples show that the bit and word names can be -
specified in ascending or descending order. In fact, the
name-pairs de¢ not even have to begin or end on 0, as the

following example shows:

vma\Virtual. Memory. Address <13:35>
The VMA register is declared to be 23 bits long, the bits

named as 13,14,...,34,35,

FORMAL CONNECTION SETS

The formal connection set (fc-set) defines an interface

for connecting entitles. In ISPS, the default implementation
of a fc-set is by means of storage units which are loaded when
the entity is activated. This default can be overruled and
the interface implemented as a non-storage unit:
Examples:

ATU{Areg<0:15>,Breg<0:15>}<0: 16>

F(REG[0:7]1<0:7> {REF})
The first example defines the structure of a 'functional unit'
(ALU) which consaists of two interface registers (AREG<0:15>
and BREG<0:15>). By default, any activation of ALU implies
the storing of some values into the interface registers. After
this initialization takes place, the interface registers can
be read or written inside the body of ALU without affecting
the registers from which the initial values came. This is the

default mechanism for "parameter" passing in ISPS.

The second example presents a different type of "para-
meter", Its interface (REG[0:7]1<0:7>) has been tagged with the
string "[REF]" to indicate that the interface is not a storage
unit, local to F, but that 1t is a REFerence to some external
entity to be specified at the activation site. When F is
activated, no transfer of data takes place. REG is simply
"connected" to whatever entity was specified at the call site.
This connection remains in effect throughout the length of the
activation.

-48~

ISPS ENTITIES —-- BEHAVIOR
e-body ::= BEGIN section-LIST END |
BEGIN b-~expression END |
e-head-LISTE
section ::= section-header e-declaration-LIST

SECTION=HEADER **% identifier *%

]

An entity body (e-body) defines the behavior of an
entity. The most general case of an e-body consists of a list
of sections (section-LIST), each consisting of a section-
header followed by a list of declarations (e-declaration-LIST)
local to the body. This type of body is bracketed by BEGIN/

END pairs which can be substituted by '('/'")' pairs. However,
BEGIN can not be matched by ')' and '(' can not be matched by
END,
Example:
Mini :=
BEGIN
Mp\State¥

MP\Primary.Memory[255:0]<11:0>,
#%Pc,State®
PC\Program.Counter<7:0>,
LI\Link<7:0>,
ACC\Accumulator<11:0>,
External.State
T0 .Reg<7:0>,
Run<0>,
**Instruction.Format*#
IR\Instruction.Register<11:0>,
pddress,Calculation
Z\Address.Register<7:0>:=BEGIN..... END,
TInstruction.Execution
Fetch := BEGIN.....END,
Execute := BEGIN..... END,
Instruction.Cycle
Tcycle := BEGIN.....END,
END

~49-

The example depicts the body of the declaration of an
entity, in this case a minicomputer. The declarations inside
the sections can be as large or complicated as one wishes to

make them. They can, in fact, have bodies with local sections
to any level of nesting.

Declarations are grouped in sections as an abstraction
nmechanism. Application programs which manipulate ISPS
parse trees will require specific sections to be present
while possibly ignoring others.

Simpler bodies are defined by a b-expression (a behav-
ioral expression) which can be thought of as a sequential or
combinational network depending on the nature of the opera-
tions used and the implementation thereof. As in the previous
case, the BEGIN/END bracketing the body can be substituted by
NAVADRR

Example:

Z\Address.Register<7:0>

BEGIN

DECODE I.Bit => ttest the indirect bit
BEGIN
Z<~Adr, I I.Bit = 0
Z<Mp [Adr]<7:0> ! IT.Bit =
END

END

Notice the use of the carrier associated with Z (Z<7:0>)
in the computation of the effective address. Algol-like scope
rules are used in ISPS and non~local carriers can be accessed
from inside a body (e.g. I.Bit, Addr, and Mp).

The third type of e-body is defined as the concatenation
of one or more caxrxriers using the @ operator. This is useful
when defining alternative structures and naming conventions
over previously declared carriers.

-50-

Examples

IR\Instruction.Register<t5:0>,

OP\OP.Code<2:0> :=IR<15:13>,
I.Bit\Indirect<> :=IR<12>,
Adr<11:0> :=IR<11:0>,
I0.Bits<4:0> :=IR<12:8>,
Special <7:0> +=TR<7:0>,

MO\Multiplier.Quotient<0:11>,
ACC\Accumulator<0:11>,
DACC\Double.ACCL0:23> :=Acc<0:11>@MQ<0:11>,
CCodes[0:31<> :=PSW<15:18>,

In the above examples, several fields of IR have been
defined as if they were independent registers (i.e. each field
has its own name, with an optional alias, and a structure or
dimension specification). The bit (or word) names used on the
left hand side of a field specification are independent from
the bit or word names used on the right had side. Both sides
of a field definition must, however, specify structures of the
same size (# word * # bits/word). The equivalence between the
bits of the right hand side and the bits in the left hand side
is obtained by aligning the leftmost bit of the leftmost word
of the left hand side with the leftmost bit of the leftmost
word of the right hand side. Thus, bit 4 of IO0.BITS corres-
ponds to bit 12 of IR, bit 3 tc bit 11, bit 2 to bit 10, etc.,
etc..

In the second example, DACC<0:23> is defined as the con-
catenation of two registers, MQ and ACC. The registers ap-
pearing on the right hand side of a regigster definition might
in turn be defined as subfields or concatenations of regis-

ters, Definition chains of this sort can be of arbitrary
length.

The last example shows how different structures can be

-51-

mapped on top of a previously declared register. CCODES 1is
defined as an ARRY of 4 1-bit registers. Thus, one can access
the baits in the field PSW<15:18> using two alternative struc-
tures (i.e. an array of 1-bit registers or a 4-bit field). The
equivalence of bits is as follows: The leftmost bit of word 0
of CCODES corresponds to bit 15 of PSW. Since this ig the
only bit of word 0, we continue on word 1, whose bit corres~
ponds to bit 16 of PSW, etc., etc..

3.5 BEHAVIORAL EXPRESSIONS

b-expression ::= s-action
gs-action ::= p-action-LIST NEXT
p~-action ::= action-LIST;

A b~expression defines the behavior of an entity. b-ex-
pressions are built by specifying the sequence of transforma-
tions and transfers of values stored in carriers. Simple
b-expressions (actions) can be combined to build larger b-ex-
pressions by activating them in sequence (s-actions separated
by NEXTs) or concurrently (p-actions separated by ';').

A<~1; B<~2 NEXT C<=3

In the above example the first two transfers are executed
in parallel and then, after their completion, the third one is
performed. No synchronization must be assumed between paral-
lel actions. Actions separated by ';' are considered to be
'order independent' and can be executed in any fashion, even
sequentially. In particular, this means that one can not
assume rules like: "all raight-hand sides are evaluated first
an then all transfers take place". The only requirement is
that parallel actions are completed before proceeding bevond

the following NEXT separator.

52

ACTIONS
action $3= c-expressionl
identifier := action]
control-action |
conditional-action])
BEGIN b-expression END

Actions are used to build complex behavioral expressions
ranging from a primitive c~expression, to conditional or
unconditional control flow operations, to a complex b~expres-
sion inside BEGIN/END pairs. The latter type can be used to
build arbitrarily nested b-expressions. As in the case of an
e-body, BEGIN and END can be replaced by '(' and '")'.

...NEXTa<¢=1; B&2 NEXT (C<-3 NEXT D&=4); E<=5 NEXT...

A<~1 and B<2 are exXecuted in parallel. Then, the
sequence C<3 followed by Dé4 is executed in parallel with
E£=5,

Actions may be labelled to allow the description of com-~
plex activities, including selection and premature termination
or reinitialization of actions.

X := BEGIN.....END

The BEGIN/END brackets used to build compound actions can
be opticnally followed by a quoted—text or block name to
provide the reader with some degree of wvisual identification
of the levels of nesting:

X 1=
BEGIN | this is the outer block |
BEGIN | this is the inner block|

END | this is the inner block]

-53=
EMD / this is the outer block l

The quoted-texts attached to matching BEGIN/END pairs
must be identical.

CONDITIOWAL ACTIONS: IF and DECODE
conditional-action ::= IF c-expression => action!
DECODE c-expression =>BEGIN
numbered-action-LIST' END
= action |

numbered-action

name-pair := action]
[name-pair-LIST'] := action
OTHERWISE := action

Two operators, IF and DECODE, are used to specify condi-
tional actions. If the value of the c-expression associated
with an IF operation is non-zero the action following the =>
operator is executed, otherwise it is skipped.

IF Acc EQL X => PC&PCH2
I¥ 2 => BEGIN .,.... END

In the first example, the operator EQL defines a 1-bit
result (0 stands for FAULSE, 1 for TRUE). Depending on the
value of this bit, PC is incremented (1) or not (0)}. The
second example shows that in general, the c-expression does
not have to be 1 bit long. The action following the '=>' will
be executed 1f ANY bit in the Z carrier is 1 (i.e. Z#0).

The c-expression associated with a DECODE operator is
evaluated and its value used to select one of the actions
specified in the numbered—-action-LIST' following the => opera-
tor. The c-expression is treated as an unsigned value. As in
previous cases, the BEGIN/END brackets for the list of alter-

natives can be enclosed in '{' and ')'.

-54~

DECODE OP<1:0> =>
BEGIN
ACC<0, 10P<0:1> is 0
ACC<~ACC+M[Z], 1I0P<1:0> is 1
M{zl<acc, 1I0P<1:0> is 2
PC<-M[Z] 10P<1:0> is 3
END

When the DECODE operation specifies a large number of
numbered-actions, i1t is sometimes difficult for a readsr to
associate the numbered-actions with the values of the c-ex-
pression which select them. In ISPS one can explicitly write
the value of the c-expression associated with the action as a
label~-li1ke action selector:

DECODE O0P<1:0> =>
BEGIN
0 := ACC<0,

IF 0OP<1l:0> is
2 := M[Z]<=ACC, IF OP<K1:0> is
1 := ACC<ACC+MI[Z] t IF OP<1l:0> is
3 1= PC<-M[Z] IF OP<1:0> is

—

w = oo

Notice that in the example we have altered the order of
the actions. If explicit action selectors are used as in the
example, one is free to write the actions in any orderxr. For
instance, when describing the instruction decoding in a com-
puter, one might wish to group all the ADD instructions (half
word, full word, double word, floating point, etec), followed
by all the SUBTRACT instructions, etc. even though the

operation codes are not consecutive.

A constant used to select a numbered-action identifies
the value of the c-expression associated with the action. A
name-parr used to select an action identifies a set of values
of the c-expression associated with the action. The operator
OTHERWISE is used to define a default action if the outcome of

the c-expression is not covered by the other action-selectors.

w55

If a constant appears in more than one action selector (either

alone or as part of a @ [name-pair]) only the first action

associated with the constant is executed (i.e. exactly one

action can be executed as a resnlt of a DECODE operation).

Another use of the explicit selectors is given below:
Decode F =>

BEGIN

CR<-M[S],

CR€CR+M[S1,

ACCe&~ ~-M[S],

M[S]<rAcc,

;5 := ACC&ACC-M[S],

IF ACC LSS 0 =>CR<=CR+1,

STOP (),

END NEXT

I

O R W N e O
1] e ..
i1 il

Notice that there are two operation codes (4 and 5)
associated with the Subtract operation.

it is a bad practice to mix actions with implicit and
explicit action—-selectors. The syntax allows it to handle the
situation in which a designer is not vet sure of the proper
constant action-selectors to use and wants to go ahead devel-

oping the ISPS description.

The basic rule to remember is that ALL outcomes of the
c-expression must be acconted for, OTHERWISE must be used in
some action if the number of actions is less than the number

of possible values of the c-expression.

CONTROL, ACTTONS: REPEAT, LEAVE, RESTART, and RESUME
control—action ::= REPEAT action/
LEAVE identifier |
RESTART identifier |
RESUME identifier -

~55=

An action that must be executed repeatedly (a loop) can
be described by the use of the REPEAT operator preceding the
action:

ICycle := 'PDP-10 Instructicn Cycle
BEGIN
REPEAT

BEGIN
IR€~Memory [Pc] NEXT
Pc<=Pc + 1;VAM¢IR<13:35> NEXT
EA<€~VMA ()<18:35> NEXT
IExecute ()
END

END

A looping action can be terminated by the use of the
LEAVE operator as the following example shows:
I\Indirect <>:= VMA<13>,
X\IndeX<0:3>:=VMA<14: 17>,
Y\Offset<0:17>:=VMA<L18: 35>,

y VMA\Virtual Memory Address<13:35> := IPDP-10
BEGIN
REPEAT
BEGIN
IF X=>¥¢ Reg [X]+Y NEXT ! add the index register
DECODE I =>

BEGIN)
0:= BEGIN VMA<13:17><-0 NEXT LEAVE VMA END,
T:= VMA<=-Memory[Y]<13:35> !indirect address
loop
END
END

END

The LEAVE operator is not limited to loop termination.

-57-

can be used to terminate the execution of any labelled action.
The LEAVE operation must occur inside the action te which the
label refers. It causes control to terminate that action, and
continue normally, as if the action had been completed (any
actons initiated during the execution of the action to be

terminated and not yet completed are also terminated by the
LEAVE operator}.

The following 'procedure' searches the first 512 words of
Mp for XEY:

S{Rey<0:3>)<> :=

BEGIN

INDEX<~0 NEXT

REPEAT
BEGIN
IF MP{Index] EQL Key =>(S<-1 NEXT LEAVE S)

NEXT

INDEX ¢ INDEX+1 NEXT
IF INDEX EQL 512 => (5«0 NEXT LEAVE S)
END

END I end of 8§

The reactivation of an executing action can be forced by
using the RESTART operation to indicate a termination of the
action (as in the LEAVE operation) followed by a re-execution
of the action. The RESTART operator must occur inside the ac-
tion to be restarted (the pseudo LEAVE operation does cause
termination of all actions initiated by the action to be re-
started and not yet completed).

S{Key<0:3> <> :=
BEGIN
INDEX<-0 NEXT

~58-

S1:= BEGIN
IF INDEX EQL 512 => (S<1 NEXT LEAVE S) NEXT
IF MP[INDEX]NEQ Key => (INDEX<-INDEX+ 1 NEXT
RESTART S1) NEXT
S<~1 NEXT
END
END ! end of S

The RESUME operator provides another mechanism to termin-
ate the execution of an action. As shown above, LEAVE 1is
followed by the label of the action to be terminated. RESUME
is followed by the label of the action whose execution is to
be continued. As with LEAVE, the RESUME operation must occur
inside the action to which the label refers. Any actions in-
itiated during the execution of the action to be resumed and
not completed are terminated. The following example shows the
use of RESUME.

Interpreter :=

BEGIN

e s 0o NEXT

Icycle() NEXT

IF Error EQL 1 => BEGIN,....END NEXT

PC<—PC + 2 HNEXT

IR€=Rword (PC) NEXT

DECODE IR<0Q:3> =>
BEGIN
ACC4=ACC + Rword(IR<4:15>)
END,

Rword (Addr<0:11>)<0:15> :=
BEGIN

~50-

IF Addr GTR Upper.Bound =>

(Error<- 1 NEXT RESUME Interpreter) NEXT
Rword<— MP[Addri]
END,

In the example, procedure Interpreter activates procedure
ICYCLE which fetches, decodes, and executes the instructions.
In doing so, ICYCLE activates procedure RWORD which is used to
access the memory (MP) of the machine. RWORD checks that the
memory address is in bounds before performing the access op-
eration. If a boundary error is detected, a flag (ERROR) is
set and the rest of the operation of ICYCLE is aborted (by re-
turning to procedure Interpreter, at the point where it acti-
vated ICYCLE). It is up to the 'resumed' procedure (INTERPRE-
TER) to take the proper corrective action, if any. Notice
that we could have let ICYCLE handle the error bv terminating
RWORD with 'LEAVE RWORD'. However, this would have meant that
the ICYCLE procedure had to check the error flag (ERROR) after
every call to RWORD. Depending on the size or complexity of
the description, this might be undesirable.

Beware that these operators affect the sequence of opera-
tions and might be meaningless or unimplementable when used in
parallel actions, e.g.:

X = (...NEX7Y...B<C;LEAVE X NEXT ...)
is ambiguous since no order of evaluation can be 1mposed on
Be-C: LEAVE X

When 'LEAVE X' is executed, the transfer 'B &€ C' may or
may not have been executed.

3.6 QUALIFIERS

The gualifier set is used to specify lists of attri-

-60~

bute/value pairs which are used to define, amplify or modify
the semantics of an ISPS description.
Example:
ALU (F<0:3>, A<0:715>, B<0:15>) <0:15> {SPEED:
250, MODULE: SN74181)} :=

3.7 ISPS DEFINITIONS

ISPS~definition ::= DEFINE identifier := q-set!

DEFINE identifier := quoted—text}

DEFINE identifier := constantl

MACRO identifier m-parameter-set
= quoted—text]

REQUIRE ISP qguoted-text

nill

0Ol

(identifier-LIST)

m—-parameter-set $3

The reserved keyword DEFINE is used to name a g-set, a
constant, or a quoted-text.
Define ROM := {MODULE: SN74187;SPEED: 401},
Define MSIZE := 255,
M1[0:MSIZE]<0:3> {ROM},

The reserved keyword MACRO provides a simple mechanism to
declare test strings that are to be substituted for instances
of the identifier in the ISPS description. Optional parameters
can be specified by enclosing a list oé 1dentifiers inside
parenthesis. These "formal parameters" are matched by corre-

sponding 'actual parameters' at the expansion site.

The reserved keyword REQUIRE,ISP is used tc signal the
expansion of a an external file inside the ISPS description.

The quoted-text describes the file name. The expansion takes

-61-

place at the point the REQUIRE.ISP construct appears:
REQUTRE ISP | MINLISP{L410MB25]/,

3.8 PREDECLARED ENTITIES

The following entities are predeclared in the language:

UNDEFINED

UNDEFINED is a predeclared entity which has some struc-—
ture and exhibits some behavior, both unknown to the user.
UNDEFINED<0:7> defines a carrier, 8 bits long, containing an
undetermined value. 2Any number of "undefined" bits can be ob-

tained by specifying a program bit range.

UNDEFINED() activates an entity with undetermined side
effects. No assumptions about the values contained in ANY
carriers can be made after an activation of UNDEFINED. Activa-
tions of UNDEFINED are guaranteed to terminate after some un-

determined amount of time.

UNPREDICTABLE

UNPREDICTABLE is a predeclared entity which does not have
a structure but which exhibits a totally unpredictable behav-
ior. It 1s different from UNDEFINED() in that the latter pre-
serves the flow of control. An activation like UNPREDICTABLE ()

is not guaranteed to terminate or that upon termination, con-

trol will return to the actiwvation site.

NO.OP
NO.OP is a predeclared entity which does not have a
structure and whose behavior has no side effects. NO.0P() can

be used as a null action.

-2~

STOP

STOP is a predeclared entity which does not have a
structure and whose invocation, STOP(), terminates the

activation of all entities, including the invoking action.

DELAY

DELAY is a predeclared entity which does not have a
structure and whose invocation, DELAY (c—-expression), does not
have side effects. DELAY terminates its activation after a
number of application-defined time units given by the value of

the c-expression.

WAIT

WAIT is a predeclared entity whaich does not have a
structure and whose invocation, WAIT(c-expression), continu-
ously evaluates the c-expression. WAIT terminates its acti-

vation when the value of the c-expression is not equal to 0.

3.9 RESERVED KEYWORDS and IDENTIFIERS

AND

DECODE

DELAY

EQL

BEQV

GEQ

GTR

Ir

K when attached to a constant
LEAVE

LEQ

LsSs

M when attached to a constant
MOD

NEQ
NEXT
NOT
NO.OF
ocC

OR

REF
REPEAT
RESTART
RESUME
SLO

SL1

SLD

SLR

SM

SRO

SR1

SRD

SRR
STOP

TC

57T
UNDEF INED
UNPREDICTABLE
us

X0OR
WAILIT

3.10 THE

An example description.

Mini :=
BEGIN

#% Memory State

—f 3~

when used as gqualifier

when used as gualifier

when used as gualifier

when used as gualifier

when used as qualifier

COMPLETE MINICOMPUTER

* %k

-G 4-—-

MP\Primary Memory[0:255]<0:11>,

** Processor State **

PC\Program Counter<0:11>,

ACC\Accumulator<0: 11>,

IR\Instruction Register<0:11>,
OP\Cperation<Q:2> := IR<0:2>,
IBIT<->»Indirect Bit<>:=IR<3>,
ADR€—>Address<0:7>:=IR<4: 11>,

**% Effective Address Calculation **

Z\Effective Address<0:7> :=
BEGIN
DECODE IBIT =>
0 := Z< ADR,

1 = BEGIN
IF ADR EQL 0 => Z<« MP[0] + 1;
IF ADR NEQ 0 => Z<~ MP[ADR]
END

END

END,

**%* TInstruction Cycle **

IEXEC\Instruction Execution :=
BEGIN -

DECODE 0P =>
O\AND:=ACC« ACC and MP [Z()],
T\TAD:=ACC<$~ACC+MP[Z ()], 12's Complement Add
2\18%:= !Increment and Skip if Zero
BEGIN
MP[Z]l< MP [Z()] +1 NEXT
IF MP[Z] EQL 0 => PCe PC +1

END,

3\DCA:= MP{[Z()]@ACC ¢« ACCR#0000, !Deposit and
Clear ACC

4\ JSR:= BEGIN tJump to SubRoutine

Mp{0]l<MP[0] + 1 NEXT
MP{MP[0]]<=PC NEXT
PC<% ()

-65-

END,
S\JMP*= PC -) 1 JUuMPp
6\RET:= BEGIN IRETurn from subroutine

PC ¢ MP[MP[0]] NEXT
MP[0] « MP[0O] - 1

END,
7\CTL:=
BEGIN
IF IR <3> => PC« PC +1 NEXT
IF IR <4> => ACC<~ NOT ACC NEXT
IF IR <5> => ACC< ACC +1 NEXT
DECODE IR<6:7> =>
BEGIN
'10 :=ACC<-ACC SRO 1,
"01 :=ACC<-ACC SIO 1,
OTHERWISE := NOOP()
END NEXT
IF IR<B8> => IF ACC LSS 0=> PC<PC+1;
IFP IR<K9> => IF ACC EQL 0=> PC<~P(C+1:;
IF IR<10>=> IF ACC GTR 0=>PC<PC+1
NEXT
IF IRK11> => STOP()
END
END
END,
ICYCLE\Interpretation Cycle :=
BEGIN
REPEAT
BEGIN

IR€- MP[PC] NEXT
PC« PC + 1 NEXT
IEXEC()
END
END
END

—-66—

3.11 1ISPS SIMULATOR

The command set of the simulator is summarized below:

START

=
e
1
=

|

iy
=
il
W/

|

DUME
DEFINE

DDEFINE
petad b

<label 1list> begins the simulation of procedures in
label list.

terminates the simulation.

<dev: filename> enables the simulator to read and
execute commands from the specified device.

1s used to save the status of a simulation run.

name = command-string $ defines a user command
<name>, After this definition, the user can simply
use <name> as a command to execute the corresponding
command—~string.

name deletes the user defined command.

TELLDEFINE prints the list of user defined commands.

Qo

ADO

command-string $ label, label,.... defines a com-
mand-string to be invoked when any of the procedures
listed after the $ is entered.

is similar to DO, but invokes the command-string

when the procedures are terminated.

ECHQ (DECHO) command sets (resets) an internal flag control-

RADTX
CONTEXT

OPAQUE

ling the ECHOing the commands being read from a com-
mand file to a user terminal.

<base> is used to set the numeric base.

<varname> defines <varname> as a prefix for all names
that are typed in future commands.

<name> displays the value of the counter (s) assoc-
iated with <name>.

<label 1list> and DOPAQUE <label list> are used to in-
hibit or enable the variable and label activity
counters. If a procedure is OPARAQUE then no activity

counts are incremented during its execution.

VALUE and SETVALUE commands are used to set and interrogate

the contents of ISP variables.

-7

TRACE (DTRACE) <varlist> enables (disables) the txracing of
variables during simulation.

BRAKE (ABRAKFE) <label 1list> is used to enable the setting of
Break points before (after) a procedure is excuted.

DBRAKE (DABRAKE) disables the break-point setting.

ICONNECT (OCONNECT) <identifier>, <channel>, <variable>

is used to connect ISP variables to the system files

which will act as sources (sinks) for variable values.
EVERY (AEVERY) count label, label,... forces a breakpoint

every <count>th time one of the named procedure is

entered (completed).

ONCE (AONCE) are similar to above except the breakpoint is

forced only once after the <count>th time.

HELP tells the user about command names and their format.

WAIT makes the simulator to continuosly test the register
used as parameter to wait until it is non-zero and
then continue the execution.

DELAY procedure takes as parameter the number of simulated
time increments that should go by before operations
on this procedure continues,

SERTIAL and PARATLILEL accept procedure names as parameters and
cause the register transfer code belonging to the
named procedures to be SERTALized or unserialized.

PROCESS label-list (dentifies all procedures in the label-
list as processes: DPROCESS undoes PROCESS. Any time
a routine flagged PROCESS is called from ISP, an
autonomous operating environment for that process is
initiated, The caller continues without waiting for
a signal from the called process, and may even ter-
minate without further affecting the new process.

CRITICAL <label list> tags the procedures in label list to be

non-interruptable. DCRITICAL clears this tag.

INTTIATE (KILL) <label list> initiates (terminates) the list
of processes in the label list.

TIME (DTIMF) begins (terminates) the simulator's timing

facility.

-68-

SETCLOCK <procedure> <value> sets the clock for that proce-

OPTIME

dure at the new value. Each procedure in ISP has its
own clock which increments as the register transfers
proceed.

<op-label> = <value> is used to establish the times
associated with the individual register transfer op-

eration. The default value for each is one.

4. A HARDWARE PROGRAMMINNG LANGUAGE (AHPL)

AHPL: is based on the notational conventions of APL, Some
special conventions are added to APL to take care of the haxd-
ware features like parallelism, asynchronous transfers and
conditional transfers [16,17]. AHPL is a clock mode register
transfer level language with the register as the primitive
circuit description element. A hardware compiler capable of
generating a wire list specifying the interconnection of
available integrated circuits and a functional simulator which
interprets the AHPL description and executes the connections

and register transfers {[18] are available.

AHPL is based on the philosophy that a digital system can
be divided into two parts: a control section and a processing
section. Specification of the processors is done at one level.
Hierarchical descriptions of both structural and functional
elements are possible through the subroutine feature of the
language., Both parallel and sequential operations can be de-
scribed, either by suppressing timing information completly ox
including it to a sufficiently high degree. Synchronous de-
scription facilities include tests for pulses and counting of
pulses and delays. Asynchronous operations can be represented
either by conditional statements or by implementing completion
signals and using WAIT to indicate delay. The language as
accepted by the compiler and the simulator [19] is described
below. The simulator ({(HPSIM) is written in FORTRAN. The compi~
ler (HPCOM) is written in SNOBOL. Both are implemented on
CDC-6400 and DEC-10 systems.

-69-

~70-

4.1 SYNTAX RULES

VARIABLES:
Variable names may contain up to 20 characters, the first
of which must be alphabetic., The remaining may be numeric or

alphabetic. Only the first 10 characters are retained in the
translator and simulator.

CONSTANTS:

Constants may be entered in decimal. A vector of binary

constants should be separated by commas and placed in back
slashes.

Examples:
\1,0,1,0,1\
25

OPERATORS :

The following operators are allowed:

AND &

OR +

Exclusive-OR @

ALL BITS OR +/

ALL BITS AND &/

ENCODE $ Ex: 5$13=/0,1,1,0,1/
TRANSFER <= (2 characters)
BRANCH => (2 characters)
COMPLEMENT -3

CONCATENATE r

CONNECTION =

~71-

4.2 DECLARATTONS

Each AHPL module description begins with the declara-
tions, the first statement being,

AHPIL. MODULE: module name.
The rest of the declarations have the format

TYPE: symbol <n> [m]; symbol <n>,{mliceeeioeee o
where the TYPE can be MEMORY, INPUTS, OUTPUTS, BUSSES, EXIN-
PUTS, EXBUSSES, or CLUNITS. The integers n and m indicate the
number of rows and columns of the facility. Either one or both
n and m can be eliminated if their wvalue is 1. They can also

indicate a range nt:n2, ml:m2.

MEMORY, BUSSES, ONESHOTS and CLUNITS are local symbols., These
are declared in each module they are used. When redeclared in

other modules, these refer to a new value location.

INPUTS and OUTPUTS are semilocal symbols. When these symbols

are redeclared in other modules, they refer to the same value
location.

EXINPUTS and EXBUSSES declare Global symbols which can be
valued externally and are common between all modules.

4.3 CONTROL SEQUENCE

The control sequence consists of a list of steps; each
step starting with a step number followed by valid operations,
separated by semicolon and ending with a period. For example,

3 AC <=IRgAC; OQOUT = MD;

=> (AC[0:31)/(2,3,5,6).
indicates a2 transfer, connection and a branch. The branch is
to the statement 2,3,5 or 6 according to the value of AC [0:3]

-72-

is 8,4,2 or 1 respectively. Three fcrmats are possible for
branch operation:

=> (destination) unconditional

=> (expression)/(destinations} multiple branch

=> operator (expressionl, expression 2) (destination)

Where operator 1is the comparison operator between ex-
pressions 1 and 2 and can be NE, EQ, GT, GE, LT and LE,

4,4 COMBINATIONAIL LOGIC UNITS (CLUNIT)

User can define combinational logic units at the beginn-
ing of the description and can use them later. A partial
CLUNIT description of a 4 bit adder is shown below:

UNIT: CLADD (A,B,CIN)

INPUTS: A [4]; B[4];:;CIN {1].
OUTPUTS: CLADD [5].
CLUNITS: PG [3], SuM [1]1, CLA [s5].

1. I <=4

2. C [I] = cIn [0]

3. I <= I-1

4, NOTP[I}, PII}, GI[Il= PGiC:2] (A[I], BIII).

5. S[I] = sSuM{0] (NOTP[I], P[I], C[I+1]).

6. => NE (I,0)/(3)

7. I <= 12

END.

The CLUNIT description starts with a UNIT:, followed by
the module's name and the argument list. Input and outputs
for the module are identified. Any other CLUNIT used in the
module is then identified. The description ends with an END.

-7 3=

Bach CLUNIT is a module that can be used in the description of
the system. Facilities exist to imply several copies of the
module (rather than sharing the module) in the description of
the system.

4.5 COMMENTS

Comments can be placed anywhere in the AHPL segquence.
They should be enclosed in double guotes.

4,6 SIMULATOR (HPSIM)

The communications with HESIM follow the hardware des-

cription and include the fcllowing commands:

CLOCK LIMIT:
Tells HPSIM, the number of clock periods for which ex-

ecution is to continue, if it does not reach a DEAD END.

BUSEFFECT -- nn:

Is used to assign values to the external inputs or
busses. nn is the number of clock periods for which the cor-
responding line receives the values from the cards following
the BUSEFFECT command.

QUTPUTS ¢

Enables printing the values of selected variables during
the simulation,

SUPPRESS:
Command is used to suppress the printing of results dur-

ing a specified step in the control sequence.

-74-

4.7 DESIGN EXAMPLE [19]

To illustrate the preparation of a circuit description
for HPSIM and HPCOM consider a simple multiplier circuit with
nine input lines and nine output lines as shown in Figure 4-1,.
In the reset state it waits for a 1 on line DATAREADY, which
indicates that data is on the INPUTBUS lines. The four most
significant bits of INPUTBUS are the first operand and the
other four consititute the second operand. When the operands
are accepted, the BUSY flip-flop is set to one and the multi-
plier starts the multiplication process. When done, BUSY is
set back to zero, and the eight bit result is placed on the
eight RESULT lines and a one on the DONE line. Then the multi-
plier goes to the reset state waiting for another set of
data.

Figure 4-2 shows the input file to HPSIM. the first line
in this figure assigns a name to the module description. This
is followed by declaration of all lines and registers. The
circuit requires three four-bit registers for the two operands
and the intermediate results, a single flip-flop for the DONE
indicator, and a two bit counter for the number of bits
shifted out of the first operand register. The lines to be
assigned values by the user are DATAREADY and INPUTBUS. These
are, therefore, declared as EXINPUTS and EXBUSES respectively.
The last of the declarations, CLUNITS, indicates the presence
of combinational logic networks implementing a 2-bit incre-
menter and a 4-bit adder.

The circuit AHPL seguence follows the declarations. Step
1 receives the operands, resets the intermediate register
(EXTRA) . If there is a 1 on the DATAREADY line control pro-
ceeds to Step 2; otherwise, Step 1 remains active. Step 2,

-7 5=

DATAREADY {~mst INPUTSUS 4-l=sb INPOTEUS

! I

U

Ac2

i ’ Par‘.:iai} Froduct
ADDER
U \
N ZXTRA acl
1
i
1
b i
i
11
'¢ / ,
jetreod 4-meo ETIULT amo== FIILULY

Figure 4-1: Multiplier Block Diagram

OF EOQOR Ql

AHFLMODULE ' HULTIPLIER.
MEMORY $AC1CA;AC2L 427 COUNTE2T EXTRAL A0 BUSY.
EXINPUTS ! DATAREADY .
EXBUSES ! INPUTBUSLE].
QUTPUTSIRESULTLAI 7 DANE .,
CLUNITSITNCCI](COUNT Y ;ADBCSI(EXTRATACI).

1 ACLsACD <= INPUTBUSCO:3: INPUTBUSC4:71i EXTRA <= 4%07%
w> (T DATAREADY)Y/(1).

BUSY <= N1ING
2> (TACLL3ITI (4),.

]

3 EXTRA <= ADDL1:4I(EXTRAFALD).,
4 EXTRA>ALL <= \ONsEXTRAsACILCO:21+ COUNT <z INC(COUNT)]
=23 (T(L/COUNTII /(D).
g RESULT = EXTRArAC13 DONE = \1\j BUSY <= \O\;
=> {1}
ENDSEQUENCE '
CONTROLRESET(1).
END.
CLOCKLIHIT 0030
EXLINESS
BUSEFFECT 0021
0400010
BUSEFFECT 0021
0410132
BUSEFFECT 0021
0000012
HUSEFFECT 00231
7777700
IUSEFFEET 0021
7777777
RUSEFFECT 0021
0040132
SUSEFFECT 90021
4000100

JUSETFECT 0021

U7 AL
ZUSETFECT 0021
YILES

Figure 4-2: HPSIM Program input File
for the Multiplier

AHPL FUNCTIOH LEVIL €

CLOCK 3

00000001
00000002
00000003
00000004
00000005
00000008
00000007
00000008
06000009
00000010
00000013
00000012
00000013
00000014
00000015
00000014
000000147
c0000018
00004019
co0QO020
00000021
00000022
00000023
00000024
00000028
00000024
00000027
00000078
000000279
00000030

14

OO0 0O0OVOOROOCOO000OoOO00OOCOHOODD ——==n ~m o -

-

1
I

e b o om om — Bt =]

-

el =

g]
cm

00110111
00110010
00110010
10110010
00110010
00110010
00110010
00110010
10110010
00%L10010
00110010
00110010
00110010
00110010
10111111
00010011
10011000
11011001
00010011
11011030
00010000Q
00000000
00000000
00000000
00000000
00000000
00000000
000006000
00000000
00000000

[LLLC FROGRAH REACHED

Figure 4-3:

.

I~ULA

©

HOOOOOOOOOOOOOMOOOOQOOOOOOOOOO‘-'-'-'-'-—g:z

- e T
wm
=1
=
I

MHRBHMHH R EHESOOORMMMHEMHHHRHMOO OO0 = == == — wl)

THE

TOR GUTFUT

Q000
000¢
0000
0000
000¢Q
0000
0010
0001
Q001
0011
0001
0001
0000
0000
0010
0001
00032
0000
0000
0000
1003
Q100
0100
0019
0010
1011
0101
0101
1110
0111

TIHE

0000
cot1
0011
0011
1011
1011
1011
0101
0101
0101
1010
1010
1101
1101
1101
0110
Q110
1001
1101
1101
1101
1110
1110
0111
0111
0111
1011
1011
1011
0101

IS LISTZL el Z.

AC2
b

1

!
[eZelols)
0111
Q0L0
0010
Q010
0010
0010
0010
Q010
0010
Q010
0010
0010
golo
0010
0010
0010
1000
1001
1001
1001
1001
1001
1001
1001
1001
1001
1001
1001
1001

COUNT

[

¢

[1¢)
00
00
©0
00
©0
00
o1
01
o1
10
10
11
11
11
00
00
[o1¢]
00
[+1¢]
00
01
o1
10
10
10
11
1
11
0

RESULT

1
00000000
00000000
00000000
00000000
00000000
05000000
00000000
00000000
00000000
00000000
C0000000
00000600
00000000
00000000
00000000
00010110
00000000
Q0000000
00000000
C0000000
aQO00000
Cco000000
00000000
00000000
00000000
00000000
00000000
felodelelelslol]
00000000
01110101

LIHIT SFECIFIED BY USESX.

the Multiplier

HPSIM Output Listing for

-.9!:_

-77-

sets the BUSY flip-flop to 1 and causes Step 3 to be skipped
if AC1[3], which is the LSB of AC1 register, is zero. In Step
3 the addition of the partial products is accomplished. Step
4 right shifts the catenation of the EXTRA and AC1 registers,
increments the counter and activates Step 2 if count has not
reached (1,1). ZIf the COUNT register contains (1,1), control
will proceed to Step 5 where the catenation of the EXTRA and
AC1 registers is placed on the 8 RESULT Lines, a one is placed
on line DONE and the BUSY flip-flop is reset to zero. Step 5
also returns control to Step 1 waiting for another set of

operands.,

The communication section of the HPSIM program follows
the AHPL description. Recall, that this section is line
oriented. The first card, "CLOCKLIMITY, indicates how long the
execution is to be carried on. This parameter is set at 30,
so that the multiplication process will be carried out at
least twice. The "EXLINES:" card is a heading for the subsec-
tion in which binary values are assigned to the external input
lines. The next 18 cards are 9 sets of data for all 9 exter-
nal lines. Each data set is headed by a "BUSEFFECT" card
which indicates the number of clock periods for which the cor-
responding external line i1s to receive data. The nth data set
corresponds to the nth declared external line. For example,
since the first declared external line is DATAREADY, the first
data set, which is 0400010 (octal), is assigned to this line.
This line will receive binary data from this data set for the
first 21 clock periods. The data for the 7th most significant
line of INPUT-BUS is 7777746. This line also receives data
from this set only for the first 21 clock periods. The next
card in the communication section "OUTPUTS", is a heading for
the print request subsection. The next five cards are the
lines or registers for which print is requested. If a row in a
register matrix is to be printed, the row number should follow
the name of the register matrix on the same card. Row number

zero is the default value which is assumed for all one dimen-

-78-

sional lines or registers. All print reguests are unformatted
and the printout format is set by the HPSIM system. The com-
plete output seguence is shown in Figure 4-3, Notice that
DATAREADY is 1 during the 4th clock period causing control to
go to Step #2 for period 5, the two operand registers (AC1T,
AC2} containing 1011 and 0010. The multiplication starts at
period 5 and ends at clock #16 where a 1 appears on the line
DONE indicating that the 8 RESULT lines have the result of
multiplication. Notice that a new partial product appears at
clock periods 7, 10, and 15 to be shifted right by the next
clock pulse. Only a right shift takes place after period 12.
A second multiplica tion begins at 19 and is completed at Step
30 where DONE = 1 and the product appears on the 8 RESULT
lines.

All but the communication section of Figure 4-2 is the
input file to the HPCOM progran.

For this example, the compiler printout in Figure 4-4
lists first the clock and data inputs for the data registers.
Next are the gates realizing each module output, and last are
the D inputs to each control D flip-flop. The remaining com-
piler output detailing inputs to each gate is given in Figure
4-5, They are in numerical order showing type on the left, and
the inputs either as control signals or source gates on the
right.

Using the information of Figure 4-4 complete schematic
diagram such as the one shown in Figure 4~6 may be obtained,
Figure 4-4 shows the registers listed first with the segment
under consideration given at the left edge followed on the
same line by the clock enable. This signal is gated with the
clock should the register type used, not have an enable input
provided. (The full schematic of Figure 4-6 shows these gates
with a dot.) PFurther right are the individual data inputs for
each bit of the register segment. They are listed by bit, on

the left, and gate or signal implementation on the right.

DRIGREAS PAGE IS

CCYPILER FOR AHPL HARDWARE ROUTINES. HaY 18r L1977,

REGISTER . CLOCK
SEGHENTS ENaBLE REBISTER BIT INPUT SQURC
L0331 Gl
aCirol G
AC1C1] G7
AC1C2] G1i0
AC1C3Y G13
ACIEQ133 CSC1l
AC2L01 Gi14
ACZCL] G615
Ag2C21] G1s
AC2E3] G17
BUSYEQD 618
3UsSYCOD Cseas
COUNTLO L CsC42
COUNTLO3 i7
COUNTET1] G20
TL{TRACO 3] G321
EXTRACG] G2
EXTRAL11] G253
EXTRALII G213
EXTRALI] G3L
CONNECTTION
SEGHENTS OUTPUT BIT TERIMINAL
JFISULTEGI7]
PESULTLOZ G32
RESHLTLLD GI3
RESUL.TL2] G343
RESULTEZ] £
RESULTCAT c=
RESULTIE] 63
RESULTTaI G338
RESVULTL73 G39
ity +
[GHELST €325

INFUT

Figure 4-4:; HPCOM Output

-80-

GATE GATS DATA INFPUTS
TYPE NO.
OR G1 CSC13 CsSCay
AND G2 €sL13 INPUTBUSECOY
-AND 63 CSE4y EXTRAL3]
on 54 G2 G3
AND ACLELQT Cst4]
AND CSC1Z INPUTBUSLC 1S
or es G&
AND AC1C13 CsStal
AND CsSC13 INPUTBUSC2D
OR 68 -1
AND ACiCEI CSE47
AND csC13 INPUTBUSTI]
ar . G11 Giz2
aND T a1 e INPUTBUSC4]
AND CcsStil INPUTRUSES]
AND CsCi3 INPUTBUSC 4]
AND cscia INPUTBUSE7]
oRr CsLoy CSL3I
AND CSC41 INCLO3
AND - CSC43 INCL1]
or CSEC13 C3L33 C3L42
AND ADDEL] CSC32
AND ADDCOZ CSC33
AND CSE43 EXTRACO]
ar G23 G224
AND ADDC33 £sL3
AND €sL41 EXTRACLI
R 624 Go7
AND ADDC4] CsSL33
AMD CSL43 EXTRAL22
2R a9 G30
AND Ccses3 EXTRACOJ
AND CSCS3 EXTRALLZ
ANE £sCsa EXTRACLZ2]
ANT carsy EXTFACSD
AhD ACiE03 CSTs3
4HD ACLLLS
AHD AC1CZT
apD ACLE32
S COUNTZO02
Ity €410
- 3 £3can
o CELzs

at e 2

=

leva
oG

')(f

:
'

Figure 4-5: FPCOM Output

-81-

rEAILTEOT)
0
|

-
33
:‘_’i/,
-

Ll adas

L IREIFERDSTOL

T A

- _ﬂ .._,.,._I_

o res e

4

it |
iyt o

|

A

o

K
)

oz

FAtAREADYTO)

IT;J: "

gl patad
- * ﬂ:.,:v

)—._qdi'lhv{-rl

G432

1

1

—F-

tard)

al—

Qo

—
4@' vhi]

al-L _

DOBHHE o A
1 + (4] 4 ™ m b fR— d)
ﬂ- “.m m w.u. q._. H ﬂ“ 1 N T RE] ANpEA) _ b
I|-| (LIS N anne L]
L;-IIIH — R W (S P B — m
PO —— o) i — i Y
:] — wllIL -h P
i T T 't " " -~ " o oo
T_._:: ntl s Al Art ot _ rnthatog Jrathated | esiarog frainsrat _7;2.:: !
i R Y _ 0 I I, I
ARNOENE } ﬁ MO O 6 ® 6
-r JT | L % o S A B] L.
' |] (=== ol st
qu dm& .w..q ﬁ”—Uﬁmf ﬁuﬂ m mw m : TFil ::.:...m.mn_x

|

_ rm v TN] —
—— — 5
trterrof pronmrr g

B

[LELTY ey (LA R 1L
:::,r-f—_l_ " :___<_

rAth tHERT ..I:lll.l—

Figure 4-6

5. DIGITAL SYSTEM DESIGN LANGUAGE (DDL} [20]

DDL was introduced in 1968 by Duley and Dietmeyer [21,
22]1. A translator and a simulator are written for a subset of
this language in IFTRAN an extended version Sf FORTRAN [23,
24]. These programs are being implemented in FORTRAN on SEL 32
Computer System. DDL is a "block oriented" language. Each
subsystem of a system appears as a block in the description of
the system. The following sections introduce the language as
required by the translator and simulator. DDL is suitable for
the intermediate level of description between the extremely
abstract level and the fabrication level.

All structural elements are explicitly declared. At the
lower level of description, functional and structural elements
correspond directly to the actual elements of the system. DDL
is highly suitable for describing the system at the gate, re~

gister transfer and major combinational block level.

The logical statements can be formed using the available
primitive operators: The functional specification of the
system consists of these logical statements, in blocks. The
statements describe the state transitions of a finite state
machine controlling the processes of the intended algorithm.
The block then appears as an automaton.

Parallel operations are permitted. Synchronous behavior
is described by either identifying the pulses or by including
delay elements described in terms of multiples of clock
pulses. Asynchronous behavior is modelled by using conditional
statements. Data paths can be explicitly declared by using
terminal declarations.

—-82-

-33-

5.1 SYNTAX RULES

VARIABLES:
Variable name may contain 1 to 6 characters, the first of

which must be alphabetic. The remaining characters must be
letters or digits.

CONSTANTS::
Constants take the general form nRk., n is the number in base
R (R=D for decimal, 0 for octal). k is the number of bits

required for the representation k< or = 32. k is decimal.

5.2 DECLARATION STATEMENTS

The general format of a declaration statement is
<DT> body.
The declaration type (device) is enclosed in angle brackets
ang the period terminates the declaration. Body consists of a

list of items separated by commas. Following devices are

allowed:
TErminal Sets of wires
REgisters Sets of synchronized flip-flops
MEmory Sets of synchronized flip-flops
LAtches Sets of asynchronous latches
TIme Clock
DElay Delay elements
BOolean Combinational logic
ELement Off the shelf components

<TE> X, Y(4), 2(0:2), W(3,4:1), A(12) = B "C(0:10)
identifies a single wire X, four wires YT’ Yz, Y3, Y4 with Y1

on the left, 3 wires Z Z1, Z, and 12 wires corresponding to

0’ 2
W, placed in 3 rows, ith row of wires numbered Wi4' LY Wios

-84

Wege The subscripts always have a left to right interpreta-
tion. A single subscript n indicates the range 1 to n while a
range n:m indicates n to m left to right. In the above
declaration, A, is also named B, A(2:12) are named C(0:10). "
is the concatenation operator.

REgister and LAtch DECLARATIONS
<RE> IR(16) = OP(0:3)" IX{1:3)" ADRS(9), X(12).
declares a 16 bit register IR and a 12 bit register X.

IR is identified with 3 subregisters 0P, IX and ADRS,
<LA> BUF(4).
declares a set of 4 latches BUF.

MEmory DECLARATION

<ME> M(X:Y).
declares X words (numbered from 0 to ¥-1) of Y bits each
(numbered 1 through ¥).

References to the memory must be of the form M(MAR) where
MAR is the same register in all references to M. MAR is de-
clared in a RE declaration. Only full words may be accessed

from memories.

TIme DECLARATION
<TI> A(1E-6), Q(20E-9)$2%.
declares a single phase clock A with a 1 microsecond period

and a two-phase clock Q with 20 nanosecond period.

DElay DECLARATION
<DE> P (10E-9), Q(5E-7).

declares two delays P with 10 nanoseconds and Q with .5 micro-

-85-

second. The context in which the DElay element is referenced

determines whether its input or output terminal is used.

BOolean DECLARATION

<BO> identifier = Boolean expression.

For example,

<TE> A, B(5), C(0:4), D(6, 5:1)

<BO> D(4) = B+C, D(5) = A*B,
declares that the fourth row of D is formed by ORing termi-
nals B and C i.e. (D45= B1+ C0 etc.) bit by bit; the fifth row
of D is a bit by bit AND of A and B, Since A is 1 wire and B

is a set of 5 wires, A is fanned out to combine with each bit
of B.

ElLement DECLARATION

Enables the description of an element in the system whose
logical specifications are unknown or impertinent.
For example,

<EL> JKFF (Q1,NQ1: ¢, J1, K1), COUNT (X(5:1), ZERO:

UPDWN, CLK}).

declares an element JKFF with 3 inputs ¢,J1,K71 and two output
Q1 and NQ1; and an element COUNT with two inputs and 6 out-
puts. The only information available on these black boxes is

the input/output terminals.

5.3 OPERATIONS

_“Figufé 5-1 (a) shows the operations allowed and their
hierarchy; Figure5-1 (b) shows three special operators. "="
is used to show the connections while <~ indicates a data

transfer from one facility to the other. =-> is equivalent to

OPERATOR

Extension

Concatenation

Complementation

Selection

Reduction

AND
NAND
NOR
XNOR
XOR
OR

FIGURE_ 5-1(a):

SYMBOL

AF
A+
AG

5-1(b) :

CONNECTION

TRANSFER
GO TO

-85~

OPERATORS

TYPICAL SYNTAX

Ak
A"B
AR

A'kDn

p/A

A*B
AA*B
LA+B
AAE@B
A@B
A+B

SPECIAL OFPERATORS

COMMENTS
k copies of A

Bit by bit
complement
Selective com-
lementation
A1PA2P"‘PAn
where pE[*,A%*,
A+,AQ,Q,+]

Bit by Bit
Opertions

-87-~

a "GOTO", usually used to show the next state.

The extension operator

"$" creates k copies of the ter-

minal or terminal set offered as its left operand.

The selection operator
commplements the bits of the
pending on the value of the
0,1.

For example A' 0101085 is

>
>

M~
l'/'

g
v W

', selectively complements, or not
facility (left hand operand)} de-

corresponding bit in kbn is a

equivalent to

A'01010B5

The operator preceding the reduction operator (/)

determines the nature of the reduction on the right hand

operator of /. Six types o

*/A implies

f reductions are possible,

-l

-88-

+/A'3D5 implies

-
— >
. N

b
|52 B S 5 T (N S §

Boolean expressions (Be) can be formed by using the

operators and variables in the usual manner. Paranthesis

could be used where there 1s an ambiguity. The expressions
are evaluated from left to right following the operator

hierarchy.

Conditional operations have the format
?BE? OP1. oxr
] -
?BE? OP1, OP2.

The first form implies: If the value of BE is 1, perform OP

1?
the second form implies: If BE is 1, perform OP1 else perform

OP,. "If ... then" operations can be nested:

?A? ?B? OP1.; ?2C? OPZ"

5.4 IF -~ VALUE CLAUSE -

1" is used for "IF" and "#va" is used for the value in
an IF-value clause., For example;
B = IC #0 DO #1 D1 #2 D2.

implies that DO is connected to B i1f the value of C is 0, DI

is connected to B if the value of C 1s 1, etc.

As another example,
IX #0D2 A<-B #1D2 A<~-C #2D2 A<-AB #3D2 A<-AC

-89

describes a 4 way conditional transfer operation into A
depending on the value of X.

5.5 IDENTIFIER

IDentifier declaration enables the naming of a group of
operations so that they do not have to be written repeatedly
(equivalent to MACROs). The general format of IDentifier
declaration is,
<ID> list

where list takes the.form
id = compound facility
id = (Csop)

For example, <ID> X = C(2:10)"1. names the compound facility

C(2:10"1 to be X. Then, any reference to X is expanded into
c(2:10)"1.

For example, S = R & X. is eguivalent to S = R & C(2:10)"1.
A compatible set of operations (CSOP) is a set of opera-

tions separated by commas. It must be possible for the hard-

ware to perform all these operations simultaneously.

The order in which the operations are listed is of no
consequence. For example,
<ID> A = (Y <= X, Z<- Z(2:53)"A2(1)),
B (Y <= X, 2 <~ Y).
names two CSOPS. Note that the operations Y <~ X and Z <- Y

it

in B are simultaneous and are compatible.

G ()=

5.6 OPERATOR DECLARATION

Blocks of combinational circuitry can be defined with the
OPerator declaration. The body of the OPerator declaration
consists of a BOolean declaration and perhaps a TErminal
declaration. Boolean equations in the body of the BOolean
declaration include Boolean expressions which may involve
conditions and be relatively complex. References in these
Boolean eguations may be made to (1) facilities global to the
OPerator declaration. (2) local terminals declared within the
OPerator declaration by a TErminal declaration, and (3) ter-
minals declared and dimensioned in the head of the OPerator
declaration. The TErminal declaration may be used to define
local terminals of the operator, and must be used to dimension

"dummy" identifiers listed in the heading, if any.

The head of the Operator declaratien consists of one or a
list (separated by commas) of identifiers with or without an
argument list enclosed in $s, with or without parenthetic sub-
script ranges. Permitted syntactic forms for heads are:

idy, id,(1,), id; § Xy, Xy,. . X 5, id, (i)

X1, X2... Xk$
where subscript ranges can alsc be placed within the paren-
thesis. The identifiers name the combinational logic blocks
and their output terminals. Parenthetic integers dimension
the output terminal sets with the same Syntax and semantics as
in TErminal declarations. The arguments are local dummy id-
entifiers of input terminals of the combinational blocks. Such
dummy identifiers must be dimensioned via a local terminal

declaration within the QPerator body.

As an example of a time-shared operator block. ALU is
decalred below. This combinational block is able to add two
16-bit binary sequences presented to it on lines X and Y or
form their bit-by-bit EXCLUSIVE-OR. Input signal F determines

-91=

which task 1s performed. The carry into rightmost full-adder
must also be presented to the unit.

<OP> ALU(16) $ X,Y, CIN, ¥$

<TE> X(16), Y(16), CIN, F, C(16) = €xX"CC(15).

<BO> C=X*Y + CC" CIN¥* (X+Y),

ALU = (?F? X@Y@ CC"CIN; X@Y)..(end of BO, end of OP)

Note the inline comment capability of DDL (end of BO, end of
OP) .

Suppose the following declaration is global to ALU,
<RE> ACC(16), MBR(16), COUNT (12)
we can define several operations using ALU as following:

?LDA? ACC <- ALU3$0,MBR,0,0%

?ADD? ACC <~ ALU$ACC,MBR,0,1$

?8UB? ACC <- ALUSACC,AMBR,1,1$

?KNT? COUNT<- ALU(5:16) $0$4"COuUnNT,0,1,13%
?X0OR? ACC <- ALU$ACC,MBR,0,0%

5.7 STATE DECLARATION

DDL views the operation seguencing {control) circuitry as
a finite state machine. Each state of the control circuitry
is described by a STate declaration:
<8T> State List.

State list consists of a list of state statements {with-

out separating commas). FEach state statement has one of the
following forms:

gsid (n): csop.
sid (n): Be: csop.

-8~

5id is a simple unsubscripted identifier. n is the deci-
mal state assignment.csops include the state change operations
using the state transition operator ->.

In the first form, csop is performed whenever the auto-
maton is in the state S8id.

In the second form, c¢sop is performed when the automaton
is in 8id and also Be is satisfied. The automaton waits in
the state till Be is satisfied.

A 15 bit multiplier control can be described as follow-
ing:
<ST> S0(0) :MPY:ACC<-0, CNT<-15D4,->51.
S1(1) :=>52, DECR$ CNT$,?20Q0(15)7 ACC<-ACCH+R,.
S2(2) :SHR$ACC"Q$, ?2+/CNT?->51;80...
{end of conditional, end of S$2, end of ST)

SHR is shift right (zero fill) operator and DECR is a
decrement operator assumed to be defined using <0P> declara-
tion.

5.8 AUTOMATON and SYSTEM DECLARATIONS

Relatively independent disjoint portions of a digital
system are identified as automata in DDL with syntax.
<AU> head body.

The AUtomaton declaration is the most complex type of
declaration of DDL. Its head may take any of four forms, for
example;

auid:

auid:csop

-93~

auld:Be:

auid:Be:csop

First, an automaton identifier, auid, may be subscripted,
but may not include parenthetical arguments; it names the
block only. A compatible set of operations may be included in
the head of an automaton. These operations are to be per-
formed whenever the Be of the heading, if any, is satisfied.
Conditional as well as unconditional operations may be in-
cluded in this heading csop, so whether a specific operation
1s performed or not may depend on conditions throughout the

auntomaton or systemn.

Be in the heading of the AUtcmaton declaration is a
condition on all operations declared throughout the body of
the declaration except connection operations. Usually Be is
the clock signal that synchronizes the automaton. It is
generally unnecessary and undesirable to include such global
conditions as clock signals in combinational circuits; in
fact, signal propagation in combinational networks usually
pracedes clock pulses,. If a clock with n phases is used to
synchronize an automaton, then a dimensional Be or a conca-
tenation of n Bes appears in place of the single Be in the

AUtomaton declaration head.

The body of an AUtomaton declaration consists of other
declaratons. Each of these declarations 1s terminated with
its own period; punctuation is not placed between them. The

following declaration types may appear.

<ME>, <RE>, <LA>, <TE>,
<TI>, <DE>,<0P>, <EL>, <ID>, <BO>, <ST>

ME, RE, LA, TE, TI, DE, AND EL declarations are used to
declare the existence of local facilities of the automaton.

The OPerator and BOolean declarations specify combinational

blocks and interconnections of facilities. The IDentifier
declaration may be used to simplify or clarify the overall
AUtomaton declaration. The STate declaration is usually used
to specify the operations of the automaton. If the STate
declaration is not used, then all operations appear in the
csop of the AUtomaton declaration head.

The SYstem declaration has syntax i1dentical to the AUto-
maton declaration., The system is identified in the head.
Global coditions and csop may be specified alsc. The body of
a SY¥stem declaration may contain AUtomaton declaratioms as
well as all other types of declarations, but STate declara-
tions must appear within AUtomaton declarations. Public
facilities are declared with ME, RE, TE, etc., declarations
outside of all AUtomaton or OPerator declarations.

Example:
A multiplier controller is described below to
illustrate the S¥stem and AUtomaton facilities.
The counter 1s treated as a separate automaton.
Perhaps other unspecified automaton of SYSTEM 1

can use the counter when automaton MC is not.

<SY> SYSTEM1:
<RE> ACC(15), Q(15), R(15).
<TE> SET, DEC, DONE, MPY.
<TI> P(1E-7).
<AU> CPU: P:
<ST> .

Q17: DONE: Q <~ Multiplier,
. R <= Multiplicand, MPY = 1,

.. (end CPU)

~95-

<AU> MC: P:
<8T> S0: MPY:; ACC <~ 0, SET = 1, -> S1.
S1: => 82, DEC = 1,?2Q{15]1? ACC <- ACCHR..
S2: SHR$ACC"QS,?DONE?-> S0; -> S1...
<AU> K: P:
<8T> [i=1:15] T{(i): DEC: -> T(i-1)..
T(0): DONE = 1,?8ET? -> T(15); ~> T(0)...
(end SY)

Automaton CPU 1is shown only as placing the multiplier and
multiplicand in public registers and issuing command MPY to
multiplier control MC. If the counter automaton X is idle, it
will be issuing DONE = 1. CPU waits in its state Q17 until
this condition is satisfied (perhaps X 1s still doing a job
for some other automaton). MC clears ACC, but the counter is
initialized by SET = 1. Specifically SET = 1 will cause K to
go from its state T(0) to T(15) where it will remain until it
is told to decrement via public terminal DEC. MC tests the
multiplier, adds or not and shifts repeatedly until it is
informed by K via public terminal DONE that all multiplier
bits have been examined. In the example above interacting

automata MC and K operate in parallel.

NOTE: The "For clause" shown in the Automaton K for the
decremnt operation [i=1;15] T(i) :DEC: -> T(i-1) is not allowed
in the present version of the DDL software, This statement
has to be broken up into;

T(i): DEC: -=> T{(0) i
T{2): DEC: => T(1)

T(15): DEC: ~> T(14)

SHR is a single argument operator (assumed to be declared
earlier) that shifts the argument one bit right, and fills

zero on the left.

-6

5.9 ADVANCED FEATURES

The following features of DDL are not accepted by the
present version of DDL software:

(a) Shift and count operations.
(b) SEGMENT declarations, which allow the Automaton

to be broken up into several partitions.

5.10 TRANSLATOR (DDLTRN) [25,26]

DDLTRN translates a restricted DDL description into a set
of tables suitable for simulation of the system. It is a six
pass translator performing a syntax check, facility identifi-
cation, syntax reduction, condition distribution, concatena-
tion removal, operation gathering and disjoining the subfacil-
ities, The FLAG statement can be used to control the printed

output of the intermediate steps.

5.11 SIMULATOR (DDLSIM) [27]

DDLSIM uses the tables produced by DDLTRN to simulate the
system, Multiple simulations are possible with the DDLSIM

control statements. The following commands are available:

<CLock> declarations provide a means of specifying or
changing the time period, pulse width and phase of the clock
facilities. New clocks can be declared to control simulation

input and output activities.

<DElay> declaration provides a means for specifying delay

-97-

time for delay facilities (old and new).

<INitialize> provides a means for initializing the output
values of delays, registers, memories, element outputs,

primary input signals, terminals and triggers with delays.

<REad> enables input data values for various facilities

in three modes: triggered, periodic and specific time.

<LOad> provides a means for establishing the same input
values repeatedly on specified facilities. The above three

modes are possible.

<0Utput> specifies the printing of the values of various
facilities at various instants during simulation. The wvalues
are printed in octal (default), binary, decimal or hexadecimal

mode by setting the appropriate flag.

<DUmp> dumps, the contents of specified memory locations
at various instants during simulation.

<S5Top> stops the simulation at a specified simulation
time.

<LIst> is used to assign a unique name to a list of fac-
ilities and can be used when the same set of facilities are

used in various declarations of the simulation deck.

<8Imulate> is used to separate different simulation runs

in a simulation job.

<FLag> enables the selection of various options for

simulation runs by setting or resetting the associated flags.

<TRigger> provides a means of declaring new facilities
that can be used as triggering signals to control the

simulation, without alitering the DDL description.

-98-

5.12 DESIGN EXAMPLE [27]

A MULTIPLIER unit that calculates the product of two
8=bit numbers is described in DDL. A listing of the deck used
for simulating the MULTIPLIER system along with the simulation
report is given on the following pages. The <FLag> declara-
tion in the simulation deck specifies that all data-values
specified without radix specification be interpreted in deci-
mal (Flag 4), and that output values be printed in binary
(Flag 6). The control unit MPY of the system waits idly in
state ST until it receives a START command. A <INitialize>
declaration is used to initialize the START signal to 1 and
start the MULTIPLIER unit. On receivng the START command in
state S1, the control unit proceeds to load the R register
with the multiplicand obtained from the BUS and proceeds to
state S2, In state S2 the B register is loaded with the
multiplier obtained from the BUS. A triggered READ operation

.with state terminal S1 as the triggering signal is used to
supply the BUS with the multiplicand. Duraing simulation,
whenever the control unit reaches state S1, the BUS is sup-
plied with a new value of the multiplicand. The multiplier is
supplied to the BUS in a similar manner with ancother triggered
READ operation using state terminal S2 as the triggering sig-
nal. After loading the multiplicand and the multipliex, the
control unit proceeds to state S3. In state S3 the multipli-
cand is added to the partial product, if the multipi- ier bit
is logic 1. The control proceeds to state S4 in any case.
The A and B registers are shifted right together and the mul-
tiplication cycle counter MCOUNT is incremented. If the count
has been completed, status line DONE is set to logic 1 and the
control unit returns to its idle state 81, If not all bits of
the multiplier have been tested, the control unit returns to
state S3.

-89~

A triggering signal OUTTR defined using a <TRigger> de-
claration is used in a triggered OUTPUT operation to control
the printing of the wvalues for MPY, MCOUNT, A, and B. These
values are printed in binary on every trailing edge of the
clock P signal. Another triggered OUTPUT operation using
state terminal S1 as the triggering signal controls the
printing of the values for the multiplicand, multiplier and
the final product. Note that these values are printed only
once, i.e., when the final product is available, during a
given multiplication operation. The two output lists printed
with different frequency make the simulation report more
informative and readable. Since no <ClLock> declaration is
included in the simulation deck, default values are used for
period, pulse width and phase. Note that for a single
simulation run a <SImulate> declaration is not required. Since
an EOF condition is expected no explicit <STop> declaration is

included in the simulation deck to terminate the simulation.

$DDLTRN
<CO> DESIGN OF A 8-BIT MULTIPLIER.
<8Y¥> MULTIPLIER:<TI>P.<RE> A(0:8), B(8), R(8),MCOUNT(3).
<TE> START, BUS(8), DONE,.
<TE> SUM(8), COUT(8), CSUM(3), CCOUT(3).
<ID> CIN = COUT(2:8)"OD1.
<ID> CCIN = CCOUT(2:8)"1D1.
<BO> COUT = R*A({1:8) + R*CIN+A(1:8)*CIN,
SUM = R@A(1:8)@CIN,
CCOUNT=MCOUNT*CCIN,CSUM=MCOUNT @ CCIN,
<AU> MPY(2): P:
<ST> S1(0): START: R<-BUS, NCOUNT <-0,->S2.
S2({1): B<~BUS, A<~C, =->S3.
53(2): ?B(8)? A<-COUT(1)" SUM, ,->S4.
S4{(3): A{1:8)" B<=-A"B(1:7), A(0)<-0,
MCOUNT <-CSUM, ?*/MCOUNT?DONE=1,
->81;->S3..u.e.

@ﬂG“‘

OTGITAL DESIGY LA GUAGE ST4 TLATTR

TI“f ¥

@ o D
-

10 i1
12 ln
14 11
16 17
18 i1
20 luo
22 1t
74 1n
26 11
28 1
35 11
12 11
36 11
38 On
33 01
40 1o
42 11
44 10
46 i1
&f 1N
50 11
82 L0
LY R S|
%6 1n
58 1t
LT I
£ 11
hiy L
LY IR B
5 1

70 1}
72 91

O OF FILF

O OF SIMILATIO

—ZC oo X

coo
ngn
ogn
noo
rol
nol
nlio
oy0
oll
oll
100
100
el
101
110
110
11t
111
600
noon
a0n
300
0ol
apl
[*} Y]
nie
nil
611
100
100
101
101
116
110
111
111
oQn

=100~

@53&& i3
Gﬁﬁ%&?éIM |SIMULATION.
<FL> 4,6 |[USE DECIMAL DATA AND PRINT OUTPUT
|IN BINARY FORMAT.
<IN> START/1 - |GIVE A START COMMAND.,
<RE> S1/BUS/6,10 - |[DATA VALUES FOR THE MULTIPLICAND.
<RE> S2/BUS/5,13 - |IDATA VALUES FOR THE MULTIPLIER.
<TR> OUTTR/AP - [DEFINE A TRIGGER TO CONTROL PRINT-
|ING ON
|TRAILING EDGE OF THE CLOCK.
<0U> OUTTR/MFY,MCOUNT,A,B/, |PRINT MULTIPLICAND,
) |MULTIPLIER
$1/8,BUS,A(1:8), B. |l& PINAL PRODUCT.
$EOJ
SIMULATION RESULTS
JFRS] N -« 02,030176 1513307 03729776 SIPULATIIN RUN

A

rgoonvoon
ngannRnNon
ngnarongn
waonYLln
Aghngaoll
IPNO00NL:
MRnnunNg 1
~0na00111l
nonQoiol1l
rpnnNnanl1l
rootoon]
nonOGUODY
~OBONGagn
naaagnen
fonnconon
nooHALAN"
ngnoeunon
ronorinon
Hgeno0aon
~o00c 000"
t aen00ngn
rpenglaln
“antuiol
roronulol
LLUTE LI
rancnlion
~an30011"
raryonon
ngnaninon
nyedcloen
fpooodlan
DQnaceLon
foganunin
ronantnln
ngo.LoSUn01
~foRNN000L
[orononnn

n R

Bt1s

OF = 4=t >

3

nNN0NNAN 9ANNANNH "ondtCng 0NC00000 DONOO0N0

noALNN
arrtnlnl
npraning
conOnolo
[alsinlvlsleh Ned
10700001
1p12000N1
{ir0nong
11100000
11100000
11100000
11110000
1itlnnng
Al1liong
n11110"0
narilindg
noillled

AO~11110 Of0O0L10 Noodoln]l 0CCO0N0N QDNILLLO

nn-11110
oo~riing
004011n1
annenN1lo
nonni1n
1a-0ca011
1010001L
AT eI
ajnennal
an1onoo
acinnonG
[aealnong
norln0nn
[nnG1010
Ara010ne
Tl 1 3 iab]
¢ongnlno

16700010 ORJOINE0 rogliln] ONCR00Q0N 10000010

REACHED (N T 1PUT
THULAT] N TER™I' ATED® AT TIHM = 73

X

6. COMPARISON

All the available Hardware Description Languages satisfy
the basic requirement of describing the hardware in a concise
unambiguous and readable way. But, one language would be
better than the other depending on the design environment.
When designing systems of very low complexity, an HDL can be
used only as a description media; this is because the HDL
description usually is at a high-level and the designer can
usually verify his design without resorting to the simulation.
As the system complexity grows, it will be essential to verify
the design at high levels using the HDL simulator, before
proceeding to the detailed design.

After verifying the design through high-level simulation,
the HDL description of the design can be used as an input to
the programs, that generate the logic diagrams. This logic
diagram data base serves as the starting point for the pro-
grams that decide the physical aspects like, placement,

routing, partition etc. of the integrated circuit design.

The following five criteria were used in selecting a
suitable language:

1) Activity

2} Level of Description

3) Software availability and portability

4) Ease of logic generation, and

5) Modularity.

ACTIVITY

It is essential to choose a language which is being used
elsewhere to receive the benefits of the extensions to the
language., Most of the HDLs proposed do not have a translator
and a simulator that is up-to-date and fairly versatile,
though the language itself is versatile. All the four HDLs

described, have been implemented at several locations and

-101-

-102~

there is a considerable amount of interest in making these
HDLs more versatile.

LEVEL OF DESCRIPTION:

ISP is suitable for comparing systems at the instruction
level. CDL is suitable at the register transfer level and
does not have adequate time and delay facilities. AHPL and
DDL could be used very well in the circuit design work, since
they are capable of description at and slightly below the
register transfer level.

SOFTWARE AVAILABILITY and PORTABILITY:

The ISP software is developed in BLISS on PDP-10 Computer
system and is not portable. CDL software has many implementa-
ticns., Most of the software is in FORTRAN, with some essential

routines in assembly language of the computer system it is
implemented (IBM 360/370, UNIVAC 1110[6], CDC 6000 [5]). AHPL
hardware compiler is written in SNOBOL and the simulator in
FORTRAN on DEC~10 and CDC 6400 systems. A few changes related
to machine word length are required to make these operative on
the other machines. DDL software is written in IFTRAN (Struct-
ural FORTRAN). An IFTRAN preprocessor is available. These
programs also need some changes related to machine word

length, to be operative on other machines.

EASE QF LOGIC GENERATION:

ISP is not suited to generating logic diagrams. CDL
being a pure register transfer level language, does not tend
itself very well to the logic generation., The AHPL hardware
compiler provides a wiring list of the system consisting of
gates and memory elements. DDL translator provides the
Boolean functions for the system as an intermediate step in
the translation process. These could be used to generate the
logic diagrams.

-103-

MODULARITY:

High level modular description is possible with ISP. CDL
is a one-level description language. The subroutine features
of AHPL could be used to describe sevarate modules. DDL block

structure is more closer to the hardware modularaity.

From the above discussion, it is seen that AHPL and DDL
are suitable for an integrated circuit design environment,
However, the block structure of DDL, the right-to~left
conventions of AHPL due to its origination from APL and the
portability of DDL's FORTRAN software, makes DDL more suit-
able,

7. CONCLUSIONS

The characteristics of the four prominent HDLs are
summarized. DDL was found to be most suitable among these four

languages for an integrated circuit design environment.

Since there are so many languages proposed [8], it is
very hard to perform a critical evaluation of their capabil-
ities. Such a critical evaluation of the language capabilities
might not be of much use, since the implementation issues more
or less influence the selection of the language. The evalua-

tion reported here caters more to the implementation aspects
of the selected language.

DDL translator and simulator are currently being imple—
mented on the SEL~32 computer system of the electronics and
controls laboratory of the Marshall Space Flight Center. The
future work includes the development of procedﬁres to generate
logic -diagrams from a DDL description and integration of these

procedures into the current automatic design system.,

Three other languages that are heirarchic in nature, use
a multi-level design philosophy allowing the designer to
specify his design at any level of detail. They are: Language
for Computer Design [28], an Hierarchical Language for the
structural description of Digital Systens [29] and a language
for Automated Logic and System Design [30-32], The RT-CAD
research group at Carnegie-Mellen University is using ISP in

their register—transfer level design automaxrion [33].

~104-

-105-

The languages described in the literature seem to be used

mostly in the academic environment. Industrial design groups

usually make use of internal, proprietary languages. There

seems to be a growing interest in HDLs. Recognizing the need
for common notations and a standard language, a working group
congisting of professionals in this area [34] has been set-up,

which is trying to develop a consensus language.

[1]

(2]

[3]

[51]

[61

[71

[81]

[91

£101]

[11]

[12]

[13]

REFERENCES

Chu, Y.,"An ALGOL~Like Computer Design Language,"
Communications of ACM, Oct. 1965, pp. 607-615.

Chu, Y., "Structure of CDL Programs," Technical Note
74-58, Department of Computer Science, University of
Maryland, May 1974.

Chu, Y., "A Higher-Order Language for Describing Micro-
programmed Computers," Technical Report 68-78, Computer
Science Center, University of Maryland, September 1968,

Mesztenyi, C.K., "Translator and Simulator for the Com-
puter Design and Simulation Program, Version 1, “"Techni-
cal Report 67-48, Computer Science Center, University of
Maryland, June 1968,

Stine L.R. and Mowle F.J., "A Position Paper on Exten-
sions to the CDL," pp. 103-114, Proc. International
Symposium on CHDLs and Their Applications, New York,
September 1975.

Bara J., and Born R. "A CDL Compiler for Designing and
Simulating Digital Systems at the Register Transfer
Level", pp. 96~102, Proc. of 1975. Internaticnal
Symposium on CHDLs and Their Applications, New York,
September 1975.

Cwik T.T., "Multiprocessing Simulation of the Intel
8080 and the PDP-8 using CDL," Masters Thesis, Auburn
University, March 76.

Shiva, S.G., "Hardware Design Languages — A Biblio-
graphy", Semi annual Status Report, Alabama A & M
Universty, March 78,

Chu, ¥.,"Introducing CDL", Computer, pp. 31-33, December
1974,

Chu, Y., Computer Organization and Microprogramming,
Prentice~Hall, Englewood-Cliffs, New York, 1972.

Bell, G. and A. Newell, Computer Structures: Readings
and Examples, McGraw-Hill, 1971.

Barbacci, M.R., "The Symbolic Manipulation of Computer
Descriptions: ISPL Compiler and Simulator". Technical
Report, Department of Computer Science, Carnegie-Mellow
University, August 1976,

Barbacci, M.R., Siewiorek, D.P., Gordon, R., Howbrigg,
R., and Zuckerman, S.: "An Architecture Research Facil-

-106-

[14]

[15]

[16]

(171

(181

[191

[20]

[21]

[22]

[23]

[24]

[25]

[26]

~107-

ity: ISP Descriptions, Simulation, Data Collection®.
Proceedings of the AFIPS, Vol. 46, NCC-77, pp. 161-173.

Barbacci, M.R., Barnes, G.E., Cattell, R.G., and Sie-
wiorck, D.P., "The ISPS Computer Description Language®,
Department of Computer Science and Electrical Engineer-
ing Report, Carnegie-Mellon University, August 1977.

Barbacci, M.R. and Nagel, A.W., "An ISPS Simulator”,
Department of Computer Science and Electrical Engineer-
ing Report, Carnegie-Mellon University, November 1977.

Hill, ¥.J. and Peterson, G.R., "Digital Systems: Hard-
ware Organization and Design, Wiley, New York, 1978,
Second Edition.

Hill, F.J. and Peterson, G.R., Introduction to
Switching Theory and Logic Design, Wiley, New York,

1974, Secod Edition.

Swanson, R.E., Navabi, Z., Hill, F.J., "An AHPL Com-
piler/Simulator System," Sixth Texas Conference on
Computing Systems, pp. 1~10, November 1977.

Swanson, R.E., Navabi, Z., Hill, F.J., "User Manual for
AHPL Simulator/Compiler", Engineering Experiment Sta-
tion, The University of Arizona.

Breuer, M.A., Digital System Design Automation: Langu-
ages, Simulation and Data Base, Woodland Hills, CA.,
Computer Sciences Press, 1975. .

Duley, J.R. and Dietmeyer, D.L.,, "A Digital System
Design Language (DDL)," IEEE Transactions on Computers,
Vol. C-17, September 1968. pp. 850-861.

Duley, J.R., "DDI-A Digital System Design Language,"
PhD dessertation, University of Wisconsin, Madison,
1967.

Arndt, R.L. and Dietmeyer, D.L., "DDLSIM - A Digital
Design Language Simulator, "Proceedings of NEC, Vol.
26, December 1970, pp. 116-118.

Scares, L.E.R., "An Implementation of Digital Design
Language,"” MS Thesis, University of Wisconsin, Madison,
1970.

Dietmeyer, D.L., "DDLTRN-Users Manual", Department of
Electrical and Computer Engineering, University of
Wisconsin~ Madison,

Dietmeyer, D.L., "Translation of DDL descriptions of
Digital Systems," Report No. ECE-77-13, University of

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

-108-

Wisconsin-Madison, September 1977.

Dietmeyer, D.L., "DDLSIM - Users Manual," Department of
Electrical and Computer Engineering, University of
Wisconsin-Madison.

Evangelistic, C.J., Goertzel, G., Ofek, H.,, "Designing
with LCD: Language for Computer Design," Proc. T14th
Design Automation Conference, June 1977, pp. 369-376,
New Orleans.

Vancleemput, W.M., "An Hierarchical Language for the
Structural Description of Digital Systems," Proc. 14th
design auto. conf; June 1977, pp. 377-385, New Orleans.

Baray, M.B. and Su, S.Y,H., "A Digital System Modeling
and Design Language,"” Proc. of the 8th Annual Design
Automation Workshop, 1971. pp. 1-22,

Su, S.Y.H., "A language for Automated Logic & System
Design," presented at the Workshop cn Computer Descrip-
tive Languages, Rutgers University, New Brunswick, New
Jersey, September 6-7, 1973.

Su, S.Y.H., Baray, M.B., and Carberry, R.L., "A Sys-
tem Modeling Language Translator,” Proc. of the 8th
Annual Design Automation Workshop, 1971, pp. 35-49.
Hafer, L.J. and Parker, A.C., "Register-Transfer level
Digital Design Automation: The Allocation Process”,
15th Design Automation Conference Proceedings, pp.
213-219, Las Vegas, Nevada, June 1978,
Su, S5.Y.H., "HDL Applications: An Introduction and
Prognosis," Computer, June 1977, pp. 10-13.

GENERAT. REFERENCES
Proceedings of the International Symposium on CHDLs and
their Applications, New York, September 1975,
Computer, Special Issue on CHDLs: December 1974.

Computer, HDL Applications, June 1977.

