
A BRIEF SURVEY OF THE SOLAR CELL STATE-OF-THE-ART 

Daniel T. Bernatowicz 
NASA L e w i s  Research Center 

INTRODUCTION 

This is a b r i e f  survey of t he  space s o l a r  ce l l  state-of-the-art a t  t h e  
present t i m e .  Modem high performance cells made f o r  space are discussed and 
the  major recent developments t h a t  are expected t o  influence what s o l a r  cells 
w i l l  be ava i l ab le  i n  f i v e  years o r  so  are described. 

MODERN SILICON SOLAR CELLS 

The modern s o l a r  cel l  era s t a r t e d  i n  1972 when t h e  COMSAT Corporation an- 
nounced the  v i o l e t  c e l l  with an e f f i c i ency  exceeding 13% AM0 (reference 1). 
For nearly a decade p r i o r  t o  t h a t  t he  e f f i c i ency  level f o r  s i l i c o n  s o l a r  cells 
had reached a p la teau  of 10 t o  11%. A number of f u r t h e r  innovations have been 
made s ince  1972. Modern cells i n  commercial production and i n  use o r  s e l ec t ed  
f o r  f l i g h t  use incorporate various combinations of these  improvements. 

, 
Figure 1 i l l u s t r a t e s  t he  major f ea tu res  ava i lab le .  The c e l l s  are gener- 

a l l y  0.2 t o  0.3 mm (8 t o  12 mils) i n  thickness and have a nominal base resis- 
t i v i t y  of 2 o r  10 ohm-cm. Most have a smooth f ron t  surface,  as depicted i n  
the  right-hand por t ion  of f igu re  1, and have a shallow junc t ion  i n  the  range 
of 0.10 t o  0.15 vm i n  depth. 
cur ren t  about 10% and improves r ad ia t ion  r e s i s t ance .  The top contact g r i d  f in -  
gers are more c lose ly  spaced t o  compensate f o r  t he  higher sheet r e s i s t ance  of 
t he  top N l a y e r  due t o  t h e  shallow junction. So as not t o  increase  the  shad- 
owing, gr id  f inge r s  are now much narrower. Photores i s t  masks o r  b ime ta l l i c  
shadow masks are used t o  m a k e  f i nge r s  less than 0.025 mm wide and t h e  shadowed 
area is  reduced by 3 t o  5%. 

The shallow junc t ion  increases  the  sho r t - c i r cu i t  

Tantalum pentoxide has now replaced s i l i c o n  monoxide as the  an t i r e f l ec -  
t i o n  coating because i t s  index of r e f r ac t ion  provides a b e t t e r  o p t i c a l  coup- 
l i n g  with t h e  cover cement. The improvement i n  cur ren t  is  about 7%. Multiple 
l aye r  a n t i r e f l e c t i o n  (MLAR) coatings are now a l so  becoming ava i l ab le  on cells. 
They can lower the  r e f l e c t i v i t y  and increase  cur ren t  another 3% o r  more. 
shallow junc t ion ,  tantalum oxide and t h i n  photores i s t  f ingers  are t h e  main 
f ea tu res  of t h e  v i o l e t  c e l l .  

The 

Another means employed t o  reduce sur face  r e f l e c t i o n s  is  the  textured sur- 
The f r o n t  sur face  i s  etched chemically t o  y i e l d  a random arrangement of face. 
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small (Q 5 m) pyramids which t r a p  the  l i g h t  and a l so  r e f r a c t  the  l i g h t  en ter -  
i ng  t h e  c e l l  so t h a t . i t  has a longer path length within the  cell.  The tex- 
tured f r o n t  surface,  a lso  with a tantalum oxide a n t i r e f l e c t i o n  coating, in- 
creases the  cur ren t  about 7%. However, because the rough sur face  a l s o  has a 
low r e f l e c t i v i t y  f o r  i n f r a red  l i g h t ,  t he  textured sur face  increases the  oper- 
a t i n g  temperature of t he  cell .  An increase  i n  ce l l  temperature reduces vol t -  
age and hence power output. 
o r  n u l l i f i e d  by t h e  reduced voltage.  

The advantage of t h e  increased cur ren t  i s  reduced 

A t  t h i s  t i m e  it appears t he  textured sur face  is most important f o r  t h i n  
cells, e spec ia l ly  when used i n  conjunction with a back sur face  r e f l e c t o r .  
back sur face  r e f l e c t o r  is a l a y e r  of r e f l e c t i n g  metal, usua l ly  aluminum, t h a t  
provides f o r  i n t e r n a l  r e f l e c t i o n  of l i g h t  t h a t  would otherwise be absorbed a t  
the  rear contact. The back sur face  r e f l e c t o r  reduces cell operating tempera- 
t u r e  by r e f l e c t i n g  t h e  unuseable red l i g h t  from the  back sur face  and out t h e  
f r o n t  . 

The 

The back sur face  f i e l d  is a heavily doped P+ re i o n  a t  t h e  back surface.  
Aluminum is  usua l ly  employed as t h e  dopant f o r  t he  P region. The back sur- 
face  f i e l d  increases  the  open-circuit voltage t o  0.6 V o r  higher,  independent 
of thickness and base r e s i s t i v i t y .  
The advantage of t h e  back sur face  f i e l d  is l o s t  a f t e r  s u f f i c i e n t  e l ec t ron  ir- 
rad ia t ion .  
i t s  advanta e over a non-field e l l  of t h e  same thickness after a fluence of 
about 1-MeV electrons/c$ (reference 2) .  

g 

It a l s o  increases  t h e  cur ren t  about 2%. 

For example a back sur face  f i e l d  cell  0.2 nun i n  thickness lo ses  

Modern cells are ava i l ab le  i n  qu i t e  a v a r i e t y  of combinations of t hese  
f ea tu res  with e f f i c i e n c i e s  ranging from 11.8 t o  14.8% AMO. 
i n t o  two ca tegor ies  as shown i n  t a b l e  I, hybrid and violet-type cells and back 
sur face  f i e l d  cells. 
t i a l  performance but t h e r e  is overlap i n  the  performance of these  groups be- 
cause of t he  d i f f e r e n t  combinations of f ea tu re s  ava i lab le .  

They can be classed 

The back sur face  f i e l d  cells generally have higher i n i -  

The cost  of t h e  cells are dependent on t h e  s p e c i f i c  d e t a i l s  of a par t icu-  
lar purchase ( spec i f ica t ions ,  schedule, e t c . )  as w e l l  as ce l l  type. A rough 
genera l iza t ion  ( to  wi th in  + 10%) can be made, however--namely t h a t  t h e  ce l l  
cos t  is  about $100 per  w a t t  at beginning of l ife.  
requirements are heaviest e a r l y  i n  t h e  mission and back sur face  f i e l d  c e l l s  
may be cost  e f f ec t ive .  
tate t h e  a r r ay  s i z e  and the  non-field cells would be t h e  economical choice. 

For some missions t h e  power 

For o the r  missions end-of-life power requirements dic- 

RECENT SOLAR CELL R&D ADVANCEMENTS 

Research is continuing on r a i s i n g  t h e  e f f i c i ency  of s i l i c o n  s o l a r  c e l l s .  
The open-circuit vo l tage  is t h e  parameter l i m i t i n g  the  e f f ic iency .  
i nd ica t e s  t h a t  an open-circuit vo l tage  approaching 0.70 V and an e f f i c i ency  
i n  t h e  range of 18 t o  19% AM0 are poss ib le  i f  t h e  I@ region of t he  c e l l  can 
be improved (references 3 and 4). 

Theory 

Figure 2 shows as a function of base 
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doping level t h e  pred ic ted  open-circuit vo l tage  and t h e  voltage a c t u a l l y  
achieved wi th  conventional N-P junctions.  
s is t ivi t ies  of 0.01, 0.1, 1, and 10 ohm-cm. 
been l imi ted  t o  about 0.6 V. 
l i shed ,  r e s u l t  by Lindholm a t  t h e  University of Florida.  By employing an 
N+-N-P-P+ s t r u c t u r e  Lindholm achieved a voltage of 0.64 V. 
h i s  measurements i n d i c a t e  t h a t  i n  h i s  device t h e  vol tage  w a s  not l imi ted  by 
t h e  N o r  N+ region but  by t h e  P region, which is amenable t o  improvement. 

The d a t a  poin ts  are f o r  base re- 
U n t i l  recent ly  t h e  vol tage  has  

Also shown i n  f igu re  2 is a recent ,  y e t  unpub- 

More importantly 

A recent  spec tacular  achievement i n  s i l i c o n  cel l  technology is t h e  u l t r a  
t h i n  cell. The key s t e p  i n  achieving a p r a c t i c a l  cell  0.05 mm (2 mils) i n  
thickness is  t h e  use of an a l k a l i n e  e t ch  t h a t  very uniformly reduces t h e  cell  
thickness (reference 5). The status of t h e  t h i n  ce l l  a c t i v i t y  at  Solarex is  
summarized i n  t a b l e  11. 
e f f i c i e n c i e s  as high as 14% AM0;large cells, 5x5 cm, are i n  development with 
e f f ic iency  as high as 11% AMO. 

P i l o t  production of 2x2 cm cells is  underway with 

Thin ce l l  development is  being supported a t  Spectrolab a l s o ,  and t h e  
s t a t u s  is summarized i n  t a b l e  111. 
ment phase and cells with e f f i c i e n c i e s  t o  15% AM0 have been made. Some of 
these  cells, which have back surface f i e l d s ,  were i r r a d i a t e d  at JPL and ex- 
h i b i t e d  r a d i a  ion  damage comparable t o  non-BSF cells f o r  a 1-MeV e l ec t ron  
fluence of loE5. This r e s u l t  conforms t o  expectations t h a t  t h i n  BSF cells 
should maintain t h e i r  advantage out  t o  high fluences (reference 6).  

This e f f o r t  i s  i n  t h e  laboratory develop- 

Wraparound contact cells have both contacts on t h e  rear of t h e  cel l  and 

I n  one type the  junc t ion  and 
thereby o f f e r  important advantages i n  ce l l  interconnection and a r r a y  assembly. 
Two general types are i l l u s t r a t e d  i n  f i g u r e  3. 
N region are wrapped around t h e  edge of t h e  ce l l  t o  t h e  rear. With t h e  wrap- 
around junc t ion  approach i t  has been found t h a t  shallow junc t ions  could not  
be used because of sho r t ing  through the  junc t ion  a t  t h e  cell edge. The e f f i -  
ciency i s  l imi ted  thereby t o  about 11.5% AM0 (reference 7) .  The o the r  approach 
shown i n  f igu re  3 employs an i n s u l a t o r  around t h e  edge and avoids t h e  junc t ion  
shor t ing  problem. A shallow junc t ion  can be used. However,insulating l aye r s  
applied by vacuum evaporation have pinholes t h a t  allow shor t ing  of t h e  N con- 
tact meta l l iza t ion  t o  t h e  P base region. 

A method f o r  applying a wraparound g la s s  i n s u l a t o r  l aye r  by screen p r in t -  
i n g  and f i r i n g  w a s  developed during a program t o  develop techniques f o r  low 
cos t  f a b r i c a t i o n  of space-quality s o l a r  cells. I n  t h i s  program the  main in t e r -  
est w a s  on methods t h a t  would be e a s i l y  mechanized o r  automated, e spec ia l ly  
methods t h a t  do not requi re  use of vacuum chambers. This work w a s  extended 
t o  include wraparound contacts.  
l i z a t i o n  s t e p s  u t i l i z e d  screen p r i n t i n g  and t h e  a n t i r e f l e c t i o n  coating w a s  ap- 
p l i e d  by spinning-on and f i r i n g  a commercially ava i l ab le  preparation t o  y i e l d  
a s i l i c o n  oxide-titanium oxide coating. Junction d i f fus ion  w a s  by hea t ing  of 
a spin-on source of dopant commonly used i n  the  semiconductor device industry. 
F i f teen  hundred cells were made i n  the  cont rac tor ' s  terrestrial cell  produc- 
t i o n  f a c i l i t i e s  with an average e f f i c i ency  of 10.9%. 

Table I V  lists t h e  main processes. The metal- 
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High e f f i c i ency  wraparound contact cells are now under development and 
Screen the  processes se l ec t ed  f o r  t h e i r  f ab r i ca t ion  are l i s t e d  i n  t a b l e  V. 

p r i n t i n g  w a s  found super ior  t o  vacuum evaporation f o r  t h e  app l i ca t ion  of t h e  
aluminum f o r  t h e  back sur face  f i e l d  and t h e  g l a s s  wraparound insu la to r .  
c i enc ie s  f o r  a few cells have been over 15% AM0 (reference 7 ) .  
t i o n  with a goal of 14.5% average e f f i c i ency  is planned. 

E f f i -  
P i l o t  produc- 

The nonref lec t ing  ver t ica l - junc t ion  s i l i c o n  s o l a r  cell which w a s  conceiv- 
ed t o  increase rad ia t ion  r e s i s t ance  i s  f u l f i l l i n g  i ts  promise. 
made with a profusion of t h i n  deep grooves i n  t h e  top sur face  of t h e  cell 
( f igu re  4). The junc t ion  follows the  sur face  of t he  grooves and a g rea t e r  
po r t ion  of t he  e lec t rons  and holes  are generated near t h e  junc t ion  than i n  a 
planar cell ,  r e s u l t i n g  i n  less s e n s i t i v i t y  t o  carrier l i f e t i m e  reduction by 
r ad ia t ion  damage. I n  the  present program at  Solarex t h e  grooves are chemi- 
c a l l y  etched i n t o  the  sur face  of t h e  aligned 110 s i l i c o n  wafer through an 
oxide mask. 
as 14%. 
h a l f  t h e  rate of p lanar  cells under 1-MeV e l ec t ron  i r r a d i a t i o n  (references 8 
and 9) .  

The ce l l  is  

Cells have been made i n  the  laboratory with e f f i c i e n c i e s  as high 
The ver t ica l - junc t ion  ce l l  has been found t o  degrade a t  about one 

It has long been recognized t h a t  gallium arsenide s o l a r  cells have t h e  
p o t e n t i a l  f o r  higher e f f i c i ency ,  higher temperature operation, and b e t t e r  
r a d i a t i o n  r e s i s t ance  than s i l i c o n  cells. However,results with gallium arsen- 
i d e  w e r e  not good u n t i l  Hovel and Woodall (reference 10) introduced t h e  gal- 
lium arsenide  ce l l  with a gallium aluminum arsenide  window, which i s  i l l u s -  
t r a t e d  i n  f igu re  5. 
arsenide  and eliminates carrier recombination a t  the  gallium arsenide sur face  
t h a t  had caused poor performance i n  ea r ly  non-window cells. The performance 
achieved i n  space-program-supported gallium arsenide R&D activities is sum- 
marized i n  t a b l e  V I  (references 11 and 12).  The bes t  cells from terrestrial 
programs, whose e f f i c i e n c i e s  are reported f o r  a terrestrial sunl ight  spectrum 
and sometimes with concentration, are estimated t o  have AM0 e f f i c i e n c i e s  com- 
parable t o  t h e  space cells. 
but i t  has been found t h a t  higher r ad ia t ion  r e s i s t ance  and higher end-of-life 
e f f i c i ency  is achieved by using a smaller junc t ion  depth and window thickness. 
The beginning-of-life e f f i c i ency  f o r  t h e  more r e s i s t a n t  c e l l s  i s  i n  t h e  16-17% 
AM0 range. 
cells is s i g n i f i c a n t l y  b e t t e r  than f o r  s i l i c o n  cells. 

The clear window is  e p i t a x i a l l y  grown on t h e  gallium 

Ef f i c i enc ie s  above 18% AM0 have been achieved, 

The rad ia t ion  damage r e s i s t ance  f o r  t h e  t h i n  window and junc t ion  

Individual g l a s s  covers are customarily bonded t o  s o l a r  cells t o  p ro tec t  
them from the  e l ec t rons  and protons in space. 
cerium-doped microsheet are commonly used. 
but are expensive (very roughly 1/3 the  cos t  of a c e l l ) .  
ed t o  t h e  c e l l s  with a s i l i c o n e  adhesive, t h e  b e s t  of  which are darkened 
s l i g h t l y  by W l i g h t .  
out t h e  W and p ro tec t  the  adhesive. 

Fused s i l i c a  microsheet, and 
They are s t a b l e  and w e l l  proven 

The covers are bond- 

Coatings are sometimes applied t o  t h e  covers t o  f i l t e r  

FEP-Teflon shee t  which has high r e s i s t ance  t o  W darkening has been adopt- 
ed as the  cover g l a s s  adhesive on the  Solar  Maximum Mission t o  save costs.\ The 
material cost  is  low, a W f i l t e r  on t he  cover is  not required,  and t h e  appli-  
ca t ion  and cleanup labor  i s  reduced. The g l a s s  cover i s  applied by heat and 
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pressure bonding of t he  sandwich of PEP sheet between the ce l l  and cover. FEP 
cemented covers have been successfully t e s t ed  i n  f l i g h t  experiments on t he  
ATS-6 and NTS-2 satellites. 

Borosi l icate  glass  has a thermal expansion coeff ic ient  c losely matching 

The bond is made under pressure a t  elevated tempera- 
t ha t  of s i l i con .  
e l e c t r o s t a t i c  bonding. 
t u re  with an e l e c t r o s t a t i c  f i e l d  between the cel l  and cover (reference 13). 
The SPIRE Corporation under Air Force support is invest igat ing how t o  adapt 
the process t o  the  modern, high performance cells. 

Such g lass  can be bonded d i r ec t ly  t o  the  s i l i c o n  cel l  by 

P l a s t i c  materials have been investigated as cover materials t h a t  are less 
expensive and/or easier t o  apply than glass.  
were found t o  embri t t le  and crack, allowing proton damage t o  the  cells i n  the 
ATS-6 f l i g h t  experiment. 
hesive bonding of FEP covers may eliminate cracking but the  process requires 
fur ther  development. 

Heat-bonded FEP Teflon covers 

Preliminary invest igat ions a t  L e w i s  ind ica te  ad- 

Other polymeric materials tha t  can be applied by spraying, dipping o r  
spinning are a lso  being investigated.  
su i tab le  f o r  t h in  cells. 
mides. 
severely. 
acceptable f o r  use on space cells. 

Such coatings would be especial ly  
The materials include FEP, s i l i cones  and polyi- 

The coatings investigated so f a r  have been darkened by W, some 
These coatings require fur ther  development before they would be 

The Air Force and NASA are continuing t o  support improvements i n  space 
so la r  cells. The general goals include improved efficiency, radiat ion re- 
s is tance,  lower weight and lower cost.  The major ongoing so la r  ce l l  R&D 
programs and t h e i r  t a rge t s  are l i s t e d  i n  tab le  V I 1  f o r  the Air Force and 
tab le  V I 1 1  f o r  NASA. 

CONCLUSIONS 

The following conclusions w e r e  reached from t h i s  br ie f  survey of t he  
so l a r  cell  state-of-the-art: 

1. High performance s i l i c o n  so la r  cells with a wide var ie ty  of features  
and eff ic iency t o  nearly 15% AM0 are commercially avai lable  and are being 
u t i l i zed  in f l i g h t  programs. 

2. Sil icon cells as th in  as 0.05 mm (2 mils) with high eff ic iency 
(14% AMO) and radiat ion resis tance are nearing readiness. 

3. Wraparound'contacts can be applied t o  s i l i c o n  cells 0.2 mm (8 m i l )  
thick without compromising performance. 

4. R&D programs are continuing t o  y ie ld  more e f f i c i e n t  and radiat ion re- 
s i s t a n t  s i l i c o n  so la r  cells. 
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5. Gallium arsenide cells with high e f f i c i ency  and r ad ia t ion  resistance 
have been made i n  laboratory facilities. 
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TABLE I. - MODERN SILICON SOLAR CELLS 

BEGINNING OF L I F E  OUTPUT, AM0 2 8 O  C 

POWER FOR 2 x 4 CM EFFICIENCY 

HYBRID AND VIOLET-TYPE CELLS 128-148 MW 11 I 8-13.7% 

BACK SURFACE FIELD CELLS 136-160 MW 12,6-14 I 8% 

- COST 

$90-8110 PER WATT, BOL 

TABLE 11. - ULTRA THIN SILICON SOLAR CELLS 

SOLAREX/JPL 

DESCRIPTION 
ETCHED TO FINAL THICKNESS 
0.05 MM THICK 
SHALLOW JUNCTION 
UNTEXTURED 
PARTIALLY REFLECTING BACK SURFACE FIELD 

STATUS 
2 x 2 CM CELLS 

I N  PILOT PRODUCTION, 2 0 0 0  CELLS DELIVERED TO JPL. 
CURRENT PRODUCTION CELLS GIVE 65-74 MW (12 - 14X AM01 

5 x 5 CM CELLS 

I N  LAB DEVELOPMENT, 
150 CELLS DELIVERED. 
BEST EFFICIENCY ABOUT 11%. 
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TABLE 111, - ULTRA THIN SILICON SOLAR CELLS 

SPECTROLABIJPL 

DESCRIPTION 
- 

- 0.05 MM THICK 
- SHALLOW JUNCTION 
- TEXTURED 

2 x 2 CM ETCHED TO FINAL THICKNESS 

- PRINTED AL PASTE BSF 
- AL BACK SURFACE REFLECTOR 

STATUS 
- I# LAB DEVELOPMENT 
- BEST CELLS GIVE > 80 MW (14 - 15% AMO) 
- EXHIBIT LOW RADIATION DAMAGE -- ONLY 17% LOSS 

AFTER 1015 1 MEV ELECTRON FLUENCE, COMPARABLE 
TO NON-BSF 

TABLE IV .  - NON VACUUM PROCESSES FOR POTENTIALLY 

LON COST SOLAR CELLS 

SPECTROLAB/LERC 
DESCRIPTION 

SURFACE TREATMENT NAOH TEXTURING ETCH 

JUNCTION DIFFUSION SOURCE SPIN-ON DOPANT 

CONTACTS 

ANTIREFLECTION COATING 

SCREEN-PRIHTEC AG 

2 2  
SPIN-03 Si0 -TI0 

BACK SURFACE FIELD SCREEN-PRI HTED AL 

INSULATOR FOR WRAPAROUND CONTACTS SCREEN-PRINTED GLASS 

STATUS 

1500 CELLS MADE I N  TERRESTRIAL CELL PRODUCTION FACILITIES 

AVERAGE EFFICIENCY, AM0 10 I 9% 
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TABLE V. - HIGH EFFICIENCY WRAPAROUND CONTACT 
SOLAR CELL PROCESSES AND STATUS 

SPECTROLAB/LERC 
DESCRIPTION 

SURFACE TREATMENT 

JUNCTION DIFFUSION SOURCE 

CONTACTS 

ANTI REFLECTION COATING 

BACK SURFACE FIELD 

INSULATOR FOR WRAPAROUND CONTACTS 

E 

LAB R8D NEARING COMPLETION 

MAXIMUM EFFICIENCY ACHIEVED 

EFFICIENCY GOAL FOR PILOT PRODUCTION 

NAOH TEXTURING ETCH 

GASEOUS DOPANT 

EVAPORATED CRPDAG 

EVAPORATED TA 0 

SCREEN-PRINTED AL 
2 5  

SCREEN-PRINTED GLASS 

15 I 2% 

14 I 5% AVG, 

TABLE V I ,  - GAALAs-GAAS SOLAR CELL PERFORMANCE 

EFFICIENCY 

- HUGHEVAFAPL 
CELL SIZE:  2 x 2 CM 
EFFICIENCY: 16 - 17% A M  

- IBWLnRC 
CELL SIZE:  0.1 CV? 
EFFICIENCY: 18.5% AM0 

RADIATION DAMAGE RESISTANCE 

- EOL AND BOL EFFICIENCIES CAN BE TRADED OFF BY VARYING 

THICKNESS OF WINDOW AND JUNCTION DEPTH, 

- DAMAGE RESISTANCE WITH OPTIMUM WINDOW A I D  JUNCTION I S  
SIGNIFICANTLY BETTER THAN FOR S I L I C O l  
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TABLE V I I ,  - MAJOR ONGOING SOLAR CELL R8D PROGRAK - 

A I R  FORCE 

ACTIVITY TARGET 
NO+ REFLECT I HG VERT I CAL JUNCTION 15% BOL, 12% a 5 x 1015 

SILICON CELL 

HIGH EFFICIENCY SOLAR PANEL PROGRAM- 16% BOL, RAD. RES. 
PHASE I I-SI 

S I  L I  COIi CELL OPTIMIZATION 18% BOL, RAD. RES. 

EXTENSION OF ELECTROSTATIC BONDING 
TECHNOLOGY 

PULSED LASER HARDENING 

HIGH EFFICIENCY SOLAR PANEL PROGRAM- 18% BOL, RAD. RES. 
PHASE I 1  GAAS 

MULTIBANDGAP SOLAR CELLS 25% BOL 

TABLE V I I I .  - MAJOR ONGOING SOLAR CELL RED PROGRAMS - 

NASA 

ACT1 VITY TARGET 
HIGH EFFICIENCY SILICON CELL 

INCREASED RADIATION RESISTANCE FOR 
HIGH EFFICIENCY SILICON CELLS 

ULTRA THIN SILICON CELLS AND COVERS 
FRONT AND BACK CONTACT CELLS 
BACK SURFACE CONTACT CELLS 

HIGH EFFICIENCY WRAPAROUND CONTACT 
SILICON CELL 

LOW COST SILICON CELL TECHNOLOGY 

GALLIUM ARSENIDE CELL RESEARCH 

1978 

1979 

1981 

1980 

1982 

CENTER 

18% BOL 1980 LERC 

< 15% DEGRAD. AFTER 1982 LERC 
10 Y I N  GEO 

13% BOL, 2 x 2 PILOT 1979 J P L  
14% BOL 1980 LERC 

14.5% AVG, BOL 1 9 7 9  LERC 
PILOT 

$5/W TECH. READY 1980 LERC 

< 25% RAD, DAM, AFTER 1980 LARC 
30Y I N  GEO 
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FIGURE 1. - FEATURES OF MODERN SILICON SOLAR CELLS. 
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rJUNCTION 
r G R l D  FINER r m I D  FINGER 

LP CONTACT NETAL i l  METAL 
METAL-/ LWRAPAROUND INSULATION 

JUNCTION WRAPAROUND INSULATOR WRAPAROUND 

FIGURE 3. - TYPES OF WRAPAROUND CONTACT SOLAR CELLS. 
CLOSE-UP VIEW OF CELL CORNER. 

SPONSOR: AFAPL 

CONTRACTOR: SOLAREX 

STATUS: LABORATORY R8D 
BOL EFFICIENCY 14% AM0 
DEGRADES AT HALF THE RATE OF PLANAR 

SILICOl CELLS UNDER 1 MEV ELECTRON 
IRRADIATION 

FIGURE 4. - NONREFLECTING VERTICAL-JUNCTION SILICON SOLAR CELL. 
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P CONTACT 
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GAALAS 

- P  GAAS I N GAAS 

N CONTACT-” 

FIGURE 5, - DIAGRAM OF A GAALAs-GAAS SOLAR CELL. 
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