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A THEORETICAL STUDY OF THE EFFECT OF FORWARD SPEED ON THE FREE-SPACE
SOUND-PRESSURE FIELD AROUND PROPELLERS 1

By I. E. GARRICK and CHARLES E. WATKINS

SUMMARY

The sound-pressure field of a rotating propeller in forward,
flight in free space is analyzed by replacing the normal-pressure
distribution over the propeller associated with thrust and torque
by a distribution of acoustic pressure doublets acting at the
propeller disk and subject to uniform rectilinear motion. The
basic elemtnt used to 'synthesize the field is the pressure field of
a concentrated force moving uniformly at subsonic speeds, for
which an expression generalizing one of Lamb's for the fixed
concentrated force is given. This result is presented both for
the moving and for the fixed observer. The strength of the
doublet distribution is related to the thrust and torque distri-
bution and to its various Fourier coefficients in a convenient
way. The sound field is expressed by integration over the
propeller disk, and also by integration over an effective ring, and is
given both for the near pressure field and, in a simpler form, for
the far field. Known results for the zero-forward-speed case
present themselves in the special case of Mach number M=0.
Some illustrative examples are calculated and discussed.

INTRODUCTION

The rotating propeller is the source of an intense sound-
pressure field which can be associated with the periodic
reactions on the medium arising from the distribution of
pressure rotating along with the blades. This pressure
distribution consists in part of a distribution due to thickness
of the blades, whose resultant force in subsonic potential
flow is zero, and in part of a distribution due to angle of
attack and camber of the blades, whose integrated effect
includes the induced drag and corresponds almost wholly to
the thrust and torque distribution over the blade. Another
source of propeller noise may be associated with flow separa-
tion and with friction or shear due to the boundary layer;
both effects lead to vorticity shed into the wake and hence
the designation vortex noise. The vortex noise and the noise
due to thickness (where wave drag is not a large factor) are,
however, for actual propellers normally of a considerably
smaller magnitude than the rotational sound due to torque
and thrust; hence only the latter effect will be considered in
the present work.

A large number of investigators have studied various
phases of the determination of the sound or noise field of

rotating propellers. In addition to the references cited, a
bibliography is included of representative work on this
subject. A simplification that has frequently been made in
propeller-noise investigations is to limit the considerations
to the static or standing propeller. The work of Gutin in
1936 (ref. 1) represents a development of this type that makes
possible a satisfactory prediction of the amplitude of sound
pressure due to thrust and torque of a propeller rotating on a
stand in still air. Although Gutin's theory is applicable to
the near oscillating pressure field of the propeller, his results
in reference 1 are limited to the determination of the funda-
mental and the first few harmonics at a distance far from the
propeller, that is, several diameters away. The determina^
tion of the near pressure field, however, has been of concern"
both from structural and physiological considerations.
Hubbard and Regier (ref. 2) extended the application of
Gutin's work to describe the oscillating pressure field and to
determine the amplitude of noise at points near the propeller,
in some cases within a blade chord length from the tip.
They investigated analytically the effect of several of the
parameters that enter in the theory and also gave compari-
sons with experiment which were quite satisfactory.

The existing .theoretical work has found useful application
for static conditions and for conditions of low forward speed,
for example, near take-off. For conditions of high forward
speeds, however, many pertinent questions have arisen as to
the possible effects of the forward speed on the oscillating
pressure, field of the propeller. A few investigators have
examined phases of this problem; Bryan, Hart, Shirokov,
Blokhintzev, and particularly Kuessner and Billings (see
bibliography) may be mentioned, but most of this work
seems incomplete or difficult to apply. It appeared desirable,
especially for applications, to re-examine the theoretical
problem for the propeller at forward speed so as to have it
arise as a straightforward generalization of existing work for
the zero-forward-speed case. The purpose of the present
report is therefore to extend the theory of Gutin (ref. 1) and
the work of Hubbard and Regier (ref. 2) so as to include the
effect of subsonic forward speed of the propeller on the near
and the far oscillating sound-pressure field caused by torque
and thrust of the propeller.

> Supersedes NACATN 3018, "A Theoretical Study of the Effect of Forward Speed on the Free-Space Sound-Pressure Field Around Propellers" by I. E. Garrick and C. E. Watkins, 1953.
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This report includes the following material: (a) The sound-
pressure field associated with a uniformly moving concen-
trated force is given, with details of the explicit development
contained in the appendix. This result serves as a basic ele-
ment for synthesizing the total pressure field. It is expressed
both for the case of the observer or field point considered to be
moving along rectilineaiiy and uniformly with the propeller in
free space and for the case of the observer considered fixed and
the propeller in uniform flight, (b) The disturbance forces
associated with the pressure distribution acting on the me-
dium in the plane of the propeller disk are presented in the
manner similar to that of Gutin. (c) The sound-pressure
field resulting from the combined use of (a) and (b) is shown
in the. form requiring integrations over the propeller disk
and in the simpler form making use of an effective propeller
radius. Approximations valid for the far field, which reduce
to Gutin's results for the case of zero forward speed, are also
given, (d) Some numerical examples are calculated and
discussed, (e) Remarks are made on the usefulness and
limitations of the analvsis.
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SYMBOLS

chord wise distribution of thrust acting on a
radial element of a propeller blade

number of propeller blades
"width of "propeller 'blacles "
velocity of sound
power coefficient, P/pn*D°
thrust coefficient, T/pn2D4

propeller diameter
chordwise distribution of forces perpendicular to

the thrust of a propeller blade and giving rise
to the torque

"-components of force vector F

Bessel function of first kind with index mB
Mach number, F/c
order of harmonic
propeller rotational speed, rps
power
pressure
pressure magnitude
pressure due to torque
pressure due to thrust

1 , ,
root-mean-square pressure, -j=p\

V2 "
torque
length of propeller blades
effective length of propeller blades
radius to a blade element
polar coordinates in ?/2-plane

s0,<i> polar coordinates in z?/-plane
T thrust
t time
V forward velocity
x, y, 2 Cartesian coordinates

f!R blade angle
propeller efficiency
fluid density

TO period, 2ir/Bfi
n angular velocity
co frequency of mth harmonic, mB9. ,,
oj! fundamental frequency, BQ

ANALYSIS

EXTENSION OF A FORMULA IN LAMB'S "HYDRODYNAMICS" FOR THE
SOUND-PRESSURE FIELD OF A FIXED CONCENTRATED FORCE TO

THAT OF A MOVING FORCE

- On-th e basis of acoustic-considerations of the classical-h vdro-
dynamic equations, Lamb (ref. 3)2 gives the pressure at
any field point x, y, z associated with an external periodic
force Aeiat acting in the x-direction and concentrated* at the
location x\, yi, z\ as

dz

where

.s=V(x-x02+ (y-yi)

(i)

(2)

The concentrated force may be regarded as stemming from
the limit of a distribution of an increasing pressure differ-
ence over a decreasing area, whose product in the limit of
zero area is equal to the force. For an arbitrary concen-
trated force of components Fx, Fy, Fz the result generalizes as'
Lamb indicates to

i »n~L . I

4?r \_dx
H)

dy

(3).

'' Dr. Nelson H. Kemp of the Research'Department of the United Aircraft Corporation lias
in private correspondence kindly called the attention of the authors to an error of sign existing
in Lamb's formula in his transition from equation (8) to equation (9) on page 502 of his "Hydro-
dynamics." This error was not corrected in N AC A TN 3018 but is corrected herein, although
it has no significance for any of the results of interest involving root-mean-squarc pressures.
See, also, Kemp, Nelson H.: On the Pressure Field of a Uniformly Moving Concentrated
Force. Jour. Acous. Soc. of America (Letters to the Editor), vol. 26, no. 3, May 1954,
pp. 450-451.
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This formula shows that the pressure field obtained from the
concentrated force has the character of a doublet or a dipole 3;
in its periodic form it has played a central role in the develop-
ment of the noise and pressure fields of propellers due to the
propeller torque and thrust. However, the formula refers to
a concentrated force and to coordinates fixed in space. To
treat the case involving effects of forward speed, it is expedient
to obtain the required extension of the preceding formula.

The extension of equation (3) required for the case of a
uniformly moving concentrated force is given in equation
(4), which follows. Details for its derivation are supplied
in the appendix. Let the concentrated force have compo-
nents Fx, Fv, F2; let it be moving uniformly with velocity V
in the direction of the positive z-axis; and let the coordinate
system also move uniformly with the same velocity. Then,
with x, y, z now denoting the field point referred to this co-
ordinate system and with x\, y\, z\ denoting the coordinates
of the concentrated moving force

P = ~T-

where

(4)

M(x-Xl) + S^ (5)

Figure 1 illustrates the geometric meaning of the quantities
s, S, and a. The force located at 0(xi,yi,z1) and the field

Q(x,y,z]

FIGURE 1.—Geometric representation of s, S, and a.

<1 J Since the acoustical pressure is p = —p -^i the dipole represented by equation (3) is an
acceleration doublet or the time rate of change ol a flow doublet.

point at Q(x,y,z) are both in uniform motion with velocity
V in the x-direction. The distance OQ=s. The influence
at Q at time t stems from the action of the force when it
was at position P, where P is obtained from the relation
OP/OQ=M, the forward-speed Mach number. The distance
PQ gives then directly the phase radius a. The perpendicular
dropped from 0 onto PQ, determines QR, which is equal to
the amplitude radius S. For M=0 both S and a reduce to
the ordinary radius s. Comparison of equations (3) and (4)
shows that the effect of the forward speed leads to replace-
ment of s by S in the amplitude and by a in the phase.

The force variation of main concern herein is that of a
harmonically periodic force having components Fx, Fv, Fz

varying in time as e'"'. Equation (4) becomes

(6)s
where fc=co/c. . Equation (6) is the basic relation to be made
use of in the subsequent analysis.

DISTURBANCE FORCES IN THE PROPELLER PLANE

Consider, as does Gutin (ref. 1), a propeller disk oriented
so that the axis passing through the center of the disk coin-
cides with the x-axis and let the propeller be assumed to
rotate, as in figure 2, in the 7/2-plane (x=0) with positive
values of x corresponding to points ahead of (and negative
values of x corresponding to points behind) the propeller
disk. The propeller is considered to move uniformly with
velocity Fin the positive cc-direction. Points in the propeller

x . V

FIGURE 2.—Propeller disk and coordinate system.



REPORT 1198—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

disk are designated by (0,y,,Zi) or, in polar coordinates
(as shown in fig. 2), by

1/1 =/'cos <H
Y (7)

Zi=r sin 6J

For definiteness, let the propeller be rotating counterclock-
wise as seen by an observer looking into the propeller toward
the slipstream.

Each element of the propeller is acted on by the surface
pressure distribution and this distribution may be resolved
into a thrust force in the direction of the axis of rotation
(the x-axis) and into a force associated with the torque
which acts about the axis of rotation opposing the rotation.
Equal and opposite reaction forces to these are exerted on
the medium. The points of application of these forces are
imagined to act in a single plane designated as the plane of
rotation or as the propeller disk.

The reaction of the surface pressure distribution of the
rotating propeller on the medium at any instant is to be
replaced by fixed periodic forces acting at the propeller disk.
The propeller disk itself will be considered covered with the
necessary singularities in the pressure or acoustic radiators
of proper strength and harmonic content to correspond to
this normal-pressure distribution. These singularities will
be seen to be acceleration sources (acoustic radiator of zero

-order) for-those—forces-which-act- symmetrically- on _both-
sides of the blade—that is, whose net force over each element
of the blade is zero—and to be acceleration doublets (acoustic
radiator of order one) for those forces acting antisymmetri-
cally—that is, whose net force over each element of the blade
corresponds to the difference in pressure over both sides of
the blade. The doublet distribution is that which is needed
to represent the thrust and torque distribution, in particular
that part of the thrust and torque distribution associated
with pressures acting normal to the blade surface. This
part is practically all of it, except that arising from skin
friction. (The effect of blade thickness may be taken into
account by introducing either flow sources or acceleration
sources: the flow sources would lead to the sound-pressure
field due to thickness by the classical "piston" effect of the
moving blade on the flow field; the acceleration sources
would deal directly with the assumed or known contribution
to the pressure distribution over the blade due to thickness.)

Consider an element of the propeller at distance r from
the axis; let dr be its radial length and b its widthmeasured
in the projection onto the plane of rotation. Let the forces
acting on the propeller element on each blade be A(r)dr in
the axial flight direction and F(r)dr in the direction opposed
to the direction of rotation. Equal reaction forces acting
opposite to the flight direction and in the direction of rota-
tion, respectively, are exerted on the medium. These quan-
tities are related to thrust T and torque Q by the relations

(8a)

or

T=B I'' A(r)dr
Jo

Q=B(*rF(r)dr
Jo

(8b).

where B is the number of blades and R is the length of each
blade.

The periodic impulse or reaction experienced at any
element of the disk may be expanded in a Fourier series.
For simplicity let the element considered first be located on
the radial line 8=0 (the jy-axis) and afterwards be located
arbitrarily. To start with, assume that the forces are
uniformly distributed over the projected width b of the
blade element, that is, that the distribution of pressure
difference over the blade chord is rectangular. Then in the
area element r dr dd of the plane of rotation, the forces

. . . , r d6 , „. . , r dd , ,. . . .
A(r)dr —j— and r (r)dr —j- act on the medium during the

time interval in which this element is eclipsed by the pro-
jection of the propeller element. If the overlapping of the

element starts at £=0. it will end at £=T=-— and the over-
rfi

lapping of the element will start again by the next blade at

£=T0=7^y where Q is the angular velocity of the propeller.

The rectangular-type forces experienced at the element of
the -d-isk-loca-bed-a-t-0= -0- by -its-periodic eclipse- by -the-blade-
may be developed in a Fourier series:

for O<(<T

for

Am cos (mBM-en (9)

and similarly

•t; for

for TO

(() =#o+Z) Bm cos (mBM—r,m) (10)

where
. 2 . . . r . , ,„

Am= — /!(/•) T sin - dr dO
b TO

Bm = — F(r) -, sin — dr do
rmr ' b TO

TO 2

(11)

The constants Ao and I30 which correspond to the instanta-
neous average thrust and torque over the blade element and
to the associated momentum shed into the slipstream do not
give rise to sound and need not be expressed. The phase
angles em and r)m, which are small for the lower harmonics, are
needed to preserve generality of discussion since Am cos fm

corresponds to the coefficients of pure cosine terms and
Am sin em corresponds to coefficients of pure sine terms
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in the Fourier series. For the assumed rectangular distribu-
tion, em and i\m may be observed to be equal to zero if the
origin of time is chosen at the overlapping of the center line
of the blade by the y-axis since then only a pure cosine series
suffices to express the distribution.

The general formulation of interest where the disk element
r dr d6 is located at an angle 6 may be expressed directly
from these results, for, on a second area element r dr dd
shifted with respect to the first by the angle 6 in the rotational
direction, there act periodic forces of the same magnitude,
but retarded by the time 0/fi. The corresponding Fourier
developments are

cos
(12).

The quantity
mBb

2r (13)

is small for the lower harmonics, especially for blade ele-
ments not near the hub. Blade elements near the hub,
where r is small, are eliminated from consideration since
they contribute very little to the air forces. One may

then replace in equation (11) sin — — —by — ̂  so that, noting

the relations' in equations (8a),
-TO TO.

Aa**-A(r)dr dB~-~ dr de•w TT dr

Bm « - F(r)dr d,6 « — ̂  drTT irr dr

(14)

This approximation, which weights the harmonic content
of all the harmonics equally, may be observed to correspond
to the case of the thrust and torque distributed over a zero
blade width (that is, to the mathematical pulse sometimes
termed the Dirac delta function). This approximation

becomes relatively less valid when
TO

exceeds about

T ( sin T=0.707 ; ̂ =0.785 ) or when 4m — exceeds about unity ;4\ 4 '4 ) TO
2 Pthat is, when the order of the harmonic exceeds -JT^ or,

roughly, I/solidity.
Moreover, the assumption of a uniform rectangular dis-

tribution of the forces across the blade has been made for
convenience, and other distributions may be treated if
desired. Some of the possible errors in the assumption
leading to equation (14) are discussed briefly by Gutin in
reference 1 and are shown to be generally negligible for the
lower harmonics. Regier and Hubbard (ref. 4) also discuss
this assumption in an illuminating manner. Figure 3,
which is taken from reference 4, shows the relative harmonic
content of different assumed distributions of the same total
load for (a) the mathematical sharp pulse, (b) a triangular

12 16 20
Order of the harmonic, mB

(a) Sharp pulse.

(b) Triangular pulse. ^=0.03.

24 28

(c) Rectangular pulse. = 0.03.

(d) Rectangular pulse. = — = 0.06.
2.TtT

FIGURE 3. — Effect of impulse shape on the relative amplitudes of the
harmonics.

' hat" pulse——=0.03,. (c) a rectangular pulse -—=0.03, and

(d) a rectangular pulse —=0.06. Blade widths of actual

propellers tend to be between cases (c) and (d) for the most
effective parts of the propeller disk. The sharp-pulse
assumption generally tends to overestimate the magnitude
of the higher harmonics. When the proper distribution is
known, appropriate correction factors for the required
harmonic may, of course, be applied to the magnitude of
the results given by the pulse solution.

The formulation in equation (12) need not be limited to
the one in which the propeller force distribution is uniform
throughout the propeller cycle. If interest should be
attached to a nonuniform distribution, as occurs for the
propeller yawed or pitched with respect to the flight path
or for one experiencing interference effects, it is readily
possible to allow for these effects by permitting the ampli-
tude of the distribution to become a function of B.

THE SOUND-PRESSURE FIELD

The general expressions for the resolution of the forces
associated with the thrust and torque on a radial blade
element (for example, eqs. (12)) may be put in the usual
convenient complex form (whose real part may correspond
to the formulation of interest):

(15)

where w=mSJ2 and where for the special case of the
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rectangular-pulse distribution the coefficients are given as in
equation (11).

With the use of the approximations for An and Bm given
in equation (14), the periodic forces acting on the medium
at the element r dr dd of the disk can be expressed for any
given harmonic in the forms

— —;
TT (II'

>*<<•><-'"««>

Fv ,„=-- - (l<r sin 8 e
i("'-""ie> dr de

"• TT r dr

cos 0 dr d6

(16)

In the derivation of equation (16), the phase angles tm and
rjm, which can generally be neglected for the lower har-
monics, have been put equal to zero, a value which corres-
ponds in the case considered (as has been mentioned) to the
choice of 9=0 to correspond to the overlapping of the center
line of one of the blades at the time £=0. The index m indi-
cates the order of the harmonic considered. As discussed in
the preceding section, appropriate factors depending on the
harmonic number m, functions of the radius, and, for un-
symmetrical loading, functions also of 8 may (if known) be
applied to the terms in equation (16).

Pressure relations involving integrations over the propeller
disk."—^The pressure~at~anypoirit irrthe free-space ~field~pro-
duced by these components of the uniformly moving peri-
odic forces Fz, Fv, Fz is given in equation (6). With the
use of the components of force given in equation (16) and
by integration over the propeller disk, the total oscillating
pressure p for any given harmonic m (the index m will be
hereinafter dropped)'is obtained from equation (6) as a sum
of the pressure due to thrust pT and that due to torque PQ
as follows:

P=PTJTPQ (17)
where

1 CR I'2" dT b e~ i k"
I>T=-T--,\ e t<<»t -»>Bn ^_(irdB (18)1 4ir2J0 Jo dr *~ °S

_JL f" f2 i r I
4?r Jo Jo r

dQ .

r d f l S
,/.„ ,/a (19)

1 5and where, in the expression for pQ: the operation - — has
T 06

been used for convenience to replace the equivalent operation

sin 8 ^- cos The indicated differentiations with re-

spect to x and 6 can be carried out by use of the expressions
for <j and S given .in equations (5) .

S
e~ ik°/_ikM_
~~s~\ W

ik (20)

Hence,

47r2J0 J0 dr (21)

and
t

PQ=~- S \S ~ z cos

(22)

Another somewhat simpler expression for PQ can be obtained
from equation (19) by integration by parts with respect to 6

P<r
piat (-R f-2-, 1 JQ

^-2\ --^e-'4i Jo Jo r dr S
drd9 (23)

Pressure relations involving effective ring approxima-
tion.—Appreciable simplification may be achieved for calcula-
tion purposes by making use of the approximations inherent
in the assumption of an effective propeller radius Re so that
the integration with respect to r is avoided. Equations (21)
and (23) then reduce to

ikx

and

S
-ke (25)

where, in both S and a, the points 1/1 and z\ have the values
yi = Re cos 8, zi = Re sin 6. In effect, equations (24) and (25)
imply that the propeller disk has been replaced by an annular
ring in which the entire thrust and torque are concentrated.

~ The" effect! ve~radius~of~ this" ring ̂ varies somewhatyas" calcu-
lation shows, with the load distribution and with the order
of the harmonic. Doming (ref. 5) has shown by calculation
in special cases for the static propeller that the ring approxi-
mation is a reasonably good one. An effective radius of the
order of 0.8R is considered reasonable for adoption in initial
calculations.

The magnitude of the root-mean-square pressure pTm, is
of interest, since most sound-recording instruments are
calibrated in terms of it. The contribution of the harmonic
of order m to the root-mean-square pressure is

or

(26)

where
("**(T-r r

A= ^ cos (mBO+k f f)+\ r
Jo (o |_

~ su

^ mB~\
Q -p-2- cos

lie, J

dd

When rotational symmetry exists as for the condition of
symmetrical loading, it is convenient in making the numerical
calculations to let the field point be in the y?/-plane, an
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arrangement which can always be attained by suitable choice
of the line 6=0. It may be desirable in some calculations to
•divide the disk into several annular rings and to select
effective radii for the various rings.

Pressure relations for the far field. — A further simplifica-
tion in the results can be reached if the distance s from the
propeller disk (0,yi, zj to the field point (x,y, 0) is large. Then
from

there is obtained

(27)

where s0=V^2+2/2 (the distance from the field point to the
center of the propeller disk). It also follows from

that

where

o o P2yyi
o ~oo~—o (28)

If terms of order 1/S2 are neglected in comparison with
terms of order l/S, the sound pressure due to thrust is ob-
tained from equation (24) by use of equations (5) and (28) :

e - . •mB9+i* -K ( , co s9

From the known integral relation

("2*

Jo e'XC086 "">de~

it follows that

i * - K ( , c o s 9 de

(29)

(30)

Similarly, from equation (25),

(kyR\
(32)

Observe that the argument of the Bessel function may be
replaced by

|- . (33)

O7?
where Mrot= - "> the Mach number corresponding to the

C

rotational speed at the effective radius. (The far-field
approximation and the effective-radius approximation made
use of in arriving at eqs. (31) and (32) need not, of course,
be made simultaneously, since the required integration of the
Bessel functions with respect to the radius may be carried
out, at least numerically, without difficulty.)

Introduce the fundamental frequency denoted by co!=/30,
so that

The pressure magnitude for any harmonic m is then given by

(34)
>lRe

nB\ S0

This result may be compared with that for the case of zero
forward speed (M = 0) given in reference 1:

27TCSQ S0 CO i
J m

(hyRe\
(35)

. It caii be noted that the forward-speed Mach number
affects the torque term containing Q only in the replacing of
So= Vz2+?/2 (the distance from the field point to the propeller
hub) by the smaller distance S0=-\/x2-\-/32y2. This s b-
stitution occurs both in the argument of the Bessel function
and in the outside factor I/So. The thrust term containing
T is more strongty affected, since, in addition to this change,
the field effect ahead of and behind the propeller disk is

x
influenced by the term M+-~- corresponding to a backward

00
• ff

shift by -~- = —M and also by an increase associated with the
00

factor 1//32.

APPLICATION TO A SPECIFIC PROPELLER

In order to give some indication of the effect of forward-
speed Mach number on the sound pressure of a propeller,
calculations based on equation (26) for the near field and on
equation (34) .for the far field have been made. For this
purpose, a two-blade research propeller, having a 10-foot
diameter and operating under the various conditions sum-
marized in table I was chosen. As may be noted from this
table, the propeller is assumed to operate at constant power;
that is, the,power coefficient CP and the torque Q are held
constant. As the forward-speed Mach number is changed,
the blade angle /3B and consequently the thrust T are changed
according to the propeller charts of reference 6 so as to make
the assumed conditions consistent with actual test operating
conditions. Only the fundamental, the first harmonic m=l,
is considered in these examples and the value chosen for the
effective radius Re is 0.8R or 4 feet. It should be pointed
out that the sound pressure computed from the data of table
I would be obtained in pounds per square foot, since these

TABLE I.—SEA-LEVEL OPERATING CONDITIONS FOR A
10-FOOT-DIAMETER TWO-BLADE PROPELLER

(DATA FROM REFERENCE 6)
[P=815 hp; CV=0.10; Q=2,680 lb-ft,; fc = 0.29686]

M

0
.1
.2
.3
.4

.0

.6

. 7

.8

VhiD

0
.42
.84

1.26
1.68
2.10
2.52
2.94
3.36
3.78

i

0R, dog

24
26
28
33
37
42
47
50
53
56

CT

0.11
.11
.094
.065
.052
.041
.032
.025
.0185
.0122

i), percent

0
46
75
85
87
86
80
70
62
46

T, ft-lh

1,850
1,850
1,600
1,090

875
690
580
420
310
205

327967—55-
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mean

data are given in English units. These values have been
converted to dynes per square centimeter in the results given
in the figures by multiplication by the approximate conver-
sion factor 480.

Calculations for the near field.—Calculations of the root-

.-square pressure ( £>TO,=-= \p\ ) based on equation (26)
\ -y2 /

are made for various values of x in the range from — 0.5D to
Q.5D along the line y=0.6Z) (6 ft), that is, along a line % of
the propeller radius from the tip and extending a distance
of 1 radius behind to 1 radius ahead of the plane of rotation.
These results are shown plotted as a function of x/D for
several Mach numbers in figure 4. It can be noted in this
figure that, for each Mach number, two peaks generally
appear, one ahead of and one behind the plane of rotation.
For the set of conditions under consideration (see table I),
the highest peak amplitudes of pressure occur just behind
the propeller plane at values of x/D in the range from —0.15
to —0.075. As the Mach number is increased from 0 to 0.4,
the peak amplitudes decrease in magnitude but, as the Mach
number is increased from 0.4 to 0.9, this trend is reversed
and the peak amplitudes increase in magnitude, the peak for
M=0.9 being about 1.4 times that for M=0. Also, as M
increases from 0 to 0.9, the point at which the highest peak
pressure occurs moves somewhat nearer the propeller plane.
Thus, the generally severe sound-pressure conditions at
take-off (M..« 0.).. ten d -to-be alleviated -in flight_at - the lower-
Mach numbers but may be reached again and even exceeded
at the higher flight Mach numbers. The calculations for
low Mach numbers presented in figure 4, it should be noted,
are in substantial agreement with both calculated and
measured results of reference 2. The high peak pressures
obtained for the highest Mach numbers indicate that, with
propeller-driven airplanes, the sound pressures generated
near the tips of the propellers are of significance and of
possible concern with regard to both structural considerations
and passenger comfort.

Calculations for the far field.—Calculations of the root-
mean-square pressures based on equation (34) for various
values of x along the line y=2D (20 ft) are shown plotted in
figure 5. The trend with regard to Mach number in this
figure is about the same as was noted in figure 4 for 7/=0.6D,
but the relative effect of the forward Mach number appears
greater at a distance. However, because of the greater
distances in figure 5 than in figure 4, the peak amplitudes
are considerably less.

Directional characteristics of the sound field.—For some
purposes, especially with regard to calculations for the far
field, it is desirable to consider the character of the sound
pressure in terms of polar coordinates. For this purpose,
substitutions can be made in equation (34) (and eq. (26))
as follows:

= s0 cos =So sn (36)

The quantities x/S0 and y/S0 in equation (34) (and eq. (26))
may then be written as

cos

y sn
(37)

&o yl—M2sin2$.

With these substitutions, equation (34) becomes

\P\ =
m dii

— M2sin2$
cos

l-M2 sin2 $

Q
Be kRe sin

(38)

Calculations based on equation (38) for the Mach numbers
of 0 and 0.8 for a constant value of s0=2D are shown plotted
as dashed curves in figure 6. The solid curves in this figure
represent results of calculations along the line 7/=2Z?

obtained by replacing s0 by sin $
with y=2D in equation

(30) for the various Mach numbers considered in figures 4
and 5. A comparison of results of calculations along the
line y=2D with those along the circle s0=2D for M=0 and
,M=0.8 indicates that, for high Mach numbers (of the order
of M=0.8), the peak pressures calculated along a line

- y=Constant are -about -the -same as -those calculated along
the circle with radius equal to the constant value of y.
Observe the second pressure peak which has developed in
the forward location at M=O.Q.

Separate components due to torque and to thrust of the
sound field.—In order to give some indication as to the
nature and proportion of sound pressure associated with
each of the quantities, thrust'T and torque Q, the root-mean-
square pressures associated with each of these quantities for
M=0 and M=0.8 are plotted for y=O.QD (6 ft) in figure 7.
These plots show, as do equations (26) and (34), that the
root-mean-square pressures associated with the propeller
torque are symmetrically distributed with respect to the
plane of the propeller for all Mach numbers, whereas the
root-mean-square pressures associated with the thrust are
symmetrical with respect to this plane only for M=0. For
the particular propeller and operating conditions under con-
sideration, the amplitudes of pressure associated with thrust
for low Mach numbers are higher than those associated with
torque, but for high Mach numbers the opposite is true. In
the interpretation of figure 7, it should be recalled that the
results depend on the assumed operating conditions and that
the torque Q is the same (2,680 ft-lb) in both parts of the
figure; whereas the thrust is 1,850 pounds at M=Q and 310
pounds at M=0.8. Plots of this type can be used to obtain
the sound pressure for various thrust and torque coefficients
for a given propeller, since these coefficients appear as factors
in equations (26) and (34) and hence can be normalized.
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FIGURE 4.—'Distribution of the root-mean-square pressures for the fundamental (TO=!) of a two-blade, 10-foot-diameter propeller at several
forward-speed Mach numbers. Cp = 0.10; & = 0.29686; y = 6 feet. (Operating conditions of propeller given in table I.)
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FIGURE 5.—Distribution of'the root-mean-square pressures for the fundamental (m=l) of a two-blade, 10-foot-diameter propeller at several
forward-speed Mach numbers. Cp = 0.10; £ = 0.29686; y — 20 feet. (Operating conditions of propeller given in table I.)
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Line y = 20 feet .
—— circle s0 -- 20 feet
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30°
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180° 0°

100 dynes/cm2 le) 100 dynes/cm2 'f' : • ' .

(a) M=0- T=J,8501b. (b) M=0.2; T= 1,600 Ib.
(c) M=0.4; T=875 Ib. ' (d) M=0.6; 7'=580 Ib.
(e) M=0.8; 7==310Ib. (f) M=0.;9 7'=205 Ib.

FIGUBB 6.—Polar diagrams of the root-mean-square pressures calculated along a line y = 20 feet and along a circle s0=20 feet for a two-blade
10-foot-diameter propeller at several forward-speed Mach numbers. C/> = 0.10; m = \ ; k = 0.29686. (Operating conditions'of propeller given
in table I.)
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two-blade, 10-foot-diameter propeller at forward-speed Mach numbers of 0 and 0.8. Cp = 0.10; m=l ; k = Q.29686; j/ = 6 feet. (Operating
conditions of propeller given in table I.)

It is of particular interest to note in the plot for M=0.8
that the peak pressures associated with both thrust and
torque are considerably greater than the peak pressure asso-
ciated with the sum of these quantities. This result indi-
cates that the phase relationship between the two components'
is, in this case, such that each has a canceling effect on the
other. Also in this case, the pressure associated with thrust
may have its greatest value ahead of the plane of the pro-
peller; whereas the total pressure has its greatest value behind
the plane of the propeller.

The discussion of the figures based on the specific examples
illustrates the fact that the results do depend markedly on
the assumed operating conditions. Moreover, only the
fundamental harmonic (m=l) for the specific two-blade
propeller has been illustrated. Trend studies on effects of
higher harmonics, number of blades, and different operating
conditions would be of considerable interest. Some pre-
liminary calculations on the sound pressures associated with
the fundamental of a six-blade propeller have shown a
greater relative effect of the forward-speed Mach number.

CONCLUDING REMARKS

Expressions have been given for the sound-pressure field
due to the distribution of thrust and torque for any given
harmonic of a rotating propeller in uniform subsonic flight.
The general expressions (eqs. (17) to (23)) involve integra-
tions over the propeller disk; approximate expressions for

the near fields (eqs. (24) to (26)) and for the far field (eqs.
(31),1 (32), and 34)) involve integrations over a ring with an
effective radius. The numerical examples have illustrated
some free-space sound-pressure results for the fundamental
of a specific two-blade propeller under various operating
conditions at various forward speeds.

It is pertinent to remark again on some of the limitations
of the analysis. The analysis presented utilizes the torque
and the thrust distributions, which may be given empirically
or theoretically, in such a way as to require that they arise
purely from pressures acting normal to the surface of the
blades. Empirical values of the thrust and torque include
a contribution, generally small, due to skin friction and to
separated flow. Some caution is then needed in the use of
the results. For example, the empirical torque term is
somewhat larger than the torque due purely to normal
pressures and, hence, the associated sound result due to
torque may be overestimated slightly; similarly, the empiri-
cal thrust term may slightly underestimate the sound due
to thrust. At high tip speeds there may be significant con-
tributions to the noise due to wave drag associated with the
thickness. These contributions are mainly taken into ac-
count by the effects of the wave drag on the torque. (Other
sound effects of the thickness should be separately calculated
and dncluded but these effects have not been explicitly
presented herein.)

Another way of looking at the approximation, and perhaps



EFFECT OF FORWAKD SPEED ON THE FREE-SPACE SOUND-PRESSURE FIELD AROUND PROPELLERS 13

a generally more convenient one for the study of trends, is to
consider that the assumed torque and thrust distributions
are actual theoretical ones, obtained if necessary by adjust-
ment of the blades of the propeller in a potential flow; and
hence the sound-pressure field is that corresponding to the
chosen thrust and torque in potential flow. Although the
sound-pressure field and the aerodynamic velocity field have
been considered as separate, it is of interest and of significance
that the same concepts leading to the calculation of the sound
field (made use of in the form of the acceleration potential)
can lead to the linearized aerodynamics of the propeller in
compressible flow, including the representation of the
vorticity left behind in the wake as a result of spanwise
variation of loading. The theoretical induced drag and the
theoretical wave drag (which is a form of acoustic loss) are
inherently included in the representation employed.

It may be worthy of repetition that the pressure formulas
as given tend to overestimate the contribution of the higher
harmonics and that appropriate factors based on chordwise
loading can be devised and may be required. Moreover,
because of the theoretical (as well as the empirical) change in

aerodynamic loading along the blade radially with increasing
tip Mach number and forward-speed Mach number, the
appropriate factors will change. In addition, the effective
radius will be altered with the loading and with the harmonic
considered. Thus, although 0.8 blade radius may be suitable
as an effective radius for normal loading, a smaller value for
the effective radius may be more suitable for conditions where
unloading of the tip occurs. The use of several effective
radii corresponding to separation of disk into several rings
may therefore be desirable.

A calculation study of trends under different assumed
conditions, the effect of unsymmetrical loading, or of dual
propellers, effects of obstacles or boundaries on the free-space
results, and experimental confirmations for the in-flight
propeller are interesting matters for further investigation.
It is also to be expected that effects of thickness will need
to be taken into account in particular comparisons.

LANGLEY AERONAUTICAL LABORATORY,
NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS,

LANGLEY FIELD, VA., August 31, 1953.



APPENDIX
THE SOUND-PRESSURE FIELD ASSOCIATED WITH A UNIFORMLY MOVING FORCE

DERIVATION.OF EQUATIONS (4) AND (6)

'Lamb (ref. 3, p. 502) derives from hydrodynamical princi-
ples the differential equation satisfied by the pressure con-
densation s* in the acoustic field associated with arbitrarily
varying fixed forces acting on the medium

_8 ~

cty
(A1)

where Lamb's X, Y, Z are actually the extraneous forces per
uni t volume divided by the density p. (In effect, Lamb is
dealing here with the acceleration potential.) In terms of
the perturbation pressure ?;=pc2.$* the equation is

(A2)
by

where F is the arbitrary force per unit volume having com-
ponents Fx, F,n Fz. Lamb2 shows that, if the periodic force
Ae"*' is imagined concentrated on air infinitely small space
at (xi, 1/1, 2i) and to be in the direction of x, the pressure at
the field point (x, y, z) (the distance s from the location of
the force) is given by

(A3)

where

so that the concentrated force is equivalent to a double
source or acceleration doublet whose axis is in the direction
of the force. For a general harmonically periodic force F
having components Fx, Fv, Fz varying in time as e'"'

„-/*.,
(A4)

where k=-

For an arbitrary time-dependent concentrated force F(t)
located at (£,i7,f), the pressure at field point (x, y, z) can be
expressed as

J_
"47T

r Ff( t_>\ ^ >/«_•) ^ F/«_«N
A __\ c/ i d V c/ d ;V c/

LC)S; s d?/ s ds s
(A5)

2 See footnote 2, p. 2.
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where the differentiations affect the result only through the
variable s.

The extension to a moving concentrated force may, within
the framework of small-perturbation theory, be made in
several ways—for example as mentioned in reference 7. One
formal procedure utilized by Kiissner, for example, items 12
and 13 of Bibliography, makes use of the invariance proper-
ties of the wave equation and utilizes combined Galilean and
Lorentz transformations. The following direct procedure
given briefly in reference 7 is believed to be of intrinsic
interest; as it represents a simplification in PrandtPs proce-
dure (ref. 8) for the case of moving constant source distribu-
tions, a procedure which consists of scheduling a succession
of fixed sources in a path to act consecutively one after the
other so as to represent in effect the desired source moving
along its path. Let the arbitrary concentrated force act
only as an impulse during an infinitesimal interval at time
t=T. The impulse may be written as

F(t)d(t-r) (A6)

where the impulse function 5(r)=0 for r^O and is charac-
terized for f=0'as having unit area with respect"to~ T. The
useful property of the impulse function of "sifting or select-
ing" a value of a function is exhibited by the following rela-
tioJi (see, for example, ref. 9, p. 61):

/: r=f - r)dr

(A7)

Let a succession of such impulses act, one following the
other, in a path, points along which are given in space-fixed
coordinates by ,

f = *M IJ=IJ(T) f=f ( r )

The effect at time t of all such impulses which act before the
time t is then given from Lamb's result (eq. (A5)) as

47T
(A8)

where, as has been defined, there is a nonzero contribution
to the integral only for values of r defined by the character-
istic relation

1
- f (r)]2 (A9)

which expresses the distance between the source point and
the field point in terms of the time of travel of the outgoing
waves.

The integral in equation (AS) corresponds to a summation
of temporary fixed sources. To represent the case of uni-
form rectilinear motion with velocity V in the positive
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z-direction, let the sources b'e located on the £-axis and flow
consecutively one after the other at the positions

£=Vr - i j=0 f=0 ' (AlO)

so that for T=— oo the source is located at £=— °= and for
r = 0 the source is located at the origin. It follows that
the distance between source point and field point is

Replace in.equation (A8) the variable T by 6 where

t-r--=-ff
C

(All)

(A12)

By the sifting property of the S-function (eq. (A7)) the
integral will have a value only for 6=0 and equation (A8)
becomes

,.J = —— div
. 47r . s d6Je=o

(A13)

wher.e the quantity within the bracket is now to be evaluated.
Equations (All) and (A12) give a quadratic equation for
T which, on choice of the solution that leads to r<^t and
with 0=0, gives

Vx S (A14)

where

Equations (All) and (A12) also give

1 dr c
s de cs — V (x—VT)

where replacing s by its characteristic value c(<—T.) from
equation (A9) and replacing T by its value given in equation
(A14) yields, for 0=0,

=
s dd~S

(A 15)

where S is defined in equation (A14). Equation (A13)
becomes

-K-5= — -j— div
47T s (A16)

This result is referred to space-fixed coordinates; it is
finally desired also to express this result in terms of a field
point (x0,y0,z0) of a coordinate system moving uniformly
along with the source located at x\, y\, Zi so that one may put

y=y a—yi z=z0

After this substitution is made, the zero subscripts may be
dropped to yield as the end result corresponding to equation

(A5) for the source and the coordinate system in uniform
rectilinear motion:

(A17)

where

M(x-xt)+S
= ^

Equation (A17) corresponds to the result given in equation
(4) of the analysis. For the periodic harmonic force F
varying as e'"1, it may be expressed in the form

P = — T-(F-V)^4- (A 18)

which is equivalent to equation (6) of the analysis. Equa-
tions (A17) and (A 18) are the sought-for generalizations of
equations (A5) and (A4) of the appendix, for the case where
the disturbance and the field point are in uniform rectilinear
motion. Comparison of these equations shows at once that
s is replaced by S in the amplitude and by a in the phase.
A geometric interpretation of these quantities is' shown in
figure 1 and discussed in the analysis following equation (5).

REMARKS ON THE CASE OF THE MOVING DISTURBANCE AND THE
-^ FIXED OBSERVER

A few remarks are in order on the significance of equation
(A16). In this equation, the field point (x,y,z) is given in
space-fixed coordinates while the disturbance force (or
propeller) is in the in-flight condition moving with velocity
V in the positive ^L-direction. Its location is given by
Xi = Vt, ?/i = 0, 2i = 0 so that at £=0 it is located at the origin.
It may be observed that the distance between disturbance
and field point S is numerically the same whether given by
the relation in equation (A16) or (A17). Hence, the pressure
magnitude at any observer location for a sound-radiating
element of the in-flight propeller is the same as that for the
observer moving along with the propeller, provided the proper
instantaneous distance between observer and propeller is
used. However, there will be a difference in the frequency
perceived by the observer. This frequency will be that for the
case of the uniformly moving observer modified by the
Doppler effect; thus, the frequency of each harmonic is modi-
fied by c/(c-\-Vr), where_ V, is the component of the propeller
forward speed (with proper sign: minus for approaching,
plus for receding from the observer) in the acoustical direc-
tion from the observer to, say, for the far approximation,
the hub of the propeller. The acoustical direction is not
quite that from the observer to the propeller location; it
actually points from the observer to the location of the
propeller when the sound which reaches the observer was
emitted (direction QP rather than QO in fig. 1). The Doppler
frequency factor c/(c+Fr) is given geometrically in figure 1
, ,, ",. QR S
by the ratio ^=—
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