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PROPAGATION OF SOUND THROUGH A SHEARED FLOW
. SUMMARY

Sound generated in a moving fluid must propagate through a shear
layer in order to be measured by a fixed instrument, whether the micro-
phone is placed in or outside of the flow. Passage through such a shear
layer can significantly alter the features of the sound. These altera-
tions must be accounted for if one wishes to characterize the nature of
the sound source from such measurements. The present investigation was
initiated to provide means of evaluating and correcting for these
propagation effects.for noise sources typically associated with single
and cé—flowing subsonic jets and for subcritical flow over airfoils in

such jets.

The techniques for describing acoustic propagation fall into two
categories; geometric acoustics and wave acoustics. Geometric acoustics
has much in common with géometric optics and is most convenient and
accurate for high frequency sound. Wave acoustics is generally applic-
able to sound of all frequencies but is computationally difficult, and
valid formulations, much less solutions, are known for only very

restricted types of flows.

In the frequency range of interest to the present study (greater
than 150 Hz), the geometric acoustics approach was determined to be the
most useful and practical method for describing the passage of sound
through jets. Calculation methods and a computer program were developed
to aid in the interpretation of results. This report describes these
results, together with some background information on the general nature

of sound propagation through shear layers.



INTRODUCTION

The Ames Anechoic Flow Facility (AAFF) has the potential of provid-
ing advance experimental data on a variety of important aeroacoustic
phenomena such as subsonic jet noise source characteristics and their
suppression, airfoil noise sources (single and cascades), and turbulent
scattering of noise. As with any experimental investigation, however,
the evaluation and interpretation of the raw measured data is of utmost

importance.

Sound generated in a moving fluid such as a jet propagates through a
shear layer. Passage through a shear layer can significantly alter the
features of the sound. These alterations must be accounted for if one
wishes to characterize the nature of the sound source from measurements
made by a microphone placed either inside or outside the flow, as will
often be the case for studies carried out in the AAFF. With this in mind
the present investigation was initiated to provide means of evaluating
and correcting for these propagation effects for noise sources typically
associated with single and co-flowing subsonic jets and for subcritical

flow over airfoils in such jets.

During the investigation the general nature of sound propagation
through sheared flows, methods for its description, and experimental data
for evaluating those methods were reviewed. The techniques for describ-
ing acoustic propagation fall into two categories, namely geometric
acoustics and wave acoustics. The former has much in common with
geometric optics and is most convenient and accurate for high fréqueﬁcy
sound. Wave acoustics is generally applicable to sound of all
frequencies but is computationally difficult, and valid formulations,
much less solutions, are known for only very restricted types of fluid
flows.

In the frequency range of interest in the AAFF (>150 Hz), the
geometric acoustics approach was determined to be the most useful énd
practical method for describing the passage of sound through jets. Cal-
culation methods and a computer program were developed to aid in
intérpretation of results obtained from the AAFF. This report describes
these results, together with some background information on the general
nature of sound propagation through shear layers.
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NOMENCLATURE

isentropic speed of sound in fluid at steady flow
constants ‘

unit vector

generalized function

generalized function

generalized function

lateral distance from source to longitudinal extension of
nozzle lip. In vortex sheet analysis, lateral distance
from source to shear layer:

enthalpy of undisturbed flow

acoustic intensity

Mach number of jet

Mach number of ambient fluid outside shear layer
normal to the wave fronf

static pressure of fluid

acoustic pressure at location c of figure 2 in absence of
shear layer

measured acoustic pressure at location of observer
radial coordinate

spatial coordinate :

distance from source to receiver

local distance along ray path

entropy of undisturbed flow

time

static temperature of fluid

velocity of wave front

velocities along x,y,z axes, respectively
undisturbed flow velocity

space-fixed Cartesian coordinate system

space-fixed Cartesian coordinate system, rotated 90° about
z-axis to xyz coordinate system

angle between x axis and projection of an on xy plane
angle between z axis and an

-0 (Y-Yo) / (X-Xo)

angle of emission of signal by source in convecting medium

measured angle from source to observer, with respect to jet
axis

angle of reflected wave with respect to jet axis



NOMENCLATURE (Concluded)
angle of emission of signal by statlonary source, with
respect to jet axis

angle of transmitted wave (outside shear 1ayer) with respect
to jet axis

maximum angle of "zone of silence"

density of fluid at steady flow

spreading rate parameter in shear layer calculations
disturbance velocity potential

disturbance velocity poténtial at frequency w

frequency, sec” 1

mean component
differentiation with respect to x
fluctuating (acoustic) component



NATURE OF PROBLEM

The general objective of the present study is to develop efficient
calculative methods which will facilitate the analysis and interpretation
of acoustical data obtained in the AAFF. The general arrangement with
which we are concerned is shown in figure 1. A detailed description of

the facility and its flow characteristics is given in reference 1.

In more specific terms, the work entails the mathematical interpret-
ation of acoustical signals generated in and propagating through the open
jet of the facility, or a portion of it, and measure by microphones in an
essentially quiescent medium outside the jet. The investigationvis
focused on describing the effects of the jet flow on sound propagation.
Such effects include not only motion of the medium, but motion of the
source of the sound as well.

In delineating the propagation effects, it should be observed that
it is not always possible to clearly separate the effects of propagation
from those associated with noise generation for real sources of sound.
Nor is it always possible to consider the acoustic signal separately from
the flow field. 1In order to obtain useful results, it has been necessary
- therefore to define carefully the assumptions regarding the sources of
‘'sound treated in the present study and the limitations of the resulting

methods for describing sound propagation.

In particular, the propagation effects to be considered in the
present study include refraction (which is due to gradients in flow velo-
city and medium properties), convective amplitude and directional shifts,
and Doppler effects (due to relative motion of source, medium, and observ-
er). Other effects of the medium, such as source modification by the
flowing medium or the generation of additional noise sources due to the
effects of noise on the flow are not considered per se, but may be includ-
ed a priori as prescribed sources. One further effect is that of sound
scattering by turbulence. The state-of-the-art of this effect is such
that little quantitative treatment can be reported. Therefore it has not

been considered in the present study.

Consider the ray emitted by a stationa;y source at the angle es in a
stationary medium, as shown in sketch (a). If this source were placed in
a uniformly moving medium this ray would propagate in the direction Gc due
to convection by the medium, as shown in sketch (b). If this ray propa-

gates through a non-uniformly moving medium, such as a jet shear layer,






its direction will undergo further changes due to the variations in velo-
city and speed of sound in that region. This situation is shown in

sketch (c).

The several available techniques for describing acoustic propagation
were surveyed to determine which had the most attractive features and
would be valid for frequencies of interest (i.e. greater than 150 Hz) in
the AAFF. These were programmed for computer calculation and some sample
calculations were carried out. A satisfactory technique was identified
for the geometric acoustics approach. Evalution of the various methods
utilizing wave acoustics indicated that the Lilley Wave Operator is
probably the best for these purposes. However, the results of a recent

comprehensive experimental and analytical study jointly sponsored by the
Department of Transportation and NASA (ref. 2) indicate that there is
little practical difference between results from this and geometric
acoustics for the sound of interest in the AAFF. Amiet (ref. 3) has
investigated the short wavelength limit and found geometric acoustics to
be acceptable as a correction technique for sound with wavelength less
than a jet diameter. Accordingly, the current study has concentrated on
providing a satisfactory geometric acoustics calculation technique with

provision for examining various sources and source movement effects.

BACKGROUND

A systematic mathematical study of the feasibility of wavelike solu-
tions to the equations of motion has been recently published by Gunzburger
and Kleinstein (ref. 4). They have concluded that periodic solutions to
the Navier-Stokes equations exist only under very restrictive conditions,
many of which are not generally satisfied by shear flows of the type occur-
ring in the AAFF. Hence, short of completely solving the Navier-Stokes
equations by some means (e.g. numerically) we cannot expect to totally de-
scribe the noise measured in such a facility by theoretical means. It is
clear from observation, however, that locally, or for short periods of
time, wave-like disturbances do exist in such flow fields under many con-
ditions. 1In the following, we will briefly discuss some approximate form-

ulations and indicate their theoretical and physical limitations.
Theory

There are several approaches to describing the propagation of sound

in homogeneous media. It appears from the present investigation that



wave~like solutions have only been found for the governing equations
after linearization for small disturbances. Blokhintsev (ref. 5) showed
that the governing equations of inviscid fluid mechanics, linearized for
small disturbances, can be expressed in a wave equation form. The
frequency, w, and vorticity (curl 3) for which this development appiies
is |curl §|/w <<1l. He also discussed the propagation of sound in an
irrotational'isentropic flow. For such a flow the equation for the
disturbance velocity potential, ¢, is

—5 = a2V2¢ + grad H - grad ¢ + v o grad (£fn a2) (1)

|
e

a = {EE] = isentropic speed of sound in fluid
S
)

——— = substantial derivative 9 () +V . grad ( )

Dt ot

H = enthalpy of the undisturbed flow
S = entropy of the undisturbed flow
>
v

= undisturbed flow velocity (upon which small acoustic .
disturbances are superposed)

This equation is recognizable as being related in form to the wave
equation. It is a linear, second order differential equation and will
support wave-like solutions if the steady flow properties involved in its
coefficients are well behaved. In particular, the coefficients in the
equation are independent of time; hence, the general solution can be

represented in terms of superposed solutions of the form:

oy = A(¥;w) exp (iwt) + conjugate (2)
where
A(;;w) = the complex amplitude and spatial phase function for the w
component
i=vy-1
T = spatial position
t = time
w = frequency

Schubert (ref. 6) has developed a numerical solution technique for
equations like equation (1) applied to a jet flow field. He indicated
that his solution method was applicable to either the velocity potential

8



or Obukhov's potential. However, property gradients were accounted for
“only approximatély. The solution process is tedious, especially wheh
either of the last two terms of equation (1) are retained, and the
results obtained by Schubert were little if any better than those

obtained from geometric acoustics.

The formulation of equation (1) will permit the extensive examina-
-tion of sound propagation in flows with fluid property gradients, but the
.~ velocity field must be irrotational. The latter restriction excludes
-shear flows except as they may be approximated using surfaces of concen-
trated vorticity (vortex sheets) to define  their boundaries. Such an

approximation would seem to be permissible when the gradients of the

steady flow are large compared to those due to the presence of the wave
motion, that is, in a ldng wave length approximation. A discussion

of the condition for the wvalidity of this approximation has not been
found in the literature, but one should be able to derive those condi-
tions in terms of the wave length of the sound, the thickness of the
shear layer, and perhaps the angle of incidence of sound waves on the
shear layer (a surface pafallel to it). The latter will be made clearer

when geometric acoustics is discussed.

Lighthill (ref. 7) subsequently (to Blokhintsev) published his
"acoustical analogy" approach, in which the equations of motion were
"forced" into the form of a wave equation for a homogeneous, stationary
medium. All effects of flow and fluid property inhomogeneities are
accounted for by "equivalent source" mechanisms, according to Lighthill's
theory. The Lighthill thebry,'which'is exact, models the sound radiation
from a flowing flﬁid as emanating from nonstationary sources in a
stationary medium. Thus, all refraction and convection effects of the
flow are accounted for by "equivalent" time-dependent sources. This
formulation.is exact but difficult to apply because the source terms are
not exactly known or knowable. The significance of the theories develop-
ed since Lighthill is in their attempts to separate more clearly the

noise production from the propagation effects of the flow.

The theories of Phillips (ref. 8), Csanady (ref. 9), and Lilley
(ref. 10) have atfempted to identify the "true source" mechanisms of
sound production in terms of commonly recognized fluid and flow proper=-
ties. They have formulated the problem in terms of various "convected

wave" equations. By so doing, they have also contributed to the



isolation of "propagation effects" which may be used to analyze noise
radiated through but not generated in a given flow. Doak (ref. 11}, )
Howe (ref. 12), and Yates and Sandri (ref. 13) have constructed theories
based on quasi-potential functions which are specifically formulated to
separate sound production from sound propagation in inhomogeneous rota-

tional flows.

Each of these formulations is "exact" in the sense that they can be
derived directly from the governing equations of fluid motion. Their
differences lie in their ability to describe the various acoustics
phenomena in terms of known or knowable properties of the fluid medium
and its flow field. It is doubtful that any one of these theories will
prove to have decisively separated propagation and production effects for

all situations.

At present, the most promising wave equation formulation for the
current application (i.e., for the study of sound propagation) is that of

Lilley. This equation is

9333'_ - —D% div(azgrad q') + 2 {div D—]i?— % div] (azgrad q')

Dt = Source Terms (3)
where

q' = &n p'/po the natural logarithm of the ratio of the fluctuating

(acoustic) pressure to the mean static pressure.

_ This equation is only valid for parallel mean flows (i.e., flows
which are undirectional and have gradients only transverse to that direc-
~tion). Recent publications of results provide some insight into the
capabilities of this method. Balsa (ref. 14) has published results for
an arbitrary radial velocity profile with a single point gquadrupole
moving along the axis of a jet. Tester and Morfey (ref. 15) have con-
sidered a ring of quadrupoles at a constant radius and investigated the

effects of nonuniform density on sound radiation from jets.

Geometric acoustics is the least restrictive approach in terms of
the types of flows which can be examined. It is probably the easiest
~ to understand, also, since it primarily involves kinematical relations
Aamong the wave and fluid velocity components to trace.so-called "rays",
the locus of a point on a wave front as it passes through the fluid.
~The major restriction of this approach is the assumption that the varia-

tion of the properties characterizing the basic initial state over small

10



distances and short times, compared to a characteristic length (e.g. wave
length) and characteristic time (e.g. period) associated with the
acoustic field are negligible. Thus, one must expect inaccuracies when
the sound frequency is low enough that the acoustic wave length is the
order of the shear layer thickness or another characteristic flow

dimension.

Acoustic intensity may be calculated by assuming energy conservation
within a bundle of rays. This approach ignores the action of viscosity
in the wave motion and is thus inaccurate .when the rays become focused in
a region so as to bring this action into the picture as a significant

phenomenon. However, this difficulty is not restricted to geometric

acoustics. It is partially an amplitude effect which is not accounted
for in most of the other approaches, since they rely on linearization of
the acoustic disturbance as well. Geometric acoustics is also inaccurate
if the acoustic disturbance generates further acoustic energy by inter-
action with the flow (e.g., triggering flow instability). Since this is
in effect creating new sound'sources, this shortcoming is also present in

other approximate methods.

While some theoretical limitations can be identified, a comprehen-
sive evaluation of existing theoretical methods is difficult at best due
to the lack of well defined experimental measurements. This situation:

is discussed in the following section.
Experiment

There have been numerous experimental investigations of the direc-
tional distribution (directivity) of sound in the presence of jet flows.
These measurements have been used to evaluate the several aeroacoustic
noise theory formulations. However, only in the investigations at the
University of Toronto [Atvars, et al. (ref. 16) and Grande (ref. 17)] was
the source adequately characterized so as to make the measurements con-
clusively useful for evaluation of flow-acoustic propagation effects. 1In
other investigations the sound source was estimated based on the particu-
" lar aerodynamic noise theory under study. The actual nature of the
source in the presence of the medium was generally only estimated. While
there is no strong evidence that a flowing medium does anything unexpect-
ed to a source, neither is there conclusive evidence that it doesn't. 1In

light of the recent disclosures by Dowling (ref. 18) regarding the

11



physical concept of the "ideal" source in the presence of a moving medium,

caution, at least, is suggested.

Although ray tracing techniques are supposedly limited to short
wavelengths, they appear to give‘redsonably supportable results for most
frequencies of interest in wind tunnel testing except for passage through
the shear layers at large angles with respect to the normal to the shear
layer (e.g., shallow angles with respect to the jet axis). Further,
Amiet (ref. 3) has investigated the short wavelength limit of geometrical
acoustics and found it to be acceptable for wavelengths less than a jet

diameter.

Balsa (ref. 14) and Tester and Morfey (ref. 15) evaluated the
results of their calculations of flow-acoustic interaction based on the
Lilley formulation of the wave operator. Each of these studies indicated

"difficulties in comparison with experimental results (theirs and others)
at both low and high frequencies and at small angles to the jet axis.

Also, a recent analytical and’experimentél study (ref, 2) has concluded
that predictions from the Lilley equation for propagation angles outside
the so-called "zone of silence" can be closely approximated with results

from calculations using geometric acoustics.

Since calculations by geometric acoustics are straightforward (if
somewhat tedious algebraically) and the zone of silence ié not of primary
significance in the Ames Anechoic Flow Facility, the efforts have concen-
trated on development of a generally applicable geometric acoustics ray
tracing computer program. This approach is applicable to any flow field
property distribution within the short wavelength restriction, as well as
to any of the "ideal" source types. The Lilley equation, with its
restricted applicability may be employed as a check on.the low frequency

limitations of the geometric acoustics approach.
THEORETICAL BASIS OF GEOMETRIC ACOUSTICS

Kinematics of Wave Propagation in a Three-Dimensional,
: Inhomogeneous, Moving Medium

The fundamental approach is to describe the motion of a wave front
locally in terms of the fluid properties and motion, but require that the
motion conform to Fermat's stationary transit time principle. A general

derivation based on geometric acoustics may be found in Ugincius

12



(ref. 19). The preéent derivation uses only wave front kinematics and

Fermat's Principle to derive the governing equations.

The fundamental mechanics of wave propagation require that a wave
front move relative to the medium with the local speed of sound a(;).
The wave front will additionally be convected by the local velocity 3(;)
of the medium, yielding a total velocity of the wave front, ﬁ(;). This

can be expressed as

U(T) = V(F) + a(®) A@) ‘ (4)
where N

3o Ts _ ds .

TS dt s
where

T (t) = the locatlon of an element of the wave front at time t (as

shown on the next page)
s = the distance along the ray

M+
I

the unit vector tangential to the ray path at ;s(t)

The velocity components of the element of the wave front in the
X, y, and z directions are given, respectively, by the following

equations.
dx _ .
3gg - utasiny cos B v (5)
%X = Vv + a sin vy sin B (6)
t
dz _ ‘ .
T - v + a cos y , (7)
where
. e >
sin vy cos B = n - e,
. . > >
sin Y sin B =n « e
> +Y
CosS Y =n * e

N

.

If we take one of the variables, say x, as the independent variable,
the above equations may be combined to eliminate the time t and the
angles y and B, which indicate the local wave normal direction.

z = dz _ dz/dt _ w + a cos vy (8)
bl dx dx/4dt u+ a sin vy cos B

13
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_dy _ dy/dt _ v + a sin y sin B (9)

Yx T d@x ~ dx/dt u + a.sin y cos B

The following useful relations can be derived from equation (8) and

(9).
-(z u - w) * a cos B
a cos B = Zy sin Y (10)
and
‘YX(YXU - V) ij/a2sin2 y(1 + yi) - (yu - v)2
a cos B = 3 (11)
(1 + y2) sin vy
X
Letting
v=ya -V (12)
W = qu - w (13)
It can be shown that
a.cos B = . [W(l + yx) yxzxv]
\
F (1 + y2 + 2°) [a2(1+y2) - V2]~ [W(L+y2) - v?
* z Yx X Yx Yx Y2V ]
* (1 + y2) b (14)

2

x) J

The appropriate signs may usually be determined by requiring that

(l+y}2{+z

J

the direction of propagation remain continuous in a continuous medium.
The Variational Problem and Its Solution

The kinematics of propagation can be determined from the above
eqguations provided any two of y, 8, Yy, Or z, are known along the path of
propagation and the properties of the medium (including its flow field)
are specified. It is likely that the wave normal or path direction will
only be known at an end point. However, the path actually traveled by a
"ray" is usually to be determined. A relation for making this determina-
tion is provided by a very simply stated principle due to Fermat.

Fermat's Principle states that the time required for a ray to travel

15



between two points will be an extremum. This principle may be formu-

lated as a problem in variational calculus.

The time required for a wave to travel from a position, So(xo’yo’zo)’

on a ray path to another position Sl(¥l'yl’zl) is specified by
s )

_ ds
t = f ds/at)
sO

s1(Xy,¥y,2;)

(ds/dx) dx
(ds/dx) (dx/dt)
SO (XO ,YO,ZO_)
S (X,,Y4r27)
dx 17141771
(dx/dt) ’
so(xo’yo’zo)
s1(X1r¥102))

£ = dx
u + a sin y cos B

so(xo,yo,zo) (15)

N
By combining equations (6), (10) or (11), (12), (13), and (14), it
can be observed that equation (15) may be written

s=sl (Xllyllzl)
t = I f(x,y,z,yx,zx)dx (16)
s= '

X
so( o.yo,zo)

with x the independent variable. It can also be shown by the principles
of calculus of variations that t is an extremum in equation (16) if f
satisfies the simultaneous Euler-Lagrange equations given below. (The

extremum is in fact a minimum.)

of a o3f _ :

3y " ax 3y, ° (17)
X

of _ 4 3f _ : : ‘

37 ax 5z - 0 | (18)

The solutions of these simultaneous equations cannot be given in

.general, but can be obtained if f has certain properties.

16



It will be observed that the only explicit dependence of f on x, vy,
and z arises from the properties of the medium, G(X,Y,Z) and a(x,y,z).

If these properties are constant, equations (17) and (18) reduce to

3f 3f
Iy, G 3z, -~ 2

which will yield the familiar relations for propagation in a homogenous

medium.

Equations (17) and (18) are valid generally, however, and may be
used to determine the path of a ray in an inhomogeneous medium. We will

now discuss briefly the general features of these equations.

In carrying out the indicated operations of equations (17) and (18),

one will arrive at two equations (Euler-Lagrange) of the forms

F(x,y,z,yx,zx,yxx,zxx) =0 (19)

G(x,y,z,yx,zx,yxx,zxx) =0 ) (20)

Equations (19) and (20) represent coupled, second-order differential
equations for the ray path. Their general solution will have four arbi-
trary constants, which one may reason will permit specification of a
corresponding number of the following:

1. 1Initial point of ray, so(xo,yo,zo)

2. Final point of the ray, sl(xl,yl,zl)

4, (zx)o or vy,
5. (yx)l or B8;
6. (zx)l or v,

Rarely is it expected to be able to determine the general solutions
to (19) and (20) in an analytical form, but they may be employed to
provide an estimate of Yy and z, or B and y along the path by performing
a numerical integration of each. Then, if one is given an initial point

(x ,zo) and wave normal direction (Bg, Yg, Or Yx. zyx) the ray path may

0'Yo
17



be constructed in a stepwise ‘manner by specifying dx =-Ax, calculating Ay
and Az from the initial information and Ax. New values of Yy and z,
(B and y) may then be determined by integrating equations (19) and (20)
and used to compute the next increment along the ray path by repeating

the previous process.
SOUND PROPAGATION IN A STRATIFIED F LOW

As a first approximation in the analysis of shear layer effects on
acoustic propagation the actual shear layer can be replaced by one of
zero thickness - a vortex sheet. This simplified flow model provides
quick, inexpensive results. Historically, the first attempts to correct
wind tunnel acoustical measurements for the effects of a shear layer were
performed by Amiet (ref. 20) and Jacques (ref. 21) utilizing this
approach. Physically, a vortex sheet is not a realistic representation

~of a shear layer in a typical wind tunnel jet flow. Under certain con-
ditions however, comparisons between theoretical and experimental results-
are in close agreement. Thus, under these conditions, which will be
discussed shortly, the vortex sheet assumption is an éttractive alterna-

tive.

This method has several other advantages in addition to quick and
reasonable results. First of all, the corrections for shear layer
effects are obtained as straightforward multiplicative factors of the
measured amplitude and position, independent of -source type or frequency.
In addition, when re-analyzing previous data for which shear layer
characteristics were not measured, an assumption of this type is the only
one possible. However, there are also several equally distinct disadvan-
tages to this model that are a direct result of the éssumption of zero
shear layer thickness. Among these disadvantages are the prediction of a
portion of the incident acoustic energy being reflected from the shear
layer interface and the prediction of a so-called "zone of silence".
Before discussing these effects in detail a brief physical description of
the vortex sheet model shall first be presented.

The vortex sheet model of the flow is shown in figure 2. An
acoustic source at point.s imbedded in a fluid flowing uniformly at Mach
number Mo emits waves at an angle es with respect to the flow axis. (For

simplicity, the discussion will be limited to consideration of plane
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waves but the model does not strictly require this assumption.) Due to
convective effects of the flow the waves propagate along a path at an
angle ec to the flow axis. No further assumptions regarding the source
are required. The boundary between the moving fluid and the ambient
outer fluid is idealized by a velocity discontinuity - the vortex sheet.
The interaction between an incident wave and a plane interface has been

. discussed previously by, among others, Ribner (ref. 22). The major
features only will be summarized here. When the incident wave reaches
the interface a portion of the energy is transmitted into the ambient
fluid at an angle Gt ana_é portion ‘is reflected back into the moving
fluid at an angle er. The transmitted wave eventually reaches an
observer located at position 0. Hence, the wave reaching the observer is
different, both in magnitude and in direction, than the emitted wave.

The objective then is to reconstruct the emitted signal from the received

signal.

In the absence of the shear layer the signal would continue to
propagate at the angle ec, eVeﬁtually reaching the point ¢, the same
distance r from the source as the point 0. Actually, the corrections can
be determined for any point along the convected path, as shown by Amiet
(ref. 20). The properties of refraction at an interface can then be used
to determine the relation between em, the measured directivity angle, and

ec, the convected directivity angle.

The determination of the corrected amplitude at the point c is
slightly more complicated. To the effects of refraction by the shear
layer on the amplitude must be added the effects of geometric spreading.
This includes spreading in both the xy plane and the xz plane. These
effects are determined by considering the spreading of a ray bundle as it
crosses the interface and assuming that the shear layer neither absorbs
acoustical energy from the ray tube nor generates additional acoustical
energy through interaction with the flow. However, Koutsoynnis {(ref, 23)
casts severe doubt on this assumption. It is quite apparent that addi—
tional work is required, including careful experiments on the effects of

propagating acoustic waves on shear layer stability.

The vortex sheet approach previously has been investigated by Amiet
(ref. 20) for a plane shear layer and by Jacques (ref. 21) for a
- cylindrical shear layer. Some features of sound wave interaction with a

plane shear layer will be investigated here. Comparisons of the various

19



correction terms due to the plane and cylindrical shear layefs have been
examined by Amiet (ref. 3).

At the interface the bouﬁdary conditions to be satisfied ére (1)
continuity of pressure across the interface and (2) the velocity is
tangential to the surface of the intérface. With these assumptions the
relation between the measured d1rect1v1ty angle and the convected

directivity angle is found to be

£ cot 0, [(2gcotet)2 —aE? -1+ cotzet)]l/z
sin 6_ = + -
moo s cot29t 2(1 + cotzet) (21)
where £ = h (cotd _ - to,) V
g (cote_ - cote.) | (22)
cos 6
; 1 o)
Op = - M : (23)
©a-m) - Mlsine /2 O | |

Notice that the relative locations of source and observer with respect to
the shear layer enter into the relation. It can be shown that

lim 8 =8 : .
h/Ro M t ; _ (24)

Including the effects of both refraction and geometric spreading the

amplitude correction is given by

p! csc ©
o] t . . 1/2.h . 3 . 3.1/2
— = ——— [% sin 8, + (sin 6_ - )C] [g sin”0_+ (sin@ - )C ]
A C2 R t m ot m
1 2 2. .2 1/2 e 2
2sin8t_[Mo(l -Mocoset) + (1‘ Mocoset)] [z +51n6t(l Mocoset) )|
- (25)
- where
2 2, 172 | ‘
t= [(1 - Mocoset) - cos Gt] / o (26)
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This relation can also be evaluated for the effects of small h/R. If

this is done,

. P!
lim o 1 2 2 2 2 1/2
—— I e————— - + —
h/R+0 p; ~ 2sinb, (M (1 - M cosb,) (1 - Mcos et”
[z+ sin6,_(1 - M _cos# )2] (27)
t (o} t

There are two important angles that appear in the vortex sheet
analysis. The first angle is the value of et corresponding to ecv= 0,

which can be shown to be
6 _ = cos L I——l——- (28)

This relation is shown in figure 3. The physical significance of this
angle is that no sound waves propagate in the outer field at angles less
than ezs. The second angle is that value of ec for which sound waves
that are emitted at angles greater than this are totally reflected. This

angle corresponds to et = 7 which is

6. = cos 1 1, (29)

tr = 1+ M

_ o

Hence, sound waves emitted at angles ec > etr are tdtally reflected and
cannot be received by an observer outside the shear layer. Values of

etr are shown in figure 4.

These concepts are shown in figure 5 for three different Mach
numbers. . As can be seen, at a flow Mach number of 0.9 only the sound
emitted over the forward quadrant propagates through the shear layer
according to the vortex sheet model. The rest is reflected back into the

flow.

COMPUTED EFFECTS OF SHEAR LAYER ON SOUND PROPAGATION

A computer program was generated to carry out the indicated geometric

acoustics procedures for three-dimensional wave propagation from a fixed
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source in a two-dimensional flow and fluid property field. The program
is described in Appendix A. '
It should be noted that the coordinate system (X,Y,2Z) in which the

user communicates with the program is rotated 90° about the z-axis com-
pared to that in the previous derivation (x,y,z)._ See the sketch below.

X, Y

}

z, Z

This has in effect substituted Y for X as the independent variable
and made angular computation using the standard computer system library
subroutines more convenient when the major flow velocity is in the X

direction.

Calculations using the program were carried out for a two-dimension-
al isothermal shear layer. Sample results are presented for a range of
Mach numbérs from 0.2 to 0.9 and wave normal angles (at the source) from
30° to 120° with respect to the flow direction and in the plane of the
flow. Various featurés of the sound propagation‘were'determined and are
presented in the following discussion.

Velocity Profile in Shear Layer

The two-dimensional velocity profile used in all calculations was

the hyperbolic tangent profile:

u
u = 7? (1 + tanh n) A (30)

a
= 7? (n tanh n + £n §E%§—H) ' - (31)

<
|
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where

o]
I

-0 (Y - Yo) (X - Yo)

u = X-component of velocity, the main flow direction

v = Y-component of velocity

uo'= reference velocity

0 = spreading rate parameter

The general features of this velocity profile are shown in figure 6.

This is a self similar, nonparallel flow with a small but finite trans-
~ verse velocity. The-relation for the transverse component of velocity,
v, §iVen by equation (31) has been'computed from equation (30) and the
continuity equétion for a two-dimensional, incompressible flow. The

condition that v - 0 far from the shear layer Was also used.

Practical limits on n were invoked for calculation purposes and the
flow was considered to be uniform and parallel outside of |n| = 6 in the

" present calculations.

Thé spread parameter, o, sets the spatial scale of the flow. In
particular,vit and.thé velocity, u,, determine the shearing rate for the
flow. A value of o = 15.2 was used in the sound propagation calculation
' presented in this_reéort. This value was chosen to match the maximum
rate of shear of another velocity profile (the error function) used in a
referenced report (ref. 2). Propagation data and calculations from this
report Wefe,used for comparison with the present caldulations.

The velocity is not used directly in the ray path calculations. It
is the ratios of the velocity components to the local speed of sound, a,

which are directly involved. These are denoted by Mxx=u/a_and Myy=v/a.

The present calculations were carried out for an isothermal flow in

which the speed of sound was a constant, a throughout. The ratio

’
uo/ao is denoted by Mo in the text and figﬁres. Appendix B contains
expressions for generalizing the calculation directly to a fluid obeying
the Croccovrélation between velocity and temperature. These were not
examined in the present calculations. However, the computations them-
selves are Well within the scope of the included theory. In fact the
.main program can handle three-dimensional wave propagation in any
physically realistic, two-dimensional density and speed of sound varia-
tion one would wish to input in the subroutine provided for the flow and
fluid properties. As a final note it should be mentioned that the ray

path is not dependent directly on fluid density.
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Ray Paths and Wave Normal Deflection

The typical features of the ray paths predicted by the present method
.are examined in ﬁhis section. In order to facilitate interpretation and
comparison with other data the results presented will be for components of
waves in the plane of the flow containing the maximum velocity gradient.
No two-dimensional wave approximations have been employed in the calcula-
tions, however. The program has the capability of treating three-dimen—

sional wave surfaces in a two-dimensional medium, as previously stated.

When considering the diréctional pattern of sound radiating from a
source in a moving medium some authors prefer to use the convected
emission angle, ec, or the ray path angle as the independent variable.

In the prqsent investigation, the wave normal emission angle, es, that is
the angle relative to the x-axis, has been used. It is believed this
will facilitate later investigations involving source motion and non-
uniform source emission. If the flow is uniform the relation between
these angles in the plane of the flow is particularly simple. As an aid
in comparing the present results to those of other investigations, this

conversion is illustrated in figure 7 for several subsonic Mach numbers.

The appearance of the ray paths for various wave normal angles
between 30° and 120° are shown in figure 8. The flow field is the
isothermal, hyperbolicbtangent flow described in the previous section
with MO = 0.2. The lines in figure 8 marked n = *6 designate the shear
- layer boundaries. The paths are in agreement with those of Plumblee
et al. (ref. 2) and are also very close to those predicted by'Vortex
sheet methods, e.g., the method of Amiet (ref. 20) presented elsewhere
in the report. v '

Plumblee et al. (ref. 2) have indicated that ray paths may be very
closely approximated by placing a vortex sheet at the center of the shear
layer ("nozzle lip line"). The present results confirm this indication
for sources situated in a uniform flow bounded by a thin shear layer.

The implication that the thickness of the shear layer or the particulars
of the velocity distribution have little effect on the ray path appears
to be confirmed at this Mach number by the present calculations. The
effects of thickness at higher Mach numbers are shown to be significant,
however.
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30° for three sources

In figure 9 ray paths are shown for es
located variously in shear layers having Mo = 0.2, 0.5, and 0.9. Sources
1 and 2 are located in the uniform flow region but the corresponding rays
from source 2 travel through a much thicker shear layer than do those
from source 1. Ray paths for es = 30°, 60°, 90°, 105°, and 120° through
the thicker shear layer from source 2. are shown in figures 10-12 for
M0 = 0.2, 0.5, and 0.9, respectively. The total deflection of the
corresponding rays across the entire shear layer was calculated to be
within 0.5 degree and generally within 0.2 degree for the two source
locations. Seldom would input flow field information be accurate enough

to distinguish between these angles.

Figure 13 shows the calculated wave normal deflection angles, et—es,
versus initial wave normal angle, es, at source 1 for Mo = 0.2, 0.5, and
0.9. Also shown are the deflection angles calculated from simple vortex
sheet methods described elsewhere in this report and the predictions of
Plumblee et al. (ref. 2). The. latter are for a parallel flow with Mo =
0.2 only. All results are in very close agreement for the Mo = 0.2 case
(less than 1/2 degree spread). The agreement between the present predic-
tions and the vortex sheet is also excellent at Mo = 0.5 and for Ss = 30°
and 60°. Some significant differences show up at 90°, 105°, and 120° for
the higher Mach numbers. The maximum difference is about 2 1/2° out of
7° for GS = 105° and Mo = 0.9. The deviation at 90° is expected due to
the non-parallel flow in the present calculation. However, it is not
clear that this can account for the greater deviation for an angle above
90°., Such differences could be the result of a lack of convergence of the:’
numerical solution to the ray eguations. The results of the convergence
" tests performed would not seeﬁ to support this, however, and the differ-

ence is unexplained as of now.

Thus, the wave normal deflection can be obtained with good accuracy
at low Mach numbers or low angles from a simple vortex sheet representa-
tion of thé shear layer. The representation at high subsonic Mach numbers
and angles greater than 90° may be tolerable if the flow is parallel. The
extension of this simplified procedure to a shear layer in which the speed
of sound as well as the velocity varies requires prior examination to de-
termine if it is valid. Such examination has not been performed here but
could be carried out with the present computer program.

If the source is located in a nonuniform region such as the shear

layer, the simplified procedure is not available because of the indefi-
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nite location of the vortex sheet, regardless of any other shortcomings
.which may be present. Source 3 of figure 9 is located on the maximum
shear line of the velocity profile. The ray paths shown are for the same
source angle (es = 30°) and Mach numbers (0.2, 0.5, 0.9) as for source 1
and 2. However, the local Mach number at source 3 is one half of Mo‘ It
is seen that the transmitted ray inclinations are not as gréat as their
counterparts for sources 1 and 2 and examination shows that neither do
they approximate those obtained from a vortex sheet of strength 1/2 Mo‘
Hence, the vortex sheet approximation does not appear to be useful for a

source located in a region of shear.

There is another important point of contrast between the present
calculation and the vortex sheet. It arises directly from the inadequacy
of the vortex sheet.in.repréSenting the flow geometry. The vortex sheet
can intercept only rays which are inclined toward it. The'ray which is
parallel. to the sheet is bent into the surrounding medium at a finite
angle defined by equation (28).

Thus, in the vortex sheet approach, noisound can cross the sheet and

angles ezs has been, somewhat misleadingly, termed a "zone of silence".

have a wave normal angle less than cos_l The region of wave normal
This term should not be taken to mean that there is a region in which no
sound from the moving side of the vortex sheet can reach it, because

that is dependent on the location of the source.

Real shear layers grow however. Specifically,-they grow toward the
: source and can intercept any ray which diverges from the "lip line" less
rapidly than does the nearest "boundary" of the shear layer. Hence, all
"such rays can be turned toward the other side of the shear layer and may

emerge from it if the shear layer extends far enough downstream.

No illustrative calculations were made in the present study.to
specifically examine the "zone of silence“ by the present method.
However, it would be instructive to do so. 1In particular it would be
interesting to find out whether the deflection relations for the vortex
sheet are accurate in this region at low Mach numbers as they appear to
be outside it. 1In the process one could find out where the accuracy of
the relations breaks down, if it does. A .similar study on the upstream

reflection boundary might also prove of interest, although limitations of
the vortex sheet model which are soon to be made apparent may prejudice

such an investigation.
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Effective Deflection of Ray Path

It is often of interest to know the angle of emission of sound
reaching a microphone from a source at a known position. This would be

extremely important, for example, if the source is directional.

The relative positions of the source and microphone when théy are
both located in the plané of flow can be specified by the radial distance
separating them, R, and the measured angle} 6m, from the flow direction
(i.e. the X-axis) to the straight line connecting the source and micro-
phone. This situation has been examined for sources 1 and 2 (shown in
figure 9). The effective deflection angles, em - es, for sources 1 and 2
are shown in figures 14 and 15, respectively, and compared with results
obtained in each case from the vortex sheet model. The parameter h/R is
used in £he vortex sheet model, but the comparisons primarily reflect
"thin" vs. "thick" shear layer effects. For the thin shear layer as in
the case of source 1, the vortex sheet calculations agree very well with
those of the present method, although some deviation near the 90° emission
angle is noted. As previously indicated, this deviation is probably due
to the nonparallel flow included in the present calculations.

For the thick shear layer, as in the case of source 2, there are
large differences between the present method and the’ vortex sheet calcu-
lations presented. The latter calculations assumed the vortex sheet
location to be on the n = 0 line. It is this assumption which causes
the discrepancy. Since both the incoming angle, ec, and the outgoing

angle, 8 are identical or in very close agreement for the two methods,

t,
only a displacement of the ray within the shear layer could cause a

variance between the two. The following will serve to illustrate this

fact.

It is clear that the vortex sheet can be located somewhere within
the shear layer it reépresents and yield good results for the ray path
since it reproduces the exit angle Gt accurately. The proper position of
the vortex sheet can be identified a posteriori by extrapolating the
straight line positions of the ray path_calcﬁlated by the geometric

acoustics method to their intersection (see sketch).

27



sheet location

path

If the shear layer is thin, as for source 1, the error in position
cannot be great, therefore the agreement is gquite good with an arbitrary
positioning of the sheet. The thicker shear layer presents a larger
field for error and the error realized is very noticeable in some cases,
-as shown in figure 15. This represents a clear limitation of the vortex
sheet model. This limitation plus the limitations in predicting sound
pressure level make it seem not to be worthwhile to determine a pattern

for locating the effective vortex sheet position.
Sound Pressure Level

Sample calculations of sound pressure level and intensity relative
to appropriate reference values are presented ih figures 16-19. In
order to continue comparisons with the voftex sheet model developed by
Amiet (ref. 20); the sound pressure level is referenced to that which
-~ would be measured at an equal radius from the source if the shear layer
" were absent. This reference condition is called the "Ideal Wind Tunnel"
condition by Plumblee et al. (ref. 2). The thsical situation is as
shown in the sketches in figures 15 and 16. The SPL (Sound gressuré
Level) for the thin shear layer associated with source 1 is shown in
figure 16 for Mach numbers of 0.2, 0.5, 0.9 and for the range of emission
angles, es, from 30° to 120°. The same calcglations for the thick shear
layer associated with source 2 are presented in figure 17. In both
cases it is seen that the shear layer causes a sound pressure increase
for those rays emitted in the flow direction (GS < 90°) and a decrease
for those emitted in a rearward direction with respect to the flow. The
change is seen to increase with increased Mach numbers, as would be
expected. In comparing the two figures it is noted that the thin shear
layer has the greater effect. This is particularly so for small angles
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with respect to the flow direction. These results have been compared

with the vortex sheet model préviously described and those calculations
are indicated on the figure. 'While the general trends are in agreement
except for small angles with respect to the flow direction (i.e., _
approaching the "zone of silenée"), the magnitude of the change in SPL

is much greater than predicted by the vortex sheet model.

Even though the ray path results using the present and the vortex
sheet methods are reasonably comparabie for the thin shear layer, the
sound pressure results-are significantly different. It is believed that
the extreme reduction in predicted sound pressure for the vortex sheet
model: is.due to the reflected energy inherent in that method. The
reflected wave arises solely from the discontinuity in properties of the
medium (including velocity). If the medium properties are continuous, as
they physically are, there is no reflected wave. In fact, Amiet (ref. 3)
has introduced a "correction" to the .vortex sheet model for shear layer
thickness which essentially eliminates the effects of the reflected
wave, :The only "reflection" which appears in the continuous property
case is due to sufficient refraction of the rays which enter the bounding
region (e.g. shear layer) such that they bend and re-emerge from the same
side. This can occur for upstream radiation at a large angle or for

large gradients in the speed of sound in the direction of propagation.
Intensity

The souhd'intensity is affected by propagation through a shéar layer
in much the same manner as the sound pressure level. The direct relation
between sound intensity and pressure is showh in Appendix C of this
report. In each case, the effect is minimum for emission at 90° to the
flow. It is often of interest to compare the intensity at a point out-
side the shear flow with that which 'would be measured at an equal distance
- from a non-directional source of equal strength but emitted perpendicular
to the flow. Such results calculated by the present method are presented
in figures 18 and 19 along with a sketch of the physical arrangement of
the intensity measurements being compared. Again, these present calcula-
tions are for the thin and thick shear layers associated with sources 1
and 2, respectively. As expected the results are much the same in
character as those for the sound pressure level shown previously.
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CONCLUSIONS AND.RECOMMENDATIONS

The features of sound propagation of most importance in interpreting
measurements in the Ames Anechoic.Flow Facility have been examined. A
distinction was made here between sound propagation effects and those of
other acoustic and flow interactions. Propagation effects were restrict-
ed to those involving convectlon and refraction of the acoustic signal and

relative motion of the source and observer.

Methods for evaluating the propagation effects were discussed and
the more promising methods evaluated. The two most accurate methods were
those based on geometric acoustics. The vortex sheet method was examined
and found to have serious shortcomings, especially at Mach numbers

greater thgn 0.2.

While the Lilley Equation is strictly applicable only to parallel
flows, it is valid for all frequencies of interest. Numerical calcula-
tions of sound propagation based on the Lilley Equation have been
developed by many investigators, e.g., Plumblee et al. (ref. 2), Mani
(ref. 24), and Tester and Burrin (ref. 25). Such solutions are
frequency and source type (i.e monopole, dipole, quadrupole, etc.)
dependent. The geometric acoustics method is generally applicable to all
flow fields but is restricted to wavelengths short compared to signifi-
cant length scales of the medium. A combination of these two methods is
recommended to evaluate the range of data obtained in the AAFF. ‘

Because of its generality the major emphasis of the investigation
was placed on the geometrlc acoustics approach which 1ntr1n51cally 1s
1ndependent of source type and frequency. The equations of geometrlc
acoustics were formulated from the kinematics of "ray" trajectories and

Fermat's Principle of stationary transit time.

A computer program was developed in the present study for numeri-
cally solving the Euler-Lagrange Equations resulting from Fermat's
Principle applied to three-dimensional waves in a two-dimensional,
inhomogeneous medium. Sample calculations were carried out for a source
in a uniformly moving medium for a range of Mach numbers from 0.2 to 0.9
and sound emission at angles of 30° to 120° with the flow direction. The
program traces a ray from a source to a constant radial or side line

distance from an arbitrary, specified point. Ray paths, sound pressure

.and intensity were computed for "bundles" of these rays traversing a
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shear layer into a quiescent, uniform medium. Isothermal flow was used
for these calculations but the program is not limited to constant sound
speed or density. The results of these computations were used to discuss
the difficulties in using Vortex sheet methods when: (1) the source is
located in the shear layer, (2) the shear layer is not small with respect
to the acoustic wavelength (i.e. a thick shear layer), and (3) the
changes in sound pressure level are being determined.

It is also shown (see Appendix D) how to apply the computational
methods to a moving source, as one may have if, for example, it is

convected with the flow.

in setting up and analyziné experimental studies it is recommended
that the geometric acoustics program be used to locate microphones by
predicting the sound propagation features from the sources under investi-
gation and any other major noise sources. A check of the lowest
frequencies of interest might also be made ﬁsing one of the Lilley
Equation techniques for comparison. Corrections can be made or seen to
be necessary at these low frequencies. Generally, if the wavelengths of
interest are less than three times the thickness of the shear layer to

be traversed the corrections are negligible (ref. 3).

It is reéommended that further work be carried out to expand the
capabilitieé of the computer program developed in this investigation and
to use itlin combination with an experimental program in the AAFF for
clearly defining the limitations of geometric acoustics and evaluating
cofrections necessary. The only significant modification of the computer
program which is seen to be desirable at this point is its extension to
three-dimensional media. Such an extension is expected to be quite
'straightforward since the numerical solution technique wéuld be identical
to that presently used. It would also completely generalize the medium
properties available for investigation and would permit its broad'appli—
cation to sound propagation problems of many varieties. The method is
not intended for supersonic flow rates, however. A further introduction
of sound attenuation along a ray path would also permit atmospheric and

undersea sound propagation studies with this method.
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APPENDIX A

DESCRIPTION OF GEOMETRIC ACOUSTICS COMPUTER PROGRAM

A computer program was chpo;ed to carry out the numerical solution
of the ray path equations derived in the text of this report. The
program determines the propagation of a three-dimensional phase surface
emanating from a stationary point source by following the path of a
"bundle" of rays (a central and four surrounding rays) as they pass from
a stationary point source through arbitrary two-dimensional flow and
fluid propérty fields. These fields are treated as being continuous.
The program also computes the average intensity and sound pressure for
an acoustic-energy-conservative ray bundle at specific points along its
path through the fluid medium. The program is applicable as a basic tool
in evaluating measurements of sound which must propagate through an

inhomogeneous medium before being received by the measuring microphone.

The specific situation énvisaged for analysis is that of determiﬁing
the sound radiation pattern of a point source located within an inhomo-
geneous moving medium as determined.by a microphone at either a constant
radius or side line position from an arbitrary point. Interaction of the
microphone with any local flow is not accounted for since it is in a rela-
tively quiescent region. Neither are discontinuous changes of fluid and
flow properties considered, since these are approximations to real

property variations and can be treated by simpler mathematical means.

In the following the program stfucture, operation and usage are
described. Included are the input and output nomenclature, the input
keypunch format and a listing of the program and current subroutines for

the flow field and sound pressure level.
Main Program SART

This part of the program contains the input and output sections as
well as sections for the calculation of the ray bundle size and step-size
along the ray paths. It also calls the subroutines used in the programs
to identify the reference condition for the subseguent sound pressure and

intensity calculations (PIREF), to determine the local flow field proper-
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ties (Mach number, speed of sound and density) involved in the calcula-
tions (FLOW), and to solve the differential equation of the ray path

(YPPZPP) .

The first action of SART is to read in the input data for the
particular job. First is the HEADER card which describes within an 80
character space the job to be run. Next is a body of numerical informa-
tion contained in a namelist group entitled INP. The specific items are
described in figure A-1. This input information is then written out.
Finally the source emission angles, ¢s and es (degrees) for which the
central ray path calculations are to be carried out are read in using the
format indicated in figure A-~2. Each value of ¢S is used with each value
of es up to the numbers NPHI and NTHETA (given in INP) in order»as listed.

The angles and position information are then transformed to an
internal coordinate system and converted (e.g. degrees to radians) where
necessary. A compound DO loop is then entered to carry out the calcula-

tions for each combination of ¢S and es.

The angles for the four bounding rays of the ray'bundle are deter-
mined first. Then the initial flow field information is obtained by
calling the subroutine FLOW.

Based’on this flow field information the program then calls sub-
routine PIREF, which calculates the reference quantities necessary to
determine the sound pressure level and sound intensity at susequent
points along the path of the ray bundle. - '

The program then enters a section in which the paths of each ray in
the bundle are calculated for the same step in time. In this manner, the
positions of the rays at the end of each such step represents the-inter—
section of the rays with a surface of constant phase..'The position
changes are determined using the direction cosines of the path, the fluid
- velocity and speed of sound, each evaluated at the starting position for

the step.

The magnitude of the time step is determined by applying certain
" limiting criteria to the path of the central ray. Numerical values for

these are input in the namelist INP. These criteria are:

1. The final distance, YYF (maximum radial or side line distance
- from a specified point (XXC, YYC, ZC)) shall not be passed.
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Column 2
XXC
YYC
ZC
Xx@
YYP
g

NSL

YYF

Ag.

Mg
RH@@
SIGMA
IAR

MS

DELPHI
DELTH

DELMIN

DVLIM

PF

MAX
NPHI
NTHETA

SEND

34

. calculation

Namelist INP

Position of control point for constant radius

. Initial position of source

0, calculations will end when YY-YY@=YYF

1, calculations will end when the radial distance from
(XXC, YYC, ZC) is YYP

.Ray displacement for final calculation

Reference speed of sound

Mach number scale (e.g.  maximum Mach number) for FLOW
Reference density |

Scale parameter for sheaf layer. Used in FLOW

Reference energy emitted by source

Provision. for including source Mach number. Not presently

used.

Hélf angle of fay bundle in ¢s difection

Half angle of ray bundle in es direction
Minimum step size aiong ray path calculations
Maximum fractional change in vélocity to be used

Printout factor. Printout occurs if path length since
last printout is greater than PF+DELT-AJ

Maximum number of steps allowed before reaching YYF
Number of ¢s's to be used

Number of es's to be used

Figure A-1 Namelist INP Format and Definitions



a)

b)

Input ¢s's (degrees) :

column number

program variable

Input es's {degrees) :

column number -

program variable

Figure A-2

Format (8F10.5)

8 values per card

10 20| 30 { 10NPHI

PHIG(1)| PHI@(2)| PHIZ(3) g PHI@ (NPHI)
Format (8F10.5) 8 values per card

w0 20 30 { . 10NPHI

TTB (1) TTE (2) TTS (3) I'T@ (NTHETA)

Wave Normal Angle Input Format
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2. The step shall be such that the position of the central ray will
change by an amount at least equal to DELMIN.
The time step shall be no greater than DELT.
The relative change in velocity AV/V over the step shall be no
greater than DVLIM.

Of these criteria, the first three are absolute and the fourth governs
only when they are not violated. Similarly, the first takes precedence

over the second and third.

New direction cosines are obtained at the new position by calcula-
tion of their rates of change using the Euler-Lagrange equations developed
in the text. The Euler-Lagrange equations are solved in the subroutine
YPPZPP.

After completing this calculation for each of the five rays in the
bundle, the program either repeats the calculation for the next time
step or, if it is to print out information at this position, it‘proceeds
to calculatelthe area of the ray bundle. The wavefront afea, dA_ is
approximated as follows. Consider the ray bundle depicted in the sketch
below. ‘ '

, z
The area of a general triangle may be computed as follows

Q
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[S (S-a) (S-b) (S-c) ]1/2

S = % (a + b + c)

»
Il

a = [(xl—xz)2 + (yl—yz)2 + (zl—z2)2]1/2
b= [(xy %)% + (y,vy)2 + (272508117
¢ = Lxgx? + (yymy? + (z3-2 %12

where the subscripted quantities are the Cartesian coordinates of the
associated points @ ’ @ ’ @ , etc., the intersections of the correspond-
ingly numbered rays with the phase surface.

The triangular sub-areas may be computed by this formula and dAp

then determined by summing the four sub-areas.

Note that all areas are positive and if there is a crossing of rays
the method will break down and too low an intensity will be indicated.

If the final phase surface has been determined, that is, if the
specified radial or side line distance, YYF, has been attained, the
program additionally calculates the radius and center of curvature
of the phase surface. This will enable the user to simply determine the
sound intensity and pressure level at other positions along the ray path
if the phase surface inside the bundle is in, and remains entirely in, a
uniform medium. A definition of the output quantities appears in figure
A-3.

The computations involved have assumed that 3/9z of any flow or
fluid property is identically zero. This is the ONLY part of the program
which restricts it to a two-dimensional fluid and flow field. 1Inclusion
of the general z dependence terms in the derivatives will enable the
treatment of a fully three-dimensional field. All acoustical propagation

calculations presently consider the wave to be fully three-dimensional.
Subroutine FLOW
The subroutine FLOW provides the main program SART with flow and

fluid property information at arbitrary positions along a ray path. The

specific information to be provided is:
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a) -Output for ray positioh slope and flow field data

K
XX
Yy
22

XXP
ZZP

PHIE
THETAE

MXX

E

MYY
A/AQ
RH@ /RHPP

Ray number

Spatial position
dxX/dYY for ray path
dzzZ/dYY for ray path

Polar angles of wavenormal

Local flow Mach number in. XX-direction
Local flow Mach number in YY-direction
Normalized speed of sound

Normalized density

b) On first printout at initial position

REFERENCE

INTENSITY = IAREF for direction of ray #1

c) Output for ray path length and polar position data

STEP NO.

PATH LENGTH

RADIAL
DISPLACEMENT

GAMMA
PSI

Rg
RC

GAMMAC
PSIC

38

Cumulative number of time steps
Distance along path of ray #l
Radial distance from source

Polar angles of position from source

Distance traveled at speed, A@, in elapsed time, At,
i.e. Ag-At

Radial distance from reference point (XXC,YYC,ZC)

Polar angles of position relative to reference point

Figure A-3 Definition of Output Quantities



d) Output for acoustic intensity and sound pressure level

AN Area of phase surface intercepted by ray bundle

IN Acoustic intensity in direction of wave normal (IAREF/AN ~

energy flow per unit area)

DELTA SPL Sound pressure level relative to a point source in a
uniform flow field with conditions and properties being
those at the source position and having the initial wave
normal directions.

~ dB re P

ref
where
pa 1
P (x,y,2) = - —_—
ref 2 (R(x,y,2)
4A¢00 (1 + Mn) (x0,y0,20)
M = fluid velocity in wave normal direction/a
R = radial distance from source position (xo0,yo,zo)

Figure A-3 Concluded
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1. The density, RHO

2. The speed of sound, A

3. The vector Mach number, i.e., velocity vector/speed of sound
4. The spatial gradients of items 2 and 3

The main program presently accépts only two-dimensional fields.
Hence, FLOW must provide RHO(x,y), A(x,y), MX(x,y), MY(x,y) and the
partial derivatives of the.latter three with respect to x and y. These
are passed to SART via the argument list.

Provision is made in SART to pass certain information through a
common block labeled FLUID. It has the form:

CAMM@N/FLUID/AQG , M#, RHPP , SIGMA, NWRITE

The quantities A@, M@ and RHPY may be used to normalize the speed of
sound, Mach number and density, respectively, and are input in the
namelist INP,

SIGMA may be used to scale the velocity gradient as in a self-
similar flow where the velocity u = u(n), where n = oy/s. SIGMA or ¢ is
also input through INP.

The guantity NWRITE permits the title or a description of the flow
field to be written in the output whenever NWRITE is set equal to zero by
the main program.

Subroutine PIREF

The subroutine PIREF is provided to calculate reference values for
subsequent computation of sound pressure level and intensity in the main

program. The required input data are:

a. The wave normal angles at the central ray, PHI and THETA.

b. The included half-angles of the ray bundle, DELPHI and DELTH.

c. The vector Mach number, MX and MY, at the source position.

d. The fluid density and speed of sound at the source position.

e. A reference energy, IAR, equal to the source energy (the product

of phase surface area and intensity normal to that surface).

Items a, b, and c are input directly through the namelist INP.
Items ¢ and d are computed by FL@W at the initial source position.
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The subroutine computes:

a. The Mach number in the direction of the initial wave normal,
EMN@.

b. The reference sound pressure, PREF, for a uniform flow having
the properties of the fluid at the initial source position.

c. The reference energy, IAREF, in the direction of the given wave-

normal.

The sample PIREF "computes" IAREF for a simple monopole source (i.e.
IAREF=JAR) which has uniform emission in all directions. A higher oxrder
source, for example a dipole aligned with the x-axis (¢ = 90°, 6 = 0°)
may be represented by IAREF=IAR cos 6 sin ¢ and may be computed by thusly
changing the defining statement for IAREF in PIREF.

The reference pressure need not be changed for other sources since
the directional factors cancel out in the calculation of the sound

pressure level.
Subroutine YPPZPP

The objective of subroutine YPPZPP is equivalent to determining the
rates of change of the direction cosines of a ray given their values and
that of the other flow properties and gradients indicated in the Euler-

Lagrange equations.

The program does not actually deal with direction cosines but
rather with the rates of change of two of the path spatial coordinates
with the third taken as an independent variable. It should be noted that
the computations are carried out in an internal system of coordinates in
which the independent variable is "y" of the external coordinates (e.q.
those used in FLOW) is identical to the internal "x". Where both coordi-
nate systems appear in the program (e.g. the SART) we have adopted the

notation:

EXTERNAL INTERNAL
XX . -Y
YY X (independent in YPPZPP)
2z 2
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As can be seen, this is a simple 90° rotation about the z-axis. The
rotation was performed to better use the standard library trigonometric
routines of the computer. '

\

The major calculations of YPPZPP as is seen in the listing are
concerned with the computation of various partial and total derivatives

from the basic flow and fluid property information provided by FLOW.

PROGRAM LISTING

The program is written in FORTRANIV’éomputer language (029 punch)
and consists of a main program, SART, and three subroutines. A listing

of the program is given on the following pages.
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APPENDIX B
VARIATION OF FLUID PROPERTIES

Much experimental work in low speed flows involve negligible varia-
tion of the fluid properties which affect sound propagation, specifically
the density, p, and the speed of sound,-a. In a compressible medium
where high subsonic Mach numbers are involved, significant changes in
these properties occur through regions of substantial velocity changes.
In a constant pressure flow field with unity Prandtl number, as is
normally assumed for a free subsonic jet, these properties are related to
the velocity by the Crocco relation and the equation of state. The
Crocco relation exists between the velocity and temperature of a perfect
gas of constant specific heat, unity Prandtl number and at constant

pressure, and is:

5 .
T = A + Bu - - "~ (B.1)
2
. c
P
where
= the static temperature of the fluid
= the velocity
cp = the specific heat at constant pressure (assumed to be constant)
A,B = coefficients determined by the boundary conditions

If we let the subscripts j and «» indicate properties in the unmixed
jet and the external medium, respectively, the conditions to be satisfied

by equation (B.1l) are

2
u,
T. = A+ B u. - =L
J J 2,
P
uZ
T =A+Bu - =—
o © 2
C
P

Upon using these conditions to evaluate the coefficients A and B,

equation (B.l) becomes:

T _p oL 2ouy pysly2 Ay - (B
T; =1-35 1 uj) + 5 Mj [(1'+ A)uj A (uj)] (B.2)
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where

r =T /T.
A= u /u,
/Y5
Mj = uj/aj, the jet Mach number
Y = ratio of constant pressure and constant volume specific heats

a = speed of sound = (YRT)l/2

R = gas constant

For constant pressure flow of a perfect gas, the density and speed

of sound variations with velocity may be computed using equation. (B.2).

T. ' _ _
pi. = "'I:L o ' (B. 3)
J : .
ai. =.Tl.>1/2 , (B.4)
j j

Thus, by specifying the velocity field and boundary conditions, all

necessary properties of the medium can be determined.
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APPENDIX C

ACOUSTIC INTENSITY AND SOUND PRESSURE LEVEL
FOLLOWING A RAY BUNDLE

Along a ray path (with no absorption or generation) conservation of

energy within a ray bundle requires that (see ref. 26)

I . ndA = const. (C.1)
where

I = acoustic intensity = the acoustic energy flux vector

dA = wave front area enclosed by the ray "bundle" or "tube"

n = normal to the wave front (i.e., the surface of constant phase)

In terms of physical quantities, T may be computed from the relation

(see ref. 26)

I=c< p'u + 5 P° + ————— P + poﬁ(ﬁ . G)> ‘ (C.2)
P00 S
where
a, = speed of sound in the fluid
Po = mean fluid density
p' = acoustic pressure

U = mean fluid velocity
U = acoustic particle velocity relative to the fluid

In the far field limit (i.e. a/wr + 0) of geometric acoustics

aeou@ | ~(c.3)

P' * poaju ‘ ' (C.4)
where

gn = unit vector in the wéve normal direction

u, = component of u in the gn direction
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The far field intensity in a direction & is

R
2
_—>.—>_<'> _>-.++-+ > 2
IR =1-ep-= EEE__ (1 + M - en)(en ep + M eR) (C.5)
o o : ,
where
M= U/a (C.6)
o
If ep = €. the wave normal direction
<'2> > > 2
I_ =R 2 1+#%.8) (C.7)
n N n

These relations hold in the geometric acoustics approximation,

regardless of the type of source.
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APPENDIX D
MOVING SOURCES

The motion of an ideal source of sound relative to an observer
(microphone) introduces the so-called Doppler effects on the frequency,
intensity, and directivity of the sound received from the source. The
motion of a real source of finite dimensions relative to the fluid
medium can additionally introduce changes in the basic character of the

.source (e.g. create additional monopole-, dipole-,‘and/or quadrupole-like
noise issuing from the real source). Such changes cannot yet be con-
‘cisely described but have their roots in the full Kirchhoff solution to
the wave equation and the boundary conditions on the actual source. The
discussion here will be restricted to a presentation of the Doppler
effects for sources moving with respect to an observer. The basic
Doppler effects for subsonic motion may be described as follows.

Consider a two-dimensional source moving at a uniform speed, V,
relative to an observer at 0(x,y,z,t) as indicated in figure D-1. Sound
received at time, t, from direction es was emitted from the source at
time t - Rc/aco and at a convected emission angle of_ec. The convected
emission angle is related to the actual emission angle, es, and the fluid
flow velocity as given previously by the ray path equations. Reduced to

two dimensions, these yield

v + in 6
a sin 0

tan ec = (D.1)

u + a cos es
where u, v, and a are the fluid velocities in the x and y directions and
the local speed of sound at the point of emission, respectively.

The frequency, w, of the sound received relative to that produced by

the source, w, may also be calculated

w .
_ o
w = u cos 6+ v_ sin © (D.2)
1+ -8 c s c

=
where usand v, are the x and y components, respectively, of the source

velocity at the time of emission.
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The energy received at point 0 from sources moving along a pre-
scribed path may be determined by examining the energy reaching the point
from various specific points along the path. The energy density received
from each point may be determined from the ray path method as though the
source were instantaneously stationary and in proportion to the emission
of the source in the appropriate wave normal direction to intercept the
point 0 from the source position. The energy from different points, of
course, is emitted from the source at different times and would, there-
fore, yield a time history of energy received from the source as it
travels along its given path with a prescribed velocity history and

directivity.

Consider now a statistically stationary field of moving sources as
one has with the noise produced by turbulence from a "steady" jet or wake.
The noise associated with such flows is identified with convected quad-
rupoles. However, any given region of space involved in the flow has a
characteristic strength, directivity, and spectrum which do not vafy
substantially with time. Given the directivity, strength, convection
speed (essentially that of the flow), and the spectral nature of such
sources in the flow, their characteristics may be modified to those of
equivalent stationary sources by the above means [equations (D.1l) and (D.2)].
The acoustical energy density (intensity) produced by the field point, 0,
may then be determined as an appropriately weighted sum of that arriving

from a number of representative points in the flow.

Three-dimensional versions of equations (D.1l) and (D.2) may be obtained
. by using appropriate velocity components in the directions of the wave
normal and ray path, respectively, instead of using the trigonometric

functions indicated.
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Figure 14,- Effective deflection of ray path by shear layer; h/R =0.05.
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Figure 15.- Effective deflection of ray path by shear layer; h/R = 0.25.
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Figure 16.- Change in sound pressure from flow nonuniformity; h/R = 0.05.
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Figure 17.- Change in sound pressure from flow nonuniformity; h/R = 0.25.
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Figure 18, - Calculated relative intensity; h/R = 0.05.
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Figure 19.- Calculated relative intensity; h/R = 0.25.

150





