NST-44

To: xx/Scientific & Technical Information Division
Attn: Miss Winnie M. Morgan

From: GP/Office of Assistant General Counsel for Patent Matters

Subject: Announcement of NASA-Owned U.S. Patents in STAR

In accordance with the procedures agreed upon by Code GP and Code EI, the attached NASA-owned U.S. Patent is being forwarded for abstracting and announcement in NASA STAR.

The following information is provided:

U.S. Patent No.: 3,573,470
Government or Corporate Employee: Cal Tech/JPL
Supplementary Corporate Source (if applicable): Pasadena, CA
NASA Patent Case No.: NPO-10,233-1

NOTE - If this patent covers an invention made by a corporate employee of a NASA Contractor, the following is applicable:

YES [x] NO []

Pursuant to Section 305(a) of the National Aeronautics and Space Act, the name of the Administrator of NASA appears on the first page of the patent; however, the name of the actual inventor (author) appears at the heading of column No. 1 of the Specification, following the words "...with respect to an invention of..."

Bonnie L. Henderson

Bonnie L. Henderson
ABSTRACT: Apparatus suitable for receiving a sample for optometric analysis along with a method of fabricating the apparatus is disclosed. The apparatus includes a sample cell comprising an opaque hollow tubing. A plurality of apertures are defined in the wall of the tubing and a lens barrel which extends beyond the opposite surfaces of the wall is supported within at least one of the apertures. A glass lens is mounted in the lens barrel. A housing is provided with a first channel for receiving the sample cell and a further series of channels extending from the exterior of the housing to the sample cell apertures. A filter element is housed in each of these latter channels. These channels also slidingly receive an excitation light source or a photodetector cell to permit selective focusing thereof. A sample cell containing at least three apertures in the walls thereof can be mounted, for rotation relative to a light source or photodetector means for simultaneous or alternate optometric determination of the components of a single sample. The sample cell is fabricated by supporting a lens barrel within the aperture. A molten portion of glass is deposited in the lens barrel and cooled while in a horizontal position to form a lens having an acceptable angle of 130° to 170° at an aperture of $f/7$ or below.
ORIGIN OF INVENTION

The invention described herein was made in the performance of work under a NASA contract and is subject to the provisions of Section 305 of the National Aeronautics and Space Act of 1958, Public Law 85-568 (72 Stat. 435; 42 USC 2457).

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to optometric systems and more particularly to an optometric sample holder and a method of fabrication thereof.

2. Description of the Prior Art

Many methods and devices are known for analyzing material samples employing optometric colorimetric or fluorometric techniques. These devices, however, are generally complex in nature, involve intricate fabrication of bulky apparatus and are not capable of withstanding severe environments such as may be encountered in outer space. The present and future efforts to explore the chemical constituents of the atmosphere and soil of outer planetary bodies require instrumentation that is compact, and is capable of performing reliably and accurately in diverse environments.

OBJECTS AND SUMMARY OF THE INVENTION

In view of the foregoing, it is an object of this invention to provide an efficient and compact system for analysis employing optometric devices.

A further object is to provide a micro-optical measurement system particularly well suited for lunar, planetary and space explorations and studies of biological or soil samples.

A still further object of the invention is to provide a method of fabricating a sample holder for use in colorimetric and fluorometric determinations.

Yet another object of the invention is the provision of a method of fabricating lens-shaped windows in the walls of sample holder tubing.

A still further object of the invention is the provision of compact, unitary optometric system capable of fluorometric, colorimetric and absorption determinations.

Still other objects of the invention will become apparent as the description proceeds.

In accordance with the invention, the sample holder comprises a hollow tube forming a substantially opaque wall. A plurality of apertures are defined in the wall of the tubing and an annular ring which extends beyond the surfaces of the wall is supported within one or more of the apertures. A lens element is mounted within the ring.

Housing means are provided for positioning the apertures of the sample holder in variable spaced relations to input light excitation means and to output light detection means.

The light source includes means for monochromatizing the input radiation to a selected wavelength and means for selectively absorbing a component of the contents of the sample holder.

The light output selection means directs the light that is transmitted through or emitted by the component and develops a signal characteristic of the presence of and/or proportion of to the concentration of the component.

A sample holder with multiple output apertures mounted with each output aperture in light viewing access to light output detection means permits simultaneous colorimetric and fluorometric measurement. The sample holder with multiple apertures can be arranged for selective positioning for alternate colorimetric or fluorometric determinations.

The sample receptacle which can be in the form of a flow through sample holder is fabricated by providing a plurality of apertures in the walls of a length of substantially opaque tubing. A ring member extending beyond the surfaces of the wall is supported in at least one aperture.

A lens formula shaped window is formed by depositing a measured molten portion of optical glass within the ring and cooling the glass to form a lens-shaped element. These lenses may be clear for direct light focusing or colored for filter applications.

DETAILED DESCRIPTION OF THE DRAWINGS

The invention will now become better understood by reference to the following detailed description when considered in connection with the accompanying drawings in which:

FIG. 1 is a sectional view of a first embodiment of a dual aperture sample cell according to the invention with integral lenses and separate filters;

FIG. 2 is a sectional view of an alternate embodiment with integral filters and light pipes attached to the lens;

FIG. 3 is a further embodiment illustrating a filter element integrally disposed between two lenses, one of the lenses being mounted in the sample tube holder wall;

FIG. 4 is a cross-sectional view of a three-aperture sample tube holder for simultaneous colorimetric and fluorometric analysis;

FIG. 5 is a perspective view of a housing for the sample holder;

FIG. 6 is a block diagram of an optometric system for quantitatively determining the constituents of a sample according to the invention;

FIG. 7 is a sectional view of an optometric system including means for selectively positioning the light source and/or photodetector, and

FIG. 8 is a view taken along line 8-8 of the embodiment of FIG. 7.

Referring now to FIG. 1, a flow through sample cell 10 is formed from a small diameter thin-walled metal tube 12. As illustrated, it is tubing of circular cross section, but may also be elliptical, rectangular or other shape. Sample or standardization fluid is delivered to the cell through plastic tubing 13 and is exhausted through tubing 15. Suitable tubing such as adopted herein, is tubing of vinyl resin which are easily inert to the components of the sample material. The tubing 13 and 15 surrounds the ends of the sample cell. A first light-gathering lens 14 for focusing input light is mounted in the metal tube 12 within a first aperture encased in an annular lens holder 16. The lens holder extends on each side of the wall of tube 12 to form an exterior projecting flange 16 and an interior facing flange 18. A radiation output lens element 20 is mounted on a light viewing axis to output radiation on a further wall portion of the metal tube within a second aperture supporting an annular ring holder having an outer and interior facing flange 16 and 18.

The metal tube 13 is preferably formed of a high melting point, non-volatile material such as platinum which molten glass will readily wet without forming metal oxides so that a good sealing bond may be formed between the glass and the metal. This allows the molten glass to flow readily to form a lens formula shape. Minute lenses may be formed according to the technique of the invention having a perfect lens formula. The tubing can be very small and, in fact, platinum tubing having one-eighth inch outside diameter down to one-sixteenth inch outside diameter has been utilized to form sample cells according to the invention.

The lenses are mounted in the walls of the sample tube by forming a lens-receiving aperture of the desired diameter. It is preferred to mechanically scribe the hole in the thin wall tubing of such metal protrudes both within and without the wall of the tubing. This forms an annular ring which serves as a lens barrel for holding the glass and further prevents the molten glass from creeping along the inner and outer walls of the tube once it has been applied to the aperture. The length of the lens barrel also contributes to accurately and selectively determining the focal length of the lens.

A portion of glass is melted and placed in the lens barrel which is held in a horizontal position. The glass wets the entire
inner surface of the lens barrel and a meniscus shape forms below. More accurate control of lens shape and focal length is achieved by weighing out the proper portion of glass to be used. The glass is allowed to slowly cool from the molten state while held in this horizontal position. The surface tension provided by the air to glass interface is believed to create a force which acts on a monomolecular layer of the glass surface. This force determines the curvature of the lens surface and serves to maintain the shape of the lens while it cools to a nearly perfect and smooth form. The actual shape may be calculated very accurately since the surface tension is constant over the entire area.

In the meniscus lens of the invention, the focal length varies from the center to the edge to form a planar image. The lens has a wide acceptable angle of over 130° to 170° at a wide aperture of 17 and below. It is extremely difficult to grind small lenses to the degree of lens quality achieved by this technique.

The method of the invention is particularly effective in forming lenses in situ in apertures on curved surfaces such as cylindrical tubing.

In order to form a lens of the desired shape, it is necessary that the lens holder provides no writable surface normal to the axis of the lens. Otherwise, the molten glass under the impetus of surface tension will creep sideways along the surface an indeterminate amount and the final shape will vary irreproducibly. A lens barrel having a glass retaining seal will only permit surface shaping at the air to glass interface. Another-suitable lens holder is a ring of wire having an appreciable lateral thickness. Thus, the molten glass metal interface will have no appreciable effect on the meniscus formed at the glass to air interface.

Meniscus-shaped lenses can be formed in a wire ring holder according to the method discussed above. The shape can also be controlled by dynamic rolling of the ring holder or sleeve during cooling of the molten glass. For example, the sleeve containing a portion of molten glass may be placed in a horizontal quartz tube which is rolled during cooling. Surface tension will still determine the shape of the surface exposed to air. The lens element shape can be varied from concave to convex depending on the volume of glass applied to the lens holder. It is not necessary to match the coefficient of expansion of the metal ring and the glass. If the metal breaks, it is simply peeled away and the lens can be mounted by mechanical means. If the metal remains, it can be used to mount the lens. It is possible to angle, bending, brazing or other suitable adhesion or attachment process.

The lenses are of great value when used in systems requiring accurate imaging such as in direct view fluorometry. In many applications, however, accurate imaging is not necessary, the prime requirement being efficient collection and transmission of light into and from the light absorbing and fluorescing materials.

The lens may be formed from clear glass such as soda-lime glass or may include appropriate coloring materials for formation of a combination lens-filter element. As illustrated in FIG. 1, clear glass has been used to form the lens and separate filter elements are utilized. An input filter 22 is positioned between the input lens 18 and a light input lamp 30 and an output filter 26 is positioned between the output lens 39 and the photodetector 28. A signal proportional to transmitted light detected by the photodetector is generated in the data collection circuit (not shown) and is recorded or displayed.

The lens-forming techniques of the invention permits the formation of colored lenses for built-in filter terms. The terms can be colored by mixing in appropriate coloring materials or dyes or by transmission characteristics can be etched using mixing colored filter glass such as Corning filter-grade glasses into the melt. Two or more lens segments of different color may be utilized to form a composite lens for the filter segment can be fused directly in the lens and outside wall of the sample cell.

Referring now to FIG. 2, a modified form of the sample holder is shown in which an input filter 30 has been attached to the input lens and to the wall of the metal tube and an output filter 32 has been attached to the output lens and the adjacent area of the metal tube 12. As shown in this embodiment, the filter 32 is substantially elongated in order to provide light-piping effects. The sample holder assembly as shown can be inserted into the remote and inaccessible areas.

For example, a sample holder with attached input and output light pipes can be inserted into the body at the location of the suspected site of trauma. Light is piped into the body fluid to be monitored and the output light piped out of the body to the detector. In instrument design, more flexibility in placement of components is permissible. The lamp can be remote from the sample holder and thereby avoid the heating effect on the sample. This eliminates the necessity to cool the sample or to temperature-calibrate the data.

A composite lens-filter element is illustrated in FIG. 3. In this embodiment, a cylindrical filter element 40 such as one composed of ultraviolet transmitting glass is interposed between the lens element 42 mounted within the wall of the tubing and a further lens element 54 mounted at the other end of this cylinder 40. These elements can be joined by optical cement. However, it is preferred to fuse them together since a glass-to-glass fused bond is more stable in the environment encountered in outer space and those encountered on other planetary bodies. On the output side of this sample holder, the lens element 43 mounted in the wall of the tubing is formed from clear glass. The filter cylinder 45 is composed of an ultraviolet absorbing-visible light transmitting glass while the lens element 47 mounted on top of the filter cylinder 45 is a combination lens and cutoff filter formed from yellow glass.

In the quantitative or qualitative determination of multiple components in a single fluid separate excitation wavelengths and separate output wavelengths may be required. For example, in the determination of creatinine in urine from the absorption band of creatinine picrate, a characteristic absorption band of about 450μm is to be monitored by fluorometry. In the fluorometric determination of calcium in urine, excitation radiation at about 450μm results in fluorescent emission at about 526μm. Fluorometric transmission measurements can be made straight through. However, fluorometric output can also be measured at other angles to the incident light and in the normal position more stray light can be eliminated. This permits simultaneous or alternate measurements to be made with the optic device of the invention.

Referring now to FIG. 4, a cross section of a sample tube holder 51 for simultaneous excitation-emission analysis is shown. The sample holder 50 comprises a tube 52 including three apertures. The first aperture includes a light gathering input lens element 54. An incoherent light source means 55 is mounted in front of the input lens 54. In line with this incident radiation is a second aperture housing colorimetric output lens 55 for receiving the characteristic creatinine picrate radiation output. A third aperture provided normal to the incident light receives lens element 60 for detecting the calcium fluorometric radiation output.

Referring now to FIG. 5, the sample holder 51, the filters, light source, and the collecting and processing means are shown in the desired relation within a housing 60. The housing 60 is preferably formed in two parts which can be disengaged for interchange of the various elements. Each section 62 of the housing is of a general rectangular shape and includes a cylindrical recess 63 for receiving a lamp 64. The base end of the lamp 64 is covered with a sleeve 65 of a heat resistant plastic such as Micarta to form a close fit with the recess, but permit axial sliding of focusing of the bulb. The diameter of the recess is selected to receive an input filter element 66 which may be fused directly to the sample holder 51.

The inside terminus of the recess 63 is intersected with a perpendicular channel 68 for receiving the sample holder and inlet and outlet tubing 69. A further channel, not shown, is provided in the other section of the housing 60 normal to the sample holder 51 for receiving a fluorometric filter 72 and photodetector cell 74. The cell 74 is also surrounded with Micarta to form a close fit with the channel.
A third channel 80 is provided in the housing in line with channel 63 and this channel 99 receives the colorimetric output filter 88 and photodetector cell 90.

To perform analyses with the spectrophotometric instrument of FIG. 5, the appropriate filters are placed in the input and output channels and the sections of the housing are assembled around a sample holder with the lens apertures in the correct orientation. The bulb and the cells are focused and the inlet and outlet tubing are attached to a pump and a waste receptacle (not shown). The instrument can be operated in a single beam mode whereby a standard solution is first passed through the sample holder and the data collection and analysis system calibrated and set to a reference level. A metered sample of urine and reagent is then pumped through the sample holder to displace the standard solution and optical measurements can be made simultaneously or alternatively to determine the quantity of creatinine and caetatin in the urine sample. The instruments of FIGS. 4 and 5 may also be utilized to simultaneously obtain both colorimetric and fluorimetric output from a single substance. This is practical in most cases since the same input wavelength is absorbed for colorimetry and excites the substance to emit a fluorescent output.

A double-beam mode of utilizing the sample holder of the invention is illustrated in the block diagram of FIG. 6. The sample test cell 92 contains the materials to be analyzed while the reference cell 94 contains standard solutions of the desired component. Narrow band source filters 56 establish a particular spectral output from the light source 93 into the sample cell 92 and reference cell 94. In-line output filters 104 further narrow the colorimetric output before collection on the photodetector cells 106. Normal mode filters 108 perform the same function.

The photodetector cells 106 such as cadmium sulfide photoelectrics act to convert the emitted and received light into electrical signals which are transmitted from the sample and reference photocells respectively to a comparator 110 wherein the difference in intensity is measured to give a direct indication of the quantity of the substance contained in the sample fluid being analyzed.

A further spectrophotometric system for multiple spectrophotometric determinations is illustrated in FIGS. 7 and 8. In this device alternate determinations can be run by positioning a detector from a position in line to the incident radiation to a position normal to the latter. A housing 200 receives a sample cell 202 having at least three apertures. The first aperture channel includes a light source 204 and source filter 206. The second and third channels include output filters 208 and 210 respectively.

The housing is mounted on a stationary base 212 which has an outer bearing grooved peripherally 214. A rotatable platform 216 surrounds the perimeter. A photodetector cell 218 is mounted on this platform for selective positioning in front of the two output channels. Since the filters are in place, the desired output is being provided and all is required is the selective positioning of the photocell in line with the output channel being monitored. The same versatility is provided by mounting a detector on the stationary housing and selectively positioning a light source from a position in line with an incident light aperture channel containing a first selected band-pass filter to a position in line with an aperture channel normal to the incident light channel or to some other positioned aperture. The second channel contains a selected band-pass filter to pass radiation characterized by absorption by a second component of the sample. Other variations are possible. In another arrangement, the housing contains the sample holder and two sets of straight-through light channels, each with selected narrow band-pass input and output filters. A light source and an in-line photodetector cell are mounted for relative movement with respect to the housing. The light source and photodetector cell are selectively positioned in line with the first channel and a reading obtained and then moved to the second channel.

The spectrophotometric system can be fabricated very simply into a compact, effective and reliable device for the measurement of transmission and/or absorption of particular wavelengths of light and/or the fluorescent output wavelength of optically excited species. The system of the invention will find application in the medical, pharmaceutical, paint and industrial chemical fields and in general laboratory and school use. The system is particularly applicable to microanalyses and especially for micro-optical measurements in lunar, planetary and space studies of biological, soil or atmospheric samples.

It is apparent that only preferred embodiments of the invention have been disclosed and that numerous modifications, substitutions and alterations are permissible without departing from the scope of the invention as defined in the following claims.

1. In a sample cell for receiving material for spectrophotometric analysis, the improvement comprising:

a. a hollow tube comprising a substantially opaque wall and formed of a nonoxidizable metal readily wettable by molten glass, said wall defining at least a first aperture therein;

b. a cylindrical lens barrel integral with said wall, consisting of aperture-forming wall material supported within said aperture and extending beyond opposite surfaces of said wall; and

c. a meniscus-shaped, wide-angle glass lens forming a direct glass-to-metal seal with the walls of said lens barrel.

2. A sample cell according to claim 1 wherein said wall defines a second aperture aligned with said first aperture, and said second aperture normal to said first aperture.

3. A sample cell according to claim 1 in which the glass forming the lens is selectively colored for passing a narrow band-pass of radiation.

4. A sample cell according to claim 1 including a narrow band-pass filter and means for attaching said filter to said lens.

5. A sample cell according to claim 1 including a light pipe and means for attaching said light pipe to said lens.

6. A method of forming an optical fluid sample holder comprising the steps of:

forming at least one aperture in the wall of a metal tube formed of a nonoxidizable metal readily wettable by molten glass;

melting a portion of optical glass;

placing the molten glass in the aperture;

holding the tube horizontal to form a meniscus-shaped lens within the aperture; and

cooling the glass to form a metal-to-glass seal with the wall of the tube.

7. A method according to the invention in which a cylindrical lens holder comprises a sleeve of metal formed of an integral portion of the metal of the wall of the tube is disposed in said aperture and receives said lens.

8. A method according to claim 7 in which the lens holder is dynamically rolled during cooling of the molten glass.

9. In an optical sample receiving cell for receiving a material to be spectrophotometrically quantitatively analyzed comprising an opaque container having a light input aperture and a light output aperture in the walls thereof, means for radiating characteristic, narrow-band excitation radiation to said input aperture including a lamp and a narrow band pass input absorption filter, and means for detecting characteristic radiation from said output aperture including a narrow-band pass, output absorption filter and a photodetector cell; the improvement comprising:

housing means defining an axial recess for receiving said container, a first, radial recess in communication with said light input aperture for receiving said lamp and input filter, and a second, radial recess in communication with said light output aperture for receiving said photodetector cell and output filter; and
10. In an optometric system for combined colorimetric and fluorimetric, quantitative analysis including a container for receiving a material for analysis including at least three radiation transparent apertures in the walls of said container with first and second of said apertures in alignment and the third aperture being normal thereto; means for radiating a selected band-pass of excitation radiation which is selectively and characteristic absorbed by said material; first detection means for detecting a selected band-pass at longer wavelength than said excitation radiation of fluorescent emission radiation from said material; and second detection means for detecting a selected band-pass of the excitation radiation absorbed by said material; the improvement comprising:

housing means for housing said container;

rotatable support means surrounding said housing means;

means for selectively rotating said support for selectively positioning said means for radiating and said detection means; and

means for selectively rotating said support for selectively positioning said means for radiating and said detection means in alternate positions with respect to said apertures whereby the means for detecting and said first detection means are in communication through said first and second apertures during colorimetric analysis and said means for radiating and said second detection means are in communication through said first and third apertures during fluorimetric analysis.

11. An optometric system according to claim 10 in which said housing means includes a first recess for receiving said means for radiating in communication with said first aperture; a second recess in communication with said second aperture for receiving said first filter, a third recess in communication with said third aperture for receiving said second filter and said detection means includes a single photodetector cell mounted on said rotatable support for selective positioning in communication with each of said second and third apertures.

12. In an analytical system for producing colorimetric and fluorimetric photoelectric outputs characteristic of particular constituents in a fluid to be analyzed, said system including a sample container, excitation radiation means and photoelectric detection means, the improvement comprising:

a sample container for receiving said fluid defining a plurality of apertures transparent to characteristic input and output radiation, said apertures including an input aperture, a first output aperture in line therewith and a second output aperture normal thereto;

excitation means for radiating a selected band-pass of excitation radiation to said input aperture which is selectively and characteristic absorbed by a component of the fluid sample;

first colorimetric photoelectric means including a first narrow band-pass filter receiving the radiation output from said first output aperture for determining the quantitative colorimetric absorption of said excitation radiation by said component; and

second fluorimetric photoelectric means including a second narrow band-pass filter at a longer wavelength than said excitation radiation for detecting the characteristic fluorescent emission of a component of said sample.

13. A system according to claim 12 in which light-gathering lenses are mounted and sealed in at least one of said apertures.

14. A system according to claim 13 in which at least one of said lenses is colored for passing a selected band-pass of radiation.

15. A system according to claim 12 in which said fluorescent emission is in the ultraviolet range and said second narrow band-pass filter does not pass said excitation radiation.