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I. Conclusions

1. Design of EPIC .

The EPIC experiment consists of an array of interleaved CR-39 and

Lexan track-recording plastic detectors mounted on four rectangular platforms

hinged so that the total area in the deployed configuration is 15' x 110'.

2
The volume in detectors is 12' x 96' x 10 \g/cm , including trapped radiation

shielding and internal, metal absorbing layers. The total weight of the

detector assembly plus supporting structure and accessories is 32,000 Ib.

The modular construction permits as little as one-fourth of the payload to

be exposed at a time. The CR-39 is a new type of detector with resolution

expected to be comparable to that of the best electronic instruments and with

sensitivity adequate to detect and study cosmic rays ranging from minimum-

ionizing iron-group nuclei to the heaviest elements. Lexan, with its lower

sensitivity but thoroughly proven performance, will be especially useful in

studying the rarest, heaviest nuclei.

2. Simplicity and low, cost

We have reason to believe that the cost of scientific analysis can

be made relatively low by partially automating, track location and'measure-

ment. Some degree of automation is possible for CR-39 because of the uniquely

high clarity, quality, and contrast of etched tracks in this substance.

Several engineering design features make the construction of the payload

economical. Virtually no attention need be paid to the array during the

approximately one year in which'it will freely orbit the earth.
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3. Feasibility.

Straightforward engineering design permits this detector of un-

2
precedented collecting power — approximately 150 m — to be mounted in a

retracted configuration within Shuttle, deployed in an extended configuration

in space, and recovered for return to earth in retracted configuration.

The detectors will survive a one year exposure to the trapped protons

without losing their resolution. The combination of Lexan and the CR-39

detector, with its high resolution and sensitivity, enables us to-combine

the advantages of passive detectors (low cost, huge collecting power) with

the resolution previously attainable only with electronic detectors.

h. Recommendation .

Exciting scientific results are sure to be obtained. The huge

collecting power may lead to a major discovery. The technology is straight-

forward. The cost is low. The EPIC experiment should be flown on an early

Shuttle mission;

II. Scientific Study of the EPIC Detector System

1. Scientific Goals and Justification of a Huge Detector

1.1 Other cosmic ray experiments with large collecting power

The largest single experiment to date was a stack of Lexan

2 2
plastic detectors of area 1.2 m exposed inside a I g/cm Al wall of Skylab

for 253 days at an orbital inclination of ̂  52 and altitude of ̂ 30 km.

In that experiment our group (ref. 1 ) identified 10U cosmic ray nuclei with

Z > 65, including seven nuclei with Z - 90, three of which had Z > 9^-

*References for the scientific study begin on page 15-
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We found no nuclei with Z > 96. The median error in charge was 3.1$ or

AZ £ 2.5 for the highest charges.

Stacks of Lexan, usually including a few layers of nuclear emulsion,

have been exposed on numerous balloon flights at northern U.S. latitudes

by groups at Berkeley, Houston, St. Louis, Bristol, and Dublin. The results

are summarized in refs. 1 to 3- The charge resolution and total number of

nuclei with Z ̂  65 were comparable to those for Skylab. About twice as many

nuclei with Z > 90 were reported as were found on Skylab. One unique event

that might have been a superheavy nucleus with Z. % 11 It or a. heavy antinucHeus

2
was reported.

The total area-time-solid angle factor to date for very high

o . ' '
rigidity nuclei is ̂  6 m y ster; for particles with rigidity adequate to

2
reach northern U.S. balloon-borne detectors it is ̂  2.i| m y ster.

Fowler's spherical electronic detector, to be flown in the UK-6 •

2
satellite in ̂ 1980, will have a collecting power of ̂  2 m y ster but no

better charge resolution than plastic detectors. The HEAO-3 detector of

2
Israel, Waddington, and Stone, to be launched in late 1979? has a 6 m ster

collecting power and is believed to have a resolution of ̂  O.lj charge for the

heaviest elements. Assuming one year exposures, the UK-6 and HEAO-3 detectors

will more than double the present world data on ultra-heavy nuclei and should,

with the better resolution of HEAO-3, give us a greatly improved picture of

the charge distribution from Fe through Cm (Z = 26 to 96). The collecting •

power will be inadequate to determine the abundance of very rare elements

such as the odd-Z nuclei, and the statistics for Z - 90 will be small.

2
The Dublin group will expose a 20 m plastic stack on the LDEF

2
satellite in 1980, giving a collecting power of ̂  hO m y ster. Because of the
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°unfavorable orbit of LDEF, 28.5, it will detect only highly relativistic

nuclei. Its collecting power will be only ^ 10% that of balloons at northern

latitudes and only ^ 25% that of a satellite' at 52 inclination, such as

Skylab. We have discussed with the Dublin group the capabilities of our

new, high-resolution plastic detector called CR-39, and they will probably

use some of it .in their experiment.

We conclude that by the end of 1980 one experiment (on HEAO-3) ,

with much higher resolution than Lexan detectors, will have improved the

statistics on ultraheavy nuclei by a factor of ̂  2, "and that the LDEF

experiment can improve the statistics by another factor of about five, when

its unfavorable orbit and proximity to solar maximum are taken into account.

These data may be of high quality if 'the new CR-39 plastic Is utilized.

1.2 Scientific justification for a huge, high-resolution detector

The' determination of the charge distribution of the ultra-

heavy cosmic rays with high resolution and good statistics has been repeatedly

cited by high-energy astronomy and Shuttle study groups as a high-priority

goal for the Shuttle era. Only part of the problem will be solved by presently

planned experiments: HEAO-3 will have the resolution but will not obtain

enough events to determine the abundances of ultraheavy odd-Z nuclei nor

the relative abundances of the transuranic nuclides.

2
What is needed is an experiment with a factor ^ 10 improvement

in collecting power over Skylab and HEAO-3 and charge resolution at least

as good as that of HEAO-3. We show in this report that such an experiment

is feasible and surprisingly inexpensive.

In addition to the definite payoff in improved understanding of

nucleosynthesis and cosmic ray astrophysics that will come from such an



-5-

experiment, a strong motivating factor is the'possibility of discovering

entirely nev classes of particles whose existence would greatly influence

physics, astrophysics, and possibly cosmology. Such particles include:

a. Superheavy elements, with Z £ 110

b. Magnetic monopoles

c. Heavy anti-nuclei

d. Abnormally dense, highly charged, massive particles such as dis-

cussed by Lee and Wick, by Bodmer, and by Migdal

e. Highly charged subnucleons, proposed by Yock

Our group, with our Houston collaborators, has completed our study
i - - , - s

of the particle we first attributed to a magnetic monopole. A detailed

paper has appeared as an LBL report and will soon be published in the

Physical Review. New evidence, from two emulsion layers not studied at the

time of the first paper, confirms the observation that the particle produced

far fewer high-energy delta rays than expected if it were an ordinary nucleus

with Z ~ 96. Detailed calibrations of the Lexan stack and of the emulsion

layers were presented. We retracted the claim that the particle was a

monopole, showed that.it was compatible with a highly relativistic nucleus

with Z % 110 to llH or with an ultraheavy antinucleus, and showed that

it appears 'not to have been a normal nucleus with Z £ 96. An experiment

with greatly increased collecting power might detect many more of such

peculiar particles and establish their identity.

2. Study of Detectors

2.1 Comparison of various plastic detectors

In the table below we compare.the characteristics of Lexan

polycarbonate, cellulose nitrate and acetate, and CR-39 ally diglycol
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carbonate. The cellulosic polymers are unsuitable for many reasons and

will not be considered further. The properties of Lexan as a particle de-

li
tector have been known for some years. Our group recently discovered the

extraordinary properties of CR-39 as a particle detector.

Characteristic

Optical quality of .
etched track

Minimum detectable
-iral-i iQ c-\-P "7 /fi

Lexan

good

^65

Cellulosic
plastic

poor

^32

CR-39

excellent

VLO

Fractional standard > „, ,„,, ... . • •• ^4# . poor l̂/o
deviation in response

Stability ' requires a unstable keep trapped
few mbars Og particle dose

and T < 1|00C £5xl08/cm2

and T < 1*0°C

Figures 1, 2, and 3 show that etched tracks in CR-39 have extra-

ordinary contrast and optical quality. We later discuss a method for auto-

matically measuring these tracks. In the next subsections we discuss sen-

sitivity, resolution, and stability of Lexan and CR-39> the two plastics

we .propose for the EPIC experiment.

2.2 Sensitivity of CR-39 and Lexan

Figure 2 shows etched tracks of ik MeV/nucleon He ions in

CR-39• We irradiated the sample at normal incidence, so the etch pits

have a circular shape. The value of Z/B for these ions is 11.8. Lexan

records ions with Z/g only above ̂  65. Figure h shows quantitative curves

of response, defined as the ratio of track etch rate to bulk etch rate, for

CR-39 and Lexan. The much higher sensitivity of CR-39 makes possible the

study of minimum-ionizing nuclei in the region between Z = 26 and 65, which
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is inaccessible to Lexan.

Relativistic (g % l) nuclei with Z £ 90 will produce extremely

long tracks in CR-39- It will be very useful, to interleave occasional

Lexan sheets so that these events can be quickly located and the regions

of CR-39 through which they passed can be etched for a shorter time than

normal.

2.3 Resolution of CR-39 and Lexan

Our studies of the resolution of Lexan, reported in refs.

1 and 2, have shown that the fractional standard deviation in etch rate is

from ̂  3 to ̂  Q% and is typically ^ h% for relativistic ultraheavy nuclei.

Experiments in progress suggest that there may be ways to reduce this figure

to ̂  2 to 3%. This is adequate to determine whether we have detected a

superheavy nucleus (Z ̂  110 to 11*0 but is inadequate to allow us to improve

on the expected results of the HEAO-3 experiment using Lexan alone.

In ref. 5 we reported that the resolution, of CR-39 from one

manufacturer (Polytech, Inc.) was ̂  1.3$ for 600 MeV/nucleon Fe nuclei at

normal incidence, but that a decrease of sensitivity in the interior of

each sheet resulted in a variation of response with angle of entry. In

Figures 3 and 5 of this report we show the results of a study of resolution
\

of carbon and nitrogen ions in a batch of CR-39 made in a slightly different

way by the same firm. The depth dependence has been eliminated, but there

is a variability of about k% from sheet to sheet that can be -corrected for

by accelerator calibrations. The resolution of a given sheet is spectacular.

We used a Vidicon camera to measure the. area of the circular etch pit at

each event. If the bulk etch rate is known, the diameter or area of the

etched track is a measure of the track etch rate. The histograms in Figure 5

show that 32 MeV/nucleon ~ C and N are separated by ^ lUa. At the bottom
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of the 1.5 mm CR-39 sheet, histograms of etch pit areas, shown at-the bottom'

of Figure 5, are separated by 'v- 20o. For particles of unknown energy and

arbitrary angle of entry the separation would not be as. good, but these

tests indicate that CR-39 probably has resolution competitive with the best

electronic detectors and far exceeding that of Lexan.

2.1* Stability of CR-39 and Lexan

Our group found that Lexan exposed in the high vacuum of

space has a much lower sensitivity than that exposed in a partial1 pressure

of oxygen. Lexan exposed in the moderate vacuum typical of accelerators

(^ 10 torr) shows no loss of sensitivity.. Sealing a stack containing

Lexan in a bag containing air at a pressure exceeding 10 torr should

insure a normal response. CR-39 also seems to record tracks normally at

pressures as low as ̂  10 torr.

Latent images of tracks fade in both Lexan and CR-39 at

rates-that increase exponentially as exp (-U/kT), where U ̂  1 eV. During

a one-year space exposure a passive thermal control paint would keep the

temperature between 23°F and 35°F (or -5°C to 2°C). .

i Lexan exposed outside the Skylab showed no degradation

due to accumulated exposure to trapped protons. Using 25 MeV protons we
/

have simulated exposures of CR-39 to the trapped radiation. After first

12 1̂
bombarding four sheets of CR-39 with 32 MeV/nucleon C and N, we next

bombarded these sheets with 3 x 10 , 10 , 10 , and 10 • protons/cm respec-

tively. These protons did not directly record tracks but produced a back-

ground of short, 'recoil proton tracks due to collisions with hydrogen in

the CR-39- The effect of ionization by the incident protons was undetectable.

The carbon and nitrogen tracks could easily be seen and measured in the
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sheet exposed to 3 x 10 protons of 25 MeV but not in the most heavily

irradiated sheets. We recommend that CR-39 not be exposed to more than

8 2
^ 5 x 10 /cm trapped protons. .

At solar maximum, the nominal average flux of trapped protons

7
integrated along various orbits for one year is summarized below:

Altitude

150 n.m.

225 n.m.

300 n.m.

' 30°

—2 — 1
Flux (cm y

(E>10 MeV)

5 x 106

8 x 10T

1.5 x 109

Orbit

) Flux
(Ê 50 MeV)

k x 106

7 x 107

1 x 109

60°

Flux
(E>10 MeV)

1.7 x 1QT

1.5 x 108

1 x 109

Orbit

Flux
(E>50 MeV)

1.3 x 10T

1 x 108

7 x 10

The trapped flux falls off very steeply with-altitude. At altitudes up

to about 250 nautical miles the flux integrated over one year is low

enough not to provide a serious background problem for CR-39- In the en-

gineering section of this report we assumed a final altitude of 160 n.m.

and calculated that the initial altitude for a one year exposure would have

to be 238 n.m. We thus conclude that trapped protons with energies above

10 MeV will not affect the EPIC experiment. To exclude low energy protons

we propose to employ copper shielding ̂  1 mm thick above and below the

plastic detector stacks. This will stop protons up to ̂  25 MeV.

2.5 Evaluation of CR-39 plastic from various manufacturers

We have encountered the usual barriers of proprietary secrecy

in dealing with-representatives of the various companies that make sheets

of CR-39. Three firms have cooperated with us in our efforts to optimize

the performance of commercially available sheets. These are SGL Homalite

Corp., Wilmington, Del.; Polytech, Inc.., Owensville, Mo.; and Pershore

Mouldings, Ltd., Pershore, Worcestershire, U.K.
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Samples of CR-39 from different sources differ significantly in

quality as a particle identifier. The major variables are quality of the

liquid monomer; percentage and type of initiator; type of mold release

agent and UV stabilizer; percentage of copolymer; cure temperature cycle;

and method of curing.

American firms use the monomer supplied "by Pittsburgh Plate Glass.

It contains varying amounts of volatiles and is nominally of £ 95% purity.

To improve quality control, it might "be useful to employ several stages of

both distillation and filtration. All firms use ̂  2 to 3% of diisopropyl

peroxydicarbonate Initiator. Cure times range from 12 to about 36 hours.

The cycle'of temperatures and times is proprietary.

Commonly used copolymer additives are vinyl acetate and methyl

methacrylate. Vinyl acetate additive gives no difficulties, but as little

as 2.% of methyl methacrylate leads to etched tracks that are filled with an

insoluble, gummy residue., with disastrous results. Some batches of CR-39

made without any deliberate copolymer lead to tracks filled with a similar

gummy residue. The gummy layer acts as a barrier to diffusion of reactants

away from the etched track and of solvent into the track. All three firms

are willing to supply CR-39 without copolymer upon request.

The British firm cures its CR-39 sheets in a vertical mold in a

hot water bath. The American firms use horizontal molds in air ovens.

We have found gradients of ̂  3% per inch in track etch rate along sheets

made by the British firm, probably because of gradients built in during

curing in the vertical mold. They are now planning to make, us samples

cured in a horizontal mold.
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Several samples we tested showed extremely high uniformity in the

plane of the sheet but a large, depth-dependent decrease in chemical re-

activity from a maximum at each surface to a minimum in the center. Some

samples showed asymmetric gradients across the thickness.' Only a few

samples showed no detectable gradients. Etch rate gradients can be studied

either by bombarding with high-energy heavy ions that penetrate the sheet

or by preparing a "taper section" (imbedding the sheet in epoxy, grinding

at ah angle and polishing it), irradiating with monoenergetic charged par-

ticles, etching, scanning along the taper section with a microscope, and

looking for gradients in the size of the etch pits. No large order should

be placed without first establishing by direct measurement of tracks that

a sample supplied by the firm is free of gradients in chemical reactivity.

The one factor that presently limits our ability to specify a

standard production method is the variability of the liquid monomer sup-

plied to the casting firms by Pittsburgh Plate Glass. We are continuing

to work with the three casting firms to achieve a standardized procedure

for mass production'.of high-resolution CR-39 detectors.

3. Design of the Detector Stack

The stack will consist of identical individual modules of area

l6" x l6" arrayed side by side over a total active area 12' x 96' and with

2
thickness ^ 10 g/cm . Each module contains the following components:

2
a. Copper sheet 1 mm thick (0.9 g/cm ) above and below the

active detector sheets. The copper prevents trapped protons

below ^ 25 MeV from reaching the detectors. The outside surfaces

will be painted with thermal control paint as discussed in the

engineering section.
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2
t>. CR-39 sheets, each 1.5 mm thick (0.2 g/cm ), interleaved

P
with Lexan sheets, each 0.25 mm thick (0.03 g/cm ). The Lexan

will be used mainly to single out the most highly ionizing par-

ticles and to measure events near and well beyond uranium, where

it would be less convenient to use CR-39• The total thickness

2 2in active detectors will be 3 g/cm of CR-39 and 0.9 g/cm of

Lexan.

2
c. Copper absorber sheets, each 0.9 g/cm . Five of these will

be interleaved at uniform intervals between sub-stacks of CR-39

and Lexan. The function of the copper is to slow the heavy nuclei

without breaking them up. High-Z material is far more Effective

than plastic'in its ability to slow nuclei nondestructively.

d. A plastic envelope sealed around each module. The bag main-

tains a pressure of ~ 1 mbar of air at each detector. Lexan

loses its sensitivity at the low ambient air pressure of space.

-h
Any concentration of air above ̂  10 . torr is probably adequate

to ensure a sufficient level of 0? dissolved in the Lexan to

give good track registration.

H. Automated Track Location and Measurement

U.I Computer-controlled scanning stage

The clarity and high contrast of etch tracks in CR-39 (Figs.

1-3) make possible automated methods of track location and measurement.

To locate a track that penetrates one of the l6" x 16" x 1.5 mm CR-39 sheets

we propose to detect light scattered from the etch pits on the top and

bottom surfaces, with a laser beam as the light source. The stack will be

accurately machined. Successive sheets will be inspected in a standard
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position on the scanning stage, and the shift in location and intensity of

the signal from the etch pits from sheet to sheet will provide the zenith

angle of the particle and rough measures of its dE/dx and rate of change of

dE/dx with depth. Events that satisfy specified criteria will have their

positions stored in our PDF 11AO computer for later measurement.

We are building a small-scale prototype consisting of a 13" stage

positionable to 10 cm.

U.'2 Vidicon-camera for track measurements

Simple tests with an inexpensive, commercially available

Vidicon show that we can measure the areas of vertical etch pits very re-

producibly. Figures 3 and 5 show some of the results. A knowledge of etch

pit area at the'plastic surface, together with zenith angle and stopping

•depth, suffice in principle to identify a particle not too heavily ionizing.

In practice we would measure several etch pit areas at different points

along the particle's range so as to improve our resolution.

Very heavily ionizing particles lead to very long etch pits for

which the area at the surface is not a sensitive measure of dE/dx. We are

working on a method of using the Vidicon to measure etch pit depth for an

arbitrary zenith angle. By using a Nomarski interference contrast attach-

ment on a Zeiss microscope we believe it may be possible, with a Vidicon,

to focus on a "slice" through the etch pit that can be measured and its

centroid determined. We would then take several slices at different, equally

spaced depths and .determine the shift of centroid with depth, thus converging

on the location of the tip of the etch pit and giving the length and zenith

angle of the etch pit.
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U.3 Advantages of automation

The main cost of our Skylab experiment was labor. Automation

would enable us to. handle the much greater volume of information in the

present experiment at a cost comparable to that of Skylab.

5. Recommendations for Further Research and Development

It is not yet possible to buy CR-39 sheets that are guaranteed

to give 1% resolution over their entire area. Additional funds are needed

to continue a program of cooperative development with the several manufacturers.

It would be highly desirable to have a Vidicon system, with appro-

priate microscope optics, capable of automated measurements of track dimensions.

Additional funds are needed to complete the development of such a system.

Because of the limited funds, we have been unable to make a detailed

cost estimate in the present study.
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Figure 1. Comparison of surfaces of (a) Lexan and (b) CR-39, etched in
NaOH solution. The elliptical holes are the mouths of track
etch pits that intersected the surface at an angle. The high
quality of the image of the etch pit in CR-39 is obvious.
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Figure 2. Etch pits of ̂  60 MeV alpha particles (Z/B £ 10) illustrating
the high sensitivity of CR-39•
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12 lU
Figure 3. Comparison of the etch pits of C ions (left) and N ions

(right) in CR-39. At top they both have energies of 32 MeV/amu.
At bottom they have passed through a 1.5 mm sheet of CR-39•
Their clarity and contrast make automated measurements with
a Vidicon camera possible (see Figure 5).
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1 Introduction

This report describes the result of an engineering investigation into

the feasibility of design, construction, launch and retrieval, of a giant,

passive detector to be placed into circular orbit using the NASA Space

Shuttle.

2 Description of Payload.

2.1 Design Approach

The design approach was based on the following guidelines:

• Design a structure which can accommodate a maximum number of detector

panels compatible with the shuttle return load capacity of 32,000 Ib.

• Make the structure compatible with standard shuttle payload accommo-

dation methods and mechanical interfaces.

• Use design concepts, materials, devices, and other technology proven

acceptable through in-flight use.

• Minimize complexity of integration and ground handling

• Utilize commercially available standard materials and components to

minimize cost..

• Provide passive gravity gradient stability through appropriate, de-

ployed geometry.

2.2 Concept and Configuration

The basic structure will consist of four large, rectangular panels

hinged together to form a rectangular array of approximately 15 x 110 feet

when fully deployed (Figure 2.2-1). During launch and retrieval, the frames

are locked together in the configuration shown in Figure 2.2-2 and secured

in the shuttle bay with standard retention and auxiliary fittings. Deployment
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and retraction of the panels is accomplished by means of redundant motors

at the hinge joints.

In order to reduce motion about the center of mass in the stowed con-

figuration to levels dictated by Shuttle retrieval constraints, a 3-axes

rate sensor and cold gas system are used.

Deployment and retrieval of the payload in orbit will utilize the

shuttle remote manipulator system attaching to the grapple fixture of the

payload identified in Figure 2.2-2.

Required power for panel deployment and retraction functions, attitude

control, and receive/transmit telemetry will be provided by batteries, and

a small solar cell array providing a trickle charge to the batteries.

Major power demands are placed on the batteries at the beginning (panel

deployment) and end (panel retraction) of the mission; during the passive

period between these functions, only receiver power and occasional trans-

mitting power is required.

2.3 Subsystem Descriptions f

2.3.1 Structure Subsystem

Structural details of the four basic panels are shown in Figure 2.3.1-1.

The panels will be fabricated from commercially available standard aluminum

structural shapes, using 8 x 3.75 x \ inch channels for the main frame

and 6 x 4 x 3/16 inch I-beams for the interior support structure. For

ease of handling, assembly, and to minimize distortion, the individual struc- •

tural members will be joined through bolted interfaces at all intersections.

Each basic panel will support a total of 18 detector subassemblies in

the arrangement shown in Figure 2.3.1-2. The individual detector subassembly,

whose welded frame is shown in Figure 2.3.1-3, will be secured with 16 bolts

each to the panels. In this way the fully assembled panel configuration



-5- ORIGINAL PAGE It
OF POOR QUALITY

n
*:'o
CC

8:•̂

A.

-251

y el tfl CL

3

3

n

J

a

B

n
i i . IT
3

B

3

n
^ ~l f '-r

ti

0

B

n
"I "̂ "? -i~

D

D

n

J

B

3

VR R ir

_U CJ Lfl C_

'

~ 2 5" i

T ^- C -T

0,̂

~ » ! "i
1
 -T~

CQU

q to m r

S

E

p

u

fi

E

F
r r i z

U

< B

* E

F
i." T T "J-"

< E

' / B

' fii~ "i * —

t

t E

p

* £

« E

4q ra n (f

I
to

I

.
'IS

81'—

.9

. \X_x_S xX

ly

I
CD

o

a:
to

o

o

'dAJL

UJ
Q

8

Uj

I

co

o



-6-
ORIGINAL PAGE IS
OF POOR QUALU*

*00

Uj
o

5

-J
QQ

5
</>

%
CO

3
cc
o

g
kl
Q

CD

'XOUddV-

\

to

I
CL

Si

OQ

to

1
§
Cfs

Q

i
|
Q

CD



-7-

JQ

Uj
-J
Q

I-

1os
t—
•t
to

s ^
£ O

s £I sft CO

B
-8

-O- . *•

r*
$

«»

&

6

o

ss
CO

o
o

§

C3D

Uj

CO

5

CO

ct

o

kl

eg



-8-

will have very high in-plane structural stiffness. The individual panel

weight without detectors will be approximately 750 Ibs.

2.3.2 Retention Subsystem

In the stowed configuration the experiment will be mounted in the Shuttle

bay utilizing the 5-point payload retention system of volume XIV of the

Space Shuttle System Payload Accommodations handbook and repeated here for

convenience in Figure 2.3.2-1. The corresponding primary fittings, stabil-

izing fittings, and auxiliary fittings are identified in Figure 2.2-2.

Static and dynamic payload loads in the X -and Z directions are trans-

ferred to load adapters bolted to the long sides of each panel. In the

stowed configuration these load adapters lock the individual panels together

in the manner shown in Figure 2.3.2-2. The conical engagement sections

will facilitate alignment during the final motion of the retraction maneuver '

and assure lateral load capability when locked. A rack-and-pinion driven

tie-down bolt, rotationally keyed, serves 'as the common tension member.

The required tension in the tie-down bolt is provided by the motor-driven

nut shown. .The uppermost load adapters also serve as the. mounting surfaces

for the longeron trunnions which are the attachment interfaces to the

Shuttle retention system.

Experiment Y-loads are transferred through a welded, tubular structure

on the underside of the lower-most panel to the lower centerline auxiliary

fitting where they are taken up by the Shuttle keel bridge attachment inter-

face .

2.3.3 Panel Deployment/Retraction Subsystem

In orbit, the payload will be released from the Shuttle mounting inter-

face by unlatching the retention system, and separated from the Shuttle with
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the remote manipulator system attached to the grapple fixture.

All payload deployment/retraction mechanisms described in detail below

.will be powered by dual DC permanent 'magnet gearhead motors coupled to a

differential drive for redundancy as shown in Figure 2.3.3-1. The motors

will be processed for hard vacuum operation and all gears and rotating/

sliding interfaces will be "state-of-the-art" dry lubricated. In addition

to providing redundancy, the differential drive inherently delivers the torque

of two motors should one motor fail.

Upon command, the panel deployment sequence is initiated by activating

the drive units which remove the nuts from the four tie-down bolts of the

panel locking mechanisms of Figure 2.3.2-2. A limit switch, sensing nut

travel, will shut off power when the tie-down bolts are free and will pro-

vide the logic signal for tie-down bolt withdrawal. As the tie-down bolts

are withdrawn, the nut will follow the tie-down bolt motion, being forced

against a stop by the spring element behind the nut. In this position, the

nut will re-engage the tie-down bolt when the system is later retracted.

A limit switch will indicate end-of-travel of the withdrawn tie-down bolt.
\
Figure 2.3.3-2 identifies the components located at each of the three

hinged panel interfaces. The panels are connected by two hinges each located

at the extreme ends1. The hinges will have sufficient clearance to avoid

being stressed due to static or dynamic loads during launch and ground

handling operations, and will be lined with teflon bushings. The hinges

are connected through two torque tubes to the main panel deploy/retract

drive mechanism located midway between the hinges. In the deployed and

retracted positions, the torque tubes will be preloaded against the mechanical

hinge stops by providing rotational displacements of the tubes through the

drive unit by some amount in excess of 180°, and belov; the break-away torque
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of the drive unit and motors. The resulting energy and torque in the tubes

will provide added assurance of motor operation, upon command. This concept

will further provide a controlled amount of constant torque holding the

panels in the open position and will absorb inertia loads whenever the drive

unit is activated. ' '

Because of the great length of the individual panels, /small amounts

of frictional forces due to panel locking and unlocking would place unneces-

sarily large torque demands on the main panel deploy/retract drive unit.

To prevent this, a deployment initiator/retract clamping mechanism is located

between panels at the opposite end from the hinge. Shown in Figure 2.3.3-3,

this mechanism will provide a large opening and closing mode force by means

of a lead screw and self-aligning, passive locknut.

.After the tie-down .bolts have been withdrawn as described earlier, the

on-board logic will command power to the deployment initiator to bring

about initial opening displacements of the panels. When the lead screw

has withdrawn from the locknut, a limit switch will provide a signal to the

main deploy/retract drive to complete opening of the panels. Having reached

the 180° open position, the mechanical hinge stop will shut off power to

the motors.

The retract maneuver is essentially a reversal of the opening mode

sequence with the exception that the deployment initiator/retract clamping

mechanism will be running when the panels are closing in order to assure

engagement of the locknuts onto the lead screws. Re-locking of the panels

by the tie-down bolts and nuts will complete payload retract procedures.
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2.3.M- Detector Subsystem

The passive detector subsystem will consist of approximately 110 square

meters of CR-39 allyl diglycol carbonate sheets sandwiched between cold-

rolled copper shielding plates as shown in Figure( 2.3.4. The detector

2
stack of uniform area density 10 gr/cm will be assembled in the welded

subassembly frames using protective tissue paper as shown to reduce surface

damage to the outermost plastic sheets during ground handling and launch

and retrieval environments. Each subassembly frame shown in Figure 2.3.1-3

will accommodate 9 separate plastic sheet stacks of approximate individual

dimensions 15 x 15 inches, held in place by the bolted-on, continuous shielding

plates.

In order to promote heat transfer between the copper plates

through the aluminum subassembly frame, all shield-to-frame interfaces will

use low-outgassing thermal grease. Detector temperature extremes will be

limited by thermal control paint applied to the outer shield surfaces.^

Fully assembled, each of the 72 detector subassemblies will weigh

approximately 390 Ibs.

2.3.5 Despin Subsystem

As a result of gravity gradient torques described in appendix A-l,

the deployed payl'oad will have an inertial angular motion rate of one revo-

lution per orbit about an axis perpendicular to the 110 foot dimension of

the assembly. Upon retracting the four deployed panels into the locked

configuration, the final angular motion rate will be approximately 1.2°/sec

as described in appendix A-2.2.

In order to establish proper conditions of angular motion and position

for the retracted payload such that a Shuttle recovery may be effected,
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the payload will- have a cold gas despin subsystem which can be activated by

command.

The despin subsystem will be capable of holding the payload grapple

fixture to a fixed angular position in space with a limit cycle which results

in no greater than ± 3 inches of relative motion, and body limit cycle

rates of less than 0.1°/second about any axis after arresting initial rates.

These values are taken from the Space Shuttle Payload Accommodations Hand-

book, Vol. IX, Rev. E.

The system will consist of a 3-axis rate gyro and conditioning elec-

tronics and will have totally redundant and separate reaction systems.

Each reaction section by itself will be capable of arresting body rates.

Each section will consist of one fill valve, one 300 cubic inch receiver,

one regulator, and six nozzle valves. The receivers will be charged to 3600

psi nitrogen and will be initiated by a squib valve releasing gas to the

regulator. The nozzle thrust will be set at one pound, but can be increased

to a maximum of 12 pounds. Due to using only one set of nozzles for each
i

axis, there will be a slight translation during rate degeneration.

For.the mass properties of the retracted payload, and nozzle lever arms

of 6.5 feet and 13.25 feet for the XX axis, and YY-ZZ axes, respectively,

a maximum total thrust impulse of approximately 120 Ib-sec is required to

arrest body rates. For the 3600 psi receivers and a specific impulse for

GN9 of 60 sec (C "*> 1.7) the total gas requirement will be of the order of

2 Ib. Choosing 300 cubic inch receivers will thus allow a safety margin

of approximately 50%.

With these parameters of the despin subsystem, approximately 3 minutes

will be required to degenerate the body rates to acceptable limits for

Shuttle retrieval.
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2.3.6 Telemetry/Command Subsystem

Figure 2.3.6-1 shows the electrical system block diagram. The system

will be capable of receiving and executing commands to deploy and retract

the payload, to activate and deactivate the despin subsystem for retrieval,

and to transmit payload housekeeping information. Commands will be trans-

mitted to the payload from the Shuttle via the S-band system. Transmission'

of payload housekeeping data to the Shuttle will be via a 5-watt transmitter.

The deploy/retract diagram is shown in Figure 2.3.6-2. The command

to deploy the payload will apply power to the drive motors which remove the

nuts from the panel lock tie-down bolts. Limit switches will then provide

the signal to apply power for tie-down bolt withdrawal. When all four panel

locks have been freed, the deployment initiator motors and hinge drive motors

will fully extend the payload panels. The retract mode reverses the sequence

of operations. .After the limit switches have sensed full retraction and

panel locking, the despin system will be activated to reduce payload angular

motion so that recovery by the Shuttle can be effected.

2.3.7 Power Subsystem

The power subsystem will use nickel-cadmium batteries as the primary

source of power and a small array of solar cells-to trickle charge the

batteries during the life of the mission. The power conditioning system

will consist of a shunt dissipator, a battery-charge controller, and a

battery-discharge regulator to maintain the system voltage at 28 vdc. The

batteries will be fully charged at time of launch.

Maximum power demands are placed on the batteries initially when the

payload panels are deployed, and prior to retrieval by the Shuttle when the

payload will be commanded to retract. For the approximately one year period
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between these functions, the solar cell array will provide a small amount

of power to keep the batteries charged and to operate the telemetry receiver.

For the power profile shown in Figure 2.3.7-1 the battery requirement

will be approximately 120 ampere-hours which is dictated by the maximum

current drawn when the tie-down bolt nut drive motors are in operation.

Because of the high discharge rate capacity of nickel cadmium batteries,

a current value ten times the normal discharge rate has been assumed for

the two minute maximum current period.

^Average power requirements for battery- charging and telemetry receiver

operation are approximately 5 watts. Assuming a solar cell efficiency of

2
10%, a view factor of 1/2-rr, and solar energy of 1500 watts/m , the solar

2
cell-array should be approximately 0.2 m .

V

3 Mass Properties

3.1 Weight Summary

Payload Structure and Accessories

Main Panels 3,000 Ib

Yaw load structure 235 Ib

Clamping and retention mechanisms 4-85 Ib

Hinges, torque tubes and drives . 90 Ib

Deployment initiator and drives 45 Ib

Batteries, ACS,"telemetry 175 Ib

Subtotal ' 4,030 Ib
/

Detector Assembly

Detector frames 3,500 Ib

Detectors 24,470 Ib

TOTAL 32,000 Ib
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3.2 Center of Gravity Location-.

Geometric center in stowed and deployed configuration.

2
3.3 Moments of Inertia about C.G.,slug-ft '

/

Stowed Deployed

Ix_x 1.90 x 10 1.86 x 10

h 6
IY_Y 5-70 x 10 1.00 x 10

!„ „ . 7.U6 x 10 1..02 x 10
Li— Zi . • .

h Assembly and Ground Handling

After initial buildup of the entire payload structure at the construction

facility, the payload will be disassembled into discrete components for

shipment to the payload installation and launch site. For ease of trans-

portation, the four main panel frames will be disassembled for shipment also.

At the launch site, the reassembled main panel containing the yaw load

structure will be positioned onto four assembly stands which support the

main panel by means of the four assembly stand retention fittings identified

in Figure 2.2-2. The pre-assembled detector subassembli'es will then be

bolted to the main panel frame. The remaining main panel frames will then

be sequentially stacked and detector, subassemblies fitted. An overhead,

U-ton capacity crane will be required for this operation. Integration of

the deployment/retraction drive components, the despin subsystem, and the

telemetry/command "and power subsystem with the payload 'structure will com-

plete the assembly.

Installation of the assembled payload into the Shuttle cargo bay will

utilize the same concept planned for installation of the Spacelab and LDEF

structures, i.e., the strong back will be used to lift the assembled payload
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off the assembly stand at the payload tr.unnions and position it into the

Shuttle cargo bay.

At the end of the mission, the above steps will "be reversed and the

detector subassemblies vill be shipped to the experimenter.

5 Testing and Quality Assurance

5.1 Structural and Mechanical Testing

The primary payload structure will be qualified for the dynamic flight

environment by analysis. Because of the structural simplicity of the four

main load carrying panels, the structural response to dynamic inputs at the

retention points can be accurately predicted with a high degree of confidence.

Deployment/Retraction mechanism components, Despin subsystem, and

Telemetry/Command and Power subsystem components will be vibration tested

using the specific location response spectra generated by analysis of the

primary structure.

All active mechanical drive components will be tested for kinematics

and dynamics of motion. The panel locking mechanisms will be tested on the

fully assembled payload since this does not involve motion of the main

panels themselves. Each complete hinge drive mechanism will be tested over

the full l80° rotation by using only the hinge-adjacent U-channels of mating

panels. In addition, the hinge drive mechanisms will be activated over a

limited range at the time the individual panel frames are stacked on the

assembly stand'(without detector subassemblies). At this time the deploy-

ment initiators which are capable of lifting the empty main frame through the

active initiator range will be tested for proper operation.

The despin subsystem will be scale-tested on an airbearing table to

verify parameters and capability. .

OWGWALPAGEK
OF POOR QUALITK
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5.2 Thermal-Vacuum Testing

All active mechanical drive components, the despin, telemetry/command,

and power subsystem components will be subjected to thermal-vacuum tests ,

to verify in-flight operation. The temperature response of the primary

structure and detector subassemblies will be determined by exposing represen-

tative samples of the structure, coated with thermal control paint, to a

sun simulation environment.

5.3 Quality Assurance

The quality assurance program will cover selection and procurement of

correct parts; adequate support during the design and development stages;

choice of contractors and subcontractors; and insistence on .a test and

inspection system to ensure that resultant hardware meets and fulfills all

program requirements. Existing NASA reliability and quality-assurance

publications will be used with the requirements'-'tailored to the needs of the

program. . ' ••

Close coordination with responsible agencies will assure that NASA

payload safety requirements are met.

6 Mission Profile and Flight Sequence Summary

Listed below are the major events and known approximate time elements

outlining the mission profile.

Pre-launch operations:

• Final payload check-out at launch site (approximately 5 days)

• -Installation of payload into Shuttle cargo bay and launch readiness

verification
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Payload orbit insertion operations:

• Payload telemetry and battery power status checkout

• Payload orbit insertion via remote manipulator system

• Tracking to establish payload orbit parameters

• Deploy payload panels via Shuttle-initiated command (approximately

15 minutes)
\

• Confirm panel deployment visually and via telemetry

• Record payload power status via telemetry

Payload in-orbit operations

• Occasional tracking from ground stations will be required to update

orbit decay over the one year flight period

• At convenient intervals, the payload will be commanded to turn on

the transmitter and provide readouts of power status and cold gas

supply pressure of the despin subsystem. These commands may be

initiated from- the Shuttle in subsequent flights, or be ground-

station-initiated.

Payload retrieval operations:

• Shuttle rendezvous tracking of payload (because of large radar cross-

section of payload, tracking will be passive)

• Shuttle-initiated command to provide readout of payload power status

and cold gas supply pressure.

• After visual aquisition, the Shuttle will command the payload to

retract and lock the four panels. Confirmation of locking functions

via telemetry. Approximately 15 minutes are required for retraction.

• Shuttle-initiated command to activate the payload de-spin subsystem.

After approximately 3 minutes, the payload body rates will have

degenerated to acceptable limits for Shuttle retrieval.
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After visually confirming that proper conditions of angular motion

and position of the retracted payload for Shuttle retrieval have been

reached, a Shuttle-initiated command will deactivate the payload

despin subsystem and capture the payload via the remote manipulator

system for stowage in the Shuttle cargo bay.
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A-l. ATTITUDE AND ORBIT DECAY

In general, the attitude of the deployed payload structure in orbit

is of secondary importance to the scientific success of the mission. While

detailed attitude calculations are beyond the scope of this study, consider-

ations about the major parameters affecting attitude lead to qualitative

results.

Because of the large magnitude and difference of inertia terms of the

deployed structure, a relatively high value of torque is available for pas-

sively gravity-gradient stabilizing the payload with its major axis along

the local vertical. The significant gravity gradient torques are given by

OT/-

M = -̂ -r .(I- - I ) sin 2 6 cos 9 .
2R

where

~\ £\ Q O

K = gravitation constant = 1.̂ 075 x 10 ft /sec

R = mean radius from payload to center of Earth, taken as ^4,150 miles.

subscripts 1 and. 2 refer to angular displacements away from the local

vertical

For the inertias of the deployed payload, and a hOO km circular orbit, the

maximum values for M_ and M are both approximately 2.0 ft-lb.

'Aerodynamic stability and energy considerations indicate that the

payload will assume- an attitude which places the 110 x 15 foot dimension

of the assembly normal to the velocity vector. The resulting atmospheric

drag effects will thus decay the orbit. Assuming a nominal altitude for

Shuttle retrieval of 296 kilometers, the NASA/GSFC Rapid Orbit Prediction
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program was used to generate decay data for a one year period beginning

January 1, 1982. This is an arbitrary date since it could represent any

date that the payload leaves the Shuttle. The data are presented in Figure

A-l.

The three conditions were that the 110 x 15 dimension be normal to the

velocity vector, 2/3 of the 110 x 15 dimension be normal to the velocity

vector, or the 110 x 0.7 dimension be normal to the velocity vector. The

ballistic coefficients (CD A/M) were 0.. 10̂ 26 ft2/lbm, .06951 ft2/lbm, and"

2 -
.0013 ft /Ibm, respectively. The coefficient of drag used was 2.3 and the

solar -flux was 125- The table shows the starting and ending height (height

after one year) for the three conditions at inclinations of 28.5 degrees

and 56 degrees.

Because of a high degree of dimensional symmetry about the center of

mass, the center of aerodynamic pressure will be offset from the e.g. by

a relatively small amount due to the presence of the asymmetric yaw load

structure. Using a conservative offset distance of 10 feet, the resulting

maximum torque at the retrieval altitude of 296 km would be:

T = (distance) (force) = d CDP~T

~lU
, n . f(2 ) ( 2 x 10~l slugs/ft3) (2 .6 x lO* feet/sec)2)HO x 15 feet)]

- (10 feet; -- ^ ' '. J

= (10 feet) ( .02 Ib)

= 0 . 2 ft-lb.

With the exception of some retention fitting and deploy/retract com-

ponents, the structure and detectors use only aluminum, plastic, and beryl-

lium copper, all non-magnetic materials. Torques resulting from the inter-
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action of the payload's residual magnetism with the Earth's.magnetic field

should thus be small compared with the aerodynamically induced torque.

Similarly, solar pressure and orbit eccentricity reduced torques will be

small.

In order to assess the build-up effect of the orbit-frequency induced

disturbances, the resonant frequency of payload oscillations about the

gravity gradient stabilized axis must be estimated. Linearizing the gravity

gradient torque about the equilibrium position, there results a restoring

constant of

K = (M2,M x 2ir/360°) = 2.55 ft-lb/rad.

The frequency of oscillation is thus

HZ
10 slug-ft

with a period of 65.6 minutes.

The corresponding orbit period is

(2 .2 x 10T feet)3

1.1*075 * 10 ft3/sec2
- 91^minutes

The resulting ratio of 0.721 will limit the response to approximately twice

the input disturbances.

In summary, the most likely attitude of the payload will be that the

110 x 15 foot dimension is normal to the velocity vector, inclined relative

to the local vertical by approximately 20 degrees maximum. "The required

insertion altitude for Shuttle retrieval at 296 km after one year should

be approximately hkO kilometers.
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A-2. DEPLOYMENT /RETRACTION DESIGN ANALYSIS

A-2.1 Panel Locking Mechanism Design

In the stowed configuration, the four large payload panels are locked

together by four panel locking mechanisms located at the X,Z retention

point trunnions in' the manner shown in Figure 2.3.2-2. The locking force

for each of these mechanisms is provided by the tie-down bolt and nut for

Z-loads , and the conical engagement sections for X,Y loads. In order to

provide a fixed-response structure for all static and dynamic load conditions

encountered, the tie-down bolts will be preloaded to a value in excess of

load conditions encountered.

From Table 7.11 of the Space Shuttle System Payload Accommodations

Handbook, Vol. XIV, Rev. E, the maximum acceleration of the attach points

inside the cargo bay will be 3-3 g's, and will occur during the boost phase.

Since the uppermost panel is directly supported by the retention trunnions ,

only three panels will impose loads on the tie-down bolts. Assuming a pay-

load dynamic load factor of 1.2, the tension load per bolt will be

ftXlj-) (32,000 Ib) x 3.3 g's x 1.2 ='23,?60 Ib.

Thus, preloading each bolt to approximately 30,000 Ib will prevent separation

of the panel locking mechanism 'load interfaces. Applying a structural

factor of safety of U.O to these primary tension members results in a tie-

down bolt diameter of approximately 1 inch, based on a yield strength value

of 150 ksi.

The equation relating tension to the required torque for power screws

is given by
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\ Fyd

oV?°°u

For F = tension, = 30,000 Ib

d = collar diameter, = 2 inches

d = mean screw diameter = 1 inch

p = pitch =0.20

y = coefficient of friction =0.15,

the required torque to generate 30,000 Ib tension is 680 ft-lb.

Assuming a tie-down bolt nut removal time of 2 minutes, and an overall

mechanical drive efficiency of 80%, the required horsepower per drive motor

is

Withdrawal of the tie-down bolts from the locking mechanisms will require

individual motor power of approximately .05 HP since it is only necessary

to generate sufficient torque to overcome mechanism friction forces. The

time required for withdrawal is 20 seconds.

A-2.2 Panel Deploy/Retract Drive Design

During deployment and retraction maneuvers the panel hinges are driven

by motors connected to torque tubes and shown in Figure 2.3.3-2. The

torque tubes provide elastic coupling between the panels and serve to assure

a controlled torque when the panels are deployed.

As discussed in Appendix A-l, the torque requirement due to gravity

gradient and atmospheric drag effects in the deployed configuration is of the

order of 2.5 ft-lb. The maximum torque induced by air drag at the retrieval

altitude and absorbed at the center panel hinge is given by



;\
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T = (Total panel length) (Total air drag force)

From'Appendix A-l, the air drag force is 0.02 Ib, so that T = (110 fee t ) ( .02 lb)/U =

.55 ft-lb.

Additional torque will be required due to inertial effects when the panels

are retracted. In the deployed configuration, the payload will have an

angular rate of 1 revolution per orbit associated with the principal axis

of inertia. When the panels are retracted, application of the law of con-

servation of momentum will result in a. stowed angular rate of •

IOalO 1.00 x 106 slug-ft2
 n nc n n-3 ,, noo .,

u)_ = —-— = ^ r & x 1.15 x 10 rad/sec = .020 rad/sec.
s 5-70 x 10 slug-ft

Applying this principle over the entire retraction cycle results in a torque

requirement due to centrifugal forces on the center drive unit as shown in

Figure A-2.2. Because of the large panel inertia coupled to the drive,

motors, upon initial start up the motors will essentially operate under

stall current conditions. Assuming a stall current time limit of 10 seconds

and a total deployment time of 10 minutes results in a deployment velocity of

9 = 180°/10 minutes - .005 rad/sec,

and an angular acceleration of

2
6 = (.005 rad/sec)/10 seconds = .0005 rad/sec .

The corresponding torque required at the center of the four panels will be

. T = I 9 = (10 slug-ft2)(.0005 rad/sec2) = 500 ft-lb. .

For an overall mechanical drive efficiency of 20% (high gear reduction ratio

required) the motor power is thus

Hp _ 1 T(RPM) _ 1 (500 ft-lb)(1/20) _
HP - I "57260" - 0^" '
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The amount of kinetic energy associated with the moving panels to be

dissipated at the travel stops is

2 6 ? ?
K.E. = \ I 6 = 5g (10 slug-ft )(.005 rad/sec) = 12.5 Ib-ft

A-2.3 Deployment Initiator Mechanism Design

The deployment initiator mechanisms shown in Figure 2.3-3-3 and located

opposite each panel hinge are used to provide a large opening- and closing-

mode force between individual panels. In addition to overcoming friction

forces during opening and closing when the panels are close to the fully

retracted configuration, they must also serve to provide a sufficient force

to elastically overcome possible deformation in the structure setup as a

result of thermal distortion.

As shown in Appendix A-3, the maximum thermal distortion of the 25-foot

long continuous outer U-channel of each payload panel is expected to be of

the order of 0.15 inches, the displacement being in-line with the initiator

mechanism lead screw axis. Treating the total panel as a cantilever, the

O

force required to overcome this displacement is given by F = 3EI6/L , where

8 2
El is the panel section modulus, and is approximately 10 x 10 Ib-in . The

required force is thus F = Ik Ib.

A more demanding design parameter is the ability to lift a single 750

Ib panel (without detector subassemblies) as required for ground testing

of panel opening and closing mode kinematics (see Section U). Using a

ig-inch diameter lead screw with a pitch of 0.1 yields a torque requirement

of approximately 6 foot-lb to generate a lifting force of 500 Ib. The

corresponding drive motor power to translate this force over 12 inches in

1 minute is approximately 0.17 HP based on a mechanical efficiency of 80%.
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A-3. THERMAL DESIGN ANALYSIS

Payload temperature control will be passive and will utilize readily

available thermal control paints.. With the exception of the electronic systems

and electric drive motors which can be insulated from the bulk payload, the

structure and detector assemblies are relatively insensitive to temperature.

In the absence of internal power dissipation, payload temperature

dependence can be expressed by

<JTh = - (FQS -H F R) + RpE
E o n i L

where . .

o = Stefan-Boltzmann constant ORIGINAL PA.TTrrYOF POOR QUALITY
T =• absolute temperature of payload

a = solar absorptance
I

e = infrared emittance

F = payload view factor for insulation
t>

S = solar constant

Fn = payload view factor for planetary albedoK

R = planetary albedo

•F = payload view factor for planetary emission
t

E = magnitude for planetary emission

Accurate temperature prediction will depend on the orbit inclination chosen;

however, a worst case analysis may be made from the standpoint of maximum

temperature excursion by assuming an approximately zero inclination orbit

for the payload attitude described in Appendix A-l. Under these conditions,

the view factors are approximately F = 1/ir, F = 0.1 and F = O.H
O K . £j

Selecting a W.P. Fuller Al - Silicon paint, No. 172-A-l, with a = 0.28

and e = 0.25, and letting S = hkh Btu/hr-ft2, R = 0.3S,- and E = 77 Btu/hr-ft ,
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there results an average payload temperature of +35°F.

The payload temperature will drop once per orbit during the shadow period.

An estimate of the temperature variation may "be obtained by calculating the

net heat loss per. orbit. As shown in Figure 2.3.^, the two copper

shielding plates of the detector subassemblies are conductively coupled to

each other by means of rectangular aluminum channels making up the detector

subassembly frame, and thermal grease at all aluminum to copper
/

interfaces. The heat transfer parameters across the detector assembly may

then be modeled as follows

in

Q'out

T

/

— «g

h

Qcond.

AAMA
A

where

Q'out

'cond

= a(FQS + F_R)o n

= eaT

(T -T ).
L h c

^out

Writing the heat balance equation and solving for the temperature difference

across the assembly results in

AT =
a(FgS + FRR)L

2Ak

Per unit area of copper plate, the aluminum frame parameters are:

A = .023 ft2, L = 0.10 feet, k = 120 Btu/hr-ft-°F, with a resulting
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temperature difference of 0.8°F. Because, of this small- temperature dif-

ference, the CR-39 detector plates do not contribute to the net heat transfer

as their mode of heat transfer is essentially that of radiation only.

C During the'approximately U5 minute shadow period, the net heat loss per

unit area detector assembly is given by

AQ = (2oeT - eFJ])At
h,

Using an average temperature of +20°F, the corresponding heat loss is 28

Btu. Finally,-equating this heat loss to the thermal capacitance of the

two copper plates results in a temperature drop of 23°F-.

To assure functioning of the retract subsystem of the payload, defor-

mation of the structure due to thermal distortion must be investigated.

The most predominant distortion will result from solar insolation and plane-

tary albedo onto one side of the continuous 25-foot long outer U-channel

of each payload panel. The problem may be idealized as shown in the following

sketch

From geometric relations, L/R = (L + AL)/(R + t) =6 , and'R = Lt/AL. Also,

6 = (l - cos0)R. For a thermal expansion coefficient, e, and temperature

difference across, the span of AT, the incremental length is AL = LeAT.

Combining these relationships yields
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, r, /LeAT\i6 = [l - cos — 1
\ * /J eAT

The temperature difference may be determined by the same method used for the

detector assembly. . For the properties of-the U-channel, this value is found

to be 1.8°F which, when used with e = 13 x 10 in/.in °F for aluminum,

yields 6 = O.lU inch. The method of accommodating this deflection is des-

cribed in Appendix A-2.
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A-5- LDEF OPTION

The passive detector subsystem described in Section 3.H is readily

adaptable for mounting in a standard 3-inch peripheral tray assembly for

use in the Long Duration Exposure Facility (LDEF). Figure A-6 shows details

of the mounting arrangement. Each such tray assembly would provide approxi-

mately 1.10 square meter detector area.

Depending on the amount of shielding available from other experiments

in the LDEF module facing the .detector assembly, the total weight of each

.LDEF detector assembly would be between l65 and 230 Ib..
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