Press Kit

RELEASE NO: 78-171

(NASA-News-Release-78-171) LAUNCH OF NATO COMMUNICATIONS SATELLITE SET (National Aeronautics and Space Administration) 9 p

N78-79463

Contents

GENERAL RELEASE ... 1-3
DELTA LAUNCH VEHICLE 2914 STATISTICS 4-5
NATO III-C SEQUENCE OF EVENTS 6
NASA/NATO/USAF LAUNCH TEAM 7-8
CONTRACTORS ... 8

Mailed: November 2, 1978
LAUNCH OF NATO COMMUNICATIONS SATELLITE SET

The launching of NATO III-C, the third and final communications satellite in a new series to serve the North American Treaty Organization (NATO), is scheduled Wednesday, Nov. 15, at NASA's Kennedy Space Center, Cape Canaveral, Fla. The launch window that day extends from 8:25 to 8:45 p.m. EST.

Under terms of a United States-NATO agreement, the satellite will be launched by a Delta rocket. NATO will reimburse NASA $8.9 million for the launch vehicle and launch services.

-more-
The satellite will provide an in-orbit backup to the NATO III-A and B satellites in the NATO Integrated Communications System (NICS).

The Delta launch vehicle will boost the satellite into an elliptical transfer orbit with altitudes ranging from 185 kilometers (115 miles) to 35,787 km (22,234 mi.). The flight path will take the NATO III-C across the equator at a 27-degree angle of inclination.

About two days after launch, a solid propellant rocket on the satellite will be fired when the NATO III-C reaches the high point of its orbit. This maneuver will circularize the orbit at 35,787 km (22,234 mi.) and remove its inclination by diverting the satellite to travel along the plane of the equator.

The NATO III-C will be allowed to drift eastward until it reaches its planned station above the equator. There, its movement will be stopped by firing a hydrazine-fueled jet system which will drive the satellite up to the geosynchronous orbital altitude of 35,900 km (22,300 mi.).
At the geosynchronous altitude, NATO III-C will orbit the Earth once every 24 hours "synchronized" with the 24-hour rotation period of the planet. This will keep the satellite on station over the same spot above the equator.

On behalf of NATO, the U.S. Air Force Satellite Control Facility (SCF) network will assume control of NATO III-C once it is in its transfer orbit. The U.S. Air Force Space and Missile Systems Organization (SAMSO) serves as the satellite contracting agency for the NATO Integrated Communications System Management Agency.

The Delta project is managed by the Goddard Space Flight Center, Greenbelt, Md., for NASA's Office of Space Transportation Systems. Kennedy Space Center is responsible for launch operations. Prime contractor for Delta is McDonnell Douglas Astronautics Co., Huntington Beach, Calif.

Four previous NATO satellites were launched successfully by Delta. These include the NATO II-A and B spacecraft in March 1970 and February 1971; the NATO III-A in April 1976; and the NATO III-B in January 1977.

Funded entirely by NATO, the NATO III spacecraft were built by Ford Aeronutronic and Communications Corp., Palo Alto, Calif.

(END OF GENERAL RELEASE. BACKGROUND INFORMATION FOLLOWS.)
DELTA LAUNCH VEHICLE 2914 STATISTICS

The NATO III-C spacecraft will be launched by a three-stage Delta 2914 launch vehicle. This launching will mark the 140th for the Delta rocket which has achieved an impressive performance record of more than 90 per cent. The launch vehicle has the following general characteristics:

- Height: 35.4 m (116 ft.) including shroud
- Maximum Diameter: 2.4 m (8 ft.) without attached solids
- Liftoff Weight: 131,895 kg (293,100 lb.)
- Liftoff Thrust: 1,765,315 newtons (396,700 lb.) including strap-on solids

First Stage

An extended long-tank Thor, produced by McDonnell Douglas has RS-27 engines produced by the Rocketdyne Division of Rockwell International. This stage has the following characteristics:

- Height: 21.3 m (70 ft.)
- Diameter: 2.4 m (8 ft.)
- Propellants: RJ-1 kerosene as the fuel and liquid oxygen (LOX) as the oxidizer
- Thrust: 912,000 N (205,000 lb.)

Strap-on solids consist of 9 TMX-354-5 Castor II solid-propellant rockets produced by the Thiokol Chemical Corp. with the following features:

- Height: 7 m (23 ft.)
- Diameter: 0.8 m (31 in.)
- Propellants: Solid
- Thrust: 2,083,000 N (468,000 lb.) for nine
 231,400 N (52,000 lb.) for each

-more-
Second Stage

Produced by McDonnell Douglas Astronautics Co., this uses a TRW TR-201 rocket engine; major contractors for the vehicle inertial guidance system located on the second stage are Hamilton Standard, Teledyne and Delco. The second stage has the following characteristics:

Height: 6.4 m (21 ft.)
Diameter: 1.5 m (5 ft.)
Propellants: Liquid, consisting of Aerozene 50 for the fuel and nitrogen tetroxide (N_2O_4) for the oxidizer
Thrust: About 42,943 N (9,650 lb.)

Third Stage

A TE-364-4 motor produced by Thiokol Chemical Co., with the following characteristics:

Height: 1.4 m (4.5 ft.)
Diameter: 1 m (3 ft.)
Propellants: Solid
Thrust: 61,855 N (13,900 lb.)

-more-
<table>
<thead>
<tr>
<th>Event</th>
<th>Time</th>
<th>Altitude Kilometers/Miles</th>
<th>Velocity Km/Hr</th>
<th>Velocity Mph</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liftoff</td>
<td>0 sec.</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Six solid motor burnout</td>
<td>38 sec.</td>
<td>5.9</td>
<td>1,407</td>
<td>874</td>
</tr>
<tr>
<td>Three solid motor ignition</td>
<td>39 sec.</td>
<td>6.2</td>
<td>1,400</td>
<td>870</td>
</tr>
<tr>
<td>Three solid motor burnout</td>
<td>1 min. 17 sec.</td>
<td>21.4</td>
<td>2,975</td>
<td>1,848</td>
</tr>
<tr>
<td>Nine solid motor jettison</td>
<td>1 min. 27 sec.</td>
<td>25.9</td>
<td>3,269</td>
<td>2,031</td>
</tr>
<tr>
<td>Main engine cutoff (MECO)</td>
<td>3 min. 43 sec.</td>
<td>92.2</td>
<td>17,928</td>
<td>11,140</td>
</tr>
<tr>
<td>First/second stage separation</td>
<td>3 min. 51 sec.</td>
<td>98.4</td>
<td>17,901</td>
<td>11,123</td>
</tr>
<tr>
<td>Second stage ignition</td>
<td>3 min. 56 sec.</td>
<td>101</td>
<td>17,903</td>
<td>11,124</td>
</tr>
<tr>
<td>Fairing jettison</td>
<td>4 min. 37 sec.</td>
<td>124.7</td>
<td>18,592</td>
<td>11,552</td>
</tr>
<tr>
<td>Second stage first cutoff (SECO-1)</td>
<td>8 min. 51 sec.</td>
<td>160</td>
<td>26,802</td>
<td>16,654</td>
</tr>
<tr>
<td>Second stage restart</td>
<td>21 min. 39 sec.</td>
<td>177</td>
<td>26,728</td>
<td>16,607</td>
</tr>
<tr>
<td>Second stage second cutoff (SECO-2)</td>
<td>21 min. 49 sec.</td>
<td>178</td>
<td>27,161</td>
<td>16,877</td>
</tr>
<tr>
<td>Third stage spin up</td>
<td>22 min. 39 sec.</td>
<td>181</td>
<td>27,148</td>
<td>16,868</td>
</tr>
<tr>
<td>Second/third stage separation</td>
<td>22 min. 41 sec.</td>
<td>181</td>
<td>27,147</td>
<td>16,868</td>
</tr>
<tr>
<td>Third stage ignition</td>
<td>23 min. 22 sec.</td>
<td>184</td>
<td>27,133</td>
<td>16,859</td>
</tr>
<tr>
<td>Third stage burnout</td>
<td>24 min. 46 sec.</td>
<td>190</td>
<td>35,377</td>
<td>21,981</td>
</tr>
<tr>
<td>Third stage/spacecraft separation</td>
<td>25 min. 15 sec.</td>
<td>225</td>
<td>35,260</td>
<td>21,900</td>
</tr>
<tr>
<td>Transfer orbit apogee</td>
<td>5 hours 39 min.</td>
<td>35,796</td>
<td>6,462</td>
<td>4,015</td>
</tr>
</tbody>
</table>
NASA/NATO/USAF LAUNCH TEAM

NASA Headquarters

John F. Yardley
Associate Administrator
Office of Space Transportation Systems

Joseph B. Mahon
Director of Expendable Launch Vehicle Systems, OSTS

Peter T. Eaton
Manager, Delta Program, OSTS

Goddard Space Flight Center

Dr. Robert S. Cooper
Director

Robert E. Smylie
Deputy Director

Robert Baumann
Associate Director for Space Transportation

David W. Gimes
Delta Project Manager

William R. Russell
Deputy Delta Project Manager, Technical

Robert Goss
Manager, Delta Mission Analysis and Integration

Philip Frustace
NATO III-C Mission Integration Manager

William Hawkins
Mission Operations and Network Support Manager

Ray Mazur
Mission Support

Kennedy Space Center

Lee R. Scherer
Director

Gerald D. Griffin
Deputy Director

Dr. Walter J. Kapryan
Director of Space Vehicles Operations

-more-
KSC (cont'd.)

George F. Page
Director, Expendable Vehicles

W.C. Thacker
Chief, Delta Operations Division

Bert L. Grenville
Complex 17, Operations Manager

John J. Dunn
Spacecraft Coordinator

NATO/USAF

Col. R. Browning
Program Manager, USAF/SAMSO

CONTRACTORS

Ford Aeronutronic and Communications Corp.
Spacecraft
Palo Alto, Calif.

McDonnell Douglas Astronautics Co.
Delta Launch Vehicle
Huntington Beach, Calif.

-end-