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time (msec). The expression is independent of pressure over the range of 5 atm
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THTRODUCTION

In a recently completed experimental program described in Reference (1),
the emissions of a lean premixed prevaporized propane-air combustion system
were measured over a matrix of inlet temperature and pressure. The matrix in-
cluded inlet temperatures of 600, 800 and 1000K and pressures of 5, 10, 20

and 30 atm. Matrix points at which data were obfained are indicated in Table |,

below:
TABLE |
P

T , 5 atm 10 atm 20 atm 30 atm

600K * % % U

300K = ¥ % %

1000K * 1 % F F
Matrix points marked with asterisks in Table | indicate conditions at which

data were obtained. Those points marked with the letter F indicate conditions
at which attempts to operate produced flashback. The letter U at the 30 atm/
600K operating point indicates that combustion at this condition was unstable.
with the flame oscillating between the flameholder and a station near the ex-

haust throat.

Table | indicates that relatively little data was obtained at the 30 atm
operating condition. Since operation at pressures of at least 30 atm is an-
ticipated for future engines, there is considerable interest in obtaining ad-
ditional data on LPP combustion at this condition. This report describes a
brief series of experiments in which the premixing combustion apparatus em-

ployed in Reference (1) was modified to produce stable combustion at 30 atm

Ref. 1. Roffe, G. and Venkataramani, X. S., "Experimental Study of the Effects
of Cycle Pressure on Lean Combustion Emissions,' NASA CR 3032, July

1978.



pressure. Emissions data were taken at this zressure for entrance temperatures
of 600K and 300K. Emissions measurements were also made at a pressure of 10
atm, again for entrance temperatures of 600 and 300K, these latter tests
prompted by a desire to obtain additional data at a condition where consider-

able data scatter was reported in Reference (1).



APPARATUS

Test Rig - The combustion test rig is illustrated schematically in Fig~
ure {1). Heated dry air.enters the apparatus through the bellmouth, passing
through an instrumentation spool where the entrance temperature and pitot-
static pressure profiles are measured by an embedded rake. . Fuel enters the
‘device through a heated plenum chamber which surrounds the instrumentation
spool and feeds fifty-two individual 1.6 mm diameter injection tubes. The
tubes extend 7 cm downstream from their entry point and inject fuel in the
streamwise direction to minimize the possibility of local flow separation.
The relatively long and thin injection tubes are supported at their midpoints
by a fine honeycomb structure 6 mm in streamwise extent representing a flow

blockage of 3%. The fuel injector assembly is shown in Figure (2).

The mixer tube is constructed of a heavy outer pressure wall and a thin
stainless steel liner. The two elements are separated by an internally vent-
ed air gap to minimize heat loss. Four thermocouples are mounted 90° apart
2.5 cm from the downstream end of the mixer and placed so that their tips are
flush with the inner surface of the liner. The thermocouples serve as indi-

‘cators of autoignition in the mixer or flashback through the flameholder.

The flameholder assembly is illustrated in Figure (3). The flameholder
is a water-cooled perforated plate, employing 21 holes 0.95 cm in diameter
to produce a porosity of 22%. At the 25 m/s reference velocity used in this
experiment, the flameholder produces a total pressure drop of 3%. It is pro-
vided with two wall surface thermocouples on the downstream 5urf$ce and one
on the upstream surface and an integral hydrogen-air igniter which is used to
initiate combustion. Flameholder depth, measured in the streamwise direction,

is 1.6 cm.

The cémbustor assembly also employs a double wall design to protect the
heavy outer pressure wall. Here the air gap between the combustor liner and
the outer carbon steel wall is kept cool by injecting a small amount of cold
air. In addition, an alumina tube is mounted inside the stainless steel liner
as illustrated in Figure (4) to provide an uncooled refractory combustor wall,

minimizing convective and radiative losses from the gas.

_3-



ssajujels
: anssaig [eio) 1|
$9[ZZON Youany Loumznlw11////.1|e\\hmvv ﬁTJ

ey

91¥ 15341 NOILSNEWOd "l 3uNdid

493epM HBujo0) Joployduwe| 4 — N
: Jax |y
41y Buyjoo)y 43ul

Jagquey) uojisnquo) J3u17 933§

L L L

a%ey
asueJsug

/

L

[

wag“ L

w52 7

/7

AN

2222 T LZT T T

2904d FETT R

L

eujwnjy III\\\\IL 1
Jaployswe| 4

I

4

TIELY]

U ALY

X3
NNN:N’N\\N\\NN\\N\ I
T 7
— \ /\1 A
5
.d |

1043u09
24nssauy

R S— uo|3dafuj (an4

9| dnodowssdy] Hoeqyseld

9213140 duos

1128 32aju|

Joujq] 9915 Ssa|ujeis



AUITS HvAULSdn

WOY4 Q3NR3TA) ATGHISSY T00dS LNAWNGISHT QYYAW04/N01L23rNT 1304 ‘T 3WN9I4

jJoddng
"quodAauoy

1and

o dnodowtad U | mmesensncsnssanne’

agny 103 iId




0.25

e

%

J

SECTION A-A _

FIGURE 3. WATER-COOLED PERFORATEDVPLATE FLAMEHOLDER
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A dome~loaded pressure regulator is used te supply cold air to an an-
nular injection section just upstream of the rig exit orifice. By loadirg
the regulator to the pressure desired for the test, the appropriate amount
of cold air is added automatically to produce the correct total pressure in
the test rig. This method of pressure control offers the dual advantages of
automatic compensation for varying combustor exit temperature and thermal

protection for the choked exit orifice.

Fuel System and Fuel Properties - The fuel supply system is illustrated

schemdtically in Figure (5)., Liquid propane is stored in a tank and pres-
surized with nitrogen. The liquid is.withdrawn from the lower section of the
supply tank, passing through a turbine flowmeter and pressure regulator before
entering a cavitating venturi which provides a constant fue! mass flow rate
independent of downstream pressure fluctuations. Fuel flow rate is controlled
during a test by adjusting the regulated pressure on the upstream side of the
cavitating venturi. The propane is heated to a temperature of 395K in a pres-
surized water bath and passed through a heated line to a metering venturi be-
fore being delivered to the injection plenum. An analysis of the commercial

grade propane used in these experiments is presented in Table 11,

Test Procedure - In operation, the air flow through the rig is established

at the desired temperature and at a mass flow rate corresponding to a 25 m/sec
reference velocity at the test pressure and temperature. The rig pressure js.
then brought up to the operating value by injection of an appropriate amount

of cold air at the exit orifice. The gas igniter is turned on, fuel flow
initiated and slowly increased until ignition is achieved. The rig equivalence
ratio is brought to the highest level desired during the particular test se-
quence, the gas igniter shut off and the rig operated to assure steady condi-
tions. Gas samples are then withdrawn at a combustor location corresponding

to a residence time of two milliseconds. The combustor location which corre-
sponds to this residence time is calculated from the 25 m/sec mixer tube réf-
erence velocity and the fuel/air ratio, assuming an instantaneous jump in temper-
ature from'the entrance value to the adiabatic flame temperature. Once data

has been obtained at a given 2quivalence ratio, fuel flow rate is lowered and
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TABLE |1

ANALYSIS OF COMMERCIAL GRADE PROPANE USED IN TEST PROGRAM

Property - A Value
% Propane . 90
% Butane 0.084
"% Ethylene and Ethane 0.034
% Propylene 9.2
% Volatile Sulfur . 0.0073
Specific Gravity (air = 1.0) 1.541
Vapor Pressure, MPa 0.85
Hydrogen/Carbon Atom Ratio 2.597

-10-



the sampling probe moved to the new two millisecond position. The process is
repeated until the lean stability limit is reached, either extinguishing thé
flame or producing CO levels beyond the range of the instrumentation.

The apparatus used here is essentially identical to that used for the
experiments reported in Reference (1). However, as that rig proved incapable
of holding a steady flame at the 30 atm/600K operating condition, a number of
modifications were made for the present tests. These consisted of increasing
the temperature of the steam bath in the propane vaporization heat exchanger
to 410K and installing electric resistance heaters on the fuel distribution
plenum to preclude the possibility of liquid-phase fuel reaching the mixer
section; modifying the gas-phase venturi in the fuel line to better isolate
the upstream and downstream flow volumes; and increasing the mass flow of hy-
drogen and air to the maximum stable limit in the gas igniter. A heated gas-
phase fuel storage reservoir was also inserted between the heat exchanger and
the gas-phase venturi. However, initial tests of the rig demonstrated that
while combustion stability was unaffected by this reservoir, fuel system re-
sponse time was undesirably increased. The reservoir was removed from the

fuel system prior to final emissions testing.

Instrumentation - The design of the sampling probe constitutes an ex-

_ tremely important element of the experiment, particularly for the high pres-

sure conditions of interest here. It is necessary for chemical reactions in

the gas sample to be slowed to an acceptable level as soon after the sample

enters the probe as possible in order to avoid errors associated with residence
time. This problem is particularly severe in the case of carbon monoxide whose
oxidation reactions are pressure accelerated and further speeded by the high OH
concentrations present; The diffiéulty here is associated with the sample quench-
ing process. As the sample is cooled, the equilibrium concentration of CO de-
creases. |f the sample quenching rate is too slow, CO levels will drop during

the cooling process, attempting to remain in equilibrium.
Three sampling probe designs were evaluated during this test series: one

based entirely on thermal quenching and two based on a combination of pressure

and thermal quenching. The thermal quench probe design is illustrated in

_]1_



Figure (6). The probe consists of a hollow 1'.27 cm diameter sheath terminating
in a hemispheric tip through which a 1 mm diameter sampling hole is drilled.

The gas sample flows through the tip into a 1.6 mm diameter tube which carries
it out of the probe. The 1.6 mm sample tube is _jacketed by an intermediate

tube through which cooling water enters the probe. The water flows past the
probe tip, returning through the annular gap between the intermediate tube and
the probe sheath. The cooling water is exhausted outside the combustion appara-
tus. The flow path of the cooling water is such that its temperaturé is aé low
as possible where it contacts the sample delivery tube. In addition, the small

delivery tube diameter produces rapid cooling of the gas which it carries.

Figure (7) illustrates the first pressure-quench sampling probe design
which employs only a moderate degree of thermal quenching. Here, the gas enter-
ing the probe through the 1.6 mm sampling port is expanded into a 6 mm diameter
dump tube within which the pressure is maintained at 2 atm. Since the reactions
of interest here are all pressure-accelerated, the rapid drop in pressure pro-
duces an immediate reduction in reaction rates. Shortly after the expansion
station, a portion of the gas is withdrawn through a 1.6 mm sampling tube im-
mersed in the water coocling passage between the probe sheath and the dump tube.
fn this design, the cooling water moves in ondy one direction and is exhausted

into the combustor through holes in the sheath.

The third design, illustrated in Figure (8), employs aAgreater degree of
thermal quench aléng with the basic pressure-quench technique: Here, gas from
the 1 mm sampling port expands into a 3.2 mm dump tube within which the pressure
is maintained at two atmospheres. A portion of this gas is withdrawn through a
1.6 mm quenching tube which extends through a water delivery tube to the probe
exit. The sample quenching tube protrudes to the centerline of the dump tube
to avoid capturing gas which may have been either recirculated or wall-catalyzed.
The water turns at the probe tip and returns to the probe exit as it cools the

outer sheath.

The gas sample analysis system and data reduction techniques are described
in detail in Reference (1). The entire system conforms to the requirements of

SAE ARP 1256.
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Probe Tip

FIGURE 6.
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RESULTS

The three sampling probes were first tested at inlet conditions of 10
“atm and 800K using an uncooled perforated plate flameholder to determine the
mos t suitable design for higher pressure testing. Each probe was mounted at
a fixed position 30 cm downstream of the flameholder and gas Samplés withdrawn
as equivalence ratio was varied between 0.35 and 0.75. The test sequence was
repeated for each of the probes. The results of these tests are presented in

Figure (9).

Measured CO level is seen to be a strong function of probe design. The
pressure-reduction probe with moderate thermal quench delivers the lowest CO
concentration to the analyzers. The thermal-quench probe produces higher CO
levels, although its performance is similar to that of the pressure-quench de-
sign at the higher equivélence ratios where heating load increases. The
pressure/thermal quench probe delivers by far the highest CO levels to the

analyzer, particularly at high equivalence ratio.

Measured NOX level is seen to be independent of probe design, repeating re-
markably well for the three test sequences. Unburned hydrocarbon levels,
which are below the minimum accuracy level of the hydrocarbon ana\yzér until
just before the lean blowout limit, do not p;ovide a suitable medium of com-
parison although the data obtained using the three probes does appear con-

sistent.

From these results it would appear that although NOx and UHC measure-
ments are not strong functions of sampling probe design, CO measurements most
definitely are. The large difference between the pressure/thermal and straight
thermal quenching design indicates the performance improvement which accrues
from providing a rapid pressure reduction. The poor performance of the préssure-
quench design employing only moderate thermal quenching indicates that con-
siderable care must be taken to assure that the pressure reduction step is followed
by effective sampling cooling. Based on the results of these probe evaluation
measurements, the pressure/thermal quench sampling probe was selected for use in
the remainder of the test program although even this design delivers CO levels

which were somewhat lower than those for chemical equitibrium under conditions of

_1;5.-
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very high adiabatic flame temperature where one normally presumes chemical

equilibrium to exist.

The emissions measurements at 30 atm pressure at 600K and 800K entrance
temperature are presented in Figures (1G) and (11). Measurements at 10 atm
pressure and 600K and 800K entrance temperature are presented in-Figures (12)

and (13). All data is summarized in tabular form in the Appendix.
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DISCUSSION OF RESULTS

Since NO, production is basicdlly a post-fléme reaction, one would
expect it to be a strong function of adiabatic flame temperature. Accord-
ingly, the NOx emission index measured at 30 atm has been replotted as a
function of adiabatic flame temperature with the results shown in Figure
(14). Here, the present data for entrance temperature of 600K and 800K
are seen to collapse quite nicely to a single curve. The limited 30 atm
data reported in Reference {1) is also shown in Figure (14) and. can be seen
to fall somewhat below the present data curve. Aithough the cause of this
discrepancy is not immediately obvious, the fact that Reference (1) reports
30 atm combustion to have become unstable at an inlet temperature of 600K
while no such instability manifested itself in’the present tests suggests
the possibility of. poorly stabilized combustion in Reference (1) and a re-

sulting decrease in residence time at the adiabatic flame temperature.

Figure (15) compares the present 30 atm data curve with the 20 atm
data repérted in Reference (1). Here, one again sees good collapse of the
data when plotted as a function of adiabatic flame temperature and excellent
agreement between the 20 atm and 30 atm results, indicating no effect of

pkessure at these operating conditions.

In Figure (16) the results of the 10 atmosphere tests are plotted as
a function of adiabatic flame temperature. In addition to tests at inlet
temperatures of 600K:and 800K, data is also presented in Figure (16) for an
inlet temperature of 727K. These latter data were acquired when the test rig
temperature controller malfunctioned, delivering air to the rig at a tempera-
ture of 727K rather than the 800K which had been desired. Since the sample probe
position during this run was one which would have produced a residence time of
two milliseconds had the inlet temperature been 300K, it was necessary to apply
a small correction to the data so that it could be compared with the other
results on the basis of equal residence time. This was done by computing the

actual residence time at the probe station and multiplying the measured emis-

_23-
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sion index by the ratio of two milliseconds to this time. Thi: method of
correction assumes a linear rate of N3, production with time and is based
on the measuremnents of cmission index as a function of residence time docu-
mented in Refereace (1). The maxirum correction applied was only 4%, and
corresponds to ths adiabatic flame temperature error near the lean stability
limit. :

The 10 atmosphere data of Figure (16) shows a good collapse of the 727K
and 800K measurements which fall very close to the 30 atm data curve of ngure
(14). The 20 atm/600K data is conspicuous in that it does not collapse to the
higher pressure curve, rather ruhning parallel to it but displaced downward.
This same data is repeated in Figure (17), this time adding the 10 atmosphere
data obtained previously and reported in Reference (1). The data clearly ap-
proach the 30 atmosphere curve for inlet temperatures of 727K and higher. The
previous data for inlet temperatures of 600K and 800K are lower than those ob-
tained in the current tests. It would appear that ﬁhe ability to anchor the
flame tightly at the flameholder decreases as the pressure and inlet temperature
decrease. The present series of experiments, employing a more powerful igniter
than was used in Reference (1), apparently produce a more positively stabilized
flame. In cases where the flame is not tightly anchored to the flarehc'der, the
assumption of an instantaneious temperature rise in the residence time calcula-
tion is clearly invalid. Thus, the downward shift in NOx level may simply be a

reflection of a lower residence time at the adiabatic fiame temperature.

Figure (18) compares the present results with data reported in Reference
(1) for an inlet pressure of 5 atmospheres. Here again,_the higher inlet tem-
perature data collapse to the 30 atmosphere data curve while the 600K inlet tem-
perature data falls below, this time to an even greater degree than occurred at

the higher pressure.

From an examination of the data summarized in Figures (14) through (18),
it would appear that NOx emission index is principally a function of adiabatic
flame temperature and is not strongly infiuenced by either equivalence ratio

or inlet temperature except insofar as the combination of these two variables

.
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determines the adiabatic flame temperature. Since data reported in Reference
(1) indicated that NO, levels were directly proportional to combustor residence

time, the results of this program can be summarized by the following expression:

Enoy _
Oxy oL N
- ) = - 72.28 + 2.80V/7 5803

In
where ENOx is the NOx emission index (g'NOZ/kg-fue\), T is the adiabatic flame
temperature (K) and T is the combustor residence time (msec). Over the range

of pressures from 5to 30 atmospheres, there is no significant observed departure

from this expression for inlet temperatures of 727K and higher.
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SUMMARY OF RESULTS

NOx emission index is principally a function of adiabatic flame temperature
and combustor residence time. This function is well represented by the

expression

Enoy
T

T

In ) = - 72.28 + 2.80/7 - 807

where T is the adiabatic flame temperature (K) and 1 is the combustor resi-

dence time (msec).

Over the range of pressures from 5 to 30 atm, there is no significant
effect of pressure on NOx emission index as a function of adiabatic flame

temperature for inlet temperatures above 727K.

The three sampling probe designs tested in this study had a pronounced

4
3

effect on measured CO levels but did not influence NOx measurements.. The .
most effective probe design for the high pressure conditions prevailing in
this study was one which combined thermal and pressure-quenching of the gas

sample.
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