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DIRECT NUMERICAL SOLUTION OF THE TRANSONIC PERTUREBATION
INTEGRAL EQUATION FOR LIFTING AND NONLIFTING AIRFOILS
David Nixon

Ames Research Center

SUMMARY

The linear transonic perturbation integral equation previously derived
for nonlifting airfoils is formulated for lifting cases. In order to treat
shock wave motions, a strained coordinate system is used in which the shock
location is invariant. The .angency boundary conditions are either formulated
using the thin airfoil approximation or by using the analytic continuaticn
concept. A direct numerical solution to this equation is derived in contrast
to the iterative scheme initially used, and results of both lifting and

nonlifting examples indicate that the method is satisfactory.
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1. INTRODUCTION

AN IMPORTANT problem in aervodynamics I8 the accurate prediction ot
the pressures on an afrfofl that {s oscillating harmonfcally with
small amplitude in a transonic flow, 1In the limit of zero tre-
quency this problem reduces to that of an airtfoil that has under-
gone a perturbation equal to the magnitude of the oscillations,
This simpler steady perturbation {s therefore a pgood starting
point to deriving a tundamental approach for unsteady flows or to
gain experience in developing numerical procedures,

In transonic flows where there is a discontinuity, certain
problems can arise in a perturbation solution in the region bounded
by the extremities of the shock movement induced by the perturba-
tion., Perturbation solutions assume that changes in the tlow
variables are of the same order of magnitude as the driving pertur-
bation. In the region traversed by the shock during the perturba-
tion the flow varfables can jump trom a pre-shock value to a post-
shock value, and hence cannot be considered swall perturbations,

Although little attention has been paid to the steady pervtur-
bation preblem finite difference solutions ave available for the
similar harmonically decomposed unsteady transonic flow problem,
Presently available methods of solving the harmonically decomposed

: : . 1
problem include the iinite diftervence calewiation of Traci et al,
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and Weatherhill et nl.2 In these methods no account is taken of
the shock motion, the shock being assumed to remain essentially at
{ts steady state location, A serious drawback of these procedures
is the occurrence of a severe numerical instability in the relaxa-
tion procedure used to solve the difference equations. This in-
stability occurs at a critical Mach number dependent frequency beyond
which the method diverges, A means of countering the difficulty
is given by Hafez et al.;3 however, the rate of convergence {s slow,
An alternative means of avoiding the instability is by dirvect
solution of the difference equations, {.e., without fteration,
However, the large number of mesh points makes this procedure not
feasible especially for practical three-dimensional flows. All of
these methods arve shock capturing algorithms. Shock fitting pro-
cedures are given in Ref. 3 for the harmonic decomposition. A
method of dirvectly integrating the unsteady transonic small distur-
bance equation {8 the ADI method of Ballhaus and Gourjian“.

An alternative to the finite difference solutions for transonic
flow is the integral equation methuds'b. The basic advantage ot
the integral equation method is that considerably fewer points are
required for the discretization. In the present context this implies
that direct inversion of a discretized equation is a more feasible
proposition than for the finite difference methods. Also from
evidence of the steady version of the integral equation amethod an
integral equation solution of the perturbation or unsteady problem
would he computationally faster than the direct integration method of
Ref. 4. Furthermore the integral equation method gives automatic
shock fitting. The main difficulty c¢f the perturbation problem i{s in

the treatment of the moving shock location,
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A weans of overcoming this difficulty is given by Nixon (7) in
which a strained coordinate system is used, In these new coordinates
the shock location reme ins constant and the magnitude of the
straining, which is related to the shock movement, is found as
part of the solution, In reference (7) the resulting linear per-
turbatfon equation for nonlifting flows is solved using the transonic
integral equation (5) method with an iterative procedure. The

magnitude of the shock movement, and hence the distortion of the

coordinate system, is found by enforcing the regularity condition
where the flow is continuous everywhere apart from the shock wave.
Since the basic equation is linear it scems that a more direct

solution of the perturbation equation {s possible, and {t is this

approach that {s fovestigated here with the principal objective

being a future extension to oscillatory discontinuous transonic
flows. Also, the perturbation integral equation for lifting flow

is derived.
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The integral equation is reduced by quadrature to a system ol %1
linear algebraic equations which incorporate the regularity condi- &

i)
by il ]

tion of continuous flow except at the shock., These equations are
solved by Gaussian elimination., Satisfactory result: for lifting
and nonlifting perturbations indicate that the procedure can be applied
with confidence to the much more important oscillatory problems.
Such an application is reported in refevence (8).

The "base" solution used in the calculations requirves a normal
discontinuous representation of the shock. In the present work,

the base solution is computed by a shock capturing finite difference




program with a fine mesh since this is the most convenient means
available. The normal, discontinuous shock requirement is obtained
by suitable extrapolation of the velocities outside the shock

capture region.

2. BASIC EQUATIONS
In a Cartesian coordinate system (x,z) with the origin at the
leading edge of the airfoil and the X-axis aligned with the air-
foil chord, the transonic small-disturbance equation for a free-

stream Mach number M_ can be written as
bex * 055 = 3 (07 (1)
XX 2 ] 2’3

where, if B = (1 - H_z)‘lz. y is the ratio of specific heats,
and k = k(y,M,) is a transonic similarity parameter, then ¢ is

related to the perturbation velocity potential § by
d(x,2) = < §(R,2)
L] 82 L) ’

and the coordinate system (x,z) is related to (X,Z) by

(2)

In this transformed space, the perturbation velocities (u,w) in the
x- and z-directions, respectively, are related to the physical

perturbation velocities (G,Ww) by

-ﬁ.k--kgi
pnke gs ¥ B2 %
: g . (3)
-J-—-—--—k-ﬁ
= g3 ¥ gl ?z J .



The boundary conditions are that
a) the flow at the airfoil surface is tangential to the
airfoil surface,
b) the velocity s fiuite an infinite distance from the
afrfoil, and
¢) that for a subsonic trafling edge the Kutta condition of
finite pressure at the trailing edge must be satisfied,
If the equations of the upper and lower surfaces of the afrfoil
are given by Z = E (X) and ¥ = F| (X), respectively, then the
tangency boundary condition in the transformed coordinate svstem

(x,2) can be written as

= 2 %
wix,z ) = zuxh‘{l + %— u(x.:u)] - A
: (4)
- - 3‘
wix,zy) = 2 (xlb + = u(x,z ﬂ - X ‘
il Ly k L
where if a is the angle of attack then
k
l“ - ;“—‘ a
—— - e
z,(x) = 8%, (x) , Z,(x) = Ej z,(X) (5)
2, (x) = BE (%) 2 (x) = & E (%)
L L% , ad *L

For thick airfoils, the tangency boundary condition on the
airfoil surface, equation (4), can be replaced by an equivalent
boundary condition on the airfoil chord line, z = *0, by using the
fdea of an analvtic continuation Ifl of the external flow inside

the airfoil. This is obtained by using a Tavlor series to expand
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u(:.:u) and u(x.lL) to the chord line. Thus, on using equation (1),
equation (4) gives, to second order in magiitude of the thickness/

chord ratio of the airfoil,

F'I'th

Wix,40) = =A + Eu (x) [1 +
x

u(x.zu)] + zu(x)[u(x.zn) q

- % uz(x.:u)]
. '

(6)
2
u(x.zL) +zL(x) u(x.zL)

rlm

wix,=0) = =A + EL (x) [l +
X

- % uz(x,zL) ] . ‘
X
The usual thin airfoil boundary conditions can be recovered from
equation (6) by neglecting all the second-order terms. This analytic
continuation device is necessary if the integral equation method (5)
is to be used in its commonly derived form in which the boundary condi-
tions are required on the chord line rather than on the airfoil surface.
There is an apparent inconsistency in the use of a second order accu=-
rate boundary condition like Eq. (6) with a first order differential equa-
tion, Eq. (1). The small disturbance approximation breaks down in the
region of the leading edge and leads to singular behavior. Generally
this singular behavior is removed by including certain (fairly arbitrary)
second-order terms. The boundary condition of Eq. (6) can be regarded as
simply a more consistent way of introducing the necessary second-order terms.
The weak shock jump relations for equation (1) are
+
[@x - fgil + tan Bs[¢z]+ -0
(7
[¢] =0



+
where [ ] denotes a jump across a shock wave and d' Is the angle the

shock makes with the z-axis. If the shock wave can be assumed normal to

the free stream, then

r Y ) +
[¢ - @-"-‘-] -0 (8)
X 2 A

The problem under consideration is the calculation of the effect of
a small change in the boundary terms w(x.uu). u(x.zh‘ of equation (4)
on the pressure distribution. Thus, let equation (6) be written as
g
wix,+0) = wo(x.+0) + Lul(x.+0}
: (9)

wix,=0) = wo(x.-O) + le(x.-O)

-

where ¢ is a small paramaeter.
The problem is therefore to solve equation (1) subject to the
boundary condition equation (9) assuming that the solution of equation

(1) subject to the boundary conditions

wix,+0) = Uo(x.+0)
(10)
! w(x,=0) = wo(x.-o)

is known.

It is shown in reference (7) that if shock waves are present in
the flow then a distortion of the coordinate system is necessary in order
to correctly formulate the perturbation problem. The shock location is

invariant in this distorted coordinate system, It is a basic restriction
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of the theory that shock waves cannot be generate’ or destroyed during
the perturbation. It is also assumed, for simplicity, that all shock
waves can be considered normal to the free stream. This means that only
the streamwise coordinate x need be strained. Following the general
line of attack of reference (7) let there be Nu shock waves in the upper

half plane, and N, shock waves in the lower half plane. If x' denotes

L
the strained streamwise coordinate, then let

x = x' + txltl') + s (i)

where, following the suggestion of refervence (7)

Ns .
(] - L] L]
X (x E 61.1ﬁ1(x ) 0« x' <)
i=1 p (12)
xl(x') -0 2P a">1]
where Ns - Nu + NL ’ ’
In equation (12) &x is the movement of the {th shock wave and

S
thx') is some straining f&nct!on. If the velocity potential $(x,2) is

expanded in the sories
®(x,2) = 00(:!'.:) + wl(x'.z) * oo (13)

then on substitution of equations (12) and (13) into equation (1) and
equating coefficients of ¢ , the equations for @0 and "l are obt: ined:

thus
M $ - @ N
oxo‘u $ ou ol' oxo‘r (14)
with the boundary condition
Qn (x',%0) = Un(x'.!O) (15%)
.
and
b
¢ + ¢ - (¢, ¢ + Ix $ - 95 )
lx'x' lzz (ox' lx') ln'( ox' ox' =
b ]
&0,"
*ix $ - — (le)
T Qs 2
X X
xl




with the boundary condition

$, (x',20) = w (x',20) + x, (x")w, (x',20) . (17)
1 1 | 0.,
z X !
It is assumed that the solution to the problem defined by equation 5
(14), equation (15) is known. :
The normal shock jump relatfons for equation (16) are i
+ ) 1
[o 0 (a n 02 )I 0 :
- - “ - = -
lx' lx' On. lx' 0“. Dx. f ! i
(18) !
["1]+ il I = :

Eq. (16) and Eq. (18) can be written in integral form using Creen's
theorem., The domain of Green's theorem is the entire flow field with the
exception of the slit 2z = +0, any shock waves in the flow, and the field

v ———

point (x,2). In this prccedure the line integrals around the shock waves
vanish because of the shock conditions, Fq. (18)., If the general ideas

of Ref., (6) are followed then _he integral equation for the system defined
by e¢quations (16), (17), (18) is as follows.

u () 1 - up(xty2)] = 1 (x,2) + Lg(xzxy)

e e g 1y

N
S
L] L}
+}: dxsilfi(x 124%g) (19)
i=1
where
]
' - L] P L] - ] |
\lo(x .3) ¢0x' (x lz) H ul(x ,Z) ¢lx'(x .z) . (20) [
and xé denotes the location of the NS "base" shock waves, For z ¢ 0 ;
|
e b @@ -0 e o |
I (x',2) = =~ - 5 = 4 + 5= me———e—y—— L (21 {
, = o [x - &% <) o 5 L= -8+ 5] l
ls(x'vzoxé) .- ‘l'ﬁ'; ff W;’.x. (x.'{:;zo;)ul(E,o"»)uo("'u"-)d‘:p dg (22)
S

I (x'",2,x'.)
S L ] L] “-
T S

«]10=
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! \

X, (E)wy, (E)(x'=£)
I (x'.z.xé) - % L .BL.“T"- m——
i [(n' = )" ¢ ")

0

.

3 y
- J]I"'x'[_(""r'""')[z“,'“""‘ % “"”"‘]“x,: l‘.
S

+ 'cl"ﬂ L‘..F.=2|:.)[UG({..|',‘ - ], uﬂ"(.,nlA‘]Kl (-'.‘ltl'r k..)
- r_[_

" g (xnesg) ¢ e () [otet o0 - F o7t |

+ ﬁix'(X')[Zuo(x'.Z) - : ll:‘;‘(u..r)]

I'Ji_

(23)
where the operator A is defined for a function f(£,2) by
AF(E) = £(E,+0) - f(£,=-0) . (24)
For 2z = *0, in equation (19)
1 1 y in
L (x'.20) = == l\i!_(_{l ar + 1{1=X 32 vy () ; ay
Al 2 ) Wen A\ - \T-¢)
0 0
(25)
2 et A2
Sl gReig & 3 :
[S(x.'!o'xé) =5 ; (-—XT_F-) —(.x—'_-' f‘- (1.: -') d.‘,
0
L) L) Y
+ IST(x .n,xs) (26)
l‘fn 1 IR (F.x'q) 1"
Ie (x',40,xy) = ¢ 2 (A e [ & i
fl » = oxs - x' (X'-.r.‘ l_, i
0
D ' 2a =y - ' N\ inn
+ [”‘lx.(" Juy = 5y, xix'(x )]4- h,l.I(x .U.xs)g_ )

Y
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E
where E
' " 1 ' ; !.'
o (x"yxg) = ™ II War(u B0 [u (B, )ug(6,8) = p(E,0) 48 de !
5 (28a) '
¢
and
‘ tll((,,+-(lh|nﬂ_.ﬂ)) . >0
g(E,L) = (28h) ®
ul([.—ﬂ)n (£,-0) , L <0
0 i
i pE
Ig(x',xg) = u'(x') 0"h .[f(whr(x'.t;n,a)l 2u,(E,2) - ) u“‘(a.n\J
8 . %
|
“ ) P !
- v(L.Lllx! () + w?(x',t;ﬂ,t\ uy (6, 0)
[ . s |
unr )
- — “4Lﬂ“i (LOstM (29)
g LE
where
1 ,
2u, (€, H0) = 5 ||n’(!,,H)) £ v 5 0
vi(t,n) = }
2ug (£,-0) = 5 v’ (£,-0) , L ¢,
The integral over 8 s deflined by
' . .
X -Iﬁl w K;;“-\\_. w
f‘" dt dr = 1lim F dr dt + F dr d¢
- 6,
S '\' ?l - 0 x‘*“l J!‘
" ™ x:_ -8 0
"l‘ L
+ F dr df + F 4 df
% ', 4n 0 -t -
7 i
@ )
:]. .[' F d dE (10)
X¢ +& —-in



where n&u and x&l represent all shocks in the upper and lower

half planes respectively, and
1
wall) = 5 [w, (£,40) + w, (£,-0) ]

u{(u') - ';- [0"(1'.-0-0) + Ql’(l'.*ﬂ)] - HT(n') -

It can be seen that equation (19) will give an infinite value

of  uy(x',2) when ug(x'y2) = 1 (the sonic line) unless

R
g ﬁxs‘l“(x'.l.xg)

wvhere x' = uop(z') (p = 1,Ng) denotes the location of the pth

- -IIL(n'.z)*-IS(x'.z.u}\l

..
X unp(z)

(1)

x'-xop(t)

gonic line. If there are Ng shocks in the flow, then equation (31)
plves the required Ng  equations for the shock movements

ﬁl“l(l bl l."s)c

1, NUMERICAL SOLUTION PROCEDURE

The first step in the solution of the integral equation (19)
fs to discretize the integrals., The techniques used to discretize
are outlined in RefL61 . Briefly, the flow field {s divided
futo strips parallel to the x-axis, as shown in Fig. 17 and the
variation of the flow varfable part of the integrand, for example
uy (6, 0), I approximated in terms of values on the strip edger
The field {ntegrals can then be integrated with respect to o to

give a line integral in terms of values on the strip edges, ftor

13-
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example uo(f..zj)u‘(l’..:j) () = 1,N,) where 2y denotes the jth
strip edge and N, is the number of strips. The resulting line
integral is then evaluated by quadrature in terms of specified

values of the streamwise variable X (k= 1,Ny) where N is the
number of x stations. The values of “n(xk"j)' “l(‘k°zj) are

now denoted by uoi. uliti = 1,N) respectively, where
L =k+ () -1N and N= NN,

Using this notation the integral equation (19) can be written

ns
N N
“lj(l - uoj) - ILTJ + g “l‘“!j + g ulluotﬂi_] + qg .'ix“qlqu
(32)
where

1 e« I, (x!,2:,%x3)
| G, Dk

N
1 L " u, ay .
[.Tj uj 2‘, li j
The matrices aij. f; are evaluated using the ideas and
influence functions given in R"l‘[‘-’ , and the M"i“ - 1,N,)
are given on each strip edge by equation (31). If a superscript

(k) denotes values on the kth strip edge then from equation (31)

K] K k |
Sxg, = '[l§ )] [11( + 15 )] (33)
ip P P
wvhere Il(k). Ti::) are the values of II' l4s respectively, at the
P 7
pth  sonic line on the kth strip edge. The matrix I:t) is the
l‘

T



value of Il- at the pth sonic line on the kth strip edge and

i
(k) is the inverse.
f{p

Substitution of equation (33) inte equation (32) gives

Ny

z : z : (k) (k)
u l =-u = ] + u a o
lj( 0-‘) v =1 " [ ‘"] fa) b

N "n
E |1 Uy - E [(“] Il’ H}k)
qp el P
q=1
-1
z : (k) (k\ (34)
tq) "y ‘1',.
q=

(k) (k)

where Ogp * “lp are values at the pth sonie line on the kth
strip edge. Generally these values are found by interpolation
from the standard values agye l*”.

Equation (34) can be written in the simple form

where
Nu
(x)]™? (k)
A - l=u \ - gl - z
" ( n‘,) i) iln z:[ qp] s u,]
q=1
Ng
-1
- I*H - E I:k‘] lf t::) (i6)
; qap Q\
q=1
Ng
-1
“,1 - ll'l‘ - E 1[ [l:k:] Il(‘k., ’ (37)
e ey Q) [ pe Ty A
=S
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51j is the Kronecker delta, and
"1'1 lﬁ"x

(38)
ug = 0 12N

Note that the matrix Aji is singular if the xy coincide
with a sonic point. Hence the distribution of the computational
mesh should be such that the sonic points on each strip edge do
not lie on a mesh point. A“ is a large dense matrix and in the
present scheme the set of equations (35) is solved by Caussian

elimination.

Having obtained the uli the total velocity up(xg,z,) is

given by
Ng
up (Xg023) = uo(xl.zk)[l - ¢ Z Gx,pipx.(xi)] + cu, (x,2)) (39)
p=1
where
Ng
xi - xi + ¢ Z Gxapip(xi) (50)

p=1

and xg, is found from equation (33).
p

It can be seen from equation (39) that the total contribution

of the perturbation variables is

Ng

cﬁl(xi.zk) = cuy (x§,2,) = |e E stpipx'(xi) uy(xiszy) . (41)
p=1

=

e
:

M,

o
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In the preceding section the teras u, and 6xnp are solved
separately and it is possible that cu,(x;,z,) is small, whereas
its components cu, (xg,2,) and

Ng

‘ 6x.pipx'(xi) uy (xfy2))

p=1
may be relatively large. This situation can lead to large errors
in cﬁl(xi.zk) even though the relative errors in its component
parts are small. Consequently, it has been found in some cases
that an alternative formulation in which u,(x{,z,) rather than

ul(xi.zk) is the dependent variable is more accurate. Thus

equation (32) is replaced by

Ny Ns
u, (1-u - 1 + I TP u, u, B4 + Sx. 1
1j( °J) Lp Z bty i; 1gh0g Z: *p Ty
j {=1 - p=1 i
(42)
where
Ny
i, =1 + U, ay X, (x}) + i u? By x (x}l) . “3
fPJ fpj Z 01 ij px. i 01 '.lj le 4
i=1 i=1
Apart from the definition of if the numerical treatmenc is

Pl
identical to the previous scheme. Having found dli the total

velocity is given by
(x;02,) = upgx!,z.) + cti, (x},z.) 44
Up(Rgaly) ® Ugixgeny) + cd) (x].5y (44)

and x4y {is given by equation (40).
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4, RESULTS

Two examples of perturbation flows calculated by the present
method are shown in Figs. 2 and 3. The input for these examples,
the base solution, is calculated by shock-capturing finite differ-
ence method using the transonic small disturbance equation, with a
fine computational grid being used. The necessary normal shock
solution is then estimated by the use of a suitable extrapolation.
In both examples the transonic parameter k is given by

k= (y + 1)M2? .,

For a single shock wave in each half plane the straining function

X (x') = _'_(_'_)_x' l-x

xg(l = xg)
is used.

The boundary conditions used in the first example are the
usual thin airfoil boundary conditions. In the second example, two
methods of eliminating the leading edge singularity are used;
namely, the use of the analytic continuation boundary conditions
of equation (6) and the use of the well known Riegels factor. In
the latter, all the terms in equation (26) and equation (27)

involving the factor [(1 - x)/x]l/2 are divided by

1 i . 1/2
ll + ?- [zLx'(x ) - zLx|(x )]2]

which removes the x~1/2 singularity for round-nosed airfoils.
In Fig. 2 the perturbed flow around a 10% biconvex airfoil at

zero angle of attack for two different free-stream Mach numbers is

=18
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shown, The base Mach number {s 0,808 and (n the present computa=
tions thin atrfoil boundary conditions are used, Figuves Ja and b
show the pressure distribution for M, = 0,818 and M, = 0,828,
respectively, Also shown are the results of direct caleulations,
1t can be seen that the present method gives good agreement for
the lower Mach number but that there {s poorer agreement at the
higher Mach number. This discrepancy {s attributed to the linear-
fzation process leading to equatfon (16) being no longer a valid
approximation,

In Fig. 3 the flow around the upper surface of a NACAGLAOO6
afrfoll at M, = 0,85 at two different angles of attack {s shown.
The base flow (s nonlifting., In Fig. 3a the pressure distribution
at 1/4% angle of attack is compared to the results of a direct
finite difference calcusation. It can be seen that the "analvtic
cont inuation"” results give a better agreement with the direct cal-
culation for the pressure than the "Riegels factor" caleulavion.
However, the shock location predicted by the "Riegels factor" method
is in better agreement than the "analvtic continuat fon” method,

The probable reason is that in the region of the shock motion the
"Riegels factor" method gives essentially the same linear thin
atrtotll boundary conditions as for the direct-calculation, whereas
the analytic continuation boundary conditions are nonlinear. 1t
can also be seen that in both examples there {s a discrepancy

between the present results and the direct results especially in

=y
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the leading-edge region. This is probably due to the different
methods of treating the leading-edge region in the present method
(analytic continuation or Riegels factor) and in the direct solu-
tion (thin airfoil boundary conditions with mesh adjustment).
Similarly, the results of the higher angle of attack, a = 1/2°,
shown in Fig. 3b, are not in such good agreement as regards shock
location. Again, this is attributed to the linearization process
being no longer a valid approximation.

Generally therefore, the present method will adequately com-
pute the perturbation flow for both lifting and nonlifting cases.
For lifting flows some disagreement with direct results may be
expected because of differences in the treatment of the boundary
conditions. Also it would appear that for shock movements of more
than 5%-6% of chord the linearization of the equations is no longer

a valid approximation.

5. CONCLUSIONS
A direct numerical technique has been devised for the solution
of perturbations of discontinuous transonic flows for both lifting
and nonlifting configurations. Results of two examples indicate
that the method is satisfactory provided the perturbations are
small. The main purpose of the present paper is to test the
numerical approach for future use in unstesdy transonic flow

problems,
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Figure 2.- Pressure distribution around a 10% biconvex airfoil;
base solution M_ = 0,808,
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Figure 3.- Pressure distribution around a NACA 64A006 airfoil
at M, = 0.854; base solution a = (°,
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