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ABSTRACT

The temperature dependence of the small signal gam and saturation power are derved using
temperature-dependent vates i a fourlevel model  An expression is developed tor the output
power of 4 facinfiares osvillator as a function of temperatume tor both fived pressure and
fined density. The results ace validd in the regime of homogeneous broadening of the rota
tonal transition and Doppler broadening of the puesp transition s shown that, for most
Lasors, both the simall signal gaim and the saturation power decrease with increasing tempera
tare. These effects have the overall result of ingreasing output power with decreasing temper

atures
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Introduction

This paper describes the temperature dependence of the power output of Licoptically
pumped farinfrared (FIR) laser. The derived expizsdons are based on a rate-equation maodel

with temperature<dependent rates.

The mode! used is a fourdevel scheme in which one level represents the lumped effects
of all the nonlasing rotational levels in the upper vibrational manifold [1, 2 31 Figure 1is

a schematic representation of the model.

The rate equaiions describing the physical processes involved are given by
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population of the Ostate in the absence of pumping,

= population densities of states O, 1, 2 and 3, respectively,

number of FIR photons,

“ vibrational and rotational relaxation rates, respectively,

= rate of pumiping,

= Finstein coefticient for stimulated interaction given by
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FIR frequency,

spontancous lifetime of the Xstate,

= homogencous linewidth of the normalized lorentzian
fie) for the 122 transition,
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= degeneracy factors for levels 1 and 2,

< FIR cavity halt-width,
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These equations neglect spontancous emission because the spontancous lifetime of the 3
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FIR states is of the order of seconds. Moreover, it is assumed that W is smaller than the g
{

rotational relaxation rate, W, but is still large enough that the collisional populations of 1 z
:

and 2 can be neglected. I8
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The rate equations (la through 1d) can be solved for the steady-state case by setting

all the time derivatives equal to zero. This results in an equilibrium FIR photon density

piven by
g, W' ( Nll“\\"‘ I) .
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Using Rigrod's analysis of a homogeneously broadened oscillator (4], the FIR power

emitted may be cast in the form:
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where

t = relative coupling loss per double pass,
a = loss from other mechanisms,

a = small signal gain per unit length,
L= active length of the laser,

P = saturation power

Defining the active cavity volume as V, equation 4 and the steadysstate solutions vield
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Typical values for some of the foregoing parameters are t =02 a =0 S and L =1 T m,

Temperature ndences  Fined Pressure

To obtain the temperature dependence of the power output of an FIR oscillator relative
10 ity room-temperature performance, cach component of P and o in equation 4 must be
considered in detail. The dependences will be expresed in terms of a constant y, svhich

defines the operating temperature, 1, by
T=" N
where 17 and all quantitios with the © superscript refer to 19 = 300N values. 1t implicit to

all results that the pressure and volume remain constant. The temperature dependence of

cach parameter is given and freely used in this section, all denvations are given in the Appendin

e rateequation model desenbed refers to three rates, all of which vary with tempera

ture. Their various dependences are given by
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where l'; is the line<center frequency of the pump transition (0-+2), ¥, I8 the pump frequency,

and .\l"., is the Doppler linewidth of the inhomogeneously broadened transition

The temperature dependence of the Finstein coefficient, B, is routed to the varation
of W () because of the relationship between the homogencous hinewidth, vy . and the ro-

tational relaxation rate,
W =l . (12)

heretore, equation 12 can be substituted into equation 2 to obtain tor By, (y)
| N
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Ii',lhl - A (13

where 0(0) = o*/(dn®s? (W 8 Auy, is the room-temperature linewidth, and ¥, is the linecenter

frequency of the FIR transition. At line center, equation 13 reduces to
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The dependence of N on temperature is given by

[
N = =Gty (1%

where p° is the room-temperature molecular density, £f is the fraction of molecules in the
ground vibrational manifold, and f;, is the fraction of molecules with rotational quantum
numbers J and K. The f; characterize symmetric top molecules, but. in general, if the

molecule is not a symmetric top, an appropriate distribution function for rotation can be

used.

For a symmetic top with rotational constants B and C,
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TOLK) is a statistical weight factor due to the nuclear spins and the degeneracy with respect

to inversion.  For molecules with three or more atoms, (1, K) is bounded by 2 [5].

The thermal equilibrivm number density of molecules in the O-state with rotational

quanfu'n numbers J and K is given by
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where Fy, is the energy separation between levels O and 2. Expanding the vibrational ex-
ponent and noting the dominant y** deperdence of f,, for low J and K results in the

approximate expression

N.
ALY
N

where N:u is the room-temperature population density

However, egiation 18 is not appropriate for high J and K values because, at some
critical peint, the axponential portion of £y begins to dominate its behavior. When the

Y - | term due to the ideal gas law is omitted, Nn; (y) will begin to grow with y > | when

d
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his leads to the condition,
s

For a typical molecule that is emitting in the submillimeter wavelength region,
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becomes:

= 300, which leads (o0 ] > 200 When constant pressure s maimntained. the entenon
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which results in J > 30
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Figures 2 and 3 illustrate the dependence of Ny (y) for constant pressure and constant
density on y and 1. The expression derived thu. car can be substituted in equations S and

o to determine P, (y) and aty) at line center:
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In the lmit, W; > W, and low Jand K, the simple expression,

a(y) = a'y (2

may be used, where a® is the room-temperature value

At constant pressure, the saturation power is given by

'V"
. (4)

20y = vt

Fquations 22, 23, 24, and 4 can be used to predict the temperature behavior. The

result s particularly simple for low J values and is given by
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where ¢ = 'm- and PY is the power emitted at room temperature. Figure 4 shows the

power dependence of the constant-pressure system for low and high J values.
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Temperature

~Constant-Number Density

For a fixed molecular-number density in the laser tube, the following temperature de-

pendences apply (line center):
Wi -

B, 0) =

W

N.uh" »

The foregoing equations give:
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Fquations 28 and 29 result in a power-output dependence given by
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Figure § illustrates the power output as a function of temperature for a sealed-off laser
tube. 1t is evident that low J values are favored by low temperatures, whereas high J tranmsi-

tions improve their output with increasing temperatures.

Discussion

It has been shown that the small signal gain at the FIR transition is highly dependent
on temperature for both constant-pressure and constant-density operations, primarily because
of the sensitivity of the ground-state population on temperature. Moreover, it is shown that
this population, and therefore @, are dependent on the J values of the ground-state level.
Lowering the temperature favors the low J values, whereas raising the temperature favors
high J values. However, because most of the transitions observed are restricted to moderate
values of J, it is expected that most FIR lasers would have increased small signal gains at

lower temperatures. This is especially important for traveling-wave FIR amplifers.

The power coupled out of the FIR oscillator is more temperature-sensitive in constant-
pressure systems because the saturation power is proportional to T This makes it harder
to saturate the transition at lower temperature. In both constant-pressure and constant-
density systems, the net power coupled out as a function of temperature is dependent on J.

This effect should be most pronounced for the constant-density system.

The analysis suggests that, for high-gain FIR amplifiers, cooling an FIR gas (operatiag
on aJ < 10) would result in dramatic increases in single-pass gains.  The same suggestions

are recommended for a constant-pressure oscillator system.
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Figure 1. Schematic Representation of Energy Levels
Used in the Four Level Rate Model




L

—

0.5 1.0 15 20 25 3.0
v —

Figure 2, Population Density of 0-State in the Absence
of Pumping (constant density)
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Figure 3. Population Density of 0 State in the Absence

of Pumping (constant pressuie)
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Figure 4. Power Output at Constant Pressure

14




1 1 i A = L 1 | J

0.5

1.0 15 20 25 3.0
Y—.

Figure 5. Power Output at Constant Density
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APPENDIX

In this appendix, the temperature dependences of the three rates, W‘,. W and W, are

derived.

Rate of Pumpinl

The rate of pumping, \VP. is given by

2
¢ llvpl

. g

R h? =

where va) is the intensity at the pumping region, and g(¥) is a normalized Gaussian that

describes the 0 = 2 transition, which is Doppler-broadened. g(v) is given by:
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where

If it is assumed that temperature changes do not affect the average pump intensity
inside the FIR cavity, then only the line shape function changes with temperature. In par-

ticular, the Doppler width, Ay, , and the exponential are the varying quantities. This results
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in a temperature dependence given by:

w w; :
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where Z is a constant defined in terms of room-temperature values.

Homogeneous Linewith

It was stated previously that the rotational relaxation rate is proportional to the homo-
geneous linewidth of the FIR transition, du, . The effects of temperature changes on dw
result from the velocity dependence of the collision cross section between two molecules.
Intermolecular interactions may be treated by perturbation theory with interaction Hamil-
tonians of the form, r'™. Because most l:IR mol cules either are symmetric tops or can be
approximated as such (for example, CH, OH), their strongest interaction is that of two
dipoles. This interaction has the form, V(r) = [u, * 4y = 3 (4, * 1) (y* 1)/1*)] r'?, where
M, and g, are dipole moment vectors, and r is the vector that separutes them. The r term
is the first-order term because symmetric tops have a dipole-moment component that main-

tains its orientation relative to the angular momentum vector.*

From considerations involving the matrix elements for the r'" interaction and total
cross sections for collision, it can be shown that the homogeneous linewidth is proportional

to:
pv 1=24n-1)

*C. H. Townes and A. L. Schawlow, Microwave Spectroscopy. McGraw-Hill. New York, 1955, pp. 359-360.
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where g is the density of molecules, and V is the molecular velocity . Moreover, because
poa T Va1V and n= 3 for symmetric tops, i, = &gy for constant pressure and

Auy = Aug for constant density.

Vibrational Relaxation Rate

The vibrational relaxation rate, W, is the rate at which molecules retum to the ground
vibrational manifold. This rate has been attributed predominantly to the collisions of vibra-
tionally excited molecules with the container walls. 1t is assumed that each collision with
the wall results in the nonradiative deexcitation of the molecule. Therefore, the rate of
wall collisions is approximately given by the reciprocal of the time it takes for a molecule
to diffuse from the center of the tube to the wall. This is given by

sD
J'
where D s the self-<diffusion coetficient, and d s the laser-tube diameter. Simple billiard-
ball diffusion theory gives:
D= VN3
where Vs the mean velocity of a molecule, and X is the mean free path. This results in
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This relationship leads to:

W,(y) = Wy (constant pressure) ,

W,(v) = W)y (constant density) .
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