JRL PUBLICATION 77-26, REVISION -2

A Parameter Estimation
Subroutine Package

~

G. J. Bierman -

M. W. Nead
{NASA-CR-157766) A PARAMETER ESTIHATION ¥78-33789
SUBBOUTINE PACKAGE {Jet Propulsion Lab.)
IC A07/HF A01 CSCL 09B
Jaclas

#7671 33807

October 15, 1978

National Aeronautics and
Space Admimistration .

Jet Propulsion L.aboratory
California Institute of Technology
. Pasadena, California

" REPRODUGED BY

| NATSEAL TECHNICAL
" INFORMATION SERVICE !

| U. 8. DEPARTMENT OF COMMERCE f
v B _ SPRINGFIELD, VA. 22161 :

NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED
FROM THE BEST COPY FURNISHED US BY
THE SPONSORING AGENCY. ALTHOUGH IT
IS RECOGNIZED THAT CERTAIN PORTIONS
ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE

AS MUCH INFORMATION AS POSSIBLE.

JPL PUBLICATION 77-26, REVISION 2

A Parameter Estimation
Subroutine Package

@G. J. Bierman
M. W. Nead

October 15, 1978

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, Calfornia

The research described n this publication was carried out
by the Jet Propulsion Laboratory, California Institute of
Technology, under NASA Contract No NAS7-100

PREFACE

The work described in this report was performed by the Systems
Division of the Jet Propulsion Laboratory.

iii

ACKNOWLEDGEMENT

The construction of this Estimation Subroutine Package (ESP) was
motivated by an involvement with a particular problem; construction of
fast, efficient and simple least squares data processing algorithms
to be used for determining ephemeris corrections. Discussion with
T. C. Duxbury led to the proposal of a subroutine strategy which would
have great flexibility. The general utility of such a subroutine package
was made evident by H. M. XKoble and N. A. Mottinger who had a different
but related problem that involved combining estimates from different
missions. Thanks and credit are also due to our colleagues for experi-
menting with this package of subroutines and letting us benefit from their

experience.

iv

ABSTRACT

Linear least squares estimation and regression analyses continue to
rlay a major role in orbit determination and related areas. In this report
we document a library of FORTRAN subroutines that have been developed to
facilitate analyses of a variety of estimation problems. Our purpose is to
present an easy to use, multi-purpose set of algorithms that are reasonably
efficient and which use 3 minimal amount of computer storage. Subroutine
inputs, outputs, usage and listings are given, along with examples of how
these routines can be used. The following outline indicates the scope of
this report: Section I, iatroduction with reference to background material;
Section II, examples and applications; Section III, a subroutine directory
summary; Section IV, the subroutine directory user description with input,
output and usage explained; and Section V, subroutine FQRIRAW listings.

The routines are compact and efficient and are far superior to the normal
equation and Kalman filter data processing algorithms that are often used

for least squares analyses.

IIL.

I1T.

Iv.

V.

VI.

CONTENTS

Introduction O L T T
Applications and Examples
Subroutine Directory Summary

Subroutine Directory User Description

References « « v o « o o o « o + o

FORTRAN Subroutine Listings.

e e e e e e 23

vii

~ Pregeding age blank |

it e bt e

1. Introduction

Techniques related to least squares parameter estimation play a
prominent role in orbit determination and related analyses. HNumerical
and algorithmic aspects of least squares computation are documented
in the excellent reference work by Lawson and Hanson, Ref. [1]. Their
algorithms, available from the JPL subroutine library, Ref. [2], are
very reliasble and general. Experience has, however, shown that in
reasonably well posed problems one can streamline the least squares
algorithm codes and reduce both storage and computer times. In this
report, we document a collection of subroutines most of which we have
written that can be used to solve a variety of parameter estimation

problems.

The algorithms for the most part involve triangular and/or
symmetric matrices and to reduce storage requirements these are stored

in vector form, e.g., an upper triangular matrix U is written as

—Ull Uy Uyg Vg i _U(l) U(2) u(&) w7 |
Uy, Uyy Uy, e | o U(3) UG U,

Usg Ug, u(e) U9

U, U(10)

Thus, the element from row i and column j of U, 1 < j, is stored in
vector component j(j-1)/2 + i. We hasten to point out that the engineer,
with few exceptions, need have no direct contact with the wvector sub-
_scripting. By this we mean that the vector subscript related operations
are internal to the subroutines, vector arrays transmitted from one

1

subroutine to another are compatible, and vector arrays displayed

using the print subroutine TWOMAT appear in a triangular matrix format.

Aside: The most notable exception is that matrix problems are generally
formulated using doubly subscripted arrays. Transforming a double
subscripted symmetric or upper triangular matrix A(-»-) to a wvector

stored form, U{-) is quite simply accomplished in FORTRAN via
IJ=0
DO 1L J = 1,N

i DO1LI=1,7
IJ = I3+l

1 ©(LJ) = A(1,T)

Similarly, transforming an initial vector D(*) of diagonal positions of

a vector stored form, U(-), is accomplished using

JJ =0 JJ = N%(N+1)/2
DO 1J = 1,N or DO 1 J = N,1,=1
JJ = 33+ T(IT) = D(I)

1 U@I = D) 1 3 = J3-J

The conversion on the right has the modest advantage that D and U can
share common storage (i.e., U can overwrite D). These conversioﬂs

are too brief to be efficiently used as subroutines. It seems that when
such conversions are needed one can readily include them as %n—line code.

End of Aside

This package of subroutines 1s designed, in the main, for the analysis
of parameter estimation problems. ©One can, however, use it to solve problems
that involve process noise and to map {time propagate} covariance or infor-
mation matrix factors. 1In the case of mapping the storage savings associated

with the use of vector stored triangular matrices is, to some extent, lost.

Mathematical background regarding Householder orthogonal trans—
formations for least squares analyses and U-D matrix factorization
for covariance matrix analyses are discussed in references [1] and [3].
Qur plan is te illustrate, in Section II, with examples, how one can
use the basic algorithms and matrix manipulation to solve a variety
of important problems. The subroutines which comprise our estimation
subroutine package are described in Section III, and detailed input/

output descriptions are presented in Section IV.

Section V contains FORTRAN listings of‘the subroutines. There are
several reasons for including such listings. Making these listings
available to the engineer analyst allows him to assess algorithm
complexity for himself; and to appreciate the simplicity of the
routines he tends otherwise to use as a black box. The routines use
only FORTRAN IV znd are therefore reasonably portable (except possibly
for routines which involve alphanumeric inputs). When estimation ‘problems
arise to which our package does not directly apply (or which can be made
to apply by an awkward concatenation of the routines) one may be zble to
modify the codes and widen still further the class of problems that can be

efficiently solved.

iT.

some of the problems that cam be solved using this ESP.

APPLICATIONS AND EXAMPLES

Our purpose in this section is to illustrate, with a number of examples,

The eXamples, in

addition, serve to catalogue certain estimation techniques that are quite

useful.

1)
2)
3)
4)
5)
6)
7)
8)
£}
10)

11)
12)
13)
14)

15)
16)
17)

18)
19)

20)
21)

22)

23)

To begin, let us catalogue the subroutines that comprise the ESP:

AZ2A1
COMBO
COVRHO »
COV2RI
COV2UD
c2c¢
INFZR
HHPOST
PERMUT
PHIU

RA
RANK1
RCOLRD
RINCON

RIZCOV
R2A
RZRA

RUDR
SFU

TDHHT
THH

TTHH

TWOMAT

(A to A one)

{combo)

{cov rho)

{cov to RI)

{cov to U-D)

{(C to C)
(inf to R)
(HH POST)
(permut)
(PHI*U)

(R*®A)
{rank 1)
(R colored)

{(rin—con)

(R1 to cov)
(R to A)
(R to RA)

(rudder)
(S FW

(TDHHT
(T HH

(T T H H)

(two mat)

Matrix A to matrix Al

Combine R and A namelists

Covariance to correlation matrix, RHO

Covariance to R inverse

Covariance to U-D covariance factors

Permute the rows and columns of matrix C
Information matrix to (triangular) R factor
Householder triangularization by post multiplication
Permute the columns of matrix A

Multiplies a rectangular PHI matrix by the wvector
stored U matrix that has implicitly defined unit
diagonal entries.

R{upper triangular, vector stored)®A (rectangular)
Updated U-D factors of a rank-l modified matrix
(SRIF)R colored noise time-update

R inverse along with a condition number bounding
estimate

R inverse to covariance
Triangular R to (rectangular stored) matrix A

Transfer to triangular block of (vector stored) R
to a triangular (vector stored) RA

(SRIF)R to U-D covariance factors, or vice—~versa

Sparse F matrix % wvector stored U matrix with
implicitly defined unit diagonal entries

Two dimensional Householder matrix triangularization

Triangular vector stored Householder data processing
algorithm

Orthogenal triangularization of two triangular
matrices

Two dimensional labeled display of a vector stored
triangular matrix

24)

25)
26)
27)
28)
29)
30)

31)

TZERO

TMCOL
UDMEAS
uDn2cov
Un2sIG
UTINV
TUTIROW

WGS

(T zero)

{(U~D colored)
(U-D measurement)
(0-D to cov)

(U-D to sig)

(U T inverse)

(W G-8)

Zero a horizontal segment of a vector
stored triangular matrix

U-D covariance factor colored noise update
U-D covariance factor measurement update
U~D factors to covariance

U~D factors to sigmas

Upper triangular matrix inverse

Upper triangular inverse, inverting only
the upper rows

U-D covariance factorization using a weighted
Gram-Schmidt reduction

These routines are described in succeedingly more detail in sections III,

IV, and V.

The examples to follow are chosen to demonstrate how these

various subroutines can be used to solve orbit determination and other

parameter estimation problems. It is important to keep in mind that these

examples are not by any means all inclusiwve, and that this package of

subroutines has a wide scope of applicability.

IT.1

Simple Least Squares

Given data in the form of an overdetermined system of linear

eguations one may want a) the least squares solution; b) the estimate

error covariance, assuming that the data has normalized errors; and

c)

the sum of squares of the residuals. The solution to this problem,

using the ESP can be symbolically depicted as

Remarks:

® [Aiz] T [Riz], e

The array [A:z] corresponds to the eguations Ax = z—v, veN{0,I);

A A

-~ ~AoA

the array [R:z] corresponds to the triangular data equation Rx = z-v,

veN({0,I)} and e = l!z—A;II

Reﬁark:

A A

® (R:=z]

o -1

~ Eal
Xx =R Z

UTINV o~1 °
St

[R T:x]

One may be concerned with the integrity of the computed inyerse

and the estimate, If one uses subroutine RINCON instead of UTINY then
in addition one obtains an estimate (lower and upper bounds) for the
condition number R, If this condition number estimate is large the
computed inverse and estimate are to he regarded with suspicion. By
large, we mean considerable with respect to the machine accuracy (viz.
on an 18 decimal digit machine numbers larger than 1015). Note that the
condition number estimate is obtained with negligible additional compu-

tation and storage.
-1. RI2COV
O{R] —-[C]

Remarks: C = Rfl RfT = estimate error covariance. Some computation can
be avoided in RI2COV if only some {or all) of the standard deviations

are wanted.

I1.2 Least Squares With A Priori

If a priori information is given, it can be included as additional
equations (in the A array) or used to initialize the R array in subroutine
THH (see the subroutine argument deseription given in section IV). One is
sometimes interested in seeing how the estimate and/or the formal
statistics change corresponding to the use of different a prioeri
conditions. 1In this case one should compute [ﬁ:g] as in case II.1, and
then include the a priori [Rb:zo] using either subroutine THH, or

subroutine TTHH when the a priori is diagonmal or triangular, e.g.,

[R:z] .
TTHH %
. ——+IR Z]
[R:z]
0 0

*
The new result overwrites the old. GE 1®

L P&
03«1%%:\% QU e

A~ A

It is often good practice to process the data and form [R:z] before

including the a priori effects. When this is done one can analyze

the effect of different a priori, [Rb:zo] without reprocessing the data.
If a priori is given in the form of an information matrix, A,

{(as for example would be the case if the problem is being initialized

with data processed using normal equation data accumulation*) then one

can obtain R0 from A using INFZR;

INF2R R
(¢}

A

If there were a normal equation estimate term, z==A;L, then z ==Rsz.
c ‘o

I1.3 Batch Sequential Data Processing

Prime reasons for batch sequential data processing are that many
problems are too large to fit in core, are too expensive in terms of core
cost, and for certain problems it is desirable to be able to incorporate
new data as it becomes available. Subroutines THH and UDMEAS are specially
designed for this kind of problem. Both of these subroutines overwrite
the a priori with the result which then acts as a priori for the next
batch of data. If the data is stored on a file or tape as Al, Zqs Az, Zosees
then the sequential process can be represented as follows:

SRIF Processing**

a) Indtialize [R:z] with a priori valués or zero

b) Read the next [A:z] from the file

T .~ T T
*i.e., solving Ax = b-v with normal equations, A Axo = A"b; A=ATA

is the information matrix.

%
The acronym SRIF represents Square Root Information Filter. The SRIF is

discussed at length in the book by Bierman, ref. [3].

' GE 18
7 ORIGINAL P&
oF POOR QUALITY

——[R:z}

c) [ﬁ:;} THH .~ ~.%
[A:Z]}

d) 1If there is more data go back to b)

e) Compute estimates and/or covariances using UTINV and RI2COV
(as in example 1I.1)

U-D** Processing

a”) Initialize [U~D:x] with a priori U-D covariance factors and the
initial estimate

b”) Read the next [A:z] scalar measurement from the file

¢’y [U-D:x]

} UDMBAS -0 D%

[Azz]
d”) If there is more data go back to b™)
e”) Compute standard deviations or covariances using UDZ2SIG ox
UD2Cov.
Note that subroutine THH is best (most efficiently) used with
data batches of substantial size (say 5 or more) and that UDMEAS processes
measurement vectors one component at a time. If the dimension of the
state is small the cost of using either method is generally negligible.
The UDMEAS subroutine is best used in problems where estimates are
wanted with great frequency or where one wishes to monitor‘the effects

of each update. In a given application one might choose to process

data in batches fora while and during critical periods it may be

*The new result overwrites the old.

fde

U-D processing is a numerically stable algorithmic formulation of the Kalman
filter measurement update algorlthm, cf reference [3]. The estimate error
covariance is used in its UDUT factored form, where U is unit upper triangular
and D is diagonal.

8

desirable to monitor the updating process on a point by point basis.

In cases such as this, one may use RUDR to comvert a SRIF array to U-D
form or vice-versa.

Remarks: Another case where an R to U-D conversion can be useful occurs
in large order problems (with say 100 or more parameters) where after
data has been SRLIF processed one wants to examine estimate and/or
covariance sensitivity to the a priori variances of only a few of the
variables. Here it may be more convenlent to update using the UDMEAS
subroutine.

1I.4 Reduced State Estimates and/or Covariances From a SRIF Array

Suppose, £or example, that data has been processed and that we have a
AA
triangular SRIF array [R:z] corresponding to the 14 parameter names, 2 8

ay, Xy ¥s Zs Voo vy, v, GM, CU41, 1041, CU43, LO43 (constant spacecraft
accelerations, position.and velocity, target body gravitational constant,
and spin axis and longitude station location errors).

Let us ask first what would the computed error covariance be of
a model containing only the first 10 variables, i.e., by 1gnoring the
effect of the station location errors. One would apply UTINV and RI2COV
just as in example IT.l, except here we would use N {the dimension of
thé filter) = 10, instead of N=14.

Next, suppose that we want the solution and associated covariance

of the model without the 3 acceleration errors. One ESP solution is to

use

[[f{:;] EZ:‘L{A]

NAME ORDER OF A
Xy ¥ 2y vx, Vys VZ’
GM, CU41, 1041, CU43, L043,

%
RHS , ar, a, ay,

Remark: One could also have used subroutine COMBO, with the desired

namelist as simply a2 ay. This would achieve the same A matrix

form.
o (a1 [x]
Remark: R here can replace the original R and z.
UTINV -1 RI2COV
® [R] [R Xest] [cov 'xest]
Remarks: Here, use only N=11, j.e., 11 variables and the RHS. x is

est

the 11 state estimate based on a model that does not contain acceleration
errors ar, ax, or ay.

Note how triangularizing the rearranged R matrix produces the
desired lower dimensional SRIF array; and this is the same result one
would obtain if the original data had been fit using the—ll state model.

As the last subcase of this example suppose that one is only
interested in the SRIF array corresponding to the position and velocity
yariables. The difference between this example and the one above is

that here we want to include the effects due to the other wvariables.

%
z is often given the label RHS (right hand side)

10

One might want this sub-array to combine with a position-velocity SRIF

array obtained from, say, optical data. One method to use would be,

“.‘ RZRA .
® [R:z] - [RA'ZA]
INPUT NAMES: OUTPUT NAMES:
ar, ax, ay, Xy, Vs 2. vx, v&, vz, GM X, Vs Zs vk, vy, vz, GM
CU41, 1041, CU43, LO43, RHS ’ CU41, L0O41, CU43, LO43, RHS

Remark: The lower triangle starting with x is copied into RA'

RZ2A

® {RA:ZA] [A :zA] (Reordering)

NAMES: GM, CU41, LO41, CU43, 1043,

' X, Vs 2 vx, vy, Vs RHS
T™HH ~ * . s s
® [A: zA] -——--[RA 'ZA] (Triangularizing)

A~ ~

R2ZRA
® [RA. zA]

[RX:ZX] (Shifting array)
NAMES: x, ¥, %, Vo vy, vz, RHS

Remark: The lower right triangle starting with x is copied into RX.
We note that one could have elected to use COMBO in place of the first
R2RA usage and R2A; this would have involved slightly more storage, but
a lesser number of inputs. The sequence of operations is in this case,

® [R:z] LOMBQ .. ,1

ORIGINAL NAMES DESIRED NAMES: x, ¥, Z, Vs vy, v, RHS

¢

BRemark: By using COMBO the columns of [R:zl], are ordered corresponding to
the names a2 ay, GM, CU41, LO41, CU43, and 1043, followed by-the

desired names list.

11

® [a:z]—fR:z]

Remark: The [R:z] array that is output from this procedure is

A A

equivalent but different from the [R:z] array that we began with.

~ o~

o [Riz] F2RA IR i]
X X
Remark: As before, the lower right triangle starting with x is copied
into Rk'

To delete the last k parameters from a SRIF array, it is not
necessary to use subroutines R2A and THH. The first N - k = N colums
of the array already correspond to a square root information matrix of
the reduced system. If estimates are involved one can simply move the

z column left using:

R @*(N + 1)/2 + 1) = RON*(N +1)/2 + i), 1 = 1,...,k.

Remark: We mention in passing that if one is only interested in estimates
and/or covariances corresponding to the last k parameters then one can use
R2RA to transform the lower right triangle of the SRIF array to an upper
left triangle after which UTINV and RIZCOV can be applied.

1I.5 Sensitivity, Perturbation, Computed Covariance and Consider
Covariance Matrix Computation

Suppose that one is given a SRIF array

N N 1
R .
Rk %y Zx }Ni (I1.5a)
G R 2 N
y ¥ y

12

in which the NY varigbles are to be considered. (One can, of course, using
subroutines R2A and THH reorder and retriangularize an arbitrarily arranged
SRIF array so that a given set of variables fall at the end.) For various

reasons one may choose to ignore the y variables in the equation

Rxx + nyy =z " V., vxeN(O,I) (IL.5b)
and take as the estimate X, = R;l 2 It then follows that
_ -1 -1
x=-x, =-R, Rky y-R v (I1.5¢)

and from this one obtains

a(x—x) -1
Sen = ———— = -R "R (II.5d)
N X Xy
(sensitivity of the estimate error to the unmodeled y parameters)
Pert = Senﬁ*Diag(ay(l),...,cy(Ny)) (LI.5e)

where Gy(l),...,Uy(Ny) are a privri y parameter uncertainties.

(The perturbations are a measure of how much the estimate error could be

expected to change due to the unmodeled y parameters,)

P =Rt 2Ty sen P sent (II.5£)
con X X v

L

Pc + (Pert)(Pert)T if PY is diagonalT

where Pc is the estimate error covariance of the reduced model.
An easy way to compute Pc’ Pert and Pcon is as follows: Use subroutine

R2RA to place the y variable a priori [P?(O): ?o]iﬁ‘into the lower right

s %
Pert = Sen Py

The a priori estimate Yo of consider parameters is generally zero.

13

corner of (II.5a), replacing Ry and zy, i.e.,

[R : z] I—R R z
R2RA x ¥ X%

15 A pE A
[Py(O) : yO] 0 y(0) v,

Now apply subwroutine UTIROW to this system (with a -1 set in the lower right

corner*)
[] |"_]
- ®&
R R z R Pert X
x =y X pid c
1
o pioy §, |- 1o OB
0 0 -1 0 0 -1

Note that the lower portion of the matrix is left unaltered, i.e., the purpose
of UTIROW is to invert a triangular matrix, given that the-lower rows have
already been inverted. From this array one can, using subroutine RI2COV,

get both P and P
c con

[R;l] RI2C0V [PC] computed covariance
[R,;l : Pert] _RI2COV_ [Pcon] consider covariance

Suppose now that one is dealing with a U~D factored Kalman filter for-

mulation. 1In this case estimate error sensitivities can be sequentially

%

To have estimates from the triangular inversion routines one sets a -1 in the
last column (below the right hand side).

%k

Strictly speaking this is not what we call the perturbation unless QY(O) is
diagonal.

14 ORIGINAL PAGE IS

OF POOR QUALITY

T T .
¢alculated as each scalar measurement (z = a_x + ayy + v) 1is processed.

T T
Sen, = Sen, - X,(a_ Sen, + a
i i-1 3(X i-1 Y)
where Senj_l ig the sensitivity prior to processing this (j-th) measurement,

and Kj is the-Kalman gain vector.
In this formulation one computes Pcon in a2 manmer analogous fo that des-
cribed in section II.7;

Let Ul = Uj . Dl = Dj (filter U-D factors)

[sl,..., Sy 1= Senj (estimate error sensitivities)
¥

then recursively compute

= = 2 RANK1

0D, o) 5] k=1,..., 1

-D
k¥l kel y

For the final U-D we have

con o con
— , D ;

Usta = Vg 41 i+1 " a4
y y

If Py(o) = UyDyUg s+ instead of Py(O) = Diag (ci,..., ci), then in the
y

U-D recursion one should replace the Senj columns by those of Sen,j*Uy and

G? should be replaced by the corresponding diagonal elements of Dy'

II.6 Combining Various Data Sets

In this example we collect several related problems involving data sets
with different parameter lists.

Suppose that the parameter namelist of the current data does not
correspond to that of the a priori SRIF array. If the new data involwves

a permutation or a subset of the SRIF namelist, then an application of

.;.

K = g/c where g and o are quantities computed in subroutine UDMEAS.

15

subroutine PERMUT will create the desired data rearrangement. If the data
involves parameters not present in the SRIF namelist then one could use
subroutine R2A to fiodify the SRIF array to include the new names and then
if necessary use PERMUT on the data, to rearrange it compatibly.

Suppose now that two data sets are to be combined and that each
contains parameters peculiar to it (and of course there are common para-
meters). For example let data set 1 contain names ABC and data set 2
contain names DEB, One could handle such a problem by noting that the list
ABCDE contains both name lists. Thus one could use subroutine PERMUT
on each data set comparing it to the master list, ABCDE, and then the
results could be combined using subroutine THH. An alternative automated
method for handling this problem i1s to use subroutine COMBO with data
set 1 (assuming it is in triangular form) and namelist 2. The result
would be data set 1 in double subscripted form and arranged to the name-
list ACDEB (names A and C are peculiar to data set 1 and are put first),
Having determined the namelist one could apply subroutine PERMUT to data
set 2 and give it a compatible namelist ordering.

The process of increasing the namelist size to accommodate new
variables can lead to problems with excessively long namelists, i.e.,
with high dimension. If it is known that a certain set of variables
will not occur in future data sets then these variables can be eliminated
and the problem dimension reduced. To eliminate a wvector y from a SRIF
array, first use subroutine R?A to put the y names first in the namelist;
then use subroutine THH to retriangularize and finally use subroutine R2RA

to put the y independent subarray in position for further use; viz.

16

y yX ¥y
[R] R2ZA [A] THH R2RA

The rows [RY:RYX:Zy] can be used to recover a y estimate (and its covariance)
when an estimate for x (and its covariance) are determined. (See example
I1.4).

Still another application related to the combining of data sets involves
the combining of SRIF triangular data arrays. One might encounter such prob-
lems when combining data from different space missions (that involve common
parameters) or one might choose to process data of each type* or tracking.
station separately and then combine the resulting SRIF arrays. Triangular
arrays can be combined using subroutine TTHH, assuming that subroutines

R2A, THH and RZRA have been used previously to formulate a common parameter

set for each of the sub problems.

II.7 Batch Sequential White Hoise

It is not uncommon to have a problem where each data set contains a
set of parameters that apply only to that set and not to any other, viz,

the data is of the form

Ax+ By, =2, —-v, i=1l,...,N
k| 373 h| A J e

where there is generally a priori information on the vector yj variables.
Rather than form a concatenated state vector composed of x, A AERERE Y
which might create a problem involving exhorbitant amounts of storage and
computation we solve the problem as follows. Apply subroutine THH to
{Blel:zl], with the corresponding R initialized with the v, @ priori, The

resulting SRIF array is of the form

S
o - st PAOE
viz. range, doppler, optical, etc. (ﬁ{ﬁ} IJAJA
17

Copy the top Nyl rows 1f one will later want an estimate or covariance of

the Yy parameters. Apply subroutine TZERO to zero the top Nyl rows and

using subroutine R2ZRA set in the ¥, @ priori*. This SRIF array is now

ready to be combined with the second set of data [B2zA2:2§] and the procedure
repeated.

A somewhat amaleogous situation is represented by the class of problems

that involve noisy model variations, i.e., the state at step j+l satisfies

X

. =x, + G, w,
j+i 3 3

where matrix Gj is defined sc that Wj is independent of Xj and szN(O,Qj).
Models of this type are used to reflect that the problem at hand is not
truly one of parameter estimation, and that some (or all) of the components
vary ina random {or at least unknown) manner that is statistically

bounded. To solve this problem in a SRIF formulation suppose that a priori

for xj and Wj are written in data equation form (cf ref. [3]),

R.x, =z, - v, s vjeN(O,I)

Q_.llzw. =0 - v.(w) : vgw)eN(O,I)
J] J J nw
where Q?’z is a Cholesky factor of Qj that 1s obtainable from COV2RI. Combining

these two equations with the one for xj+1 gives

*
In this example it is assumed that all of the ¥4y variables have the same
dimension. This assumption, though not essential, simplifies our description
of the procedure.

18

I R 0 v
n 3 J

k -3
-R.G.Q; R, X, . .
L %Y N 5+1 i i

1/\
where Q?Wj = Wj. This is the equation to be triangularized with subroutine

THH, i.e.,
Dim w Dimx 1
Dimw] 1 0] R RO Y
Dim x {| -R.G d% R, =z 0 R, zZ,
3737 i3 i+ i+

When the problem is arranged so that Qj is diagonal one can reduce storage
and computation. Incidentally, the form of this algorithm allows one to use

singular Qj matrices.

When the a prieri for xj and Q. are given in U-D factored form,

]

one can obtain the U-D factors for xj+l as follows:

Let Q. = U(q) D(q) (U(q))T (use COV2UD if necessary)

3
- (.
Set & =G U D [g15000s 8 1 p(@) . Diag(d;,...,d)
W W
Apply subroutine RANKln.W times, with ﬁo = ﬁj . 50 = Dj
- RANKL — -
. . . k=1,. ST
T.e. GO U + degegy = VgD V)
Then U, =7 . I, =3
jH n, i+ n
pu, 2OE5 o
(ﬁﬁ“gﬂ& R QU
oF P00

19

Certain filtering problems involve dynamic models of the form

x, =&, x, + G, w.

bt S I | 33
Given an estimate for xj, §j’ the predicted estimate for xj+1? denoted
~ .. % ’
x3+1 is simply

X, = & X,

e S B
The U-D factors of the estimate error corresponding to the estimate §j+l
can be obtained using the weighted Gram-Schmidt triangularization subroutine

- cl: Di (@, WGs = ~
[éj Uj : G]; Diag (Dj,D) -————+(Uj+1 Dj+1)

Subroutine PHIU can be used to construct Qj*Uj. Note that this matrix multi-
plication updates the estimate too, because it is placed as an addended column
to the U matrix.

When the w and asscciated x terms correspond te a colored noise model,
pj+l=1npj-+ wj, then it is easier and more efficient to uge the colored noise
update subroutine UDCOL. Note that here too the estimate is updated by the

subroutine calculation because the estimate is an addended columm of U.

II.8 Miscellaneous Uses of the Various ESP Subroutines

In certaln parameter analyzes we may want to reprocess a set of data
suppressing different subsets of variables. In this case the original data
should be left unaltered and subroutine A2Al uséd to copy A into Al’ which
then can be modified as dictated by the analysis.

Covariance analysis sometimes are initialized using a covariance
matrix from a different problem (or a different phase of the same problem).
In such cases it may be necessary to permute, delete or insert rows and
columns inte the covariance matrix; and that can be achieved using sub-
routine C2C.

If a priori for the problem at hand is given as a covariance matrix
then one can compute the corresponding SRIF or U-D initialization using

*
In statistical notation that is commonly used, one writes
x(3#113) = o, =(i|1)
20

subroutines COV2RI or COVZUD. Of course, if the covariance is diagonal
the appropriate R and U-D factors can be obtained more simply. To
convert a priori given in the form of an information matrix to a corres—
ponding SRIF matrix one applies subroutine INF2R. To display covariance
results corresponding to the SRIF or U-D filter one can use subroutines
UTINV, RI2COV and UD2COV. The vector stored covariance results can be
displayed in a triangular format using subroutine TWOMAT.

Parameter estimation does not, in the main, involve matrix multipli-
cation. Certain applications, such as coordinate transformations and time
propagation are important enough to warrant inclusicn in the ESP. For that
reason we have included RA (to post multiply a square root information
matrix) and PHIU to premultiply a U-covariance factor). Certainp time propa-
gation preoblems involve sparse transition matrices, and for this we have
included the subroutine SFU. Other special matrix products involving tri-
angular matrices were not included because we have had no need for other
products (to date), and they are gemerally not lengthy or complicated to
construct. We illustrate this point by showing how to compute z=Rx where

R is a triangular vector stored matrix and x is an N vector,

I7=0

D0 2 I=1,N

SUM=0. @SUM is Double Precision
TI=TT+1I @IT=(I,I)

TR=1T

B0 1 K=I,N

SUM=SUMIR(IK)*x(K} @IK=(I,K)

1 IK=IKHK

2 z{(I)=5TM @z can overwrite x if desired

21

Note that the II and IK incremental recursions are used to circumvent

the N(¥+1)/2 calculations of IK=K(K-1)/2+I.

22

III. SUBROUTINE DIRECTORY SUMMARY

1. A2A1 - (A to Al)

Reordgrs the columns of a rectangular matrix A, storing the
result in matrix Al. Colummns can be deleted and new columns added.
Zero columns are inserted which correspond to new column name entries.

Matrices A and Al cannot share common storage.

Example ITI,1

¢ B C B F 66 € H

1 5 9 5 0 0 9 0

. 6 10 | aza1 6 0 0 10 O
7 11 7 0 0 11 O

- § 12 § 0o 0 12 0O
A Al

The new namelist (BFGCH) contains ¥, G and B as new columns and deletes

the column corresponding to name o.

Example. ITT.2

Suppose one is given an observation data file with regression

coefficients corresponding to a state vector with components say,

Xy, Vs Z, Vs vy, vz and station location errors. Suppose further,
. R A A ¥

that the vector being estimated has components a., 2., 8y s

Xy Y5 Z5 Vo, vy, Vs GM and station location errors. A2Al can be used

to reorder the matrix of regression coefficients to correspond to the

state being estimated. Zero coefficients are set in place for the

accelerations and GM which are not present in the original file.

in track and cross track accelerations

23

2. COMBO - (combine R and A namelists)

The upper triangular vector stored matrix R has its columns
permuted and is copied into matriX A, The names associated with R
are to be combined with a second namelist.

The namelist for A is arranged so that R names not contained in
the second list appear f£irst (left most). These are then followed by
the second list. WNames in the second list that do not appear in the
R nmamelist have columns of zeros associated with them.

Example III.3

NAMZ list
e

1 4 N

o B c D C B E a F D
1 2 4 77 "4 2 0 L o0 7]
0 3 5 8 5 3 0 0 0 8
—

0 0 6 9 6 0 0 0 0 9
0 0 0 10 0 0 0 0 0 10
R~-Vector stored A-Double subscripted

A principal application of this subroutine is to the problem of
combining equation sets containing different variables, and automating
the process of combining name lists.

3. COVRHO - (covariance to correlation matrix)

A vector stored correlation matrix, RHO, is computed from an
input positive semi-definite vector stored matrix, P. Correlations
corresponding to zero diagonal covariance elements are zero, To econo-
mize on storage the output RHO matrix can overwrite the input P matrix.
The principal function of correlation matrices is to expose strong
pairwise component correlations (|RHO(IJ)|.LE.1, and near unity in magni-

tude). It is sometimes erromneously assumed that numerical ill-conditioning

24

of the covariance matrix can be determined by inspecting the correlation
matrix entries. While it is true that RHO is better conditioned than is
the covariance matrix, it is not true that inspection of RHO is sufficient
to detect numerical ill-conditioning. For example, it is mot at all

obvious that the following correlation matrix has a negative eigenvalue.

1. 0.50001 0.50001

RHO 1. -0.50001

1.

— -

4, COV2RI - (Covariance to R inverse)

An input positive semi-definite vector stored matrix P is replaced
by its upper triangular vector stored Cholesky factor 5, P==SST. The name
RI is used because when the input covariance is positive definite, S==R—l.
5. COV2UD ~ (Covariance to U-D factors)

An dnput positive semi-definite vector stored matrix P is replaced
by its upper triangular vector stored U-D factors. P==UDUT.7447
6. C2C - (C to C)

Reorders the rows and columms of a square (double subscripted)

matrix € and stores the result back in €. Rows and columns of zeros

are added when new column entries are added.

Example III.4

A B T r P B Q
1 7 r{s o 6 o0
B|2 5 8|cwec P|{0o 0O 0 O
3 9 B|8 0 5 0
Qjo 0 0 o

¥Names P and Q have been added and name A deleted. An important appli-

cation of this subroutine is to the rearranging of covariance matrices.

25

7. INF2R - (Information matrix to R)

Replaces a vector stored positive semi-definite information matrix
A by its lower tF¥iangular Cholesky factor R:; A= RTR. The upper tri-
angular matrix R is in the form utilized by the SRIF algorithms. The
algorithm is designed to handle singular matrices because it is a
common practice to omit a priori information on parameters that are

either poorly known or which will be well determined by the data.

8. HHPOST - (Householder orthogonal triangularization by post
multiplication)

The input, double subscripted, rectangular matrix W(M,N) (M.LE.N)
is triangularized, and overwritten, by post-multiplying it by an implicitly

defined orthogonal transformation, i.e.
[W IT—[0]

This subroutine is used, in the main, to retriangularize a mapped covari-

ance square root and to include in the effects of process noise (i.e.

W= [0 %P /2 : BQ /2]) and to compute consider covariance matrix square
. 1/2 1/2 ‘
= . &
roots (i.e. W = [Pco puted’ Sen% P 1.

9. PERMUT

Reorders the columns of matrix A, storing the result back in A.
This routine differs from A2Al principally in that here the result over-
writes A. PERMUT is especially useful in applications where storage is
at a prenium or where the problem is of a recursive nature.

10. PHIU — (PHI (rectangular) * U(unit upper triangular))

{ PHI] = [PHIU]

The matrices PHI and PHIU are double subscripted, and U is vector sub-

scripted with implicitly defined unit diagonal elements. It is not

26

necessary to include trailing columns of zeros in the PHI matrix; they
are accounted for impliecitly. To economize on storage the output PHIU
matrix. can overwrite the input PHI matrix. For problems involving sparse
PHY matrices it is more efficient to use the sparse matrix multiplication
subroutine, SFU. When the last column of U contains the estimate, x, the

last column of W represents the mapped elements of PHEI*x. The principal

T

use of this subroutine is the mapping of covariance U factors, where P=UDU ,

and estimates,

11. RA -~ (R(triangular) * A(rectangular))

———] P

Square root information matrix mapping involves matrix multipli-
cation of the form indicated in the figure, i.e. with the bottom portion
of A only dmplicitly defined as a partial identity matrix. Features of
this subroutine are that the resulting RA matrix can overwrite the input
A, and one can compute RA based on a trapezoidal input R matrix (i.e. only
compute part of R*A).

12, RANK1 - (U-D covariance factor rank 1 modification)

Computes updated U-D factors corresponding to a rank 1 matrix
modification; i.e., given U-D, a scalar e, and vector v, U and D are
computed so that U D ﬁT =UD UT +cv vT. Both ¢ and v are destroyed during
the computation, and the resultant (vector stored) U-D array replaces
the original one. Uses for this routine include (a) adding process
noise effects to a U-D factored Kalman filter; (b) computing consider
covariances (cf Section II1.5); (c¢) computing "actual" covariance
factors resulting from the use of suboptimal Kalman filter gains; and

{(d) adding measurements to a U~D factored information matrix.

27

13. RCOLRD - (colored noise inclusion into the SRIF)

Includes colored noise time updating inte the square root infor-
mation matrix. Tt is assumed that the deterministic portion of the time
update has been completed, and that only the colored noise effects are
being incorporated by this subroutine. The algorithm used is Bierman's
colored noise one-component-at—a—-time update, cf ref. [3], and updates the

SRIF array corresponding to the model

‘xl“ I 0 0] “xl' 0]
P = 0 M 0 P + vy
p.4

Lz_j"'l _0 0 I_ _xz_j _0_

M is diagonal and w, € N(0,Q). Auxiliary quantities, useful for fixed Interval
J

smoothing, are also generated.

14, RINCON - (R inverse with condition number bound, CNB)

Computes the inverse of an upper triangular vector stored matrix R
using back substitution. To economize on storage the output result can
overwrite the input matrix. A Frobenius bound (CNB) for the condition
number of R is computed too. This bound acts as both an upper and a
lower bound, because CNB/N < condition number < CNB. When this bound is
within several orders of magnitude of the machine accuracy the computed
inverse is not to be trusted, (viz if CNBz:lOl5 on an 18 decimal digit
machine R is ill-conditioned).

15. RI2COV — {RI to covariance)

This subroutine computes sigmas (standard deviations) and/or the
covariance of a vector stored upper triangular square root covariance
matrix, RINV (SRIF inverse). The result, stored in COVOUT (covariance
output) is also vector stored. To economize on storage, COVOUT can over-—

write RINV,

7

16. R2A - (R to A)

The columns of a vector stored upper triangular matrix R are per—
muted and variables are added and/or deleted. The result is stored in
the double subscripted matrix A. In other respects the subroutine is

like AZA1.

Example IIX¥.5

o B € D E E F C B
2 4 8 14 227 22 0 8 4
0 & 10 16 24 26 0 10 6
0 0 12 18 26 | R2A 26 0 12 O
—.
0 o 20 28 28 0 0
0 0 0 30 30 0 0
R A

R is vector stored as R = (2,4,6,8,10,12,14,16,18,20,22,24,26,28,30)
with namelist (¢,B,C,D,E) associated with it. Names o and D are

not included in matrix A, and a column of zeros corresponding to name

F is added.

One triwvial, but perhaps useful, application is to convert a
vector stored matrix to a double subscripted form:f R2A is used most
often vhen one wants to rearrange the columns of a SRIT array so that
reduced order estimates, sensitivities, etc. can be obtained; or so that

data sets containing different parameters can be combined.

.1..

see also the aside in the introduction

29

17. R2RA - (Triangular block of R to triangular block of RA)

A triangular portion of the vector stored upper triangular matrix R
is put into a triangular portion of the vector stored matrix RA. The
names corresponding to the relocated block are also moved. R can coin-

cide with RA.

Examples III.6

Q Z Q Z
i
i
|

| - II"|

or

Note that an upper left triangular submatrix can slide to any lower
position along the diagonal, but that a submatrix moving up must go

to the upper leftmost corner. Upper shifting is used when one is

interested in that subsystem; and the lower shifting is used, for

example, when inserting a priori information for comsider analyses.

O0R
30 oF ¥

18. RUDR - (SRIF R converted to U-D form or vice versa)

A vector stored SRIF array is replaced by a vector stored U-D
form or conversely. A point to be noted is that when data is involved
the right side of the SRIF data equation transforms to the estimate in
the U-D array.

19. SFU - (Sparse F * U(Unit upper triangular))

[Sparse F]

]
—

FU]

A sparse F matrix, with only its nonzero elements recorded, multiplies
U which is vector stored with implicit unit diagonal entries. When the
input F is sparse this routine is very efficient in terms of storage and
computation. When the last column of U contains the estimate, x, the last
column of FU représents elements of the mapped estimate F * x.
20. TDHHT - (Two dimensional Householder Triangularization)

Tmplicitly defined Householder orthogonal transformations are used
to triangularize an input two dimensional rectangular array, S(M,N).

Computation can be reduced if S starts partially triangular;

S=10

~———
JSTART

Further, the algorithm implementation is such that (a) maximum trian-

gularization is achievable

when M.LT.N 5+10

31

AN

when M.GT.N 5=
i 0

and finally when an intermediate form is desired

s> 0
'\-Y-’
JSTOP

This subroutine can be used to compress overdetermined linear systems of
equations to triangular form (for use in least squares analyses). The
chief application, that we have in mind, of this subroutine, is to the
matrix triangularization of a "mapped" square root informatiqn matrix.
This subroutine overlaps to a large extent the subroutine THH which
utilizes vector stored, single subscripted, matrices. This latter rou-
tine when applicable is more efficient. The triangularization is adapted
from ref. [1].

21. THH - (Triangular Householder data packing)

An upper triangular vector stored matrix R is combined with a
rectangular doubly subscripted matrix A by means of Householder orthogonal
transformations. The result overwrites R, and A is destroyed in the process.
This subroutine is a key component of the square root information sequential

filter, cf ref, [3].

The elements are not explicitly set to zero.
32

22, TTHH - (Two triangular arrays are combined using Householder
orthogonal transformations)

This subroutine combines two singie subscripted upper triangular

SRIF arrays, R and RA using Householder orthogonal transformations. The

result cverwrites R.

K | R
T TTHH :
——————
\\EA ot

— -— e

23. THOMAT - (Two dimensional print of a triangular matrix)

Prints a vector stored upper triangular matrix, using a matrix

format.

Example TIT.7

R(10) = (2,4,6,8,10,12,14,16,18,20) with associated namelist
(A,B,C,D) is printed as

A B C D

A 2 4 8 14
B i0 16
C 12 18
D 20

(The numbers are printed as 7 columns of 8 significant

floating point digits or 12 columns of 5 significant floating
point digits.)

To appreciate the importance of this subroutine compare the vector

R(10) with the double subseript representation.

1.
The elements are not explicitly set to zero.

33

24. TZERO - (Zero a horizontal segment of a vector stored upper
triangular matrix)
Upper triangular vector stored matrix R has its rows between ISTART
and IFINAL set to zero.

Example TIT.8

To zerorows 2 and 3 of R(15) of example IIIL.5

R(15) = (2,4,6,8,10,12,14,16,18,20,22,24,26,28,30) is transformed to

R(15)

(2,4,0,8,0,0,14,0,0,20,22,0,0,28,30) i.e.,

2 4 8 14 22 2 4 8 14 22
0 6 10 16 24 0 0 0
0 0 12 18 26 TZERO 0 0 0
0 0 20 28 0 0 0 20 28
0 0 0 30 0 0 0 0 130
R-~vector stored R-vector stored
25. UDCOL — (U~D covariance factor colored noise update)

This subroutine updates the U-D covariance factors corresponding

to the model

- - - - - — -
X I 0 0 x; 0
P = 0 M 0 D + Wj
X 0 0 1 X 0

L 2_j+1 L 1 L2 i L

where M is diagonal and WjEIN(O,Q). The special structure of the transi-

tion and process noise covariance matrices is exploited, cf Bierman, [3].

34

26. UDMEAS ~ (U-D Measurement Update)

Given the U-D factors of the a priori estimate error covariance
and the measurement, z = AX + V this routine computes the updated estimate
and U-D covariance factors, the predicted residual, the predicted residual
variance, and the normalized Kalman gain. This is Bierman's U-D measure-

ment update algorithm, <f [3].

27. TUD2COV - (U-D factors to covariance)
The input vector stored U-D matrix (diagonal D elements are stored
as the diagonal entries of U) is replaced by the covariance P, also vector

T . ,
stored, P = UDU"., P can overwyrite U to economize on storage.

28, 1UD28IG - (U-D factors to sigmas)

Standard deviations corresponding to the diagonal elements of the
covariance are computed from the U-D factors. This subroutine, a restricted
version of UD2COV can print out the resulting sigmas and a title. The

input U-D matrix is unaltered.

29. UTINV - (Upper triangular matrix inversion)

An upper triangular vector stored matrix RIN (R in) is inverted
and the result, vector stored, is put in ROUT (R out). ROUT can overwrite
RIN to economize on storage. If a right hand side is included and the
bottommost tip of RIN has a -1 set in then ROUT will have the solution in

the place of the right hand side.

35

30. UTIROW - (Upper triangular inversion, inverting only the upper rows)

INPUT OUTPUT
- - -1
R R Rt g R
X Xy X x xy ¥
——————————— UTIROW -
-1 -1
n 0 R 0 R
y Yy ¥y

An input vector stored R matrix with its lower left triangle assumed to
have been already inverted is used to construct the upper rows of the
matrix inverse of the result, The result, vector stored, can overwrite
the input to economize on storage.

If the columns comprising ny represent consider terms then taking
R;l as the ddentity gives the sensitivity on the upper right portion of
the result. If R;l = Diag(oy,...,dn } then the upper right portion of

¥
the result represents the perturbation. Note that if z (the right hand

side of the data equation) is included in ny then taking the corres-
ponding R;l diagonal as -1 results in the filter estimate appearing

as the corresponding column of the output array. When ny is zero this
subroutine is algebraically equivalent to UTINV. The subroutines differ
when a zero diagonal is encountered. UTINV gives the correct inverse
for the columns to the left of the zero element, whereas UTIROW gives

the correct inverse for the rows below the zero element.

36

ORIGINAL, PAGE IS
OF POOR QUALITY

31. WES - (Weighted Gram-Schmidt U-D matrix triangularization)
An input rectangular (possibly square) matrix W and a diagomal

weight matrix, Dw’ are transformed to (U-D) form; i.e,,

SD W = uput
W

where U is unit upper triangular and D is diagonal. The weights Dw are
assumed nonnegative, and this characteristic is dinherited by the

tresulting D.

37

iv.

SUBROUTINE DIRECTORY USER DESCRIPTION

1.

A2A1 (A to A1)

Purpose

To rearrange the columns of a namelist indeked matrix to

conform to a desired namelist.

[CALL A2A1(A,TA,IR,LA,NAMA,AL,TAL,LAT,NAMAT) |

Argument Definitions

A(IR,LA) Input rectangular matrix

IA Row dimension of A, TA.GE.IR

IR Number of rows of A that are toc be
arranged

LA Number of columns in A; this also

represents the number of parameter
names associated with A

NAMA (LA) Parameter names associated with A
AL(IR,LALD) Qutput rectangular matrix

IA1 Row dimension of Al, TAl.GE.IR

LAl ¥Wumber of columns in Al; this also

represents the number of parameter
names associated with Al

NAMAL(LAL) Input list of parameter names to be
associated with the output matrix Al

Remarks and Restrictions

Al cannot overwrite A, This subroutine can be used to add
on columns corresponding to new names and/or to delete variables

from an array.

Functional Description

The columns of A are copied into Al in an order corresponding
to the NAMA] parameter namelist. Columns of zeros are inserted
.
in those Al columns which do not correspond to names in the input

parameter namelist NAMA.

38

http:IAl.GE.IR
http:IA.GE.IR

GE IS
GINAL A
%% POOR QUALITY

2. COMBO (Combine parameter namelists)
Purpose
To rearrange a vector stored triangular matrix and store
the result in matrix A. The difference between this subroutine
and R2A is that there the namelist for A is input; here it is

determined by combining the list for R with a list of desired names.

CALL COMBO (R,L1,NAM1,L2,NAM2,A,TA,LA,NAMA)

Argument Definitions

R(L1*(Li+1)/2) Input veector stored upper triangular matrix
L1 No. of parameters in R {and in NAM1)
NAM1(L1) Names associated with R

L2 No. of parameters in NAM2

NAM2 (L2) Parameter names that are to be combined

with R (NAM1 list); these names may or
may not be in NAMIL

A(L1,LA) Output array containing the rearranged
R matrix L1.LE.IA

TA Row dimension of A

LA No. of parameter names in NAMA, and the
column dimension of A. LA=T11+L12 -
No. names common to NAML and NAMZ; TA
is computed and output

NAMA (LA) Parameter names associated with the out-
put A matrix ; consists of names in NAML
which are not in NAM2, followed by NAM2

Remarks and Restrictions

The column dimension of A is a result of this subroutine.
To avoid having A overwrite neighboring arrays one can bound the

column dimension of A by LI +1Z.

39

http:Ll.LE.IA

Functional Description

First the NAMI and NAM? lists are compared and the names
appearing in NAML only have their corresponding R columm entriés
stored in A (e.g. if NAMI(2) and NAMIL(6) are the only names not
appearing in the NAMZ list then columms 2 and 6 of R are copied
into colums 1 and 2 of A)., The remaining columns of A are
labeled with NAM2. The A namelist is recorded in NAMA. The
NAML list is compared with NAM? and matching names have their R
column entries copied into the appropriate columns of A. NAM2

entries not appearing in NAMI1 have columms of zero placed in A,

40

w18
pL PAG
oMo QoA

COVRHO (Covariance to correlation matrix, RHO)
Purpose
To compute the correlation matrix RHO from an input covariance

matrix COV. Both matrices are upper triangular, vector stored and
the output can overwrite the input.

| CALL COVRHO(COV,N,RHO,V)

Argmment Definitions

COV(N*(N+1)/2) Input vector stored positive semi~definite
covariance matrix
N Model dimension, N.GE.1
RHO (M= (N+1)/2) Output vector stored correlation matrix
V() Work wvector
Remarks

No test for non-negativity of the input matrix is made.
Correlations corresponding to negative or zerc diagonal entries
are set to zere, as is the diagonal ocutput entry.

Functional Description

V(I). = 1//cOoV(I,I) if COV(I,I),GT.0 and O. otherwise
RHO(I,J) = COV(I,T)*V(I)*V(JI)

The subroutine employs, however, vector stored COV and RHO matrices.

41

4,

COV2RI (Covariance to Cholesky Square Root, RI)
Purpose

To construct the upper triangular Cholesky factor of a positive
semi-definite matrix. Both the input covariance and the output
Cholesky factor (square rocot) are vector stored. The output
overwrites the input. Covariance (input) = (CF)*(CF)*=*T
(output CF = Rinverse)}. If the input covariance is singular, the

output factor has zero columns,

CALL COV2RI(CF,N)

Argument Definitions

CF{N* (N+1)/2) Contains the input vector stored
covariance matrix (assumed positive
definite) and on output it contains
the upper triangular Cholesky factor

N Dimension of the matrices invelved, N.GE.2

Remarks and Restrictions

No check is made that the input matrix is positive semi-definite,
Singular factors (with zero columns) are obtained if the input is
(a) in fact singular, (b) ill-conditioned, or (c) in fact indefinite;
and the latter two situations are cause for alarm. Case (c). and
possibly (b) can be identified by using RI2COV to reconstruct the

input matrix.

Funetional Description

An upper triangular Cholesky reduction of the input matrix is
implemented using a geometric algorithm described in Ref. [3].

CF(input) = CF(output)*CF(output)T

At each step of the reduction diagonal testing is used and negative

terms are set to zero.

42

GE 18
RIGINAL PA
O POOR QUALITY

COV2UD {(Covariance to UD factors)
Purpose

To obtain the U~D factors of a positive semi-definite matrix.
The input wvector stored matrix is overwritten by the output U-D

factors which are also vector stored.

[CALL COV2UD(U,N)]

Argument Definitions

U(N*(N+1) /2) Contains the input vector stored covari-
ance matrix; on output it contains the
vector stored U-D covariance factors.

N Matrix dimension, N,GE,2

Remarks and Restrictions

No checks are made in this routine to test that the input U matrix
is positive semi-definite. 8ingular results (with zero columms) are
obtained if the input is (3) in faet singular, (b) ill-conditioned,
or (c) in fact indefinite:; and the latter two situations are cause for
alarm. Case (c) and possibly case (b) can be identified by using UD2-
COV to reconstruct the input matrix. Note that although indefinite
matrices have U~D factorizations, the algorithm1hggg applies only to
matrices with non—negative eigenvalues.

Functional Description

An upper triangular U-D Cholesky factorization of the input matrix
is implemented using a geometric algorithm described in Ref. [3].
U(input)==U*D*UT . U-D overwrites the input U

at each step of the reduction diagonal testing is used to zero negative

terms.

43

6.

€2¢ (€ to C)

Purpose
To rearrange the rows and columns of G, from NAML order to NAM2

order. Zero rows and columns are associated with output defined names

that are not contained in WAMI.

CALL €2C(C,IC,L1,NAML,L2,NAM2)

Argument Definitions

c(L1,L1) Input matrix

IC Row dimension of C
IC.GE.L = MAX(L1,L2)

L1 No. of parameter names associated with
the input C

NaMl (L) Parameter names associated with C on input.
(Only the first Ll entries apply to the
input C)

L2 No. of parameter names associated with the
output C

NAM2 (1.2) Parameter names associated with the output C

Remarks and Restrictions

The NWAM2 list need not contain all the original NAM] names and
Ll can be .GE. or .LE. LZ. The NAMl list is used for scratch and
appears permuted on output. If L2.GT.L1 the user must be sure that
NAML has LZ entries available for scratch purposes.

Functional Description

The rows and columns of C and NAMl are permuted pairwise to get
the names common to NAML and NAMZ to coalesce. Then the remaining rows

and columns of C(1.2,1.2) are set to zero.

La

http:L2.GT.Ll

ORIGINAL PAGE IS
OF POOR QUALITY

7. HHPOST (Householder Post Multiplication Triangularization)
Purxpose
To employ Householder orthogonal transformations to triangularize
an input rectangular W matrix by post multiplication, i.e.
T

This zlgorithm is employed in various covariance square root updates.

CALL HHPOST(S,W,MROW,NROW,NCOL,V)

Argument Definitions

S (NROW* {(NROW+1)/2) Qutput upper triangular vector stored
square root matrix

W(NROW,NCOL) Input rectangular sgquare root covariance
matrix (W is destroyed by computations)

MROW Maximum row dimension of W

NROW Number of rows of W to be triangularized
and the dimension of 5§ (NROW.GE.2)

NCOL Number of column of W (NCOL.GE.NROW)
V{NCOL) Work vector

Functional Description

Elementary Householder transformations are applied to the rows of W
in much the same way as they are applied to obtain subroutine THH. The
orthogonolization process is discussed at length in the books by Lawson

and Hanson [1] and Bierman [3].

45

INFZR (Information matrix to R)
Purpose

To compute a2 lower triangular Cholesky factorization of an
input positive semi-definite matrix. The result transposed, is

vector stored; this is the form of an upper triamgular SRIF matrix.

CALL INF2R(R,N)

Argument Definitions

R{N*(¥+1)/2) Input vector stored positive semi-
definite (information) matrix; on output
it represents the transposed lower

triangular Cholesky factor (i.e. the SRIF
R matrix)

N Matrix dimension, N.GE.2

Remarks and Restrictions

No checks are made on the input matrix to guard against negative
eigenvalues of the input, or to detect ill-conditioning. Singular
output matrices have one or more rows of zeros.

Functicnal Description

A Cholesky type lower triangular factorization of the input matrix
is implemented using the geometric formulation described in Ref. [3].
R{input) = [R(output)]T* [R(output)]
At each step of the factorization diagonal testing is used to zero columns
corresponding to negative entries. The result is véctor stored in the

form of a square root information matrix as it would be used for SRIF

analyses.

46

9.

ORIGINAL PAGE 1S

OF POOR QUALITY
PERMUT (Permute A)

Purpose

To rearrange the columns of a namelist indexed matrix to conform

to a desired namelist. The resulting matrix is to overwrite the input.

CALL PERMUT(A,IA,IR,L1,NAM1,L2,NAM2)

Argument Definitions

A(IR,1L) Input rectangular matrix, L=max(Ll,L2)

TA Row dimension of A, TA.GE.IR

IR Number of rows of A that are to be
rearranged

L1 Number of parameter names assoclated with
the input A matrix

NAMI (L) Parameter names associated with A on input
(only the first L1 entries apply to the
input A)

L2 Number of parameter names associated with

the output A matrix

NAM2 Parameter names associated with the output A

Remarks and Restrictions

This subroutine is similar to A2A)l; but because the output matrix
in this case overwrites the input there are several differences. The
NAM1 vector is used for scratch, and on ocutput it contains a permuta-
tion of the input NAMI list. The user must allocate L=max(Ll,L2)
elements of storage to NAMl. The extra entries, when L2 >Ll, are
uged for scratch.

Functional Description

The columns of A are rearranged, a pair at a time, to match the
NAM2 parameter namelist. The NAMI entries are permuted along with the
columns, and this is why dim (NAM1) must be larger than L1 (when L2>L1).
Columns of zerves are inserted in A which correspond to output names

that do not appear in NAMI.

&7

http:IA.GE.IR

10.

PHIU (PHI-rectangular*U-unit upper triangular)

Purpose

To multiply a rectangular two dimensional matrix PHI by a unit

upper triangular vector stored matrix U, and store the result in

PHIU. The PHTIU matrix can overwrite PHI to economize on storage.

[PHI]<:::]= {PHIU]

CALL PHIU(PHI,MAXPHT,IRPHT,JCPHI,U,N,PHIU,MPHIU)

Argument Definitioms

PHI (IRPHI, JCPHT)
MAXPHT

IRPHI
JCPHT

U (2 (L) /2)
N
PHIU(IRPHL,N)

MPHIU

Remarks and Restrictions

Input rectangular matrix IRPHI.LE MAXPHI
Row dimension of PHI

number of rows of PHI

number of columns of PHI

unit upper triangular vector stored matrix
U-matrix dimenstion, JCPHI.LE.N

output result PHI*U,PHIU can overwrite PHIL

row dimension of PHIU

If JCPHI.LT.N it is assumed that there are implicitly defined

trailing columns of zeros in PHI. The unit diagonal entries of U

are implicit, i.e. the diagonal U entries are not explicitly used.

Functional Description

PHIU = PHI*U

48

http:IRPHI.LE

ORIGINAL PAGE IS
OF POOR QUALITY

11. RA (R-upper triangular*A-rectangular)

Purpose
To post multiply a vector stored triangular matrix, R, by a

rectangular matrix A, and if desired to store the result in A.

CALL RA(R,N,A,MAXA,TA,JA,RA,MAXRA,TRA)

d

Argument Definitions

R(N*(N+1)/2) upper triangular, vector stored input

N order of R

A(TA,JA) Input rectangular right multiplier matrix

MAXA Row dimension of input A matrix

1A Number of rows of A that are input

JA Number of columns of A

RA(TRA,JA) Output resulting rectangular matrix
RA can overwrite A

MAXRA Row dimension of RA

IRA Number of rows in the output result
(TRA.LE .MAXRA)

Functional Description

The first IRA rows of the product R*A are computed using the
vector stored iaput matrix R, and the output can, if desired,
overwrite the input A matrix. When N.GT.IA (i.e. there are more
columns of R than rows of A) then it is assumed that the bottom

N-IA rows of A are implicitly defined as a partial identity matrix, i.e.

49

12. RANK]1 (Stable U-D rank one update)

Purpose
T
To compute the (updated) U-D factors of UDUT + CVV™.

CALL RANKL(UIN,UOUT,N,C,V)

Argument Definitions

UIN(N*(N+1)/2) Input vector stored positive semi-
definite U-D array (with the D entries
stored on the diagonal of U)

UQUT (N* (N+1)/2) Output vector stored positive (possibly)
semi~definite U-D result, UOUT=UIN is

allowed.
N Matrix dimension, N.GE.2
c Input scalar, which should be non-negative.

C is destroyed by the algorithm,.

V() Input vector for the rank one modification.
V is destroyed by the algorithm.

Remarks and Restrictions

If C negative is used the algorithm is numerically unstable,
and the result may be numerically unreliable. Singular U matrices
are allowed, and these can rgsult in singular output U Matrices.
The code switches from a 1-multiply to a 2-multiply mode at a key
place, based upon a 1/16 comparison of input to output D values.
Also, there is provision made to supply a machine accuracy epsilon
when single precision is specified.

Functional Description

This rank one modification is based on a result published by
Agee and Turner (1972), White Sands Missile Range Tech. Report
No. 38 and improved on using a numerical stabilization didea due

to Gentlemen (1973). The algorithm is derived in the chapter,

50

ORIGINAL PAGE IS
OF POOR QUALITY

"UDUT Covariance TFactorization For Kalman Filtering,' C. L. Thornton,
G. J. Bierman, Vol. XVI of Advances in Control of Dynamic Systems,

Academic Press, to appear 1979.

51

13.

RCOLRD (Colored noise time update of the SRIF R matrix)

Purpose

To include colored noise time updating into the square root

information matrix.

It is assumed that the deterministic portion

of rhe time update has been completed, and that only the colored

noise effects are being incorporated by this subroutine.

CALL RCOLRD(S,MAXS,IRS,JCS,NPSTRT,NP, M,RW,ZW,V,SGSTAR)

Argument Definitions

S{IRS,JCS)

MAXS

IRS

JCS8

NPSTRT

NP

EM(NF)

RW (NP)

Input rectangular portion of the square

root information matrix corresponding to

the nonconstant paramters. It is assumed
that estimates are included, i.e. the last
column represents the "right hand side",Z,
(but see JCS description). S also houses the
time updated array, and if there is smoothing
there are NP extra rows adjoined to S.

Row dimension of 8. If smoothing calculations
are to be included then MAXS.GE.IRSHNP.

The number of rows of S5, i.e. the number of
nonconstant parameters (including colored
noise variables). IRS.GE.2

The number of columns of S. If the vector
ZW is zero, then the right hand side of
transformed estimates need not be included.

Location of the first colored process noise
variable.

The number of colored noise variables
contiguous to and following the first.

Vector of exponential colored noise multipliers
(EM = exp {-DT/TAU))

Vector of positive reciprocal colored process
noise standard deviations, i.e.

..., = exp(eDTfT)* p. + w,, Bw = 1/0
Py = ERIDT/OF By + vy /%

52

ORIGINAL PAGE 18
OF POOR QUALITY

ZW{NP) Vector of normalized process noise a priori
estimates., ZW is generally zero.

V(IRS) Work vector.

SGSTAR (NP) Vector of smoothing coefficients. Needed
only if smoothing is to be done.

Remarks and Restrictions

There are three lines of code associated with smoothing, and
these are commented out of the nominal case. Therefore, if smoothing
is contemplated the comments must be removed. The vector SGSTAR is
involved only with smoothing. Last note: for smoothing, be sure
that § has NP extra rows to houge the smoothing coefficients.

The ZW vector is generally zero. If ZW = 0 one has the option
of doing covariance only analyses and the last column of S (the
right hand side of normalized estimates) can be omitted.

Because of the large number of arguments appearing in this
subroutine, and because almost all of them are constant (i.e. with
succeeding célls only 5, and possible EM, RW, ZW and SGSTAR change)
for a given problem, it is suggested that one a) Introduce COMMON,
b) use this as an internal subroutine, or c¢) write in-line cede.

Functional Description

The model is

=
o
o
o

Xy 1 0 |INPSTRT-1

o
[l
=
o
e]

+ Wj NP
2 0 2 0 |JN-(NPSTRT-1+N?P)
j+l k|

»
o
bt
»

where M is diagonal, with NP non~negative entries and Wj is a white
noise process with v, €EN(w, Q), Q = R;l R;T. The algorithm is based

on Bierman's one component—at—-a~time SRIF time update which economizes

53

on storage and computation (see Bierman~Factorization Methods for
Discrete Segquential Estimation, Academiec Press 1977).

When smoothing is contemplated, there is output a vector o*(NP)
and a matrix S*(MP,N+1): S* occupies the bottom NP rows of the
output 8 matrix. Smoothed estimates of the p terms can be obtained
from the ¢% and S* terms as follows:

Let X* be the previously computed estimates of the N filter
parameters, then for J = NP, NP-1,...1 recursively compute

X% (NSTRT + J-1):= (8*%(J, N+1) - 3 8% (J,K)X*(K))/o*(J)

K=1
Note that the symbol ":=" means is replaced by, so that the old
values of X*, on the right side, are over-written by the new
smoothed colored noise estimates. Smoothed covariances can be

obtained from the 8% and o* terms as well, but we do not go into

detail here; the reader is directed to chapter 10 of the Bierman

K
'

reference.

54

ORIGINAL PAGL .
OF POOR QUALITY

14. RENCON (R inverse with condition number bound)

Purpose

To compute the inverse of an upper triangular vector stored

triangular matrix, and an estimate of its condition number.

CALL RINCON(RIN,¥,ROUT,CNB)

Argument Definitions

RIN(N*(N+1)/2) Input vector stored upper triangular matrix
N Matrix dimension, N.GE,2
ROUT (N# (N+1) /2) Qutput vector stored matrix inverse

(RIN= ROUT is permitted)

CNB Condition number bound. If k is the
condition number of RIN, then
CNB/N.LE.k,LE CNB

Remarks and Restrictions

The condition number bound, CNB serves as an estimate of the actual
condition number. When it is large the problem is ill-conditioned.

Functional Description

The matrix inversion is carried out using a triangular back
substitution. If any diagonal element of the input R matrix is
zero the condition number computation is aborted. When the first
zero occurs at diagonal k the matrix inversion is carried out only
on the first k-1 columns. The condition number bound is éomputed

as follows:

NTOT
F.NORM R = Z ()2
=1
NTOT
F.NORM R T = Z rL(n?
=1

55

http:CNB/N.LE.K.LE

where NTOT = N#(N+1)/2 is the number of elements in the vector stored
triangular matrix. The condition number bound, CNB, is given by
CNB = (F.NORM R * ¥,.NORM R“l)l/2

F.NORM is the Frobenius norm, squared. The inequality
CNB/N =< condition number R < CNB

is a simple consequence of the Frobenius norm inequalities given in

Lawson-Hanson '"Solving Least Squares," page 234.

56

ORIGINAL PAGE IS
OF POOR QUALITY

15. RI2COV (RI Triangular to covariance)

Purpose

"To compute the standard deviations, and if desired, the

covariance matrix of a vector stored upper triangular square root

covariance matrix.

The output covariance matrix, also vector

stored, can overwrite the input.

Argument Definitions

CALL RI2COV(RINV,N,SIG,COVOUT,KROW,KCOL)

RINV(N* (N-+1) /2

N

SIG(N)

COVOUT (% (N+1) /2)

KROW 1

(.GT.O

.LT.0

KCOL

.EQ.0

Input vector stored upper triangular
covariance square root (RINV=Rinverse
is the inverse of the SRIF matrix).

Dimension of the RINV matrix
Output vector of standard deviations

Output wvector stored covariance matrix
(COVOUT = RINV is allowed)

Computes the covariance and sigmas
corresponding to the first KROW variables
of the RINV matrix

Computes only the sigmas of the first
(KROW) wvariables of the RINV matrix.

No covariance, but all sigmas (e.g. use
all N rows of RINV)

Number of columns of COVOUT that are
computed, If KCOL,LE.(0, then KCOL = KROW.

Remarks and Restrictions

Replacing N by {KROWI corresponds to computing the covariance

of a lower dimensional system.

Functional Description

COVOUT=RINV#RINV**T

57

16. R2ZA (R to A)

Purpose

To place the upper triangular vector stored matrix R into the
matrix A and to arrange the columns to match the desired NAMA para-
meter list. Names in the NAMA list that do not correspond to any

name in NAMR have zero entries in the corresponding A columms.

CALL R2A(R,LR,NAMR,A,TIA,LA,NAMA)

Argument Definitions

R{LR*(LR+1)/2) Input upper triangular vector stored array
LR No. of parameters associated with R

NAMRE (LR) Parameter names associated with R

A(LR,1LA) Matrix to house the rearranged R matrix
IA Row dimension of A, IA.GE.LR.

LA No. of parameter names associated with the

output A matrix.

NAMA (LA) Parameter names for the output A matrix.

Functional Description

The matrix A is set to zero and then the columms of R are copied

into A.

58

http:IA.GE.LR

17. R2ZRA (Permute a subportion R, of a vector stored triangular matrix)

Purpose

A

To copy the upper left (lower right) portion of a vector stored

upper triangular matrix R into the lower right (upper left) portiom of

a vector stored triangular matrix RA,

CALL R2RA(R,NR,NAM,RA,NRA,NAMA)

Argument Definitions

R(NR*(NR+1) /2)
NR

NAM(NR)

RA(NRA* (NRA+1) /2)

NRA

NAMA (NRA)

Remarks and Restrictions

Input vector stored upper triangular matrix

Dimension.of vector stored R matrixT

Names associated with R.
Output wvector stored upper triangular matrix

If NRA=0 on input, then NAMA(1l) should have
the first name of the output namelist. In
this case the mumber of names in NAMA, NRA,
will be computed. Theé lower right block of
R will be the upper left block of RA.

If NRA = last name of the upper left block
that is to be moved then this upper block
is to be moved to the lower right corner

of RA., When used in this mode NRA=NR on

outputh

Names associated with RA. Note that NRA
used here denotes the output value of NRA.

RA and NAMA can overwrite R and NAM. The meaning of the NRA=0

option is clarified by the following example:

A B C D E

2 4 8 14 22]

6 10 16 24

(12 18 26

:, 20 28

R 30,
R

¢ D E INPUT
o - NR = 5
12 18 26 NAM = TA','B','C','D','E'
NRA = 0
20 28 NAMA(1) = 'C!
R
! 30 OUTPUT

NAWA = 'c', 'D', 'E'

Tsee the concluding paragraph of Remarks and Restrictions

59

When NRA = 0 and NAMA(l) = 'C' we are asking that the lower triangular
portion of R, beginning at the column labeled C, be moved to form the
first (in this case 3) columns of RA, Incidently, RA could have)
additional columns; these columns and their names %ould be unaltered

by the subroutine,

The meaning of the other NRA option is illustrated by the following

example;
o I INPUT -
A 3 clp E A B (A B Cp NR = 5
s —‘ — - NAM = !A!,iBl,lcl,IBI’!El
2 & 8|14 22 2 4 8 14 22 NRA = 'C’
R
i 6 24
6 10 I16 24 6 1fi _J:_# + OUTPUT
NRA = 5
12118 264 W 2 4 8 NAMA(3-5) = 'A','B','C'
RA
20 28 : 6 10
L_ 30 | 1z
- - ' e
R R

When NRA = 'C' we are asking that the upper left block of R, up to the
column labeled C, be moved to the lower ¥ight poriton of RA and the cor-
responding names be moved too. If RA overwrites R, as in the example,
then the first two rows of R remain unchanged and since NAMA overwrites
NAM, the labels of the first two columns remain unaltered.

The remark that NRA=NR on output means, in this example, that the
column with name C in R is moved over to column 5. TIf one wanted to
slide the upper left triangle corresponding to names ABC of R to columns
7-9 of an RA matrix (of unspecified dimension, > 9), then one should set
WR=9 in the subroutine call. Thus NR, when used in this sliding down

the diagonal wmode, does not represent the dimension of R; but indicates

how far the slide will be.

60

18.

18
RUDR (R to U-D or U-D to R) -E§n§A11P5“3E
Purpose

To transform an upper triangular vector stored SRIF array to U-D

form or vice versa.

CALL RUDR(RIN,N,ROUT,IS)

Argument Definitions

RIN(NBAR* (NBAR+1)/2) Input upper triangular vector stored SRIF
or U-D array; NBAR = ABS(N) + 1

ROUT (NBAR* (NBAR+1}/2) Output upper triangular vector stored
U-D or SRIF array (RIN = ROUT is
permitted)

N Matrix dimension, N.GT.0 represents an

R to U-D conversion and N.LT.0 represents
a U-D to R conversion. ARS(N).GE.?2

Is If 15 = 0 the input array is assumed not
to contain a right side (or an estimate),
and IS = 1 means an appropriate additional
column is included. In-the IS = 0 case
the last column of RIN is ignored and
NBAR = ABS(N) is used.

Subroutine used: RINCON

Functional Description

Consider the N>0 case. RIN=R is transformed to ROUT = R inverse
using subroutine RINCON with dimension N+ 1S. 1If IS=1 the subroutine
sets RIN((N+1) (N+2))/2) =-1, so that the N+lst column of ROUT will be

the X estimate followed by -1. Rfl = UD]'/2

go that the diagonals
are square root scaled U columms. This information is used to con-
struct the U-D array which is writtenm in ROUT.

If N<O the input is assumed to be a U-D array. This array is

converted to ROUT==UD1/2

and then using RINCON, R is computed and stored
in ROUT. 1If IS=1 the U-D matrix is assumed augmented by X (estimate),
and on output the right side term of the SRIF array is obtained. When
IS=1, the initial value of RIN((N+L1) (N+2)/2) is restored before exiting

the subroutine.

61

19.

SFU (Sparse F * unit upper triangular U)

Purpose

To efficiently form the product F*U so that only the nonzero

elements of F are employed and so that the structure of the U

matrix is utilized (upper triangular with implicit unit diag~

onal elements). When F is sparse there are significant savings

in storage and computaton. Note that since we deal only with

the nonzero elements of F we are saved the time associated with

computing unnecessary F matrix element addresses,

CALL SFU(FEL,IROW,JCOL,NF,U,N,FU,MAXFU,IFU,JDIAG)

Argument Definitions

FEL (NF)
TROW (NF)
JCOL (NF)

NF
U(N* (N+1)/2)

N
FU(IFU,N)
MAXFU
IFU

JDIAG (N)

Values of the non-zero elements of the ¥ matrix
Row indices of the T elements

Column indices of the ¥ elements

F(TROW(K), JCOL(K)) = FEL(K)

The number of non~zero elements of the F matrix

Upper triangular, vector stored matrix with
implicity defined unit diagonal elements. Note
that U(JJ) terms are not, in fact, unity,

Dimension of the U matrix
The output result
Row dimension of the FU matrix

Number of rows in FU. IFU,.LE.MAXFU, and IFU.GE.
Max (IROW(K), K=1,...,NF); i.e, FU must have at
least as many rows as does F. Additional rows of
FU could correspond to zero rows of F.

Diagonal element indices of a vector stored upper
triangular matrix, i.e. JDIAG(K)=K* (K+1)/2=JDTAG(K-1)+K.

62

Example:

E IS
ORIGINAL PAG
OF POOR QUALITY

F(3,12) with: F(1,1) = .9, F(2,2) = .8, F(3,3) = 1.1,

F(1,7) = 1.7, F(2,8) =-2.8 and F(3,11)

3.11.

fl

In this case F has NF = 6 (nonzero elements); and one may

take
IROW(1) = 1 JCOL(1) = 1 FEL(1) = .9
IROW(2) = 2 JCOL(2) = 2 FEL(2) = .8
TROW(3) = 3 JCOL(3) = 3 FEL(3) = 1.1
IROW(4) = 1 JCOL(4) = 7 FEL(4) = 1.7
IROW(5) = 2 JCOL(5) = 8 FEL(5) =-2.8
IROW(6) = 3 JCOL(6) = 11 FEL(6) = 3.11

Remarks and’Restrictions

Comments regarding increased efficiency are included in the code.

Functional Description

We write

Fo= 2 R e el

1,3

where e, is the i-th unit wvector.

T
FU = Z Fij ey (er)

ij

The code is based on this equation.

Then

63

20,

TDHHT (Twoe dimensional Householder triangularization)
Purpose

To transform a two dimensional rectangular matrix to a
triangular, or partially triangular form by Householder orthogonal
matrix pre-multiplication. This subroutine can be used to compress
overdetermined linear systems to triangular (double subscripted
form) in much the same way as does the subroutine THH (which outputs
a vector subscripted triangular result). For recursive applications
THH is computationally more efficient and requires less storage.
The chief application, that we have in mind, for this subroutine
is to the matrix triangularization of '"mapped"” square root

information matrices of the form S(m,n) with m less than n.

CALL TDHHT(S,MAXS,IRS,JCS,JSTART,JSTOP,V)

Argument Definitions

S(IRS,JCS) Input (possibly partially) triangular
matrix. The output (possibly partially)
triangular result overwrites the input.

MAXS Row dimension of S matrix

IRS Number of rows in S (IRS.LE.MAXS), and
IRS.GE.2.

JCS Number of columns in S

JSTART Index of first column to be triangularized.

If JSTART.LT.1 then it is assumed that the
triangularization starts at colummn 1.

JSTOP Index of last column to be triangularized.
When JSTOP is not between max(1l,JSTART)
and JCS then the triangularization is
carried out as far as possible (i.e. to IRS
if 5 has less rows than columns, or te JCS
if it has more rows than colummns).

V(IRS) Work vector

64

Remarks and Restrictions

The indices JSTART and JSTOP are input for efficiency purposes.
When it is known that the input matrix is partially trianéular one
can by-pass the corresponding (initial) Householder reduction steps.
Further, for certain applications it is not necessary to totally

triangularize the input array. For example if S(m,n) and m is

less than n, the system is in triangular form after only m elementary

Householder reduction steps, i.e

The code is set up so that it defaults to the largest possible
upper triangularization.

Functional Description

JCS

s { 0 IRS

The dotted portion of the matrix and the block of zeros are not
employed at all in the computations. The input matrix is trans-
formed to (possibly partially) triangular form by premultiplication

by a sequence of elementary Householder orthogonal transformations,

S——=] 0 IRS

The method is described fully in the books by Lawson and Hanson -

Solving Least Squares Problems, and in Bierman - Factorization

Methods for Discrete Sequential Estimation.

66

21,

THH (Triangular Householder Orthogonalization)
Purpose
To compute [R:z] such that
R 2 R =z
T = T - orthogonal
A =z 0 e

. This is the key algorithm used in the square root information batch

sequential filter,

CALL THH(R,N,A,IA,M,RSOS,NSTRT)

Argument Definitions

R{N*(N+3)/2) Input upper triangular vector stored
square root information matrix. If
estimates are involved RS0S.GE.O and R
is augmented with the right hand side
(stored in the last N locations of R).
If RSOS.LT.0 only the first N*(N+1)/2
locations of R are used. The result
of the subroutine overwrites the input R

N Number of parameters

A(M,N+1) Input measurement matrix. The N+lst
column is only used if RS0S.GE.Q, in
which case it represents the right side
of the equation v + AX = z, A is
destroyed by the algorithm, but it is
not explicitly set to zero.

TA Row dimension of A

M The number of rows of A that are to be
combined with R (M.LE.IA)

RS0S Accumulated residual root sum of squares
corresponding to the data processed
prior to this time. On exit RS0S repre-
sents the updated root sum of squares
of the regiduals [Ellz _AX |12]1/2

i1 THiest ?
summed over the old and new data. It
also includes the a priori term

67

“Ro Xest - zo” 2. Because R30S cannot

be used if data, z, is not included
we use RSO0S.LT.0 to indicate when data
is not included.

NSTART First column of the input A matrix
that has a nonzero entry. In certain
problems, especially those involving
the inclusion of a priori statistics,
it is known that the first NSTRT-1
columns of A all have zero entries.
This knowledge can be used to reduce
computation. If nothing is known
about A, then NSTRT.LE.l gives a
default value of 1, i.e. it is assumed
that A may have nonzero entries in the
very first columm.

Remarks and Restrictions

It is trivial to arrange the code so that R output need not over-
write the input R, This was not done because, in the author's opinion,

there are too few times when one desires to have ROUT # RIN.

Functional Description

Assume for simplicity that NSTRT=1. Then at step j, j=1,...,N
(or N+l if data is present) the algorithm implicitly determines an
elementary Householder orthogonal transformation which updates row i
of R and all the columns of A to the right of the jth. At the
completion of this step column j of A is in theory zero, but it is
not explicitly set to zero., The orthogonalization process is discussed

at length in the books by Lawson and Hanson - Solving Least Squares

Problems and Bierman - Factorization Methods for Discrete Sequential

Estimation.

68

ORIGINAL PAGE IS

22. 'TTHH (Two triangular matrix Householder reduction) OF POOR QUALITY

Purpose

To combine two vector stored upper triangular matrices, R and RA

by applying Householder orthogonal transformations. The result over-

writes R.

N

L. d

N

| CALL TTHH (R,RA,N) |

Argument Definitions

R(N*(N+1)/2)

RA(N*(N+1)/2)

Remarks and Restrictions

Input vector stored upper triangular
matrix, which also houses the result

Second input vector stored upper
triangular matrix., This matrix is
destroyed by the computation.

Matrix dimension
N less tham zero is used to indicate
that R and RA have right sides
(|Nl+l colums) and have dimension

[N]*(]n[+3)/2).

RA is theoretically zero om output, but is not set to zero.

69

23,

TWOMAT (Triangular matrix print)

Purpose

To display a vector upper triapgular matrix in a two

dimensional triangular format. Precision output corresponds to a

7 column 8 digit, double precision format. Compact output corres-

ponds to a 12 column, 5 digit single precision format.

CALL TWOMAT(A,N,LEN,CAR,TEXT,NCHAR,NAMES)

Argument Definitions

A(N%EN+1) /2)

N

LEN

CAR(N)

TEXT (NCHAR)

NCHAR

NAMES

Vector stored upper triangular matrix (DP)
Dimension of A

Column format (7 or 12 columns). When LEN
is different from 7 or 12 the print defaults
to 12 columns.

Parameter names (alphanumeric) associated
with A. When NAMES is false, CAR is not
used.

An array of field data characters to be
printed as a title preceding the matrix

Number of characters (including spaces) that
are to be printed in text()

ABS (NCHAR) .LE.114. If NCHAR is negative there
no page eject before printing. NCHAR positive
results in a page eject so that the print
starts on a fresh page.

A logical flag. If true then the names of
the parameters are used as labels for the
rows and columns. If false the output labels
default to numerical wvalues.

Remarks and Restrictions

Using NCHAR nonnegative, and starting the print at the top of a

new page makes it easier to locate the printed result and is

70

especially recommended when dealing with large dimensioned arrays.
Page economy can, however, be achieved using the NCHAR negative
option. In this case the print begins on the next line. The
alphanumerics in this routine make it machine dependent; it is

arranged for implementation on a UNIVAC 1108.

71

24. TZERD (Triangular matrix zero)

Pu;gose

To zero out rows IS(Istart) to IF(Ifinal) of the.vector. stored

upper triangular matrix R.

CALL TZERO(R,N,IS,IF)

Argument Definition

R(N#*(14-1) /2) Input vector stored upper triangular
matrix

N Row dimension of vector stored matrix

Is First row of R that is to be set to zero

IF Last row of R that is to be set to zero

Functional Descraption

IS
IF
R{input) R(output)
PAGE 1B
0

72

25.

UDCOL (U-D covariance factor colored noise time update)
Purpose
To time update the U-D covariance factors so as to include

the effects of colored noise wvariables.

CALL UDCOL{(U,N,XS,NCOLOR,V,EM,Q)

Argument Definitions

U(N* (1) /2) Input vector stored U-D covariance factors.
The updated result resides here on output.

N Filter matrix dimension. If the last column
of U houses the filter estimates, then
N = number filter variables + 1.

K8 Location of the first colored noise variable
(KS.GE.1.AND.KS.LE.N)
NCOLOR The number of colored noise variables

contiguous to the first, including the
first. (NCOLOR.GE.L)

. V(KS-1+NCOLOR) Werk vector ((RS-L+NCOLOR).LE.N)

EM(NCOLOR) Input vector of colored noise mapping terms
(unaltered by program)

Q(NCOLOR) Input vector of process noise variances
(unaltered by program)

Remarks and Restrictions

When estimates are involved they are appended as an additional
column to the U-D matrix. When the subroutine is applied to the
augnented matrix the estimates are correctly updated. When the
colored noiseé terms are not contiguously located one can fill in
the gaps with unit EM terms and corresponding zero Q elements.

It ig preferable, however, to apply the subroutine repeatedly to

the individual contiguous groups.

73

Functional Description

The model equation corresponding to the time update of this

subroutine is

"
o
™

I
+
o H O
k3

g+ j

where M is diagonal, with NP terms, and v, €N{(0,Q) where Q is
diagonal with NP terms. The output U-D array associated with this
time update equation satisfies

ToT 4+ Boal

UDUT(output) = & UDU
where & and B are as above. The algorithm for obtaining U-D
(output) is the Bierman-Thornton one—component-at—-a-time update

described in Bierman - Factorization Methods for Discrete

Sequential Estimation", Academic Press (1977), pp -147-148,

74

26.

UDMEAS (U-D measurement update)

Purpose

Kalman filter measurement updating using Bierman's U-D measure-

ment update algorithm, cf 1975 CONF. DEC. CONTROL paper. A scalar

.

T . .
measurement z = A'x + v 1s processed, the covariance U-D factors

and estimate (when included) are updated, and the Kalman gain and

innovations variance are computed.

Argument Definitions

CALL UDMEAS(U,N,R,A,F,G,ALPHA)

INPUTS

U(N* (1) /2)

A(N)

F (N)

ALPHA

OUTPUTS

ALPHA

Upper triangular vector stored input matrix.

D elements are stored on the diagonal. The

U vector corresponds to an a2 priori covariance.

If state estimates are involved the last column

of U contains X. 1In this case Dim U = (N+1)*(N+2)/2
and on output (U(MH1)*(N+2)/2= z-A**T*X(a priori est).

Dimension of state vector, N.GE.2

Measurement variance

Vector of Measurement coefficients; if data
then A(NH1) = =z

Input work vector. To economize on storage F
can coverwrite A

Tf ATPHA.LT.zero no estimates are computed
(and X and 2z need not be included).

Updated vector stored U-D factors. When
ALPHA (input) is nonnegative the (Ml)st
column contains the updated estimate and
the predicted residual.

Innovations variance of the measurement
residual.

Contains U%*T#A(input) and when ALPHA (input)
is nonnegative F(N+1) =(z-A**T*X(a priori est))/ALPHA.

75

G(N) Vector of unweighted Kalman gains,
K = G/ALPHA :

Remarks and Restrictions

One can use this algorithm with R negative to delete a
previously processed data point. One should, however, note that
data deletion is numerically unstable and sometimes iIntroduces
numerical errors.

The algorithms holds for R = 0 (a perfect measurement) and
the code has been arranged to include this case. Such situations
arise when there are linear constraints and in the generation of
certain error "budgets".

Functional Description

The algorithm updates the columns of the U-D matrix, from
left to right, using Bierman's algorithm, see Bierman's
"Factorization Methods for Discrete Sequential Estimation,"

Academic Press (1977} pp 76-81 and 100-101.

76

27.

ORIGINAL PAGE IS
OF POOR QUALITY:

upD2cov (U-D factor to covariance)
Purpose

To obtain a covariance from its U-D factorization., Both matrices
are vector stored and the output covariance can overwrite the input

U-D array. U-D and P are zelated via P = UDUT.

CALL UD2COV(UIN,POUT,N)

Argument Definitions

VIN(*(F+1) /2) Input vector stered U-D factors, with D
entries stored on the diagonal.

POUT (N* (N+1) /2) Qutput vector stored covariance matrix
(POUT = UIN is permitted).

N Dimension of the matrices involved (N.GE.2)

77

28. UD2S81G (U-D factors to sigmas)

Purpose

To compute variances from the U-D-factors of a matrix.

CALL UD2SIG(U,N,SIG,TEXT,NCT)

Argument Definitions

U (N+1)/2) Input vector stored array containing
the U-D factors. The D (diagonal)
elements are stored on the diagonal

of T.
N Dimension of the U matrix (N.GE.2)
SIG(N) Output vector of standard deviations
TEXT () Output label of field data characters,

which precedes the printed vector of
standard deviations.

NCT Number of characters of text,
0.LE.NCT.LE.126. TIf NCT = 0, no
sigmas are printed, i.e. nothing is
printed.

Remarks and Restrictions

The user is cautioned that the text related portion of this subroutine
may not be compatible with other computers. The changes that may be

involved are, however, very modest.

Functional Description

If U and D are represented as doubly subscripted matrices then

N

SIG(J) = (D(J,J) + Z D(K,X) [U(J,K)]z)ﬁ
K=J+1.

-

If NCT.GT.0 a title is printed, followed by the sigmas.

78

29.

UTINV (Upper triangular matrix inverse)
Purpose

To invert an upper triangular vector stored matrix and store
the result in vector form. The algorithm is so arranged that the

result can overwrite the imput.

CALL UTINV(RIN,N,ROUT

Argument Definitions

RIN(N*(N+1)/2) Input vector stored upper triangular
matrix

N Matrix dimension

ROUT (N* (N+1)/2) Output vector stored upper triangular
matrix inverse (ROUT = RIN is permitted)

Remarks and Restrictions

I11 conditioning is not tested, but for nonsingular systems the
result is as accurate as is the full rank Euclidean scaled
singular value decompostiion inverse. Singularity occurs if a
diagonal is zero. The subroutine terminates when it reaches a
zero diagonal. The columns to the left of the zero diagonal are,
however, inverted and the result stored in ROUT.

This routine can also-be used to produce the solution to RX = Z.
Place Z in column N+l(viz. RIN(N*(W+1)/2+1) = Z(1), etec.), define
RIN((N+1) (N+2)/2) = -1 and call the subroutine using N+l instead
of N. On return the first N entries of column N+l contain the
solution (e.g. ROUT(N*(N+1)/2+1) = X(1), etc.). When only the
estimate is needed, then it is more efficient to use the code

described in section to IT.8 to obtain X, directly.

79

Because matrix inversion is numerically sensitive we recommend
using this subroutine only in double precisiomn.

Functional Descriptioh

The matrix inversion is accomplished using the standard back
substitution methed for inverting triangular matrices, cf. the book

references by Lawson and Hanson, [1] or Bierman [3].

80

30.

1S
ORIGINAL PAGE
OF POOR QUALITY

UTIROW (Upper triangular inverse, inverting only the upper rows)
Purpose
To compute the inverse of a vector stored upper triangular

matrix, when the lower right commer triangular inverse is given.

CALL UTIROW(RIN,N,ROUT,NRY)

Argument Definitions

RIN(N*(N+1) /2) Input vector stored upper triangular
matrix. Only the first N - NRY rows
are altered by the algorithm.

N Matrix dimension.

ROUT (N*(N+1) /2) Output vector stored upper triangular
matrix inverse. On input the lower
NRY dimensional right cornmer contains
the given (known) inverse. This lower
right corner matrix is left unchanged.

(ROUT = RIN is permitted.)

NRY Number of rows, starting at the bottom,
that are assumed already inverted.

Remarks and Restrictions

The purpose of this subroutine is to complete the computation
of an upper triangular matrix inverse, given that the lower right
corner has already been inverted. Part of the input, the rows to

be inverted, are inserted wvia the matrix RIN. The portion of the

matrix that bas already been inverted is entered yia the matrix ROUT.

It may seem odd that part of the input matrix is put into RIN and
part into ROUT. The reasoning behind this decision is that RIN
represents the input matri; to be inverted (it just happens that
we do not make use of the lower right triangular entries); ROUT
represents the inversion result, and therefore that portion of the

inversion that is given should be entered in this array.

81

111 conditioning is not tested, but for nonsingular systems the
result is accurate. Singularity halts the algorithm if any of the
first N-NRY diagonal elements is zero. If the first zero encountered
moving up the diagonal (starting at N-NRY) is at diagonal i then the
rows below this element will be correctly represented in ROUT.

To generate estimates do the following: put N+l into the matrix
dimension argument; in the first N-NRY rows of the last column of
RIN put the right hand side elements of the equation Rxx + nyy =z,
(i.e., RX, ny, and Z. make up the first N-NRY rows of RIN); in the
next NRY entries of ROUT, beginning in the (N-NRY+l)st element, put

¥y (i.e., R;l and Yost make up rows N-NRY+1l,...,N of ROUT); and

est

ROUT ((W+1) (842)/2) = -1. On output, the last column of ROUT will

contain x and -1,
est’ Yest

st

When NRY = 0 this algorithm is equivalent to subroutine UTINV.

Functional Description

The matrix inversion is accomplished using the standard back
substitution method. The computations are arranged, row-wise, starting
at the bottom (from row N-NRY, since it is assumed that the last NRY

rows have already been inverted).

82

31.

WGS (Weighted Gram-Schmidt matrix triangularization) ORIGINAL PAGE IS
Purpose OF POOR QUALITY

To compute a vector stored U-D array from an input rectangular

matrix W, and a diagonal matrix Dw so that W Dw WT = UDUT.

CALL WGS (W, IMAXW, IW,JW,DW,U,V)

Argument Definitions

W(IW,JW) Input rectangular matrix, destroyed by
the computations
IMAXW Row dimension of input W matrix,
IMAXW.GE.IW
Iw Number of rows of W matrix, dimension of U
JW Number of columns of W matrix
DW(JW) Diagonal dnput matrix; the entries are

assumed to be nonnegative. This vector
is unaltered by the computations

T{IWws (TW1)/2) Vector stored output U-D array
V(W) Work vector in the computation

Remarks and Restrictions

The algorithm is not numerically stable when negative DW weights

are used; negative weights are, however, allowed. If JW is less than
IW {(more rows than columns), the cutput U-D array is singular; with

W-JW zero diagonal entries in the output U array.

Functional Description

A Dw—orthogonal set of row vectors, ¢l, ¢2,..., ¢IW’ are con-—
structed from the input rows of the W matrix, i.e., W=1TU ¢, , ¢DW¢T = D,

The construction is accomplished using the modified Gram-Schmidt

orthogonal construction (see refs. [1] or [3]). This algorithm is
reputed to have excellent numerical properties. Note that the ¢
vectors are not of interest in this routine, and they are overwritten;
The V vector used in the program houses vector IW-j+1 of ¢ at step j of

algorithm. The fact that the computed ¢ vectors may not be D orthogonal

is of no import in regard to the U and D computed results.

83

References

[1] Lawson, C. L. Hanson, R. J., Solving Least Squares Problems,
Prentice Hall, Englewood Cliffs, N. J. (1974).

[21 JPL FORTRAN V Subprogram Directory, JPL Internal Document 1845-23,
Rev. A., Feb. 1, 1975.

[3] Bierman, G. J., Factorization Methods for Discrete Sequential
Estimation, Academic Press, New York (1977).

84

V. FORTRAN Subroutine Listings

The subroutines use only FORTRAN IV, and are therefore essentially
portable. The one notable exception is subroutine TWOMAT, which prints
triangular, vector stored matrices, It employs FORTRAN V FORMAT state—
ments and six character UNIVAC alphanumeric wordlength, and thus 1s UNIVAC
dependent. Subroutine UD28IG also involves text, and it too is therefore
to some extent machine dependent. Comment statements appear occasionally
to the right of the FORTRAN code, and are preceded by a "@" symbol. The
subroutine user can, if necesgsary, transfer or remove such program
commentary.

A1l of the subroutines employ "implicit double precision' statements.
They are, however, constructed so as to operate in single precision, and
the user has only to omit or comment out the implicit statements. If the
subroutines are to be used in double precision on a machine that does not
have the implicit FORTRAN option one should explicitly declare all of the
non~-integer variable names appearing in the programs as double precision
variables.

If these subroutines are to be used in production code and computa-
tional efficiency is of major concern one should replace the somewhat
lengthy subroutine argument lists by introducing COMMON, and including
those terms in the COMMON that are redundantly computed with each sub-

routine call.

85

OGO 00000000

60
70
80

99
100

SUBROUTINE A2A1 (A,TAsIR+LA/NAMASAL,TALLAL,NAMAL)
SUBROUTINE TO REARRANGE THE COLUMNS OF A(IReLA)» IN NAMA ORDER
AND PUT THE RESULT IN A1(IR,LA1) IN NAMAL ORDER. ZERO COLUMNS
ARE INSERTED IN Al CORRESPONDING TO THE NEWLY DEFINED NAMES,

ACIR?LA) INPUT RECTANGULAR MATRIX

IA ROW DIMENSION OF Ar IRJLELIA
IR NOe OF ROWS OF A THAT ARF TO BE REARRANGED
LA NOs COLUMNS IN Ar ALSO THE

NO. OF PARAMETER NAMES ASSOCTATED WITH A
NAMA (LAY PARAMFTER NAMES ASSOCIATED WITH A
AL(IRsLAL) OUTPUT RECTANGULAR MATRIY
A AND Al CANNOT SHARE COMMON STDRAGE
IAL ROW DIMENSION OF Alr IRLLE.TAL
LAl NO. COLUMNS IN Al ALSO THE -
NO«. OF PARAMETER NAMES ASSOCTATED WITH At
NAMAL(LAL1}Y INPUT LIST OF PARAMETER NAMES TO BE ASSOCIATED
WITH THE OUTPUT MATRIX Aj

COGNIZANT PERSONS: G+J.BIERMAN/MeW NEAD (JPL: SEPT. 1975)

DIMENSION A{IA»1)s MAMA(IY, AL(IAL1,1)/NAMALIL)
IMPLICIT DOUBLE PRECISION (A=Hr0=2)

ZERO=0,
0O 100 J=i.LA1L
DO &g I=1rLA —
IF (NAMA(I).EQ.NAMAL(J)) GO TO 80
CONTINUE
DG 7p K=1»IR
AL(K»JI=ZERO B ZERO COL. CORRES. TO NFW NAME
G0 To 100
DO 9p K=1r1IR
AL(Ks JIZA(K,I) @ COPY COL. ASS0C. WITH OLD NAME
CONTINUE

RETURN
END

86

A2A10010
A2A10020
A2A10030
A2A10040
A2A10050
A2A10060
A2a10070
A2A10080
A2A100990
AZA10100
A2A10110
A2a10120
A2A10130
A2A10140
A2A10150
A2A10160
A2A10170
A2A10180
A2A10190
A2A10200
A2A10210
ARA10220
A2A10230
A2A10240
A2A10250
A2A10260
A2A10270
A2A10280
A2A10290
A2A10300
A2A10310
A2A10320
A2A10330
A2A10340
A2A10350
A2A10360
A2A10370
A2A10380
A2A10390

http:IR.LE.IA

QOO0 0000NO0O000000

50

60

70
80
100

150

leg

ORIGINAL PAGE 1S
OF POOR QUALITY

SUBROUTINE COMBO (ReL1/NAML,LZ2sNAMZ,ArTAPLAFNAMA)

TO REARRANGE A VECTOR STORED TRYANGULAR MATRIX AND STORE
THE RESULT IN MATRIX A. THE DIFFERENCE BETWEEN THIS SUR
ROUTINE AND R2A IS THAT THERE THE NAMELTST FOR A IS TMPUT,
HERE IT IS DETERMINED BY COMRINTNG THE LIST FOR R WITH

A LIST OF DESIRED NAMES.

RIL1L*(L1+41)/2) INPUY VECTOR STORED UPPER TRTANGULAR MATRIY

L1 NOs. OF PARAMETERS IN R (AND TN NAMID

NAM1 (L1) NAMES ASSOCIATER WITH R

L2 NO. OF PARAMETERS IN NAM2

NAM2 (L2) PARAMETER NAMES THAT ARE TO RE COMBINED WITH R
(NAMY LIST). THESE MAMES MAY OR MAY NOT RE IN
NAM1 .

ACL1/LA) OUTPUT ARRAY CONTAINIMG THE REARRANGED
R MATRIXr L1.LE.TA,

1A ROW DIMENSION OF A

LA NOs OF PARAMETER NAMES In NAMAs AND THE
COLUMN DIMENSION OF A. LAZL1+L2=NO. NAMFS
COMMON TO NAM1 AND NAM2., LA IS COMPUTED AND
QUTPUT.

NAMA (LA) PARAMETER NAMES ASSOCIATED WITH THE OQUTPUT A

MATRIX. CONSISTS OF NAMES TN NAM1 WHICH ARE
NOT IN NAM2 FOLLOWED BY NAMZ,
COGNIZANT PERSONS? GeJ.BIERMAN/MsW,NEAD (JPLe SEPT, 1976)
IMPLICIT DOUBLE PRECISION (A~HeO=2)
DIMENSION R{1)s A(TA»1)s NaMI(1))» NAM2(1)» NAMA(1)

ZERO=0,0
K=1
bOo 100 I=1sL1
DO S50 J=1,L2
IF (NAM1(1}.EQ.NAM2(J)) GO TO 100
CONTINUE
NAMA (K)=NAM1(Y)
JUTI*(1=1)/2
DO 60 L=1,1
AQLPK)ZREJUHL)
IF (1.eQ.L1) GO TO a0
IP1 = 141
PO 70 L=IP1,L1
A{L(K) = ZERO
K=K+1
CONTINUE
NAMES UNIQUE TO NAM1 ARE NOW TN NAMA
DO 200 J=11L2
DO 150 IZ1,L1
IF {NAM2{J).EQ.NAM1{1)) GO TO 170
CONTINUE
NAMA (K)=NAM2()
DO 1el L=1.L1
A(LK)ISZERD
87

coMpongo

coMBON10
COMRO020
COMBOG30
coMBON40D
COMBOOSO
coMBONGD
CoMBOB70
COMRON80
coMBONSD
COMBO100
COMRO110
coMBo120
COMBO130
coMBO140
cCOoMBO1S0
coMBO160
COMRO170
COMB0180
COMBO190
coMB0200
coMBo210
coMBo220
COMB0230
COMBO24 D
coMB0o250
coMB0260
COMB0270
coMB0O280
CNMRO290
coMpo300
COMBO310
coMBo320
coMB0o330
COMBO340
coMBO350
COoMB0360
COMBO370
CoMRO380
COMBR0390
coMBouo
compoul0
coMBou20
coMBO430
COMBOLAD
COMBO4S50
COMBO#60
COMBROLTO
coMpousn
coMBousy
COMBOSO00
coMBOS510
COMB0O520
COMBOR3D

170
1gp

185 -
log
200

NAMES UNIQUE TO NAMZ2 ARE NOW IM NAMA

G0 To 1906
NAMA (K)Y=NAMZ2 (J) .
LOCATE DIAGONAL OF PRECEDING CoLUMp
JI=Ix{1~1)/2
DO 180 L=1,1
AL KIZR(JJHL)
IF (I.gQ.L1) GO TO 190
IPL=I+1
DO 185 L=IP1i,L1
A{L+K)=2EROD
K=K+1
CONTINUE
LAZK~1
NAMES MUTUAL TO NAM1 AND NAMZ ARE MOW TN NAMA
RETURN N
END

88

COMBOSGO
COMBOSS50
COMBOS6D
COMBOS70
coMBoOS80
CoMBOS90
COMBOAO0
coMgosl0
coMB0620
COMB0O630
COMBOAYD
coMBO&SO
COMB0O&60
CoMBO670
COMBO680,
COMB0£90
coMBo700

ODOOOOOO0O0OO00O00

O OO0

10

20

ORIGINAL PAGE IS
OF POOR QUALITY

SUBROUTINE COVRHO(COVrN»RHO,V)

T0 COMPUTE THE CORRELATYION MATRIX RHOr FROM AN INPUT COVARIANCE
MATRIX COV. BOTH MATRICES ARE UPPER TRIANGULAR VECTOR STORED,
THE CORRELATION MATRIX RESULT CAN OVERWRITE THE INPUT COVAPTANMCE
COVIN®(N+1)/2) INPUT VECTOR STORED POSITIVE SEMI-DFFINITE
COVARIANCE MATRIX)
N NUMRER OF PARAMETERS! NJ.GE.1
RHO(N(N+1}/2) OUTPUT VECTOR STORED CORRELATION MATRIX:
RHO(IT I ZCOVLIJ) /(SIGMALT)%SIGMA(U))
VIN) WORK VECTOR

COGNIZANT PERSONS: GoJ.BYERMAN/MsW.NEAD {JPLsFEB.1978)

IMPLICIT DOUBLE PRECISION (A—H20=Z)
DIMENSION COV{1): RHO(1)» V(1)

0NE=1 DO
2=0.D0

JJ=o0
DO 10 J=1!N
JusJdgtd
vidl=2Z
IF (COVI(JJY+GT«Z) VI(JI=ZONE/ SORT(COV(JJ))

*kx*k SOME MACHINES REQUIRE DS@RT FOR DOUBLE PRFCISION
CONTINUE

TJ=¢
Do 20 J=1!N
s=viiy)
DO 20 I=lrJd
YJ=IJ+1
RHO{TJ)=COV(IJ)%S*xv (T}
RETURN
END

89

COVRHO10
COVRHO20
COVRHO30D
COVRHO4O
COVRHOS0
COVRHO60
COVRHO70
COVRH080
COVRH090
COVRH100
COVRHI10O
COVRH120
COVRH130
COVRH140
COVRH160
COVRH160
COVRH170
COVRH180
COVRH190
COVRH200
COVRH210
COVRH220
COVRH230
COVRH240
COVRH250
COVRH260
COVRH270
COVRH288
COVRH290
COVRH300
COVRH310
COVRH320
COVRH330
COVRH340
COVRH3ED
COVRH360
COVRH370
COVRH380
COVRH390

COOOO000000OOO000

6 ¢]

SUBROUTINE COV2RI{U,N)

_TO CONSTRUCT THE UPPER TRIANGULAR CHNLESKY FACTOR OF A
POSITIVE SEMI-DEFINITE MATRIX. BOTH THE INPUT COVARIANCE
AND THE OUTPUT CHOLESKY FACTOR {SQUARE ROOT) ARE VECTOR
STORED. THE OUTPUT OVERWRITES THE INPUT,

COVARIANCE (INPUT) =UXU*¥T

(U 1S OUTPUT) .

IF THE INPUT COVARIANCE 1S SINGULAR THE QUTPUT FACTOR HAS

ZERO COLUMNS.,
UINx(N+1}/2)

N

COGNIZANT PERSONS?

CONTAINS THE INPUT VECTOR STORFD COVARIANCE
MATRIX (ASSUMED POSITIVE DEFINITE) AND ON OUTPUT
IT CONTAINS THE UPRER TRIANGULAR SOUARE ROOT
FACTOR,

DIMENSION OF THE MATRICES INVDLVED

GeJ.BIERMAN/MW . NEAD (JPL» FFBe 1977

IMPLICIT DOUBLE PRECISION (A~Hr0=2Z)

DIMENSION U(1)
ZERO=0,0
ONE=1.
JUSNx(N+1) /2

DO 5 J=Ns21=1

IF (U{JJ) oLT+ZERO) U(JJI=ZERD
UlJJi= SERTU(JIIY)

ALPHAZZERO

IF (UGJJ) «GT+ZERD) ALPHA=ONE/U(JJ)

KK=0
JUN=JJ=J
JMi=J=-1

R NEXT DIAGONAL

DO 4 K=1rJM1

UGJJIN+K) =

ALPHA®U (JUN+K) B JUN+K=K+)

SSUGJUNHK)
D0 3 I=1+K

UIKK+TY=U(KK+T) =S { JUN+T)

KK=KK+K
JJ=JJN

fd KK+1=(TK)

IF (U(1).LT«ZERO} U(1)=ZERD

U{1)= s@RT(U(1)})

RETURN
END

90

COV2R010
COV2R020
COV2RrR030
COV2R040
Cov2RrRNS50
COV2R060
CoOV2RrR070
COV2RNEB0
COV2RN90
COV2R100
COV2R110
coy2r120
COV2R130
COV2R140
COV2R1E0
COV2R160
COV2R170
COV2R180
COV2R190
Covar200
cov2zr210
CovV2R220
CoveR230
COV2R240
COV2R250
COV2R260
cay2r270
COV2R280
COV2R290
CoOV2aRX00
COV2R310
COV2R320
COV2R330
COV2R340
COV2R3SD
COV2R360
CNV2RITO
COVeR380
COV2R390
CnV2R400
COV2R410
cov2rRu20
COV2RL3D
COV2RL40
COV2RYS0
COV2RU60
CoOvV2RrRa70

OO0 OO0 0O0O0COONO00O00

10

30
44
50

60

(-

SUBROUTINE COV2UD (ureN)

TO OBTAIN THE U=D FACTORS OF A POSITIVE SEMI-DEFINITE MATRIX.
THE INPUT VECTOR STORED MATRIX IS OVERWRITTEM BY THE OUTPUT
U=D FACTORS WHICH ARE ALSO VECTOR STORED.

U(N*(N+1}/2)} CONTAINS INPUT VECTOR STORED COVARIANCE MATRIX.
ON OUTPUT IT CONTAINS THE VECTOR STORED U-D

COVARIANCE FACTORS.

N MATRIX DIMENSIONt MeGE.2

SINGULAR INPUT COVARIANCES RESULT IN OUTPUT MATRICES WITH ZERO

COLUMNS

COGNIZANT PERSONS! 6.,J.BTERMAN/ReA.JACORSON (UPLe FEB. 1677)

IMPLICIT DOUBLE PRECISION (A=HrO0=Z)

DIMENSION U(1}

2=0.D0
ONE=1.D0
NONE=1

JJ=N*({N+1) /2
NP2=N+2
DO 50 {=2¢N
J=NP2=L
ALPHA=Z
IF (UlJJ) «GE.ZY GO TO 10
WRITE (69100) JrU(JID)
Ut =2z
IF (UlJJ) +6T.2) ALPHASONE/ZU(JJ)
NNARLN
KK=0
KJ=JJ
JMi=g=-1
DO 4g K=1rJM1
KJz=KJ+1
BETA=U{KJ)
UIKJI=ALPHAXU{K)
TJ=Jdd
TK=KK
DO 30 I=1:K
IKZIK+1
IJd=1J+)
U{IK)=U(IK)~BETAXU(IY)
KKSKK+K
CONTINUE
Ir (U(1).GE.Z2} GO TO 60
WRITE (6¢100) NONE» U(1)
u{ii=z
RETURN

9L

ORIGINAL PAGE 1S

OF POOR

QUALITY;

covzuolo
covauo2d
covaun3o
covauey0
covauns0
covaune0
covaua7l
covauoso
covauego
covauiol
cova