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SUMMARY 

An analysis was made of a horizontal attitude VSTOL (HAVSTQL) supersonic, 

fighter-attack aircraft concept, Tho concept features a close coupled canard in con- 

junction with a clipped delta wing. In addition, the General Electric RAW turbofan 

propulsion concept is used where the fan air from the twin turbofan engines is  ducted 

forward and augmented for VSTOL oprations. This split propulsion system allowed a 
lower supersonic drag to be achieved. The canard and RALS provide a match between 

thcr center of gravity and the resultant thrust vector for vertical flight while keeping 

the main engine, vectorable ADEN nozzles at the wing trailing edge. The latter gen- 

erally provided favorable propulsive lift  interference. The canard am3 trailing edge 

flaps are scheduled as a function of angle of attack and Mach number to minimize the 

drag-due-to-lift. Rerlction control for subaerodynamic flight is obtained in pitch and 

yaw from the RALS and in roll from wing-tip jets powered by bleed air from the RALS 

duct. 

Emphasis during the study wao placed on development of =rod-c charac- 

teristics, aerodynamic-propulsion interaction8 and the identification of aerodynamic 

uncertainties together with the development of a wind-tmmnel nrogram to resolve some 

of the uncertainties. Mass properties and performan& -,,am dno estimated. The 

structural design a d  flight controls concept were only studied in sufficient depth b 

assure the credibility of the design. 

The aerodynamic design of the vehicle includes flight at near neutral longitudinal 

stability at superoonic speeds, and 15 percent unstable at subsonic speeds. Also, 

active controls are used to stabilize the aircraft cn the lateral directional axes. Fix& 
camber of the wing body was developed using the NASA-Ames program, as also was 
the optimum variable camber and canard deflection as a fimction of angle of attack and 
Mach number. 

Aerodynamic da,a developed include static aerodynamic characteristics about 
all axes, c~ntrol  effectiveness, drag, propulsion induced effects and reaction mntrol 
blending. One of the more important concIusions was that a combination of trim with 
canard and trailing edge flaps at subsonic speeds was not as effective as deletlng the 

canard, retaining the stability margin, and trimming with trailing edge flaps alone. 

lif 



Performance estimates show that the goals of 6.2 g sustained load factor at 

M 0.6 and n epecific e?ccese power of 274 m/sec (900 Ips) at bd 0.9 both at 3,048 m 
(10,000 ft) are exceeded. 

Finally, aerodynamic uncertainties have been identified based on the program 
studies. The uncertainties are concerned with supereonic wave drag, canard effects 
on stability about all axes, optimum trim distribution between the canard and trailing 
edge flap, twin afterfairing drag, the value of vectored thrust for maneuver and 
propulsion induced effects in hover and transition. A wind tunnel teat plm is developed 
to help resolve the uncertainties. In addition, a preliminary wind-tunnel model 
analysis has b s n  made to fit with the test ~ l a n .  
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*Note that Flaperons are termed elevators or ailerons in section 5.2 to distinguish 
their respective control functions. 



CONTENTS 

SECTION 

SUMMARY* ................................... 
S m B O L S  .......................... .....*.. .. 

AIRCRAFT DESCRIPTION ......................... 
2.1 Design Philosophy .......................... .......................... 2.2 Design Guidelines ............... 2 . 3  Aircraft Arrangement Description 

.................. AERODYNAMIC CHARACTERTSTICS 

3 .1  Wing Planform Selection ...................... 
3.2 Longitudinal Axis Analysis . . . + . . . . . 

3.2.1  A4inim~mDrs.g . . . . m e . m . . . . . . . . * . . . * . .  
3.2.2 Basic Lift. Drag. and Pitching Moment . . . . b 

3.2.3 Longitudinal Stability Analysis ............. 
3.2.4 Trim Analysis ...................... 
3.2.5 M a x i m u r n U f t d ~ u f f e t O ~ e t  ............. 
3.2.6 Longitudinal Aerodynamics Control Effectiveness 
3.2.7 Wing Body Camher Design ................ 

3.3 Lateral-Directional Analysis .................. 
3.3 .1  Lateral-Directional Stability .............. 
3.3.2 Lateral-Directional Control FJfectiveness ...... 

3.4 Propulsion-Induced Effects .................... 
3.4.1 Cntise/Combat Flight Regime ............. 
3.4.2 Transition Flight Regime ................ 

.......................... 3- 5 Controls Blending 

................... PROPULSION CHARACTERISTICS 

4 . 1 Engine Description ......................... 
4.2 Propulsion Trades (Bypass Ratio Study) ........... 
4.3 Air Induction System Design Approach and @zing ..... 
4.4 Exhaust Nozzle/A£t End Deeign Approach .......... 
4.5 Engine Inatallation Loss Assessment ............. 
4.6 Installed Engine Performance .................. 
4.7  Roll Reaction Control ........................ 

PAGE 

ili 



CONTENTS (Continued) 

SECTION PAGE 

5.1  Structural Design and Analysis .................. 
5 . 1 . 1 Design Criteria ........................ 
5.1.2 Structural Materials .................... ................... 5.1.3 Structural Description 
5.1.4 Structural Analysia ..................... 

5.2  Flight Control System ........................ 
5.2.1 Hover and Tramition Fkgimes . Normal Operation . 
5.2.2 Engine Failures in Hover or Transition ........ 
5.2.3 Conventional Flight Regime ............... 

............................ 5 . 3  Mass Propertlea 
5 .3 .1  Weight Estimates ...................... ............................. 5.3.2 Balance ...................... 5.3.3 Mcrrnentsof Inertia 

5.4 Crew Station ............................... 
5 .5  Subsystems ............................... 
AIRCRAFT PERFORMANCE ........................ 
6 . 1  Flight Performance .......................... 

6.1.1 Baseline Aircraft Combat Performance ........ 
6.1.2 Thrust Loading and Wing Loading Trades/ 

Aiicraftsizhg ........................ ...................... 6.1.3 Sensitivity Studies 

6.2 Takeoff and Landing Performance ................ 
6.2.1 Vertical Takeoff ....................... ...................... 6.2.2 Takeoff Transition 
6.2.3 L d i n g  ............................. 
6.2.4 Short Takeoff and Landing ...*,.am......... 

AERODYNAMIC UNCERTAINTIES ..................... 
7.1  'Wave Drag at High Mach Number ................ 
7.2  Canard Contribution to Stability .................. 
7.3  Optimum-Canard-Flap Deflecti on3 at Subsonic 

Speeds .................................. 
7 .4  Canard Effects oh Directional Characteristics ........ 
7.5 Twin Afterfai ring Drag ........................ 
7.6 Vectored Thruat for Maneuver Enhancement ......... 
7.7 Propulsion-Induced Effects in Hover and Tmnaition ..... 



CONTENTS (13ontlaued) 

SECTION 

8 PROPOSEDRESEARCHPROGRAM m . . . . . . . . . . . . . . . . . .  

8 .1 nesearch Objectfve~ ........................ 
8.2 Wind Tunnel Teat' Plan ....................... 
8.3 Wind Tunnel Model Design ...*................. 

8.3.1 General C6~.sideratiokl ................... ................ 8.3.2 Aerodynamic Force Model 
8.3.3 Jot Effects Model ....................... 

CONCLUSIONS . . . . . . * . . . . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  REFERENCES 

PAGE . 



TABLES 

TABLE PAGE 

Supersonic VSTOL Problem Area and Conceptual Solution ..... 
Minimum Drag Buildup by Component .................. 
Viscous Drag Buildup by Component .................. 

.............. Drag Due to Lift with No Camber. M 1.2 
Geometry Dosign Modes .......................... 
Drag Due to Lift with Design Camber. M 1.2  ........... 
Fighter Escort Sizing Miosion ....................... 
Aircraft Propulsion Loss Assessment ................. 
Group Weight Statement ........................... 
Moments of 21ertia .............................. 
Baseline Avionics Suite .........'.................. 
Typical. Fighter Escort Mission ..................... 
Te~tPlan ..................................... 

................. Comparison Model Size to Tunnel Size 

xii 



ILLUSTRATIONS 

FIGURE PAGE . 
............................ General Arrangement 2-7 

Cross-Sectional Area and Wetted Area Distributions ....... 2-9 

........................... Duct Area Dietribution 2-11 ................................ Inboard Profile 2-13 

Conformal Stores Matrix ......................... 2-15 

Wing Planform Selection .......................... 3-3 
................... Minimum Drag vs . Mach Number 3-18 

.................... Altitude 'Xffects on Minimum Drag 3-19 

.............. Wave Drag Adjustments vs. Uach Number 3-20 

Flight Teot/Analg.licat RSS\~etrnent to Minimum Drag ....... 3-22 

Lift vs . Angle d [:Lt&uk at M s 0.6. bn = 0. bc = 0 ....... 3-23 

Liftva .AngleofA~.?snkatMsO.6.  h n  = 24. e c = O  ..... 3-24 

Trailing-Edge Flap Effectiveness at M 5 0.6, 6n = 0. ..................................... 6, = o  3-25 

Trailing-Edge Flap EffecMveness at M c  0.6. bI1 = 24. 
= 0 .................................... 3-26 

bO . 
* . . . . . . . . .*.. DragDuetoLiftatMcO.6. 6 = 0  h c = O  3-27 n .......... Drag Due to Lift at M 5 0.6. b n  = 24. = 0 3-28 

........... Lfft.DragRatioatMs0.0. l i n = O .  6 0 = 0  3-29 

........... . Lift.DragRatioatMs0.6. 6, 24. 6 .  = O  3-30 
....... . v.. ' Lift Angle of Attack at M 0.4 6. 0. hc 0 3-31 

Lift vs . Angle of Attack at M 0.9, 6, = 24. ....................................... 6. = 3-32 

Trailing Edge Flap Effectiveness st M 0.9. 6n = 0 . 
h c = O  .............*....................... 3-33 

Trailing Edge Flap Effectiveness at M 0.9, 6, = 24. 
6, = 0 ..................................... 3-54 

............ .... a. ....... .. Drag Due Lift M = = 3-35 

Drag Due to Lift a t  M 0.9. 6. = 24. .. = 0 .......... 3-36 

. . . . . . . . . . . .  Lift-Drag Ratio at M 0.9. 6. * 0. $ =  3-37 



ILLUSTRATIONS (Continued) 

FIGURE .. 
3-22 

3-23 

3-24 

3-25 

3-26 

3-27 

3-2 8 

3-29 

3-30 

3-31 

3-32 

3-33 

Lift-Drag Ratio at M 0.9. 6. = 24. 6. = 0 . . . . . . . . . . . .  
Lift vs Angle d Attack at M 1.8. 6 11 = 0. be = 0 ........ 
Traillng Edge Effectivene~s at M 1.2. bn  - 0. &c - 0 ...... 
DrngD113 to Lift at M 1.2. t jn = 0. 6, = 0 ............ 

.................. Lift-DragRatioat M 1.2 ,6 ,=  0. o 9 
C ........ Idft vs Angle of Attack at M 1.6, b n  0. b 0  = 0 

Trailing Edge Flap Effectiveness at &I 1.6, 6 ,  = 0. 8, = 0 . . 
Drag Due to Lift at M 1.6. 6. = 0. 6 . = 0 ............ 
Lift /~rag Ratio M 1.6.  S,, = 0. 6. = 0 .............. 
Drag Due to  Lift .............................. 

................. Spanload Efficiency vs . Static Jhiviargin 

Aerodynamic Center Errcrr vs. 5mo Area I~Lornent 
Coefficient .................................. 
Carrard Effects o~ Lift at Ms 0.6 .................. 

......................... Canard Effects on Lift at M 1.2 
........... Canard Effects on Static Stability at M 5 0.6 

................. Canard Effects on Static Stability at M 1.2 

Aerodynamic Center Location ..................... 
Leading Edge Flap Schedule. CG = 0.26 5 ............ 
Canard Deflection Schedule. CG = 0.26 c ............. 
Optimum Trailing Edge Flap Deflection for Trim ........ 
Optimum Subsonic Trim Polars .................... 
Optimum Supersonic Polars ...................... 
Trim Wt-Drag Ratio .......................... 

.......................... Maximum Usable Lift 

.................... J4f.i; Coepicient fo r Buffet Onset 

........ Canard Effectiveness at M 0.9,6 24. 6 0 

......... Canard Effectiveness at M 1.2, 6 = 0. B f  = 0 

Canard Control Effectiveness ..................... 
Trailing Edge Flap Control Effectiveness ............. 
Geometry Model for Aeradywic  Analysis ............ 

PAGE 

3-38 

3-39 

3-40 

3-41 

3-42 

3-43 

3-44 

3-45 

3-46 

3-47 

3-48 



ILLUSTRATIONS (Continued) 

FIGURE 

3-52 

3-63 

3-54 

3-65 

3-SG 

3-67 

3-58 

3-55 

3-60 

3-61 

3-62 

3-63 

3-64 

3-66 

3-06 

3-G'i 

3-68 

3-69 

3-70 

3-71 

5-72 

3-73 

8-74 

3-75 

3-76 

3-77 

3-78 

Side Forae at M 0 . G .............................. 
Side Force a t  M 0.9 .............................. 
Side Force a t  M 1.2 : ............................. 

.............................. . Side Forclo at M 1 6 

Yawing Moment at M 0.6 ........................... 
Ynwfng M~rnent at M 0.9 ........................... 
Vawing Moment a t  M 1.2 ........................... 
Yawihg Moment at M 1 . G ........................... 
Rolling Moment nt M 0.6 ........................... 
Rolling Moment at M 0.9 ........................... 

........................... Rolling Moment at M 1.2 

Rolling Moment at  M 1.6 ........................... 
Vertical Tail Control Effectiveness nt M 0. G .............. 
Vertical Tail Control EffecHveneaa at M 0.9 .............. 
Vertical Tail Control Effectiveness at  M 1.2 .............. 

.............. Vertical Tail Control Effectiveness nt M 1.6 

Elevon Roll Control Effectiveness at M 0 . G ............... 
Elevon Roll Control Effectiveneso at  M 0.9 ............... 

............... Elevan Roll Control Effectiveness at  M 1.2 

Elevoh Roll Control Effectiveness at M ? . 6 ............... 
Effect of Deflected Thrust on Lift ...................... 
Induced Lift Due to Thrust Vectoring ................... 
Induced Pitching Moment Due to Thrust Vectoring .......... 
Propulsion-Tnduced Lift iu Transition ................... 
Propuleion-Induced Pitching Moment in Transition .......... 
Propulsion-Induced Rolling Moment in Transition ........... 
RALS Wake Contribution to Propulsion . Induced .Lift 
in Transition ................................... 
RALS Wake Contribution to Propulsion . Induced 
Pitching Moment ...............a.e................ 
RALS Wake Contribution to Propuleion . Induced 
Rolling Moment ........................*........ 
Roll Moment Blending ............................. 

PAGE . 
3-71 

3-72 

3-73 

3-74 

3-75 

3-76 

3-77 

3-78 

3-79 

3-80 

3-81 

3-82 

3-88 

3-84 

3-86 

3-86 

3-87 

3-88 

3-89 

3-90 

3-96 

3-97 

3-98 

3-99 

3-104 

3-109 



FIGURE 

4- 1. 
4-2 
4-3 

4-4 

6-1 

6-2 

5-3 

6-4 

li-6 

8-6 

6-7 

6-8 

0-1 

Remote Augmented Lift System (RALS) ...........,,..... 
..................... Air hduotion Syatem Configuratioil 

........... Airframe . Flight Cpntrol Syatom Configuration 
Attitude Augmantntion.. ............................ 
Speed Augn~entntton ............................... 
Clwssfead Matrix Datatls ..........................a 
Rolling Moments Aftt3r Engine Loss .................... 
Fixed Seat . Gotlorn1 Armngoment ..................... 
Effect of Load Factor and Maah Numbor i Specifiu Exttersa ......................... Powar at 3048 M (10. 000 ft) 
Effect of Lond Factor and Maah Nunlbsr on Spoctfio Excess ..... Power nt 6096 M (20. 000 fk) .................. 
Effect of Load Faotor nud Mach Numbar oh Spe~ific ................... ExoassPawernt9144M(30. 000Et) 

................... Spodfic Excwsa Powar Contour at 1g 

. Sustainad Mnnouvar Cnpabitity ............ , .... , ...... 
Aircxnit Sizing Matrix ............................. 
Variation of Spacffic Excess Powor with T/W and W/S 
Eor Aircraft Sizing Mtktrlx .......................... 
Vnrtntion of Sustained Lond Fnotor with T/W and WI'S .......................... for Aircraft Sizing Matrix 
Parformanulo Ciorrla Rolntioaship to Aircraft Sizing Matrix . . . 

...... SpeciEto Exaoss Pawor Levels an Alrcl*nEt Sizing Matrix 

...... Sustnind Lond Factor Levels OH Aircrdt Sizing Matrix 
Effeat of Thrust. SpocUic Fuel Consurnptlofi. Drag and .................................. Emptyweight. 

Effeot of Thrust. Specific Fuol Consumption. Drng and 
Emptyweight . .e.... . . . . .e....4..8..*... . . .*.. . .  



......................... Thmst V~otOrs for htnl lon 
Tlliust Veators to Hold 20' Pltuh oil Duok ................ 
Takaoff Transition Trnjeotory ........................ 
Prilnwy Nozzle ThrustVeator Cam~t~tmd. ................ 
Short Takeoff Port'or111rurao .......................... .................... Singlo E~gilra Landing Porformnnoa .......................... WilldTu!mclMod~lWlng.. 
Modul So& Ruquironlents for P~vpulaion Sin~ulntor Sizo ..... 

....................... Engine Silrlulntor Porforntu~oci 
Plpa Mach No . -- Siil~uluhr Drivu luld B l o d  Unas .......... 
Ailros 9 s 7 Wind rTurm~l Envolop~ ..................... 
Wta~d 'lLuu1al Modal Support Cbnuaptu ..............,.... 
Wind 'l'umol Dyaatnirj Prossura mnd Xtoyr~olds Numbor 
Chwaatoristics .................................. 
Bdak~oa Etlvolopo ................................. 
Marlel Sketoh. ................................... 



SECTION 1 

INTRODUCTION 

The study of aerodynamic tech logy  of VSTOL fi&ter/attack class aircraft is 

being pursued by the NASA Ames Research Center and the David Taylar Naval Ship 

Research and Development Center. This document reports the work covered under 

t;be joint sponsorship of these organizations in Phase P of Contract NAS 2-9771, ttSWy 

of Aerodynamic Technology for VSTOL Fighter/Attack Aircraft." This phase covered 

the period from 1 November 1977 to 31 May 1978. Phase I objectives were: 

1. To identify and analyze two high performance VSTOL concepts having 

potential utility to M i l l  the Navy fighter/attack role. 

2. To estimate the aerodynamic, propulsion, and performance characteristics 

of these ancepts axwl to assess technical uncertainties reqtaring additional 

research. 

3. To outline a wind tunnel program in which these aerodynamic uncertainties 
would be investigated and which would provide a data base for future use. 

The VSTOL fighter/attack ooncepts studied both employ the Uft/crjise propulsive 

Uft concept; one is a vertical attitude configuration termed VATOL, and the other is a 
horizontal, attitude configuration and is termed HAVSTOL. This report deals with the 

HAVSTOL concept. Results of the study of the VATOL concept are presented in 

NASA CR 152131. 

Satisfying the combined requirements of supersonic fli& and vertical takeoff 

provides a significant design challenge. The severity of this challenge is increased by 
the need to deal with the fighterrelated issues of agility and combat persistence while 

minimizing the problems associated with the preaence of engine exhaust flow in pmx- 
imity to the aircraft atad grouad surface. 

A listing of the major problem areas and the conceptual solutions offwed by 

horizontal and vertical amtude configurations is presented in Trrble 1-1. This tatale 
shows that, compared with the VATOL, the HAVSTOL is a more complex approach to 



TABLE 1-1. SUPERSONIC VSTOL PROBLEM AFWA AND CONCEPTUAL SOLUTION 

achieving super~onic performance and a minimum level of propllsion-induced 
interferences, but that its short takeoff performance and shipboard interface are 
superior. 

- 
SUPERSONIC VSTOL 
PROBLEM AREA 

ACHIEVEMENT OF 
SMOOTH, LOW CROSS- 
SECTIONAL AREA 

SUCKOOWN 

FOUNTAIN 

EXHAUST 
INGESTION 

SHIP INTERFACE 

During this study, emphasis was placed on the aerodynamic and propulsion areas. 
Supportf ng work in  stntctures, flight control, avionic, and component area8 was com- 
pleted only to the extent needed to assure that the concept was credible. Correspond- 
ingly, the cruise-combat regime was emphasized and the hover-transition regimes 

studied to the extent neceasaqy to assure configuration credibility. 

COMPARISON 

HORIZONTAL ATTITUDE VSTOL: 
LIC CONCEPT; TWIN, VARIABLE 

CYCLE,TURBOFANS 

PROPULStVE LIFT SEPARATION, 
WIDE-SPACED AFTERFAIRINGS 

MINIMIZE BY CONFIGURATION 
SHAPING, HIGH ATTITUDE 
LIFTOFF AND TOUCHDOWN 

AVOID BY JET LOCATION AND 
DIRECTION, HIGH ATTITUDE 
LIFTOFF AND TOUCHDOWN 

AVOID FOUNTAINS, INLET 
LOCAY ION, HIGH ATTITUDE 
LIFTOFF AND TOUCHDOWN 

NORMAL VTOL OPERATIONS, 
EXCEPTIONAL ST0 PERFORMANCE 
VERY LOW CONVENTIONAL 
APPROACHlLANDING SPEEDS 

OF SOLUTIONS 

VERTICAL ATTITUDE BSTOL: 
t /C  CONCEPT, TWIN VARIABLE 
TURBINE, DRY TURBOJETS 

THRUST ALWAYS THROUGH C.G. 
C.G. CONVENTIONAL REAR 
ENGINE CONFIGURATION 
SHAPING 

INHERENTLY MINIMUM BASE 
AR €A 

CLOSELY SPACED NOZZLES; 
NO FOUNTAIN 

LAUNCH AND RECOVERY OUT- 
SIDE DECK EDGE TO AVOID WALL 
JET INFORMATION 

VERTICAL OPERATIONS 
RESTRICTED TO SPECIALIZED 
GANTRY, PILOT ATTITUDE 
MAINTAINED BY ROTATING 
COCKPIT ENCLOSURE, $TO BY 
LIfUltTED SINK OFF BOWf (OR SKI- 
JUMP), CONVEi4TIONAL ATTITUDE 
APPROACH/LANDING SPEED 
REQUIRES ARRESTING HOOK 



Because of the emphasis placed on the aerodynamics and propulsion technological 
areas, the identification of aemdynnrnia uncertainties and a teat program to resolve 
them, the baseline aircraft concept was not sized for any particular mission. Rather, 
a typical possible VTO grosa weight of 13608 kg (30,000 Ib'j was selected together with 
a ST0 overload grow weight of 18144 kg (40,000 lb). However, performance oharac- 
teristios for a typical fighter escort mission wero developed for both the basdine air- 
craft and an aircraft sized to a 925 km (500 nm) radius. The sized aircraft had a VTO 

gross weight of 14400 kg (31,800 lb). All of the data developed herein except for a 

minor amount of performance data are for the baseline aircraft concept, 

A number of individuals have made major contributions to this study and are 
identified below. The work was performed under the general direction of 
Dr. P.T. Woolera 

H a  A. Gerhardt 
W,S. Chell 

J, C, Cnrlson 
H. Ziegler 
Re  Hoenig 
T.J. Weir 

R, English 
W. Darby 
R. Kostanty 

Aerodynanlics 

Aerodynamics 
Aerodynamics 

Propulsion - Induced effects 

Propulsion 
Configuration Integration 
Flf ght Performance 
Takeoff Performance 

Flight Controls 



AIRCRAFT DESCRIPTION 

This section present6 some of the design philosophy and guldelinee used to 

develop the aircraft concept and then the concept i s  de~cribed. The description 

includes general arrangement and inboard profile drawings and cross-section and 

wetted area distributions. 

2.2 DESIGN PHILOSOPHY 

The design philosophy of the horizontal awtude VSTOL (HAVSTOL) is to apply the 

techniques of supersonic aircraft design to a V$TOL aircraft concept. Subsonic VSTOL 
configurations have tended to exhibit large volume concentrations at the center of 

gravfty clue to common wing, engine and nozzle  location^. Past design sotutions for 

supersonic VSTOL aircraft generally have provided division of the propulsive lift ~ y s -  

tern by a combination of lift engines, used only during terminal flight, and vectorable 

cruise engines. The lift; plus lift/cruise approach generally permits configuration a r  
rangernents with satilsfactory cross-sectional area dietribution~ and realistic tolerances 

to center of gravity movement but requires maximum afterburning on the cruise enghea 
for dequate combat performance in addition to development and maintenance of multiple 
engine types. 

The configuration under study has a lift/cruiae propulsion syatsm which divides 

the engine airflow into separate exhausts forward and aft of the center of gravity. The 

General Electric "Remote Augmentd Lift Syetem (RALS) " variable cycle turbofan 
engine concept provides most of the advantages of lift engines without separate rottcting 
hardware and separate inlets. The twin-engine design, feeding a single remote aug- 

mentor, haa additional safety over lift plus lift/cruise configumtions for engine-lout 

during VTO flight. This safety results from the ability to maintain aircraft attitude 

with the remaining engine thrust, thus giving the pilot time and proper attitude to exe- 

cute a safe ejection. 

The configuration also ref iects conaideration of propulsive-lift interference, 

supersonic wave drag, high-angle-of-attack aerodynamics, atad IR signature. The 



twin engihe design ueea closely-spaced primary nozzles and a common forward noz- 
zle so that i n  the propulsive lift mcda each acts as a sttlgle jet and eliminates fountain 
tendencies at the exhaust locations. The location of the primary engine nozzlee is 
favorable with respect to nozzle/wing integration. Propulsive-aerodynamic inter- 
actions associated with the forwad nozzle will be reduoed primarily by operating 
conuept rather than configuration shaping. A lift off concept is utilized that has initial 
rotation to a high attitude prior to application of full liftoff thrust. Forwaxdl nozzle 
suckdown and the mid-body fountain are reduced or eliminatd, both by raising the 

forward jet away from the ground and by fore and aft jet orlentation. The conoept is 
directly application to ST0 operations by allowing full use of wing/canad lift at high 
angle of attack in  addition to propulsive lift. 

Separated, twin afterfairings are used to reduce nozzle/aEt end interference 

potential i n  both the vertical and horizontal fIight mcwles. The geometiy is shaped to 
avoid high speed exhaust scrubbing and to create ejector slots between the afterfairings 
and nozzles in  the vertical mode for positive Lift interference and lower average 

exhaust temperature. The twin afterfairings increase effective fineness ratio and 
create a favorable compreaaio~l interaotion on the lower surface of the wing. 

The configuration features close-coupled canard surfaces to enhance high-angle- 

of-attack characteristics. The multiple lifting surface arrangement permits emoother 
blending of components and reduced frontal area for minimum wave drag. 

The horizontal attitude concept provides the operating flexibility and ST0 per- 

formance desired but incurs associated oomplexlty in aircraft configuration integration. 
This arrangement has an inherent operational commonality with anticipated "Type At' 

VSTOL aircmft configurations. 

2.2 DESIGN GUIDELINES 

The initial design guidelines For the VSTOL aircraft configurakfon were: a verti- 
cal takeoff (VTB) weight of 13,608 kg (30,000 lb) and a ST0 weight of 18,144 kg 

(40,000 lb) . The performance requirements of a 6.2g sustained turn capability at 
M 0.6 at 3048 m (10,000 ft) and n spedfic excess power capbillty Ps of 274.3 m/sec 
(900 ft/sec) at M 0.9 at 3048 m (10,000 ft) . Installed engine thruot was nct less 
than the VTO weight times 1.20 to ensure sufficient tropical-day thrust for vertical 
takeoff. The wing sweep shoutd be enough to allow the leading edge to remain 
aubaontc for maneuver at M 1.2. 



2.3 AIRCRAFT ARRANGEMENT D ESCRIPTXON 

The HAVSTOL cotkcapt is shown in the general arrangement drawing of Figure 2-1. 
This high performance fighter/attack aircraft is deeignd for a VTO weight of 

13,608 kg (30,000 lb) with a wing loading of 293 kg/m2 (60 paf), an installed thrust-to- 

weight ratio of 1,2 on a tropical day and a fuel fraction of 0.34. 

Distinguishing featares of the concept are: 

1) Close-coupled canard aurfaces mounted on 2-D aide inlets, 

2) trRemote Augmented Lift System1I (RALS) variable cycle turbofan engine. 

3) Twin-engine design feeding a singla remote augmentor, 

4) Vectorable Aden nozzles. 

5) Twin afterfairings that create ejeutor slots In the VTO mode. 

6 Clipped delta wing with maneuvering flaps. 

7) Provision for high-attitude liftoff. 

Integration of the aircraft  was achieved by paying close attention to the overall 

area distribution and the maximum cross section a rea  as shown in Figure 2-2. It is 

desired that the aircraft total area distribution closely match an ideal area distribution 

and that the maximum cross-section area be a minimum to minimize the supersonic 

wave drag. The maximum area uauatly tends to peak at  the aircraft center of gravity; 

incorporation of the RALS propulsion system allows the engines to be located aft of the 

maximum area and the remote augmentor forward of the maximum area, This arrange- 

ment permits the fuaetage fuel and disposable stores to be Located at the a i r c r d t  center 
of gravity without the usual asaociated buildup of the maximum area although the duct 

forward to the remote augmentor does add to the cross-sectional area. 

Careful location of different aircmft components is required to match the target 

area dietribution. As shown in  the general arrangement, the engine inlet is located 

behind the cockpit with the canard just aft of the inlets and the wing directly behind the 
canard resulting In a gradual area  buildup on the forward side of the area distribution 

while placing the wing and canard areas on either side of the mardmum area. The 

aft side of the area distribution i s  smoothed by the addition of twin afterfairings 

located on the wing and extending aft of the engine nozzles. These fairings reduce the 

 lopes on the area distribution plot and provide ideal locations for twin vertical 



tails and main landing gear. Also shown in Figure 2-2 are wetted area distribution, 

body fuel distribution, and in Figure 2-3 the engine duct area distribution. 
The leading and trailing edge flap system and the canard are scheduled together as a 
function of Mach number and angle of attack for minimum drag at lift. In  addition the 

trailing edge flaperon provides pitch and roll control. The canard may also be used to 

assist in  tr im at very high attitudes and, potentially, for maneuvexltrg with thrust 

vectoring. 

Reaction control jets are located in  each wing tip to provide mll control in the 

vertical takeoff and landing flight regime. Yaw, and pitch control are achieved through 

scheduling of the remote augmentor thmat and nozzle deflection. Longitudinal transla- 

tion is provided by c~lleotive deflection of the primary nozzles. 

In balancing the aircraft, three critical modea must be considered: static weight 

balance, thrust balance and fuel balance. Static weight baIancing is facilitated by 

locating the engfnes as far  aft in  the fuselage as the thrust b'ilance will permit. The 
aftorbodies allow the landing gear and some equipment bays to be placed at a rela- 
tively aft location. These items, plus the weight of the wing, balance the farwand 
weigbts of the cockpit, radar, avionics, and canards. To locate the resultant thruet 
vector at the center-of-gravity location, the remote augmentor can be Located to 

balance the engine thrust moment i n  the vertical takeoff and Landing regime. Fuel. is 

then balanced about the c. g. by locating the fuselage fuel sllightly forwaxld of the c. g. , 
to balance the wing and afterfairing fuel located aft of the c. g. 

Subsystems integration is achieved by the consideration of functional location, 

maintainability and survivability. The functional location of aystems is of primary 

importance in  the reduction of weight and volume. As shown on the inboard profile, 

Figure 2-4, the location of the radar, ~vionics and cockpit close together ia func- 

tional in that all require air-conditioning, and close proximity to each other and the 

ECS minimizes the ducting and temperature losses. 

~ighter/attack aircraft have bng been designed to meet s high level of perfom- 
ance, while configured with little or no weapons. When, in the real operational 

world, these aircraft are loaded with external bombs and tanks, their pe.rformance is 
degraded such that ibey became vulnerable to attack from lower-performance aircraft. 
It has been recognized that better aircraft/weapon integration is necessary to improve 
aircraft performance and weapon delivery. 



A total of six weapon configurations have been shown on the Conformal Stores 

Matrix, Figure 2-5. The first five are representntfve of advanced air-to-ground 
weapons concepts. The sixth represents state-of-the-art guided weapon, with large 
span fixed main lifting, aurfaoes in combination with a cruciform configuration. This 

type of weapon is carried on the fuselage corners sither semi-submerged or tangent- 
mounted. Airto-air missiles are carried internally in the fuselage and launched 
externally from tubes. Minimum aircraft performance degradation and low detection 
signature are primary faotors that influenced the weapon configuration rind carriage. 
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SECTION 3 

AERODYNAMIC CHARACTERISTICS 

The emphasla on a e r o w a m i c  and propulsion integration in currant high-thmst- 

to-weight ratio aircraft is increased tor a VSTOL design by the additional complications 

of propulsive lift generation and transition interactions. Supersonic VSTOL conoepts 

must aIao reflect a consideration of the overall volume distribution, a s  well as the 

detailed inlet and exhaust interfaces. Achieving a good volume distribution i s  made 

difficult due to the necessity for having the propulsive lfft veotor caincldsnt with the 

gravity vector. On the other hand, concurrent integration of an active control system 
facilitabs.optimization of the vehicle shape. It i s  projected that control systems which 

will be available in the 1990+ time period will permit usage of a 15% negative static 

margin a t  subsonic speeds. The aircraft then will be balanced such that the canard 

and trailing-edge flap deflections for trim, at a given lift, approach those for mini- 

mum drag due to lift. Thus, the aircraft is trimmed for high L/D over a wide range 

of lift coefficients. At supersonic speeds, the aft shift in aerodynamic center reeulte 

in  near-neutral static margin so that the trim drag is small. 

The wing planform reflects a consideration of the trimming properties of alr- 

craft with negative stability discussed above, and the achievement of low subekic  

wave drag. The wing camber and twist a r e  determined for an improved drag polar 

at low supersonic speeds, but without having to pay appreciable camber-drag penalties 

at low lfft coefficient. The leading- and tzaUing-edge flaps provide good subsonic 

polars, and the canard may be used for high angle-of-attack flow control in order to 
trim thrust-vectoring pitching moments and to provide control at high angle of attack. 

3.1 WING PLANFORM SELECTION 

The wing design was developed during an ongoing fighter tecMoIogy IR&D 

program. The wing selection study examined a range of wing planforms to investigate 

the impact on a i r c r a  turn performance, acceleration, capability, maximum speed and 
overall weight. The wings were configured with trailing edge flaps acting as pitch 



t r im controls (applicable to both tailless o r  zero trimload tailed designs) and automatic 

leading-edge flaps. 

The use of negative static margin at subsonic speede permits the aircraft to be 

balanoed such that the trailing edge flap defteation for trim, a t  a given lift, matches 
the aetting for minimum drag due to lift; so that, the aircraft is trimmed for best L/D 
over a wide range of lift coefficients. At su; lersonic speeds, the shift in aerodynamio 
center results in near-neutral static margin, again allowing the least drag due to lift 

and trim. The synergism in this approach was found applicable over the full range of 

ultngs evaluated. 

Three baseline configurations using a common, fixed engine were developed, 

including detailed area ruling and weight evaluation. Perturbations in aspect ratio, 
sweep, thickness, and wing camber were made to refine and optimize eaoh baseline. 

Throughout, a fuel sizing mission, incorporating specific cruise, suhaontc turn, 

supersonic turn and acceleration segmenta was used to establish the minimum weight/ 

maximum performanoe geometry. Figure 3-1 summatlzes some of the results of the 
lstudy in the form of parameter ratios relative to the wing of this investigation. For 

the comparison shown, wing loadings were chosen to provide equal sustained turn rate 
at  M 0.9 and 30,000 feet altitude. This resulted in the wings having approximately 

the same span. The advantages evidenced by the baseline wing reflect a cross- 

sectional area distribution closer to ideal and a higher structural efficf ency . 
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3.2 LONGITUDINAL AXIS ANALYSIS 

The aercdynamlc analyses presented in Section 9 are for the clean configuration 
and do not inolude the effects of conformal, external etoree. 

3.2.1 Minimum Drape 

The minimum drag includes all drag cornpononts that are independent of lift and 
engine throttle position. The reference conditions for thrust-drag bookkeeping pur- 

poses are as follows: l) maximum open nozzle position with nozzle static pressure 
ratio (pS/pam) equal to unity; 2) inlets operating at the supercritical mass flow point 
at each Mach number (spillage drag for this condition is included in the aircraft drag); 
3) altitude of 9144 m (30,000 ft). Inlet bleed, venti'ation, ram cooling drag increments 
and other components are included in the inatdled thrust data as shown in Table 4-2. 

The minimum drag estimate is presented in Figure 3-2 as a function of Mach 
number at the reference altitude. Variation in minimum drag level with altitude is 
ehown in Figure 3-3. The detailed drag buildup for the design is  hcluded as Table 3-1. 

This table presents the Individual drag compoxients for several Mach numbers at the 
reference altitude condition. The viscous drag component is further broken into Its' 
components in Table 3-2 for the reference altitude and M 0.5. 

Skin friotion coeffioi.ents were obtained using charts contained in Refmence 1. 

An equivalent roughness sf  0.00127 cm (0.0005 in) was utilized to  determine out-off 
Reynold's number effects, Form factors were obtained from Reference 2 and an inter- 
ference factor of 1.05 wa applied to all planar surface components. 

Wave drag was calculated using the Langley Wave Drag Probarn w t h e d  in 
Reference 3, Two adjustments were made to  the drag levels obtained from the pro- 
gram. The first adjustment, shown in Figure 3-4, adjuots the w a d  drag as n function 
of Mach number for the input option sdected in this stuw, To facilitate input and 
area ruling atudies, the equivalent draular area input option was seleoted. Analysis 
of the YF-17, using both the equivalent circular area and the actual cross-section 
geometry Inputs, agreed with previous NASA tests showing a increasingly optimistic 

drag level with Mach number when using the circular input option. The adjustment in 

Figure 3-4 ts based on differences obtdned in the YF-17 study. The second adjust- 
ment is  a correction factor developed at Northrop, based on wind tunnel data and 

applied to the wave drag of all wing and empennage surfaces. The adjustment is due 



to the fact that eubatituting three-dimensional bodies for whg surfaces generally 
results in undersstimating the wing wave drag, o~peoially for w i n o  of low sweep 
having supereonic leading edges. The adjustment is a function of Mach number, aweep 
angle, and thickmess ratio, and is shown in Figure 3-5. This adjuatment is on the 
order of 83% of the total wave drag estimate. 

Subaonio canopy pressure drag was determined wing data available in Rderenoe 
4 as a function d oanopy frantal area. The supersmio drag inorement is aercounted 
for in the wave drag area. The reference spillage drag is inoluded in the minimurn 
drag. Subsonic afterbody-nozzle drag is based on aoaled YF-17 afterbody vind tunnel 
test data. The supersonic afterbody-nozzle drag is Included ia the wavo drag. The 

drag Increment for boundray layer divertera was estimated using the d&a from 
Reference 6 aa a function of frontal area and inoluded wedge angle. The transmio drag 
levels between M 0.8 and M 1.2 were bvsed on the drag rise characteristius of existing 
aircraft. The remaining miscellaneous drag items include wing actuator fairings, 
wing tip pods protruberance, gaps, v a t s ,  doors, atc., and are based on YF-17 ana- 
lyses and data from Hefexmces 4 andl 6. 

A final correction was applied to the minimum drag 'buildup. It Is  baaed on the 
difference obtained when comparing the YF-17 flight test drag to an analytical drag 
buildup. The rjubsonic and supersonic adjustments are shown in Figure 3-6. These 
data have bean scaled from the YF-17 by wetted area and then ratioed to the proper 
reference area. 

3.2.2 Basic Lift, Drag, and Pitching Moment 

Basic subeonic aerodynamic dat$ far the concept have beea generated for two 
leading edge flag defleotions and a range of trailing-edge flap deflections. The results 
for M 5 0.6 are presented in Figures 9-7 through 3-14; those for M 0.9 are presented 
in Figures 3-15 through 3-22. The componenta of lift and pitching moment ware 
obtained using the program developed by Carmiohael and Woodward, wbioh aaooyats 

for the incremental effects of leading-edge and trailing-edge flap8 on the wing, as well 
as twist and camber effects on C C and the aerodynamia center location. The Lo' moi 
program i s  baaed on a methad which asNrnee zero leading-edge suotion. Thia assump- 
tion does not have any significant effect on the lift and pitching moment results. 
However, at subaonh Mach numbed it leads to an over-prediction of drag. The 
amount of leading edge suction which will actually be present depends primarily upon 



the wing leadlng-edge geometry and sweep. Since there is aurrently no accepted 
method for deterrnlntng the suction level, a sami-empirical method was used to deter- 

mine the polara. Firot, the effect of ornards on drag-due-to-lift was obtained and 
then these effects were incremented on the wing-body polars derived from wind tunnel 

test data for a similar configuration with the same wing planform (see References 7 

through 10). The inoremental effects were obtained by running the configuration with 
and without aanards on the Woodward program. As desuribed in Section 3.2.3, 
Stability Analysis, it was found that the presenae of canards results in a constaat 

decrement in the spmload efficiency factor over a wide range of lift coefficients. The 
polara determined in this way are by necessity based not only on wing-body test data, 
but also on the oanard increment from the Woodward program. The results, as 

shown in Figures 3-11, 3-12, 3-19 and 3-20, a r e  believed to give a more accurate 

estimate of the aerodynamic characteristics than those obtainable from the computer 

program alone. 

Supersonic data were estimated entirely from Wood~vard program calculations. 

For supersonic Maah numbers, the assumption of zero leading edge suction is less 

critical. One reason is that suction is n lower precentage of total drag. Another 

teason is that at low supersonic Mach numbers the reliance on leading edge suction 
to achieve a good polar is reduced due to designing the wing camber and twist at MI. 2 

and CL = 0.2 (see Section 3.2.7). At the higher Mach numbers where the leading 

edge is approaching a supersonic condition, suction has only a minor effect on drag. 

Results for M1.2 and MI. 6 a r e  presented in Figures 3-23 through 3-30. Adjustments 

were made only to the tr im line for n c. g. location of 0.26 ij t o  conform with the 

aerodynamic center position determined in Saclion 3.2.3. 

The effect of static margin on the subsonic a e r o m a m i c ~  was determine with 

the m e  of the Carmkhael-Woodward program (Reference 11). Incremental effeots 
for canard, leading-edge and trailing-edge flaps, wing camber and angle of attack 
were computed and control deflections determined for minimum drag-due-to-lift as 
a function of li£t coefficient and moment center. 

Tbe drag polars a t  M 0.6 for various camber distributions are shown in Figure 

3-31. Comparisorr. of the polars for the flat wing and the design-camber wing (see 

Seotion 3,2.7 for detaib), ivIkh no canard o r  flap deflections, shows that there is a 



slight reduction in drag at a given lift due to wing camber. The polar which is 
obtained by deflecting the canard, leading- and trailing-edge flaps to  achieve least 
drag at a given lift without a pitching moment conr~traint (untrimmed) shows a large 
reduction in drag over the flat and design-camber wings. Also ahown in Figure 3-31 

are the surface dsfloctions. As expected, large deflections of the flaps occur at the 

higher lift coefficients. However, the deflection of the canard is negative, trailing 

edge up, which shows a tendency for the canard to unload. This is caused by the 

fact that the wing with leading- nnd trailing-edge flaps is a more efficient lift- 

producer than the canad. If a t d m  pitching moment constraint is imposed, 

the polar is degraded. This is because the canard still shows a tendency to 

lnload so that the effective stability of the configuration is increased, and the trailing- 

edge flap deflectionis reduced considerably from its optimum, untrimnicd value. 

The effect of static stability on polar shape bas been further studied a.?d com- 

parisons made with the VATOL configuration (Referenco 9) which is a tailless COT..- 

figuration. The Oswald efficiency parameter is shown plotted'againat static 

margin in Figure 3-32. For  each of the configurations, as the static stability is re- 

duced, tteV increases and then levels off with the knee of the curve being at about 

-0.15 i5 for the VATOL configuration, and a somewhat larger negative number for 

the HAVSTOL configuration. The asymptotic levels for both configurations a re  very 
nearly the same. However, the configuration without a canard has a better "elt for 

the strtic margins of interest. 

Also shown on Figure 3-32 are test data for the VATOL configuration and for a 

mifiguration featuring a canard. The test data have a somewhat higher value of "elt 

due to thet-wetical method assumption of zero leading edge suction. 
* 

Qn an unstable airplane, the degrae of negative longitudinal stability must be 

carefully chosen to achieve the associated performance benefits without creating con- 

ditions in which the capabilities of the control system are exceeded. A s  the center-of- 

gravity position also has to  bo fixed rather precisely because of thrust balancing 

conditions, the aerodynamic center position has to be carefully determined. Therefore, 

a considerable effort was undertaken to determine the a. c. position. The effort was 

concentrated on determining the aerodynamic center at M 1.2 which will be the nominal 

c. g. positio~k, as neutral stability at thak flight condition is the design goal, 

The basic tool for the a.c. calculakians was the NASA Ames (Woodward-. 

Carmichael) wing-bo* computer program used in conjunction with NASA and Northrop 



test data of similar configurations for a more accurate modeling of forebody effects. 

Previous experience with the wing-body program ohowed that the body contribution to 

stability is  underestimated when compared to test results. The error in. oomputed 

a. c. is less when the body is represented as  a lifting surface rather than a bow of. 
revolution. For either representation it is neoessary to estabilish a certain forebog 
geometry characteristic as  a correlation parameter which most closely matches the 
tedt data incremental a. c. due to forebody. 

For the case of bodiels of revolution, the characteristic parameter  appear^ to be 

the proc!cct of the maximum cross-secticaal area forward of the wing panel and the 

distance from the thooretical center of pressure (on an isolated forebody from NACA 

TR 1307) to  the intersection of the body and the leading edge of the exposed root chord 

of the forward wing panel. 

The nose volume coefficient i s  not a good correlation parameter when the body 

is simulated by a low aspect ratlo wing surface. A better parameter in tbis oase is 
the product of the projected body planform area forward of the exposed forward wing 
panel and the distance to the nose center of pressure. A s  Figure 3-33 shows, in the 

range of interest in particular, good agreement of theory and test is indicated. 

In particular, for the wing-body configurations, the computed a. c. is estimated 

to be only 0.153 different from the test a, c. M 1,2. Similar correlation resulta at sub- 

sonic speeds (MO. 6) show the computed a. c, to be O.r325 difference from the test a. c. 

Based an m evaluation of NASA test re81l.l" (Reference 12), the Carmichaerl- 

Woodward program overestimates by a substantial amount the forward a. c. shift due 

t~ auding the csnarda. The expected canard effect on lift and pitching moment, based 

on test data is sham in Figure 3-34 to 3-37. The test data indicate a constant for- 
w a ~ d  ~ h i f t  in a. c. of O.1PE at both MOO 6 and MI. 2 for the canard (exposed canard 

surfaae area to  wing reference area equals 0.09). This herement, together with the 

correction for forebo* geometry, was applied to the estimates for the wingbody con- 
figuration, obtained using the Carmichael-Woodward program, to generate the a. c. 

variation with Mach number for the complete configuration as shown in Figur:e 3-38. 

The aerodynamic center is located at O . l l c '  and 0,288 at M0.6 and MI. 2, 

respectively. The c. g. positiaa is set at 0.265, dictated by oontrol system require- 

ments that limit t h ~  maximum long3.udinal instability to no more than -15 percent of 
- 
c. This means a positive static margin of 2 percent will exist at it; I. 2, which will 
result in a  light trim drag penalty. 



3.2.4 Trim Andysf s 

As described in Sectian 3.2.3, a progrnm was developed which use8 the incre- 
mental effects as computed with the NASA Amea wing-body program for canard, 

lending-edge, and trailing-ddgo flaps, wing camber and angle-of-attack. The propam 

optimizes ths  csnqtrol deflections for minimum drag-due-to-lift d~ a function of 

trimmed lift coeffioiont at n given center of gravity. The method is believed to give 

good predictions for the optimum control dsflectione. 

Tha leading-adge flap and canard deflection schedules are shown in Figures 3-39 

and 3-40, respectively. Tho corresponding trailing-edge flap deflections for trim are 
shown in Figure 3-41. Note thnt the canard deflection Increases negatively (leading 
edge down) with angle of attack, an Indication thnt this control surface is being 

unloaded as angle of attack is  increased. 

A t  the higher angles of attack, the canard deflection will be determined by flow 

control requirements. The original plan was to use the NASA Langley Research 

Center Asymmetric Vortex-Lattice Program (Computer Program No. 4737) to esti- 

mate the subso~ic  high angle of attack, lift, drag and pitching moment. The results 

would have been uaad to determine the optimum cdanard deflections zit high attitude. 

The version which was available during the investigation was only applicable to flat 
wings, and so could not be used. Thus, canard deflections required at high attitudes 

are not known at this time. 

The canard deflection decreases toward the positivr direction with Mach number, 

becoming only nominally negative as MI. G is reached. The curve for MI. 6 is defined 
for We case or" undeflected leading-edge flaps. 

The leading-edge flaps (Figure 3-39) are Limited to a maximum deflection of 30 

degrees, which is reaclied at about ru = 20 degrees at subsonic ~peeds.  Small negative 

deflections occur a t  low angles-of-attack to counterbalance the wing nose droop 

camber effeot. Bsncfib are Been to acorue even at MMl.6, where the optimum leading- 
edge goes from negative to positive deflecticns as a i s  Increased. Some doubt exlats, 

however, as to whether this finding is real, especially at MI.  6, where the wing has 

already gone supersonic. For this and other practical. reasona, the leading-edge flaps 
are limited to positive deflections only. 

Relatively small trailfng-edge flap deflections are needed for trim (Figure 3-41) 

as compared to either canard or leading-edge flaps, At Mach 1.2 and 1.6, negative 



defleotions (trailing edgs up) are required to trim out tho 2 to 5 percent pasitivo statia 
margin for the a. g. location of 0.265. 

The foregoing trim sohedubs resulted In the optimum trim polars shown in, 
Figurea 3-42 nnd 3-43. The maximum spanload effioiency factor is 0.91 at M 5 0.6, 

and 0.748 and MO. 9. The supersonic polars show a trim drag penalty of 18 to 19 

oounts at zero lift due to camber effects whioh wore b u t  into the selected wing deaigp. 
The pdar at M2.0 is estimated using methods presented in DATCOM. Optimum lift- 
drag ratios fur the range of Mach numbers are presented in Figure 3-44. 

3.2.5 Maximum Lift md Buffet Onset 

The estimate d maximum la, CL , as a function of Mach number la pm- 
Max 

sated tn Figure 3-45. Subsonic C values were determined from tost data of a 
Lmax 

similar oonfiguration. At supersonic speeds, C values may be estimated using 
Lmax 

the methods derived in NACA RIM L8F23. The method used is based on a limiting 
- pressure coefficient compared to n vacuum (Plimit - Y/2 Pvacuum ) . The follow hg 

assumptions are made: 

1. The angle of attack ia high and the shock i s  normal in front of the wing, 

2. All pressures on the wing upper surface are at the limiting value 

3. Average normal force on the wing lower surface is proportional to the 
projected surface normal to free stream. 

The voluea of CLmW thus derived ara about 0.9 of the C 
&ax 

wi th  a vacuum 
on the upper surface of the airfoil. 

Buffet onaet lift coefficientst were estimated using wind t m e l  test data from 
Reference 7. As  previously noted, the wing which was testad had the same planform 
as the study aircraft, The balance roll strain page @amla output waa recoded as 
the angle of attack of the model was increased, The angle of attack at whiah the root 
mean square of the I'olling moment showed a slepificant increase was used to determine 
buffet onset. These data have been adjusted upward by about 0.1 llft coefficient to 
account for the difference in angle of attack for n given lift coemcimt between the 

study aircraft and the test oonfiguratian. These reaulks are ahown in Figure 5-46 for 
various Mach numbers and leading and trailing edge flap deflections, Leading und 
trailing edge flaps, individually and in combination are seen to increase the buffet . 



one& boundary. The buffat onset variation with Mcpoh number is similar in shape and 
lower than CLmW at subsonio Maah numbers a s  expsotod, At supereonia Mach num- 
bers no butfot is expeoted up to CLm,, 

3.2.6 Longitudinal Aerodymmia Control Effectivenags 

Longitudinal aontrd i s  obtained through deflection of the canard and "railing 
edge flaps. Sinoe the onnard aats ahead of, and the trailing-edge flaps aut bohind the 
o,g, position, n fins Ijnlmce must be maintained between the two to auhieve the 
desired results in aontrol, trim and porformmce. Bnsed on the stability anaJysis 
presented in Section 3.2.3, the control for optinurn nerodynnmia performnnao, 1, a. , 
minimum drag at a given Hft, was found to be obtained when the cnnard is defleated 
negativaly (laadtng edge down) in inombination with the trailing-edge flap deflection. 
The trailing-edge flaps may bo deflected oithsr positively or negatively, depending 
on whether the airoraft is in stable or unstable flight. Note thnt the leading-edge 
flaps sct only to improve the -,ving spm loadtng, and hnve little or no influence on the 
control effectiveness. 

Cmard effectiveness at MO. 9 nnd Ml. 2 is shown in Figures 3-47 and 5-48. The 
corresponding aontrol parameters in lift and pitching moment as a h c t i o ~ ~  of Maoh 
number are presented in Figure 3-49. Good pitch control is seen over the range of 
Mach numbers. The effoot of canard ddlection on lift is small. 

Trailhg-edge flap effectiventlas is presented Li Figures 3-9, 3-10, 3-17, 

and 8-18. The corresponding flap cmtrd derivatives as a funotion of Maah number 
are shown in Figure 9-50. Strong effeotivmess in both lift control and pitch oontrol 
in obtained. 

3.2.7 Urh~-&dv Camber Desian 

The conventional approach to wing-body onmber design has been to first dater- 
mine the wing camber which minimizes drag for a speoifiad UR nr ! pitching moment 
coeffiotent nt a given Mach number. The body nren is then wrapped around the wing 

suoh that the bo* area growth is the same above and below the projected wing camber 
surfaae within the bogy. This appronoh i s  defioient in two importslat areas. First, 
the body is essentially uncambered in the sprmwise direction a0 that the wing camber 
in t h f ~  region i s  greatly modified by the presenae of the body. Sacond, the optimum 
camber for the wing in the pmsonae of h a  bc@ is expected to be quite afferent from 



the wing-alone camber. Additionally, the use bf pressure loadings in the optimizahion 
procedure precludes the imposition of geometric aonstraints such as a straight h e  
for a control hinge. 

An alternate approach, which was used in this study, utilizes a selection of com- 

ponent distributions of camber and twist. Each of the compouent shapes embodies 

clesired geometric constraints (such as flap hinge lines) so that any comblnatim of 
the shapes will also satis$ the same constraints. The bodies are modeled as  thin 
cambered surfaces. Baaed on previous comparisons with wind tunnel test data the 

model configuration was divided into ten equal width chordwise strips pigwe 3-51). 

Appropriate element distributions were selected along each atrip mot shown in Figure 

3-51) such that a t&aI of 134 elements were used. 

The NASA/Ames Wing-Body Aerodynamics computer program was used for the 

cdcdations. Each configuration was first analyzed as  n flat planform with varioua 
combinatians of control surface deflections a t  M 1.2. The results of them calculations 

are summarized in Table 3-3. 

An optimum distribution of wing camber with limited twist was also oalcuiated 
for the design condlt;ions of M 1.2, a lift coefficient of 0.2 and zero pitching moment 

coefficient. Geometry, rather than preseure control modes were selacted for khese 
calculatto~s with constraints of straight fiap hinge lines and single curvathre bow 

camber. Geometry modes also facilitate the optimization of control surfaca deflec- 

tions at off -design conditions. The selected modes are  listed in Table 3-4. The 

ltroot" designation means that the particular mode varies from a nominal value at the 
wing root to zero at the tip. For the vttiplt designation, the variation is from a nomind 

value at the wing tip to zero at the rod .  The root is defined as  the airplane center 

line, but the wing camber is only effective outboard of the body which is defined 

separately. 

The NASA/Amea program was used to calculake the a e r o w a m i c  load distribu- 
tion for each mode. The interference drag terms between modes were then calculated. 

The optimum combination of modes was calculated to minimize the warn drag due to 
1iR at the design conditions cited above. The configuration wasl designed with anti 

without canard camber and twist. The difference was only about two drag comts 

(0.0002) at the design cmdltions. The fvdesigntt is, therefore, defined with body cam- 
ber, wing camber and t w i d ,  and a flat canard at an optimum deflection, 



The oanfiguratim was initi~7L;JI optlmiaed MVa zero leading and tratllng edge 

flap deflection8 at the design paint. The rosultkig aurfaoes have unncoeptably high 
values of t w i 3  80 that a limit w t r ~  plaaed on the twist, Flap deflection modes were 
then introdwed to reoptimiita. The aaloulations hduded various oombhatims of 

cnnrtrd, leading edge and trailbg edge flap dofleatlms. A&, the oritelrim was trim 
and minimum drag over the olppropirnte angle of attaok rmge, These results w e  
euwrmrrrimed In Table 8-5. 

The design menn lfrtes along the oenter line of enoh uhordwise strip are ~hown 
twiae saale in Figure 3-61. 



TABU 3-1. MINIMUM DRAG BUILDUP BY COMPONENT 

I 
i VISCOUS 

i 
SUBSONIC CANOPY 

I SUBSONIC AFTERBODY NOZZLE i 
I 

SPILLAGE 

BOUNDARY LAYER DLVERTER 

' MISCELLANEOUS 
t 

FLIGEIT TES" ADJUSTMENT 
f 

,0080 -0072 

,016 8 .0207 

(IN WAVE DRAG) 

(IN WAVE DRAG) 

.0012 .0001 

-0007 .0013 

.0025 ,0025 

- .0011 .0017 

I i I 
I 

TOTAL .Dl43 .(I132 -0142 ,0281 -0335 
I 



VISC. 

.00389 

ImmF* 
FACTOR 

1.00 

POW 
FACTOB 

1,112 

cOKP- 

FUSELAGE 

1,048 

1.047 

1.048 

1.048 

Cf 

.00216 

1.05 

AC 
D~ 

-00350 

UmG 

WING PODS 

,00329 .00258 

.00249 

-00309 

.00297 

L 

%/lo7 

6.680 

2 -Cpl 

1k27 

-00299 

. 0010CI 

,00064 

.00054 

,00867 

Sm/ 
S~ 

1.620 

437 

561 1 .SO 

1.05 

1.05 

,00157 

-00070 

-00059 

, 01004 

1.158 

0.402 

YERTICM, 

t%nABDS 

TmAL 

2* 038 

2,626 

0,208 

0.182 

3.570 

149 

185 

0.697 

0.864 



TABLE 3-3. DRAG DUE TO LIFT WITH NO CAMBER, M 1.2 

TABLE 3-4. GEOMETRY DESIGN MODES 

0.4 

0. U463 

0.0452 

0.0428 

0.0436 

0.0413 

0.0408 

0.2 

0.10116 

0.0113 

0.0107 

0.0109 

0,0102 

0.0102 

Lift Coefficient 

Untrimmed 

(canard 0') 

Trimmed With; 

T.E. Flaps (Canard 0°) 

Opt L, E. and T. E . Flaps (Canard 0') 

Canard, Flaps 00 
c.  

Opt L.E. and T.E. Flaps, Canard - 1.6" 

Opt L. E, and T. E. Flaps, Opt Canard . 

Mode Number 

1 
2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

0 

0 

0 

0 

0 
. 
0.0005 

0 

Mode 

Flat Angle of Attack 
Liner Twist 
Root L. E . Droop 

Tip L. 33. Droop 

Root Camber 

Tip Camber 

Root Reflex 
Body Eknd (Flat Nose Droop) 

Body Camber (Curvr ; Nose Droop) 

Canard Deflection 

Canard Linear Twist 

Canard Camber (Uniform) 
L. E. Flap Deflection 

T. E. Flap Deflection 



TABLE 3-6. DRAG DUE TO LIFT WITH DESIGN CAMBER, M 1.2 

0.4 

0,0463 

0. M07 

0.0378 

0.0403 

0.0336 

0.0369 

0.0373 

15.0364 

0.0369 

Lift Coeff ioient 

Untrimmed: 

Unombered 
(Ref. Table 3-3) 

b s l g n  ~ v o b e r  (canard 0') 

Deaign Camber (Canard - 2.8') 

Trimmed 

T. E . Flaps (Canard 0') 

Opt L. E . and T. E. Flaps (Canard 0') 

Canard (Flaps 0') 

T. E Flaps (Canard 2.8') 

Opt I. E. and T.E. Flaps (Canard - 2.8') 

Opt L.E. and T.E. Flaps, Opt Canard 

0 

0 

0,0020 

0.0025 

0.0024 

0.0019 

0.0020 

0.0024 

0.0021 

0.0016 

0.2 

0,0116 

0,0098 

0.0086 

0,0101 

0.0101 

0.0086 

0.0086 

0.0086 

0.0086 



S,, = 46.5 m2 (500 FT') h =9144m (30,000FT) ROUGHNESS = .00127 CM (.0005 IN) 

MACH NUMBER 

FIGURE 3-2. MINIMUM DRAG VS MACH NUMBER 
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F I G W  3-3. ALTITUDE EFFECTS OK MINIMUM DRAG 
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FIGURE 3-4. WAVE DRAG AOJUSTMENT VS MACH N W E R  



RATIO 

-1 0 I 2 3 4 

E 
FIGURE 3-5, WAVE DRAG PLANAR SURFACE ADJUSmNT 
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FIGURE 3-6, FLIGHT TEST/ANALYTICAL ADJUSTMEKT TO MINIMUM DRAG 







PICURE 3-9. TRAZLINC-EWE FLAP EFFECTIVENESS AT M S O . 6 ,  6n10, 6 2  



FIGURE 3-10. TRAILING-EDGE FLAP EFFECL'IVENESS AT M10.6, 6 n =24, 6 =O 
C 



FIGURE 3-11. DlUG DUE TO LIFT AT W50.6, 6 2 ,  6 4 
c 
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FIGURE 3-12. DRAG DDE TO LIFT. AT H s 0 . 6 ,  bn=24, 



FIGURE 3-13. LIFT-DRAG =TI0 AT M 5 0.6,  6 = 0 ,  &c = 0 
n 
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FIGURE 3-15. LIPT VS AZiGLE OF ATTACK AT M0.9, 6 2 ,  6;O 
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FIGURE 3-16. LIFT IS ANGLE OF ATTACK AT MQ.9, 6,=24, 



FIGURE 3-17. T M L I N G  E W E  FLAP EFFECTIVENESS AT MO.9, 6==0 



FIGWE 3-18. TRAILING EDGE FLAP EFFECTlVENESS AT MnJ.9, 6n=24~ 6,=0 





FIGURE 3-20.- DRAG DUE TO LIFP AT M0.9, bn=24, 6 4 
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FIGURE 3-22. LIFT-DUG RATIO AT LT.9, bn = 24, 6c = 0 
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FIGURE 3-23. LIPT VS ANGLE OF A'ITACK AT W1.2, b n 4 ,  6 4 
C 





FIGURE 3-25. DRAG DUE TO L b T  AT Ml.2, 6,'0, 6,=O 
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FIGURE 3-26. LIFT RATIO AT Ml.2, 6,"09 b,=O 
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FIGURE 3-27. LIFT VS ANGLE OF ATTACK AT Bf1.6; 6,'0, 6,=O 



FIGURE 3-28. TiUILING-EDGE FLAP EFFECTIVENESS AT Ml.6, b n 4 ,  6 4 
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FIGURE 3-29, D M  DUE TO LIFP AT H1,6, 6 3 ,  6 =O 
C 
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FIG[IRE 3-30. LIPT/DRAG RATIO Ml.6 h n 4 ,  6 = 4  



FIGURE 3-31, DRAG DUE TO LIFT 



FIGURE 3-32. SPANLOAD EFFICIENCY VS STATIC MARGIN 



Bodies Approximate 

FIGURE 3-33. AERODYNAHIC CEETER ERPOR VS XOSE ~ , h f O ~ ~ T  COEFFICIENT 
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FIGURE 3-34. CANARG SFFECTS ON T.TY! AT M 10.6 
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P I m  3-35. C P - m  EFFECTS OH LIET AT H 1.2 





F I G W  3-37. CANARD EFFECTS ON STATIC STABILITY AT M1.2 
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FIGURE 3-38. GRODYNAHIC CENTER ?XICATION 
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FIGURE 3-40. cANA~D DEFLECTION SCHEDIILE, C M .  26' 



FIGURE 3-41. OPTIMUM TRAILING EDGE FIAP DEFLECTION FOR TRIM 
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FIGURE 3-42. OPTIMUM SUBSONIC TRIM PODS'S 



FIGURE 3-&3. OPTIMUM SUPEXSONIC TRIM POLARS 



F I G m  3-44. TRIM LIFT-DRAG RATIO 
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FIGUBE 3-45. MAXIMUM USEAI3l-S LIFT 



FIGURE 5-46.  LIFT COEFFICIENT FOR BUFFET ONSET 



FIGURE 3-47. CANARD EPPBCTIVEWBSS BT X0.9, hn=24, 6f=0 



FIGURE 3-48. CANARD EFFECTIVENESS AT M1.2, V O ,  hf'O 
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FIGURE 3-43, CMiABD CCMTEOL EFFECTIVENESS 
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FIGURE 3-50. TRAILING EDGE FLAP CONTROL EFFECTIEZNESS 
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3.3.1 ~.,rrtexal/Directional Stability 

The coefficients and derivatives presented i n  this section a re  essentially derived 

from wind tunnel test data. The data presented in  this section a re  based on body axes, 

and are referenced to a moment. center at O.2&, and are  for a rigid aircraft. 

A Noxthrop transonic ;wind tunnel test (Reference 7) of a tailles~l design having 

the same wing planform and a vetry similar vertical tail planform compared to the 

HAVSTOL configuration, was used as a data base which was suitably modified by 

theory to obtain the estimated lateral/dirsctiatal &a. The test body characteristics, 

A Cy and A C,, as a function of a and 8 ,  were estimated and subtracted from the wipg 

bbdy'test data. The body-alone ACe assumed negtigible (body. axes). The 

HAVSTOL body characteristics were similarly estimated and added back in. The body 

estimation procedure used modified incremelltal slender body theory, a technique 

which has been found to give reasonable approximations in most cases. A self- 

correcting tendency i s  inherent in the process just described, provided consistency in 

tho body estimation details is maintained. The wind tunnel test model was nominajly 

a midwing configuration with zero dihedral. Corrections were made to HAVSTOL for 

the shoulder wing location and five deg~ees  of anhedral, using standard DATCOM 

procedares. 

The vertical tail effects were then estimated, using the test &ta modified by 

moment area relationships, and added to the wing body estimates. The eflects of the 

canard surface are difficull to  estimate in the absence of specifically applicable 

test data because of the strong aerodynamic interrelationship of the canard, wing and 

vertical tail surfaces. The literature shows examples of both positive and negative 

lateral/directional stability effects due to the addition of a canard surface. For the 

twin tail configuration, it was nssumed that the lateral/directiond st ability wow! fall 

off less rapidly in the presence of the canard surface than without it at angles of attack 

above twenty degrees. This beneficial effect may require wind tunne! investigation, 

particularly w fth regard to vertical tail location. 

Wing tunnel test data were available as a base for M 0.6, 0. S, ?.nd 1.2, but not 

at  1.6. A s  a result the data had to be extrapolated to M 1. G ,  using trends characteristic 

of deita wing airplanes, and are  therefore not as well substantiated at; M 1.6 a.s at the 

other Mach numbers. 



The static latenl/directionnl panmetors Cy,  On and Cp are piotted at constant 
angles of attack versus sideslip angle for M 0.6, 0.9, 1.2 and 1. O i n  Figure@ 3-52 

through 3-63. Each figure shows the configuration with the vertical hils off (WB) nnd 

on (WBCV) . In the case of the vertical tailo off, the canard surface is also off. The 
controls are fixed at zero deflection angle in  these figures, but will In fact move as 

required to supplement the aerodynamic stability chnmcteristics via the active con- 

trol system. 

Side force due to sideslip is shown in Figures 3-52 through 3-55. Conventional 
trends are apparent for the wing-body (WB) and wing-body-canard-vertical tail 

[WBCV) configurations. The fixed-vertical-tail directional stability of the complete 
configuration, as seen in Figures 3-56 th roua  3-59, is positive for the range of 

Mach numbers, angles of attack and sideslip anglea considered except at M 0. G and 

u - 26 degrees. Adequate aerodynamic directional control is available via the vertical 

toll to  provide apparent &ability even at this condition. The corresponding dihedral 

effect, F i  yros  3-60 through 3-63, is mostly favorable without the active control 

system, although the g o d  of good flying qualities and control harmony wilI dictate 

active control system stability inputs. 

As a result of the use of electronic adaptive flight control systems, the stability 

and control characteristics of the aircraft a r e  not as clearly related to the static aero- 

dynamic parameters as they have been for the more conventional control systems. 

The apparent aircraft stability is, instead, a combined £unction of the aerodynamic 

stability, the aerodynamic cantrol power, and the control system mechanization. 

Angle of attack or sideslip limitations can be desiged into khe control system to avoid 

any situation where the aircraft aerodynamics might lead to  an uncontrollable condi- 

tion. This section of the report does not treat the control aystern, and the reader is 

referred to Section 5.2, 

3.3.2 Lateral/Directional Control Effectiveness 

Control effectiveness of the elevons and all movable vertical tails was estimated 

by correcting the wind tunnel test data described in 3.3.1 using moment area relation- 

ships. The vertical tails were sized to satisfy an engine failure condition during a con- 

ventional takeoff in accordance with the reqr~irementa of MIL-F-8785B (ASG). The 



cross wind landing .requirement of MIL-F-87 85B ( ASG) was also investigated , but 
found not critical, 

Vertical thil and els1;on roll control effectiveness is presented in  derivative form 
versus angle of attack for M 0.6, 0.9, 1.2 and 1.6. 

Figures 3-64 through 3-67 present the control power derivatives of the all 
movable vertical tail. The vertical tail providea good directional control power to 
high angles of attack at all Mnch numbers. The rolling moment due to vertical tail 
deflection is small. ' 

Elevon roll control power appears in Figures 3-68 through 3-71, The roll con- 
trol power holds up well to high angles of attack except at M 0.9 and a = 26 degrees 
where it falls to about 20 percent of its a = 0 value. The yawing moment due to roll 
control is very small. 
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FfGURE 3-52. SIDE FORCE AT M 0 .6  
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FIGURE 3-53, SIDE FOIICE AT El 0.9 
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FIGURE 3 - 5 4 .  SIDE FORCE AT M 1.2 



FIGURE 3-55. SIDE FORCE . I' II 1 . G  
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FIGURE 3-56. YAWING EtOElENT -47' PI 0 . 6  







FIGURE 3-59. YAk'ING MOMENT AT M 1.6 
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FIGURE 3-61. ROLLING MOMENT AT M 0.9 
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FIGURE 3-62. IU3LLT.NG blOblEW A'l' bl  1.2 
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FIGURE 3-63. ROLLING MOMENT AT M 1.6 



FZCURK 3-64, VKKTICAL TAIL CONl'ROL BFFECTlVENtiSS AT bl 0 . 6  
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FIGURE 3-66. VERTICAL TAIL CONTROL EFFECTIVENESS AT M 1.2 
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FIGIJRE 3-68. ELEVON ROLL CONTROL EFFECTIVENESS A'l' bl 0,6 
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FIGURE 3-70, ELEVON ROLL CONTROL EFFECTIVENESS AT Pi 1 . 2  
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FIGURE 3-71. ELEVON ROLL CONTROL EFFECTIVENESS AT M 1.6 



3 . 4  PROPULSION-INDUCED EFFECTS 

The interaction of the propulsiotl Bystem exhaust wit11 the froestream can have a 

significant effect on the narodynnmics ol the aircraft, 1Dropulslon-induced force and 

moment chhgo charnoterlstics, whick are n function of jet efflux geometry and 

arrangon~cjnts relative to aerodynamic surface~l, in turn  impact on the performance, 

stability atid cotltrol r q ~ i f  rements of tho aircraft, 

Vectoring tha nozzles for mrulauvei Ltig at angle of attack increases the angle 

bchveea the vectoring llt't/cruise engine offiux and the freostream ruld tends to mag- 

nify tl~cso intolaation cffccls, During tho lra~isition phase, wllon tho aircraft is not 

yet fully supported by the aerodynalnic forces on the wing as  it1 conventional flight, 

tho jets are  directed at lnrgc angles to the frocstream, leading to significant pra.p,~l- 

sion induced forcoa and moments, The cvalut~tion of propulsion-induced aerodynamic 

charactcristica h~volvcs tho dab rmi~~a t i on  of tho jct-induced flow ficld and the 

computation of tho Bmos and rnon~e~lla on t11c configur;ition due to tho induced flow 

field. 

The jet-induced flow field was cvaluatcd utilizing thc cntraimcnt model for jets 

exhausting into u crossflow of Referonce 13. The continuity and momcntu~n equations 

were solvod far the jet pafb, Tlie vclocity ficld induccd by the f ct was cvaluatod by 

replacing ihc jct wit11 u sink-doublet singularity distribution accounting lor the ontrain- 
ment of freestream fluid and the blockage effect on thc jut, Continuity and momentum 

considerations yielded initinl corditions lor tho j e t  resulting from tho coalescence oE 

two inciividual jets. The jet modcl of Reforcncc 13 was modificd to allow treatment of 

jets of initial elliptical cross saction wit11 n major--to-minor axis ratio of 4:l as an 

spprodlnstion l:o t l ~ c  roctangula cross scction jcts 01 tho present dcsigm. 

Propulsio11-induced forces and ~lculcllts were cvnluated utilizing the vortex- 

latticed method of rapresenting lifting planforms (Rofcrotlce 14). To determine 

power-induced laugitudin~.l aeroclynamic characteristics, a camber distribution was 

introduced on tllc plnnform to represent the presence of the jot-induced velocity field. 

Propulsion-induced aorodytlamics for the configuration in cross-wind condition (i. e .  
at sideslip) were evtlluntod by applying asy~nlnctric cambaring of the platform to 

C 

reflect the asymmetry of the jet-induced downwash I'ield. 



The nomenclature used irc the discussion of propulsion-induced aerodynamic 
characteristics is summarl~zed in the following schematic representation of the efflux 
from the primary nozzles and the RALS nozzle. 

FoRw2T7&;2 -'y 
Propulsion-induced effects of thrust vectoring for maneuvering i n  the cruise/ 

conibat flight regime are  presented in 3.4.1. Section 3.4.2 treats induced aerc-y- 

namic characteristics i n  the transition flight phase where the presence of the IlALS 

jet must be accounted for. Since the jet model of Reference 13 is a potential flow 
model which neglects viscous effects other than entrainment, results presented in 

Section 3.4.2 were corrected to account for the jet wake effect from the RALS 

jet. 

3.4.1 Cruise/Combat Flight Regime 

Effects of deflecting the thrust with the two primary nozzles on the longitudinal 

aerodynamic characteristics of the configuration were evaluated at a fixed deflection 

angle for a range of ahgle of attack and velocity ratio representative of thrust vectoring 

for maneuvering. The velocity ratio is defined in terms of the thrust coefficient (cT) of 

the two primary nozzles as 

where A. is the total nozzle exit area of the two engines, Uw/U. is ratio of free ' 1 10 stream velocity to jet outlet velocity. 

Figure 3-72 shows the effect of thrust deflection (til = 15') on induced lift a a 

function of angle of attack for velocity ratios of 0.3 and 0.4. Experimental 

data from Reference 15 are included for cornpasison, Sufficient s h i l m i t y  

beheen the model of the experimental investigation and the present design, in terms. 

of wing-canmd planform and relative location of the two-dimencional nozzles with 

respect to the lifting surfaces, exist to make the comparison meaningful. Computed 



induced Lift coefficients, ACL, are compared with interpolated experln~entnl dntn 
from Reference 16. The laelative invnlqance of induoed lift coefficient with velocity 
ratlo dispfnyad by tha oxperimetltnl data is n I ~ o  proclicod quite wail (conlpnro velocity 

ratios af 0.3 and 0.4 in  Figure 3-72), 

Induced lift na a function of veloaity ratio at constm~t a is slrown in Figure 3-73. 

Tho results ura prcso~ltad in terms of tha induced lift coefficielit, ACL, and non- 

dimonsiondized induced 11R thrust ratio, AL/T, wllcro 

Filjlire 3-74 shows inducad pitclritlg momant nt tbe anme operating conditions. 

The computatiorl of tllr no~~dimensionnlizad pitching momerri: follows from Equntio~~ 

3.4-2, substit~lti~lg Cm for CL. Tronds nlld mng~~itudos in computed i~tdiiced pitch- 

trig nlo~llent are conaisto~:ont 114th tl16 oxporlmautal data of Roferetlce 15. 

3.4.2 Trnnsition Flight lbgimo 

It1 tho transition fligllt phasc, tha RALS fct comtributos to the jot-inducad flaw 

field aud must bo itcco~nlted for. Tho jet moclal of Rafcrellce 11 wus utilized ta 
evfilunte tho itlducd flow field due to the offlax from the primary nozzlas and to the 

RALS nozzle. Nogligi.ibla intorferonce affocts between tho RALS jot and the primary 

jets duo to the largc scpt~rrttio~~ pcrlllit n diract suporposition of tho two induced flow 

fields (JLaferoncc 13). 

For a I'ised vclocity ratio of tho pritnilry jots, U,/U tllc velocity ratio of 
go' 

thc RALS jot is asprossod as 



where F1/F2 is the thrust split betweoll the primnry nozzles and the RALS nozzlo and 

A is tho oxit nran of the RALS nozzlo. Tho nondimonsionnllzed iiiducwl lift, AL/T, 
32 

is now conrputcd as 

All dnta prujsentcd in Fibrurao 3-75 tlirough 3-77 nra shown as a funct io~ a€ tho valocity 

ratio of tilo primnry jots, %/U 
jog 

FIg11ra 3-75 shows i ~ i d c c d  lift as n function al' valoaity ratio for n nulnbor of jet 

dafloction mglos nrld llirust splits coprosantativo of tho t ra~ls i t io t~  fligltt plinse. Pitch- 

Li'tg knonionts Inc9uccd undor tho sutllo oporntlng conditions aro p r a s a ~ ~ t u d  in Figure 
3-76. nolling rnomatits iilduccd nt n sideslip nngla of P = 10' were ovnluntod for two 

aots of opointing cotlditiotls in tho transition flight pllnso nnd aiv presented in 

Figure 3-77. 

It~~modlntaly downatmnm of a jot affll~v thura is a wnka region which has not been 

nccoulltod for  ttl tho prior  discusstons. TI10 I ) T ~ I I I R ~ Y  propulsio~i exl~nust is locnted ~t 

tho tiniting d g o  of the wing so tlint in tllis caso tlto wake hau t ~ o  sfgnificnnt ~el.ody- 

t ~ n m i c  cffoct. Howevor, the M L S  jot ash: t~~sts  wall lonvnrd of the wing nnd i t s  wake 
ikttamots with tlla ftsolngc lower suifacc and at sideslip cnti bo d i r e c t 4  over tho 

cnnaid ntld wiiig. Tllaorcticnl aunl yals mothcxls aim not nvnitnbla but nn emplr iod  

tnothod ( RoEarotlco 13) hns boot1 dovolopud fo r  ostinlntillg theso affects. Chnits  ware 

gonamtcd iti Rofero~lca 13 for tlla lift ~ n d  liln~liatlt iiicra1i101its dtie to n t~ormnlly 

axhnusting jet as n fu~lctiot~ of jot velocity rntlo and woku 1onp;tIr. Thasa charts \\rare 

used to obtnin tilo lotlgihdiut~t aarodynntnic incromonts (F ig~ i ros  3-78 uld 3-79) rind 

tho inarumontnl rollitlg momout (Fibwre 3-80) for tho cot~fibwi*ntion. Tliora is n lift 

lass, tlosa dowu pitching ~liol~iotlt and 11 ~iogativa rolling momont for  poljitiva sideslip 

due to  tho waka of the U L S  jot. 



FIGURE 3-72. EFFECT OF DEFLECTED THRUST ON LIFT 
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FIGURE 3-73. INDUCED LIFT DUE TO THRUST VBCTORING = 15O) 





FIGURE 3-75. PROPULSION-INDUCED. LIFT Ill TRAHSITIOH 
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FIGURE 3-76. PROPULSION-INDUCED PITCHING MOMENT IN TBANSITICN 





FIGURE 3-76. (CONTINUED ) 



FIGURE 3-76. ~CONTINUED) 





-' FIGURE 3-7 7.  PROPULSION-INDUCED RQUMG Mmm IN TBd,NSITlON ( P = 10' 





F I G W  .3-78.  RALS WAKE CONTRLEUTION TO 
PROPULSION-INDUCED LIFT IN TRANSITION 

FIGURE 3-79. RALS WBKE CONTRIBUTION TO 
PROPULSION-INDUCED PITCHING MOMENT 



FIGURE 3-80. RALS WAKE CONTRIBUTION TO PROPULSION-INDUCED ROLLING MOMENT 



3.5 CONTROLS: BLENDING 

Blending of the roll reaction control and the flapeiwn is considered first, as this 

axis is probably most critical. Use of RALS duct burning plus vectoring of the aft 

nozzles for pitch, makes the pitch and yaw axes less critical. 

The roll reaction control power has been estimated for  a 56 km/hr (35 kt) cross 

wind as a function of forward velocity. The interference losses from reaction control 

nozzles and airframe i n  a crosswind are based on experimental data while the internal 

duct losses have been estimated at 15 percent, At full thrust  (7.26 k$sec o r  16 Lb/sec 

fan air per engine available) takeoff weight and the highest moment of inertia, the 
2 reaction control power is slightly over 1.8 rad/sec at; all forward velocllties to 278 km/hr 

(150 Ms) . With the conservative assumption that roll control power is proportional to 
2 engine airflow, the flight idle roll control power is  slightly over 0.G rad/sec at all speeds 

up to 278 km/hr (l50kts. ) . For an attitude co~nmrtnd system, AGARD 577 recommends 
2 2 a value of 0.2 to  2.0 rad/sec for a STOL condition and 0.4 to 1.6 rad/sec for a 

hover condition. Thus, to meet the mid-point of the AGARD values, the ailerons are 
required to provide some assistance under low power settings conditions. Low power 

s e t ~ h g a  would be most likely during a landhg transition above the stall speed of the 

aircraft in ~ r d e r  t.c ccmmence deceleration to hover. Below stall speed, propulsive 

lift is essential to maintain the desired flight path. If the combination of reaction 

control and fiaperons can provide the desired control power down lo stall speed, and 

the reaction control can provide the total at hover, the system should be satisfactory. 

Figure 3-81 has been developed to show the various roll control factors through 

a landing transition to hover. Total reaction and flaperon control power (40' total 

deflection, C = 0.0375 and below stall angle of attack) a r e  shown for both inter- 
Sda 

mediate and flight idle thrust settings, The stall speeds from zero fuel weight to 

maximum VTOL weight togeihcr with the desired control power of about 1.4 rad/sec 
2 

are also shown. 

A s  the weight of the aircraft  decreases, so does the nloment of inertia, the tIlmst 

required for support, and the available reaction control power. These effects a re  

compensating, and the control power at hover is practically indepeudent of gross 

weigllt. Intermediate power is not required for hover, so that roll, control power at 
2 hover is 1.6  rad/sec . This control power is stiIl available at  lighter weights and 

thrusts as indicated above. 'The other possible critical point is the lowest stall speed, 

At speeds higher than stall speed, it is possible that flight idle thrust could be selected. 

Below stall speed, as stated previously, thrust must increase to support the ai.rcraft, 



At the lowest stall apeed (lightest weight), the combination of reaction control and 
2 aerodynamic control provides a roll control power of 1.8 rad/sec with thrust at Idle. 

Tnus, as shown on Figure 3-81, the minimum control powar avdlable varies from 
2 2 

1.6 ra?/sec to  1.8 rad/sec ah stall speed, and then increases rapidly, all conlparod 
2 to 1.4 rnd/sec required. 

The midpoint of the AGARD 577 specification for the pitch axis control power 
2 is 0.0 rad/sec . Tlro RALS nominal temperature is 1360'~ for static pitch bdmco. 

The temperature may be lowered to 513O~ for nose down pitch and raised to 2 0 3 3 ~ ~  

for nose up pitch. Tho aR nozzles can be deflected suitably or thrust level chncged 

to maintain height, The temperature difference is  less for nose up pitch and thus 

nose up pitch is criticnl. The nose up pitching hover control power available is 0.97 
2 2 md/sec at maximum moment of inertia and weight and 0. G9 rad/sec nt minimum 

2 moment of inertia, weight and flight idle power compared to 0. G rnd/sec required. 

During transition, a nose down moment will result from the interference effect of 

flow from both the NALS and af€ nozzles. The airframo will have a nose up moment 

in transition because of flying 15 percent unstable. The moment from both increase 

with speed. Any small difference is estimated to be handled by aerodynamic control 

trim. 

The mid-point of the AGARD 577 specification for the yaw axis control power 
2 2 is about 0.5 rad/sec . Available hover control power is 0.63 rad/sec at maximum 

weight, inertia and engine thrust while the control power at minimum weight, inertia 
2 and flight idle thrust is only 0.40 rad/sec . If the RALS could be deflected about 

3 degrees over the nominal 15 degrees, the control power at flight idle could be 
2 rdrred to 0.5 rad/sec at flight idle thrust. Since the nozzle can deflect aft 30 degrees, 

a sli&t airframe modification would dlow 18 degrees to the side. Very sm:- :L int :- 

ference on yaw control is estimated during transition, and is not considered at this  

time. 
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FIGURE 3-81. ROLL CONTROL BLENDING 



SECTION 4 - 
PROPULSION CHARACTERISTICS 

A Remote Augmented Lift System (RALS), as described by General Electric in 

their SYS-GE~G/WCEG study GI, was aelected for this study. This cqncept uses a 

bypass ratio (BPR) 0.7 fan engine with a variable cycle capability including front and 

r ea r  variabie area bypass injectors, a variable area low pressure turbine, and a 
double bypass split fan. The front block of: the fan is oversized to provide additional 

airflow for VSTOL and transonic requirements, The engine has a partial afterburner 

(555°K temperature rise) to provide additional thrust at certain forward flight condi- 

tions. This augmentation is not used for vertical takeoff or landing, 

4.1 ENGINE DESCRIPTION 

The RAE3 engine and installation are  conceptually illustrated in Figure 4-1. 

During vertical takeoff and landing, all bypass air  from both engines is diverted via 

common ducting to a forward Idcatton,# where it is augmented with a simple burner and 
expanded through a downward exhausting nozzle, The operating temperature of the 

forward augmentor is normally 1370°K (2000°F), To generate a thrust change for pitch 

control, this temperature can be varied between 516"IC (470°F) and 2033K (3200°F), 

Finally, the system is designed so  that bypass air can be diverted on demand from the 

engine and used for roll control. 

The engine has been sized to provide an installed thrust-to-aircraft weight ratio 

of 1.20 for VTO on a 305°K (90°F) tropical day in consideration of requk~::  :ertical 

acceleration, vectoring necessary for control, and potential secondary interferences. 

The size necessary for VTOL approximately matches combat requirements at maxi- 

mum power taking advantage of increased engine drflotv at transonic speeds, Soma 

thrust augmentation is provided by partial afterburning, however, to meet combat 

requirements. As the angmentation ratio is relatively s~na l l  compared to other engines, 

the SFC at combat conditions is also relatively small. 

A major advantage of using a low augmentation ratio engine is the lower specific 

fuel consumption (SFC) at maximum power which can significantly reduce the overall 



weight of tactical fighters requiring combat persistence. The variable geometry turbine 

will reduce the SFC rise at reduced power normally associated with engines throttled 
hack for cruise and loiter. 

REMOTE 
AUGMENTOR 

VTOL BUCKET 
STOWED MODE 

GIPiBAUING 
N O Z p  OVERSIZED FAN BLOCK VTOL BUCKET 

(20 FWD FOR ADDITIONAL A I R  DEFLECTED MODE 

BPR = 0 , 7 . 0  
T4 = 2030. tS, 

(3200 F) 

TOTAL VTDL THBUST* = 8296 Kg (18290 LB) 

*INSTALLED, TROPICAL DAY 305'~ OR ( 9 0 ' ~ )  



4.2 PROPULSION TRADES (BYPASS RATIO STUDY) 

Tliu unique VTOL requirement must be comidersd, 1. e. , the bypass rat io must 

ba high enough to allow sufficient atagmented remote all- for n nlon~ent balmce about 

the aircraft c. g. This is In nddition to the other mission pmm~letcrs which drive tlla 
cycla selection. 

An nndysis wus made to determine the optimunl bypnss ratio of the engine for  a 
selected mission, F o r  this nnnly sis, the m&~Imurn cox~~bustion ternpernture was held 

constant (TdnIm = 2030°K) d o n g  with the overall pressure ratio (OPR = 28). The 

tccllnology of the propulsion system is  representnti ve of the post-1990 time period. 

The GElG/VVCE4/Al was used ~2s the basis for this study. 

Tim study of the effects of bypnss rntio on engine cycle selection was based on 

the Pratt Lmtl Whitney Variable Geotnetl*y turbofnn (VGT) Computer progrmn (CCD0383). 

This cnginc model differs fronl the General Electric one in that the flln m d  core gases 

are eshuustsd separately, However, it c a t  tipprosilllate the effect of bypass rat io on 

vwiable cycle tur'bofm engine peri'ormtluce. The basic cycle design pmtuneters of the 

engine (bypnss rutio, fan pressure rutio, turbine inlet temperature, etc.) were nn input 

to the VGT hrrbofnn deck. Thc airflow scl~edulc was used to develop u. s imi lw schedule 

for the VGT turbofan dcck. It wns not possible t o  use the exnct GElGlVVCE4/Al R A I S  

schedulc because the airflow schedule is unique. Once tllc R A I S  cnginc was rensonnbly 

modeled on t l ~ c  VGT turbofan dcck, some performru~cc data were calculnted nnd corn- 

pwed with nctuul RALS brochure datn. The comparisons we rcnsonnbly close. 

After sii~lulation of the R A I S  engino was obtained, the instal!ed engine perfor- 

nimcc to be used fn the bypass ratio study wns cnlculntcd as described above. The 

threc bypnss ratios studied vmied from 0. 7 to 1.0. The bnseline bypnss rntio is 0.7, 

In order to evaluate the overnll uffocts of bypass ratio on aircraft pcrformnnce, 

u nlission pcrl'ormiu~cc. study was made. A t'ighter Escort sizing mission, as shown 

in Table 4-1, wns selected, In this table, hiel consumption is si~awn for the vwious 

mission scg~nents  for  aircraft using engines of BPR 0. 7 mid 1.0. 
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In mdcicg thls compurison, aircraft gross tnkooff weight was hold constmt, 

whilo tho luul woigllt wm vmiad na tho engine weight vmiad. A chnngo from the bnso- 

lina onglno to tlla BPRzl ongine will inlprove tho SFC enough to increase the mission 

rndius by 10%. However, tho incrowsod ongino weight will reduce this advantage in 

missloa radius to 3%) for u constnrlt tnkeoff weight, As tho chnnge in ongino bypass 

ra t io  win noaassitate n Inivger ungina nnd airaraft,  the aircraft wottod men will in- 

crouso by S'K, This, in turn, will menn m nssocimtcd aircraft drag increase. The 

pradlatod angino woigllts also inorome. Thus, if airoraft parformmca estimates were 

raflned during tlmo claslgn process, a d  aircraft d rag  nnd weight incrensas were nc- 

ootultad for, tho smal l  3(;11 nlission rndius advantage for llighar engina b y p a ~ s  ratios 

would problhly vanish. From a mission performance standpaint, then there ia no nd- 

vilntngu in incransing tho angina dcsign bypnss ratio above 0.7. Tha baseline bypnss 

r a t io  of 0,  7 i s  rwpl rod  for thrust balance during VTOL oporutlons and was retained. 

4 . 3  AIR INDUCTION SYSTEM' DESIGN APPROACII AND SIZING 

Tilo air inciuctfou systo~ll (Figure 4-2) i s  dcsigled to oporntc officicntly at the 

cri t ical  t;nkooEf, mrulouvoring, mlcl lllesinlun~ spoed conditions. The design concept 
llns it t~vo-dimct~siannl 7-dogroo dosiyi with shock-on-lip operation at Mnch 

1.8 ~ u ~ d  iuiglo of l~ th~ck  ol -2 dogrcos (-1G lmnncuver nt n~iu lmum speed). Tlic 

7-dogroo n ~ m p  providos n g m d  co~~lpromiso  bot~voon recovery and spillage over the 

rcquirud Much rtulgo. 

AUXILIARY DOORS 
7 O  M11P INLET 

- SIDEPLATES 

- 
UfQ.!il@{OE. OF FUSELAGE - __. - I- 

FIGURE 4 - 2 .  AIR INDUCTION SYSTEM CONFIGUKATION 

ltilot prussura recovury at tnkcoff is cnl~ru~ccd by the use cf ausa!2rr~ !!?lot 

doors located III tho duct immodi:ttaly lrpstronnl of tllc conlprossor i'qc-:, 'rl1~iie 

doors two sfzad to mi~rimizo the nll~ouut of air pussing through t)r; r.1 v .  

tllus i~~fu imiz i tg  lip-induced pressure losses. Spillage drag for  l.-r . . -, k,:!~ fp 

a tnininlutn by proper scheclulfng of tha vnriable turbine features of I*. f 3gl:. . 



The baseline air  inlet system is sized to match the requirements of the engines, 

Each main air inlet has the following characteristics: 

2 2 1) 0.56m (871 in ) capture area  

2 2 2) 0.45m (702 in ) throat area 

3) Inlet lip thickness of 1.3 cm (1/2 inch). 

2 2 The auxiliary inlet doors are sized to provide 0.42111 (647 in ) of flow area. The in- 
let duct area distribution is shown in II'Igure 2-3. The inlet system incorporates a 
ramp bleed system which removes most of the ramp boundary layer, improves pres- 

sure recovery, and reduces shock/boundary Layer interaction problems. This type of 

r m ~ p  bleed aystem is used on the YP-17 air induction system. Tests have shown it 

Is capable 01 providing stable inlet operation to flight speeds of M 2.2. 

4.4 EXHAUST NOZZLE/AFT END DESIGN APPROACH 

Primary exhaust is tllrough ADEN nozzles with a single remotely located 

augmentor/nozzle assembly. For normal VTOL, approximately 64 percent of the lift 

is provided at tlla primary nozzles and 36 percent by the remote augmentor nozzle. 

The ADEN nozzle has a vectoring capability through 90 degrees in the pitch plane dur- 

ing VTOL. The remote augmentor nozzle has a vectoring capability of 30 degrees aft, 

20 degrees forwaxd and 15 degrees laterally. The forward nozzle is not used in nor- 

mal flight operation, but the primary nozzle flow can be vectored approximately 15 

degrees in flight by the trim t& providing direct lift and fuselage airntng capability in 

combination with canard deflection. 

The ADEN is an C\L-ternal axpansion nozzle lor which the upper aft slopes are 

fixed, and the throat geonletry requires  only minimal modulation due to the variable 

turbine. For elis reasou, the thLtoUlc-dependent afterhody drag is minimal. The two 
dimensional nozzle results in smooth contours that integrate easily into the aircraft. 

Due to the high aspect ratio of the two nozzles tn combination and the side plates 

on the nozzle, very little expansion and plume mixing will occur on the sides. The 

interfairings between the nozzle and the twin afterfairings have been shaped to avoid 

~ l ~ i r n a  Interference effects on interfairing flow and rninillzize scrubkiug d ~ a g  on the 

after fairings. 



4.5 ENGINE INSTALLATION LOSS ASSESSMENT 

Propulsion installation losses were divided into two categories: 1) engine cycle 

losses, and 2) propulsion-related subsystem losses. Installation factors csusfng 
engine cycle performance losses are: 

1 Extraction horsepower for aircraft $ewer systems (hydraulic and 

electrical). 

2, Engine air  bleed for the environmental control system. 

3. Inlet total pressure recovery, 

Drag oomponents assigned to the propulsion system are as folows: 

1. Environmental Cooling System (ECSf and Avionics System cooling airflow 

momentum losses. 

2. Engine bay ventilation airflow momentum loss. 

3. Inlet ramp and throat bleed airflow momentum losses. 

4, Throttle-dependent inlet spillage drag, 

5, Throttle-affected nozzle/afterbody drag. 

A Northrop engine installation computer program was used. The engine data 

provided by GE were given with specified cycle losses. These included a power ex- 

traction of 37 KW (50 BP) and an engine compressor bleed of 0.12-0.48 KG/SEC 

(0.28-1.07 Ibs/sec) as shown in Figure 4-3. The matched inlet recovery schedule 

usecl is shown in Figure 4-4. The recovery is almost 95 percent at takeoff, about 98 

percent transonically and drops to 89 percent at MI. 8. The installation program cor- 

rected the net thrust and he1 flow data for any differences between operating inlet 

pressure recovery and that shown in Figure 4-4. The external installation losses were 

also calculated by the installation program. The assessments of propulsion loss items 

are summarized in Table 4-2. The thrust-drag bookkeephg procedure relative to the 

inlet spillage and afterbody drags is the Rame as the "Navy" procedure used for the 

F-18, In this procedure, for Mach numbers of one and above, the critical inlet spillage 

drag is assigned to the aircraft minimum drag. 

Only the subcritical portion of the spillage drag is assigned to the propulsion 

system. Since the external geometry of the two-dimensional ADEN nozzle doesn't 

vary with throttle setting, and since afterbody slopes are low, it is assumed that the 

throttle-dependent noezle/afterbody drag is negligible. 
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FIGURE 4-3. ENGINE COMPRESSOR BLEED UTES. 



FIGURE 4-4. MATCHED =T. RECOVEBY 



TBLE 4-2. AlRCRAFT PROPULSION LOSS ASSESSrnNT 

ITEM 

POWER 
EXTRACTION 

ENGINE 
BLEED A I R  

INLET 
RECOVERY 

ECS, AVIONICS 
SYSTEM DRAG 

ENGINE BAY 
VENTILATION 
DRAG 

RAMP BLEED 
DRAG 

INLET SPILLAGE 
DRAG 

THROTTLE- 
DEPENDENT 
N3ZZLE/ 
AFTERBODY 
DRAG 

ASSESSMENT 

37 KW (50 HP) per engine except  f o r  c e r t a i n  takeoff ,  
l anding ,  and combat cond i t i ons  where 63 KW (85 HP) i s  
assumed . 
F-18 requirements.  

Use modified F-17 7' ramp i n l e t  da t a .  Modif icat ion 
made f o r  use of a u x i l i a r y  i n l e t  doors.  

ECS and Avionics ram a i r f l o w s  equa l  t o  three times 
engine a i r  bleed,  Drag equal  t o  1 / 2  f rees t ream 
momenrun. 

F-17/F-18 procedure wi th  v e n t i l a t i o n  a i r f l o w  sca led  
t o  engine size. Cooling a i r  v e l o c i t y  change deter- 
mined wtth semi-empirical technique. Drag propor- 
t i o n a l  t o  product of a i r f l o w  and v e l o c i t y  change. 

Scaled F-17 7" ramp bleed d a ~ : 1  used f o r  a i r f l o w  and 
bleed a i r f l o w  ve loc f ty  change. Drag propor t iona l  t o  
product of airflow and v e l o c i t y  change. 

Calculated with S ibulk in  method. For Mach numbers 21 
only t h e  s u b c r i t i c a l  i n l e t  s p i l l a g e  drag is  assigned 
t o  t he  propuls ion system. The c r i t i c a l  s p i l l a g e  drag  
i s  assigned t o  t h e  a i r c r a f t  minimum drag. 

Nozzle is  a 2-D ADEN type.  Throttle-Dependent 
drag is assumed neg l ig ib l e .  



The effects of the tropical day atmosphere (T = 30Ei°K, sea level) on installed 

engine takeoff perfarmance was supplied by G. E. 

4.6 INSTALIXD ENGINE PERFORMANCE 

Engine performance is proprietary to General Electric and LB not presented in 

this report. 

4.7 ROLL REACTION CONTROL 

In the hover and transition flight regimes, roll control is provided by wingtip 
mounted reaction nozzle jets, The roll reaction control system is composed of left 
and right-hand subsystems. Each subsystem consists of (I) a feeder pipe which tram- 
fers bIeed air from the enghe fan duct through the wing to (2) a wingtip pienum chamber 
and then exhausts it through (3) a reaction nozzle to create thrust and rolling moment. 

The reaction control subsysten~ for each wing has been designed for a rnaxfmum flow 
rate of 7 .2  kg/sec (16 Ib/sec). The fan duct air is supplied at a stagnation tempera- 

ture of 516°K (930°R) and pressure of 4 .3  bars (62 psia). To ensure low feed pipe 
preesure losses, the pipe is sized so that the pipe £tow is M 0.4 at the maximum flow 

rate. To keep pipe diameter reasonable, a dual parallel pipe system is used. The 
pipe inner diameters are 8 . 3  cm ( 4 . 0  in . ) .  The wingtip reaction nozzle is of the con- 
vergent type and has an exit diameter of 11.5 cm (4,5 in.) , The maximum reaction 

thrust from each wingtip nozzle is 420 kg (925 lb) . 



SE CTION 5 

AIRCRAFT DESIGN 

The aircraft structural design and varlous systems were investigated to a limited 

depth. The intent was to insure that the configuration was sufficiently credible to 
justify a more detailed aerodynamic and propulsion integration analynis. 

5.1 STRUCTURAL DEflGN AND ANALYSIS 

5.1.1 Design Criteria 

Current military specifications were reviewed to establish th.6 applicabi~ity of 

available requireme~lts for structural design of V S T ~ L  aircraft. Reau.Iis i-dicated 

that although current MIL-SPEC requirements provide adryuaie sriteris. fc 5- operation 

as a conventional airplane; appropriate criteria must br 6civeloped to provide a basis 

for structural design during both hover and transition  ides of flight. Criteria for 

hover require specification of thrust forcea, inertia efPu;%~, nngins gyroscopic effects, 

and crosswind forces, Control requirements for maximuin load factor maneuvers and 
for  maneuvers induced with maximum control ddet:tion must be defined to provide for 

evaluation of the effects of rapid changes in trim, moment shifts, and interactior.8 

between aerodynamics and propulsion forces during transition. 

The thermal environment of structure in areas exposedl to propulsion system 

effects has been reviewed utilizing F-18A design experience and available data. 

Temperature limitations were established as follows: 

1. RALS and Engine Compartments were designed with appropriate cooling 

flows such that the temperature distribution did not exceed the design limits 

of adjacent structure, Engine cooling airflows were sized such that alum- 

inum airframe components were not exposed to temperatures in excess of 

120°C (250°F) with titanium used in areas where higher temperatures may 

be experienced. Steel structural components wore not exposed to temper- 

atures greater than the design thermal level. 



2, Reaction cohtatrol duct walls were considered exposed to the s m e  tempera- 

ture us bleed air  fro111 the Pan duct; approxlrnately 240°C (470°F), 

5 .1 .2  Structural Materials 

Advanced composite materials were selected as the primary materials of con- 

struction for both strength and stiffness-critical applications. Not only w e  light- 

weight structurul components possible tI11~oug'h c3fficiently tailored properties imd higller 

specific strength/stiffnea~, but lower fabrication costs result through integral ol: one 

piece design concepts, 

Advanced ~ ~ ~ e t n l l i c  materials vrere selected for areas of extremely localized load- 

ing as well as severe thennal, acoustic, moisture, and co~l*osive environmentaI/ 

operational conditions. A proper blend 01 tilb application of idurninurn powder me td- 
lurgy , t i tmiu~n superplastic forming pius diffuaioll bondillg will re mlt  in lightweight, 

low cost, and durable advanced metallic nlaterial airframe components in the 1990's. 

5.1.3 St~*uctur;tl Description 

The aircraft structure is s1:owz in Figure 5-1. Major strucfxrd coillponents 

include a fuselage with irttegrakd nacelles, side tie wing pa11.~1s, mid twin, pivoted, 

vertical  stabilizer^ mid canard panels. 

Fuselage St~uctul=e. The fuselage is n semi-monocoque structu~e of stressed 

slrin panels stabilized by edge members, bulldle:lds, and frtunes. Frame spacing is 

bnsed on trade studies m;lcle for both honeycomb sandwicrr mid integrally stiffexled sldrl 

panel c1esig~:lls. Typical of lllost nirfrmle designs, a common frame spacing is not 

:ichievable due to su~pport fr:mle or  con~part~neni bullillearl Iccation constraints. Ilow- 

ever, studies have shown that by optimizing i~az~eycomb panel. tl~ickness or  integral 

stiffener hcights within :uy specific bay brrscd r n local loading conditions, ncm opti- 

mum patlcl weight is obtainable lor frame spacings varying fro111 36 cin (15 in) to 102 

cm (40 in). .4n average frame spacing of approximately. 51 clll (20 in) has been selec- 

ted for this design based on syston~ routing support and battle damage considerations. 



For ease of producibility the fuselage is divided into three major sections: a 

forward section from FS 25 (10) to FS 610 (240), a center section from FS GI0 (240) to 

FS 1020 (401.5), and an aft section from FS 1020 (401.5) to FS 1453 (572). 

The Forward Fuselage contains rndome, radar bay, nose landing gear, cockpit, 

remote augmenter, and avionics bay. 

The Center Fuselage contains all  main body fuel tankage and access provisions. 

Fusc3lag.c fuel is contained in two balanced fuel bays, with the forward bay bounded by 

bulkheads at FS 610 (240) and FS 793 (312) and an aft fuel bay bounded by tlie FS 793 

(312) and FS 065 (381) bdiheads.  The Cenhr Fuselage also contains left #and right 

hand cmard toi-que tube and actuator support provisions, left and right hand upper  

missile bays, E CS bay, leading edge flap actuator, wing forward attach provisions, 

left and right hand auxiliary cnglne inlets, and the forward engine bay bulkhead at 

FS 1020 (401.5). 

The Aft Fuselage contains engine bays, enginr~ mount provisions, engine bay and 

engine accessories access doors, t lyd~~tul ic  reservoirs ,  and wing attach provisions. 

Wing Structure. The wing: consists of left and right hand panels attached ta the 

fuselage with twenty-SLY shear pins, thirteen each side. Forward and aft-most 

attachments at FS 968 (381) and FS 1342 (528.5) react  vertical shear only. Attachments 

at FS 1020 (401.5), FS 1109 (436.5) ,  FS 1171 (461. O), ES 1226 (482.5), and FS 1287 

(506.5) react both vertical shear and wing bending moment. Wing drag loads are 

reacted by separate fittings located between FS 1109 (336.5) and FS 1171 (461.0). Each 

wing panel consists of a fuel containing main structural box, leading edge flap, seg- 

mented trailing edge flnperous, and afterfairings which house the mniii landing gear, 

integral fuel tanks, inboard flaperon actuator and avionics. 

The main structural box is a thicl; sldn, rnultispar construction fabricated of 

advanced composite mnterinls. Spar axes are swept three and one-half degrees 

aft to allow itiline drilling of all nritlg bending moment attach holes. Outbon~d flap- 

cron actuators and bootstrap members  at WS 305 (120) are located below the  wing 

negating the need for internal r ibs  within the wing fuel bay. The front spar supports 

lending edge f l i ~ p  rotary actuator loacls thro~ig.11 canted r ibs attaching to a forward 

a~urilimy spar. The area  between the forward auxiliary spar and front spar is 

used foil routing hot air ducts to wingtip reaction control nozzles. Upper surface 

access doors are provided forward of the main structural hoses for acpess to 



wing fuel ~ys tems .  Main landing gear trunnions attach directly to the FS 1109 (436, 5) 

main sparg. 

Leading edge flaps and trailing edge flaperon panels are of h'L1 depth huneycomb 

sandwich construction fabricated of advanced composite materials. Metallic inserts, 

cocured with the panel, are  at hinge or actuator attach lacations. Each afterfairing is 
cantilevered aft of the main wing structural box, supported with moment ties to the 

r e a r  spars and vertical tension ties to the main spars through the wing lower surfaces, 

Sidewalls on each side of the main landing gea;. wheel well act in differential bending 

to provide both vertical shear and side moment reaction. An integral fuel tank Lo 

contained between FS 1349 (531.0) and FS 1483 (584.0). Vertical. stabilizer torque 

tubes are supported between a€t fuel bulkheads and frames at FS 1504 (592. O),  with 

vertical stabilizer actuators and bootstrap beams extending forward along the upper 

fuel decks. Inboard flaperon actuators are mounted to the inboard wheel well side- 

walls. The area between FS 1504 (592.0) and FS 1600 (630) houses avionics, 

Canard and Vertical Stabilizer Panels. Left and right hand canard and vertical 

stabilizer panels are similar in construction. The panels a r e  single spar, full depth 

honeycomb, bonded assemblies with advanced composite facings. A single piece, 

machined steel detail forms each bending/torque tube, root rib splice, and inboard 

spar segment. Advanced composite outboard spm segments and composite root rib 

details can be cocured with the steel details after which metallic leading and trailing 

edge darts, core and facing layups can be added and each assembly cocured in a final 

operation. 

5.1.4 Structural Analysis 

The basic structuraI concepts w e d  are standard military aircraft approaches and 

can be adequately substantiated using current military specifications established for 

structural integrity. Construction of the aircraft is such that compliance with .the 

appropriate manufacturing and pro ce ss requirements together with adequate stress/ 

damage tolerance analysis and static/f atigue te sting will result in unrestricted service 

operation within the streng-th envelope. 

Twin  aftorfairings which are installed on the inboard trailing edge portion of the 

wing carrying 10,700 N (2,400 lb) of fuel could create a potential flutter problem. 

Motion of each afterfairing would be further complicated by forces acting on the vertical 

stabilizer placed upright on the r ea r  portion of each ,afterfairing. 



Investigation of the flutter problem was initiated by conlparison with u similar 

lmo\vn configuration. In the past;, Northrop experienced a possible flutter problem in 

designing the X-XIA wing, which was equipped with a laminar flow control puz~ping 

syshm nactlk in the inbvard t:"ling edge portion of the wing. Comprehensive 

m~113JyticaI tvorIc dong with flight tests were performecl to evaluate reduction of El~t-ter 

speeds of the  airplane due to the nacelle pitch fi*equency in  the mti-symmetric mbdal 

behavior. 

Modal characteristics of the twin afterfairings on the study aircraft wing were 
estimated using data from an osisting finite otcmetlt vvitlg mcdct. The lowest urzcouplcd 

afterbody pitch fl*equeac;y was found to be 14 Ha, considerably hig'l~er than 8 Hz of 

the X-21A nacelle pitch frequency. Since the atla1ysis was conducted using a low 

elnstic-to-~igid ratio delta ivi11g strfictt~re, the frequency in the actual design could 

be 30 percent higher than the above n~eiltioned value. Consequently, this w u l d  

increase the flutter speed. 
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5 . 2  FLIGHT CONTROL SYSTEM 

5. 2.1 EIovcr and Transition Regimes -- Normal Operation 

One of the most  frequent complaints about previous VSTOL aircraf t  i s  the excessive 

pilot workload during the transition between aerodynamic and powered-lift conEiprations 

and during the hover period. The aircraft described in this reporf l ius  11 paranleters  

:~vail:~ble at the begll~aing of the landing transition (and end of the talicoff t ~ ~ ~ m s i t i o n )  to 

control its forces  and moments, and 8 controllable paranlcters  when solely in the 

powemd-lift c\otbigurntion. Such a large numb,or of controls, along wit11 their mutual 

i~lteructions,  ivould nl~tlre extraordinary d e r ~ ~ m ~ d s  on tfle itbilities of even n highly-okilled 

pilot. Consequently, the control system shown conceptually i n  Pipuse 5-2 ivas con- 

ceived lo reduce pilot ivorWoad. Its nzdn l'enturc s are: 

I. The nulnlxr of cockpit coiltrols i s  roduscc! to the Familiar five (pitch 

and roll stick, rudde;. pedals, tmci lett  and right tllrotfilc controls) plus 

a new sixth control which commancls vertical speed; 

2 .  The cross- is coupling between controls is greatly reduced; 

3. The aircraft; response to coclqit  controls is ''natural"; i. e. , 
similar to its response wfieil in the convc ntional aeroclynlarnic-lil't 

mode. 

4. The transition pllase is fully automated; 

5, The system readily lends itself to expansion to fully automated landings 

and takeoffs, depending upon tfle quantity of earth-t*eferenced data 

av~lilable. 

The heart  of the control system is the Crossfeed Matr is  anc t  the two Augnlentation 

blocl.:~. These blocks, in  the Mulual mode, acllieve the following. 1) m:dte pitch rate 

proportional, to lore-aft sticlc ~l~ovcxnonts; 2) make rol l  attitude proportional to la teral  

s t ick clisplacement; 3) Maintain zero 1abraJ. speed (via bank wgfe) \\then no stick 

input is present; 4) n~aIie altitude rate propo~*tional to closure t ime of. the Speed COH- 

t ro l  svritch; 5) make fore-aft speed proportiollal to throt-tle levcr  position; G) i ~ ~ d c e  

heading-rate propot-tional to pedal inputs. Appropriate crossfc ed t e r ~ n s  : L I . ~  provided 

to  minimize coupling between the three-attitude command m d  2 speed c o m n ~ a ~ d  loops. 

Thc details of t!le Attitude Augmentation block a r e  s11oiv11 in Figure 5-3. F0r.L - 
aft stick motions, Asp, in excess  ~f tlilleshold "b" conlttintld pitch ra tes  proportional to 

stick displaccn~cnt  (or  force) fro111 neutral. In the tleutral position, the system i s  a 

pitch attitude hold system. The high gains used For K 0, Kq and ZCnN will result in a 



rapid, wide-bandwidth system. The prefilter slows'the system down to a level com- 

fortable to the pilot and maintains this response for  a wide range of flight conditions. 

Not shown is the gain scheduling which may be required as a function of 

dynamic pressure o r  an appropriate alternate parameter. 

Lateral stick movements above threshold "a" command attitude proportional to 

force (or displacement). For stick inputs belcw the threshold, the loops act to drive 

lateral speed to  zero. This keeps yaw accelerations caused by lateral deflections of the 

forward nozzle from causing lateral speed changes. The lateral  accelerometer signal 

a including its g sin + component, is approximately integrated by the large t ime Y' 
constant lag to form an approximate lateral speed signal VAppX. This signal is then 

passed through a gain and an integration and forms a roll command signal.. Appro- 

priate gain scheduling will be provided. 

In +oe aero-lift regime, the rudder is driven to achieve turn coordination. In the 

powerea-lifi regime, pedal movements command a heading rate-heading hold s y s b ~  

similar  to the pitch axis. 

The details of the Speed Augmentation block, which controls fore-aft speed and 

vertical speed, are shown in Figure 5-4, while Figure 5-5 gives the overall view of 

events occurring during the landing transition. Fore-aft speed is controlled a s  follows. 

A s  the airspeed falls below a certain value, the Land-Takeoff switch is transferred to 

the land position and a 90 degree step is applied to Rate Limit 1, whose output, about 

5 deg/sec, generates the main command to rotate the rear nozzle to 90 degrees. A s  

the airspeed drops below abrmt 1.1 VSTALL, SW1 t ransfers  to the -0.1 g position and 

comn~ands a -0.1 g iongitudinal deceIeration. The acceleration e r r o r  signal, softened 

by Rate Limit 2, then modulates the rate at  which the  r e a r  nozzle is deflecting. 

During this period, only the rcar nozzle is being driven, but thrust i s  also 

available from the forward nozzle, whose angle is essentially vertical at this time. 

After the aircjlaft decelerates to about 30 knots, SW1 returns to  the center 

position and the deceleration command is removsd. When the r e a r  noszle is within 

3.0 degrees of vertical (8 + h R  > 80') o r  Va < 56.2 km/s (30 ids), S F 2  t ransfers  

and n ground speed o r  airspeed hold loop is activated. SIjeed errors out of KU drive 

the fore and aft nozzles together. The pilot c a n  alte r the autom &ic deckle ration 

profile at any time by positioning his throttle levers, which now vary fore-aft speed 

via nozzle angle position, rathe: than by tlllvst level as in conventional flight. 



The pitch attitude signal fed to the fore and aft noezlo-angle con~nliuid s!pnls 

n~nintains the nozzle unglas fixed wvittr respect to oartll (not rtlrcrirft body iuris) imd 

tlius decouple pitch attitude front the fore-aft speed locg. The speed el-ror and 

longitudinal acceleration sf gxrals also decouple the modes, but the pitch sf &mnl yro- 

vides more anticipation in the event it is needed. 

Operation of the vertical speed portion of tlie Speed Augmentation block i s  :IS 

follows. Prior to the transition initiation point, SW4 is in the position shown and tlic 

K4/S block is synchronizing any altitude rate m d  normal accelert~tion signals to zero. 

At the beginning of transition, SW4 transfers to the center positioll and the conllllandcd 

t l l~wst  magintude, TRC and TLC, is varied to mrutiltilin the altitude rate esisttllg at the 

beginning of transition (which is stored on K4/Sf. Wlen the rear i~ozzle is within 10 

degrees of vertical or the dt i tude becomes l e s s  t11.m 15 .3  m (50 ft). SW4 moves to 

position A and the output of t11e K ~ / S  blocle decays to zero to cammiu~d zero sftllc t-ate. 

The pilot now establishes tlte landing sink rak with h i s  Speed Colrln~nrld swviklr. This  

is a 3-position spring-loaded-to-center switch (the dive braice swvitcl~ C:UI h used for 
tl Is function) which is active during all lmd[ng and takeoff transitions. TSlc com- 

manded vertical speed Is pl-oportional to thc duration the switch is hcld off-cct~tcr, 

Since the thrust lcvel rcquircd prior to transition is small (cspccinlly il' 3 stccp 

clesccnt angle is being ilo\m), and a large thrust lcvel is rcquircd during ilovcr, a 

nleans must be provided to maintain the thrust diflorcncc. Tllc output of intcgrntor 

K l h / ~  can provide t l ~ c  rcquircd difference, but sincc its input is thc altitilclc ratc 

error, relying solely upon the Integrator forccs the a i r c r d t t s  si.111; rate to bc grcatcr 

than the conlmiuldod value. To reduce tho cleinal3s upon the integt*utor, :L bias \\pl~ose 

~nagnitude increases 9 s tl~c rear nozzle dc f l ec t io~~  iticreases i s  introducecl : ~ t  thc i n k -  

gratorf s output. Tlle bias woulcl provide ;d~out 2/3 of the inc 1-eased t l ~ l r ~ s t  level :-cqui rccl, 

with the iutegrntor providing the r.emainde~*. 

Nozzle motions a~v;~y from the vc rtical are passed through absolute valur ci I*- 

cu its mld inc rcnsc the thrust level, tllus providing additiollal decoupling (ovc I- \\rllnt; the 

normal ncce1erametP r provides) between changes in fo l-c-dt speed and a1 tittlde rate. 

Note that ill the above discussion, parnnleter values such n -1 g, I5.3m (50 fcct), 

1.1 \rA, elc., were chosen arbitrarily Lo illustrate LIic colltrol systeia concept and to 

provide ball-parli estimates, 3lorc csact values will be obtnincd fl-om sinntlslor* 

s~ud ies ,  Note also that s\vitclling details to lock thc system oul clui-ing combni 



zonditions wlion, for  esample, VA illigllt drop below 1.1 V a r e  not shown. s, 
Finally, it was assumed that a l l  of the pilot's coclipit controls only inove a s  it result 

of his inputs, iuld that electrical signals generated by tile control system do not move 

the bilatvs controls. 

During the talieofl: t rmsi t ion ,  the reverse  sequence occurs  with sorne of the 

switching occurring at sliglltIy different points tlian shown in Figures  6-3 m d  5-4 

which a r e  druvm to mainly show a landing seprence. Since talieoff i s  generally l e s s  

demmlding than laxiding, Euily au t o m i h d  fakeofis can readily be provf ded wvitl~out 

having to add addition;il enrkh-referenced signals. &e easily inlplemcnted profile 

wrigl~t be to con~m:u~d a 0 . 1  g up\v:trd accclerat io~l  for  about 4 01% 5 seconds, iuid then 

n~aintaini the existing climb rate  ~\rMlc commanding. a forward accclcrntioils of about 

0.1 g until stall specd is cxccedcd, 

Figure 5-6 sllows the details of tlie crossfeed Matrix, Its 7 inputs, which are 

the various error sip:lls froin the two a~rgmenhtion blocks, a r c  dist~*ib~iCed to i t s  11 
force m d  angle outputs as shown. To iIluslrate its use, consider input 6 ,,, wldcli is 

commanded e1ev:~tor position. Reading doml tlie fifth column to the f i r s t  non-zero 

element, a .,, ruld then reading to the 1eR end of the row, we see that the primary 
ba 

effect of f i cc  in tlie powered-lift regime is on thrust  from the forward nozxIe, Tf . 
Continuing do1v11, elements as and nS show that bee also producss pitching mom- 

75 8 6 
nlents to n lesser dcgrcc by varying tlic thrust fro111 tlic rcu .  nozalcs, Tnn TRL+ 

? 

FinalIy, n i ~ ~ d i c a t e s  that 6 ec also cirives the elevator,  whose cffectivc~less goes to 
9 5 

zero  :IS airspeed goes to mro. Ll co~tlbat conditions, 5 only affects the clcvator, 
CC 

Altliougl~ tlic nlittris elenients a r e  sllo\\il as cunstm~ts ,  ~ i lo s t  of tllcsc elements 11avc 

f i r s t  o r  sccolld o~vde I+ del lo~~linators  representing the tr:u~sfcr f ~ u ~ c t i o n s  of ilie surface 

:uld nozzlc nctuators, :uld tllc cilgine dynamics. Also, gain scl~eduling might be 

required for so111c of thcse gains. 

The Otitcr Loop Control Laws blocli :uid tlic Auto-PvI:ul s\\ritch in Figure 5-3 ptv- 

vide Ihc nic:ms of r c ~ ~ d i l y  adding modes such as Altitude FIold, VOR, glide slopc ruld 

localize r and even a fillly xutomated l u ~ d i n g  moclc . The nlaiii rt. striction a1 the sc 

~Gocles i s  the :~v~iI:tbiJily of t11e appropriak c ;~ l ' t I~ - r e fc '~~ ' e~~ced  ~ I C I  air-(l:~ta signals. 

AItllougli Ihc Auto-~IUI s\vitcIl is shown :IS 11:rving id1 s f g ~ ~ n l  pnths citllcr T~*oni the pilot 

u r from the Oukr Loop Contl-01 La\vs 131ocli, thc acl1ia1 l ~ : ~ i * d \ ~ n ~ . c  could easi ly  h 

i rnplel~~rntcd to 11~lmit split-:nis ollcl.ation. 



5.2.2 Engine Failures in Hover o r  Transition 

Since the maximum thrust level from each engine is less than the landing weight 

of the aircraft,  an enghie loss in a certain range of altitudes with airspeed below some 

critical value will result in loss of the aircraft. The problems now became one of 

ejecting the pilot before the aircraft gets to an attitude where ejection is impossible. 

Consider f i r s t  the effeht of an engine loss on pitch attitude. Referring to the 

sicetch in Figure 5-2, just pr ior  to engine loss the pitching moment due to TF was 

exactly balanced by the moments due to the r ea r  thrust, TRR and TRL* Since TF i s  

derived by mixing air equally from both engines, a loss of one engine will half the 

pitching morrrent from the rear and forward nozzles equally, so even without the atti- 

tude hold loop very little net pitching would result from an engine loss. The engine-out 

situation for the roll axis is s h o m  in part A of Figure 5-7, which assumes that the 
left engine is lost  and that t h e  mass flow producing RL and RR norrndly comes equally 

from each engine. Therefore, loss  of one engine will half the nlasimum value of RL 

and RR available. For  zero rolling moment, the following must be achievable: 

T ~ ~ ~ ~ *  t h e  rnaAmum thrust Prom the right engine, is used bccausc the control sys- 

tem will increase thrust levels to maximum in attempting to ha l t  the downward 

acceleration. 

For TRRMAX = 4990 kg (11,000 lbs) and J1/I2= 9.8, thc force level rquircd at 

each wing tip with one engine out to prevent roll divergence must he a t  least 

254 Icg (561 lbs). 

Consider now Figure 5-7B which assumes that the inass flow to each reaction jet 

is fully obtained from the opposik engine. Therefore, loss  of the left engine will 

result in no output from the right reaction jet, but the maxinlurn force available from 

the left jet will be *mchanged from the no-failure case, and equal to twice the value 

available when each reaction jet gets llalf its a i r  from each engine. Using 



T~~~~~ = 4990 kg (11.. 000 ibs) rl/lz = 9.8, RLMAX must exceed 508 kg (1122 

lbs) to prevent ro l l  divergence. So, from a rolling nlomcnt consideration, eithc2 

ducting arrangement producas the same result, but the situation shown in part B of 

Figure 5-7 rcsults in additional upward forcc of 508 kg (1122 Ibs), This reduces the sink 

sink r a t c  buildup and gives the pilot valuable extra time to eject. 

If the required r o d i o n  jet maximum force levols cannot be provided because of 

the thru-wing restrictions on the maximum size of ducts carrying air to t l ~c  jets, thcn 

a lost-engine monitor must bo provided ~vhich will warn the pilot to eject. 

Even if 2,dficicnt roll  control power is  nvailahle, thc monitor is probably still 

dcsirablc to minimize tho time required for the pilot to recognize the resulting rapid 

lncrcase in sink rate. 

5.2.3 Convetttional Flight Rcdmc 

Thc aircr ' f t  is desigrtd to operate with 15 percent negative sf ' wargin in 

pitch. With this level of static instability, thc aircraft catmot be f lo,  ;~,ugmentecl 

with mcchnnicnl controls, I ~ ~ I I C Q ,  a full authority fly-by-wire stnbL,it+.t and commatid 

nugrnentation system (SCAS) with proper redundancy is  us& to provide good flyil~g 

qualities and to ensure flight safety. 

Mrith st3tic instability, t h e  amount of control power available at high angles of 

attack is insufficient to coullteract moments due to inertial and aerodynamic cross- 

coupling, cnginc gyroscopic effects, and t l~ lus t  offset. I-Icncc, higll angle of attack 

maneuvcl-'ing capability has to bc r o s t r i c t d  to provetit ut~co~ltrollcd departures from 

ivilich the aircr,aft c~lnnot be recovered. An n~'lomatic dcp:lrture prcvcutiot~ systein 

has been dosiguccl for  an aircr,zft having n 15 percent negative static margin ntld n 

wing platlform silllilar to that used for  the IIAVSTOL conccpt. The automatic dcpnr- 

turc prevention system is integral wi th  the SCAS so that thc pilot can use filly c0111bi- 

nation of control illputs without the danger of the aircraft  bccoming uncontrollable, 

:und he  cnn Ely with "head out of the cockpit." Nonlinear controi laws are  u s d  to 

alasimiz 2 tho lift and turn rate capability. For  s t l~ ic tu ra l  protoction, the SCAS 

iiillits thc rnaximum load factor that tilt pilot catr cotntuatid. 

Thc perforrnnt~ce at low dynamic pressures i s  etil~anced by using the thlnsl' vcctor- 

ing capability cf the t r im tab ( s e e  Figure 4-1) . Tile Thiwsk Vector C o ~ ~ t r o l  System (TI'C) 

is dcsigncd il~tcgral with SCAS and is  phased in autoi~~ntical ly a l  lo~v d y ~ ~ a m i c  pressures. 

if'ith additionnl control power available, tile angle of attack flight envelope and roll rate 



capability are substantially expanded. The inputs to the TVC are provided, along with 

inputs to aerodynamic control surfaces, by pitch and roll stick displacement. The pilot 
task is thus made easier by n-t requiring extraordinary control input. 

An extensive air combat simulation was recently concluded, using an aircraft in 

which this flight control system was modeled, in  which the pilot on a moving base 

simulator was engaged with an interactive target. This target, computer controltd, 

took defensive as well as offensive action. The resulting maneuvering was very 

realistic, with the aircraft driven to its performance limits. In a total of 500 combat 

engagements, not a single departure from controlled flight occurred. 
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06  TABLE 5-1. GROUP WEIGHT STATEMENT 

SHORT GROUP YL IGWY STATMEIT  
uvrlr rcaw ~ w # o t ,  (cn) DM( 

b 

STRUCTURE 'ObtL 

1 . 1  UIMG (inc*. JCiO Lb LG. Nacelles) 
1 ,  5.m Canard 

Lbf 
7,940 
2,868 
160 
3 00 

2,493 
1,035 
1,084 
7,011 
5 ;  667 

a. 
1, 

I .  

r ,  
7. 

3 . 

WAIL (Vcrticel) 
1001 

C L I ~ T I N G  ~ c r n  
C H G I ~ C  S ~ C T I P ~  (inc. Exh.Flap) ' 
r R D r u L s l m  

I W t l W C  tWS1ALL h t l O h  

#. 

- 

A t C E 5 5 ,  GR. DOXCS b D R I V E  IN 8 

Kgf 
3,603 
1,301 

7 3 

% TOW 
2 6 . 7 4  

10. 
-, 

I I .  
2 .  

13. 

4 ,  

IS. 

$ 6 .  

1 7 .  

CKMWST S Y S l W  IN I1 
LMGIttC COOLING IN 8 
I M E R  I N J C  T I W  

CNGIMC CD~TROLS I N  8 
S T A l l l H G  SYSTEM IN 8 
CaorcLira INST& 

5UI)KC UIhTCUCHl 

LUIRICITIOJ SYSTIV IN 1 8  

136 
1,131 
470 
492 

3,180 
2.568 

... 

5-2 3 

23.37 



5.3.3 1Moments of Inertia 

Momants of inertia of the baseline configuration were calculated for two loading 

conditions a i d  ni8e given in Table 5-2. 

TABLE 5-2. MOMENTS OF INERTIA 

Loading Co~lditioli 
- 

T111te-Off Weight;, 

13,(i08 Itgf 

(30,000 Ib) 

Zero-Fuel Weight 

I 
YY 

(Pitch) 

90,027 

G G ,  401 

1 12,789 1 1 1 1 . 2  I K..$ 
0,433 83,806 sl. ft 

140,325 

IO3,SOO 

=ICY 

(lioll) 

19,935 

14,7 03 

I 
Z Z 

(Yaw) I'nits 

1'73,102 

131,361 

Kg. t n  
2 

sl. ft2 



5.4  CREW STATION 

The design and development of a crew station for  use in a VLSTOL a i rc raf t  mus t  

identify and solve the unique problems associated with vertical flight. 

In a vertical takeoff and landing (VTOL) aircraf t ,  the cr i t ical  function of pilot 

operiition at the different attitudes is of primary concern. The pilot must  be &forded 

excellent visibility and comfort so that he cm operate his a i r c r d t  at the extreme 

attitudes required in the liftoff and touchdown maneuvers. The unique problem facing 

VSTOL operations in the necessity to maximize pilot vision while still maintaining a 

good supersonic area distribution. An overnose vision angle of 15 degrees in can- 

junction with overside visioil of 40 degrees was decrned necessary for  operation dur- 
ing liftoff and toiio:~down as well as transition. High attitude angles, in the order of 

20 degrees, are obtained during transition and approach, thus requiring good forward 

and side vision to maintain contact with the landing platform. 

A s  this  VSTOL a i r c r d t  is a high performance fighter, it is essential  that the 

pilot has good af t  visibility (360 degrees) and maintains a high lcvcl of proficiency 

during air combat high "G" maneuvers. The requirement for high ''G" tolerance 

tends to conflict with VSTOL visibility. Grea ter  proficiency rcsuIts fro111 a 

reclined s e a t  position i n  the fo rmer  case, and an upright position fo r  the 

latter. 

Pilot safety is of pr imary concern during VSTOL operations with a necessity that 

tlie a ircraf t  provide an escape system for all modes of flight. This  escape cr i te r ia  is 

referred to as the "pilot ejection envelope" mid, in the case of VSTOL aircraf t ,  must  

cover the flight regime from low altitude no speed to high altitude high speed. In some 

cases, the extreme attitude of the aircraf t  will require some kind of "vertical scelung 

seat" so that altitude may be gained befort? chute deploynlent. During liftoff mlcl 

toucl~do~vn, aircraft control is supplied by the engine power system and s a  is clepcn- 

clcnt on t h e  engines operating. The twin-engine configuration has an inherent level 

of safety in an engine-out condition i.f the remaiatng engine thrust can be redircclcd 

through the center-of-gravity and the rcaction zolltrols system rclnnins opcrntiaunl. 

One of t h e  most dcrnanding taslcs a pilot has is during the Inncling annrl tnlcc-off 

phase of flight. This phase i s  even more demanding i n  VSTOL flight when it is 



necessary that the pilotfs total attention be focused outside the cockpit, Also a-so- 

ciated with this critical phase of flight is a high level of pilot tvorklaad required 

inside the cockpit monitoring critical controls and positions to insure safe opelvationa. 

The aircraft attitude and speed must be displayed to the pilot during the transition 

flight in order that he can stay witliin the safe flight envelope, and during the landing 

phase so that he can judge his  relative speed and position tvith the landing craft. 

Engine health nlust be monitored to asuu,re sufficient thrust  for  safe vertical flight; 

consequently, any instrument operalior~ +hat must be completed during the vertical 

flight mode must be oper:~ble from either the control stick or the throttle. 

T l ~ e  horizontal attitude VSTOL aircraft incorpol-ate s a Remote Augmented Lift 

System (RALS) which divides the engine airflow into separate e.dlausts forward and aft 

of the center of gravity. This aircraft utiiizes a liftoff and touchdown concept wllich 

features rotation to a high attitude (20 degrees) prior  to application of full VTOL tlll*ust. 

Because this angle will be addif5ve wit11 the seat back algle, any large degree of sea t  

back angle will result in a reduction in visibility with an asswiated loss in or ienta t io~~,  

Northrop studied two crew station concepts Eos the horizontal attitude aircraft: one 

with a Eixcd seat backangle and tho other with a high "G" articulating seat and selectcd 

the former for the present. 

The fixed seat concept has an 18-degree seat h a c l ~  angle, center control stick, 

and 71 instzvrnentation system that is operated from the sticlc o r  throttle. A seat back 

angle of 18 degrees was selected to best fulfill the VSTOL reqtu~+en~ent  for  pilot. atti- 

hrde and visibility as well as the combat 1.eq~til-emcnts for high "Gt' tolerance. This 

position seat alIows for  a conventional center control stick with m a s h u r n  size bl stru- 

mcnt panel. 

The instrumentation system incorporates cathode ray  lubes for displays with 

selection and control being made from the control stick and throttle. This system is 

referred to a s  ''Hands on Stick and Throttlett (I-IST) and i s  currently ' cing installed in 

the F-18A aircraft. HST allows the pilot to always remain in conlpletc control ol his 

aircraft while operating in the critical. modes of flight; thus, for this reason, it is 

being cor. idered for application on each of thc crew station conccyts. A gcncral ar-  

r,mgcmcnt of thc crew station is shown in Figure 5-8. This ar rangcrn~nt  mects Navy 

rcquirenlents of visibility and pilot size; i. e., 3 percent to 98 percent. 
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18 DEG SEAT BACK ANG LF 

PICLIKE 5-8. FIXED SEAT - GENERAIL AR1VINCENlIN'l' 

Thc escape systom utilized it1 this crew stntiau is nr, :idkrin;lrci' 0=O ejcctiotl s c l t ,  

The ~nnsimrum aircraft attitude of 20 dcgrccs allot\ls safc ,*rcur cjcction during liftnfl 

and taucl~dawn, 



5.5 SUBSYSTEMS 

Primary study effort f o r  aircraft subsystems was to define preliminary concepts 

to support the configuration development. Specific systems such as landing gears and 

propulsion installatian were evaluated in  more depth than other systems since they had 

a major impact on the configuration development. Other systems discussed below 

include hydraulics, environmeiltal control, fuel, and electrical. General location of 

system components are  shown on the inboard profile drawing, Figure 2-4, 

The propulsion installaticn utilizes two General Electric variable cycle engines 

mounted in t!~e aft fuselage with a single forward Remote Augmented Lift System (RALS). 

A foiir point r r ~ u n t  system is used to attach each engine to the airframe. The air induc- 

tion system consists of rectangular fixed geometry inlets positioned on each side of the 

fuselage f o w a r d  of the canards, internal ducting hrminating at each engine compres- 

sor face, and a plenum with auxiliary a i r  inlet doors located forward of the engine 

conlpressor face. A variable C-D, Augmentos Deflected Eshnust Nozzle (ADEN), 

capable of providing fully vectorable thrust for  VTOL operation is provided f o r  

each engine. Fan discllarge a i r  from 9th engines i s  lnanifolded into a single 

HALS duct that is routed forward to provide voctorable downward thrust for VTOL 

operation. A three point mount system is used to support the RALS r,  ento tor 
and exhaust nozzle. Aircraft accessories consisting of a generator and hydraulic 

pwnp are motmhd on and driven by the engine gearbox which is located on top of the 

engine. Firewalls, fire detection, atld extinguishing s y s k m s  are provided. Access 

doors are located on the underside of the aft fuselage to facilitate engine servicing and 

engine instdlation/removal. Doors on top of the fuselage provide access foll servicing 

and maintenance to the airfraine m ~ d  engine accessories. 

Fuel is carried in two bladder cells in the fuselage, two integral wing tanlrs and 

two integral wing afterhirings. Tho two fuselage cells a r e  engitlc feed tanics, one supply- 

ing oach engine. Booster pumps installed i n  inverted flight compnrtments within thc  

bladder cells provicled pressurized fuel to the engines. Cross feed fuel capabi1it.y i s  

provided. A11 other t d c s  supply fuel to the feed tanks by a~itomatic sequence trans- 

fer of f~rel. Other fuel sys ten~ components include a vent system, fuel quantity and 

flow measuren~ent,  pressure fueling, fuel dumping, m d  e xbrna l  fue 1 prr:visions. 

The environmeniid control systelll conditioning unit f d  locatecl in tllc lotver cenkr  

fuselage forward of tbe engines. The system provides air to the coclcpit for  pres- 

surization and defog, anti.-G suit, cancpy seal and to the aviollics equipment 



compartment for avionics cooling. Hot air anti-icing and rain I-cpellanl/removal 

systems are provided for the windshield. Closed loop air cycle envirolmlentd con- 

trol concepts are proposed imd require further study to define specific system 

arrangements  m d  perforlnance capabilities. 

AirorMt electrical power is provided by bvo alternating curren t  generators, 

t r a n s f o r n ~ e r  rectifiers,  a biittery, and the power distribution system. The gene rat;tng 

system is of the c o n s t a ~ t  hertz t-ype with the generators nlountcd on uld driven by i;hc 

cnginu gparbox. Use of electrical technology concepts such as solid s t a h  swvitcliing, 

mtdtiplexing, power monitoring, Iib1.c optics for sigma1 trulsmission ~ulc l  use of 

advalced pernlanent magnet materials in generator ~tnd e lec t r ic  nlotor construction, 

provide for  an efficient lightweight eleotiical system. 

Dud indcpcadcnt high pressure (8,000 psi) I~yclraulic s y s k  m s  arc used. P~vinl a ry  

flight control nctuntors are dual ;uld ~.oceive one-half of tiieir po\l:er II-OIII each systcxn. 

Each syskn i  coilsists of ~nultiple circui ts  which can be isolated fi.oln l lw main system 

in  the event of a l e d ~ a g e  failure. AII engine-driven pump, sealed pressu~*izcd 

reservoi r ,  return pressure sensing s\vitcliing valves, f i l k  rs, ruld ground power cou- 

liections arc provided for each system. Fligll strength s k e l  tu~cl tilani~rnl lines and lo\\. 

f lanlm ability fluid are used. Adequate po\ver is provided in eucli s.yste1n to c o n t ~ ~ o l  

t11c airplane in kl~e event of a completo failure of a singfc systeit~. 

The landitig gcnr i s  compatible with lllc Ilorizoutnl nttitudc tnkcofl and lauding 

concept as well as tlcccssnry groutld operation requircmenls.  Adcquntc tip-back nnd 

turn-over angle nrc provided, as are wliccl brakes atld tlose r\~l~ceI s tccr i t~g ,  t'oll sliig- 

bonlrl mancuvcrlng and lasi ,  Thc gcnr i s  [lot dcsigued for  stntldard c n r r i c r  catn~sull- 

ing o r  a r r o s t d  Lauditlgs. 

A b~se l i t lc  n v i o ~ ~ i c s  suite, is show11 in Tnble 5-3 wllicll a l so  lists certain options 

and nl tcn~ntivcs.  Options are :ldditions to tho bnseliuc whicli provide siguificnnt sup- 

plclncntccl c:tpnbility and may Ile adopted c i t l~c r  through missionizing n singlo v c ~ * s i n ~ ~  

of Llle nircmft,  o r  in  aLtcn~nto versions of thc figlltcr/attnclc aircraft .  

Tlic nviotlics have been cotlfigwed to support the nnticipnted n~issintis oC thc nir-  

cmft. Thc multi-mode lxclal* has n fill1 air-to-air scnrch at~cl t~-aclc cnpnbility along 

wit11 nn nir--to-grouwfI synthetic-apcrturc high-resolution ground-mapping nnd tnrgct- 

clcsignntil~g cap:~bi!if~. It \i~ould bc cnpnblc ol detecting n 5-squnrc meter tnrgct a t  n 

mnge of 35 lo 45 WhII i n  n loolr-down situntiorl over ? G O a  azit-rluth covcragc n~ld track 

up t o  10 targcls simultnncously, The mdnr wilt illclude r d u r c d  probnl~ility-of-itItcrccl~t 



features and have its emissions controlled by the Observables Control and Management 
syatern, The avionics will be covert, i. e . ,  designed to minimize observables throughout 

the rf, IR and visible spectrum. The air-to-air features and characteristics of the 

avionics suite are only grass estimates at this time and would h e  refined as the capn- 

bilities and characteristics of tho supporting functions (GCI, AEW, Defense Suppression, 

etc. ) and the advanced weapons ;ire better defined. 



TABLE 5-3. BASELINE AVIONlCS SUITE 

COMMUNICATIONS 
NAVIGATION 
IDENTIFICATION 

TARGET ACQUISI7'IONI 
WEAPON DELlVERY 

CONTROLS & DISPLAYS 

DATA PROCESSING 
& DISTRIBUTION 

DEFENSIVE SYSTEMS 
fELECTRONlC 
WkRf  ARE) 

BASELINE 

68KG 
JTlDS TERMINAL (150 LB5 I 
UHF RADIO 
MMW RADIO 
INTERCOM 
INTEGRATED INERTIAL ASSEMBLY 
LANDlNGfTAKE OFF SENSORS 

SYNTHETIC APERTURE MULTIMODE RADAR 
GUN FIRE CONTROL 51 DISPLAY 
WEAPON LAUNCH CONTnOL 

ARMAMENT CONTROL.FIBER 
OPTICS TERMINAL 

CAMAGE ASSESSMENT SET 

'+V:DE ANGLE HEAD.UP DISPLAY 
MACTES MONITOR DISPLAY 

MULTIMODE SITUATION DISPLAY 
VOICE ACTUATEDISIGHT LINE 

ACTUATED & KANUAL CONTROLS 
HELMET SIGHT UNIT 

MISSION COMPUTER 
AIR DATAiFLIGHT CONTROL & 

PAVIGATION COMPUTER 
FIBER OPTlCSlMJX BUS 

CONTROL TERMINAL 

THREAT WARNING RECEIVERS 
ECM!EOCM/IRCM 
OBSERVABLE5 REDUCTION PI CONTROL 
INTERFERENCE & POWER MANAGEMENT 
EXPENDABLES 

TOTAL 

122KG 
(270 LBS) 

45KG 
[loo LBS) 

23 KG 
I50 LBS 

152KG 
(335 LBS] 

410KG 
(905 LBS) 

OPTIONS 

GPS TERMINAL 

TFlTA (IN RADAR) 

FLlR (MULTICOLORI 
TARGET 

DESIGNATOR 
LASE RlMMW 

MMWAVE SENSOR 
TVSU 

INTEGRATED 
IMAGlNGtMAP 
DISPLAY 



SECTION Ci 

AIRCRAFT PERFORMANCE 

Aircraft performance 1s divided itlto two parts, Flight Performance and Takeoff 

and Landing Performance, 

6 . 1  FLIGHT PERFORMANCE -- 
The study perforrr,snce gca1.s were at  least M 1.6 and at 3.048 meters (lU, 000 ft) 

a sustained load factor of 6.2 g at M 0.6 and a specific excess pGwer of 274 mps 

(900 fps) a t  M 0.9. All performance was to  be achieved at 88 percent gross weight. 

Since no mission was odginally specified, a 13608 kg (30,000 lb) VTO gross weight 

was selected f o r  the baseline study aircraft. The aircraft was alsc sized in order  to 

provide an idea of the minimum gross weight aircraft meeting o r  exceeding al l  of the 

pedormatlce goals and able to perform a typical fighter escort mission. All perfor- 

mance is quoted fo r  the aircraft without external stores. Tho two air-to-air missiles 

are carried internally as showti in  Section 2. Four missiles could be carried internally, 

if required. 

6.1.1 Baseline Aircraft Combat Performance 

All combat performance data are presented at 88 percent of talreor'f weight o r  

11,985 kg (26,400 lb) and maximum power. The specific exce, s power performance 

capabilities, as a function of load factor, for  the 13,608 kg (30,000 lb) baseline configu- 

ration a r e  provided i n  Figures 6-1, through 6-3 f o r  3048; 6096; and 9144 m (10,000, 

20,000, and 30,000 ft), respectively. Data for  M 0.5, O.G, 0.9, and 1.2 a r e  presented for  

each altitude with M 1.6 data at G09G and 9144 m (20,000 and 30,000 ft) only. Sustaiiled 

load factor capabilities decrease with altitude for  all  Mach numbers except M 1. G .  At 

each nltihde the sustained load factor capability increases with Mach number i n  thc sub- 

sonic region (M 0.9) and through the transonic regicn 1.2) at 6096 and 9144 m 

(20, 000 and 3 0, 000 ft). The maximum instantaneous load factor available is limited 

by the maximum usable lift coefficient for M 0.5 at all altifxdes and for  M 0. G at 

GO96 and 9 1 4 ~ ~  m (20, 000 ,and 30, 000 ft),  The strrlctural design load factor of 8 g can 

b e  attained at all other Mach numbers. At 3048 m (10, OOti ft), M 0.9 and 1.2, the 

specific excess pol:;cr capabilities a r e  greater  than 86 m/sec (250 fps) at 8 gls. 

6- 1 



Additional flight performnnce data i s  presented in Figures  6-4 and 6-5 In t c r m s  

of flight envelope contours. Figure 6-4 gives speciflc excess power cotltours of 0, 91, 

183. apd 371 m/sec (0, 300, COO and 900 fps) for  1. g flight. Figure 6-5 provides 1 g, 

3 g, li g nnd 8 g sustained load factor  contours. 

The baseline configuration a t  88 percent talteoff weight can accelerate from 

hl: 0,8 to h1 1. Ci at 9144 m (30, 000 f t )  In 49.1 sec with rnma.;imum cap~tbility of 111 1.86 

(set Figure 6-61}. The absolute coiling is appruslmntely 20,000 m (05, 000 ft). The 

1 g specific escess power goal of 274 m/sec (900 fps) at RI 0.9 nt  3048 m (10,000 ft) 

can be attained at 600l; m (20,000 ft). The structural  design load factor level of 8 g 

can  bc achieved from b1 0.76 t o  1.25 at 3048 m (10,000 ft) and at hI 1.15 at 5500 m 

(18,000 ft), The sustained load factor  goal of li.2 g nt M O.G at  3048 m (10,000 ft) can 

be attainecl, 

6.1,. 2 Thrust Loading and Wing Loading Trndes/Aircraft Sizing 

A representative Fighter Escort mission depicted and defined in Table 6-1 was 

selected to deterxnine the baseline configuration radius capability and for the T/W, W/S 

trades sizing studies discussed below. The baseline collfigu ration can pez*fm3m the 

mission a t  870 1m1 (470 11m) radius. A radius of 926 Im (500 nm) was selected as a 

1110 re representative Navy radius ~ ~ e q u i r e n i e l ~ t  fo r  the T/W ancl i V / S  trades. The take- 

off rtllcl l iu~ding dlo\valces  reflect Navy specifised dlowmces. The RALS propulsion 

system is silnilar in so~nc respects in operation to a lif/cruise plus lift engine con- 

cept. Thcrcforc, the nALS burner is treated as t lift engine for  detern~ining the take- 

off fuel  allowance. 

The effects of T/W md W/S variations on the size of a i rc raf t  capable of per- 

forming the 062 In1 (500 m i )  mission can be seen in Figure 6-6.  For  this  matrix of 

sirzd aircrdt, specific e sces s  power mlcl sustained load factor  mat r ices  a1.e presented 

in ~ i g u r e s  6-7 and 6-8 f o ~  con~ba t  .l;veights at YS percent of the talceoB nreigllts of 
- 6 .  'Shc tiirusl to \\?eight vnl t~cs sho\vn in  I11usc subscqucnt Figures :1lmc l>nscld 

r)n inst:ltlcd, intc*rmccli:~lc 111r~ist ( I -~as imum uiinugl'ncnled pr imary thrustor) .l;,nlucs :in 
0 

tropic*:~l day \\.it11 t11c H A t S  in opc~*:llion : ~ t  thc Incan t~shnust  tcml~cl~a turc  of LO93 C 

( sooO~ 'F) .  'l'hc 'l'/\\' r q u i r r r l  for  \'TO has been c~slnblislicd as 1. 1 2  i n  cnt~siclr*~~:~ti~)n 

of providing 0 ,  lg csccss vertical : t ccc lc ra t ia~~ nncl p1-011ulsian inclucrd losscs. T11c 

1-:ltcd TI\\' (uninstnllcd at scn lcvel shtic on n stnnd:ircl d : ~ y  with nftr3rbunlc~) is 1. 53. 

'rllc TI\\' c,f 1.22 1.cq~1ircd Lo gc r fo r~n  il V'rO a t  s c : ~  l r .1~1 011 a tropical (lay, thc 274 



rnJscc (900 fps) spccific cxucss powcr l!nc from Figure 6-7; atlcl the 6'. 2 g s i ~ s t a i i ~ ~ d  

lt.ad factor line fi*om Figure ti-8 (pol*formnnccs goals) hnvc! beet1 superimposed on the 

sizing nmtris of Figuk7c 6-6 and arc shown in Pigtire 6-9. 

Thc intcrscction of thc takcoff line and the 6 , 2  lond factor goal line illdicates 

that :I wing 1o:tding of approsim:itcly 3,060 N/M2 (64 psf) is the highest that coulcl bc 

used to providc the performance goals. Tlle nircrnft wcight woulcl be npproximntcly 

14, 500 kg (32, 000 113). A sligl~ily Iightcl* weight aircroft rcsults bchvco~ wing loaclings 
2 2 of approximately 2 .63  to 8.87 l<n/::~ (55  to 60 psi). The highest wing loading 2.37 kn/m 

( G O  psE), i n  thc range of minimt~ni weight was sclectccl to provide the best acceleration 

i111d higllcst spccific cscess pciver capnbilitics. The takeoff weight is 14,400 kg 

(31, SO0 lb); 100 kg (200 lb) l e s s  th:rn the ;tircr:~ft just meeting the ta?.:eoEE and sustained 

load fi~ctor goal. The selcctcd aircraft hzl? n W .  4 g sustained lorid klclor mid 350 m/sec 

( l l ( i O  fps) specific excess powcr pcrform;rncc Icvcl. Thc nccclcrntio~l tilllc from h10. 8 

to  M 1. G a t  9144 M (30,000 ft) is 48 seconds. 

Data  show^^ in Figire 6-10 have k e n  transferred from tho specific excess 

power mntrix, Figure 6-?, to the nircrnft siziug 111;1tri~, P ig~ l re  6-0. The sanlo 

procedure for  sustnincd load factor lcvels gives the clnta of Figure 6-11. 

Figures G-10 m-rd 6-11 cnn lip : 2ed to perform aclditiond trade studios to deter- 

lnine the effects of various levels u~ specific cscess power and sustained load factor 

combi~~ntiuns on nircrnft size and T/\V-!V/S. For example, i f  tho performnncc g o d s  

were 7 and 366 m/sec (1200 psf), the aircraft ~veigh t I V O I L Z ~  be approximntoly 16,650 
2 

lig (34,400 lb) with a T/\\' of 1.27 a11d \iring loading of 2.55 1cN/m (53 psf). Corn pared 

to the nlinill~urn weight aircraft of 14,400 kg (31,800 lb) selected. 

G. 1 .3 Sensitivity Studies 

Stttdies wcre cunclucted to detcrnline the aircraft seilsiti\tity to vnrintioils in 

empty weight, minin~um dmg, drag-clue-to-lift, spccifi: T11el c o ~ ~ s u l ~ ~ p t i o u  and rated 

thrust, The perfonllancc set~sitivitics nre  based on 70 percent fuel rather than 8s 

pcrce~lt  take-oB weight for c dculnting co~~vcnionce. 

Changes i n  r~~iesion mdius, specific cscess power, sustai~led lond f:,ctor aild 

;~ccelcralion time at the specified flight conditions to thc sensitivity pnr.:lmeters for  

Ihc Ei~cd ~veigI;ht, 14,400 kg (31, SO0 lb) aircr:~ft :Ire shown in li'igl~rc 6-12. The e111ply 

v1cig1;ht; variation and the mini mu^^^ drag ~i~r i ; lLio~l  are  nppro:<in~,zlcly 5 pcrcenl :u~d S 

pcrccnl of thc en111ty \vciplll: nlicl drag :lI n30. S :ind :Jl44111 (30,000 Et) respectivelj~. 



The other sensitivity factors arc shown in percentages. A change i n  empty weight 

produces almost twice the effect on radius capability as a similar  percentage change 

in SFC. SFC i.s alnlost three tillles as  significant ns the other sensitivity parameters 

with respect to rndins, A s  expectecl, tllrust variation is the most significcrllt parameter 

affecting specific excess power, stls-cninod load factor and accol.erat;iou time. 

Sensitivity lo Yn:tlc various pnrnilleters wns also dotornlined holding 1nissio11 

radius, T/W ancl W,/S constnnt as apposed to holding tn1;eofI weight constant as was 

the case nbove and i n  Figure 0-12. The data for constant missiol~ r n d i u ~  are  shown in 

Figure G-3.3. The tnlieoff weight is affected twice as mucil by a cllnng'e i n  en-rgty weight 

as :r change in SFC nnd has five timos the effect as chn~~ges  i n  drag as tl~rust, Thrt~st 

variation has the most powerful effect on specific csccss power, st~slnined load 

factor and nccelerntion time as  was the case with the  fixed size aircraft. Howcvcr, 

sonlo of the other sensiMvity factors are significant. 



TABLE 6-1. TYPICAL FIGHTER ESCORT MISSION 

SEGMENT 

a 

b 

c 

d 

e 

f 

9 

h 

i 

J 

MISSION EVENT 

START, T.O.,'TRANSITION AND 
ACCELERATE TO BEST CLIMB SPEED 

CLIMB FROM SEA LEVELTO BEST 
CRUISE ALTITUDE 

CRUISE OUT 

DESCENTTO 9144 METERS (30,000 FEET] 

TASK ORIENTED COMBAT 

CLIME FROM 3048 METERS ,:0,000 FEET) 
TO BEST CRUISE ALTITUDE 

CRUISE BACK 

DESCENT TO SEA LEVEL 

RESERVES AND LANDING 

FUEL REl l i lREMENT BASIS 1 
1) 2.5 MINUTES A T  INTERMEDIATE POWER 
2) 1 MINUTE WITH RALS SYSTEM AT 80% POWER 
3) 30 SECONDS MIITH RALS SYSTEM A T  100% POWER 

ALL A T  SEA LEVEL STATIC CONDITIONS, 32.1'~ (89.8'~), TROPICAL DAY. 

MAX R/C A T  INTERMEDIATE POWER 

BEST ALTITUDE AND MACH NO. 

NO DISTANCE OR FUEL CREDIT 

(1) ACCELERA7 ION FROM M 0.8 Tn M 1.2; 9144 METERS f30.000 FEET) AT 
MAXIMUM THRUST 

12) 360° SUSTAINED TURNS AT M 1.2; 9144 METERS (30,000 FEET) 
(4) 360° SUSTAINEE TURN AT M 0.6; 3048 METERS (10,000 FEET) 

MAX R/C AT INTERMEDIATE POWER 

BEST ALTITUDE AND MACH NO. 

NO DISTANCE OR FUEL CREDIT 

1 )  10 fiINUTES LOITER AT SEA LEVEL AT MAXIMUM ENDURANCE SPEED - 
ALL ENGINES OPERATING, STANDARD DAY 

2) 45 SECONDS AT INTERMEDIATE POWER AT SEA LEVEL STATIC CONDITIONS, 
ALL ENGINES OPERATING, 32.1 OC (~~.B'F),TROP~CAL DAY 

3) 5Pb OF INITIAL FUEL 



FIGUP! 6-1. EFFECT OF LOAD PACTOIL AliD XACH IILXEER ON SPECIFIC 
EXCESS PUZR AT 3048 XTERS (10,000 FTj 



FIGURE 6-2. EFFECT OF LOAD FACTOR AN3 MACH h W E R  ON SPECIFIC EXCESS 
POWER AT 6096 2IETERS (20,060 FT) 



TIGURE 6 - 3 .  EFFECT OF LOAD FACTOR AND MACE lUlF13ER ON SPECIFIC EXCESS 
POWER AT 9144 METERS (30,000 FT) 



MAXIm4 POWER 88i: TAKEOFF WEIGHT 

F I G E  6-4.  SPECUIC EXCESS PQWER COlTTOURS AT 1G 



MAXIMUM POWER 88% TAKEOFF WEIGHT 

FIGURE 6 -5. SUSTAINED MANEUVER CAPABILITY 
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FIGWS 6-8. VARUTLON OF SUSTAIliED LOAIP FACTOR b7ITH T/W AND 
W/S FOR AIRCRAFT SIZC;G !4ATRIi[ 



FIGURE 6-9. PERFORMAECE G[3AIS RELATIONSHIP TO AIRCRAFT SIZING MATRIX 





FIGURE 6-11. SUSTAINED LOAD FACTOR LEVELS ON AIECRAE'T SIZING MATRIX 
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FIGURE 6-12. EFFECT OF THRUST SPECIFIC FUEL COZ;SU!.IPTION, DPSG &TO EMPTY WEIGHT 09 RM3FUS OF ACTION, 
SPECIFIC EXCESS POCJEE, SZJ' TAWED LOAD FACTORS &<Xi ACCELEuTW21 TEE FOB THE SIZED A I R C P a T  
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ti. 2 TAKEOFIP AN11 U N l I I N G  P1I:IIFORMANCII: 

Q. 2.1 V~?i*tlcrrl Tako* 

'l'ho cot~fiprrntion roflcctu considorntion of pi~opttluivc lift Intc~*f~rc!trcc in that the 

ti~nlrl rtozslos I I ~ C  locntc*d t ~ t  t l ~ c  tr:tlllng cldg~ of thc wing. 'l'llis loctitlon is frlvora:~blt\ in 

~nini~rrlzing ~ucltclomn :~cttug on tho lo\\?c?r \\ling surfncc nnd ftlscl:ijic) in but11 gi*outrrl 

prositnlty r r ~ r c l  trntlsltio~i flight. Tlra~cforo,  potonti111 propulut\rQ Ilft ilrtcpr-uctiotrs will 

~ntlitlly darlvu fro111 lllo forwtlrd jct. T l r ~ s c  tntar:rctlouu \\,ill bo rvcl\rrcrl ~ ) t - i n ~ t l ~ i l y  by 

:I u~liiluu oporntltig concept r*:rthur. tlr:l~r coafig~rntlotr ~lrnping. A stcppctd or  stngccl 

liftoff cotrcopt hns br~on studiocl whiclr fcr~turcs initi:~l rot:rtiotl to n Iliglr ~tttlturlc) 1,tQior 

to :rgplIi ni,ion of full liftoff tlrruut. Il'or\vnrd nozxlo suclcdown :trrd mid-body fountntn 

n ra  cspcrctad lo  bo I-cducud ar o l l n ~ l n ~ ~ t o d  baUr by rnisiug tlrc for\\lurd Jcbt 11a:rp from 

tho firwound uncl by for0 :lnd ~ d t  splnylng of for\\wrd tlrld nft no~xlcs .  tlorLst,anCnl thrust: 

billanct! is nuuum@d to prccludc tlrc n;~*l~ltrtri- from moving for\\ftlt*d or all: duriug ttllis 

munrrrlvcr. Although wllocl clroelrs could bo ~tsod to  prcrvcnt Iro~+izonl:~l nroliotr tluri.tlg 

tt~lieofl, rovorsttl of tllc ~ ~ r o c o r l u r ~  is not ct~vtsionccl for l:trrrlitrg, :~ttci Itorlna~itnl Ilald 

must bo ncllli~\r@cl tllrougl~ brrl:~ncitr~ the forc r~nrl lift compotlcnt,~ of t l ~ o  kllrtrst. 

Tho p~*ocsdul*t? (nlitllout tllc 11arixont:ll Ilolrl cotrciltion) i s  nlso dl rcc)tly :r131)Lic:rblu 

to hTO opcr:~tions by t ~ l l o \ \ ~ l n ~  full usc of \\?ing/r:~n:~rd lift 11t high :lnglr>s of tlttt~cli in 

r~ddition to tllc p~*optlIs!vt! lift. In tho follo\\~lng, cnlculirtlatrs :II-C ~ ~ r ~ s c u t c d  \\flllcll 

ilncompnsu cotldittorls far stntfarlt1t3r ~.ol:~Cion :tnd vcrtict~l. liftoff fro111 thc st:tprd :~ltil.uclc. 
Thrust  forccs :~nd nost,/,zls duflocttotrs i*cquil-od to  I~ritl!\tu tho i+otalion nr:ltlcu\tclq nrc 

slro\~~n in V i g ~ r c  (i-14, Considc\rntian of oscass thrusl trc\cdcvi : ~ t  tlrv i 'o~~\\~nrd troxxlo 

iurludc momont bnlnncu nbout tlrc m:liu g~\:lr ~ l s l o  plus :t force for 11itcll :rcculct-ntlotl. 

In gcuorr~l, tllis tneutls n fur\v:~rd llri~ust nitgtnclnt:rtIon Ic\uding lo tloxzlc rstt tcin11c11.:1- 

turcu in ilsoc?ss of tlrc nourlnnl vnluct of 1IUO"C (2000'1:). Tlrrusl s l ,o i l in~ n t  tllc* :lft 

nozxlcs \\~oirld nit! tho rotntion but \\r~ls not iucludc~i :IS tro s:~lisrnclol+y triccilrn~ric*:~l 

solutiotl lrns boon davc1apc.d. 

f~li~.ust;s :uicl dollcciiotrs rcquirrd to st:lbiliza tllo :itrpl:~ncl nt :I 20-do~ror  pilclr 

nttil t~dc :Lru slro\\~n in F i b ~ i r r  6-15. For this c:~so, tlrc tlrntst split fonv:~~ul lo :lft is 

~i~ninC:~In~ul nt tlic? tlomin:ll V:L~IIC of 0. (i7. In holdi~rg : ~ t  llris nttiludc (\!*lririlr Itmy br 

dcsirttblc for  oligina function chuck) , aoiw lo:ld oil tlru 1n:lin g w r  is dc.sir:~lrlo lo prcl- 

clridc t ~ t l ( l ~ ~ c  1110iio1l 011 nn ~111s te:tdg ~ O C I C .  EJi  itoff is :~cliievcd by sI 111ult:un ~lausly :tpplyi~rg 

full  t Irrosl !itid dil-artiag bolli trozzlcs ycrpct~dicul:lr to the ground. 



ti. 3.3 TttkoaiY' Trarrsltlon - 
Aoctllartttlllg tntnsltla~ls hava boo11 onloulntad in \vhloh pitah attltuclo \\Ins hold 

ral~pl'aslmnholy oonattlld nt, 20 dag~oes nnd thrust veotorlng \vnu used to uontrol the 

PlIglrt pntlr. In tho Itrltinl p h n ~ o ,  Yor\vnrd antl nft jots nl-a rotntocl ni l  In utrlson l ~ r r t l l  

tho fo19\\?t~1*d jot ~ * t ? n ~ h o s  its st011 n t  :lo rlvgrsou nft fibom tlio nirplntlo normal rwis. At 
that poltlt (nftor n ~otrrtloli of only I 0  tlag~~ue.s oansicts~lng t h o  20-dogrtre nttltuclo), 

for\\'nrd t l~~*tisC Id rodkrotj(\ to  mnlrrtrtl~l pltoh bnlaaoi~, T h l ~  ls nocnmpllsl~ot\ f iwt  th.ru)iigtt 

tlrmttling hkol flaw ta tlro fc>r?t1nld tlazr;le tho11 to\\lnnl Hro ond af trntrsition, through 

tlrivttlitrg mirlla\v to tho fntwnnt noaaltz. Ful l  tlrmttlu 18 tI\trit~tttitrtxl tlrraiigtrtn~t tlro trr~tls- 

ition. 'I'lro for~vtllrl 1 ot i~ ~ ' ~ t t l r t ~ ~ ~  111111t~l in piwIi1cit!g t\ t ro~l~otrf tlI thrust c ' o I ~ I ~ ) o I ~ ~ Y ~ ~  

baon\rae d tho c1tdlaot:atr limit ntld tlimufi.lr thrulttlltrg nud tho prlnlnln,v nozzlos c\o not. 

dolivar 111nsil11att1 ortpablo thrust until nofir the onrl nf ttru t rt~nsltlan \v!rol~ nl l  13iiZJY 

hy p~ss  ttirfla\\@ 1s divurtorl ~ f t . .  Ccr~r~eqrrautly, t ha horlanrltfll noculorntint~ cftpibilit p is 

~o~ntwhnt  ootnpmlnisExl, 

t'igtryo ti-10 alru\\ls u typloid :~c?colt\ratirrg t ~-tirrlrltir~n t~tijoctorg, f ' i~ure ti- 17 

slrt>\~s tho n~ant*lntu{l comn~i~nrleti p ~ l e ~ t t r y  tll18ttst \vei>to~ nl~gltl ~-t?lt~ti\lo to tho nll+cal-;tPt 

f ~ ~ s e l t l ~ s  ri~furtllrl\tb llna. c\t tlro alril of 10 Y ~ X ' O H ~ S  npp r(wltlrntt\ly !)0 p ~ ~ - c + t ~ f  nf t l ~ t k  

t \ t  ccq l*tii't \ \ l~ight (nssu~nirrl?; it rerr~nfns cnnsta~lt nt LYt'rOK lig) is st~l~pnt~lotl  :rtjraiIyn:u\~- 

iclnlly. \\'lrilo sclnlt) trlt lttriltl is Inst in tlrls tl*aJectoimy rliil-i~ig nrctjlt \~~ ' l ~ w  to fli~1rt 

slrt.rsr\, cttr!~ngtjs 111 c~or\rurnnrlcjrl thr.\rst nnglo or  pltolr t ~ l t  Ltrrrit! ~n:ig ~~rlrrinrir,t\ tlli) loss. 

t\tldLl ionitl s t~~r ly  is ~+tuluiroti. 

t i ,  2 "  3 14t111diiig .-- . . 
I,tirrr!in~ t~ppron~lr ,  tis ~ ~ ~ ~ s i r l t ~ r t ~ i l  I~tjro, 1s th:it port1011 01 tltt* 1~11d111g ~lirrltlg 

\\llriill\ tho alrcrnft I s  np\~rt~ttc+l\tnh tlra Iwt\~llng t\rc\u or npptrvt~lus \\*it\\ t\\t\ t b ~ \ p , i t r t b s  uptbr- 

nti11g f t r  r~t~rtlt+nl lnntiit~g ~ r \ i l r l t t ,  'l'lre gtair\rnry pt:rlbcwtJ oP this \rlhtisn i s  to tlt\sctlnt\ ;mtl 

~t r ( l t l c*r j  spst~tl sinrullttttrr~c~lluly until hr,\lor is roric*htrtl. 

t i t  I t i  !I Ifilht to \vtll-t icrtl lanrilng r*o~rt'lg:.urt~tion ~ ~ o c ~ t ~ s s a l - l l y  

Invulv ss rot t r t  lng tthc prftr\t~l-y I ~ U L L ~ D Y  (i0\1~11 tltrd l lgl\tirrg tlw l'\:\I,S bi~l~nar.  I ~ l l i ~ ~ g  

tlrrust i ~ r  Ihtr twginss I N I ~ H  n Iitr~it cltr the tti~spoatl tit \vlrictr this ~\ \~i tolr  call be t ~ r t r i l t . ~  

sn~i.rc>tllly. t':\lt>n MI), t t r t r  L ) I I ~ I I \ ~ >  nptu-t~flot~ ~trllst 1 ) ~  ~ 1 ~ ~ ~ * 0 t t 1 1 1 : \ ~ i t ~ i \  by it rt~tlui+tioir irr nngltl 

of ~l!t~l'li 111 lrrilor to ~*oclucttr tlt)l*ocly~lnlr~ic lit1 tltrt3 ct.tjiltt\ r! s\iPflctont rtuluircrnchrt for 

lit1 rbt\ to v ~ w t ~ r t x l  tlrriist SO t\tt:t ttlo flight put11 la ,  r r t  laast trornlt~ally lrnrllstltrbircl. 

1Prcr111 ttlis \iniut on\\'fird, tr  ?!lgtrlficant nnglo or aitncl; i s  rtqtrll-eel to ~lroi~iiltr 

(ltu+td t~rtrt ion. 111 t,lro t1tt1*l)# st:tgss, tloct~lt\rr~tlo~r dopeutls h t l a ~ ~ i l y  on :I t\rotlyr~anllr L I I ~ : ~ ~  



ns too low tin nr~gla of attnclc msuits it1 . r c c ~ l ~ t n t i o t l  011 fl  d ~ s c a t ~ d i i ~ g  p:ltll. For a 3 

dograu flight pqtli, tho uppar liniit of s\vitchovor spccd nt 10 dogroc ntiglo of nttncli 

wns m/sac ( 160 ft/soc) nt SGIS kg ( 19 ,OUO 111) . As tho s~wtul reduces, ;~crdyn: lmic  

Iift  rcclucos and moro vectord t h l t ~ s t  is ~.-rc(uircd. A t  411 lil/scc (136 fps) thc! nnglo of 

atlnclc itrny bc iucrensud to 20 dcgrccs ivith i * d u ~ l t i o ~ i  ill P h i ~ l ~ t  to Idlc to n~nintnin t l ~ c  

flight pnth, but incn\nsing dorrlcrl:~tion. F r o n ~  hcrc 011, thrvst: must bc incrcnscd ns 

s p e d  rcduccs nnd a t  lo\\pcr spc tds  s t e ~ p o l ~  dosccnt: p:itlls n rc  fcnsiblc. 

All outgrowth of ttla rnlcu1:ltions porfo~vwcl iudicntcd that tlw flipjit p:tt\i is co11- 

trolIcd by ctrgitic. throttlltrg (the RALS t l~irrst  is viztu;~Ily prt~pol$ion:il lo ongitrc? tllrust) 

\\fliiIc control of burning 011 tllc R A I S  i s  dcvotcd cssotlti:llly to nlnint:~itling l l lc pitch irilil. 

Dccc1cl:~tIon is cotrtrollcd by :ulgIo of nttntvk mid fo'i7\1:11d tllzrtst vectoring \\till1 lllc 

lMLS unit,  \vlrtcli i s  1.onsotinbly ~~o\\wrftt t  a t ~ d  11.25 a f:wt ~ ' C S ~ O I I S C .  At  liigli Y ~ C C ~ S ,  :ICI'O- 

dyti;in~ic dmg i s  very inlpol-tntlt. A t  lo\v spucds, ilic pilot nlny choose to opcr:~tc  a t  l o ~ v c r  

:luglt\s of :~tt:lrk for rc:lsons of i t i iprovd \lisi \ility i n  Iltc t~ciglibortlood of tl~c! 1:lllding 

;t1-en, As ntrglc of :\it:lrk (pitrli) is rcducd, thc n ~ n i t ~  jct b o r o r ~ ~ c s  lcss  cff~lcltivc ns :L 

bt*::lkcl :uld ihc docclcrnttoti is more dcpct~dent o t ~  I U L S  farw:\ld vectoring. 

A Ir:\nsition bast\(! on pntc.t*ing hovr~r  tln1lfigur:itiotl :it 1UI) l'ps ~ \~ i t l i  :~i~qct.:ifl: \vciglit 

861 S kg (I!). 000 Ib) n l  10 dcgrcc nnglc of nlt:\ck 011 :I :3 dcg:-rrp glidp slopc, holtlinl?; thc 

slol~ct constn~it :lrlcl thr :~uglc. of nttacl; :11 1 0  dcgrccs clo~vtr ta 41 tn/a (135 fps\,  then 

gc~irrg to 5 0  dcgror :~nglc of att:~cl; ftw thc lVi\st of thcl  ticcclolq:~liot~ tn zc\i+o speed indi- 

c:itcd   bout 23-36 scco~~c i s  tot111 dccc*lc 1+;1tio11 limp, tlcprndir!g rrli illcl n lnsi~n titn iV:lluc 

of Ii.4TlS tlli-ust c~np!oycd. 

6. 2. 4 Sliort T:~lieoff und Lj:llid ltrg 

Sl~ol-t tnli~off ~ ~ c r f o ~ ~ t n ; ~ n c c  a s  n hilrction of t:~l;oofl' ~vciglit :111tl \ \~ in r l  over deck is 

sho\\?i~ in  1"1:11t.r\ {;-IS. h sct of gro~tnd r t ~ l c s  \vns cst:tblist;c\cl :IS :I b :~s i s  for :I rc\:lson- 

:~blc. ;11id r o n s c ~ ~ n ~ t i ~ ~ i .  ~ ~ c ~ ~ l ~ i ~ ~ c n t : ~ t i o u  of Ihc t:~l;cc~ff p~*occdlu.c. Tliis :~lq~r.o:~cIi \\*:IS 

clrosrn btlrtulsc :I 1:11'p* I IUI I I~CI '  of ~ ~ : ~ r i : r b l ~ s ,  p s p ~ ~ i : ~ l l y  with 111~1 1i.41\LS ct~lgitl~~ S ~ S ~ C I I I ,  



would trnvu to be cotlviciured in datern~ltril~g optimum tllkouff yr*octlduras. The folio\\*- 

ing assumptions woro n\nilu: 

3. Zoro ~ f ~ l l i  tlftor leuving dook 

G. RA1,S is oparnt.llg nnd t.Jlrrrsling n.fl :30 dcgruus duu.il&' dda~~k ~.ulr. nltlin 

olqinus nro  thrust itrg full rift, 

'l'lro Inst :rss\i~ngtlon 1n:lkos tlro cnlot~lalions consorvr~tivu rrs rnore nccclartrtio~~ 

\ \~oi~ld  ba avnilablo, i f  in tlra initin1 stngus of t.ha dcck run, all tho cnginu t~irllo\\~ \\rel-c 

eshattstcul (~mdcflcctcd) out at tho priln~lry uozzltls. 'Ura (lrlrrst vector nnglas, trftur 

lc:l\ti~rg tlw dock, riro dalorrrii~rd by tho condi~lons of nrt~intnillitrg s~ist nlncul flight wit l r  

211 0 .  1 g longitudinnl nccclarnl io~~ nlrd I I C Y O ~ J ~ I ~ ~ L I I ~ ~ C  l i f t  plus prup~llsivr, lift cqunl La 

\vi4g11t. 

tuudi~rgs will nornrully ba nccon~plislrcd using osso~rtitrlly vurtic:~l tour\rdo.i~n, 

'I'lle turiquo cnp!~l~ilfty of tlra cuncopt studlcd nlso pormits csct*ptiolrnl slrurt, !lrt\di~rg 

pusfc~rnr:rlrcu evoir wit11 onr? c i g i ~ ~ o  in tlro inopcnrt ivc. :is sllo\\'tr ilr Yigurt! ti-l!) 

t~ppro!~cll spotuls nt n o r n ~ : ~ l  ltrndirrg woigl~t \\Till bo ill tlru ardtlr of 112 l r r  !see (ti0 1inc.rts) 

\vi tir only o~rc  u~lgilia oporbtr t ing, 
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SECTION 7 - 
AERODYNAMIC UKGERTATNTIES 

8-- 

As the aerodynamic data were developed various aerodynamic uncertainties 

became apparent and a r e  presented in this section. 

7.1 WAVE DRAG AT HIGH MACH NUMBER 

Estirriates show a rise in wave drag at M 0.85 which eases somewhat at M 1.1 but 

continues to about M 1.8 (Figure 3-2) which experimental data for  similar wings and 

others  indicate a leveling a t  about M 3,l. Tests  should be made to resolve wave drag 

characteristics of the complete modt31. 

7.2 CANARD CONTRIBU? ?nN TO STABILITY 
-- 

Experimental data and estimates of the canard contribution to stability and the 

canard configuration aerodynamic center shift from subsonic to supersonic speeds do 

not match. Canard-off and canard-on tests  should be made, including the effects of 

optimum maneuvering flap settings, 

7 . 3  OPTIMUM CANARD-FLAP DEFLECTIONS AT SUBSONLC SPEEDS 

Because of the difficulty in estimating the canard contribution to longitudinal 

stability, the optimum canard-flap combination for  minimum subsonic drag-due-to-lift 

as estimated needs to be verified. The estimates of optimum control deflections show 

smal l  trailing-edge flap deflections and negative canard deflections about equal to the 

aircraft; angle of attaclr. The drag is greater  thao for a tailless configuration regard- 

less of static stability margin between 25 percent unstable and 10 percent stable. Also, 

the highly negative canard deflection may not produce a sufficiently strong voPtex over 

the  wing to delay stall. Test data are required for large negative canard deflections. 

These data will also be useful to more accurately determine safe angle-of-attack limits 

for the unstable aircraft  where the canard can aid the traiIing edge flaps i n  producing 

nose-down moment for  recovery. 



7.4 CANARD EFFECTS ON DIRECTIONAL CHARACTERISTICS 

Precise estimation of canard effects on dlrectional stability and f in  effectivcnoss 

is difficult, especially nt  high angles of attack. Eqerirncntal dittn taken on a YF-17 

model with a single, all-movable fin indicntes that directional control effectiveness i s  

retained while stability is not. Bowever, with a high-authority active coutrol system, 

the directional characteristics should be g o d .  Sideslip tests  should be conducted at: 

various angles of attack and Mach number. Combinatfon~ of cnnnrcl off ntid a t  various 

deflections should be run with fin-off and fin-on with deflections. 

7.5 TWIN AFTERFAIRING DRAG 

The afterfairings have been shaped to miniiuize interferenca fron~ the itibonrd 

sides on the aft  fuselnge nud f rom the exhaust plume. a t t h o a d  shaping is ai~ned at 
obtaining favomble interference on the Lower outbon~d wing surface giving positive 

pressures. The aft slopes of the area plot are reduced by the afterfairings. The drag 

increlnent from the ,afterfairings siloi~ld ba checlid by test, 

7. G VECTORXD THRUST FOR IVTANEUWlI ENHANCEME Nrl' 

Vectoring of thrust could enhance the sustained ma~euvesing capability of the 

aircraft through supercirculation if the trim penalty is not too gllcat. The direct 

effect cannot be obtained on a flow-tllrough model. FTowveveu, determination of canard 

deflections in  the positive 1mlge to trim aft thrust vectoi*ing woulcl be very u s c f ~ ~ l .  

These data, together with the estimated direct and induced p repulsion effects would 

give a good assessment  of tnc value of in-flight Qllx~lst vectorfi~g. 

With the availability of a wind huulel model incarporttting g~.opulsion simul:~tors, 

all direct and induced effects can Ix measured. An investigation of this type ivould 

provide the required data base for dcteril~inntion of the effective~less of thrust  vectoring 

for  rnmeuve ring. 

7.7 PROPULSION INDUCED EFFE CTS IN  ROVER AND TRANSITION .- 

Simulation of thrust and inlet flaw for the VTOL, noso-high operational concept 

could be provided rising a wind tuntiel model incorpo~nting propulsion simulators. 

Inlet ingcstioll and suckdown characteristics would be investigated. The RALS mould 

also need to he simulated. After tests in ground effect, tests out of g'~.o~uld ~ffect  and 

simulating transition would k accomplished. Pitching and I-oiling moments during 

transition would be of prime interest, 



SECTION 8 

PROPOSED RESEARCH PROGRAM 

The proposed research program defines the objectives of the research, presents 

a recommended wind-tunnel test program to resolve the aerodynamic uncertainties 

described previously, and describes the wind-tunnel models to be used during the test 

program. 

8.1 RESEARCH OBJECTIVES 

The following are the key objectives of the research program: 

I. Verzication of estimates 

2. Assessment of estimation methods 

3, Extension of limited test data through a more extensive Mach number range 

4. Investigation of areas of aerodynamic uncertainty where anaIyticai proce'- 

dures are unavailable o r  inadequate. 

8.2 WIND TUNNEL TEST PLAN 

The proposed w i n d - b e 1  test plan addresses only those research tests that 

can be accomplished with an aerodynamic, flow-through-duct model. Thus, the un- 

certainties requiring pr .plsion sir:IIation are not included. Also no tests are pre- 

sently planned for the 12-foot Wind Tunnel where the models would be tested at angles 

of attack greater than the 30 degrees (estimated full scale stall angle of attack) planned 

for 11 x 11 foot Wind Tunnel. Tests beyond the stall w i t h  an aircraft which is 15- 

percent unstable a re  less important with a horizontal attitude VSTOL. There is no 

requir~rnent to operate near the stall angle of attack for takeoff and landing and the 

aircraft will be limited to safe recovery angles of attack during other flight conditio~ls. 

During subaerodynamic flight for takeoff and landing reaction control is available to 

augment the aerodynamic controls. 

G The test Reynold's number of over 1 0  x 10  based on the wing. c precludes the 

necessity of conducting a series of runs to determine the effect of Reynoldt[ number 



on the aerodynanlic characteristics. However, it may be desirable to conduct one 

series of tests at the  highest possible Reynoldf s numbers, repeat it at a lower Rey- 

nold's number and conduct the rest of the program at the lower ReynoldT s number 

(also lower dynamic pressure) i n  the interest of conserving energy. 

Tests with varying inlet mass Plow mtio a re  not planned at presect, but may be 

the subject of future tests with propulsion simulation. With full throttle, the spill 

drag is zero at M 0.3 and M 0.6, 1 drag count at M 0.9, 12 counts at M 1.2 and 

1 count again at M 1.6. At cruise power settings and altitudes spill drag is of the 

order 12 drag counts and not significant enough for separate tests at the present time, 

The proposed wind-tunnel test program is presented in tabular form i n  Table 8-1, 

grouped as described below. 

Group 1 is a Mach number series in pitch to moderate angles of attack in order 

to assess the variation of wave drag with IvIach nun~ber for the complete configuration. 

The canard i s  fixed at  zero deflection. 

Group 2 is for the primary purpose of obtaining the aerodynamic center variation 

with Mach nunlber canard on and off and for finding the canard stability contribution. 

With canard on, data are also obtained at subsonic speeds with the leading and trailing 

edge flaps sot for estimated approximate opti~nunl from a trimmed drag standpoint. 

These tests will be used, together with Group 3, which has other canard deflections to 

obtain canard effectiveness. 

Group 3 is for the purpose of determining canard effectiveness with the estii~lated 

optimum flap deflectiorls at subsonic speeds and zero flaps at supersonic speeds. The 

aircrdt is marginally stable and large (20  degrees) positive canard deflections are 

of interest when used in conjunction with thrust vecto~ing to enhance maneuvering. 

Ten degrees of positive canard deflection is also run with more positive 'trailing edge 

flap than estimated to be optimum (or the optimum flap angle untrimmed) to check on 

the validity of the estimates. The estimates presen~ly show very small trailing edge 

flap together with very large negative canard deflections at subsonic speeds. Test with 

these flap-canard deflections are also included in this group. The high angle-of-attack 

range at subsonic speeds for lasge negative canard deflections will be used to find the 

effect of the canard on maximum lift. 

Group 4 data are  for the purpose of determining the basic lateral-directional 

characteristics of the complete conliguration. Tests are conducted over a full Mach 

number range ivith flaps zero and at estimated optim~un flap deflections and with 



-?arious canard settings at subsonic speeds. The canard setting of 0 degrees i s  for 
direct comparison, at angles of attack of 10 degrees and 20 degrees, with the dnta run 
previously at 0-degree angle of attack. The -10 degree deflection at 10 degrees angle 

of attack and -20 degrkes at 20 degrees angle of attaclr are the estimated approximato 

optimum for trim. The affect of the canard-induced vortex on the lateral-directional 
characteristics will be determilled with these tests md those with the 4-10 dsgree de- 

flection, as might be used in conjunction with thrust vectoring, 

Group 5 is for the purpose of extending Group 4 'data to the case of no-vortex- 

stre- by testing with canard off. 

Group 6 is n repeat of Groups 4 and 5 without the vertical tails in order to 

measure the vertical tail contribution to lateral-directional stal~i'lity without a canard 
and with various canard deflections. 

Group 7 includes a vertical tail deflection and obtains a e  same data as Group G 

for determining fin effectiveness as opposed to stability. 

Group 8 has the objective of obtaining the drag contribution of the hvin after- 

fairings throughout the Mach nulnbcr range it1 c'injunction with Group 1. 



TABLE 8-1. TEST PLAN 

W = WING, I3 = BODY-CANOPY A=TWIN AFPERFAIRINGS, D = DUCTS 
C = CANARD, V = VERTICAL TAILS, &,/hF = NOSE FLAP DEFLECTIONITRAILING EDGE 
FLAP DEFLECTION - DEG, 6C = CANARD DEFLECTION - DEG 
~t RANGE ~ z - 4 ~ ~ 0  25' THROUGHM 1,4 A N D - ~ ' ' ~ o  15' AT M 1.6AND N! 1.8 
a RANGE 8 = 0 'r0 30", 0 RANGE A = - 3' TO 15' 

GROUP 

I 

2 

3 

4 

5 

6 

7 

8 

CONFIGURATION 

WBADCV 

WBADV 

WBADCV 

WBADCV 

WBADCV 

WBADV 

REPEAT 

1.2 

X 

X 
X 

x 

NUMBER 

1 d, 

X 
X 

0.6 

X 
X 
X 
X 

X 

; 
X 

X 
X 
X 
X 
X 
X 
X 

X 
X 
X 
X 
X 
X 
X 
X 
X 

X 

X 
X 

X 

X 
X 

a 

I 
A 

i 
A 

A 
A 
B 

B 

1 o0 
I 

1 o0 
ZOO 

I 
20' 

l o0  
20" 

GROUPS 4 

. 

1.6 

X 

0.8 

A O ~ O O / O X X X X > ( X X  

A O ~ O I O X X X X X X X  
X 
X 
X 
X 

X 

; 
X 

X 
X 
X 
X 
X 
X 
X 

X 
X 
X 
X 
X 
X 
X 
X 
X 

O O A O O / O X X X X X X X  
X 

X X X  
X 
X 

X X X  
X 

O ~ A - O / O X X X X X X X  
X 
X 

TAILS 

REPEAT GROUPS 4 & 5 WITH VERTICAL TAILS DEFLECTED 10' 

0 1.8 

- 

X 

MACH 

0.9 

X 
X 
X 
X 

X 

; 
X 

X 
X 
X 
X 
X 
X 
X 

0 / 0 X X X X X X X  
X 
X 
X 
X 
X 
X 
X 
X 
X 

X 

X 
X 

X 

X 
X 

WBDCV A O ~ O O / O X X X X X X X  

6~ '#F 

- 1510 
1515 llrl 3010 30/10 

SEE 

T 
0' 

OD 
o0 
0' 

I 
0' 

A 

( 
A 

& 5 

GROUP 

P 
0 

+ I 0  
+20 

0 + r 
-I0 
-10 

1 

-I= 
-25 

-10 
0 

4-10 
-20 

0 
4-10 

- - 
WITHOUT 

1 
1510 

;:;: 
30110 

0/0 
010 
010 
010 

1510 
1515 
30/0 

+ 1 0 3 0 / 1 0  

1510 
1515 
3010 

30/10 
010 

1510 
1515 
3010 

30170 

15/0 
I 

1510 
30/0 

I 
3010 

1510 
3010 

VERTICAL 



8 . 3  WIND 'YUNNEL MODEL DESIGN 

In oldor to axploro the aorodynanlic uncertainties of tlia concept and to generato 
tlll aelvdynmlic dnta Iwse, n wind-tu~mol test modal is required. As l iot~d in  tho pro- 

vioi~s sectiotls, tl1a configurntion foahlros sigrlIficant norudynnmic/propulsirrli interact- 

ions which crui best bo skidiod tt\q.mrimelrtnlly wit& sil~~ultm~eous silni~lutioli of i111eL; md 

exhallst flow iilfluencus, This c m  be aclueved by the use of a propulsion simulator, 

lIowever, in ordur to obMi  sideslip data mrd to reduce support systcnl ilitorforeuce 

at trmisolltc mid supersolilc spoods, an aft-stiig mountad riiodel wviffx flow-tlirougli in- 

lets is also desira&la. 

'L'he initin1 model design work has been b e d  on tho approach of designing tlic 

1mde1 as n flo\\t-tIllmugh inlet modcl with considerntion given to later rnodificntions 

to includa o~gine  simulabr testing ruld jet-effccts model test, Tho impact on modcl 

sizo of includirg klle conlpnct: propulsio~l siiiii~lalor has beell considered ns \\loll ns the 

dosirability of acliievi~qg f 11 l-scnlo ri~ass flo\\r ratios m1d mini~xllzilg :dl;-end geomotly 

cliru~es. Also, the l~lociul scale hns beon made conmion \vit.l~ that fo r  tho VArl'OL con- 

cept so that a r~ i lmhr  of parts i~ould be coilunon to both modsls. 

'l'lie \\rind t t~~ulel test model \\rill bo surface-deli~led by tho NOlILOYT coil~puter 

program \vIiich reprosants conic sllapes with pnmmne tric bi-ctbic patches. Tlli s sur- 

Inca definition is 11ow roproseiitod in a NORLC)YtY format, but the possibility exists 

that this data cml be ilinde suitnble for tlla ~ A S A / h n l e s  rurnlyticul u~ind fxi~mel purposes. 

Tlio \\ling, wllicll h:ls n 1;SAOOO.I-sorics thfcktloss riistribution on n t\vfstcd nt~d cnrnbcrccl 

planform, is slrowi~ i t1  Viplrc 8-1 tvilll scction cuts nt ~\~cr:\? tctl p o r c ~ t ~ t  scnli-span. 

This ~vfng ropmse~~ts ttw conzlno~l \\ring th:lt: will bc? uscd oil both \\rind tutlnul test uncdcl 

config't~ri~tiot~s. 

'l'lie critical rwca of design \vliicli deteril~it~cs tlic size of t l ~ c  llludcl is in Lllc 

pl~ysionl placaniont of tlic coil~pact propulsion sin~ulntor in Ulc model. '1310 po\~ercd 

si~uulator to bc used lias a Wirae-inch dirunatcr calilprossor face \\rill1 mi additional 

1.37 cill (0.5-i~ich) for  oxlerior hnrd~vslre. 011 illis basis, &I 8-percent scale modcl  

is required to physically contain tlic po\vered simn~ilator williout aborting the fi~sclage 

lines (see Figure 5-2). RI~sirii~rrn powered silnulntor performm~ce is slio~vn for tlrme 

differant modol scnlos in lc!'ib.prc 6-3. 'Il~e csl'imated frrll -scnle ilitclm~cdinto po\\lor 

settings at 3,000 ruld L1,000 nloters (10,000 mrd ;Hi, 000 fect) arc supcrimpuscd 011 

rigttre 6-3 indicnting tile rcquil-omenl oL a11 S .  5 percent or less scnic modal to s in~u-  

late l i t  t 1-scnle iLirfla\iv. IIo\\revcr, Iflc VATO1, nlodul must bc 110 lcss th:u1 9.5 -pcrccnl 

8-5 



scale to permit simulation of full-scale airflow which distates the same scale for the 

HAVSTOL model. At this scale, the mass flow simr'i * will be within 80 percent 

of full-scale requirements. F'igure 8-4 will be used to determine drive and bleed 

manifold sizing ta possibly. reduce hselage aborbioi.3. 'fie degree of fuselage abor- 

tions has not been determined, nut because the WAVSTOL fuselage is larger than the 

VATOL, no line deviations are expected. 

Wind Tunnel Installation. The three wind tunnels being considered are  the 

NASA-Arnes 12-foot, 11-foot, an2 9x7-foot. The sizir of the 9.5-percent model to 

fit in these tunnels has been analyzed and the results shown in Table 8-2. The test 

rhombus for M 1.5 a d  M 1.8 in the 9 x 7 -foot tunnel is illustrated in Figure 8-5. Be- 

cause :models of this size and larger have been tested in these tunnels, it was con- 

cluded that the 9.5-percent model i s  well within funnel operating limits. 

Model Support. Two methods of support will be used. One is the conventional 

sting entering the aft end of the model. This method applies to the aerodynamic force 

model configuration incorporating flow-through ducts. A blade type strut will be used 

for the powered simulator and the jet-effects models. Figure 8-6 illustrates these 

mounting arrangements. The blade support will contain air delivery and return ducts. 

It will be shaped to minimize its effects on the flow over the model. This effect will 

be tailored either for the subsonic or transonic regime. 

An analysis of the maximum dynamic pressure in the Ames tunnels versus model 

scale is shown in Figure 8-7. The limit criterion was f&e maximum load capability of 

the respective tunnel support system. As shown, for the 9.5-percent model, the maxi- 
2 mum dynamic pressure is 43000 ~ / m  (900 psf) in the 11-foot tunnel, giving a. neynolds 

number of 1 9  million per meter (6 million per foot). This maximum dynamic pressure 

results in a limit AOA of 28 degrees. There remains the capability of testing at higher 

dynamic pressures (higher Reynolds numbers) at lower AOA. For example, at AOA 

10 degrees the maximum dynamic pressure, limited by the tunnel support system, is 
2 55000 ~ / m  (1150 psf). This would give a Reynolds number approaching 25 million 

per  meter (8 million per  foot). There may be a restriction on t;he test Reynolds num- 

ber due to energy conservation. A few runs at higher Reynolds numbers, to check 

Reynolds number effect, would be possible. 



Modal I3uLance. A two-inch dimetar 'I'nsk Mli ,=IV balmco, awllad by Northrop, - 
is being co~~siduracl for the subjoct modol. 'l'llis h l m ~ c c  llns a ~xormnl force lilllit of 

L300 1% (6400 pounds) ruxd ru~ axial foroo lixnlt of 100 kg (350 poiulds) corraspo~lditg to 
2 a rnaxinnun riylx~unic prossure of 29000 N/m (660 psf). l:ig~ire 8-$ slluws tllu balnlxco 

utwoloyu, '1110 madmum nornat~l furca sho\\ln occurs nt nil arqlu of utt;nck of npl~roxi- 

nlatoly 2 3  dogrous with traili~g ~ d g u  flaps dofloulud to 95 dogroos and loading udgu 
'> 

flaps dufIoctud to 241 dugruas, 11 tka dynmlic piwssuru Is held to 39000 N/lnY (($00 psi), 

Elm rl~axilrn~~xl &vial forcu that will bo us~oriollcod by tllc hlnncu \vill bu apyrosh~tul;uly 

78 porcolxt of tho gngo limit. 'lllus, tlia balatxca is Wlo limiting con~ponorlt; in tho systum. 

'I'ho btlllu~cc \t1i11 b oriatltud in n ravorsu positiolx ~vlt~un used with tho bladu support. 

8.3.2 Aarodvnlu~lio lporca Modal 

'1110 atli-t~dynmuic forco nlodol \\pi11 bo a cor~vuntiontll flaw-tllrwuglx-duct ~nodol 
rnountcd on a hlullco sting :~rrtugumont;. A skotcll of Ulu lllodttl is sllo~vi~ in Z~'ibp~~rtl 

8-9. 'i'llo six-conlpanunt bnltlncu ~ v i l l  mousuru all tilo forcos wld m01x10nts ~ l~ lc~~r i l to~wd.  

111 addition, ins t ~ ~ ~ i t i t n i i  I\* il l bc f ncludcrl lo ll~custiro duct ~i1.Slotv ~nolnonlzln~ m ~ d  

prussuro lossos tl~~u>ugll tho dt~ct. 'l'ho nlt clxd \!.ill ba alw~rtud to .anccorxunodntc tho 

sting mid, iT nacussai*y, to obtxin xlxrlss llo\tl rutios npp1.oncllt11g 1. 0. 'l'ha mod01 \ \ r i l l  

bc cugnblo of obki~ling lnodol httfld-up data. Off blocks \\fill bo proviciad far \ v i ~ g  off, 

vorticul off, atc., coi~fig~r~ntions. Co~drol s~rrfucus, such ns lonclitqg and trailing adgc 

ilnps, n~cidar, ntxd ~~lovtlblo cruinrd, \\fill Iru pivvidud. 

8 .  3 . 3  Jel; Effects Rloil~l 

A jot-cBocts modol cm1 1SO dosigy~l~d 11sitg tlio bnsio p u t s  of tixu neradyntunic 

forco nld yo\\$crcd sixnulntur modals. '1Pxu blndo sting bo usocl to support UXU 

nlqdel with LItc ilft yorlioli of tlta modal metric, ILigh prossura nir \\rill Ix providaci 

to tIto intcnlul norullctric ~~ozzlos.  Numowus usturlril.1 surfncu slntic prcssuro men- 
su~wmui~is  cm1 bu abkinod ciuiirity: this pl~nso of tostirg. '130 idols of tho ll~odcl cnt~ 

be fnircd ovor. 'J1hio aft end nhrtions roquirod to fit tllo poworod simulator irxtu l tc  

lnodal m ~ d  to sting xnouut tJic forco n~odol can nlso h chrplictitod ruld tostod on tuld off 

fur Ukoir affucts. 



TABLE 8-2. COMPARISON MODEL SIZE TO TUNNEL SIZE 

( 9 . 5 %  HAVST~L MODEL) 

PARAMETERS 

WlNG REFERENCE AREA 

FULL SCALE: M~ ( F T ~ )  

MODEL SCALE: crn2 IFT*) 
% TUNNEL CROSS-SECTION 
AREA: 

MAXIMUM FRONTAL AREA 

FULL SCALE: M~ (FT*) 

MODEL SCALE: C M ~  ( F T ~ )  
%TUNNEL CROSS-SECTION 
AREA: 

WlNG SPAN 

FULL SCALE: M {FT) 

MODEL SCALE: CM (FT) 
% TUNNEL WIDTH: 

PLANFORM AREA 

FULL SCALE: M~ ( F T ~ )  
MODEL SCALE: C M ~  (FT~) 
%TUNNEL CROSS-SECTION 
AREA: 

AMES 1 I' 
TUNNEL 

46.45 (500) 

4189.9 (4,511 

3.7 

2.71 (29.17) 

244.3 (.263) 

0.2 1 

9.94 (32.6) 

94.49 (3.40) 

28.2 

64.20 (691 .O) 

5797.1 (6.24) 

5.2 

AMES 12' 
TUNNEL 

46.45 (500) 

41as,g (4.51) 

4.5 

2.71 (23.17) 

244,3 (.263) 

0.26 

9.94 (32.6) 

94.49 (3.10) 

27.4 

64.20 (691 .O) 

5797.1 (6.241 

6.2 

AMES 9g7' 
TUNNEL 

46.45 (5001 

4 189,g (4.51 I 

7.2 

2.7 t (29.2 7) 

244.3 (.263) 

0.41 

9.94 (32.6) 

94.49 (3.10) 

44.2 

64.20 (691 .O) 

5797.1 (6.24) 

9.9 
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C ONC LUSIONS 

The aerodynamic characteristics of a horizontal attitude VSTOL (HAVSTOL) fighter 

attack aircraft concept have been studied fn some detail. The aircraft design rrilating 

. to structures and subsystcrns was investigated in sufficient depth to ensure a credible 
design for the aerodynamic studies. The aerodynamic studies resulted i n  the follow- 

ing conclusions. 

1. The HAVSTOL aircraft concept is a viable candidate for the shipboard 

VSTOL fighter/attaclr af rcraft . 
2. The VTOL requirements and resulting compromises to the propulsion- 

airframe configuration places most of the penalty of VTOL on the aircraft. 

However, the system should be more compatible to operations from many 

types of Navy ships than a vertical attitude VSTOL concept (VATOL) . 
3. The minimum drag estimated at supersonic speeds may be increasingly 

conservative as Mach number increases because of the corrections to t h r  

estimates that were applied. Test data is required to establish the correct 

drag Ievels. 

4. Analytical procedures do not accurately predict the effect of canards on the 

aerodynamic characteristics of the aircraft. New methods should be  devel- 

oped and compared to past and future test results. 

5 .  The longitudinal aerodynamics at high angle of attack, especially with large 

negative canard deflections should be investigated through wind tunnel test. 

6 .  The NASA-Ames Wing-Body Aerodynamics Program is very useful for in- 

vestigating the effects of fixed and variable camber. The effectiveness of 

variable camber at supersonic speeds should be determind from test. 

7. The potential creation of a fountain between the fore and aft jets and possible 

alleviation of the effects with the high attitude VTOL concept requires fur- 

ther study and test. 



8. Propulsion simulation i~~ould  be very useful in dctormining n ~zwnbcr of 

i ~ l t e r a c t i o ~ ~ s  bct~vccn tho 11ropnlsion systein with vcctorcd t l l ~ ~ i s t  :md tha 

ne rodp~u~l ic :  characteristics of Ulc airfrmn~. Vecto rcd th lwsl for mimcuvcr 

cnhm~cclllcnt could be a~nlyzcd.  Wit l i  simulation of tllc RALS in rdclitio~l to 

the main propulsion ilozzlcs with vcctoring, Ule nosc lligll VTOL opcrnlionnl 

concept could bc studicd mid ingestion m d  S U C ~ Z ~ O W ~ ~  ~1i:~ractc~'islics c1clcr- 

mined. In 'addition, Ihc propulsioll inlcrScroncc on pitclling and rolling 

lllolllent during transition could bc ns ses  sed. 


