
PROPAGATION OF SOUND THROUGH A SHEARED FLOW

by

James P. Woolley
Charles A. Smith

Krishnamurty Karamcheti

NIELSEN ENGINEERING
AND RESEARCH, INC.

OFFICES: 510 CLYDE AVENUE/ MOUNTAIN VIEW, CALIFORNIA 94043 / TELEPHONE (415) 968-9457



PROPAGATION OF SOUND THROUGH A SHEARED FLOW

by

James P. Woolley
Charles A. Smith

Krishnamurty Karamcheti

NEAR TR 171

September 1979

Prepared under Contract No. NAS2-9357

by

NIELSEN ENGINEERING & RESEARCH, INC.
Mountain View, California 94043

for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Ames Research Center

Moffett Field, California 94035



COPY NO.

1. Report No. 2. Government Accession No.

NASA CR-152299
4. Title and Subtitle

PROPAGATION OF SOUND THROUGH A SHEARED FLOW

7. Author(s)

J. P. Woolley, C. A. Smith, and K. Karamcheti

9. Performing Organization Name and Address

Nielsen Engineering & Research, Inc.
510 Clyde Avenue
Mountain View, California 94043 ""
12. Sponsoring Agency Name and Address

National Aeronautics and Space Admin is tratior
Ames Research Center
Moffett Field, California 94035

3. Recipient's Catalog No.

5. Report Date

September 1979
6. Performing Organization Code

339/C
8. Performing Organization Report No.

NEAR TR 171
10. Work Unit No.

11. Contract or Grant No.

NAS2-9357
13. Type of Report and Period Covered

final report
8/30/76-7/1/77

14. Sponsoring Agency Code

15. Supplementary Notes

16. Abstract

Sound generated in a moving fluid must propagate through a
shear layer in order to be measured by a fixed instrument, whether
the microphone is placed in or outside of the flow. Passage
through such a shear layer can significantly alter the features
of the sound. These alterations must be accounted for if one
wishes to characterize the nature of the sound sources from such
measurements. The present investigation was initiated to provide
means of evaluating and correcting for these propagation effects
for noise sources typically associated with single and co-flowing
subsonic jets and for subcritical flow over airfoils in such jets

The techniques for describing acoustic propagation fall into
two categories; geometric acoustics and wave acoustics. Geometric
acoustics has much in common with geometric optics and is most
convenient and accurate for high frequency sound. Wave acoustics
is generally applicable to sound of all frequencies but is compu-
tationally difficult, and valid formulations, much less solutions,
are known for only very restricted types of flows.

In the frequency range of interest to the present study
(greater than 150 Hz) , the geometric acoustics approach was deter-
mined to be the most useful and practical (continued next page)
17. Key Words (Suggested by Author(s))

sound propagation
shear flow
geometric acoustics
jet noise

18. Distribution Statement

Unlimited

19. Security Classif. (of this report) 20. Security Classif. (of this page)

Unclassified Unclassified
21. No. of Pages 22. Price'

83

'For sale by the National Technical Information Service. Springfield, Virginia 22161



16. Abstract (continued)

method for describing the passage of sound through jets. Calculation
methods and a computer program were developed to aid in the interpreta-
tion of results. This report describes these results, together with some
background information on the general nature of sound propagation through
shear layers.



TABLE OF CONTENTS

Section Page

SUMMARY 1

INTRODUCTION 2

NOMENCLATURE 3

NATURE OF PROBLEM 5

BACKGROUND 7

Theory 7

Experiment • 11

THEORETICAL BASIS OF GEOMETRIC ACOUSTICS 12

Kinematics of Wave Propagation in a Three-Dimensional,
Inhomogeneous, Moving Medium 12

The Variational Problem and Its Solution 15

SOUND PROPAGATION IN A STRATIFIED FLOW 18

COMPUTED EFFECTS OF SHEAR LAYER ON SOUND PROPAGATION 22

Velocity Profile in Shear Layer 22

Ray Paths and Wave Normal Deflection 24

Effective Deflection of Ray Path 27

Sound Pressure Level 29

Intensity 30

CONCLUSIONS AND RECOMMENDATIONS 30

APPENDIX A 33

APPENDIX B 50

APPENDIX C 52

APPENDIX D 54

REFERENCES 57

FIGURES 1 THROUGH 19 59

ill



PROPAGATION OF SOUND THROUGH A SHEARED FLOW

SUMMARY

Sound generated in a moving fluid must propagate through a shear

layer in order to be measured by a fixed instrument, whether the micro-

phone is placed in or outside of the flow. Passage through such a shear

layer can significantly alter the features of the sound. These altera-

tions must be accounted for if one wishes to characterize the nature of

the sound source from such measurements. The present investigation was

initiated to provide means of evaluating and correcting for these

propagation effects.for noise sources typically associated with single

and co-flowing subsonic jets and for subcritical flow over airfoils in

such jets.

The techniques for describing acoustic propagation fall into two

categories; geometric acoustics and wave.acoustics. Geometric acoustics

has much in common with geometric optics and is most convenient and

accurate for high frequency sound. Wave acoustics is generally applic-

able to sound of all frequencies but is computationally difficult, and

valid formulations, much less solutions, are known for only very

restricted types of flows.

In the frequency range of interest to the present study (greater

than 150 Hz), the geometric acoustics approach was determined to be the

most useful and practical method for describing the passage of sound

through jets. Calculation methods and a computer program were developed

to aid in the interpretation of results. This report describes these

results, together with some background information on the general nature

of sound propagation through shear layers.



INTRODUCTION

The Ames Anechoic Flow Facility (AAFF) has the potential of provid-

ing advance experimental data on a variety of important aeroacoustic

phenomena such as subsonic jet noise source characteristics and their

suppression, airfoil noise sources (single and cascades), and turbulent

scattering of noise. As with any experimental investigation, however,

the evaluation and interpretation of the raw measured data is of utmost

importance.

Sound generated in a moving fluid such as a jet propagates through a

shear layer. Passage through a shear layer can significantly alter the

features of the sound. These alterations must be accounted for if one

wishes to characterize the nature of the sound source from measurements

made by a microphone placed either inside or outside the flow, as will

often be the case for studies carried out in the AAFF. With this in mind

the present investigation was initiated to provide means of evaluating

and correcting for these propagation effects for noise sources typically

associated with single and co-flowing subsonic jets and for subcritical

flow over airfoils in such jets.

During the investigation the general nature of sound propagation

through sheared flows, methods for its description, and experimental data

for evaluating those methods were reviewed. The techniques for describ-

ing acoustic propagation fall into two categories, namely geometric

acoustics and wave acoustics. The former has much in common with

geometric optics and is most convenient and accurate for high frequency

sound. Wave acoustics is generally applicable to sound of all

frequencies but is computationally difficult, and valid formulations,

much less solutions, are known for only very restricted types of fluid

flows.

In the frequency range of interest in the AAFF (>150 Hz), the

geometric acoustics approach was determined to be the most useful and

practical method for describing the passage of sound through jets. Cal-

culation methods and a computer program were developed to aid in

interpretation of results obtained from the AAFF. This report describes

these results, together with some background information on the general

nature of sound propagation through shear layers.



NOMENCLATURE

a isentropic speed of sound in fluid at steady flow

C-, ,C2 constants

e unit vector

f generalized function

F generalized function

G generalized function

h lateral distance from source to longitudinal extension of
nozzle lip. In vortex sheet analysis, lateral distance
from source to shear layer

H enthalpy of undisturbed flow

I acoustic intensity

M Mach number of jet

MM Mach number of ambient fluid outside shear layer

n normal to the wave front

p static pressure of fluid

p" acoustic pressure at location c of figure 2 in absence of
shear layer

p' measured acoustic pressure at location of observer

r radial coordinate

r spatial coordinate

R distance from source to receiver

s local distance along ray path

S entropy of undisturbed flow

t time

T static temperature of fluid

U velocity of wave front

u,v,w velocities along x,y,z axes, respectively

V undisturbed flow velocity

x,y,z space-fixed Cartesian coordinate system

X,Y,Z space-fixed Cartesian coordinate system, rotated 90° about
z-axis to xyz coordinate system

3 angle between x axis and projection of an on xy plane

Y angle between z axis and an

n -O(Y-YO)/(X-XO)
9 angle of emission of signal by source in convecting medium

6m measured angle from source to observer, with respect to jet
axis

9 angle of reflected wave with respect to jet axis



NOMENCLATURE (Concluded)

6 angle of emission of signal by stationary source, withs respect to jet axis

6. angle of transmitted wave (outside shear layer) with respect
to jet axis

6 maximum angle of "zone of silence"z s
p density of fluid at steady flow

a spreading rate parameter in shear layer calculations

<j> disturbance velocity potential

<t> disturbance velocity potential at frequency U)

co frequency, sec

Subscripts

( ) mean component

( )„ differentiation with respect to x
J\

( )' fluctuating (acoustic) component



NATURE OF PROBLEM

The general objective of the present study is to develop efficient

calculative methods which will facilitate the analysis and interpretation

of acoustical data obtained in the AAFF. The general arrangement with

which we are concerned is shown in figure 1. A detailed description of

the facility and its flow characteristics is given in reference 1.

In more specific terms, the work entails the mathematical interpret-

ation of acoustical signals generated in and propagating through the open

jet of the facility, or a portion of it, and measure by microphones in an

essentially quiescent medium outside the jet. The investigation is

focused on describing the effects of the jet flow on sound propagation.

Such effects include not only motion of the medium, but motion of the

source of the sound as well.

In delineating the propagation effects, it should be observed that

it is not always possible to clearly separate the effects of propagation

from those associated with noise generation for real sources of sound.

Nor is it always possible to consider the acoustic signal separately from

the flow field. In order to obtain useful results, it has been necessary

therefore to define carefully the assumptions regarding the sources of

sound treated in the present study and the limitations of the resulting

methods for describing sound propagation.

In particular, the propagation effects to be considered in the

present study include refraction (which is due to gradients in flow velo-

city and medium properties), convective amplitude and directional shifts,

and Doppler effects (due to relative motion of source, medium, and observ-

er) . Other effects of the medium, such as source modification by the

flowing medium or the generation of additional noise sources due to the

effects of noise on the flow are not considered per se, but may be includ-

ed a_p_r_iora as prescribed sources. One further effect is that of sound

scattering by turbulence. The state-of-the-art of this effect is such

that little quantitative treatment can be reported. Therefore it has not

been considered in the present study.

Consider the ray emitted by a stationary source at the angle 6 in a
5

stationary medium, as shown in sketch (a). If this source were placed in

a uniformly moving medium this ray would propagate in the direction 9 due

to convection by the medium, as shown in sketch (b). If this ray propa-

gates through a non-uniformly moving medium, such as a jet shear layer,

5
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its direction will undergo further changes due to the variations in velo-

city and speed of sound in that region. This situation is shown in

sketch (c).

The several available techniques for describing acoustic propagation

were surveyed to determine which had the most attractive features and

would be valid for frequencies of interest (i.e. greater than 150 Hz) in

the AAFF. These were programmed for computer calculation and some sample

calculations were carried out. A satisfactory technique was identified

for the geometric acoustics approach. Evalution of the various methods

utilizing wave acoustics indicated that the Lilley Wave Operator is

probably the best for these purposes. However, the results of a recent

comprehensive experimental and analytical study jointly sponsored by the

Department of Transportation and NASA (ref. 2) indicate that there is

little practical difference between results from this and geometric

acoustics for the sound of interest in the AAFF. Amiet (ref. 3) has

investigated the short wavelength limit and found geometric acoustics to

be acceptable as a correction technique for sound with wavelength less

than a jet diameter. Accordingly, the current study has concentrated on

providing a satisfactory geometric acoustics calculation technique with

provision for examining various sources and source movement effects.

BACKGROUND

A systematic mathematical study of the feasibility of wavelike solu-

tions to the equations of motion has been recently published by Gunzburger

and Kleinstein (ref. 4). They have concluded that periodic solutions to

the Navier-Stokes equations exist only under very restrictive conditions,

many of which are not generally satisfied by shear flows of the type occur-

ring in the AAFF. Hence, short of completely solving the Navier-Stokes

equations by some means (e.g. numerically) we cannot expect to totally de-

scribe the noise measured in such a facility by theoretical means. It is

clear from observation, however, that locally, or for short periods of

time, wave-like disturbances do exist in such flow fields under many con-

ditions. In the following, we will briefly discuss some approximate form-

ulations and indicate their theoretical and physical limitations.

Theory

There are several approaches to describing the propagation of sound

in homogeneous media. It appears from the present investigation that



wave-like solutions have only been .found for the governing equations

after linearization for small disturbances. Blokhintsev (ref. 5) showed

that the governing equations of inviscid fluid mechanics, linearized for

small disturbances, can be expressed in a wave equation form. The

frequency, w, and vorticity (curl V) for which this development applies

is | curl v|/u) « 1. He also discussed the propagation of sound in an

irrotational isentropic flow. For such a flow the equation for the

disturbance velocity potential, <)>, is

2
2-| = a2V2((> + grad H • grad <f> + 1$. V • grad(£n a2) (1)
Dt: 3t

where

fifil= IT*-i = ia = -r*- = isentropic speed of sound in fluid

.:. = substantial derivative ^ + V • grad ( )
UC o t

H = enthalpy of the undisturbed flow

S = entropy of the undisturbed flow

V = undisturbed flow velocity (upon which small acoustic .
disturbances are superposed)

This equation is recognizable as being related in form to the wave

equation. It is a linear, second order differential equation and will

support wave-like solutions if the steady flow properties involved in its

coefficients are well behaved. In particular, the coefficients in the

equation are independent of time; hence, the general solution can be

represented in terms of superposed solutions of the form:

<j> = A(?;to) exp (iu)t) + conjugate (2)

where

A(r;w) = the complex amplitude and spatial phase function for the oo
component

i = /=!
r = spatial position

t = time

o> = frequency

Schubert (ref. 6) has developed a numerical solution technique for

equations like equation (1) applied to a jet flow field. He indicated

that his solution method was applicable to either the velocity potential

8



or Obukhov's potential. However, property gradients were accounted for

only approximately. The solution process is tedious, especially when

either of the last two terms of equation (1) are retained, and the

results obtained by Schubert were little if any better than those

obtained from geometric acoustics.

The formulation of equation (1) will permit the extensive examina-

tion of sound propagation in flows with fluid property gradients, but the

velocity field must be irrotational. The latter restriction excludes

shear flows except as they may be approximated using surfaces of concen-

trated vorticity (vortex sheets) to define their boundaries. Such an

approximation would seem to be permissible when the gradients of the

steady flow are large compared to those due to the presence of the wave

motion, that is, in a long wave length approximation. A discussion

of the condition for the validity of this approximation has not been

found in the literature, but one should be able to derive those condi-

tions in terms of the wave length of the sound, the thickness of the

shear layer, and perhaps the angle of incidence of sound waves on the

shear layer (a surface parallel to it). The latter will be made clearer

when geometric acoustics is discussed.

Lighthill (ref. 7) subsequently (to Blokhintsev) published his

"acoustical analogy" approach, in which the equations of motion were

"forced" into the form of a wave equation for a homogeneous, stationary

medium. All effects of flow and fluid property inhomogeneities are

accounted for by "equivalent source" mechanisms, according to Lighthill's

theory. The Lighthill theory, which is exact, models the sound radiation

from a flowing fluid as emanating from nonstationary sources in a

stationary medium. Thus, all refraction and convection effects of the

flow are accounted for by "equivalent" time-dependent sources. This

formulation is exact but difficult to apply because the source terms are

not exactly known or knowable. The significance of the theories develop-

ed since Lighthill is in their attempts to separate more clearly the

noise production from the propagation effects of the flow.

The theories of Phillips (ref. 8), Csanady (ref. 9), and Lilley

(ref. 10)' have attempted to identify the "true source" mechanisms of

sound production in terms of commonly recognized fluid and flow proper-

ties. They have formulated the problem in terms of various "convected

wave" equations. By so doing, they have also contributed to the



isolation of "propagation effects" which may be used to analyze noise

radiated through but not .generated in a given flow. Doak (ref. 11),

Howe (ref. 12), and Yates and Sandri (ref. 13) have constructed theories

based on quasi-potential functions which are specifically formulated to

separate sound production from sound propagation in inhomogeneous rota-

tional flows.

Each of these formulations is "exact" in the sense that they can be

derived directly from the governing equations of fluid motion. Their

differences lie in their ability to describe the various acoustics

phenomena in terms of known or knowable properties of the fluid medium

and its flow field. It is doubtful that any one of these theories will

prove to have decisively separated propagation and production effects for

all situations.

At present, the most promising wave equation formulation for the

current application (i.e., for the study of sound propagation) is that of

Lilley. This equation is

2-̂ - - £- div(a2grad q') +2 fdiv £ - £- div] (a2grad q')
Dt ^ I C ^ J

= Source Terms (3)

whe re

q1 = tn p'/Po tne natural logarithm of the ratio of the fluctuating

(acoustic) pressure to the mean static pressure.

This equation is only valid for parallel mean flows (i.e., flows

which are undirectional and have gradients only transverse to that direc-

tion) . Recent publications of results provide some insight into the

capabilities of this method. Balsa (ref. 14) has published results for

an arbitrary radial velocity profile with a single point quadrupole

moving along the axis of a jet. Tester and Morfey (ref. 15) have con-

sidered a ring of quadrupoles at a constant radius and investigated the

effects of nonuniform density on sound radiation from jets.

Geometric acoustics is the least restrictive approach in terms of

the types of flows which can be examined. It is probably the easiest

to understand, also, since it primarily involves kinematical relations

among the wave and fluid velocity components to trace so-called "rays",

the locus of a point on a wave front as it passes through the fluid.

The major restriction of this approach is the assumption that the varia-

tion of the properties characterizing the basic initial state over small

10



distances and short times, compared to a characteristic length (e.g. wave

length) and characteristic time (e.g. period) associated with the

acoustic field are negligible. Thus, one must expect inaccuracies when

the sound frequency is low enough that the acoustic wave length is the

order of the shear layer thickness or another characteristic flow

dimension.

Acoustic intensity may be calculated by assuming energy conservation

within a bundle of rays. This approach ignores the action of viscosity

in the wave motion and is thus inaccurate.when the rays become focused in

a region so as to bring this action into the picture as a significant

phenomenon. However, this difficulty is not restricted to geometric

acoustics. It is partially an amplitude effect which is not accounted

for in most of the other approaches, since they rely on linearization of

the acoustic disturbance as well. Geometric acoustics is also inaccurate

if the acoustic disturbance generates further acoustic energy by inter-

action with the flow (e.g., triggering flow instability). Since this is

in effect creating new sound sources, this shortcoming is also present in

other approximate methods.

While some theoretical limitations can be identified, a comprehen-

sive evaluation of existing theoretical methods is difficult at best due

to the lack.of well defined experimental measurements. This situation

is discussed in the following section.

Experiment

There have been numerous experimental investigations of the direc-

tional distribution (directivity) of sound in the presence of jet flows.

These measurements have been used to evaluate the several aeroacoustic

noise theory formulations. However, only in the investigations at the

University of Toronto [Atvars, et al. (ref. 16) and Grande (ref. 17)] was

the source adequately characterized so as to make the measurements con-

clusively useful for evaluation of flow-acoustic propagation effects. In

other investigations the sound source was estimated based on the particu-

lar aerodynamic noise theory under study. The actual nature of the

source in the presence of the medium was generally only estimated. While

there is no strong evidence that a flowing medium does anything unexpect-

ed to a source, neither is there conclusive evidence that it doesn't. In

light of the recent disclosures by Dowling (ref. 18) regarding the

11



physical concept of the "ideal" source in the presence of a moving medium,

caution, at least, is suggested.

Although ray tracing techniques are supposedly limited to short

wavelengths, they appear to give reasonably supportable results for most

frequencies of interest in wind tunnel testing except for passage through

the shear layers at large angles with respect to the normal to the shear

layer (e.g., shallow angles with respect to the jet axis). Further,

Amiet (ref. 3) has investigated the short wavelength limit of geometrical

acoustics and found it to be acceptable for wavelengths less than a jet

diameter.

Balsa (ref. 14) and Tester and Morfey (ref. 15) evaluated the

results of their calculations of flow-acoustic interaction based on the

Lilley formulation of the wave operator. Each of these studies indicated

difficulties in comparison with experimental resul-ts (theirs and others)

at both low and high frequencies and at small angles to the jet axis.

Also, a recent analytical and experimental study (ref. 2) has concluded

that predictions from the Lilley equation for propagation angles outside

the so-called "zone of silence" can be closely approximated with results

from calculations using geometric acoustics.

Since calculations by geometric acoustics are straightforward (if

somewhat tedious algebraically) and the zone of silence is not of primary

significance in the Ames Anechoic Flow Facility, the efforts have concen-

trated on development of a generally applicable geometric acoustics ray

tracing computer program. This approach is applicable to any flow field

property distribution within the short wavelength restriction, as well as

to any of the "ideal" source types. The Lilley equation, with its

restricted applicability may be employed as a check on the low frequency

limitations of the geometric acoustics approach.

THEORETICAL BASIS OF GEOMETRIC ACOUSTICS

Kinematics of Wave Propagation in a Three-Dimensional,
Inhomogeneous, Moving Medium

The fundamental approach is to describe the motion of a wave front

locally in terms of the fluid properties and motion, but require that the

motion conform to Fermat's stationary transit time principle. A general

derivation based on geometric acoustics may be found in Ugincius

12



(ref. 19). The present derivation uses only wave front kinematics and

Fermat's Principle to derive the governing equations.

The fundamental mechanics of wave propagation require that a wave

front move relative to the medium with the local speed of sound a(r) .

The wave front will additionally be convected by the local velocity V(r)

of the medium, yielding a total velocity of the wave front, U(r). This
can be expressed as

U(r) = v(r) + a(r)'n(r) (4)

where

dt dt s

where

r
s(t) - the location of an element of the wave front at time t (as

shown on the next page)

s = the distance along the ray
e
s = the unit vector tangential to the ray path at r (t)

S

The velocity components of the element of the wave front in the

x, y, and z directions are given, respectively, by the following
equations.

•g£ = u + a sin y cos B (5)

dvat = v + a sin y sin B (6)

ff = w + a cos Y (7)

whe re

sin y cos B = n • e

sin Y sin B = n • e

cos Y = n • e .z

If we take one of the variables, say x, as the independent variable,

the above equations may be combined to eliminate the time t and the

angles y and B/ which indicate the local wave normal direction.

z = £l5. = dz/dt _ w + a cos y
x dx dx/dt u + a sin y cos B (8)

13
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dy _ dy/dt _ v + a sin y sin
— - * — _ , _- r~ ~~ — - .

dx dx/dt u + a.sin Y cos 3
(9)

The following useful relations can be derived from equation (8) and

(9).

and

a cos

a cos

-(z u - w) ± a cos
X

zx sin Y

-yx(yxu - v) ±^/a
2sin2 yd + y2)

Letting

V = yxu - v

W = Z u - w

(1 + sin y

.- v)

(10)

(11)

(12)

(13)

It can be shown that

a cos f w i

± z
x + z2) [a2(l + y2) - v 2 ] -
f* __ -^ X

) - y z V]
X X X

(14)

The appropriate signs may usually be determined by requiring that

the direction of propagation remain continuous in a continuous medium.

The Variational Problem and Its Solution

The kinematics of propagation can be determined from the above

equations provided any two of y, (3, y , or z are known along the path of
X X

propagation and the properties of the medium (including its flow field)

are specified. It is likely that the wave normal or path direction will

only be known at an end point. However, the path actually traveled by a

"ray" is usually to be determined. A relation for making this determina-

tion is provided by a very simply stated principle due to Fermat.

Fermat's Principle states that the time required for a ray to travel

15



between two points will be an extremum. This principle may be formu-

lated as a problem in variational calculus.

The time required for a wave to travel from a position, SQ (x ,y , ZQ),

on a ray path to another position SI(K, ,

s

t =

is specified by

ds
(ds/dt)

• I

• I

(ds/dx)dx
(ds/dx)(dx/dt)

dx
(dx/dt)

- I I
dx

a sin Y cos
(15)

\
By' combining equations (6), (10) or (11), (12), (13), and (14) , it

can be observed that equation (15) may be written

= I f(x,y,z,yx,zx)dx (16)

s=so(xo'yo'zo)

with x the independent variable. It can also be shown by the principles

of calculus of variations that t is an extremum in equation (16) if f

satisfies the simultaneous Euler-Lagrange equations given below. (The

extremum is in fact a minimum.)

_ _ 3 f
dx 9y-*

9y ~ J- *~ U

M_ * JL. o
^ ry H 'V Ci »7 '
O ̂  U.X. 0 £t

(17)

(18)

The solutions of these simultaneous equations cannot be given in

general, but can be obtained if f has certain properties.

16



It will be observed that the only explicit dependence of f on x, y,

and z arises from the properties of the medium, v(x,y,z) and a(x,y,z).

If these properties are constant, equations (17) and (18) reduce to

-M_ - r .11 - r
3y ^1 3z ~ °2

X X

which will yield the familiar relations for propagation in a homogenous

medium.

Equations (17) and (18) are valid generally, however, and may be

used to determine the path of a ray in an inhomogeneous medium. We will

now discuss briefly the general features of these equations.

In carrying out the indicated operations of equations (17) and (18),

one will arrive at two equations (Euler-Lagrange) of the forms

F(x,y,z,yx,Zx,yxx,Zxx) = 0 (19)

G(x,y,z,yx,zx,yxx,zxx) = 0 (20)

Equations (19) and (20) represent coupled, second-order differential

equations for the ray path. Their general solution will have four arbi-

trary constants, which one may reason will permit specification of a

corresponding number of the following:

1. Initial point of ray, s (x ,y ,z )

2. Final point of the ray, s, (x, ,y.., z,)

3. (y ) or 30x o o

4- (zx>o °r Yo

5. (y^orfjj.

6. (zx)l0rYl

Rarely is it expected to be able to determine the general solutions

to (19) and (20) in an analytical form, but they may be employed to

provide an estimate of y and z or 3 and y along the path by performing
X X

a numerical integration of each. Then, if one is given an initial point

(xQ,y0,z ) and wave normal direction ($o, yO'
 or YX' zx^ tne ray path may

17



be constructed in a stepwise'manner by specifying dx = Ax, calculating Ay

and Az from the initial information and Ax. New values of yx and zx

(B and y) may then be determined by integrating equations (19) and (20)

and used to compute the next increment along the ray path by repeating

the previous process.

SOUND PROPAGATION IN A STRATIFIEDFLOW

As a first approximation in the analysis of shear layer effects on

acoustic propagation the actual shear layer can be replaced by one of

zero thickness - a vortex sheet. This simplified flow model provides

quick, inexpensive results. Historically, the first attempts to correct

wind tunnel acoustical measurements for the effects of a shear layer were

performed by Amiet (ref. 20) and Jacques (ref. 21) utilizing this .

approach. Physically, a vortex sheet is not a realistic representation

of a shear layer in a typical wind tunnel jet flow. Under certain con-

ditions however, comparisons between theoretical and experimental results

are in close agreement. Thus, under these conditions, which will be

discussed shortly, the vortex sheet assumption is an attractive alterna-

tive .

This method has several other advantages in addition to quick and

reasonable results. First of all, the corrections for shear layer

effects are obtained as straightforward multiplicative factors of the

measured amplitude and position, independent of source type or frequency.

In addition, when re-analyzing previous data for which shear layer

characteristics were not measured, an assumption of this type is the only

one possible. However, there are also several equally distinct disadvan-

tages to this model that are a direct result of the assumption of zero

shear layer thickness. Among these disadvantages are the prediction of a

portion of the incident acoustic energy being reflected from the shear

layer interface and the prediction of a so-called "zone of silence".

Before discussing these effects in detail a brief physical description of

the vortex sheet model shall first be presented.

The vortex sheet model of the flow is shown in figure 2. An

acoustic source at point s imbedded in a fluid flowing uniformly at Mach

number M emits waves at an angle 6 with respect to the flow axis. (For

simplicity, the discussion will be limited to consideration of plane
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waves but the model does not strictly require this assumption.) Due to

convective effects of the flow the waves propagate along a path at an

angle 6 to the flow axis. No further assumptions regarding the source

are required. The boundary between the moving fluid and the ambient

outer fluid is idealized by a velocity discontinuity - the vortex sheet.

The interaction between an incident wave and a plane interface has been

discussed previously by, among others, Ribner (ref. 22). The major

features only will be summarized here. When the incident wave reaches

the interface a portion of the energy is transmitted into the ambient

fluid at an angle 8 and a portion is reflected back into the moving

fluid at an angle 6 . The transmitted wave eventually reaches an

observer located at position 0. Hence, the wave reaching the observer is

different, both in magnitude and in direction, than the emitted wave.

The objective then is to reconstruct the emitted signal from the received

signal.

In the absence of the shear layer the signal would continue to

propagate at the angle 0 , eventually reaching the point c, the samec
distance r from the source as the point 0. Actually, the corrections can

be determined for any point along the convected path, as shown by Amiet

(ref. 20). The properties of refraction at an interface can then be used

to determine the relation between 6 , the measured directivity angle, and

6 , the convected directivity angle.

The determination of the corrected amplitude at the point c is

slightly more complicated. To the effects of refraction by the shear

layer on the amplitude must be added the effects of geometric spreading.

This includes spreading in both the xy plane and the xz plane. These

effects are determined by considering the spreading of a ray bundle as it

crosses the interface and assuming that the shear layer neither absorbs

acoustical energy from the ray tube nor generates additional acoustical

energy through interaction with the flow. However, Koutsoynnis (ref. 23)

casts severe doubt on this assumption. It is quite apparent that addi-

tional work is required, including careful experiments on the effects of

propagating acoustic waves on shear layer stability.

The vortex sheet approach previously has been investigated by Amiet

(ref. 20) for a plane shear layer and by Jacques (ref. 21) for a

cylindrical shear layer. Some features of sound wave interaction with a

plane shear layer will be investigated here. Comparisons of the various
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correction terms due to the plane and cylindrical shear layers have been

examined by Amiet (ref. 3).

At the interface the boundary conditions to be satisfied are (1)

continuity of pressure across the interface and (2) the velocity is

tangential to the surface of the interface. With these assumptions the

relation between the measured directivity angle and the convected

directivity angle is found to be

5 cot 9 [(2£cot6 )2 - 4(?2 - 1)(1 + cot26 )]1/2

sin 9 = ~i- + : r
1 + cot*6t 2(1 + cot^6t) (2.1)

where £ = - (cot9c - cot6t) (22)

1 cos 6c
9 = - = * " ~ M

Notice that the relative locations of source and observer with respect to

the shear layer enter into the relation. It can be shown that

lim 0 = 6. , ,v
h/R-o fc . (24)

Including the effects of both refraction and geometric spreading the

amplitude correction is given by

? +sin6t(l-

(25)

where

C= [(1 - Mocos6t)
2 - cos2et]

1/2 (26)
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This relation can also be evaluated for the effects of small h/R. If

this is done,

U + sin8t(l - MQcos0t)
2] (27)

There are two important angles that appear in the vortex sheet

analysis. The first angle is the value of 6. corresponding to 6 =0,

which can be shown to be

e " °08"1 <28>

This relation is shown in figure 3. The physical significance of this

angle is that no sound waves propagate in the outer field at angles less

than 6 . The second angle is that value of 6 for which sound wavesz s c
that are emitted at angles greater than this are totally reflected. This

angle corresponds to 0 = IT which is

9tr = cos'V 5-J-j-) (29)

Hence , sound waves emitted at angles 9 > 9 are totally reflected and
c tir

cannot be received by an observer outside the shear layer. Values of

9, are shown in figure 4.

These concepts are shown in figure 5 for three different Mach

numbers. . As can be seen, at a flow Mach number of 0.9 only the sound

emitted over the forward quadrant propagates through the shear layer

according to the vortex sheet model. The rest is reflected back into the

flow.

COMPUTED EFFECTS OF SHEAR LAYER ON SOUND PROPAGATION

A computer program was generated to carry out the indicated geometric

acoustics procedures for three-dimensional wave propagation from a fixed
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source in a two-dimensional flow and fluid property field. The program

is described in Appendix A.

It should be noted that the coordinate system (X,Y,Z) in which the

user communicates with the program is rotated 90° about the z-axis com-

pared to that in the previous derivation (x,y,z). See the sketch below.

x, Y

X

z, Z

This has in effect substituted Y for X as the independent variable

and made angular computation using the standard computer system library

subroutines more convenient when the major flow velocity is in the X

direction.

Calculations using the program were carried out for a two-dimension-

al isothermal shear layer. Sample results are presented for a range of

Mach numbers from 0.2 to 0.9 and wave normal angles (at the source) from

30° to 120° with respect to the flow direction and in the plane of the

flow. Various features of the sound propagation were determined and are

presented in the following discussion.

Velocity Profile in Shear Layer

The two-dimensional velocity profile used in all calculations was

the hyperbolic tangent profile:

u
u = -2. (1 + tanh n) (30)

v = _° (n tanh n + In
 se? n ) (31)

a 2
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where n = -a (Y - YQ) (X - Y )

u = X-component of velocity, the main flow direction

v = Y-component of velocity

u = reference velocity

a = spreading rate parameter

The general features of this velocity profile are shown in figure 6,

This is a self similar, nonparallel flow with a small but finite trans-

verse velocity. The relation for the transverse component of velocity,

v, given by equation (31) has been computed from equation (30) and the

continuity equation for a two-dimensional, incompressible flow. The

condition that v ->• 0 far from the shear layer was also used.

Practical limits on n were invoked for calculation purposes and the

flow was considered to be uniform and parallel outside of |n| = 6 in the

present calculations.

The spread parameter, a, sets the spatial scale of the flow. In

particular, it and the velocity, u , determine the shearing rate for the

flow. A value of a = 15.2 was used in the sound propagation calculation

presented in this report. This value was chosen to match the maximum

rate of shear of another velocity profile (the error function) used in a

referenced report (ref. 2). Propagation data and calculations from this

report were used for comparison with the present calculations.

The velocity is not used directly in the ray path calculations. It

is the ratios of the velocity components to the local speed of sound, a,

which are directly involved. These are denoted by M =u/a. and M =v/a.xx yy

The present calculations were carried, out for an isothermal flow in

which the speed of sound was a constant, a , throughout. The ratio

u /a is denoted by M in the text and figures. Appendix B contains

expressions for generalizing the calculation directly to a fluid obeying

the Crocco relation between velocity and temperature. These were not

examined in the present calculations. However, the computations them-

selves are well within the scope of the included theory. In fact the

main program can handle three-dimensional wave propagation in any

physically realistic, two-dimensional density and speed of sound varia-

tion one would wish to input in the subroutine provided for the flow and

fluid properties. As a final note it should be mentioned that the ray

path is not dependent directly on fluid density.
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Ray Paths and Wave Normal Deflection

The typical features of the ray paths predicted by the present method

are examined in this section. In order to facilitate interpretation and

comparison with other data the results presented will be for components of

waves in. the plane of the flow containing the maximum velocity gradient.

No two-dimensional wave approximations have been employed in the calcula-

tions, however. The program has the capability of treating three-dimen-

sional wave surfaces in a two-dimensional medium, as previously stated.

When considering the directional pattern of sound radiating from a

source in a moving medium some authors prefer to use the convected

emission angle, 6 , or the ray path angle as the independent variable.c
In the present investigation, the wave normal emission angle, 9 , that is

• S

the angle relative to the x-axis, has been used. It is believed this

will facilitate later investigations involving source motion and non-

uniform source emission. If the flow is uniform the relation between

these angles in the plane of the flow is particularly simple. As an aid

in comparing the present results to those of other investigations, this

conversion is illustrated in figure 7 for several subsonic Mach numbers.

The appearance of the ray paths for various wave normal angles

between 30° and 120° are shown in figure 8. The flow field is the

isothermal, hyperbolic tangent flow described in the previous section

with M =0.2. The lines in figure 8 marked n = ±6 designate the shear

layer boundaries. The paths are in agreement with those of Plumblee

et al. (ref. 2) and are also very close to those predicted by vortex

sheet methods, e.g., the method of Amiet (ref. 20) presented elsewhere

in the report.

Plumblee et al. (ref. 2) have indicated that ray paths may be very

closely approximated by placing a vortex sheet at the center of the shear

layer ("nozzle lip line"). The present results confirm this indication

for sources situated in a uniform flow bounded by a thin shear layer.

The implication that the thickness of the shear layer or the particulars

of the velocity distribution have little effect on the ray path appears

to be confirmed at this Mach number by the present calculations. The

effects of thickness at higher Mach numbers are shown to be significant,

however.
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In figure 9 ray paths are shown for Q = 30° for three sourcess
located variously in shear layers having M = 0.2, 0.5, and 0.9. Sources

1 and 2 are located in the uniform flow region but the corresponding rays

from source 2 travel through a much thicker shear layer than do those

from source 1. Ray paths for 6 = 30°, 60°, 90°, 105°, and 120° through
S

the thicker shear layer from source 2.are shown in figures 10-12 for

M = 0.2, 0.5, and 0.9, respectively. The total deflection of the

corresponding rays across the entire shear layer was calculated to be

within 0.5 degree and generally within 0.2 degree for the two source

locations. Seldom would input flow field information be accurate enough

to distinguish between these angles.

Figure 13 shows the calculated wave normal deflection angles, 6.-6 ,t. s
versus initial wave normal angle, 6 , at source 1 for M = 0.2, 0.5, and

0.9. Also shown are the deflection angles calculated from simple vortex

sheet methods described elsewhere in this report and the predictions of

Plumblee et al. (ref. 2). The latter are for a parallel flow with M =

0.2 only. All results are in very close agreement for the N =0.2 case

(less than 1/2 degree spread). The agreement between the present predic-

tions and the vortex sheet is also excellent at M =0.5 and for 6 = 30°

and 60°. Some significant differences show up at 90°, 105°, and 120° for

the higher Mach numbers. The maximum difference is about 2 1/2° out of

7° for Q = 105° and M =0.9. The deviation at 90° is expected due tos o
the non-parallel flow in the present calculation. However, it is not

clear that this can account for the greater deviation for an angle above

90°. Such differences could be the result of a lack of convergence of the-

numerical solution to the ray equations. The results of the convergence

tests performed would not seem to support this, however, and the differ-

ence is unexplained as of now.

Thus, the wave normal deflection can be obtained with good accuracy

at low Mach numbers or low angles from a simple vortex sheet representa-

tion of the shear layer. The representation at high subsonic Mach numbers

and angles greater than 90° may be tolerable if the flow is parallel. The

extension of this simplified procedure to a shear layer in which the speed

of sound as well as the velocity varies requires prior examination to de-

termine if it is valid. Such examination has not been performed here but

could be carried out with the present computer program.

If the source is located in a nonuniform region such as the shear

layer, the simplified procedure is not available because of the indefi-
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nite location of the vortex sheet, regardless of any other shortcomings

which may be present. Source 3 of figure 9 is located on the maximum

shear line of the velocity profile. The ray paths shown are for the same

source angle (6 = 30°) and Mach numbers (0.2, 0.5, 0.9) as for source 1

and 2. However, the local Mach number at source 3 is one half of M . It

is seen that the transmitted ray inclinations are not as great as their

counterparts for sources 1 and 2 and examination shows that neither do

they approximate those obtained from a vortex sheet of strength 1/2 M .

Hence, the vortex sheet approximation does not appear to be useful for a

source located in a region of shear.

There is another important point of contrast between the present

calculation and the vortex sheet. It arises directly from the inadequacy

of the vortex sheet in representing the flow geometry. The vortex sheet

can intercept only rays which are inclined toward it. The ray which is

parallel to the sheet is bent into the surrounding medium at a finite

angle defined by equation (28).

Thus, in the vortex sheet approach, no sound can cross the sheet and

have a wave normal angle less than cos . . The region of wave normal

angles 0 has been, somewhat misleadingly, termed a "zone of silence".z s
This term should not be taken to mean that there is a region in which no

sound from the moving side of the vortex sheet can reach it, because

that is dependent on the location of the source.

Real shear layers grow however. Specifically, they grow toward the

source and can intercept any ray which diverges from the "lip line" less

rapidly than does the nearest "boundary" of the shear layer. Hence, all

such rays can be turned toward the other side of the shear layer and may

emerge from it if the shear layer extends far enough downstream.

No illustrative calculations were made in the present study to

specifically examine the "zone of silence" by the present method.

However, it would be instructive to do so. In particular it would be

interesting to find out whether the deflection relations for the vortex

sheet are accurate in this region at low Mach numbers as they appear to

be outside it. In the process one could find out where the accuracy of

the relations breaks down, if it does. A.similar study on the upstream

reflection boundary might also prove of interest, although limitations of

the vortex sheet model which are soon to be made apparent may prejudice

such an investigation.
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Effective Deflection of Ray Path

It is often of interest to know the angle of emission of sound

reaching a microphone from a source at a known position. This would be

extremely important, for example, if the source is directional.

The relative positions of the source and microphone when they are

both located in the plane of flow can be specified, by the radial distance

separating them, R, and the measured angle, 9 , from the flow direction

(i.e. the X-axis) to the straight line connecting the source and micro-

phone. This situation has been examined for sources 1 and 2 (shown in

figure 9). The effective deflection angles, 9 - 6 , for sources 1 and 2

are shown in figures 14 and 15, respectively, and compared with results

obtained in each case from the vortex sheet model. The parameter h/R is

used in the vortex sheet model, but the comparisons primarily reflect

"thin" vs. "thick" shear layer effects. For the thin shear layer as in

the case of source 1, the vortex sheet calculations agree very well with

those of the present method, although some deviation near the 90° emission

angle is noted. As previously indicated, this deviation is probably due

to the nonparallel flow included in the present calculations.

For the thick shear layer, as in the case of source 2, there are

large differences between the present method and the vortex sheet calcu-

lations presented. The latter calculations assumed the vortex sheet

location to be on the n = 0 line. It is this assumption which causes

the discrepancy. Since both the incoming angle, 9 , and the outgoingc
angle, 9., are identical or in very close agreement for the two methods,

only a displacement of the ray within the shear layer could cause a

variance between the two. The following will serve to illustrate this

fact.

It is clear that the vortex sheet can be located somewhere within

the shear layer it represents and yield good results for the ray path

since it reproduces the exit angle 9 accurately. The proper position of

the vortex sheet can be identified a posteriori by extrapolating the

straight line positions of the ray path calculated by the geometric

acoustics method to their intersection (see sketch).
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Effective vortex
sheet location

If the shear layer is thin, as for source 1, the error in position

cannot be great, therefore the agreement is quite good with an arbitrary

positioning of the sheet. The thicker shear layer presents a larger

field for error and the error realized is very noticeable in some cases,

as shown in figure 15. This represents a clear limitation of the vortex

sheet model. This limitation plus the limitations in predicting sound

pressure level make it seem not to be worthwhile to determine a pattern

for locating the effective vortex sheet position.

Sound Pressure Level

Sample calculations of sound pressure level and intensity relative

to appropriate reference values are presented in figures 16-19. In

order to continue comparisons with the vortex sheet model developed by

Amiet (ref. 20) , the sound pressure level is referenced to that which

would be measured at an equal radius from the source if the shear layer

were absent. This reference condition is called the "Ideal Wind Tunnel"

condition by Plumblee et al. (ref. 2). The physical situation is as

shown in the sketches in figures 15 and 16. The SPL (Sound Pressure

Level) for the thin shear layer associated with source 1 is shown in

figure 16 for Mach numbers of 0.2, 0.5, 0.9 and for the range of emission

angles, Q , from 30° to 120°. The same calculations for the thick shears
layer associated with source 2 are presented in figure 17. In both

cases it is seen that the shear layer causes a sound pressure increase

for those rays emitted in the flow direction (6 < 90°) and a decrease
5

for those emitted in a rearward direction with respect to the flow. The

change is seen to increase with increased Mach numbers, as would be

expected. In comparing the two figures it is noted that the thin shear

layer has the greater effect. This is particularly so for small angles
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with respect to the flow direction. These results have been compared

with the vortex sheet model previously described and those calculations

are indicated on the figure. While the general trends are in agreement

except for small angles with respect to the flow direction (i.e.,

approaching the "zone of silence"), the magnitude of the change in SPL

is much greater than predicted by the vortex sheet model.

Even though the ray path results using the present and the vortex

sheet methods are reasonably comparable for the thin shear layer, the

sound pressure results are significantly different. It is believed that

the extreme reduction in predicted sound pressure for the vortex sheet

model is due to the reflected energy inherent in that method. The

reflected wave arises solely from the discontinuity in properties of the

medium (including velocity). If the medium properties are continuous, as

they physically are, there is no reflected wave. In fact, Amiet (ref. 3)

has introduced a "correction" to the vortex sheet model for shear layer

thickness which essentially eliminates the effects of the reflected

wave. The only "reflection" which appears in the continuous property

case is due to sufficient refraction of the rays which enter the bounding

region (e.g. shear layer) such that they bend and re-emerge from the same

side. This can occur for upstream radiation at a large angle or for

large gradients in the speed of sound in the direction of propagation.

Intensity

The sound intensity is affected by propagation through a shear layer

in much the same manner as the sound pressure level. The direct relation

between sound intensity and pressure is shown in Appendix C of this

report. In each case, the effect is minimum for emission at 90° to the

flow. It is often of interest to compare the intensity at a point out-

side the shear flow with that which'would be measured at an equal distance

from a non-directional source of equal strength but emitted perpendicular

to the flow. Such results calculated by the present method are presented

in figures 18 and 19 along with a sketch of the physical arrangement of

the intensity measurements being compared. Again, these present calcula-

tions are for the thin and thick shear layers associated with sources 1

and 2, respectively. As expected the results are much the same in

character as those for the sound pressure level shown previously.
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CONCLUSIONS AND.RECOMMENDATIONS

The features of sound propagation of most importance in interpreting

measurements in the Ames Anechoic.. Flow Facility have been examined. A

distinction was made here between sound propagation effects and those of

other acoustic and flow interactions. Propagation effects were restrict-

ed to those involving convection and refraction of the acoustic signal and

relative motion of the source and observer.

Methods for evaluating the propagation effects were discussed and

the more promising methods evaluated. The two most accurate methods were

those based on geometric acoustics. The vortex sheet method was examined

and found to have serious shortcomings, especially at Mach numbers

greater than 0.2.

While the Lilley Equation is strictly applicable only to parallel

flows, it is valid for all frequencies of interest. Numerical calcula-

tions of sound propagation based on the Lilley Equation have been

developed by many investigators, e.g., Plumblee et al. (ref. 2), Mani

(ref. 24), and Tester and Burrin (ref. 25). Such solutions are

frequency and source type (i.e monopole, dipole, quadrupole, etc.)

dependent. The geometric acoustics method is generally applicable to all

flow fields but is restricted to wavelengths short compared to signifi-

cant length scales of the medium. A combination of these two methods is

recommended to evaluate the range of data obtained in the AAFF.

Because of its generality the major emphasis of the investigation

was placed on the geometric acoustics approach which intrinsically is

independent of source type and frequency. The equations of geometric

acoustics were formulated from the kinematics of "ray" trajectories and

Fermat's Principle of stationary transit time.

A computer program was developed in the present study< for numeri-

cally solving the Euler-Lagrange Equations resulting from Fermat's

Principle applied to three-dimensional waves in a two-dimensional,

inhomogeneous medium. Sample calculations were carried out for a source

in a uniformly moving medium for a range of Mach numbers from 0.2 to 0.9

and sound emission at angles of 30° to 120° with the flow direction. The

program traces a ray from a source to a constant radial or side line

distance from an arbitrary, specified point. Ray paths, sound pressure

and intensity were computed for "bundles" of these rays traversing a
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shear layer into a quiescent, uniform medium. Isothermal flow was used

for these calculations but the program is not limited to constant sound

speed or density. The results of these computations were used to discuss

the difficulties in using vortex sheet methods when: (1) the source is

located in the shear layer, (2) the shear layer is not snail with respect

to the acoustic wavelength (i.e. a thick shear layer), and (3) the

changes in sound pressure level are being determined.

It is also shown (see Appendix D) how to apply the computational

methods to a moving source, as one may have if, for example, it is

convected with the flow.

In setting up and analyzing experimental studies it is recommended

that the geometric acoustics program be used to locate microphones by

predicting the sound propagation features from the sources under investi-

gation and any other major noise sources. A check of the lowest

frequencies of interest might also be made using one of the Lilley

Equation techniques for comparison. Corrections can be made or seen to

be necessary at these low frequencies. Generally, if the wavelengths of

interest are less than three times the thickness of the shear layer to

be traversed the corrections are negligible (ref. 3).

It is recommended that further work be carried out to expand the

capabilities of the computer program developed in this investigation and

to use it in combination with an experimental program in the AAFF for

clearly defining the limitations of geometric acoustics and evaluating

corrections necessary. The only significant modification of the computer

program which is seen to be desirable at this point is its extension to

three-dimensional media. Such an extension is expected to be quite

straightforward since the numerical solution technique would be identical

to that presently used. It would also completely generalize the medium

properties available for investigation and would permit its broad appli-

cation to sound propagation problems of many, varieties. The method is

not intended for supersonic flow rates, however. A further introduction

of sound attenuation along a ray path would also permit atmospheric and

undersea sound propagation studies with this method.
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APPENDIX A

DESCRIPTION OF GEOMETRIC ACOUSTICS COMPUTER PROGRAM .

A computer program was composed to carry out the numerical solution

of the ray path equations derived in the text of this report. The

program determines the propagation of a three-dimensional phase surface

emanating from a stationary point source by following the path of a

"bundle" of rays (a central and four surrounding rays) as they pass from

a stationary point source through arbitrary two-dimensional flow and

fluid property fields. These fields are treated as being continuous.

The program also computes the average intensity and sound pressure for

an acoustic-energy-conservative ray bundle at specific points along its

path through the fluid medium. The program is applicable as a basic tool

in evaluating measurements of sound which must propagate through an

inhomogeneous medium before being received by the measuring microphone.

The specific situation envisaged for analysis is that of determining

the sound radiation pattern of a point source located within an inhomo-

geneous moving medium as determined by a microphone at either a constant

radius or side line position from an arbitrary point. Interaction of the

microphone with any local flow is not accounted for since it is in a rela-

tively quiescent region. Neither are discontinuous changes of fluid and

flow properties considered, since these are approximations to real

property variations and can be treated by simpler mathematical means.

In the following the program structure, operation and usage are

described. Included are the input and output nomenclature, the input

keypunch format and a listing of the program and current subroutines for

the flow field and sound pressure level.

Main Program SART

This part of the program contains the input and output sections as

well as sections for the calculation of the ray bundle size and step-size

along the ray paths. It also calls the subroutines used in the programs

to identify the reference condition for.the subsequent sound pressure and

intensity calculations (PIREF), to determine the local flow field proper-
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ties (Mach number, speed of sound and density) involved in the calcula-

tions (FLOW), and to solve the differential equation of the ray path

(YPPZPP).

The first action of SART is to read in the input data for the

particular job. First is the HEADER card which describes within an 80

character space the job to be run. Next is a body of numerical informa-

tion contained in a namelist group entitled INP. The specific items are

described in figure A-l. This input information is then written out.

Finally the source emission angles, <(> and 6 (degrees) for which thes s
central ray path calculations are to be carried out are read in using the

format indicated in figure A-2. Each value of <J> is used with each value
S

of 9 up to the numbers NPHI and NTHETA (given in INP) in order as listed.
S

The angles and position information are then transformed to an

internal coordinate system and converted (e.g. degrees to radians) where

necessary. A compound DO loop is then entered to carry out the calcula-

tions for each combination of <|> and 9 .
S S " .

The angles for the four bounding rays of the ray bundle are deter-

mined first. Then the initial flow field information is obtained by

calling the subroutine FLOW.

Based on this flow field information the program then calls sub-

routine PIREF, which calculates the reference quantities necessary to

determine the sound pressure level and sound intensity at susequent

points along the path of the ray bundle.

The program then enters a section in which the paths of each ray in

the bundle are calculated for the same step in time. In this manner, the

positions of the rays at the end of each such step represents the inter-

section of the rays with a surface of constant phase. The position

changes are determined using the direction cosines of the path, the fluid

velocity and speed of sound, each evaluated at the starting position for

the step.

The magnitude of the time step is determined by applying certain

limiting criteria to the path of the central ray. Numerical values for

these are input in the namelist INP. These criteria are:

1. The final distance, YYF (maximum radial or side line distance

from a specified point (XXC, YYC, ZC)) shall not be passed.
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Namelist INP

Column 2

YYC
ZC

YY0
Z0 J

NSL

YYF

A0

M0

RH00

SIGMA

IAR

MS

DELPHI

DELTH

DELMIN

DVLIM

PF

MAX

NPHI

NTHETA

$END

Position of control point for constant radius
- calculation .

Initial position of source

0, calculations will end when YY-YY0=YYF

1, calculations will end when the radial distance from
(XXC, YYC, ZC) is YYF

Ray displacement for final calculation

Reference speed of sound

Mach number scale (e.g. maximum Mach number) for FLOW

Reference density

Scale parameter for shear layer. Used in FLOW

Reference energy emitted by source

Provision, for including source Mach number. Not presently
used

Half angle of ray bundle in <)> directions

Half angle of ray bundle in 9 direction
s

Minimum step size along ray path calculations

Maximum fractional change in velocity to be used

Printout factor. Printout occurs if path length since
last printout is greater than PF-DELT-A0

Maximum number of steps allowed before reaching YYF

Number of $ 's to be used

Number of 6 's to be used

Figure A-l Namelist INP Format and Definitions
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a) Input <J>_'s (degrees)s

column number

program variable

Format (8F10.5) 8 values per card

10

PHI0(1)

20

PHI0(2)

30 |

PHI0(3)

10NPHI

PHI0(NPHI)

b) Input 6 's (degrees)
S

column number

program variable

Format (8F10.5) 8 values per card

10

TT0(1)

20

TT0(2)

30

TT0(3) I
, 10NPHI

rT0(NTHETA)

Figure A-2 Wave Normal Angle Input Format
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2. The step shall be such that the position of the central ray will

change by an amount at least equal to DELMIN.

3. The time step shall be no greater than DELT.

4. The relative change in velocity AV/V over the step shall be no

greater than DVLIM.

Of these criteria, the first three are absolute and the fourth governs

only when they are not violated. Similarly, the first takes precedence

over the second and third.

New direction cosines are obtained at the new position by calcula-

tion of their rates of change using the Euler-Lagrange equations developed

in the text. The Euler-Lagrange equations are solved in the subroutine

YPPZPP.

After completing this calculation for each of the five rays in the

bundle, the program either repeats the calculation for the next time

step or, if it is to print out information at this position, it proceeds

to calculate the area of the ray bundle. The wavefront area, dA is

approximated as follows. Consider the ray bundle depicted in the sketch

below.

dA

The area of a general triangle may be computed as follows
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A = [S(S-a) (S-b) (S-c)]1/2

S = -j (a + b + c)
2 2 2 1 / 2

a = [ < X - x r + (y-

2 7 21/2
b = nx2-x3r + (y2-y3)

 + (Z2'
Z3) ]

c = [(x3-Xl)
2 + (ŷ ŷ 2 + (z3-Zl)

2]1/2

where the subscripted quantities are the Cartesian coordinates of the

associated points (T) , (2) , (5) i etc. , the intersections of the correspond-

ingly numbered rays with the phase surface.

The triangular sub-areas may be computed by this formula and dA

then determined by summing the four sub-areas.

Note that all areas are positive and if there is a crossing of rays

the method will break down and too low an intensity will be indicated.

If the final phase surface has been determined, that is, if the

specified radial or side line distance, YYF, has been attained, the

program additionally calculates the radius and center of curvature

of the phase surface. This will enable the user to simply determine the

sound intensity and pressure level at other positions along the ray path

if the phase surface inside the bundle is in, and remains entirely in, a

uniform medium. A definition of the output quantities appears in figure

A-3.

The computations involved have assumed that 3/9 z of any flow or

fluid property is identically zero. This is the ONLY part of the program

which restricts it to a two-dimensional fluid and flow field. Inclusion

of the general z dependence terms in the derivatives will enable the

treatment of a fully three-dimensional field. All acoustical propagation

calculations presently consider the wave to be fully three-dimensional.

Subroutine FLOW

The subroutine FLOW provides the main program SART with flow and

fluid property information at arbitrary positions along a ray path. The

specific information to be provided is:
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a) Output for ray position slope and flow field data

K

XX
YY
ZZ

XXP

ZZP

PHIE
THETAE

MXX

MYY

A/A0

RH0/RH00

Ray number

Spatial position

dXX/dYY for ray path

dZZ/dYY for ray path

Polar angles of waveriormal

Local flow Mach number in XX-direction

Local flow Mach number in YY-direction

Normalized speed of sound

Normalized density

b) On first printout at initial position

REFERENCE INTENSITY = IAREF for direction of ray #1

c) Output for ray path length and polar position data

STEP NO. Cumulative number of time steps

PATH LENGTH

RADIAL
DISPLACEMENT

GAMMA
PSI

R0

RC

GAMMAC
PSIC

Distance along path of ray #1

Radial distance from source

Polar angles of position from source

Distance traveled at speed, A0, in elapsed time, At,
i.e. A0-At

Radial distance from reference point (XXC,YYC,ZC)

Polar angles of position relative to reference point

Figure A-3 Definition of Output Quantities
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d) Output for acoustic intensity and sound pressure level

Area of phase surface intercepted by ray bundleAN

IN

DELTA SPL

where

Acoustic intensity in direction of wave normal (IAREF/AN
energy flow per unit area)

Sound pressure level relative to a point source in a
uniform flow field with conditions and properties being
those at the source position and having the initial wave
normal directions.

' dB re
ref

pa

4A<t>A6( l ( R ( x , y , z )

M =

R =

(xo,yo,zo)

fluid velocity in wave normal direction/a

radial distance from source position (xo,yo,zo)

Figure A-3 Concluded
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1. The density, RHO .

2. The speed of sound, A

3. The vector Mach number, i.e., velocity vector/speed of sound

4. The spatial gradients of .items 2 and 3

The main program presently accepts only two-dimensional fields.

Hence, FLOW must provide RHO(x,y), A(x,y), MX(x,y), MY(x,y) and the

partial derivatives of the latter three with respect to x and y. These

are passed to SART via the argument list.

Provision is made in SART to pass certain information through a

common block labeled FLUID. It has the form:

C0MM0N/PLUID/A0,M0,RH00,SIGMA,NWRITE

The quantities A0, M0 and RH00 may be used to normalize the speed of

sound, Mach number and density, respectively, and are input in the

namelist INP.

SIGMA may be used to scale the velocity gradient as in a self-

similar flow where the velocity u = u(n) , where n = cry/s. SIGMA or a is

also input through INP.

The quantity NWRITE permits the title or a description of the flow

field to be written in the output whenever NWRITE is set equal to zero by

the main program.

Subroutine PIREF

The subroutine PIREF is provided to calculate reference values for

subsequent computation of sound pressure level and intensity in the main

program. The required input data are:

a. The wave normal angles at the central ray, PHI and THETA.

b. The included half-angles of the ray bundle, DELPHI and DELTH.

c. The vector Mach number, MX and MY, at the source position.

d. The fluid density and speed of sound at the source position.

e. A reference energy, IAR, equal to the source energy (the product

of phase surface area and intensity normal to that surface).

Items a, b, and c are input directly through the namelist INP.
Items c and d are computed by FL0W at the initial source position.
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The subroutine computes:

a. The Mach number in the direction of the initial wave normal,

EMN0.

b. The reference sound pressure, PREF, for a uniform flow having

the properties of the fluid at the initial source position.

c. The reference energy, IAREF, in the direction of the given wave-

normal .

The sample PIREF "computes" IAREF for a simple monopole source (i.e.

IAREF=IAR) which has uniform emission in all directions. A higher order

source, for example a dipole aligned with the x-axis ($ = 90°, 6 = 0°)

may be represented by IAREF=IAR cos 9 sin $ and may be computed by thusly

changing the defining statement for IAREF in PIREF.

The reference pressure need not be changed for other sources since

the directional factors cancel out in the calculation of the sound

pressure level.

Subroutine YPPZPP

The objective of subroutine YPPZPP is equivalent to determining the

rates of change of the direction cosines of a ray given their values and

that of the other flow properties and gradients indicated in the Euler-

Lagrange equations.

The program does not actually deal with direction cosines but

rather with the rates of change of two of the path spatial coordinates

with the third taken as an independent variable. It should be noted that

the computations are carried out in an internal system of coordinates in

which the independent variable is "y" of the external coordinates (e.g.

those used in FLOW) is identical to the internal "x". Where both coordi-

nate systems appear in the program (e.g. the SART) we have adopted the

notation:

EXTERNAL INTERNAL

XX -Y

YY X (independent in YPPZPP)

ZZ Z
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As can be seen, this is a simple 90° rotation about the z-axis. The

rotation was performed to better use the standard library trigonometric

routines of the computer.

v The major calculations of YPPZPP as is seen in the listing are

concerned with the computation of various partial and total derivatives

from the basic flow and fluid property information provided by FLOW.

PROGRAM LISTING

The program is written in FORTRAN IV computer language (029 punch)

and consists of a main program, SART, and three subroutines. A listing

of the program is given on the following pages.
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APPENDIX B

VARIATION OF FLUID PROPERTIES

Much experimental work in low speed flows involve negligible varia-

tion of the fluid properties which affect sound propagation, specifically

the density, p, and the speed of sound, a. In a compressible medium

where high subsonic Mach numbers are involved, significant changes in

these properties occur through regions of substantial velocity changes.

In a constant pressure flow field with unity Prandtl number, as is

normally assumed for a free subsonic jet, these properties are related to

the velocity by the Crocco relation and the equation of state. The

Crocco relation exists between the velocity and temperature of a perfect

gas of constant specific heat, unity Prandtl number and at constant

pressure, and is:

2
T = A + Bu - - (B.I)

whe re

T = the static temperature of the fluid

u = the velocity

c = the specific heat at constant pressure (assumed to be constant)

A,B = coefficients determined by the boundary conditions

If we let the subscripts j and °° indicate properties in the unmixed

jet and the external medium, respectively, the conditions to be satisfied

by equation (B.I) are

u2

T. = A + B u. - -5—L

T = A + B u - -^~
00 00 2cp
Upon using these conditions to evaluate the coefficients A and B,

equation (B.I) becomes:

i-. .- _ 1^1 »! n Ol

(B.2)
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whe re

r =

X = Uoo/Uj

M. = u./a., the jet Mach number
3 ' 3 D
Y = ratio of constant pressure and constant volume specific heats

1/2a = speed of sound =

R = gas constant

For constant pressure flow of a perfect gas, the density and speed

of sound variations with velocity may be computed using equation (B.2).

(B.4)
aj \Ti>

Thus, by specifying the velocity field and boundary conditions, all

necessary properties of the medium can be determined.
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APPENDIX C

ACOUSTIC INTENSITY AND SOUND PRESSURE LEVEL

FOLLOWING A RAY BUNDLE

Along a ray path (with no absorption or generation) conservation of

energy within a ray bundle requires that (see ref. 26)

I • ndA = const. (C.I)

where

I = acoustic intensity = the acoustic energy flux vector

dA = wave front area enclosed by the ray "bundle" or "tube"

n = normal to the wave front (i.e., the surface of constant phase)

In terms of physical quantities, I may be computed from the relation

(see ref. 26)

2 ̂  2 ^ Ho
poao ao

p + pu(U • u) > (C.2)

where

a = speed of sound in the fluid

p = mean fluid density

p1 = acoustic pressure

U = mean fluid velocity

u = acoustic particle velocity relative to the fluid

In the far field limit (i.e. a/cor ->• 0) of geometric acoustics

u . u« (C.3)

poaoun (C.4)

where

e = unit vector in the wave normal directionn

un = component of u in the e direction
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The far field intensity in a direction e isR

I = I • e =
J\ IV 'n' v n R' (C.5)

where

M = U/a, (C.6)

If e0 = e , the wave normal directionK n

These relations hold in the geometric acoustics approximation,

regardless of the type of source.
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APPENDIX D

MOVING SOURCES

The motion of an ideal source of sound relative to an observer

(microphone) introduces the so-called Doppler effects on the frequency,

intensity, and directivity of the sound received from the source. The

motion of a real source of finite dimensions relative to the fluid

medium can additionally introduce changes in the basic character of the

source (e.g. create additional monopole-, dipole-, and/or quadrupole-like

noise issuing from the real source) . Such changes cannot yet be con-

cisely described but have their roots in the full Kirchhof f solution to

the wave equation and the boundary conditions on the actual source. The

discussion here will be restricted to a presentation of the Doppler

effects for sources moving with respect to an observer. The basic

Doppler effects for subsonic motion may be described as follows.

Consider a two-dimensional source moving at a uniform speed, V,

relative to an observer at 0(x,y,z,t) as indicated in figure D-l. Sound

received at time, t, from direction 9 was emitted from the source ats
time t - R /a and at a convected emission angle of 6 . The convectedc °° c
emission angle is related to the actual emission angle, 6 , and the fluid

S

flow velocity as given previously by the ray path equations. Reduced to

two dimensions, these yield

v + a sin 6
tan 9 =c u + a cos 9 '

S

where u, v, and a are the fluid velocities in the x and y directions and

the local speed of sound at the point of emission, respectively.

The frequency, oi, of the sound received relative to that produced by

the source, <D , may also be calculated

U)

° (D'2)u cos 9 + v sin 9

where u and v are the x and y components, respectively, of the source
S S . "~

velocity at the time of emission.

53



The energy received at point 0 from sources moving along a pre-

scribed path may be determined by examining the energy reaching the point

from various specific points along "the path. The energy density received

from each point may be determined from the ray path method as though the

source were instantaneously stationary and in proportion to the emission

of the source in the appropriate wave normal direction to intercept the

point 0 from the source position. The energy from different points, of

course, is emitted from the source at different times and would, there-

fore, yield a time history of energy received from the source as it

travels along its given path with a prescribed velocity history and

directivity.

Consider now a statistically stationary field of moving sources as

one has with the noise produced by turbulence from a "steady" jet or wake.

The noise associated with such flows is identified with convected quad-

rupoles. However, any given region of space involved in the flow has a

characteristic strength, directivity, and spectrum which do not vary

substantially with time. Given the directivity, strength, convection

speed (essentially that of the flow), and the spectral nature of such

sources in the flow, their characteristics may be modified to those of

equivalent stationary sources by the above means [equations (D. 1) and (D. 2) ] .

The acoustical energy density (intensity) produced by the field point, 0,

may then be determined as an appropriately weighted sum of that arriving

from a number of representative points in the flow.

Three-dimensional versions of equations (D.I) and (D.2) may be obtained

by using appropriate velocity components in the directions of the wave

normal and ray path, respectively, instead of using the trigonometric

functions indicated.
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Figure 2.- Vortex sheet model of sound propagation
through a shear layer.
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Figure 13.- Deflection of wavenormal by shear layer.
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Figure 14.- Effective deflection of ray path by shear layer; h/R=>0.05.
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Figure 15.- Effective deflection of ray path by shear layer; h/R = 0.25.
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Figure 16.- Change in sound pressure from flow nonuniformity; h/R - 0.05.
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