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ABSTRACT

The generalized dynamic equations of motion have been obtained by

the direct stiffness method for multimass flexible rotor-bearing systems

including the effects of unbalance, shaft bow, disk skew, rotor acceler-

ation, gyroscopic moments, and nonlinear bearing forces. The direct

solution of the equations of motion is illustrated on a simple 3-mass

system. However, for complex rotor-bearing systems, the direct solution

of the equations becomes very difficult due to the large number of

equations necessary to describe the dynamics of the system. The trans-

formation of the equations of motion into modal coordinates can greatly

simplify the computation for the solution. The use of undamped and

damped system mode shapes in the transformation are discussed.

A set of undamped critical speed modes is used to transform the

equations of motion into a set of coupled modal equations of motion.

A rapid procedure for computing stability, steady state unbalance

response, and transient response of the rotor-bearing system is presented.

Examples of the application of this modal approach are presented and

results are compared to those of other methods and to experimental data.

The dynamics of the system is further investigated with frequency

spectrum analysis of the transient response through the use of numerical

fast Fourier Transformation.
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I. INTRODUCTION AND BACKGROUND

1.1 Introduction

Long before the design and manufacturing of large complex turbo-

machinery when the wheel was invented, man has been plagued

with both technical and theoretical problems of bearing lubrication

and shaft dynamics. With the design and operation of large turbine

rotors that power jetliners and vast streams of process machinery

that operates the industrial community, these problems concerning the

dynamics of rotor-bearing systems have become more pronounced.

Engineers are faced with the problem of designing a rotor

capable of operating through various adverse conditions of temperature,

Speed, and load. As an example, turbo-rotors designed for fuel pump

units of space applications must'have satisfactory performance under

extreme temperature and gravitation loadings at very high speed. In

many of these applications, the designed unit must operate through

several basic critical speeds (or natural vibration frequencies) of

the system. Under these circumstances, it is extremely difficult to

insure that the unit will operate with a stable and low-amplitude of
r'

vibration performance.

The instability and high amplitude vibration problems may come

from the erroneous design of the machinery, the misassembly of the

system, and the operation under adverse conditions.

The major causes can be stated as follows:

1. large mass unbalance in the rotor

Q
	 2. high rotor amplification factor

'M
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3. large bearing hydrodynamic cross-coupling effects

4. large turbine (impeller) aerodynamic cross-coupling forces

6. shaft thermal and mechanical bow and disk skew effects

6. misalignment of shaft and bearing elements

7. effects of internal friction

S. large shaft assymmetry in the system

4. support motion from housing vibration or seismic effects

10. large overhang in the system (gyroscopic effects)

11. operation near the critical speed of the system

12. impeller or turbine blade loss

13. rubbing of bearing or seal

14. fast start up or shut down

A vast amount of information has been developed concerning the above

problems separately. The interests and means of solving the combined

problem has been evolving since the early 60's. The nest section

will discuss the earliest work briefly but will concentrate more on

the present state of art in the field of dynamics of rotor-bearing

Systems.
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1.2 Background

Advances in the design and operation of rotating machinery in

modern engineering are closely linked with solutions of several

problems in the field of rotor dynamics. These problems have been

investigated separately by various researchers. The earliest recorded
t

article on this subject was introduced by Rankine [l] in 1869. He

examined the neutral or "indifferent" equilibrium conditions of a

shaft operating through its first critical speed. Without taking

into consideration support damping and Coriolis force, he concluded

that the rotor system would be unstable if operated beyond its first

critical speed. His conclusion has led engineers in the next several

decades to believe that rotor systems were not capable of operating

beyond the first critical speed. In 1894, Dunkerley [8] reported his

study on rotor dynamic behavior near its critical speed regions. He

showed that by neglecting unbalance and damping, the rotor whirling

frequencies can be replaced by the lateral vibration frequencies of

a simply supported rotor system. As a result of his investigations,

rotor manufacturers tried to design rotors with rigid shaft such that

their critical speeds were raised beyond the operating speed range.

In 1919, Jeffcott [21 made an intensive investigation in the dynamics

of simple rotor models in two dimensional form with the inclusion of

damping effects. He further explained the meaning of critical speed

and introduced the new terminology or "whirl instability."

In the 1920's, turbine and compressor manufacturers began to see

a trend of the reverse concept. They tried to design rotors with

Lighter weight such that the first critical speed of the system is

w<
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much lower than the operating speed range. 	 Later, Newkirk [31 made

an intensive investigation on stability of rotor-bearing systems

and concluded that the rotor dynamic behavior could not be attributed

to a critical speed resonance and the reduction of unbalance had no

effect upon rotor whirl amplitudes.	 During the same time, a group

of investigators concentrated on the study of hydrodynamic behaviors

of fluid film bearings.	 Using the Sommerfeld treatment, they found

that the hydrodynamic profile predicts a negative fluid film pressurei
i

of the same order as the positive pressure.	 This negative pressure

causes the fluid film to cavitate and results in radial bearing force

in the system.	 In 1952, Poritsky [57] reported that the cavitation

of the fluid film can excite the "half-whirl" instability of the system.

i In 1944, Myklestad and in 1945, Prohl [4] had extended the

Holzer method of calculating torsional frequencies into the matrix

^i
transfer method of calculating lateral critical speeds of rotor-bearing

systems.	 It became one of the most powerful tools in solving rotor

dynamical problems in the last two decades.	 More recent investigations 	
9.

have made a slight extension of this work by Myklestad - Prohl to

include various effects such as shear deformation and gyroscopic

moments.	 In 1954, Yamamoto [53 presented his study on the rotor for-

ward and backward whirl due to gyroscopic effects. 	 His report gave

5

the researchers deeper insight in the dynamic behavior of simple rotor, 	 }

systems.

With the development of large digital computers, the simulation

of complex rotor-bearing systems is made possible. The matrix

i
r	 ^

3	 ,

k:



r^
4r

I
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F

transfer method of Myklestad and Prohl has been fully extended into

the analysis of critical speeds [b, 71, stability CIO, 111, and forced

response [17] of complex turborotors. Other methods such as the

finite difference and finite element [14, 22, 371 approach were also

used in the study of rotor dynamics. The rotor system is simulated
{

by the combination of a large number of small plastic shaft elements.

Rotor weights and inertia moment effects are lumped at the mass

stations, which are the interconnecting node points of the shaft

elements. If a large number of node points (or shaft elements) are used,

this discrete element approach usually can give a very close approxi-

mation of the real system. With the advances of high-speed computers,

transient response motion of rotor-bearing systems were investigated

through real time numerical integration of rotor acceleration. Gunter

[91 presented analog computer-produced transient orbits of simple rotor

models with both linear bearing characteristics and nonlinear fluid

film bearing forces. Orbits showing combined effects of synchronous

unbalance response and half-frequency whirl instability were presented.

The nonlinear case formed finite limit cycles, whereas the linear

systems were unbounded. Shen [341 presented a formulation for flexible

rotor analysis using the influence coefficient approach. Kirk [331

further discussed the transient motion of multi-mass rotor systems

with effects of nonlinear bearing support. He concluded that linear

stability analysis of the system can be verified using transient

response results. However, he did not point out the use of transient

response motion to predict nonlinear stability of the system. Breed

1
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6

and Castelli [353 also discussed the use of time transient approach

in solving shaft dynamic problems with various types of bearings.

Their results are compared to theoretical verifications with

excellent agreement. Hitching [37] outlined transient approach using

finite element approach. He also discussed the effects 6f random

excitation functions and the application of Taylor series and curve

fitting to the transient solution.

In the case of simple rotor systems, investigators had found that

the transient behavior of the rotor may readily be obtained from

direct numerical integration of the equations of motion. However,

this may not be the case for a more complex rotor system with a large

number of mass stations. The integration of large numbers of equations

of motion is extremely time consuming and may lead to serious numer-

ical problems. A more efficient way to compute transient response of

rotor-bearing systems is the modal [39-55] (building block) approach

which had long been applied by the structural engineers. Foss [39] in

1958 has outlined the transient response calculations using the damped

modes of the system: The system of equations of motion is uncoupled

through modal transformation, and the transient response of the system

can be calculated directly as a linear function of the damped mode

shapes. Lund [511 generalized this concept of using damped modes in

transient analysis of large, complex turborotors. He demonstrated

the procedure by its application on an industrial 8-stage compressor

and obtained transient results with close accuracy. Black [291 further

expanded this concept of modal, resolution in the balancing of
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synchronous vibration in flexible multimass rotors with nonconserva-

tive cross-coupling.

Since damped modes of rotor systems are more difficult and time

consuming to obtain than the undamped modes, the similar trend of

modal analysis using the undamped modes were also suggested. Caughey

[54] presented a detailed discussion on the orthogonality conditions

of modes (or eigenvectors) in damped linear dynamic systems. Bishop

[27] used the undamped modes to uncouple the dynamical equations of

motion in his modal balancing procedure. He adopted the "proportional

damping" assumption, which is a common practice for structural

engineers to further simplify modal equations of motion. However,

this assumption is accurate only when small damping is present in

the system and will not be accurate for systems with hydrodynamic

bearings or seals. Lund [3 1.] further expanded this concept of modal

balancing using the free shaft modes. Klosterman [53] investigated

the experimental extraction of free undamped modes from a shaker

table and the use of the free :nodes in a building block ,approach

to system analysis. He illustrated his method on the balancing

of multi.-plane rotor bearing system as well as transient dynamic

analysis. Childs [40 - 44] performed a complete investigation in

using undamped modes calculated from the averaged vertical and hor-

izontal support stiffness of the system. He outlined the modal

treatment by rigid body dynamics derived from rotating coordinates.

This formulation takes iato account bearing constraints which may be

nonlinear, such as fluid film bearings [601 or elastic rolling element

bearings with dead band. He demonstrated the use of this modal
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analysis by a complete dynamic analysis . of the space shuttle main

engine fuel pump. His solutions were verified by experix.ental

results from test facilities.

Morton L.321 reported that better accuracy can be achieved by

using both "free-free" and "pin--pin" modes during modal treatment

of the equations of motion. He pointed ouL that the modal equations	 j

are coupled when both sets of modes are used, but the computational

effort for solution will not be much greater than solving the un-

coupled equations. He verified this procedure by comparing his

solutions to the exact solution and came up with excellent agreement.

The formulations for the transient solution of flexible rotor-

bearing systems are excellent approaches to a very difficult problem. 	
;E

However, a simple but complete scheme of simulating the dynamics of

rotor-bearing systems has not been developed. The following analysis

presents a derivation of the equations of motion for rotor-bearing

systems including the effects of gyroscopic, unbalance, disk skew, 	 r

shaft bow, nonlinear bearings, moment-resisting bearings, and rotor

acceleration. The application of modal analysis to uncouple the

equations of motion simplifies stability, steady state unbalance re-

sponse, and transient response analysis of the system. Nonlinear

stability of the system can be predicted by frequency spectrums

calculated from Fourier transformation of the transient solution.

L
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1.3 Statement of the Problem

The purpose of this analysis is to present the formulation of

a simple and fast method for the complete simulation of rotor-bearing

systems. This analysis will provide designers with complete design

c information such as critical speed and modes, amplification factors,

stability, steady state and transient forced response, and frequency

spectrum of the system without involving a large scale of computational

costs.

.f



Ii. FOKIULATION OF EQUATIONS OF MOTION

In the design of high speed rotating machinery, it is often

necessary that the machinery must operate through several rotor bending

i	 critical speeds to obtain the speed required in present applications

and optimal operations. In order to simulate real rotor motion or

to predict rotor dynamic behavior accurately, this class of machinery

must be analyzed under the general field of study known as flexible

rotor dynamics. This assumes that neither the rotor itself will act

as a rigid body nor the bearings in the system will be infinitely

stiff, but their stiffness may vary with operating speeds and applied

external loadings. The general assumption of "small deflection" is

used in this study such that the shaft is linearly elastic with

applied loads. This assumption is valid for most rotor systems as

the deformation of the rotor is always quite small in comparison

to the shaft span, but it may not be accurate for bearing force cal-

culations when the rotor motion is relatively large. when large

rotor response occurs at the bearings, nonlinear bearing forces have

to be incorporated in the system for accurate forced transient

response analysis.

In general, a typical rotor system may consist of multiple

bearings, and the rotor shaft may have disks or impellers located

inboard or outboard to the main bearings. Special characteristics

may include unbalances in the disks and impellers, skew of the

disk to the rotor shaft, and mechanical bow of the shaft, which may

be considered as part of the external forces acting on the rotor.

10
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2.1 General B uationc of Motion

In deriving the general equations of motion fot a multimass bearing

system, the rotor is divided into discrete mass atations such that the

dynamics of the rotor system can be represented by forces and displace-

ments at the mass stations. The rotor section between two consecutive

mass stations is assumed to be massless while the weight of the rotor

element is lumped at the two mass stations at each side of the element.

Bending moments are assumed to vary linearly along the element using

the "small deflection" assumption.

The general equations of motion for a multimass rotor system can

be obtained by summing all the forces and moments acting at the ith

station of the shaft. The forces and moments acting at the i th station

may generally be composed of shaft elastic reactions, unbalance forces,

inertia moments, shaft mechanical bow reactions, bearing or seal forces,

or other external hydraulic forces acting on the system. A schematic

of the forces and moments acting at the i th station in the x_y plane

is shown in Figure 2.1. The torces and moments acting at this station

are represented by

Vi-jx = shear force acting the right end of shaft element i- 1 (left

side of station i) in the x-direction

V L	 = shear force acting at the left end of shaft element i (right
ix

side of station i) in the x-direction

m x	 = inertia force of the concentrated mass at station iI i

I
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Figure 2.1 FORCES AND MOMENTS ACTING AT ROTOR MASS STATION IN X-Z PLANE
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m

Fb` (NP y, x, v)	 bearing forces acting at station i in x-direction

m ie f [w" cos (Wt + Oti) + ws.in (wt + a	 x-directiou unb;il.ance

Corce at stations L[331

F (t) - external force in x-direction at i th station
X

M i-Rx ° moment acting at right end of (i-1)th 
slza.ft member (.eft side

of ith station)

? [,ix	 M moment acting at loft end of i th shaft member (right side of

ith station)

M momonc Mlle: to :annular rievol.oration at iLll station in x-:. planets

I i ^'jxj ft gyroscopic moment at i th ataLion :in x-z plane

'II p 	w moment at it 
11 

Station in x-w plane due to rotor accelQracion

ril l - I t ) i [w" Cos (Lot + L; ) + S n	 ^ ^[^3] _	 th

	

1	 w

	

.	 (tilt + ^.)	 mame.nC :3t i
st:ltiOn in the x-z plane duce to disc ,;ke.w

^(x, v, (4 e tP. x, }', {3 e y^^	 '^ moment due; Co ti.u ld film ht^uiring CoL'cus

Figure 2.2 represents the translational and rotational displace-

ments of the i th shaft element (located between mass stations i and

i+l) and their displacements are represented by

X. i = tott'11 dispLic meet in x-direction 'It ith station

xe.i = elaaseie displacement in x-direction at ith station

Ch`di a residual (mechanical) bow in x-direction at i	 station
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Figure 2.2 p7S LACI:lIENTS AND ?NOTATIONS OF GRAFT ELEMENT IN X Z PLANE
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6 i 	total rotation at i th station (x-z plane)
a

^i	
total rotation at ith station (y-z plane)

6ei	
elastic rotation of shaft at ith station

@di	
rotation at i th station due to residual how

T	 permanent disk skew at i th station

T' — T cos 6

T	 T sin
y

The basic equations of motion can now be obtained by summing the

external and inertia forces and moments in figure 2.1. Thus:

1. Summation of forces in x-direction

Mi :ti 
+ vix _v i-IX  + Fbx (s, y, 6 , ^, x,	 FXi(t)

('2.1)

2. Summation of forces in y-direction

Miyi 
+ viy - v R	

+ Fby	 ,(ti, y, 8, ^ C, y , 6 , 4) = rvi(t)

(2.2)

3. Summation of moments at the i th station

•	 R	 L	 •	 n 	 •	 r	 r

Itiei + I
pi* + M

i-i`c - Mix + SlpiW + Mbx (`^, y , 6, ;P, x , y , 8 , ^)

MXi(t)
	

(2.3)



lb

Itiw - Ipi 
+ MiR - 

MiL - 
111 i18 + MbY (x, Y, @^ ^ x^ Y. 9 	 }

i	 P	 1Y	 Y	 p

= ti1Yi(t)	 (2.4)

The total system equations of motion may now be obtained by

substituting the relationships for the unbalance and external forces,

bearing forces, and elastic shaft moment-shear deflection relation-

ships into equations (2.1) through (2.4) for the i th mass station

and summing the i th station equations. The generalized shaft

stiffness matrix CKX ] is a function of the assumed boundary conditions

which are normally taken to be free-free (V 
o 
R = M 

a 
R = V 

N 
L	

L - 0).

If the external forces and moments are due to the unbalance

of the rotor and the skew of the disk, then

Fxi (t)	 cos (Wt + C! i)	 I sin (Wt + ai)
= 

i

M a	 W2	 + W I

Fyz (t)	 sin (Wt +,)	 -cos (Wt + ai)

(2.5)

I

Mxi (t)	 cos (Wt + a i)	 sin (Wt + Si)

I W2
Myi (t)	 i p	 t i	 sin (Wt + ai)	 -cos (Wt + ^i)

(2.b)

where a  and 
^i 

are the angles of the unbalance and disk skew with

respect to the shaft and reference mark. The shear and moment rela-

tions are given as follows (see Appendix B)
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Figure 2.3 RIGHT-HAND CONVENTION USED IN ROTOR MODEL

I.
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L	 ?t	 16E1 	 + 8L - 2X	 + B	 L 
l 

(2.7)
ix ^Vix ^ 1 3} 

[ 2Xe, 
	 ei i	 ei+l	 ei+l i

L )i

	PiixL 	 L2 [-3Xei - 26eiLi + 3Yei+1 - e ei+l Li ]	
(2.8)

L i

R

Mix	 Li Vix 
L 

+ fix 
L	 ( 2.9)

In terms of total deflections and residual deflections, equation (2.7)

and (2.8) can be written as

V L _ V R
	 b

	 +@ L - 2X	 + 8 L
ix	 ix	 L3 i	

i	 i i	 i+1	 i+l i

_ 6El 
[Xdi

+eL - 2X +8 L	 (2.10)

L3i
	 di i	 di+] di+I i

MixL _ 2L2 i -3X i - 20 iLi + 3X
i+l - Oi+1Li

2E1	 _3X - 2A L + 31	 - B	 L	 (2.11)

L2 i	
di	 'diLi	 di+l	 di+l i

M R = (!E
2	 3Xi + $ iLi - 3X

i+1 + 28i+lLi
L i

2E1	 [3x + B L. - 3X	 + 29	 L	 (2.12)

L 2 i	
di	 di ^,	 di+l	 di+l i
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The moment and shear relationships given by equations (2.9)

through (2.12) for the massless uniform shaft element may be

expressed in terms of the stiffness matrix for the i th section as

follows:

V L	 J

ix

M L
ix	 EI

V R	 L3 i
ix

R

Mix

12 6L -12 6L

-6L -4L2 6L - 2L

12 6L -12 6L

6L W -6L 42

X  Kdi

6i - ®di

Xi+1	 di+l

6	 - ei+1	 di+1	 (2.13)

In finite element theory, a right-hand coordinate system is used such

as shown in figure 2.3. With this coordinate system, the shears and

moment are given by

EI
(L3)i

Fix

Mi
y

F i+LY

Mi+1

12 6L --12 6L

6L 412 -6L 21^

-12 -6L 12 -6L

6L 2L2 -6L -4L2

Xi -Xdi

6i - di

i+1 - ldi+1

6i+1 - 6d+1	 (2.14)

and, similarly, for the y-z plane as
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f

EI

^—'3)i

F
iy

it ix

Fi+1y

Mi+lx

12 -6L -12 -6L

-6L 4L' 6L 2L2

--12 6L 12 6L

-6L 2L2 6L 4L2

Yi - Ydi

^i - ^di

Yi+1 - Ydi+1

*i+1 - *di+1	 (2.15)

The stiffness matrices in equation (2.14) and (2.15) represent

the generalized element stiffness matrix for a beam, which are

derived from first principles [67, 681. The bearing forces can

be expanded, and if a linear bearing is assumed, then in matrix form

the bearing forces and moments are given by

Fbx	 Kxx Kxo	 Kxy	 K#	
x

Nx.	 Kex	 Koo	 K6y	 K6^

Fby	
K	 K	

KyY	 YY	 y

"by	 Kos	 K*6	 xif^3'	
K^

Cxx
	 Cxo	 Cxy	 C #

	
X

x

Cox	 Cho	
C8y	 cep	 o

Cyx	
Cyo	

Cyy	
CYO	 y

s

C	
CO	 CIPY	 C0

i

(2.16)

Ik
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Substituting the above relationships into equations (2.1), (2.2),

(2.3) and (2.4), the sy!item equations of motion can now be written in

matrix .form as follows:

[M] I U* # + [C] JU j + [K] {U) -- JF(i) F + [Ks] IUdI
	

(2.17)

where

(x)

(e)
u=

(Y)
M

(xd)

(ed)

Ud	 (yd)

and

[M] 0	 0	 0

[M] =	 0	 [I t] 0	 0

0	 0	 [M]	 0

0	 0	 0	 [it]

The damping matrix can be decomposed into the gyroscopic and bearing

damping submatrices for future convenience as follows

a	 0

0	 0

0	 0

0	 [ , —Wi 
F

0	 0 ['clx-] [' Ore , ] [ ,a
XY

-] ['CXOII

0	 p. ] [' cex, l ['Cee' l [,coy'] [ ,C eyr -

0	 0

+

[,Cyx,l
[,Cy$,]

[,CYY'I
[,Cvq),j

0	 a [,0-] ['C w] C'C w] [' C#1.1a $

(2.18)
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The general stiffness matrix may also be decomposed into three

submatrices representing the symmetric shaft stiffness matrix, the

linear bearing stiffness matrix, and the skew symmetric acceleration

matrix as follows

[kxxI Ckx6]
0 0 [x]	 [ tee] CKy] [K,^ 1

[k6x ] Cke8 ] 0 0 [K	 ]	 CK	 ]$x	 69
[Key] [K6^ ]

[K]
. 0 0 ^kXX [kxe] [KyX]	 CKye] [Kyy,] [K01

0 0 Ckex] Ckee3
L C

K, xl 	 NO ] CK^y] CK#I js B

r
0 0 0 0

0 0 0 ' z IP .I

0 0 0 0

0- 2 1 p. 0 0 (2.19)
A

For free-free boundary conditions, the shaft stiffness submatrices

are given by (see Appendix B)

E 1 -E 1 0 .....	 0

-E 1 ET+E2 -E2 ..	 ..	 0

x.^ ... ....	 , ... -E	 E	 +E 
n- ,)	 n-,	

n- 
1

0 0 0 0	 -En-1L

0

0

-En-1

E
n- 1



0	 0

0	 0

2E	 L 2	+2E L 2 E	 L2n-2 n-2	 n--; n-1 n-t n-1

z
EnLn 2E-1	 -1 n- !Ln-1

23

Ik xe 	 [kex]T

E1L1	 E1L1	 0	 ........	 0 .

-E1L1	 -E 1 L1+E2L2	 E2L2	 ........	 0

' 

.... -E L	 -E L +E L
n-Z n-2	 n-y n-2 n-1 n-1

0	 0	 ..	 0	 -E L
n"1 n-1

0

0

E L
n-1 n-1

-E L
n- 1 n-1

2E Z LI	 E1L1	 0	 0

1[koj	
E1LZ	 2E1LZ+2£`L2	 E2LZ	 0-3

2
....	 ...........	 ....	 E	 Ln-2 n-2

0	 0	 ....	 0

where E	 r 6EI
i	 ` L 3 i

i"
i
i

i

L



24

2.2 Illustration of Equations of ,lotion for a 3-Mass Rotor

In order to illustrate the development of the generalized

equations for an arbitrary N-mass rotor system with the appropriate

boundary conditions, a derivation is applied to a 3-mass rotor as

shown in figure 2.4. This model consists of a skewed disc in the

center of a flexible shaft supported by two linear bearings. The shaft

has a mechanical bow of xd_ at the disc location while 
xdi 

and xd3

at the bearings are assumed to be zero.

Summing the forces in the x-direction for the left bearing

station (station 1), equation (2.1) can be written as

mI 1 + CI '{I + Cry	 + K  X + K  Y1 + Vi - VR
= 	 Fxl(t.	 (2.20)

Equation 2.20 can be further expanded assuming.ti' 	 0= 

m X + CI X + CI Y + KI Y . ^+ Kl y + (1
2
EI (X - X

1 1	 :ts 1	 xy I	 :mac 1	 xy I	 L3	
1	 dl}

1

+ 
6zI ($I - OdI^.:_ 12I (Y2 - Xd2) + 6EI (e2 - ed2)}

	0	 (2.21)

L 1 	 L1	 Ll

For station 2, the summation of forces at x-direction gives

m9Y2 + V 2 - Vix = F 7W
	

(2.22)

*Superscripts in bearing coefficients indicate station numbers.

^i

}

i'

M
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Figure 2.4 THREE MASS B014ED ROTOR SYSTEM WITH SKE14ED DISC
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and by substituting the shear-displacement relationships, equation

(2.22) becomes

m2X2 +
6ET

(X2 - Xd2) +
	 2 {62

ed2 )
1z^z

r	 3	 (X3 - Xd3)
[
12E31
L2 L2 L2

6EI
+	 2(G3

L2
ed3)

3	 !X1 _ Xd1) +
LZ

6ET
2	 (6 1

L1
- ed1) _

12ET3	 (X2 - Xd2)
L1

+ bE^ (e^ ..	 ed2)
M2 e2

;'cos (wt + a2 ) + ;sin (Wt + a2 )	 (2.23)

1

Similarly, the summation of forces at station 3 gives

m3 X3 + V3x - V2x ' Fx3

where V3x = p

M3 X3 + Cxx X3 + CXy Y3 +	 '^3 + Ky Y 3- 1L3T X'7- Xd2
2

+ 411 t 8 2 `ed2) - ^L3T (X3 - Xd3 ) + 5= (e3 ed3) a
2	 2	 2

(?."z4;

The moment equations are obtained by summing the moments at each

individual station. At station 1 assuming no gyroscopic or bearing
	

i

moments

}

L.
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MD M1 Q	 (2.25)

or

h'

	

fiCI	 4EI	 bEI	 2EI
h'	

2 { Xl - Xdl +	 {91 -0dO -
	 2 ( X 2 - Xd2 ) +	 (62 - 6 d2

)
	 0

	

L 1	 Ll	 Ll	
L 

(2.25)

at station 2, the moment equation is

I

141 - ML
+	 ri^	 r^ 7 (t)	 (2.27)

or Equation ( 2.24) can be expanded with the following form

I

	6EII	 _ 5EI	 4ET
2 ( 

Xl	
xdl ) + 

2E 

( ^1 M^dl ) 	2 (X2- Xd4) +	
(92 -6d2)

	

L l 	Ll	 Ll	 LZ	 J

	

El	
4EI	 6ET	 _ 2EI

L2 
(X2 - Xd2) - L (6

2 -@d2	 L2 ( X3 - Xd3)	
L,, 

(63 -fid3 )

	

2	 2	 2	 2

	

+ I t2 B 2 + W Ip2	 + l/2 wlpz '+^^ t (Ip2- Tt2 ) l 	 Wsin (Wt+(i2)
P)

(2.28)



The moment relationship at station 3 is similar to station 1 and

2s

I 1

can be written as

8
M L =M R = 0- L 	

e2	 2
3	 2	 2 2	

+L
^ e2 	 2 3 -x + L

e 3 	 3 2 e3

(2.29)

Combining the three force equations and the three moment equations,

the equations of motion for the x-z plane can be written in matrix

form as follows

m 0 0' 0 0 0 x1 C^ 0 0 0	 0 0 X1
1 ^

0 m 0 0 0 0 x' 0 0 0	 4
0	 0 0

x
z

2 2

0 0 m 1	 0 0 0 is 0 0 CXX t
0- 0 —0

x 3

0 0 0 !	 0 0 0`

_B

-0 0
0 0	 0 0

_A -

11

0 0 0
^
1	 0

1 t
0 A2 a 0 ^0.	 f 0	 0 0

9
2

0 0 0 j	 0 0 0 A3 0 0
l

0 0	 0
^s

01

2E -2E 0 EL EL 0 x -x
dl1 3 ,	 I	 I 11 1

-2E 2E	 + 2E -2E i -E L -E L +E L E L x x
A2d21 i	 x 2 1	 1 1	 1	 2	 2 2 2 2

0 -2E 2E 1	 0 -E L -E L x- x
d3

- - ? - - - -	 - 2- - - - - L 2-	 - - - -2-2- ]_ - +
EL -EL 0 S	 ',^L 2 'EL 2 0 A -A

1	 I 1	 1 3	 1	 1 3	 1	 1 1 dl

EL -EL	 + E L -EEL !EL 2 ? E L 2 +=EL2 'EL 2 A -A
d21	 1 1	 1	 2	 2 2 2 I	 3	 1	 1 3	 1	 1	 3	 2	 2 3	 2	 2 2

0 EL —EL ,	 o IEL2 -2E L 2 a —e
2	 2 s 2 3	 2	 2 1 2	 2 3 ds

t>
i
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K 1 0 0 0 0 0 x
XX 1

0 0 0 ,	 0 0 0 x2

0 0 K 3 ;	 0 0 0 X

^ ' -0 0 0 ,	 0 0 0 e
l

0 0 0 ;0 0 0 e2

0 0 0 ;0 0 a e3

C1 0 0 0	 0 0 Y1

0 0 0	 ;0 0 0 y:
0 o c'	 '0 0 o y

3_

T	
Xy.

0 ^ 0 0 0	 0 0
^1

0 0 0 0	
m1

0
P2 2

0 0 0	 ;0 0 0^

K^y 0 0 0 0 0 Y1

0 0 0	 ' 0 0 a Y2

0 0 K3	 ' 0 0 0 Y,
- - -	 xY.. -	 - - -

0 0 0 0 0 0 ^1

0 0 0	 i 0 SIP 0
^2

0 0 0	 k 0 0 0

0

m 2e 2[w`cos(wt +,a ) + wsin(wt +pu2)]

0	 .

T(I P-It )[w= Cos (wit + S 2 ) +Wain(wt 462)]
0

{?.30)

where K is a 6 x 6 stiffness matrix of the shaft element.
x

Similarly, a set of matrix equations can be written for the y-z

plane as follows

m 0 0 a	 0 0 0 Y C1
KY

0 0. 0	 0 0 Y11
1

1 i

0 1 o t	 0 0 0 Yx 0 0 I0! 0	 0 0 Y22

0
____

0 m 0
^^___^._

0 0
-

Y
.2 +

0
______

0 Cs
}Y^ a_o o

y, 
_

0 0 0 1C 0 0 0 0 0 0	 0 0 ^1
I

1 t
0 0 0 1	 0 1t2

0 IP 0 0 0	 1 0	 0 0 22

0 0 0 11 	 0 0 0 i^^ 0 0 0 0	 0 a

1"

i
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2E I -2E I 0 EILI EILI 0 X•I - Y l
I

-2E 2E + 2E -2E I-E L -E L + E L E L Y2	 Yd2I I	 2 2 11 I	 I	 2	 I 12

0 -2L' 2 0
Ei —$ -2 y	 Yds

- - - _ _ . _	 _ _ .. _

EII.I- --EILI- - 0
I	

lEILI2

'EIL 0 I	 -'^^d l
E 1. -E L+ E L -E L }	 IF. 	

2
2E L

2+ !E L2 l E L2 ^+	 - '^ d
I	 I I	 I	 I	 I 1 2 I	 Y	 1.1 .I	 I;	 2	 13 2 2 :	 2

a E 1LI —BIL1 }	 a
2

^E2LI
-I	 1
^E1L2 ^,, - ^, d,

KI o	 a	 ;0 a a
YIYY I

0 0	 0	 1 0 0 0 y
2

0 0	 g3	 ;0 0 a
y3--Y	 - -I -	 - -

0 0	 0	 ,0 0 0 ^I

0 0	 0	 ^0 0 01

0 0	 0	 10 0 a

CI 0 0 a
YX.
0 0 0 '0

k
p 0 c3 0

_yx+ o_ -o
o -;n

0 0 0
I

i0

a o a
a
;0

0	 0I

0	 0
1

ar	
O

X
+

0	 0 e,
1

g_^ylp2 0 2

0	 0 e1i

0 a 0 0 X2
p a 0	 1

i
0 0 X2

0_ 0
_ 

E33,	 i 0 — 0_ 0 X,

c 0 0	 i0 0 0 ^I

0 0 0 0 o g:
0 0 0	 l 0 0 0 g 

>a

0

m e 2	 J.EW25 11 (Wt + 2) — (LCDs(.Wt +t^l2)^

0

T(Ip—I^ ) [w2s; (wt + aI ) - wcas (wt 48 2 )^

0
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2.3 Direcc Method of Solution

In order to illustrate the use of direct method of solution, the

three-mass rotor model discussed is used as an example. To simplify

I	 numerical computations, the 12th order system as illustrated by

equations (2.30) and (2.31) can be reduced to a 6th order system by

Guyan reduction. For example, if there are no transverse moments or

products of inertia in the system (no rotor gyroscopic or disc skew

effects), equation (2.30) can be written as

1

CM]	 0	 (x)	 CC]	 0	 (x)	 [[k=] Ck ]	 (x - xd)
f	 ••	 +

0	 0	 (©)	 0	 0	 (e)	 CkaxI Ck06 	 (0 — 0d)

^Kx.^c ] 	 0	 (x?	 [C cy ] 0	 (Y)

+	 0	 0	 (6}	 0	 0	 (,}
r

CKXy]	 0	 (y)	 (FX)

0	 0	 M	 (0)
(7..32)

and the moment equation can be extracted by

tkexI (` - xd) + 
[Fee1 

(8 - ® d) . 0	 (?.33)

.Assuming L s L , E	 E and using Guyan reduction,
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r

1
a

[M] (x) + ccxx^ (-k) + 
11k

xx7 - [kxe] [kee] rkex1 
(x - xd) + Cc ,^(y)

J

CK,Y] (Y) ° (Fx)	
(2.34)

t

or written in full matrix form as

0 0 z C1 0 0 x
1 t rot s

0 m 0 X + 0 0 0 ]1

0 O m z 0 0 C S is
a

Sd i Kl 0 0 ac
3EI ^ 1-1

-
1 a= _

xd2 + 0 0 0V s=

-1 x} - xd 3 0 0 KI xI

C 1 0 0 91 KI 0 0 'p1
xy

a 0 0 y2 + 0 0 0 y2+

0 ' 0 C3 i3 0 0 KXy y a

0
M e [m = cos (wt - a) + lo in (wt - a ) ]	 (2.35)

0	 J



In the set of equations of motion of equation (2.30) and (2.31),

there is a disc effect only at the center station. Therefore, the

equations of motion corresponding to O 9 e and +^ qi may be eliminated
1	 3	 1	 3

by expressing these quantities in terms of the other station displace-
.%	 Y

ment and rotation coordinates.

Using the boundary conditions, equations (2.26) and (2.29) where

LR
X"

. 1A 
^x . 

0 yields the following relationships
! 

8	

3 (xert - 
xei	

- 
Oen	 (2.36)

eii?	 L	 '^
1

3 ( Xe 2 - Yep	 _ a e,	 (2.37)

L	 2

	There is a corresponding set of relationships for the	 and 41
ej

coordinates.

By the substitution of these relationships into equation (2.30)

and (2.31), the 12th order system is reduced to an 8th order system

with equations in the x-z plane as follows

Al	 0	 0	 0	 X	 C!	 0	 o f 0	 :c

0	 m	 0	 0	 x	 0	 0	 0	 0	 ;c

0	 0 m 0
3^ ...	 ^3	 + 0	 0 0 3	 0	 x

xX^	 3

4 tx
	 0 	 0	 0	 0	 F

i'
i

fi

a
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E1 -E1 0 E1L1 x1

t ^:
'E

1
E+E

1	 x
-E

^
-E L+E L x

2 1	 1	 z	 2 2

0 -E E -E L x
2 2	 f 4_2	 _ 3

LE -EL+EL -EL EL2+ELz 6
1	 1 1	 1 2 2	 2 2 1	 1	 2	 2 2

x a a	 f o X cxy o o a y1 1

0 0 0 0 x2 0 0 o o y2
+

l
+0 0 K 3 0 x 0 0 c 3 	( 0 ys ._ ^xy- -..

0 — 0 0- a a2^ 0 0 0 0 ^2

K 1 0 0 0 y
xy

+	 0 0 0 0 y
2

0 0 K3 0 y

~ 
3-^.

0 a o	 1 0 ^,
2

0

m 2a 2 [w2 COS(Wt + az) + (^Sjn(wt + 
az)]

0

T(Ip-I t ) 2 CW 2 cOS (mt +^ 2 } + wsin(wt +s2)]

i



1

^̀ tix 0 0 Y
^j I

1

0 0 0 Y	 _
z

3
IC

0 0
xxi 3

M3 J`

1
OXv	 0
M

1

0	 0

0
	

0

0	 Y
1

0	 Y
z

3

XV	 Y
M3	 3
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Since the above equations of motion are uncoupled in the rotor

mass matrix, the transient response of the system can be calculated

by direct integration of the rotor acceleration, which is

given as follows

0
1

•
x « 	 e  [m'

o
 cos (wt + az ) + W sin (tilt + az)]

Y 3	 ^0

r'

	

C X%	 0	 0	 X	 X1	 1	 0	 Y

	

M	 1	 ri	 M	 1

	

1	 1	 1

	

0	 0	 0	 X	 1	 E +E	
E 
	

X
z

Y
3

3C a

0	 a
M

3

2
2- M M - M

a z z

X 0 E^ E`
3

Mf3
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Y
i

K 
0 0

^f
z

P

0	 0	 0	 Y
••	 2

3

0	 0	
K	 Y	 (2.31)

a
3	 J

Transient response analysis using direct integration of equations

of motion has been extensively investigated by Kirk [33], Shen [34],

and others [35 38]. This direct approach has been :htio;Ta to be

very effective in analyzing simple rotor systems. In the case of

large complex rotor bearing systems, the use of this direct method

is very inefficient and time consuming due to the large number

of equations to be solved. The use of modal transformation

[39 -- 551 in reducing the number of equations of the system has

been found to be very satisfactory. The use of modal transformation

in rotor-bearing systems dynamic analysis will he discussed in the

following chapters.

The above application of the general equations of motion to

a 3-mass rotor model provides a deeper understanding of the effects

of unbalance , disk skew, shaft bow ; rotor acceleration, and

gyroscopic moment, which cannot be easily visualized in the modal

equations of motion after the transformation.
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III. METHODS OF MODAL ANALYSIS

In the case of simple rotor systems, the dynamic behavior of the

rotor may readily be obtained from solving the rotor equations of

motion directly [33, 34, 351. However, this may not be the case for

a more complex system or rotor system with a large number of mass

stations (e.g. over 50 mass stations), particularly in the analysis

of rotor transient response of the system. The integration of large

numbers of equations of motion are very time consuming [33, 34, 35]

and may Lead to serious numerical problems. A more efficient way to

compute transient response of the rotor system suggests to be the

modal approach. Using modal analysis [39-551, the number of equations

of motion can be greatly reduced (depending on the number of modes

necessary to accurately approximate the system) to lower the computa-

tional costs and to avoid certain numerical problems encountered in

the integration of the direct equations of motion. As an additional

bonus, unbalance response and stability of the rotor system can be

obtained with a small additional effort. The use of the modal

approach in dynamic analysis has been extensively investigated and

can be divided into three major categories as in the following sections.
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3.1 Uncou led Modal Analgsis

The linear equations of motion for an N-degrees of freedom system

in matrix form can be written as

CHI (X} + CC] {X) + EKI {X) ° {f(t))
	

(3.1)

For a circular shaft with symmetric supports if the generalized

di.splacement (X) is measured from a fixed point in space, it can be

shown that the mass matrix DO and stiffness matrix EK] are symmetric

matrices [50]. These are the basic assumptions used in the derivation

of the orthogonality conditions of the undamped mode shapes. With

these orthogonality conditons, the mas,; matrix [M] and the stiffness

matrix [K] in the matrix equations of motion (3.1) can be uncoupled

such that the modal response of the system can be solved by direction

integration of the modal accelerations.

The general equations of motion for a multimass rotor including

disc gyroscopic effects and generalized bearing properties of stiffness

and damping produce a set of equations in which the total stiffness

and damping matrices [K] and N matrices are symmetric.
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3.1.1 Orthogonalit, of Normal Modes

!	 In the calculation of normal modes of a system, free vibration
a

of an undamped system is assumed. Equation (3.1) can be written in

undamped free vibration form as

[M] {X} + [K] {X} _ {Q} 	 (3.2)

Assuming harmonic motion for the system such that

iwt
X = Ae

and

^^--m'x

Then, equation (3.2) can be reduced to a standard eigenvalue form as

the following

C[M]-1 [K] - W2  [I]] {Y 1 1 = o
	

(3.3)

in which w  is the ith critical speed of the system and {Y i ) is its

corresponding normal mode. The normal modes, or the eigenvectors of

the system, can be shown to be orthogonal with respect to the mass and

stiffness matrices as follows. Equation (3.2) for the ith mode can

be written as
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I
-W2 i [M] + [K] {Yi }	 0	 (3.4)

Premultip ly by {Yj}T

{Yj}T [K] {Yi} - W2  {Yj}T [M] {Y i }	 0	 (3.5)

Premultiply the equation of jib' mode by {y i I with the result

{Yi}T 
[K] { Yi ) -- 

W2  {
Y }T [M] {Yj} . 0	 (3.6)

i

If the stiffness matrix K is symmetric such that

{Yi}T [K] {Yj } = {Yj }^ [K] {Yi} — — -- -
	

(3.7)

Equation (3.5) and (3.6) can be reduced to

(mil - wj 2 ) {Y i }T [M] {y 	 0	 (3.8)

Thus, the orthogonality conditions are

{Yi
}T 

[M] {y 	 0	 i	 (3.9)

{ -{i } T [K] {Y j } = 0	 1	 i # j	 (3.10)

l	 'e

A
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Now a set of orthonormal modes is defined such that

}T 
CHI to 	 0	

1	 j	 (3.11)

Thus 1 1 can be calculated as

i

Substituting the above relationships into equation (3.4), we have

n	 ^ i ^ i
{$ )T CKI to I ^	 (3.13}i	 iWi`' , 	 _

which are the orthogonality conditions For the orthonormal modes { oi},
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3.1.2 Uncoupled Modal Equations of Motion

The general assumption used in modal analysis is that the general-
1

ized displacements of the system can be represented by a linear

r	 ,	 combination of the mode shapes (or eigenvectors) of the system. In
F

this analysis, the generalized displacements are discretized into mass

stations which can be represented by a set (or sets) of discretized

orthonormal modes C(D] as
I
R	 n

{K(z, t)}	 q 	 {^ (z)}	 (3.14)

Using this representation, equation (3.1) can now be transformed into

EM] 1 ,P] {q (t) } + [c] D1 (q (t) } + CK] D1 {q (t) } = {f (t) }	 (3.15)

where

I'D] = [{¢ }, {^ },• {^ }, ..., (0 }]
1	 2	 3

ql(t)

q (t)
2

and {q (t) _	 +

qn(t)

1^-
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Equation (3.12) is then premultiplied by 101, as

T C,11 CHIT {q(t)} + DI Cc] DI ta(t)) + DI CK7 C,,Na (q (t)

a

= DI  MO)	 (3.16)

Using the orthogonal Condition of (3.9) and (3.10). we have

^, r Du
l CSI = C'z.'j

[K] ^^] y [1	 (3.1,3}

where CA] is a diagonal matrix composing or the squares of the undamped

critical speeds w i . Thus equation (3.16) Lan be simplified ns

n

q i (t) +	 cz^ ,^^ ( t ) + ;0 t ? q .i (t) - ri (t)	 for i = 1, 2, ... n

where

cij	 {,i} T Cc] (^^ }
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It was shown by Caughey [541 that if CC] is linearly proportional

to CK1 and [K] or

[C] CHI-' CK] - CKI EMI-1 [CI	 (3.20)

Then [C] can also be uncoupled by the normal modes as

T	 0 	 i # j

Ci , i- j

Using this orthogonality condition, equation (3.19) can be written

as

q i (t) + Cii q i {t) + m i qi (t)	 i(t)	 for Ii - 1, 2, ... n (3.22)

This assumption uncouples the modal equations of motion which are

relatively easy to analyze but often not accurate for turbomachinery

with fluid film bearings or seals. Bishop and Parkinson [271 used

this approach of proportional damping in their balancing schemes.

However, this procedure fails when large damping is presented in the

system. This justification will 'be verified in the next chapter.
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3.1.3 Damped Natural Frequencies and Forced Response of UncouRled

System

Using the assumption of proportional damping, the modal equations

can be reduced to the standard form [27, 481 as follows

qi + 2^iwigi + wx2q a

where

= Cii = modal damping ratio
i	 Cc i

critical modal damping for the 
ith 

mode

Assuming a solution of the form

q
i
, = n e ft	 \ = Complex eigenvalue
 i

the homogeneous solution Yields the complex eigenvalues

Q

(3.26)A	 = Pi -}- i mdi = - Eiwi + iwi
1 2

:there Pi is the growth factor and wdi is the damped critical speed.

Cci =



or

wd^ + p12

Aui -2Piwdi
(3.28)

46

if 
F  

is a sinusoidal forcing function due to unbalance, a syn-

chonrous response solution is easily found. It can be shown that the

peak rotor unbalance response does not occur at the undamped critical

speed w  or at the damped critical speed to dibut at a speed to given

by 0181 similar to that for a single mass rotor.

wi
Looui 	

(3.25)
1

or if the complex eigenvalues for the damped system are know

co	 + p
wui s d^1^	 (3.'6)

wdi
	 pi:

The rotor amplification factor for the peak rotor unbalance response is

given by 0181

l
ui	

2Ei

	 (3.V7)

A

i



Therefore, it is seen for the case of the uncoupled modal analysis

that if the modal damping or complex eigenvalues can be calculated and

the damping is proportional, then the speed at which the maximum

i	 unbalance response occurs can be predicted along with the rotor ampli-

fication Factor.

Although the above equations for the prediction of the rotor peak

unbalance response speeds and amplification factors provide insight

into rotor behavior, for realistic turborotors with fluid film bearings

and gyroscopic moment coupling, the ,nodal equations of motion cannot

be simply uncoupled, as Bishop and Parkinson have done, [27, 483, but

the modal equations must be simultaneously considered for both the

s-z and y-z planes of motion as Childs 14 0 - 44_^ or Lund C51-" has demon-

strated. The general coupled modal analysis to determine the stability

of the damped natural frequencies (eigenvalues) is discussed in the

following chapters.



3.2 Modal Analysis Using Damped Modes

3.2.1 Reduction to Standard Form

Another approach 4o uncouple the equations of motion of a damped

system is the damped modal analysis [39, 51]. in order to apply the

damped modes of the system, the set of equations of motion in (3.1)

i	
has to be reduced to standard form. It is assumed that the dis-

placement vector W may be represented by

W = W eXt	 (3.29)

such that

{X} = l{X} = (P + imd) W

In order to solve for the e ipenvalues of the system and develop the

orthogonality conditions for the general damped rotor, the system must

first be reduced from a set of N coupled second order differential

equations to a set of 2N first-order equations. This can be done by

adding an equation of the form

{X}	 {X) = Q

into equation (3.1) which gives
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[0]	 X	 [C ] C KI	 X

+	 m 0
	

(3.30)

	

01 [1]	 X	 `[-I^ r 01	 X

Let V be defined such that

	

X	 X	 a2X
V=	 and V=	 =

	Y 	 X	 X	 hX

Then equation (3.30) can be reduced to a standard eigenvalue problem

l
a

Cif W r0a	 [C]

{v} +	 0
L0]  CIS 	 P3 Cog

or in another form as

[D] {V} - ) (V} = 0

(3.31)

(3.32)

where

I^	 10

The iteration of equation (3.32) for the determination of the complex

eigenvalue will converge to the highest eigenvalue of the system.

the eigenvalue problem is formulated with the inverse matrix of ED],

the iterative procedure of Hurty and Roberstein [ 671 will converge

to the lowest system eigenvalues.
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3.2.2 Orthogonality of Eigenvectors

Solving the eigenvalue problem in equation (3.32), there exists a

set of eigenvalues with their corresponding eigenvectors which will

satisfy the following homogeneous equations.

3

x 

s
	

[ED] r 
Ai[I]] 

I 	
= 0
	

(3.33)

where

	

	
di

di

is the complex eigenvector of the'ith mode for the damped system.

In order to derive the orthogonal conditions for the damped

eigenvectors, the transpose of the matrix [D] is considered. In

general, EDT] is not equal to [D] but I DDT I = I D I; that is, the deter-

minant of the transpose matrix is equal to the original matrix.

Let 
^dJ 

satisfy the equation

[ED]T - X  CI] ^Tdjj r 0	
(3-34)

where

j7dj'^

	

	

^i ^dj

d^

is the left-hand eigenvector of the ith mode.



i

i

v

^i.
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To develop the orthogonality condition
s
, multiply equation (3.33)

by the transposed left-handed eigenvector,{ d# 	such that

5
l djjT 

[ CD I- A i [I]] t+ di3 = 0	 (3.35)

or by expanding out into

7 dj T 
CD] ^di^ - Ai j I TdjT ^d = 0

	 (3.3L)

Similarly, pxemul.tiply equation (3.34) by the transpose of tIIdi

which becomes

di^T [D]T ^ T dj) - Xj ^^ dij T ^Tdj^  = 0
	 (3.37)

'faking the transpose of equation (3.37) and subtracting equation (3.36)

results in

Xi^	
dj)T ^l'di^ = 0	 (3.38)

Thus, the orthogonal condition can be stated. as

Y d 	
^di=^iljddjT^di +^dj]T Odij = 0	 for i	 (3.39)

or

	

I

r



A

s 

i
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i

T	 0	 for i	 J	 (3.40)
^dj	 di

Thus, the left handed eigenvector generated for the ,nth mode is

orthogonal to the right vector of the ith mode. This represents the

most general case of orthogonality for an arbitrary unsymmetrical [D]

r	 j

matrix.

3	 The above developed orthogonality condition can be further

expanded for general use. Note that

X^di
^di =

^di

where 0 d
is of the order 2N where ^di is of the order N. Assume ^di

satisfies the equation

n i`M + x i C + K ! ^di = 0	
(3.41)

and that 
0 d satisfies the following equation

C
a^ 2 MT + X i CT + 

KT  di 0	
(3.42)

Taking the transpose of the above and pre multiplying by ail^di}

	 . r

T
.	 X; 2 ,.^ 4 X C + K

 Xi di
 di = 0	 (3.45)

a



Postmultiplyin$ equation (3.4I) by 
AjFfi

d3 g
ives

3
i
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A

71^0 T 	Ai

 
2M + Ai0 + K ^di	

0	 (3.44)

Subtracting equation (3.44) from (3.43) we obtain

l
i 

x
i0 ] 

[M] $di 
(A	 1

J - ail + ( Ai - A3 ^ T
[x] 0di 

m 0	 (3.45)

Dividing out the constant A i - Ai we obtain

I.

i

Y -

i

i ^T	
( ,XjM - K) 

di 
0	 (3.46)

Eliminating - T[ K.]$di from equation (3.43) results in

t,Ai +  J)	 j	
di + 0 a [c] pdi = 0	 (3.47)

When i = j, the above orthogonality condition equation (3.46) reduces to

Ai2 M
i 

- 
K 

	
(3.48)

where

_M.	 ^di [M] 0 di
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•i^
{
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= T
Ki 	 ^di	 L.	 ^di

And the orthogonality condition of equation (3.47) reduces to

C  = -2A iM1	 (3 .49)

where

T
Ci - ^di	 [C] d,i.

3.2.3 Forced Response UsinZ DampedModes

Modal response of a complex system using damped modes has been

extensivel,, investigated by Foss. [39 7, and Lund [51]. The general

equations of motion in (3.1) are uncoupled and solved independently.

To uncouple the equations of motion, they are reduced to the standard

form from equation (3.1) as (note that this form is somewhat different

from the formulation of equation 3.31 such that the symmetry of the

matrices is retained if [M], [C] and [K] are symmetric)

[A] {V} + CB] {V } = {F(t) }

where

r
[0]	 EMI

[R] =

[MI	 [C]

(3.50)
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-1m]	 C0I

	

Col	 LKI

{0}

{f (t)

{X}
{V}

{x}

The orthogonality conditions are similar to equation (3.47) as

a i - ajd
J	 [R]^di = 0	 for i r j	 (3.51)

 ^

and

	

(^di)T [Xj	
ER] + [B]1 

(^dj = 0 ,
	 for i 0 j	 (3.52)

In modal analysis, it is assumed that the 2N vector (V }can be

expressed by a combination of the modes as

N

(VI _ 
Ll  

qj(t) I'd j-)	 (3.53)
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Substituting equation (3.53) into (3.50) and premuliplying by I^di)T
gives

!n

	

!	 k	 l	

n	

}
I`^di^T

II i	
q^(t) l d^! + ^ di)T ^B]
	 q (t) ^ del

_ l *dill l F(t))

	
(3.54)

ApplYing the orthogonality conditions in equations (3.51) and (3.5''), the

above matrix equation can be uncoupled into 2N equations of the form

Ri q 1 (0-, iR i qi (t)
	

17di)x ( F (0)	 (3.55)

Ri* q
i {t} - ,ti* Ri* qi(t)	

{ di)	
(F(t))

where superscript * denotes the complex conjugates and

Ri 	 I
TP

di T Ch] (`'^di)	
(3.56)

Bi	 {
,̂
di

} T CB] (^ di} 
_ -ai R 

of expanding out the matrix to obtain R i , which is a complex number

Ri	
21i 

^di,T EM] J odi) k !` di, T CC] j ` di)	
(3.57)

In the case where the mass matrix [ M ], the damping matrix [C] and the

stiffness matrix [h] are symmetric, the left-hand eigenvectorodii,

equals to the right-hand eigenvector 
l0dil, 

then

F
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i
	

di T 
[2xENl] + cc]	 Adis	

(3.58)

The forced response of the system can be evaluated by the

decoupled equations in (3,55) through the use of the convolution integral.

2N

	

lvw 	 T 1 i(t - T) 

^ydijT #k"E T ) # dT	 di	
(3.59)

	

R^	
f

0

or

rv^

"N

J- 1	 i

I,f f (t) -s a sinus

jc^t)t - ;mej

T ^ \ i(t - T)	
'di. T 1 1 (T) # dT j0dil

0

Adal forcing function such as unbalance forces that

2 iwt	
(3.61)u] ` 4

then

2N	
(t - r)

t(t) - E1 tt
i f t e
	 ui 10 eiwTd't	

di l 	 (3.62)

i sm

Where



where

Ui 	 ` dil l Imeil

^me	 mass eccentricity vector of the system

i

For zero initial, conditions, the convolution integral can be

integrated to give

t + imt

	

Uq.a	 eait e	
i 

i	 1 R.	 {iw

	

I	 x

_a*
U 

* ^^'' 1*t	 it + pmt	 ` *

+ 	 - 1Ri*

5s

(3.63)

where the upper superscript * designates the conjugate of the variable.

If t is very large, the transient response goes into steady state cohere

	

U	 U W-	 1Wt	 Ui* ca~ eiwt	
t

f
x{t) _	

K 	 (ime- ai) J^di^+	---Ei* Ciw-,1i{ )	 di 	 C3.b4)

i	 1	 i

For zero or small damping, the following values are valid.

a i = iW i	I	 a*i = -imi

	

' di -	 di j - l yi ^ ' ) 4dii 
= 

l odJ



Thus

#	 2Ei	
f

X,^
i '^ - c^` IYi)

(3.65)
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i

ri - lyX [
 M] 

IYJ  - modal mass for undamped system

R1	2 mi'i, R i * - -2 wili

Ui	 iTI {mieiI

U
E _	 - modal eccentricity for the undamped system

i m 

or

f,2 E	

(3.6n)
1	 f12

where

f = w

Note that equation (3,66) is just the equation for modal excitation

of an undamped system. If we define the modal amplification factor

to be A, such that
2

f

[
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N

X, A E (yi)	
(3.67)

then

A	
f 1	 (3-68)

f 2

which goes to infinity when f. equals to I or w w i	
Similarly, for

the, lightly damped system, assuming U, U, the modal amplification will be

1	 1
A, = 

W i R,(iw	 + R i *UW 	(3.69)

Applying equation (3.28) to (3.69), the modal amplification of the

system at resonance speed (w = w ui becomes

A	 +
Asti.	 Ui i	 R ULO	 R *(iw	 (31.70)

us

i	 ui	 i	 ui	 i

+ P

	

di	 i
Where W Ui 

is given by equation (3.25) as w ui 47—T-di

Another form of representing the modal equations of motion is in

the form of uncoupled second order differential equation E291 as

follows

, r T	 T

+ 2P 
i 

t
i 

+ W T, = Me

A
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^{ }T

	

(f (0) - a*	 (f (t))
T1 

i
+ 2Pi n 

i
+ 

^i2 T1 i = 2DI	
i	

Ri	
i

i

where

q  + qi*	 (3.71}

V

r	 _i(q _ q *}

The above equations are a more efficient way of modal representa-

tion which .involves no complex number calculation in obtaining the

forced response solution.

It can be seen from the above analysis that the rotor equations
f

of motion can be decoupled and force response can be calculated from

integration the modal equation directly. But there are several

drawbacks of this approach. First, dumped natural frequencies and

mode shapes of a large system are more difficult and time consuming

to obtain; and secondly, the equations of motion cannot be completely

decoupled if rotor acceleration and nonlinear bearing forces exist

in the system. In this case, the same kind of coupled equations have

to be solved, and the complex mode shapes in the damped system makes

}	 it more difficult. Thus, it may be more efficient to resort to a

set of coupled modal equations transformed by the undamped modes,

which will be discussed in the next section.
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3.3 Coupled Undamped Modal Analysis

The use of undamped modes in solving dynamical equations of motion

has been extensively investigated by Dennis [45], Black C461, Childs

[ 40], Morton [521, and other researchers. Different approaches have

been used by these investigators to give satisfactory results. The

analysis based on using "free-free" modes alone simplifies the

equation and the modes are relatively easy to obtain, but a lot of

higher modes have to be incorporated in order to give accurate results.

A better approach is the addition of two rigid body (rotational and

translational) modes along with the "free-free" modes. This would

give better results even when less higher modes are used. The draw-

back of this approach is that the sets of mode shapes used does

not provide the designers a real "feeling" of the system. Another

approach is the incorporation of the "Pin- pin" jointed modes at

the main bearing in addition to the set of "free-free" modes used.

This approach will give very accurate results, but the two sets of

modes, the free-free and the pin-pin, are not orthogonal to each other;

and thus, further complicating the problem.

The use of planar modes, where bearing stiffness is incorporated,

seems to be a better way. The mode shapes calculated can give the

designer a better "feel" of the bending of the system, and the

results of using planar modes are in good accuracy even when only a_

few modes are used. A comparison of using the planar modes to the

free-Free plus rigid-b dy modes will be discussed in the next chapter.

1
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3.3.1 Orthogonality of Planar Modes

It is desired to obtain a single set of planar undamped modes

incorporating an average bearing stiffness for modal analysis. The

shaft is assumed symmetric, rotor gyroscopic effects are neglected,

bearing damping is neglected, and only an average bearing principal

stiffness term is considered. The equations for the planar undamped

mode shapes are

H0
0	 0 (x)

0
L t]

0	 0 (8)

0	 0 H	 0 (y)

0	 0 0	 [ij 6) 

[r-xel 0	 0 (x)

[k9_
	 [k9 @] 0	 0 (6) 

0	 0 [k..X]	 [kx B]
(Y)

0	 0 [kox^	 [1,8j (T)

J
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K	 0	 K	 0	 (x) 1	 s

A

0	 0	 0	 0	 (e)
^.	 F^^)

^K+ 	0	
CK.	

0	 (Y)

0	 0	 0	 0	 (T)

S

(3.72)
ii
 !1

where

r	
S+CK B

LKb -
K

2

3s the average bearing stiffness taken from K
b:tx 

and Kb 
yy 

which is

evaluated for a single speed in the operating speed range.

Eliminating the cross-coupling bearing stiffness and the

difference in the direct stiffness terms, equation (3.72) becomes

symmetrical in the x-y, y-z planes.

H 0	 (x) -	 [kxx + V-bj	
[k.8^
	

:=^)

r	
+	 - a

0	
Ct1	

(^)	 [k,"]	 [k,9^	
(B}

(3.73)
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and

	

H0
	 (Y)	 [kxx + F-b]

	

lt,	
(V^}	 [keg]

[kxe	 (Y)
Q

[ke 6]	 M )

(3.74)

let 
W  

be the ith natural frequency of the system and 
I 
Aj be its

corresponding orthonormal mode shape such that

A _ Aei_
i - Ali

where LAei^ = translational orthonormal mode

2A ,

^^A6	
rotational orthonormal mode	

3zl

and

Ae	 {^^)^-(^.,2.)^ (^^),	 > {fin}

The orthogonality conditions of the orthonormal modes require

that

I



66

1, for i 	 3

^^e3 T H jt^eij {
 JAaj 1T [It] A51)

	
0, for i	 j	

(3.75)	
}

Ae3Tk:^x + , Aei + {Aej)T 
[kxe] ^Az, j + JABj rT [6x	 Aei)

and

as^ , for i = j
+ JA

3j 
IT [k_-e] JA"1 	 0^ for i	 j

(3.76)

3.3.2 Planar Modal Analvsis

in modal analysis, it is assumed that the response of the system

+-a

can be represented by a combination of the planar modes. Therefore,
rH

the generalized displacement vector {U) is represented by the expansion

of the undamped modes obtained from a solution of equation (3.72) as

a

	

1
U) 

Lq 
xi i	

(3.77)

 i	 1	 q {^.}
Y i

where

0)
iU#

(y)

(Y)



(Y)	 ^.=1

0

f

qxi

qyi	 } ^' }

qsi

gYi ^i
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or in another form as

(3.78)

Pramultiply equation (2.17) by (I i ) T and apply orthogonality condi-

tion of the mode shapes, the equations of motion can be written into

a set of compact equations using the Eienstein summation convention an

^	 7C

qxi+ wi qxi+ Cij qxj+ Bij qxj+ nil q Yj + Eij qYj ~Psi (3.79)

and there is a similar set of equations for the y-z plane as follows

q71+ c^t1 qY-i 
Cij qYj+ ij qYj+ D qi j x j+ 

^'ij qxj " PYi	 (3.80)

and

Pxi 
s (^i) T McEW2 cos (cat + a) + w sin (wt + a,)]

+ {¢ ) T	 (;F —
 

fit) [W2 con (cat +5) + w sin (Ut +P)]	 (-.a1)



rt

[n] [0]	 (q )	 (-P

[ 0 ] [A]	 I (q 
Y )
	

(Py). (3.33)

1
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whc.:e Bij , Ci3 , D ,J , and Ei j are

from disc gyroscopic, bearing c-.•

effects. For example, the nod-al

culated as

modal cross-coupling terms from

-ss-coupling stiffness and damping

damping coefficient Ci can be cal-
3

	

Ci j	 {Oi}T [Cxx] ( .^ 
j ) + 10i }T rcx91 ^ A,^ 1) 

+ i ^
i t }T 

[C 6x] i^^ }

+ J ^^i
,
 }T [C88] t^^ `}	 (3.22)

or in matrix form, equation (3.79) and (3.80) can be combined as

	

(qx)	

+	

[CX] [Dx ]	 (q }	 [Bx] [ Ex ]	 (q )

	

(q y )	 [Dy] I cy ]	 cap)	 +	 [E°'] [By ]	 (4p)

It should be clear that this general modal formulation is not re-

stricted to the particular ;at of mode shapes obtained by solving

equation (3.72). Equation (3.82) can now be solved for damped eigen-

values and eigenvectors, stability analysis, and forced response of

the system. The solution procedures for them is given in the fol-

lowing chapters.
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TV. STABILITY ANALYSIS FUSING 'NODAL  MPROACH

4.1 Modal Equations for Stability Analysis

The stability and damped modes of a multi-muss rotor system

can be obtained by soling the homogeneous modal equations of

motion. Using the undamped modes of the system can greatly reduce

the number of equations to be solved as compared to a finite element

formulation. The matrix dynamic, equation of (3.1) can be expanded

into hom.iganeous form as

+ I t- G + " "B I ( )	 [^h S	 ^^:a^	 C I." I (U) - 0

0. 1)

where

EC-1(7  Gyroscopic damping matrix
\3 

F-C]B M Bearing damping matrix

^Kls = Shaft and bearing stiffness matrix

CK1B % Bearing stiffness matrix

CK]A . Acceleration stiffness matrix

By principles of modal expansion [39-55], the rotor translational

and rotational response amplitudes can be represented by a summ at•Lon

is( the modes, TFaat is

i

j

7
z

i

j
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(K)	 [A 
el

LL	 qx1	
(4.2)

[A	
f

(Y)	
[Ael jqy 	 (4.3)
[A,]

where #q and Jgv j are time dependent vectors. Using the above

modal expansions, the dynamic equations of motion in the x-z plane

from equation (3.79) can be written as

[M]	 0 [A 
e
l [Cxx] [CO] [Ae]

0	 [it] [AS]
qX	

+ [Ce x ] [Coo]_ [AO]
qx	

+

[k" + K b 1 CkXe ] r [Ae] q
x + 

[V,xx - Kb] axe	
[Ael-

^qx +

[	 kox ] [kee ]	 [A0 ]	 [ K ex	 ] (K6e	 [A ]

[C,Y]	 CCXOI	 [Ae ]	 0

[cey]	 [CO 	 [A a]	

q^ 

+ 0

0	 [Ae]
q +

["WIp+ ] '[Aa	
Y

[']	 [ x^]	 [Ae]
XY	

•	 qy ^ 0

KO y]	 [xe4 	 [Aa

(4.4)

t
)^1
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i

Y.

To apply the orthogonality condition to the dynamic equations of

motion, equation (4.4) is premultiplied by A
e

T which leads to

the following equation	
A$

{qx 1 + S CAe]T Ecxx] CAe] + [Ae]T CCxs] CAS] + [AS ]T CcOx] CA e]

+ 
CAS]T 

cc e6 ] CAS]1 {q'
qx) + Cw12 ] ( qx I + JEAe]T CKxx - KB] CAe]

+ CAe]T CKxe ] CA$] 
+ [AS]T 

CKex] CAe] + [AS]T CK5e] [AS ] (qx}

+ { CAe]T [cxy] CAe] + [
Ae]T 

ccx*] [
AS] + CAS ]T [cey] CAe]

+ CA$]T cc^^] CAS] ) ( qy } + I 
CAST 

C`wl p ,] CAS] (q y}

+ ^ CA e ]T CK 
xY	 e	 e	 x^	 a
] CA ] + CA ]T CK ] CA ] + CA IT eY
	 e

CK ] CA ]
^ 

+ CAS] r CK501 CA S] 1̂
 
(q } = 0
Y

(4.5)

Equation (4.5) can be simplified in compact form as

(qx ) + CCx] (qx) + CKY] ( qx) + CDx] (ay) + [CMx] (qy) + [Ex (qy) = 0

(4.6)
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s

	 There is also a similar set of equations corresponding to cha y-z

plane for the stability analysis of the system. Let

(qX) - (Q) 
eAt

and

( qy ) = (Qy) eat

such that

( qX	 A (qx)	
X2 (q

( q V ) - ;^(av) - i ' (qy)	 (4.6)

Substitution of these relationships into Equation (4.6) yields

211,] ^, + aCcXI + C' A ^ + CKX3 l (qX ) + ^'.C^XI + aCcrzX
1	 1

+ CEX^ )(q
,)  = o (4.7)

There is a similar set of matrix e quations for the y-z plane
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t;

(X2['1,] + X[Cy] + ['a.] + [KY]} (qy) + a[Dy] + a[C M]

+ [E ]	 (qX) - 0	 (4.8)
^T 

The above two sets of coupled matrix equations can be combined

into a set of 2n second-order matrix equations as

,2 [i ] + a[cX] + [ h] + [ ^	 X[Dy] + a[CMy] + [Ey ]	 (qX)

a[DN + a[CMX] + [Ex]	 X2[1] + a[cy] + [n] + [xy ]	 ( q y)

L

= 0	 (4.9)

The above matrix equation can be solved for h i and qxi and

q
yi , 

which are the damped natural frequencies of the system and their

corresponding eigenvectors.

t

r

x
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4.2 Solution Procedures for Modal Stabilit y Analvsis

The stability and the damped modes of the system can be

obtained by solving the set of homogeneous modal equations of Motion

in (4.9). This can be accomplished by expanding the set of 2n

`	 second order equations into the standard eigenvalu es form of a set of 4n

first order equations as follows.

1[I]	 0	 0	 0	 a(qx

0	 a[1]	 0	 0	 A (q )
y

0	 0	 N[i]	 0	 (qx

0	 0	 0	 v[I]	 (q y}

—[C ]	 -[D + CM ]	 -[K + A]	 -[E ]	 a (q )
x	 x	 xx	 x

-[Dy + CMy ]	 —Cc y ]	 —[^y]	 -[Ky = A]	 a (qV)
= 0

[1]	 0	 0	 0	 (q x)
0	 [1]	 0	 0	 (q y)

IF	

(4,10)

or in compact fam- as

(let  ^a[I] -- [A] I = 0
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t

The set of equations in (4.10) can now be solved using various

eigenvalue search procedures such as the power method, the Q-it

algorithm, or the Leverrier's algorithm. Since for most rotor systems

only the first several modes are of importance, it is more profitable

to use a solution procedure which only searches for the lower modes

instead of searching for all the modes of the system. In this par-

ticular study, the Leverrier's algorithm [651 is used. The matrix

homogeneous equations can be expanded into a polynomial equation of

the form as follows:

4n	 4n-I	 4n-2	 +	 = 0
X	 + p 

1 
X	 + p ? a	 + . . . . . . + 

p 4*1-1
X
	p4n

(4.11)

where

P = - trace [AI
1

P a - I trace [AB 1k	 k	 k--1

[b ] = [A] + p [ I1
1

[B k
]_ [A] [B k-11+ Pk [I]

k = 2, 3, 4 . . . . , 4n

k = 2, 3, 4 . . . . , 4n

h

. "a3
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The damped natural frequencies of the system can now be obtained

as the roots of the polynomial equation of (4.11). A powerful

procedure for obtaining these complex roots is the Newton-Raphson

iteration [ill approach, by which the smaller roots can be calculated

relatively rapidly: Assuming an initial value X.

A=A +(l-)O-A	 =0
0	 0	 0

(4.12)

A = 
X 4 + p

1 
^4n-I + . . . . . . + p	 ,l + p	 = 0

4n-1	 4n

and

=	 4n + 
p	 4n-1 + . . . . . . + g	 + p

0	 0	 1,10	 4n..1 0	 4n

Solving equation (4.12) for a new estimate of the eigenvalue A yields

a= X — A rdA^
0	 0	 dA

0

(4.13)

In order to avoid the recalculation of the already obtained

roots, a sweeping condition has to be included by rewriting equation

i

(4'.13) as



(4.16)
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M	 -1

a=^ -A[(
d

d
X

c11-A
0	 0

1
)	 0	 -- a
0	 31 o	 j

(4.14)

where M is the number of roots has been previously calculated. The

i
	 convergence using the Newton-Raphson technique is less than 10

iterations in most cases.

With the calculation of the damped natural frequencies X i , the

stability of the system can be obtained by

Xi = Pi + iwd i 	 (4.15)

where P is the real part or growth factor indicating the stability

(negative values are stable), while the imaginary part w  is the

damped critical speed of the system. Further, the modal coordinates

of the system can also be obtained using Leverrier's algorithm as

^q(^)	
B + 1iB, + X2B,+	 .	 + 0

- 1$n

1

(i)
where B, is defined as in equation (4.11). The matrix	 nes

i

of n column vectors of mode shapes in which each column is propor-

tional to each other. Thus only one column of the matrix is necessary

for the determination of the eigenvector of the corresponding material

frequency ,1 i . Since the [B iI matrices are obtained during the

expansion of the polynomial as in equation (4.11), the eigenvector
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(or mode shapes) of the system can be obtained with little extra

computation. It can be seen that the element in the [B i] matrix

and also the value of Xi may be very large. Initial scaling of the

vector may be a necessity when using this procedure.

To compute the eigenvector of the corresponding 
X  

of the system,

the modal coordinate calculated are multiplied to the orthogonal mode

shapes such that

r	 ^ ^

ae	 q (i) 1

	

1 ;^i'	
^A 1^

Since for ever* eigenvalue \,J there exists a set of modal coordinate

vector {q l . such that the damped eigenvector for every \i can readily

be obtained by the above modal treatment.
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4.3 applications and Comparisons of Different Modal Methods

To illustrate the use of modal approach in calculating damped

modes, a simple rotor model is used as an example. Consider a

uniform rotor of 50 inches long and 4 inches in diameter supported by

two symmetric bearings with stiffness of 60,000 lb/in.and damping

of 100 lb—sec/in. The undamped critical speeds of the sytem are

calculated by a transfer matrix computer program to be 4,193 RPM,

8,230 RPM, 19,806 RPM, and 43,000 RP11, and their corresponding mode

shapes are given in Figure 4.1.

Table 4.1 represents the comparison of the undamped, damped

critical speeds and the speeds at which maximum unbalance response

was determined for the uniform rotor. The undamped critical speeds

were calculated in this case to be 4,193 RPM and 8,230 RPM as shown

in Figure 4.1, and the amplification factor for the first and second

modes using the single mass theory such that A c _ r̂ predicts that
^S

the first and second amplification factors will be 2.936 and 0.38
L

respectively for the first and second modes. This equation is based

on the common assumption used in structural vibration theory that the

modal damping cross coupling terms can be ignored and that each

modal amplification factor can be calculated independently. It will

be shown that even for the case of bearing damping C  = 200 lb—sec/in.

that this computation is greatly in error.

A matrix transfer stability program based on the theory as

outlined by Lund M was programmed and the damped eibenvalues were

calculated as shown in table 4.1. The damped natural frequencies
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TABLE 4.1

COMPARISON OF DAMPED AND UNDAMPED

CRITICAL SPEEDS AND AMPLIFICATION FACTORS

C  = 200 lb-sec/in	 Kb - 60,000 lb/in

MODE

1 2

N (undamped) 4,193 RPM (69.84 Hz) 8,230 RPM (137.2 Hz)
c

A (andampe.d) 0.936 0.38
c

N
(trans. matrix) I 5,713 RPM (95.2 Hz) 35,040 RPM (584 Hz)

P -283 rad/sec j	 -1199 rad/sec

N (calc) 6,319 RPM (105 Hz) 36,863 RFM (614.4 Hz)
c

A 1.29 ( .427) 1.69
U

i

N d (modal) 5,667 RPM (94-46 Hz) 37,403.6 RPM (623 Hz)

P -307 -1145.9

N 6,380 RPM (106.3 Hz) 42,463 RPM (707.7 Hz)
c

A 1.23 1.85u

1 j
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TABLE 4.1.

COMPARISON OF DAMPED AND UNDAMPED

CRITICAL SPEEDS AND AMPLIFICATION FACTORS

C  = 200 1b-sec/in	 Kb = 60,000 lb/in

MODE

1 2.

N 
(undamped) 4,193 RPM (69.84 Hz) 8,230 RPM (137.2 Hz)

A (undamped) 0.936 0.38

N  (trans. matrix) 5,713 RPM (95.2 Hz) 35,040 RPM (584 Hz)

P -283 rad/sec -1199 rad/sec

N (calc_) 6,319 RPM (105 Hz) 36,863 RPM (614.4 Hz)
c

A 1.29 .427) 1.69
u

N  (modal) 5,667 RPM (94.46 Hz) 37,403.6 RPM (623 Hz)

P -307 -1145.9

N 6,380 RPM (106.3 Hz) 42,463 RPM (707.7 H:)
c

A 1.23 1.85
u



were calculated to be approximately 5,713 RPM for the first mode and

35,040 RPM fox the second mode. The values of P = -283 rad/sec
1

and P = -1199 rad/sec are the damping exponents of the system
2

indicating the stability of the system.

The equivalent undamped critical speed as illustrated by single

mass theory is

W	 m 2+p2
i	 d

Thus using the real and imaginary components, the undamped natural

frequency is calculated to be 6,319 RPM and 36,863 RPM for the

second mode. The modal amplification factors for each mode are

calculated in the following example to be 1.29 and 1.69.

Using the modal approach, if N natural modes of motion are assumed,

there will be N simultaneous equations to be solved for the deter-

mination of the coefficients Ai. As an example of this procedure,

the undamped mode shapes for the uniform rotor were used to deter-

mine the first and second damped natural frequencies. It can be assumed

that due to rotor symmetry the second and fourth modes will not

r contribute to the formulation of the first or third mode shape due to

the symmetry of the mode shapes. The first and third modal equations

were solved simultaneously as follows:

A +C A + C A +mz A= 0
	

(4.37)
1	 11 1	 13 3	 1 1

6 -C2..)
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3

A+ C A+ C A+ w2 A	 0	 (4.I$)
3	 31 1	 33 3	 3 3

Assuming a solution of the form

I
t
	3

— Xt — (p ± iwd)t
A = Ae	 Ae	 (4.19)

We can write the result in matrix form as follows

X 2 + wz + XC	 XC	 A	 0
1	 11	 L3	 1

_

XC	 X2 +W2 + XC	 A	 0

	

31	 3	 33	 3

s

(4.20)

'lie corresponding frequency equation is

X 4 + N 3 (C + C ) + X 2 (w 2 + w 2 — C C + C C }
11	 33	 1	 3	 13 31	 11 33

x

^.	 ...	 + X (C w
11 3	 33 I	 1 3

2 + C w 2 ) + w 2m 2 ^. 0	 (4.21)

With	 C 1	 468	 C1	 726

C = 2388	 C	 3704
31	 33

Equation (4.21) can be solved as

(

s
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f	

X4 + 41727 3 + 4.49 x ZOSX2 + 2. 73'x 10 9 X + 8.29 x 1011 - 0

with the solution

-307 + 1593.5 rad/sec

This value is in close agreenent with the value calculated by t..".e

transfer matrix method as shown in Table 4.1. The amplification

factor predicted from the transfer matrix method was 1.29 whereas

the value calculation based on the first mode is only 0.93 (as given

in Table 4.1) .

This value is in close agreement to the value calculated by

transfer matrix method as shown in Table 4.1.

In a similar fashion, using only the second and the fourth

undamped modes, the second complex eigenvalue is predicted to be
1i

Al	 --1145. 9 + 13915.9 rad/sec

i

The resulting second response speed amplification factor is cal-

culated to be iI

e	 i

A s 1.85
U2

Comparing t c ca; dilations Qf t^.e elm=ped natural frequencies

for the first and second modes, the modal method compares favorably

with the calculated numerical values based on the matrix transfer	
i E

stability program. Because of the simplicity of the system, the 	
5

I^
f
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first and second damped modes may be accurately calculated by

applying the conditions of symmetry; that is, only the first and

third modes are necessary for the accurate calculation of the first

damped mode and only the second and fourth modes are necessary for

the calculation of the damped second critical speed. In complex

multistage turborotors, however, there is usually not the convenient

condition of symmetry as it exists in this sample problem. However,

the first damped mode can often be accurately calculated by using

the first three undamped critical speeds.

In addition to the calculation of the damped natural frequency

by means of the modal method, the damped mode shapes can also be

determined. This also provides considerable insight into.the

elastic shaft deformation behavior of the rotor at resonance. By

applying the complex eigenvalue to equation (4.17)

(a2 +G a+ta 2)
A = --	

111	 A
3	 C X	 1

13

and normalizing the first coefficient A - 1, the coefficient A
I	 3

can-be calculated as follows..

	

A	
-(4,46 x.105 /- 125.3 0. + 3.13 x 10 5 L 117.3 0 + 1.92 x 10 5 4 00)

	

3	 4.848 x 10 5 L 117.40
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Therefore, it can be seen that the complex first damped mode is a

function of both the first and the third mode. The third mode is

approximately 90 0 leading the first mode and its magnitude is approxi-

mately one half of the first mode. Therefore, we conclude that with

a bearing damping of C  - 200 lb-sec/in, the complex first mode is

composed of the normalized first mode plus 50% of the third mode

leading the first mode by 900.

In summary, it can be seen that the introduction of bearing

a.gmping o£ 200 1b-sec/in into the simple model will cause a considerable

shift of the rotor natural frequencies. From the standpoint of

examining the peak response of the rotor, it can be shown that if

an undamped modal expansion is used, the rotor amplitude may be

calculated with less than approximately 5% error when undamped modes

up to approximately five times running speed are incorporated.

To =urther illuotr;iti:^ the anrlication of the method, rodal cal-

culations were performed for an 8-stage centrifugal compressor as

discussed by Lund [11] where the damped natural frequencies were

calculated. The rotor weighs about 1,400 lbs and is 102 inches in

length. The center of gravity of the rotor is almost midway between

the two identical journal bearings of 5 inches diameter, 1.5 inch

length, and 0.0035 inch clearance. A description of the rotor shaft

geometric properties is given in Table 4.2 and the bearing character-

istics are given in Table 4.3. An-'undamped critical speed analysis

with the average bearing stiffness of 609,550 lb/in. at the left bearing

and 558,100 lb/in. at the right bearing indicates that the critical

Cc

I



STATION NOm	 WEIGHT	 LENGTH SHAFT DIA. SHAF7 ' DIA.	 I	 IP-POLAR MOM. IT-TRANS. MOM.
US	 -----INSIDE INSIDE__ 	 TIN **4 1	 ILP- I N#* ^	 ( L8-I Ntt 2)

1 ^10.8.172___B00 2.750__0.000 2.81 01000 00000_	 __
2 139962 6.300 4.360 0.000 17.74 0.000 06000 
3---21009	 1,_SQQ	 5-m040-_k..- Q:0 0o	30.8	 0.000 01000
4 12.225 1.600 5.000 00000 30.68 0.000 09000
5	 _19.660 -1.240 6_.500 0.000 97.a'62 040_00 0.000
6 24.955 21000 6.620 O.Ooo 94o-28 6.000 0.000

_,_,__	 7	 _.._____25.8143.300 -- 6.620 __ ,__ . 0.000 94.28 _0.000 0.000,
8 34.292 .13	 80 7.1$ 0 0.000 130.46 0.000 0.000

-	 9	 2 1j, (194 2.3 0 0	 6.3Q 0 0.00 0 9$19 2 0.000 0 . 000
10 66.943 20900 6.700 0.400 98.92 617.000 309.000
11 x8.753 2 .30 0 6.700 0.000 98.92 33_.90 0 17 9800
12 64.943 7-.900 6.700 0.000 08.92 617.000 3090000

_13 28.753	 2.300 6.700 019000 98.92 33..900 17.800
14 66.943 20900 6.700 04000 99092 617.000 309.000
15	 28:7532x, 300  6--s-700 000.00 96.99	 33.900 17.800
16	 (^ O 819859 5.890 6.700 0.000 98.92 617.000 309.000
17	 . 58.770 5.890 6.700 00000 98992 00000 00000
18 63.606 2.090 6.700 00000 96.92 617.000 309.000
19	 B.19 34.034 3..350 6.700 0.000 98092 49.100 27.1.00
20	 70.934	 2.650	 60704	 0.004	 98.92
21	 .	 39 0.34	 3 350	 6.200	 O.OQO	 98.5.2

617.000
ti^190

309.000
27.100

22	 r0 70.934 2.650 6.700 00000 98.92 6170000 309.000c
_	 7-3	 L' > 34.034 3 .350 _ 6 .700 0.000 4802 49.100 27 .100

24 81.061 4.680 6.700 04000 98092 617.000 309.000
25	 r~-1 _ 50.018 __ Z.700_ 6.700 0.000 . 98.92t 4,.00¢ 121.00g^
26 25.233 2.160 7.000 00000 117.86 00000 00000
27_	 27033	 3.320	 6.2Q0^Q00	 94.,-28	 0.000 0.000__
28 .25.911 20000 6.620 00000 94.28 00000 00000
29 24.861 3.?2 0 .6_.500 0 0000 87.6 2 0 000 0 0 0000
30 19.566 1.600 5.000 0.000 30.68 00000 00000
31 -	-_8.335 1.400 5.000 06000 _ 30.6.8 00000 0000.0_
32 16.840 5.320 4.680 1.0(t0 23059 01000 00040

__^33 41x997 1.750 3.740 0.000 9660 00000 0.000
34 41.590 5.150 39680 00000 96,00 00000 0.000
35 12.643 0.000 39680 06000 9000 0.000 00000

1420.984	 102.800
MV

Table 4.2 GEOMETRIC PROPERTIES OF LAND [111 COMPRESSOR
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1'	 zi

h;
Stiffness and
damping coefficients.

Bearing Number

1 2

K	 (lb/in) 441,000 415,300
1=

K	 /in)J(lb 83,330 88,540.

KYX(lb/in) -853,500 -792,400

yy(lb/in) 778,100 700,900

C	 (lb-sec/in) 786.3 758.7
xx

C	 (lb -sec/in) -716.4 -674.3.

C	 (lb-see /inj -716.4 -674.3

C	 Ub -sec/in) 2,196.0 2,196.0
3

i

88

Table 4.3

BEARING CHARACTERISTICS USED FOR SIMLTUTION

OF THE 8-STAGE COMPRESSOR

xr .

y

L,
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speeds will occur at 3,270 RPM, 7,527 RPM, 9,018 RPM, 14,092, and

27,921 RPM.	 Note that the effects of bearing cross-coupled stiffness

and rotor polar moments of inertia are neglected. 	 The undamped mode

shapes for this compressor are typical flexible rotor modes due to high

stiffness of the bearings.	 Normalized mode shapes for the first five

i critical speed are given in Figures 4.2 and 4.3.

In order to illustrate the use of the modal equation derived in

1
the previous section, the damped natural frequencies of the system were

R

calculated with bearing cross-coupling stiffness and damping effects.

A computer program was set up to formulate the standard eigenvalue

^ f
.. matrix as given in equation (4.10) and the 4N degree polynomial equation

of 4.11 was solved by Leverrier's Algorithm. 	 A rotor speed of 2,000

RPM is assumed for first critical speed calculation of disc gyroscopic
i

calculations and 4,000 RPM for the second critical speed. 	 Using the

modal approach discussed in section 4.2, the damped natural frequencies

were calculated to be: 	 2,962 RPM (P = -0.43 rad/sec) for the forward

mode and 3,633 RPM (P = -19.5 rad/sec) for the backward whirl mode whera

P is the damping exponent of the corresponding critical speed. 	 The mode

r

`

^

shapes for the corresponding forward and backward modes of the first

!!
critical speed are given in Figure 4.4 and 4.5. 	 Note that the first

critical speed backward mode shape given in Figure 4.5 is quite

similar to the conventional free-free undamped. critical speed. mode.

(Lund [111 pointed out that the first two , backward modes were damped

out and the third backward mode appears to be the first.) 	 But this
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mode will not be easily excited due to its high damping exponent

values while the first forward mode with P almost zero is close to

the stability threshold. This means that the rotor is marginally

stable and has a very high rotor amplification factor, and hence

may cause a large rotor unbalance response at the first critical

speed. Similarly, the rotor backward resonance speed and amplifi-

cation factor are computed to be Nb - 3,651 RPM and A  j 9.64.
u Z	ui

Thus, it can be seen that the forward mode has a much higher

amplification factor than the backward mode and will be vet7 easy

to excite.

Similar modal calculations show that the second damped natural

frequency will have a forward critical speed at 4,933 R pm (P = -104.7

rad/sec). In this case, the backward critical speed occurs at a

speed of 13,910 RPM, which is much higher than the forward.critical speed

(the third forward damped critical speed is 6,730 RPM). The forward

and backward mode shapes of the second damped critical speed are

given in Figures 4.6 and 4.7. Rote that in figure 4.7, the second

backward mode shape is similar to a conventional fourth bending

mode because the s =--cond and third backward critical modes are

critically damped over their critical speed range Ell].
A further justification of the planar modal analysis is the

comparisons of result: of modal analysis using different sets of

undamped mode. Modal stability calculations of the same compressor

were performed using (a) four undamped planar modes (from average

bearing stiffness), (b) four free-free undamped modes, (c) two

4

i
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i	 o	 o	 atree-free undamped modes plus two rigid body (rotational and translational)
.•	

modes, (d) four tree-free modes plus two rigid body modes, and the

corresponding results are given in Table 4.4. A set of values calculated

from transfer matrix method are also given in the table. The damped

natural frequencies calculated from planar modes and the free-free plus

rigid body modes are in very close agreement to each other, and their

aciuracy is verified by the values predicted by the.matrix transfer cal-

culations.

In the case of using only four planar modes, eight damped natural

frequencies are resulted from solving the frequency equation of (4.11)..

The complex frequencies calculated are in good agreement. with the matrix

transfer method, especially for the lower frequencies. Including the

computation of the planar modes, the computer time used (central

processor time of the Cyper 172 system) is the least of all cases (23.2

seconds as given in Table 4.4). In the case of using 4 free-free modes

of the system, the solution is quite misleading. The two lowest and .

the two zero frequencies of the system are missing due to the lack of

basic rigid-body mode contributions. The computer time consumed is

higher than the previous case of using planar modes because more computer

time has been consumed in calculating the free-free modes. The complex

frequencies calculated by the 2 free-free plus 2 rigid body modes are

also in good agreement with those by the transfer matrix method. Com-

paring these results ..with those of the planar modes, it seems that the1...,	 A
planar mode calculation has better accuracy in the lower frequencies

while the .. free-fr.ee plus. rigid body mode calculation has more accuracy



4 AVE-RACE	 4 FREE-FREE	 2 FREE--FREE PLUS	 4 FREE-FREE PLUS

TRANSFER MATRIX	 STIFFNESS MODES	 MODES	 2 RIGID BODY MODES	 2 RIGID BODY MODES

P	 and	 P	
d	

P	 d	
P	 d	 P	 03d

rad/sec	 RPM	 rad/sec	 RPM	 rad/sec	 RPM	 rad/sec	 RPM	 rad /sec	 RPM

-6,630	 0	 -2,074	 0	 -	 -	 -2,457	 0	 -3,712	 0

-834	 0	 -921	 0	 -	 -	 -2,070	 0	 -338.8	 0

-0.36	 2,955	 -0.49	 2,967	 -	 -	 -0.65	 2,978	 -2.33	 2,969

-18.5	 3,623	 -20.5	 3,639	 -	 --	 -18.5	 3,659	 -16.5	 3,633

-108.7	 4,835	 -104.7	 4,933	 -93.1	 6,362	 --112.0	 4,836	 -108.7	 4,834

--149.7	 6,687	 -139.2	 6,779	 -101.5	 6,680	 -153	 6,637	 150.8	 6,650

-8.9	 13,885	 --6.8	 13,912	 -5.37	 14,050	 -6.28	 13,906	 -8.02	 13,896

-5.8	 14,032	 -5.3	 14,037	 -21.2	 14,077	 -5.8	 14,033	 -5.8	 14,036

-382	 24,600	 --	 -	 -381	 28,252	 -	 -	 -221	 24,997

-95.1	 27,600	 -	 -	 -93.4	 27,520	 -	 --	 -93.5	 27,440

-1,360	 42,500	 --	 -	 -327	 40,385	 -	 -	 -958	 31,822

-340	 42,500	 -	 -	 -1,679	 40,383	 -	 -	 -330	 42,005

C.P.
C.P.33 . 8 sec.	 23.2 sec.	 27.4 sec.	 27 sec.	 56.8 sec.

co

TIME

Table 4.4 Comparisons of The Complex Eigenvalues Calculated by the Modal and Matrix Transfer Methods
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in the higher frequencies.	 Again the computer time used in this case

is slightly higher than using the planar modes.	 For further investiga-

tion, the system complex frequencies were also computed using 4 free-

free plus 2 rigid body modes of the system. 	 As shown in Table 4.4,	 a

F
t

this use of two additional free-free modes did not improve the results

r,-
significantly, but the computer time consumed has increased over 100

^

percent (from 27 seconds to 56.8 seconds). 	 'thus it can be concluded
!

Y

that if only the lower frequencies of the system are required, the use

of a few basic system undamped modes can give very good results. 	 How-

ever, there is a drawback in this modal analysis such that the damping

exponents (real part of the complex frequencies) of the system may some-

times be inaccurate due to the lack of the higher mode contributions.
I

When the number of modes used is restricted by computational time and 	 a

cost consideration, the use of planar (average stiffness) modes will

be a better approach.	 a

f

5
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V. FORCED RESPONSE ANALYSIS USING MODAL ANALYSIS

5.1 Solutions of Modal Equations of Motion

In solving for the forced response of the rotor-bearing system,

the matrix equation of motion in (3.1) is transformed into modal

coordinates using a set of undamped orthogonal modes. With the

effects of unbalance, disc skew, shaft bow, and rotor acceleration,

the set of modal equations in the x-z plane can be written as

follows

[M] 0 [Ae 1 [C	 ]..xx [c   	 [AeX611
.

0 [It]
[A

qx

[Cex] [C06

ux

A

[k X + Kb^ [kXE) ^e^
[kXX [ xe ^ Rd

[k ex] [kBe^
[AS

q	 -

[kexI [k Go] Bd

[Kxx - Kb^
[Kxe]

[A 
el [cxy] [cx^] [Ae

[KBx]
[KBe]

[AEI
q 	 +

[cByI [Oe^]
q 

[AS

0 0 [A ]e
[K	 a
xY

[K	 ^x [^ e

0 [wrp^ [ASI
qy	

+

Y	 [Key [Ke

q 
[ASI

{OJUGINA' PAv"; 
iS

10B poop_ QUALITY,

F

f

i.

Y

f

C

5





(x 
d) [A el

R
x

(od)	 [A51

(yd)	 [Ael

R

0d)	 [A01	
y

il

and

(5.2)

Cx ICI C xel (mod )	 Ck" + Kb I C xe l	 CAel

R
X

Ckexl Ckeel^ (ed)	 [k ex]	 [k 80 IJ pal

r
ER 

b ]
0 [AeI

JI R
x

0 0 LAO 

and (Rx can be represented by

(5.3)

T

0	 (xd)	 [Ael	 Cml o	 [A el
R 	 R
x	 x

[ITI	 ( e d)	 [AsI	 o	 [TT	 [A0I.

(5.G)
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and therefore

,R

[Ae^ [M]

.'	
Rx

CASE	 0

t.
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0	 (X 
d) 
0 CAeJT CMJ d} + CA 	

CIt],
{ed}

[It] od)

(5.5)

Substituting this relationship into Equation (5.1) and premultiplying

T.	 the equation by [Ae^ gives the following matrix equation.

$	 [A^^

1

^'	 r

s«

{qxI + { CAe]T CcXX] CAeJ + CA
eIT CCxeJ CA0J + CAaIT CCexJ CAeJ

+ CA^JT Ca
ggJ CAS J	 x} + CWi2-J {qx } + #CAeJT xx , x

BJ CAeI

+ CA T CK J CA	
T	 T	 J CA J { }

e	 xB	 a7 + CA sJ CK J CAex	 eJ + CA J CK	
jBe	 S	 qx

s	 +^CAeIT CCxyJ CAeI + CAeIT CC	 CA^^ + CAaIT CCey^ CAe^

+ CA^JT
 CCe J CA^J {qy} + { CA'sJT C-wT .3 CAOJ {qy}

G
4	

+ ICAIT 
C 3 CAeJ 

+ 
CAe 	 xJT CK 

J 
CA^J + CA JT CK9 J CA

e	
J

	

O	 ^.	 Y
Y

+ [A I
T

CKe J CASJ j { qY } +) [A lm [' )^Or j [AS1' { q }
p	 y

k
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[Ae]T {FxI + [A^]T 
IM } + # ['Wi2.] 

[Ae]T 
[Kb] 

[A e][Ae]T [M] 
I x d

+ [AS]T 
[lT] { ed; 1

	
(5.6)

The equations can be written in the compact form as

{ q }+ [C ]{ q } + [A] {q }+[K. ] {q }+[D ]{q }+[CM] {q }
x	 x	 x	 x	 x	 x'	 x	 y	 x	 y

a

+ [Ex] { qy } + [EA ] { qy} a {x''} + {xB}	 (5.7)

I

Similarly, the equation for the y-z plane can be written as

{ qy} + CCy]
 

1; I ' " {A } { qy} + .[Ky { qy} + [Dv] {;x} + [.CMY 	{ q.x}

'^

Y

.'
+ CE ] {q } + [EA	 .{q I	 (yF} + {yB} (5.8)

y	 x	 y	 x

Combining Equation (5.7) with (5.8) and rearranging the terms, we ;-

have

k. y

fit
(4x)^	 (XF) + (x$)1 CC x] CDx + cry] (qx)

(Qy)	 (yF) + (y$) CDy + CMy I	 CCy] ^qy)
I $$--

9

[A+K]	 CE	 +EA]
x	 x (q)xx r°°.}

- [E	 + EA ]	 [A + K (q) (5.9)
Y	 Y	 Y Y
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Thus, the modal acceleration terms can be calculated from the

above equation with initial conditions for the modal displacement'

given by the following relations

((X (0))	 [A 
el q  (0)	 (5.10)

^($ • (o))	 [As]

or

q  (0)
[A ]	 0	 [1t]	 ((e (o))	 (5.11)

Similarly, the modal velocity is given by

[A ] T [M]	 0	 ((x (0})
qX (0)	

e

[A^]	 0	 [x t ]	 ((e (a))	 (5.12)

With the modal acceleration and velocity terms calculated as above,

the modal transient motion can be computed by. numerical integration

in time. The rotor forced response motion can be obtained by back

suustitution of the modal coefficients into the following equation:

M J
I
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x
a

x(t)	 CA e1
q^(t)

a (t}	 CA^1
v(t) -

Y(t)	 LAe	
q ct

1
)

^t^	 CAs1	 Y
r

(5.13}

If steady state wrnchronous unbalance response motion of the rotor

is assumed such that

{ ix) - iW 1; x )  - -w2 { qx)	 (5.14)

{:qy) _ iW { qy) = -wl {qy1	 (5.15)

Equation (5.7) can be rewritten as 	 4.1

W2,1 + iW C c x1 + Cxxl 
j qx) + 1iW CDX1 + iW Cc x?

+ CEx] + CX111 qY	 ( xF) + {xs}	 (5 . 16)
1

Similarly, equation (5.8)

i	 I

CC 'Wi2 W2,1 + iW CC 1 + .Cx !] t q ) +I + iW [CM 1
Y	 Y	 Y
	 [iw CD Y
	 Y
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These two sets of simultaneous equations are coupled, and by

solving the 2n system of equations, q  and q  can be calculated.

Thus, the unbalance response of the system at the operating speed

of W (xad/sec) can be computed as

(x)

U =
(Y)

M

[Ae 0

2 - W2,1 + iw [Cx] + [KXI iw ED  + CMti] + [E^ + EAX]	 {xF + xg}

[A51 0

0 1[A ]

iw [1) + CMy	y] + [B + EA ] 	 P wi	 y	 yt _ W2^] + iw [c] + [x1 tyF + yB}

0 ICAO]	 Y	 Y	 L

(5.18)

The solutions of x and y from the complex equation (5.13) are

complex. They can be expressed as

x = Re 
I 

(x r + ixi) eiwtl
	

(5.19)

y Re	 (yr + iyi) eiwtl	
(5.20)

1.

3



108

i

The subscript r denotes the real . part of the solution and i denotes
k3

the Imaginary part of the solution.	 Thus, the maximum amplitude in

x and y coordinate directions are given by
Y

rf x	 xr + xi' (5.21)

1y	 Yr	 + Yi (5.22)

f

or expanding equations (5.19) and (5.20) that

x a xr cos mt - xi sin wt (5,23)

k

y	 yr cos wt + yi sin wt

i

The results of the above equations can be expressed by major and
i

minor elliptical semi-axis [17, 383 a and b as shown in figure 5.1

that

E

a (5.25)

b (5.26)

r

where. 71	 x.	 ± xi	+ yr	+ yi

- x y	
+x-	 r	 i	 i yr

^e
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y.

The orientation angle for the elliptical major axis is

given by

2(xYr + xi Yi)r
.

9 =	 arctan (5.27)F

^[2+ x2 	^ y
2..^	 2

r	 i	 r	 i

a^^i

r . An alternate representation of the rotor motion is to write the x, y
f ^^

components of motion as

X	 1L Cos	 (Wt:	 X) (5.28)

tg

I
y = y sin (tit — Ry) (5.29) f

The amplitude and phase angle are similar to those obtained. from

experimental results as indicated in figure 5.2. 	 For the probe to be

t
in the same line as the positive x--axis, the timing mark is at an

angle ^^ such that

x

^x = arctnn	 - (5.30)
r

and similarly for the probe at y axis
9

'S! arctan	 -	 - (5.31.)
s: Y

x,	 .
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For a symmetrical system,

x=Rcos (Wt - g)

r; y m R sin (wt (5.33)

Then it can be deduced that
^'	 I

x	 = -iy.	 x	 Yr	 i	 r
(5.34)

;k
and

i` y a ix (5.35)

or
i

a

(yr + iyi)	 i(xr + ixi) (5.36)

s

.	
i

Hence, the rotor symmetrical whirl orbit is circular and bhe outlined

5

calculation procedure can be much simplified using the above relation- i

i

ships.
T _

tppi
l

I!

a
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's 5.2	 Applications	 d C mpar	 State Solutionsan	 Comparisons o£ Stead-,y

f	 '
In order to illustrate the use of the modal equations derived

.. in the previous section, the same example of an centrifugal compressor
F

C
i.

discussed in section 4.3 is used.	 The modal method was applied to compute

the unbalance response of the compressor. 	 An unbalance of 1 oz-in.

was placed in the mid-span between the bearings to simulate a first-

f

mode excitation using the modal approach discussed in section 5.1.

N
The rotor unbalance response was calculated for an operating speed

range of 500 RPM to 4,500 RPM.	 For validation purposes, unbalance

h	 j;
response calculations based on the matrix transfer method [171 were also

^t u
E performed.	 Figure 5.3 shows the comparisons of unbalance response

} calculated by both methods at the left bearing station, and Figure

F 5.4 shows the unbalance response at the mid-rotor span.	 It can be
f

seen from the figures that the results from bath methods are in very

f good agreement.	 Note from figure 5.4 that the peak of the curve

occurs at 2,995 RPM with an amplitude of 29 mils. 	 This peak response

speed is very close to the calculation of.N	 = 2,963 RPM using.
ui

equation (3.25).	 A closer investigation at the unbalance response

of the system passing through its first critical speed by both transfer

f { matrix and modal methods is given in Table 5.1. 	 Note that the modal

Method can predict the peak response speed quite closely to the.one

by transfer matrix method with a peak magnitude of response of about

22 mils.	 Note that the accuracy in the results does not improve
f

significantly by using b planar modes instead of 4 planar modes.

..	 ..

-
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MATRIX 6 PLANAR 4 PLANAR
TRANSFER MODES MODES

SPEED (mils) (mils) (mils)

2,940 6.41 4.19 3.63

2,942 7.32 4.55 3.9

2,944 8.52 4.95 4.22

2,946 10.17 5.43 4.59

2,948 12.5 5.99 5.05

2,950 15.95 6.67 5.59

2,952 21.05 7.52 6.25

2,954 26.9 8.65 7.08

2,956 27.73 10.18 8.15

2,958 22.27 12.27 9.55

2,960 16.86 15.05 11.44

2,962 13.13 18.1 14.01

2,964 10.62 19.43 37.36

2,966 8.86 17.57 20.79

2,968 7.59 14.44 22.01

2,970I 6.63 11.72 19.69

2,972 5.88 9.67 16.11

2,974 5.28 8.18 13.05

2,976 4.79 7.06 10.75

2,978 4.38 6.2 9.06

C.P. TIME 7.32 sec.	 11.5 sec

Table 5.1 COMPARISON OF UNBALANCE RESPONSE

OF COMPRESSOR BY MODAL AND TRANSFER MATRIX METHODS
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Another aspect of this analysis is that for a lightly damped system

such as this compressor, the unbalance response curve always gives

a very sharp rising slope near the resonance speed, or, in other

words, the speed range in which the peak resonance speed will occur

is very narrow. For accurate calculations, the unbalance response

of the system has to be calculated for very sma11 speed increments
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The maximum amplitude of 36 mils calculated from the rotor

amplification factor is higher than the 29 mils calculated from the

unbalance response computer program. It appears that in this case

even a speed increment of 1 RPM is still not small enough to catch

the real peak of the resonance motion. The amplification factor can

provide compressor designers with information of the maximum rotor

motion in a simplified manner.

To further illustrate the calculation of steady state forced

response, the results from the modal method were compared to experi-

mental data. A uniform rotor of 21 in. long, 1 in. diameter with

3 large disks located at the mid span was used as the model for

analysis. The rotor is supported by two plain Journal bearings at

each end. A schematic of the rotor system is given in figure 5.5.

A noncontacting probe is set up in the position x2 as in the diagram

monitoring the horizontal rotor motion. The solid lines in figure 5.5

indicate the rotor synchronous response from experimental data [563.

The dotted line represents the unbalance response calculation using

only the first undamped mode of the system. In this particular case,

the unbalance of the system is measured to be 0.2 oz-in at 0 degree

located at the center dial of the rotor. The rotor has a residual

run out of 0.7 mils at the center disk and 0.6 mils at the other

disks and are 175 degrees out of phase with the rotor unbalance.

The rotor geometry and bearing characteristics used in this analysis are

shown in Table 5.2. The dotted 11ne of moda-l.ealeulations in figure

5.5 shows very good agreement with the experimental results. Note
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that there are differences in response during up and down speed of the

rotor while the unbalance response calculation predicts the average

between them. Also, there occurs a dip in the response after the

resonance peak, which indicates eccentricity in the rotor [21] . It

can also be seen that the dip in the rotor response did not go to zero,

which indicates that the bow and the unbalance is less than 180 degrees

out of phase with each other.

I^

y.:

i•

j	 t '
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5.3 Verification of Transient Response Solutions

In order to illustrate the application of the modal method

discussed in the'previous sections, a computer code was set up to

predict the forced response of rotor systems and compared those of

known solutions or published works. The first case of this study

is the single-mass Jeffcott rotor. It consists of a single mass

of 100 lbs on a uniform rotor of 100 in long and 4 in diameter

supported by rigid bearings as shown in figure 5.6. The system

also has a damper of 13.7 lb-sec/in acting at the central mass of

the rotor. The undamped critical speed of the system is calculated

to be at 2,525 RPM. Since there was no instability mechanism existing

in the rotor, the system is stable. This implies that the forced

response of the system will go from the initial transient motion

into the steady state unbalance response as time increases.

In this particular study, a rotor unbalance of'l oz-in. is

assumed to be located at the center mass. From unbalance response

calculations using the transfer matrix approach or the modal method

discussed, it was found that the rotor will have a magnitude of 3.07

mils with a phase change of 84.3 degrees when the rotor operating

speed is 2,500 RPM. Note that the rotor response orbit should be

circular due to symmetry at the bearings, and the large phase change
i

(near to 90 degrees) indicates that the rotor is operating near its

critical speed. Figure 5.7 and 5..8 shoj the transient response

motion of the rotor center mass starting with zero initial conditions.

Iq
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a

Rote that the rotor transient motion dies out and gradually assumes

the steady state orbits as predicted by the unbalance response

calculation. A further illustration is the comparison of this

transient results with some exact solutions, namely, the convolution 	 ,'•

integral. Since the rotor model considered is a Jeffcott type,
F.

the transient solution can be readily obtained through analytical

integration of the convolution integral. Table 5.3, shows the aom-

parison of results from both the modal method and the convolution

integral. These results are in very good agreement with an error.

less than 0.5% as both solutions 'go into steady state motion. This

further illustrates the validity and accuracy of the modal approach

of transient response analysis.

Another example of verification is the comparison of results

from published works. A rotor single--mass rotor modal on flexible

bearings with internal damping effects similar to the one analyzed

by Gunter C9] was introduced. The rotor model consists of a mass

M 0.25 lb-sec 7-/3n,- y (vertical bearing stiffness) = K2 (shaft

effective stiffness) 250,000 .1b/in, 
x

 (horizontal bearing stiff-

ness) 125,000 lb/in, C, (bearing damping)	 50 lb-sec/in, and C2
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Table 5.3 COMPARISON OF TRANSIENT RESPONSE

RESULTS OF 3EFFCOTT ROTOR

TIME	 I	 ABSOLUTE AMPLITUDE (MILS)

SECOND	 MODAL ANALYSIS 	 CONVOLUTION INTEGRAL

0 0012	 0.02986	 0.02987
t:

0.0084 0.74902 0.74921

0.0168 1.0636 1.0642

0.0240 1.4426 1.4431

0.0420 2.07041 2.07017

0.6000 2.4448 2,4462

0.078 2.6894 2.6913
i

j	 0.096 2.8328 2.8346

'	 0.108 2.8992 2.9011

0.126 2.9687 2.9708

0.18 3.0504 3.0525

0.30 3.0755 3.0777

1	 1'
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transient orbit and time-displacement plot of the rotor running at

707 rad./sec with zero initial conditions. 	 It can be. seen from these

figures that the rotor eventually goes into the steady state motion

because the system is stable (far below the stability threshold

speed).	 The elliptical orbit motion of the rotor shows that there

is bearing assymmetry in the system, and the 90-degree phase change

indicates that the rotor is operating near a critical speed. 	 Figure

5.11 shows the results from Gunter C93 calculated with an analog

computer.	 Examining the figureso it can be seen that the orbits and

motion from both calculations are in good agreement. 	 Thus it further
iF

verifies the use of modal transient response analysis.

When the rotor running speed is changed to 3,200 rad/sec, the

rotor transient motion changes dramatically.	 Figure 5.12 and 5.13

shows the rotor orbit motion and time-displacement plots at 3,200

rad/sec operating speed. 	 The presence of the.inside loops in the

rotor response orbits indicates the existance of non-synchronous

rotor motion components.	 This effect is due to the fact that the

rotor is operating near the stability threshold (threshold speed of

3,230 rad/sec). 	 In this case, the non-synchronous motion components

are more easily excited than when operating at a. much lower speed

of 7.7 rad/se.c (vertical critical . speed) in which the first critical

speed component has completely dominated the rotor motion. 	 Figure

5.16 sho.ws the rotor transient. response .. orbits by Gunter obtained.

with an analog computer.	 From the figure, it can be seen that the
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rotor transient orbits by both approaches are very similar and, thus,

verifies the application and accuracy of the modal forced response

analysis.
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I
VI. NON-LINEAR MODAL TRANSIENT ANALYSIS

6.1 Application of Numerical Integration Procedures

In transient analysis of most mechanical structures, the

accelerations obtained by solving the equations of motion are inte-

grated directly to evaluate the dynamic transient response of the

system. In this particular analysis, the modal equations of motion

(5.9) with modal excitations are solved, and the modal accelerations

are integrated directly by numerical integration. The stability and

accuracy of different types of numerical integration procedures

have been a%tensively discussed [57 - 613. These considerations are

beyond the scope of this research. In this study, the main concern

is the application of simple, accurate numerical integration schemes

in nonlinear transient response analysis of turbomachinery, especially

when a Large number of integration steps are necessary. For direct

integration of the equations of motion using the point mass stiffness

formulation, equation (5.9) can be rewritten in the following form.

(X)

U	
(3►
) '- M	

C CU) + K (7j)- 
F(t)

O	 (6.1)

With this equation, the acceleration quantities U may be cal-

culated starting from the initial. conditions. Using the summation

notation convention, the coupled equations may be written as



I

137

-Cii ui - Ki3uj + Yt, ui , ui)

There are numerous procedures that have been proposed for numerical

integration of this type of equation, and three of the commonly

used methods will be stated.

1.	 Modified Euler Method

r This is one of the simplest procedures and has been found to

work well with a relatively small number of degrees of freedom:

f;
It is based upon a Taylor series expansion of the. motion for a small

time step about the previous step. 	 It has the advantage of sim-

plicity and requires no starting solution and is usually stable D8, 61]

for	 highlysmall step sizes (in the absence of 	 nonlinear farces).

!:	 -- According to the Taylor series expansion, we may find the velocity

and displacement at time t	 (-t +At).
n+l	 n

a
^yn +	 -2---	 yn + •	 .	 .	 .

yn+l ' d	 y  + At	
A

(6.3)1 .. n+i

SQt?	 ^t	 ,.,

yrrl-i a yn + 4^ yn + yn +	 a!	 y	 + (S.G j
x

1 This procedure can be carried out to cover the whole range of time

for which computation is required,

2.	 Rune-Kutta-Gill Method

This is a more complex procedure which is accurate to the fourth

order.	 In this approach, the second order differential equation [67]
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(6.5)

uJ

(6.6)

Y ' f ( t : Y. iT)

is replaced by two simultaneous first order equations

v	 y	 f(t, y, v)

and

V	 v)	 0

Usually, this method has a greater accuracy than the Euler

method, and larger time steps can be used to save computer time

for integration. Also, its accuracy up to the .fourth order makes

it more applicable to nonlinear transient analysis. One drawback

of this method is that it may develop numerical instability when

a coulomb friction type of damper support is encountered. A step

by step procedure is as follows:

yn+1 = yn + 46 (K4 + 2K 1 + 2K2 + K 3)

= v + 
At.

(M + 2M + 2M + M^n
+1
	no	 2	 3}	 (i

where
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e

Ka ' S(^a. yn.)

- g(t +^t} y +OtK^ v + At- ri)
2	 2	 n	 2i	 n	 n	 0

dt 	 dG
K	 g(t	 +..._^ Y	 +	 K ► 	 +	 M^)

2	 2s	 n	 n

+ Ata)K^	 g(tn + At 	 yn + LtKw, n
	

Di

E

r

M	 _ f(t
0
	 ns yn 	 v}

4 M	 f(t + ^t
►
y +Ot K	V +AtM)

2	 2Y	 n	 r	 o	 n	 o

M	 (t + Qty y + LtK ' V 
+dt
 RI)2	 2	 n	 2a	 n	 n	 t

f (t	 + Qt, y	 + atx , v	 + 11Crt^. s	 n	 n	 s	 n	 ^

3.	 Newmark's B-parameter Method
^r

The method originated by Newmark introduces a parameter	 which

can be changed to suit the requirements of the problem at hand.

The second order differential equation can be solved as

Yn+I = yn 	 n	 yn+l^	
(6.1n)	

1
}

i
Y	 Yo	 2	 yn	 +ln	 ;(	 n n
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The net effect of a is to change the form of the variation of

acceleration during the time interval At. By letting R - 0, the

acceleration is constant and equal top
n 

during each interval.

If - 1/8, the acceleration is constant from the beginning as p
n

and then changes to 
yn+l 

at the middle of the interval. The value

1/6 assumes that acceleration changes linearly from y  to yn+l'

$ 1/4 corresponds to assuming that the acceleration remains

constant at an average value of (y + v )/2.
n ' n+l

This method is fast in comparison with the Runge•-Kutta-Gill

method and is usually numerically stable. The introduction of the

0-parameter allows this method to handle complicated nonlinear

problems in a simple fashion while maintaining good accuracy. A

problem encountered in this method is that the proper choice of 8-

parameter value can significantly affect the accuracy of the

integration. When a S value of 1/4 is chosen, the integration scheme

is unconditionally stable [611, but the solution may not be as

accurate as S 1/6.

To illustrate the choice of integration procedures used in

transient response analysis, the industrial. 8-stage compressor

discussed Li section 4.3 is chosen as an example. The compressor

is supported by two hydrodynamic bearings, and the bearing character-

istics are similar to those given in table 4.2. An unbalance of

1 oz-in.is assumed to be located at one of the compressor stages.

The rotor model is running at 3,000 RPM, which is at the stability

(	 FFF
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r

f	 ^

threshold speed of the system. The transient response of the system

is evaluated using two different integration procedures; namely,

the modified Euler integration procedures and the Newmark Beta

integration procedure. A time step of 48 integration steps per rotor

revolution cycle is used. Figure 6.1a is the response calculated

by Newmark Beta which shows that the rotor is unstable at the

operating speed, and the magnitude of the rotor response is increasing

with time without approaching a limit cycle. The curve in the

orbit is relatively smooth, which shows that smaller time steps of

integration is not necessary. Figure 6.1b is the transient response
f

orbit of the same condition with modified Euler integration scheme.

Note that the transient response solution suddenly grows very rapidly

and the procedure is numerically unstable. The large response in

the figure (1030 mils) proves the numerical instability of the scheme

as well as the roughness of the curve. A much smaller time step is

necessary. Figure 6.2 shows the time -displacement plot of the same

station, which provides further ground for this statement. Figure

6.3 and 6.4 shows the transient orbits and time-displacement plot of

the compressor stage at which the . rotor imbalance is .located. Again,

it indicates that the modified Euler procedure is numerically unstable,

while the Newmark Beta method. gives much better results. Comparing

the computer time consumed in both procedures, it was found that the

Newmark Beta integration.` procedure only requires 5% more time.than

the Modified Euler scheme. Thus, it can be concluded that the Ne«nark

Beta integration procedure is by far 'superior to the modified Euier,
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schemes. A complete solution procedure and a computer flow chart

of the Newmark Beta integration procedure with integration for

nonlinear transient motion is given in Appendix C.

9

J



s

	

147

E

4

	

6.2 Effects of Nonlinear Bearing Supports

In the dynamic analysis of rotating machinery, rotor system

dynamic behavior has been either studied with flexible rotors on

spring and dashpot supports [l, 2, 81 or as a rigid or point mass

body with nonlinear fluid film bearings [36, 58, 61]. Both approaches

may be inaccurate for fexible rotors undergoing large displacements when

i

	

the bearing forces become nonlinear in nature. In this analysis,

the coupled rotor modal equations of motion are solved similar to

those discussed in the previous chapter while additional bearing

forces and moments are calculated and incorporated for each time

increment during integration. The bearing forces and moments are

calculated using the integrated rotor displacements and velocities

and are iterated through each time step.

In modal analysis, the bearing forces of the system are incor-

porated into the modal equations of motion as modal forces Fbx and

Fby , (Equation 5.7). These modal forces are combined together with

other excitations such as rotor unbalance, disk skew, and shaft bow

to form, the total modal excitation of the system. The modal bearing

forces can be calculated by

{F. e= [A]T {Fx}
(6.12)

{Fby } _ [Ae]T {Fy)
	

(6.13)
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{

where F
x	 y

and F are the bearing force vectors at the mass stations.

Thus equations S.7 .and 5.8 with nonlinear bearing forces effects

can be written as

}
i,	 {qx} + [Cx] {qx} + [A] {qx I + [ X] {qx} + [DX] {qy} + [CM x^ {q y}

+ [R^] {qy} + [EA x] {qY}	 {xF} + {xB} + { F'Bx}
	

(6.3.4)

and

{qy} + [CY3 {cry} + [A] {qy } + [ky] {qy } + [Dy] {qX} + [CM y] {qx}

+ [E ] {qx} + [EA r] { qy } _ {yF} + {yB} + {FBy }	 (6.15)z	
y

In this . particular analysis, the effects of non—linear bearing

forces can be illustrated using short journal bearings whose bearing

forces can . be represented by an analytical expression. Ar'suming

isothe-anal fluid film, the Reynolds equation for short Journal bearings .

 
^

[58] in nondimensional form can be wr itten as L ^ 0
D
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Using the boundary conditions of pressure P - 0 at	 0 and

we have .

2
Ps	

(50- ^ h3 
s (1 - 2;) sine - 2e cosO	 (6.17)

2 [

Integrating the pressure using the half somnerfeld condition as given

by Lund [58], the bearing forces are calculated to be

e2 
•	 toss sine	 cos26

fr 	e ( l - 2^), "-2	 -h ----- dB + 2s 2 J	 ---- d8 (b.IB)

	

P i	 el

a`
•	 sin28f t - e(1 - 2b 2	 - '0 d8 + 2E -7	 ^— --- d8

	

01	 e

2 toss sine

l
(6.19)

Ar
where 	 •• Qf	 Q_ $ M ID 

C

The integral can be evaluated as

fi l ,

zcose3sine de =+4 s cos %	 + for (1 - 2;) > 0

^ 2 	s cos @ 	 - for (1 -- 2;) < 0

02	 (6.20)

2	 cos2e	 zr( 1 + 2e2 )	 2(l + 2 E2 )	 -1
1	 h3 de ' (l - £2) 5/2 ± (l - s21 5 2 tan «

-	 u^ r3 - 5a-') u2 + (5 - 3a2) a2 + (3 - 5a2) + (5 - 3a2 ) a' u2

	

N2 + a2 ) 2	 (l + a2 u2)2

( 6. 21)

and



y

iso

1

- ------,-
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2 82 sing a6 =	
2	

tan 1a .. a u(u2 - a2)_

81	 h	 E)

	

3	 _ 2 3/2	 2 (u2 + a2) 2
(l 

a u(l - a2 u2)	 + for E > 0
_	 (6.22)

	

(l + a2 u2 ) 2	 - for e < 4 )

where

1 - cos6

u =
1 + cos6

cosBQ = ,^ej 1 -.41

E (l 7 2c )-2 + (2e-) 2

a2 	 Z+s
=

Z - t

a= a2 -7,

(.2a) ] -^- u2

The bearing forces can be transformed into fired x, y coordinates by

FX = -(f r x + f t y) /V-XT—+ 	 (6.23)

Fy	(-f  y + ft x) /Vx?- + y ?-  CF	 (6.24)

In order to verify the use of the above bearing force equations,

a short journal bearing of h/D = 0.5 illustrated by Kirk [61] is used

as an example. The bearing used is l in long, 2 in diameter, 0.005 in

clearance, and with lubricant viscosity of 1.0 x 10
-5 

reyns. When

the bearing is located horizontally, the journal has a weight of 50 lbs.



y

e

Figure 6.6 shows the transient orbits of a balanced rotor in the

bearing calculated by the bearing force equations discussed. Note that

the journal finally reached its equilibrium position where P  vanishes

and F
Y 

equals the ,journal load of 50 lbs. Figure 6.7 shows the

transient motion in the same bearing calculated by Kirk [61] in non-

dimensional form. The transient response from the two independent

approaches are in very good agreement, and thus the bearing force

equations are verified. Another example is the transient orbit of

the same bearing located vertically with an unbalance eccentricity

ratio of 0.2 running at 4,000 RPM. Figure 6.8 shows the transient

orbits from the bearing force equations and figure 6.9 from Kirk [613.

Again they are in very good agreement and thus further verifies the

equations and computer program.

0
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6.7 JOURNAL ORBIT OF A BALANCED HORIZONTAL ROTOR FROM KIRK [61
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6.3 Frequency Analysis of Transient Response Using Discrete Fast

Fourier Transformation

In the analysis of transient response of rotor-bearing systems,

it may sometimes be difficult to interpret results from transient

response orbits or from time-displacement plots, especially for a

complex rotor system. The use of Fourier Transformation simulating a

"spectrum analyzer" numerically by digital computer is likely to be

a powerful technique in transient response analysis. It also

provides information concerning the non-linear stability of the system.

In applying the Fourier transformation, the response of the system

in the time domain is transformed into the frequency domain as

L.

E

F (iW) = f	 f(t) eimt dt
	 (6.25)

_ro

N-1

Fm U4 _	 , fn e-i(ZlTm n/N) m = 0, 1, 2, ..., N-1 	 (6.26)
n=Q

=ihsre m = `requenry yndex

Since the transient response calculated in the particular study is

in discrete time steps, a discrete Fourier transformation is necessary.

N = total number of sample

fn - it 
th 

sample of f(t)

Using the above equations, the transient response of the system is trans-

formed into discrete frequency responses which are the "densities" or

"excitations" of the corresponding frequencies. In other words, the

t



1.58
Y

responses after the transformation are the magnitudes which these

frequencies will be excited.

A more efficient algorithm is the fast Fourier transformation

C76, 781 by which the repetitions in the discrete Fourier transformation

calculations are eliminated. With N is a multiple of P, the frequency

responses of the system are given by 	 k

m	 (6.27)
Fm = m + W  Bm m - 0, 1, 2, ... P-Z

where

P-1
mn

M	
n=Q 2n p

_ P-1	 W mn

Bm	 fen+1'
n=0

;r
i—	 V

W =e- p - e
n

WN = Wp

Since the Fourier .transformation is applied to periodic functions,

it is necessary to use the whole series of real time transient motion

as sample input for one sample period. Also, in order to avoid over

lapping of the periodic motions, a series of zeros may be attached at

the near part of the sample input such that each period is separated

and will not affect each other.
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To illustrate the use of Fourier transformation in transient.

analysis, the transient motion of the simple mass model discussed

in section 5.3 was used as an example. The rotor is run through

a series of speeds ranging from 10,000 RPM to 35,000 RPM. The bearing

coefficients and the internal damping values for each speed are given

in Table 6.1. The bearing stiffness and damping coefficients are

kept constant while the internal damping of the system varies with

operating speed. Figures 6.10 through 6.15 s'ow the transient

motion of the rotor with various operating speeds. When the rotor is

operating under 30,000 RPM, it can be seen from . the figure that the

transient response of the system decays with time until it settles

:.	 €	 into steady state motion. When the rotor is running at 30,000 RPM,

Figure 6.14 shows that the rotor motion does not decrease with time

and is almost constant.. It means that the rotor is operating near its

stability threshold speed, and the transient motion orbit is whirling

near a limit cycle. The inside loop in the transient motion indicates

the existence of large nonsynchronous components. When the operating

speed is raised, for emample, to 35,000 RPM as shown in figure 6.15,

it can be seen that the rotor system is unstable. The transient response

is increasing with time and the response orbit is growing.

Using the Fourier transformation as discussed previously, the rotor

	

II 	 transient motion can be transformed into frequency components and can

be expressed in a Cambell or "waterfall" diagram as shown in Figure

6.16. From this Cambell diagram, one can visualize more easily the

stability, component response, and resonance speeds of the system.
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SPEED ±	 BEARING COEFFICIENTS INTERNAL DAMPING COEFFICIENTS

RPM K K C CX 4 C^	 j
Y i

lb/in lb/in 1b-sec/in w-sec/in Win	 # '

10,000 52,500 125,000 25 22.2 10,000

s

12.5

15,000
`

62,500 125,000 25 22.2 15,000
C

12.5	 a

20,000 62,500 125,000	
t

25 22.2 20,000 12.5	 j

25,000 62,300 125,000
i

25 22.2 25,000 12.5

30,000 62,500 125,000 25 22.2 30,000 12.5

35,000 52,500 125,000	 1! 22.2	 i 35,000 12.5

'Fable 63 BEARING & INTERNAL DAMPING COEFFICIENTS

FOR A SINGLE MASS ROTOR MODEL
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It can be seen that the large response component occurs at a syn-

chronous operating speed of 10 , 000 RPM. This indicates that it is

near one of the critical speeds of the system (707 rad/sec for first

critical). The decrease in magnitudes of the synchronous component

and increase in magnitude of the non -synchronous components with

speed indicates that the stability decreases with the increase.of

speed. The large non-synchronous component at 30,OOORPM occurs near

7,000 RPM, Which is at a multiple of;one. of the critical speeds of

the system, shows the instability excited by the first critical speed

frequency (N 	 6,751 RPM or 707 rad/sec).
ci

The above example demonstrates the use of Fourier transformation

in frequency analysis of rotor transient motion. Similarly, this

stability analysis can be applied when non -linear bearings or other

non-linear forces exist in the system while linear stability analysis

of the system fails. The further application of this technique will

be discussed with real machinery in the next section. (The computer

subroutines used in this fast Fourier transformation analysis were

provided by Dr. Jethro Meek, visiting professor in the University of

Virginia.)

i
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6.4	 Correlation of Experimental Data with Modal Analysis

As to correlate results of modal analysis to experimental data,

the three-mass rotor discussed in section 5.2 is used as an example.

The experimental rotor consists of three 9-pound disks Located on

the center span of an uniform shaft supported by two identical

journal bearings.	 The shaft has a diameter of 1 in., and the span

between the bearings is 21 inches Long.	 The journal bearing has a

clearance of 0.001 in., LID m 1, and a lubricant viscosity of

0.9 x 10 
-5 

lb-sec/in. 	 A schematic of the rotor is given in Figure 5.5.

Using linear bearing stiffness, the rotor has a first undamped

Y	 :,
critical speed near 3000 RPM. 	 Since all the masses are lumped. near

the center of the rotor, the second critical speed of the rotor is

I'

very high compared to the first critical (over 20,000 RPM). 	 Figure

6.17 shows the experimental Campbell (waterfall) diagram of the system

at various operating speeds. 	 It can be seen that the critical. speed

!	 j of the system comes in near 2500 RPM, and the dip of the response due

to the machanical bow of the system occurs at 3200 RPM (as discussed

in section 5.2). 	 Figure 6.8 shows both the synchs°onous and transient

M	 `i response of thz rotor at various speeds [56].

It is also noted that the subsyn,chronous component grows signifi-

cant beyond 6000 RPM, which is near the stability threshold speed of

i
the system.	 The instability of the system is due to the half-whirl

motion of the supporting journal. bearings.

In using modal analysis, the rotor 1s modelled into 17 mass

stations.	 Sinc e	he second critical speed is much higher than the

.first ane is far beyond the operating speed range, only the first



FREQUFJTCY CPK

Figure 6.17 EXPERIMNTAL .CAUBELL DIAGRAM OF THE 3-MASS ROTOR	 (} 0;0.	 i
FA

o



3.5z
I

01
I Q ^	

HCAtZOMTAL f11A/T MOMM U121f-M 41	 (C

3.0 ^^ 'Z 	 ^ I w	 z	 I^r`
X2.5

`	 I
wi ^W 	 w	 t
vi t °	 w	 t" 20- a1	 a:	 I	 -

0 is -
101.0

J	 .5

Q 2.5- SYNCHRONOUS MOTION

2.0

1.5 .

.	 1.0

5
0
0	 1000 2000	 3000 	 4000	 5000	 6000	 7000

ROTOR SPEED, RPM

Figure 5.18 TRANSIENT AND SYNCHRONOUS RESPONSE OF THE 3-MASS ROTOR

y	

CL

J^

CL A..i

S.rJ
F- a^c̀ a l l% p	 I P,.

5.0 a I 1r, ^' I I n- 2 '^?	 I LIMITCYCLIc	 (j
t^ w ' a F-1 ^ u o,.

4.5- ^j o bi ^Zo
4.0 oiZ ti ZI

of ^

S[ARNGS Ralron
C•pOt IM. L^•21.a1M.
I.^o•^.a tr.ss.^su>t.
^arAsso	 f.11`SO, 0-1.01M-^

WHIRL



G S

i L.

L

ry
4ry

9d

k.

172

critical speed mode is used in this analysis. Transient responses

of the system are calculated with nonlinear journal bearing forces

(as discussed in the previous sections). Figures 6.19 shows the

transient motion of the rotor center mass near the first critical

speed at 2550 RPM. The rotor is stable at this operating speed and

the transient response of the system goes into steady state motion.

Figure 6.20 shows the transient motion of the rotor near the stability

threshold speed (6350 RPM). The occurance of an inside loop in the

transient response orbit indicates the half-whirl motion of the

system. Figure 6.21 shows the transient motion of the system beyond

the stability threshold speed (at 7000 RPM). The rotor response is

growing and does not settle into steady state motion. Note that the

emistence of the inside loop type of transient orbit at the beginning

graduately becomes a 2 in 1 whirl ratio motion. For a purpose of fur-

ther understanding, the transient motion was simulated for another 160

cycles of. transient motion. Figure 6.22 shows the transient motion of

the center mass after 160 cycles and the transient orbit is settling

into a form of limit cycle while the system is unstable. This phenomenon

can only be predicted with the affect of nonlinear bearing force. With

the presence of this limit cycle, chp stability of the system.may some-

times be, very difficult to interpret from transient orbits, and a

frequency spectrum analysis of the transient response will be very

useful..

The Fourier transformation discussed in the previous section is

applied to the transient motion calculated. A Cambell diagram using

the results of the transformation is given in Figure 6.23. Note that
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^b	 the diagram is very similar to the experimental data (critical speed

occurs near 2550 RPM). The lack of higher nonsynchronous components

(2 or 3 times running speed components) in Cambell diagram as compared

to the experimental data is due to the fact that perfect symmetrical

rotor is assumed, and only one basic critical speed mode is used in

this simulation. If more higher modes can be incorporated in the

analysis, a more accurate simulation will be obtained. From the above

investigation, it can be concluded that the modal approach discussed

in this study can be a fast and powerful technique in predicting

dynamic behavior of rotor-?nearing systems.

1

f



VII. APPLICATION OF MODAL ANALYSIS ON SPACE SHUTTLE OXYGEN PUMP

7.1 Undamped Modes of Oxygen Pump

The SSME turbopumps are presently under development by Rocketdyne

division of Rockwell International. The oxygen pump consists of a

f

	 single rotating shaft mounted in flexibly supported rolling element

bearings. The overall rotor length is 21.8 in and weighs about 78 lbs.

The rotor consists of a two-stage turbine drive section and a pump
y .,

section with an overhung boost impeller that supplies high-pressure

{	 liquid oxygen to the Space Shuttle Main Rocket Engine at a full power

7-	 level (FPL) speed of approximately 31,200 RPM. The oxygen pump
j

rotating assembly is illustrated in Figure 7.1. The minimum, nominal,

and emergency operating speeds for this turbopump are 20,890, 29,250,

and 31,160 RPM respectively.

In order to simulate the dynamics of the pump, the rotor is

divided into a 24-mass-station shaft. The rotor weights and their

mass inertia effects are lumped at the mass stations. Figure 7.2

rshows the computer simulation of the oxygen pump rotating assembly.

The rotor geometric properties used in this study is given in Table 7.1.

In this simulation, bearing 1 and 4 are the locations of the seals

while bearing 2 and 3 are the supporting ball bearing locations. For

t	

critical speed analysis, a combined seal stiffness of 25,000 lb /in is

used in bearing I and 40,000 lb/in in bearing 4. The pump bearing

(bearing 2) is assumed a stiffness of 2,200,000 lb/in and turbine

bearing (bearing 3) of 3,200,000 lb/in. The critical speeds calculated

f	 are 13,266, 47,787, and 58,769 RPM. A set of the critical speed mode

shapes is given in Figure 7.3. Table 7.2, 7.3, and 7.4 show the
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STATION NO,	 WEIGHT	 LENGTH SHAFT D1A. SHAFT DIA.	 I	 iP-PULAR HOM. IT-TRANS. N0M9
ILA! Me) OUTSIDE	 INSIDE	 (IH# *41 	ILP-IN*#2 1 	^L8-IN^^2j

	

1	 3.045	 0510	 24100.	 .610 ._ _ 	 095 	 -- _ _ _ 3.710

	

2	 0000	 .560	 20810	 .750	 304	 00800	 .00000
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23	 13.825__	 •100	
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CRITICAL SPEED NO * 	 13266.1RPM
...-.067..--LB—SEC**2/IN

-.-----,-T]iE--O-RIKONCKMAL--MQD-E—SHAPE,S-,--

5 TAI ION I R AL L A-U-OB-A-L-- —R-QTAJ-I-QNAL—
e18449 —e13232
* 11.702 - -... - 	 - --. x..3 2 26	 _-_.

3 *04296 —*13224
0 3 5 01 3 3 I

5 —416282 —*13194
6 —.137.09-
7 —934146 —o07534
8 -X0566.7  

--- 436269 —*04696

11 —*42969 —t.00608
12 — *A3.1 7 2
13 —941484 *01825

2	 1
15 —*11931 022343

17 .72150 *36468
-1 -5 	 -0-9-7

19 2*27647 449244
2.66306 :1077

21 2. 96115 *51686
----2 -3	 5.8 15 17 5 Z 2 5 6

23 3*82057 *52358
24 —1-m-8 7 Z9 1 _. -^Uz

Table 7.2 Oxygen Pump Orthonormal Mode of the First Critical Speed
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4CPO'

-	 CRITICAL SP EEQ NO. - 2  47787.ORPM	 v
MODAL _ M A.SS A . -	-	 . 079.	 LB-SEC**21IN.

_	 _^---- THE ORTHONORMAL_ MODE SHAPES

STATION TRANS_ LATIONA L 	 _ RO TATI-ONA,L
1 3.56663 -1.68785
2 2.70823 71.67735
3 1.77043 -1.67157

- __----- ^k---- - -	 73853	 --._...__ - --1..6.5623_._
5 -.77008 -1.55989
6 -1. 92 483 - 1..42248
7 -2.72865 -•68049

-	 94259__ 2. -.455609__..._
_3.06913

_...	 -
-.34635

10 -3918 22 6 	 --- -- - .26397	 - ----
11 --3.33644 .03791
12 -3.24133 .10456
13 -3.01773 .17147
14 -2.37919 38962
15 -2408771

_-.-	 -
.39075

1 6_- _	 .59233.------ _ __.___ _	 3221?
17 -1. 19617 • 21716

-	 18	 --- - .85277 ^_ ._	 _ •13643 -	 ___._.-....
19 -.66471 .10643

-	
2 0 -- -	 - -058324.	 -- .10735_
21 ---..052104 .10744
22 --	 --_ - .	 .390.7.E	 _	 -- _... 1104s	 _.-	 23 -.34058 .11242

T	 24	 .._ .._-__- -.3293k-,-.-- -- e32 934

Table 7.3 Oxygen pump Orthonormal Mode of the Second Critical Speed

11



Table 7.4 Oxygen Pump Orthonormal Mode of the Third Critical Speed

S T AT LOO—	 T A-N-SAA-T-1-CAA.L--.kQ-TA-.T-LONkt
7.81703 —1*79822

3 5991414 —1.76081
-4 UA4.5
5 3.35961 —1*40304
6 11 9 3
7 1o85655 —*35230

9 1068986 —917121
—.--.-14 " 724-

1,46329 —012233

13 1oO8770 —.13562
14 o77327 —615217

.66630 —.13413

17 .37980 —m06535
18 .277k-6-- -- 1-0-ki I
19 *21521 —*03955
20 .18277 o. 0,45 4 4
21 015589 —*04736
zz —010.92
23 07383 —o05238
24 *06859 8

.	 . . m

-- - -- " L 	
. 	

I A

j,

3.86

CRITICAL SPEED NU.
	

3	 5876991RPM
L5-r-SEC**2/-IN

----- THE—.0RTH UNOR MA,L -- MDOE—SHAPES-.--..
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orthonormal translational and rotational modes of the pump. These

critical speeds and modes calculated are very simular to those provided

by Aocketdyne and Childs [42, 43, 443. Since the second critical speed

is far above the full-power level operating speed range, the prime

concern of this study will be on the dynamics of the rotor operating

through the first critical speed and the stability of the system.

From the mode shapes given in Figure 7.3, it can be predicted that

large response will occur at the turbine end of the rotor when operating

through the first critical speed. It was also believed that the ball

bearings used will not provide adequate damping to the system such that

a very high amplification factor will result or possibly instability

problems. The stability and forced response analysis of the oxygen

pump will be discussed in the next section.



} 1$$

7.2 Stability Analysis of Oxygen Pump

The stability of the system is found by examining the real part

of the calculated eigenvalues which govern the growth and decay rate

of the rotor motion. As being discussed in Chapter 4, a positive

real part of an eigenvalue indicates an unstable rotor whereas a

negative real part indicates a stable one. The relative stability of

a given mode is given by the magnitude of the real part, which is

based mainly on the magnitude of effective damping in the system. For

stable modes, an estimate of the peak response speed and amplification

factor can be calculated through modal resolution of that particular

mode.

In the analysis of the space shuttle main engine oxygen pump (SSME-

HPOTP), because of the lack of damping contributions from the ba1l.

bearing supports, stability of the system becomes one of the major

concerns of design. A large part of the damping in the system is ob-

tained from the seals, which are the main design parameters in the stabi-

lization of the machine. Childs E441 modelled these axial-flow seals

in 7 different locations in the system. To simplify calculation, the

seals were lumped into 3 major 4roups in this stability analysis.

Without the consideration of any effects from the turbine and impeller

of the system, the damped natural frequency of the pump was found to

be -5.49 + 1494.3 rdd/sec, which indicates that the system is stable.

The damped mode shape of the system is given in Figure 7.4. Note that

extremely high amplitude of response occurs at the turbine end of the

system which agrees with the large values in the calculated modal.
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amplification factor of 136. Further investigation of rotor response

through the first critical speed will be discussed in ':he next section.

To simulate a more realistic situation in the system, a turbine

cross coupling effect of 4000 1b /in is assumed. Damped critical speed

calculations showed that the system is unstable with a natural frequency

of 14 + i 1475.3 rad/sec. This calculation shows that the system is

marginally stable without any turbine effects, and even with a small

instability driving force from the turbine, the system is unstable.

In order to stabilize the system, a change of seal design is necessary.

The redesign of No. 4 seal (group 2) with extended seals near the

turbine and seal No. 6 (group 3) with modified 3-step seals at the

turbine seems to be a more stable design. The seal coefficients used

in the original design and the modified design are given in Table 7.5.

Using the above modified seal design and with the turbine forces, the

damped frequency calculated is -67 + i 2342.5 rad/sec, which indicates

a stable system. Thus it can be concluded that a major redesign of the

seals in the system can significantly change the stability conditions

of the pump.
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7.3 Forced Response Analysis of Oxygen Pump

A simulation study has been performed to sxamine the steady state

and transient rotor dynamics of the space shuttle oxygen pump. This

simulation confirms the previous results of modal amplification factor

and stability analysis. The rotor model used is simular to the one

discussed in the previous section. Using the original seal design

discussed by Childs [441 and without considering turbine force, a steady

state unbalance response study was performed for a range of operating

speeds from 0 to FPL (f'lil.l power level) speed of 32,000 RPM. With rigid

ball bearing supports (2,200,000 lb/in stiffness for pump bearing and

3,200,000 lb/in stiffness for turbine bearing) and an unbalance of

b gm-in at the turbine, the rotor experiences a very high level ampli-

tude of vibration at its first critical speed. Table 7,5 shows the

results of the steady state unbalance response analysis at various

operating speeds. As discussed in the last section, the turbine end of

the pump has the most violent vibration problem with 54 mils of steady

state response at the first resonance. In this case, the response of

the second resonance speed (over 40,000 RPM) is not considered because

it is well beyond the operating speed range. However, the magnitude

of the steady state unbalance response at FPL of 32,000 RPM is within

an acceptable range, and thus the problem lies in the operation of the

pump through its first critical speed.

A further. study of the problem is the transient analysis of the

rotor at its first critical speed. Since it is a common occurance that a

rotor may exhibit a higher magnitude of vibration during deceleration than
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Table 7.6 STEADY STATE UNBALANCE RESPONSE ( gin mils)

OF OXYGEN PUMP WITH 6 gm. in. UNBALANCE AT TURBINE

I,
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acceleration, a transient response study of the pump during decceleration

through its first critical speed was performed. With the same model used

in steady state analysis, transient motion of the pump was calculated

at 14,500 RPM with a decceleration rate of 940 rad/sec t . In order to	 Fl

have a closer simulation of the real situation, rotor steady state motion

with small perturbation is used as the initial conditions. Figure 7.6

and 7.7 are the transient simulations at the pump and the turbine bear-

ings respectively. Figure 7.5 and 7.8 are the transient simulations at

the seal locations. Figure 7.9 is the transient simulation at-the

turbine end of the rotor. ?date that the turbine undergoes a very large

amplitude of response of 24 mils at its resonance speed. Figure 7.8 also

predicts very large transient motion at the seal location when going

throug' , the first critical speed of the system. This large motion at

the turbine end of the pump will cause rubbing at the floating ring

seal or even pump failure. Figure 7.10 shows the forced response of the
3	 i

pump at the turbine from both steady state and transient solution. Dote

that the amplitude of the steady state response is about 80 percent higher

than the transient. Thus with steady state unbalance response analysis

alone, the simulation may be quite misleading. However, in this case,

	

	 {
a

both solutions predict very high amplitude of vibration at the turbine,

which may cause pump failure.

With the above analysis of the oxygen pump, it can be concluded

that a redesign of thesystem is necessary. The introduction of extended

seals or 3-step seals may add more damping to the system and thus reduce

the amplitude of vibration in the system. The rubbing condition indicated
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is now under investigation by both NASA and Rocketdyne personnel. A

test program is developed to determine whether this rubbing condition

will arise and whether it will affect the integrity of the operation of

the pump.

^ A

k

i



.

	

	 Y

F

I
r

VIII. CONCLUSIONS

8.1 Summary and Conclusions

This analysis presents and develops a compact modal analysis which can

L

be used to determine its results of steady state response, transiint

simulation, and stability of flexible rotors on flexible supports.

The transient and stability models developed included both linear and

nonlinear bearing and support characterisitcs. The transient results

were also presented in the form of frequency spectrum. The results

and conclusions may be summarized as follows:

1. A modal, method has been developed using undamped modes to

approximate the dynamic behavior of rotor-bearing systems. Modal

transformation of the generalized equations of motion into modal

equations of motion using the undamped modes can significantly reduce

the number of equations to he solved without losing the generalities

of bearing cross-coupling effects and influence of gyroscopic moments.

This reduction of degrees of freedom can greatly reduce the computa-

tional effort and cost and, thus, make possible the transient analysis

B,
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3.	 Since the	 stiffness matrixes are completely defined
r

r for a given rotor, the shaft potential energy function V may be

obtained.	 The ability to write an explicit formulation of the shaft
i

elastic potential energy function thus allows one to readily derive

i
the dynamical equations of motion of multi-level rotor systems, such

as two spool gas turbines or rotors mounted in flexible casings.

4.	 Chapter 2 states the use of Guyan Reduction to eliminate

all rotational coordinates in which rotational inertia effects are

not present.	 This procedure is necessary for direct integration of

the equations of motion.

5.	 The shaft mass and stiffness matrices of the system can be

uncoupled using the orthonormal modes of the undamped system. 	 The

modal coupling terms result from the bearing cross coupling and damping

and gyroscopic effects.	 The other external effects, 'such as shaft bow

and unbalance and bearing nonlineartty can be placed in the right-hand

{	 ^ side of the modal equations.	 This eliminates the formulation and

storage of large blocks of shaft mass and stiffness matrices which

are required in other direct integration methods.

6.	 Uncoupled modal analysis based on the assumption of propor-

tional damping may further simplify the modal equations of motion,

but it is often not accurate for rotor systerms . with seals or hydro-

dynamic bearings.

7.. The incorporation of moderate amounts of bearing damping in.

the rotor system can cause a considerable shift of t? +e rotor resonance

speeds from the values predicted by the undamped critical speed calcul-

ations.

`i
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8. Damped complex eigenvalues, stability, and steady state

unbalance response of the rotor system can be rapidly determined

using the undamped modes which are essential for design and are

relatively easy to obtain by the designers.

9. The use of modal analysis offers a nee approach to balancing

rotors with shaft bow and skewed disc effects. This can be achieved

by equating the modal excitation by unbalance eccentricities, shaft

bow, and disc skew for the particular mode that needs to be balanced.

10. The calculation of rotor peak unbalance response speed and

its corresponding amplification factor using the simple single-mass

equation can provide the designers good design parameters in a simple

wanner.

11. The accuracy of modal analysis can be improved by using a

larger n^;tiber of modes. As a general rule, an error of less than 5%

can be achieved if mode shapes of 5 times the operating speed are

incorporated into the system.

12. If a large number of modes are incorporated into the system,

the use of either the average support stiffness modes or the free-free

plus two rigid body modes will give very good results. When the

number of modes used are restricted by computational time or cost,

the use of average support.stiffness modes seems to be a better selec-

tion.

13. In the transient analysis of multimass rotor by the direct

integration of the point mass stations, numerical instability can

ocour, this problem is greatly aleviated by the'modal.method while

reduces the number of•equations of motion. The Newmark Beta

a
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method, which is unconditionally stable at 0 = 1/4, is progen to be

superior especially when nonlinear forces are presented in the system

than the traditional modified Euler integration procedure.

14. The phenomenon of passing through regions of instability

has been demonstrated by the stability analysis of flexible rotor-

bearing models and verified by transient simulation.

15. Steady-state response information will be essential for

large complex rotor simulation to avoid costly,.undesired transient

behavior. Zero initial conditions may be acceptable for impact

unbalance studies, but instabilities due to aerodynamic excitation,

internal damping, and fluid film bearings are best studied from steady

state initial conditions with.small pertubations.

lb. The existance of non-linear support bearing forces can

change the transient response motion of the system considerably from

those with linear support forces. The half-whirl transient motion

of.the system with journal bearing . supports verifies the above con-

clusion.

17.. The use of numerical fast Fourier transformation provides a

new way of- interpretation of numerical transient response results.

This transformation of transient motion into a frequency spectrum

makes the stability analysis of nonlinear systems possible.

38. The correlation of experimental data with modal analysis,i 

not only verifies the use of modal analysis and numerical Fourier

transformation, it also provides deeper understanding of the excitations

of different modes and the accuracy of system simulation.

C 
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8.2 Suggestions-for Future Research

This analysis has developed computer codes for the simulation of

large, complex rotor-bearing systems. Additional design criteria can

be produced from the modal method presented and will be of great interest

to compressor, turbine, and jet engine manufacturers. Some areas

that require further investigation are as follows:

1. With appropriate boundary conditions and mode shapes, the

modal approach in predicting dynamic behavior of rotor systems can be

easily expanded into the analysis of multi-level rotor systems.

2. The coupling of the corresponding axial modes into the system

can make possible the analysis of rotor wrapping and torsional problems.

This also provides further research in the effects of incorporating

axial and rotational resisting bearings such as a balance piston.

3. The effect of squeeze film dampers on stability and transient

response of the system.

4. Further extension on the use of numerical fast Fourier trans-

formation in interpretation of transient motion.

5. The incorporation of base motion eff e^t in the transient

analysis of the system. This can be further used to simulate siesmic

effects on rotor-dynamic behavior such as nuclear water pumps.

6. Extensive study of the effects of change of acceleration rate

to forces transmitted and transient response of the system.

7. The inclusion of thermal effects in stability and forced

response analysis of the system.
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APPENDIX A

Disc Rotational Equations of Motion- Langrangian_Approach

Consider a massive disc attached to a massless shaft with

= precession angle about z-axis

0 = inclination of the shaft away from z-axis

Q - rotation about the axis of the shaft

The rotation of the disc can be described by standard Euler angles,

however, it is shown later in the section that small deflections may

be replaced by more physically obvious angles, a and T. @ is the

inclination of the shaft away from z-axis projected into the x-z plane.

is a similar projection into the y-z plane.

Considering only the rotational effects of the disc, it is not

immediately obvious how rotation can be represented by the 9 and T

coordinates. In order to apply the Euler angles ^, e, and i7, the

following transformations are necessary.

cos sin 0 x

-sin cos 0 y

0 0 1 z

1 0 0

n '	 = 0 cos 6 sin 9 n

0 - sin 0 cos 8

Y' cos sin SZ 0^

y' -sin Q cos SZ 0 TI

z" 0 0 1 $^





N
F-+
Ln

^	 1

r

r^Fd

•	 L.J



The physical rotational transformation is given in Figure A.1.

In addition to these rotations, the permanent skew of the disc,

T. can also be represented by a fourth transformation

X	 1	 0	 0	 x'

y	 0	 COST sinT	 Y •
0 . . 

-Sin'[ COST	 z'

where T is in the opposite direction cf 6 and T in the x^-z and y-z

plane as given in Figure A.2. Note that the xyz (inertia) fram is

fixed in space while the x'y'z' (shaft) frame is fixed with the end

of shaft, and xyz (disc) frame is fixed with the disc.

Using Euler angles, the angular rotation of the disc can be given
s 	

`

by

• <	 •. <	 <

! i	 (p Cosa + Sin p sin SZ) r1x.0

<
+ ( - 0 sin SE + Ysin p cos St) by r

+	 + $cos 8) nz 1.

D WI ♦ W
2 

+ W
3

The moment of inertia matrix in the disc frame is

It 0	 0

C, iyz	 0	 It 0

0	 0	 IP

i.. 1

l	
.i
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and in shaft frame

	

It	
0	 0

t 2 T + I sin T	 (I I )sinTcoSTC13	 z,	 0	 1 coo	 t- px y	 p

	

0	 (1 t-: p )sinTCOST	 Itsin2T + I Cos 2 T

The kinetic energy due to rotation is

R	
< IT C= ,

.I

w

y

41 2	 +	 (w 2 1 +W 2I Cos 2 T + ;j (W 2, +W 21 	2
sin TI	 t	 2 t	 3 p 2 P	 3

+w2w3(I t-I 
p )

COST sinT

Assume that 'ris small and linearized by

Cos T

sin T - T

Sin2 T _ 0

and the kinetic energy expression reduces to

r.	

T	 2 + w 7 )1 + 11 1 W + T(I I w w
R	 i	 2	 t	 P 3	 t p	 2 3
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Also using the small angle approximation to

i

	

	 2
Cos0^l- 2

-sin e 0

Then

TR `' It( 0 2+ 2 a) + _^ IP (5^ . +	 + -x _.02)

+ ( It-IP) C^ + ) 4 0 cos SZ - Q sin Q)

Also, the Euler angles can be transformed into the generalized

coordinates by	 anthe small	 le approximations as the inclinationg 

M.
projection of the shaft can be represented by

i

9^OCos^

7 0sin^

For small 0, the angle 0 and P. almost lie in the same plane and can

be approximated as
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8 2 ^e 2 + *2

+ 8+^

Q 2+ Q 2 2 42+ V2

0 cos - p sp ina - @sin (wt +S) - + cos (wt +0)

and using this expression, the kinetic energy can be written as

TR '	 w21 + 1 (62 +H%2 ) 
+ hWT	

- 6^)
.L
	

+ TW(IP -It ) % COS (wt+ ^) - 6sin (wt + S) )

From Lagrange's equation,

d
dt	 1-6

the 8 equation becomes

r	 ..	 _	 0
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APPENDIX B

BASIC EQUATIONS OF MOTION FOR A BOW SHAFT
i

The effects of shaft mechanical bow can be easier to under-

stand by the study on a simple rotor-bearing system, A three.-mass

rotor with spring and damper supports given as in Figure BI is used

as an example. The equations of motion of the system can be, written

as follows

M1	 0 0 xi Ci	 0	 0 :^1

0	 M2 0 :t	 + 0	 0	 . 0 %.2

0	 0 M3 t ^X9 0	 0	 C3 X3
J b

KI 0 a Yi -i wl

} 0 0 0 2	 + L̂  -1
2	 -1 w2

0 0 K x -1 w3

b

r	 F3 {t) ^^

F^ {t)

where

w a x - xd

x total displacement of shaft

xd- mechanical bow of shaft



L---- --	 L

M3
M2

EI

M 1	ET	
K3 T c3

K1	
c 1

Figure B.1 Simple Three-Mass Uniform Rotor Model
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where. K7xd is the shaft bow effect of the system. This effect can

be put into the right-hand side of the equation and considered as

part of the driving force of the system.

For using the modal analysis, the undamped modes ty are

calculated by solving the homogeneous matrix equation of Li

Mac' + f Kb + Kw x 0	 (B.3)

Let

^ nx	 A	 ^	 (^:4)	
!k

I	 JJ jl

then

CMJ	 L  j  + CC] !.^ Aj j^j! + CIJ F Aj 	 f
J 1	 jeal	 J-1

C w^ ^'^d 'E'^'(t)^	 (B. 5 )	 I

Premultiply equation (B.5) by	 i 
x and using the orthogonality

conditions derived in Chapter 3, the following equation results 	 +

141 Ai + E Ci Aj + wit Ai	 XCr,  ] I + Wt)I (B.6)

1	 J-1

'	 E

F,
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APPENDIX C INTEGRATION PROCEDURES

Initial conditions provide y n. yn . From equations of motion

calculate y
n

1. Starting conditions (using Modified Euler)

_y(1) v + At v



n+1	 n	 2 Y n+1	 n

yn+11) y
n + j At + ( - ) Ate yin + y (P At'

{P+l }	 • (F+l)	 (P+1.}
y (n+l)	 yn+1 ' Yn+l )

Check

..p+l _ ., (P) .

ABS 
yn+l yn+l <0.01

.,P+1
yn+l

2^4

FLO14CIMT FOR NUMERICAL. INTEGRATION 

Start

y

Calculates

Yn+l = yn + t yn

^t r^ (1) + Y
n+1 n	

+ 
Z 1 n+l	 n)

Y(1)	
Y 

.(1)
	 (yn+l

1
n+l  f	 ' yn+1)

1
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The special features of computer program Modal l can be listed as

follows:
^E

1. Calculation of undamped critical speeds of rotor-bearing systems
f

using matrix transfer method

1.1 with linear spring stiffness
1	

i

1.2 maximum of 100 mass stations and 10 bearings

1.3 with or without the effects of transverse moment of inertia
f

1.4 calculates normalized and orthonormal rotational and transla-

tional mode shapes

2. Stability and damped natural frequency analysis using the undamped

modes

2;1 damped critical speed calculations with two dimensional bearings

(8 bearing coefficients)

2.2 includes effects of moment resisting bearings (32 bearing

coefficients)	 k

2.3 amplification factors and peak response speed from single mass

theory

2.4 damped three-demonsional mode shapes of the system

3. Steady state unbalance response of the system

3.1 effects of mass unbalance
i^

3.2 effects of shaft bow

3.3 effects of disc skew

3.4 effects of external force
F

3.5 gyroscopic effects	
s

e

r	 _
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i

3.6 results are tabulated in response vs speed and also in terms

of elliptical orbits

4.	 Transient. response analysis of the system

4,1 effects of unbalance

4.2 effects of disc skew

4.3 effects of shaft bow

4.4 effects of nonlinear bearing forces (using.hydrodynamic

bearing theory)

4.5 effects of rotor acceleration

4.6 plots of transient orbits and transient vs time plots

r. 4.7 choice of initial conditions (zero or steady state with small
M

L
3

perturbation)

f

T	 $

L

1	 .
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INPUT INSTRUCTIONS FOR PROGRAM MODAL I

^.	
4

i

1.	 Read 3 comment cards 	 (1 to SO columns)

2.	 N, NB, NNLIN, MM, NF, NU, NS, NBOW, ISTAB, IMODE, ISKU, NUFPT.

(1215)

N a No. of mass stations (max. 100)

NB - No. of regular linear bearings (max. 10)

NNLIN = No. of nonlinear bearings (max. 5) i

MM	 No. of coment resisting bearings (32 coeff.) ( e.g.

balance piston) (max. 3)

NF	 No. of external force (max. 10)

NU R No. of unbalance (max. 10)

NS	 No. of skewed disc (max. 10)
i

NBOW	 1 bow shaft (Input shaft bow data)`'

0 no shaft bow

ISTAB - 0 calculates stability 4

s 1 no calculation

IMODE	 No. of damped . mode shapes desired (if	 0) no mode

shape calculation

ISKU	 0 calculates unbalance response
i

1 no calculation

NUFPT = No. of station..need to printout for unbalance

response analysis (max. 10)

3,	 ISKIP, NSTEPi NCYCLE, NITP., NINT,.NPLOT, NORBIT, NTIME.,. NSPEED,:.

NINC, NOPT, NT (1215)
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f.

1:

ISKIP 0 calculates transient orbit

1 no calculation

NSTEP No. of steps of integration per cycle

NCYCLE - No. of cycles (NSTEP*NCYCLE < 4000)

NITP - No. of steps per printout

NINT - I Newark - I intergratiou (with iteration)

2 Euler integration

NPLOT s 0 plots of transient desired

1 no plots

NORBIT No. of transient orbit stations desired to be

plotted (=NT)

NTIME No. of stations to be plotted in response vs time

*CUrVe (-NT)

NSPEED - 0

NINC s 0 input initial condition

- I initial-conditions from steady state orbit with small
perturbation

NOPT -

NT no. of station for transient printout (max. 10)

4. LLBD (J), J 1, NB (1015) Skip (4) and (5) if NB, 0 Bearing

location station numbers.

5. K (J) K (J) . K (J) -K. M C M C (J.) C (J)
xx	 XY	 YX	 YY	 xx	 XY	 yx

CYy M	
OG10.3)	 NB Cards

(Bearing Coefficient)	 (skip if NB 0)

6. LLNB(J), NLB(J) VIS(J), ANR(J), ANL(J), ANG(J), J 1, NNLIN



p . ._7 "+

}
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LLNB (J) - station no. of Jth nonlinear bearings

NLB(J) - bearing no. of Jth nonlinear bearings

VTS(J) - viscosity of lubricant (1b/iU2)

ANR(J) - radius of Jth bearing (in)

ANL(J) - length of Jth bearing (in)

ANC (J) - clearance of Jth bearing (in)

*A linear bearing station must be assigned to a nonlinear bearing

even with zero linear stiffness and damping.

7. LLNB (J), J - 1, NMB (315) (skip 7 and 8 if NMB - 0)

LLNB(J) - Station no. of the Jth moment resisting be.efring

8. NMB sets of card, each set 4 cards (8G10.3)

Bk , Bk , Bk , Bk , Be , Bc , Be , Bc
xx x6	 xy x*	 xx x8	 xyxV

Bkex . Uee , Bkey , Bke* , Bc$x , Bc80 ,. Bc6y , Be d

Bkyx , Bkye , Bkyy , Bky^, Bcyx , Bcy6 , Beyy , Bey,

Bk #, BkW Bk*y , Bk#, Bc*x , Be,,, Bc^y, Be.

These are the 32 bearing stiffness and damping coefficients for

a moment resisting bearing. The first subscript represents the

direction of force, and'-the second subscript represents displace-

ment.

x = x-direction displacement

6 - rotation at positive y-axis (right •-hand rule)

y = y-direction displacement
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9.	 NGYR, E, SPEED1, SPEED ANGACL, FSPEED, BETA (15, Sx, 5G10.3)

j NGYR - l calculation shaft gyroscopics

- 0 no	 shaft gyroscopics

E - Section Young's Moducus x 10	 (E - 30. for steel)

SPEEDI - Rotor operating speed (RPM) (use for gyroscopic

calculation in damped modes)

SPEED2 - use as initial speed for transient

ANGACL - rad/sect (use in transient cal.)

TSPEED m 0

BETA s Beta parameter used for Newmark beta integration

1	 -(usua ly	 1/6)
F	

' 10.	 EXTW(J), DX(J), DEXT(J), D1NT(J), RP(J), RT(J), ZM6(J), RO(J),	 i

J-1, N

(N cards)	 (8(F10.3))

EYTW(J) = external weights at J-mass station (lb)

r DX(J) - length of Jth element (in)

DEXT(J) - external diameter of Jth element (in)

DENT(J)	 internal diameter of Jth element [in)

RP (J) = polar moment of inertia at Jth station (lb-in2)

RT(J) - transverse moment of inertia at Jth station (lb-in2)

M16 (J) - Young's modules of Jth element x 10 	 Win`
if set to zero)

RO(J) - density of Jth element {	 0.283 lb/in3 if set to zero)

11.	 LLFF(J), FX(J), FY(J), J	 1, NF (19, 5Y, 2G10.3) NF cards,.

f skip if NF	 0

{
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LLFFM - station no. of Jth external force

FK(J) - forces in x--direction (1b)

FY(J) - forces in y-direction (1b)

12. LLUF(J), UX(J), UY(J), J - 1, NU

(15, 5x, 2G10.3) NU cards, skip if NU - 0

LLUFM - station no. of Jth unbalance

UXM - unbalance at x-direction (oz-in)

UY(J) - unbalance at y-direction (oz-in)

13. LTSK(J), FSK(J)o PSK(J), J m 1, NS

(15, 5x, 2G10.3) NS cards, skip if NS - 0

LLSKM - station no. of Jth skewed disc

FSK(J) - maximum skew of the disc (rad) (positive skew is

opposite to positive Q')x

PSKW angle between maximum skew to the x-axis (rad)

14. LLLYT(J), J - 1, NUFFT (10IS), skip if 'NUFPT = 0

LLIJT(i) station no. of printout stations for unbalance

response

15. LLNT(J), J 1, NT (10I5), skip if NT 0-

LLNTM station no. of printout stations for transient

analysis

16. BOW(J), PBOW(J), XIC(J), YIC(J), VXIC(J), VYIC(J), J 1, N

OG10.3)

BOWW Jth station initial 
bow (mils)	 0 if no bow)

PBOW(J) angle of bow to the positive x-axis (rad)

0 if no bow)
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XIC(J) . Jth station initial displacement (mils)

YIC(J) - Jth station initial displacement at y-direction (mils)

VXIC(J) - Jth station initial velocity at x-direction (mils/sec)

VYIC(J) - Jth station initial velocity at y-direction (mils/sec)

17. SPI, SPL, DSP (3G10.3)

SPI - initial speed (RPM)

SPL = final speed (RPM)	 (for critical speed analysis)

ASP speed increment (RPM)

1.8. SPS, SPF, SPN (3G10.3)

SPS = initial speed (RPM)

SPF = final speed (RPM) 	 (for unbalance response calculations)

SPN - speed increment (RPM)

19. TITLEI, TITLE2, TITLE3

3 TITLE cards for label in plots (1 to 80 columns)



PROGRAM MODES(INPUTsOUTPUTPTAPEI=INPUTsTAPE3=DUTPUToTAPE7sTAPE101 A I
C A 2

C THIS PROGRAM CALCULATE THE UNDAMPED CRITICAL SPEEDS AND THEIR A 3
C CORRESPUNDING MODE SHAPESPDAMPED NATURAL FREQUENCIES AND THEIR A 4

L COPRESPONDING MODE SHAPES* ROTOR UNBALANCE RESPONSE* 	 AND TRANSIENT A 5

C RESPUNSE OF MULTIMASS ROTOR BEARING SYSTEMS. A 6
C SPECIAL	 FEATURES	 INCLUDED ASSYMMETRIC BEARINGs	 BEARING ROTATIONAL A 7

G DAMPING AND STIFFNESS EFFECTSPSHAFT RESIDUAL BOW AND DISC SKEW A 8
C EFFECTS* A 9

C NONLINEAR BEARING FORCES CAN ALSO BE CALCULATED FOR EACH TIME A 10
C STEP DURING TRANSIENT ANALYSIS WITH BEARING CHARACTERISTICS A 11
C THE PROGRAM CAN ALSO GENERATE PLOTS OF TRANSIENT ORBITS AND A 12
C TIME	 VS TRANSIENT RESPONSE PLOTS * A 13
C BY K, C, CHOY A 14
C DEPARTMENT OF MECHANICAL ENGINEERING, UNIVERSITY OF VIRGINIA A 15
C MARCH 4s	 1977 A 16
C A 17

COMPLEX B8(20 p 21)9CC(20) A .18
REAL	 KXX(10)PKXY(10),sKYX(10)#KYY(10)oMFX(IO),PMFY(10)PMUY(IO)OMUX I(l A.. .19

10).PKPX(10olO),PKMY(IOP10)YMBX(10)oMBY(10) A 20
DIMENSION COMENT118h, COMENT2(6) p	COMENT3(8) A 21
DIMENSION	 E.P16(100) p	CRT. (10) p	 LLBD . (10)o	 LLNB(5)s	 LLNMB(9)v	 LLSK(10) A 22

Is	 LLNT(10)p	 LLUF(10)v	 LLFF(IO)o	 LLUT(10) A 23
DIMENSION OX(100)i	 W(100)s	 ENER(100) y	EYI('-100)p	 EY2(100)s	 DPC(1001 A 24
DIMENSION DEFL(100)s	 LB(100) p	SK(I00).p	WA(50) p	 DEXT(100)s	 DINT(100 A 25

if A 26
DIMENSION	 EXTW(100)j	 SWI(100)jp	 RO(100) p	RT(100)jp	RP(.100)s	 EI(100) A 27
DINENS1.1114	 WMOD(50)v	 AKK(10) A 28
DIMENSIONEANI(100)-s	 EAN2(100)p	 EYTH(100) p	EEYTH(10pI00) p . DDfC(1 .0 p A 29

.1100) A 30
DIMENSION TMX(10.p l0) A 31
DIMENSION A1(2,10),	 A2(2.P10) p	A3(2910)s	 BI(2jp 10)j 	 8282(2,101*	 83(2o1 A 32

10) A 33
DIMENSION CMX(10jp 10) p	CMY(IOsIO),@	 DMX(10o101-o	 DMY(10PI0)o	 EMX(1001 A 34

10) p	EMY(10PI0) A 35
DIMENSION DOX(IOPIO)o	 DOY(IOPIO)o	 EOX(IOPIO)o	 EOY(10#10) A 36
DIMENSION AAA(42)j p	BBB(4219	 CCC(42)jo	 HHH(42)jp	UUU(42)9	 VVV(42) A 37
DIMENSION CXX(IO) p	CXY(10)jp	CYX(10)*	 CYY(10)#	 UX(1 0 ) p	 UY(101 A 38
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1)1MENSIGN FX(1G), 	 FYUOI A 39
0IMENSION 5LF;FiE(5,4,41, .CLFSNIB(9,4s4) A 40
DIMENSION SNLH5,8,3),	 FSK(1GI)s	 PSKLIO),	 BOW(100)s	 PBDW(100) A 41
UIMENSION BXA(1GO)s 8YA(100),	 XIDC(100)s	 YICC(100),	 VXIDC(100)p	 VY A 42
lIDC(IGO) A 43

DIMENSION ADUMMY(8002) A 44
G_IKEN510N ALABELI(E)s ALABELU B)s 	ALABEL3(8) A 45
UIMENSIGN kMY(10)s VIS(5)s	 ANR(5),	 AHL(5)s	 At1C( 5 )s 	 NL8(5) A 46
CClHMGN 16LKII tip NB,NNLINPh-M3stlFjUUYNS,NB0W;pISTABvlH(JDE.* ISKUSUCT,NU A 47
1FPT A 4E

COMMOb /BLKZ/ I5KIF•NSTEP,hhCYCLEPNITPot4lhT,NPLOTsHORBITsNTIKE,11SPE A 49
IED, tlltlC, N.GPT s NT A 50

COVMUN /BLK3/ CRT,LLBDsLLNBPLLNMBsLLSKsLLNTsLLUF,LLFF,LLUT A 51
COhhfjtl /BLK4/ KXX,KXY,KYX,K.YY,CXX,CXYsCYX,CYY,SLNHBsCLHNB A 52
COMMON /BLK5 / UXPUY,FX,FYsFSKrPSK A 53
COMMON /BLK6 / LOW,PBUW,XIDCsY .IDC,VXIDC , VYIDC , BXA,BYA A 54
COMMON IBLK7/ CMXsKMXsEMXsCMY,KMY,EKY A 55
COMMON /BLK8/ MFX:MFY,MUXsMUYPMBXPMBY A 56
CGKKGN /BLK9/ DOPC,EEYTH A 57
COMMON /BLK10/ SPSYSPFPSPNR SPEE01 A 58
COMMON /BLKII/ 00XsDGYs E0Xj E- OY	 ^ A 59
COMMON / BLK14 / AAA, UUUs VVV, HHH, BBB, CCC A 60
COMMON /BLK15/ RPiRT A 61
CC#MMUN /BLK16/ SPEE02,AHGSP,ANGACLsFSPEED A 62
COMMON IBLK18/ AKK A 63
CCKhGlJ /BLK191 DX A 64
COKI fUl /BLK20/ A1,A2sA3,B1sB2sB3 A 65
COMMON 1ELKZ11 f KX, Dt'Y	 ^ A 66
COMMON /BLK22/ k A 67
C©MMON !BLK24/ B&,CC A 68
COMMON /BLK25/ BETA A 69
C€3KMC, k /BLK28/ ALABELIPALABEL2sALABEL3 A 70
C€It3MOR /BLK29/ PASP A 71
C014MOI /BLK351 WMYAtVIS,ANRsAHL,AHCsNLS A 7Z
COMMU14 ADUMMY A 73
NNPLT=0 A 74
READ	 (156901 CGME.NTI A 75
kEAO	 (1,.6901 COVENT2 A 76

bawLn
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READ. 11,690) COMENT3 A 77
WRITE	 (3,1064) A 78
WRITE	 (3,700) CGMENT1,COMENT2,COMENT3 A 79
WRITE	 ( 3,710) A 80
READ	 ( 1, 7'20) N,NB, Nl:LIN, NMB,l1F .PNUsNS , NBGWs ISTABD . INODE, I.SKUPNUFPT A f)1
[iEAD	 (1,730) ISKIPPNSTEP,NCYCLE,NITPPNINTPNPLGTPNDRBITPNTIMEsNSPEE A 62

ID,faINC,HE3PTs^11 A 83
IF	 Iri'B . E4.D) GO TO 24 A 84
READ	 (1,740) ( LLBD(J) , J=I,NB) A 85
READ	 ( 1s750) ' I KXX{J)PK X Y(J),KYX ( J)PKYY( J JPCXX(J).FCXY(J) , CYX(J),CYY A E6

1(J),J=1 ,NB) A 67
20 CONTINUE A 88

IF	 (NNLIN *.c0.0) GO TO 30 A 89
READ	 (1,760) (LLNB(J),NLB(J),VIS(J),ANR(J1,AN-L(J),PANC(J),*J=1,NNLIN A 90

1l A 91
30 CO NTINUE A 92

IF	 (fMB.EQ.0) GO. TC '40	 - A 93
READ	 (1#770) (LLNMB(J),J=1,NKB) A 94
READ (1,780) [(([SLNMB(I,JsK)sK = I',41,(CLNISB(I,J,K)sK =104,)I,J =1,4),p A 95

lI=1sNNB) A 96
1	 40 CONTINUE A 97

READ (1,790) NGYR s E,SPEEDIsSPEE02 , ANGACL,FSPEEDsBETA A 98
READ	 ( 1,800) [EXTW(J )sDK(J)P O EXT(J)#DINT ( J).vPP(J)sRTIJ)PEM6 ( J1sRB( A 99

1Jl,J=I,N) A 100
IF (NFEQ.01 GO TO 50 A 101
READ	 ( 1,810) ( LLFF(J)sFX(J ) sFY(J) , J= isNFl A 102

50 CON TINUE A 103
IF	 (NU.EQ.0) GU TO 60 A 104
READ	 ( 1#8.10) (LLUF (J),UX(J),(1Y(J)PJ=1sNU1 A 105

60 CONTINUE A 106
IF	 (NS.EQ..0) GO TO 70 A 107
DEAD	 ( 1,1310) (LL5K( J),FSK(d),.PSK ( JIJ=1sNS) A 108

70 CONTINUE A 109
If	 ((iUFPT.Efl.0) GO TO 8.0	 - A 110
READ	 (1,8.20) (.LLUT(J),J=1PNUFPT) A .Ill

80 CONTINUE A 112
IF	 [NT.EG.0) GO TO 90 A 113
READ (1#820) (LLNT(J),J=IPNT) : A 114 v±.

E
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A 115
A 116
A 117
A 118
A 119
A 120
A 121
A 122
A 123
A 124
A 125
A 126
A 127
A 128
A 129
A 130
A 131

A 132

A 133
A 134
A 135
A 136
A 137
A 136
A 139
A 140
A 141
A 1.42
A 143
A 144
A 145
A 146
A .147
A 148
A 145
A 150
A 151
A 152

Nwv

90	 CUNT INUE
READ (1,,830) (BGW(J)sPBFJW(J)sXIDC(J),YIDC(J)sVXIDC(J)sVYIDC(J),J-1

IsN1
DEAD (lo840) SPIsSPLsDSP
IF (ISKU.E0.11 GO TO 100
READ 11x8501 SPSs5PFsSPN

100	 CONTINUE
READ (1-690) ALABELI
kEAD (1,,690) ALABEL2
READ (1,690) ALABEL3
WRITE (3,8601 t,CYCLEPNSTEV, rilkT „ NINCsfdOPTsSPEEDZPANGACLsB€TA
WRITE.(3,870)
DO 110 I=IP”
IF (R.Ofl).Ea.0.01 RG M =0.283
ENERII)=3.14159*(DEXT(I)**4.--DINT(I)**4.)164.
IF (EM6(I).EQ.0.0) EMl6(11=E
EI(I)= EMi6(I)*ENER(I )
DL=ABS(DX(I))

110	 SWI(I)*3.14159*(DEXT(I)**2.--DINT(I1**2.)*DL*kG(I)/4.0
W(1)=SWl(I)/Z.+EXTW(1)
WT=WIl)

. ZLT=DX(1)
.DO 120 I*2j.N
W(T)=SW1 (I-1)/240+S.WI(I)/2. 0+EXTW(L)

C	 W(l ) =TOTAL EFFECTIVE SHAFT WEIGHT
WT z WT +W (I )

120	 ZLT=ZLT+DX(I)
IF (NGYR) 1342150,,130

.130	 RP(1)=RP(1)+ENER(1)*RD(1)*DX(1)
RT(i)=RTII.)+SWl.(I)*((DEXT{1)**2_.O+DINT(1)** 2.0)/16*0+( ( DX(1)/2.0)*

1*2.0) 13.0) /200
DO 140 1=2ftN
RP(I)=RP( I)+R{3{I)*ENER41)*DX(I)+ENER(1-1)*DX(1-1)*R©(I-11
RT(I) = RT(I)+SWI ( I)*((DEXT(I)**2*0+DINT ( I)**2.0)/16 . 0+((DX(I) /2.0)*

l*2.0)/3.0)/2.G+SW1(I-1)*((DEXT(I-1)**2.0+DIN T1I--1)**2.0)/16.0+((()X
2(I-1)/2.0)**2.0)/3.[})/2.0

1403	 CONTINUE	 ^ 4
150	 SRP=O.C)	 a G3

ti



DO 160 I = ljN A 153
160 SRP=SRP*RP(I) A 154

00 180 I = 1sM A 155
WRITE	 ( 3s890)	 ( IsW(I ) sDX(I)sDEXT ( I),DINT ( I)sENER ( I)sRP ( I)sRT ( I)PEM A 156
16(1)sEI(I)) A 157
IF	 (1--501	 180s170.9180 A 158

170 WRITE	 (3,1.080) A 159
180 CONTINUE A 160

WRITE	 (3s 8901	 WTs ZLT A 161
TRITE	 (3,9001 A 162
WRITE	 (3s910) A 163
WRITE	 (3,920)	 ( J s LLBD( J) sKXX(J)sKXY(J)sKYX(J)sKYY (J) 1J=11 NB) A 164
WRITE ( 3030) A 165
WRITE	 (3,940) A 166
WRITE	 (3,920)	 (Js1LBDIJ)sCXX(J)sCXY(J)sCYX(J)sCYY(J)sJ=I#NB) A 157
IF (NMB.EQ.0)	 GO TO 200 A 168
DD 190	 I:=1sNMB A 169
WRITE	 (3,95.0)	 I,LLNMB(I) A 170
WRITE	 ( 3/960)	 1 (SLNMB ( IsJsK)sK = ls4)sJ a lp 4)s ( I CLNMB( I. J. p JsK)sK *ls4)sJ A 171

1=1s 41 A 172
190 CONTINUE' A 173
240 IF (NNLIN.EQ9 0)	 60 TO 220 A 174

WRITE	 (3,11701 A 175
DO 210 J=I.PNNL.IN A 176
WRITE	 (3,.118())	 Js LLNB(J)sNLa(J)sVIS(J)sANR(J)sANL(J1sANC(J) A 177

210 CONTINUE A 178
22.0 IF	 (NF.EQ .0) 	 GO TO 230 A 179

WR ITE	 (3,470) A 160
WRITE	 (3.s9801	 (LLFF(J),FX(J)sFY(J).sJ=1sNF) A 181

230 IF	 (N5.EQ.0)	 GO TO 240 A 18.2
WRITE ( 3s990) A 183
WRITE	 (3s1000)	 (LLSK(J)sFSK(J1:PSK(J)sJ alPNS1 A 184

240 IF	 (NU,EQ.0)	 GO TO 260 A 165
WRITE	 (3.#1010) A 186
WRITE	 (3#10G0) A 187
WRITE	 (3,10301	 (LLUF(J)sf1X(J):UY(J)sJ=1,N0) A 188
DO 250.J—IPN'U A 189	 w
UX (J)=UX(J)/(l6**386.4) A 190	 °D

'	 1	 i	 '-«^  -	 ..^.-:..:	 +a•a_..}	 w::-+rte	 ^.,.e....	 - x^..^ .^..^—."-"



250 	 UY( J)=UY)J) /(16.#386.4)	 A 191
260	 £ONTI:UE	 A 192

WRITE ( 3s 1040) 	 A 193
DO 270 J=1,N	 A 194
TRITE 0PI050) J-oBfjrl(J),PBDW(J)PXIDC(J),YIDC(J)sVXIDCCJ),*VYIDC(J) 	 A 195

270	 CONTINUE	 A 196
WRITE [3,1060]	 A 197

00 260 ;=1sNB	 A 198
AVK=(KXXII) +KYY(I).)/2,	 A 199
WRITE (3,1.070) IP AVK	 A 200

2 EO	 CONTINUE	 A 201
NC =1	 A 202

C	 NC=L©CAL CRITICAL SPEED NCI.	 A 203
C	 WRITE I3s700)	 A 204

TRITE (3s1080)	 A 205
LN=3	 A 206

C	 SPI=INITIAL SPEED.sSPL=FIfJAL SPEEDPOSP = SPEED INCREMENT— RPM	 A 207
SPD=SPI	 A 2.08
DETP=0.	 A 20.9
P,A=0	 A 210
f16=0	 A 211

C	 IF(LN-5G)54.s54,53	 A 212
WRITE (3s1080)	 A 213
WRITE (3,10 910) SPIvSPLsUSP	 A 214
LN=1	 A 215
WRITE (3,Pi100)	 A 216
LN -LN+3	 A 217
DIN=DSP	 A 218

290	 I=1	 A 219
J-1	 A 220

i SPSQ-SPD*SPD	 A 221
C	 COMPUTE ANG. VELOCITY 	 A 222

ANSP=SPD*0.10471976	 A 223
A14SP2=ANSP*ANSP	 A 224
VP=O.	 A 225
Z MP=O.	 A 226

'	 EYP=O..	 A 227
E THP =1. G	 A 228

-+



M=1 A 224
306 I = I+1 A 230

II=I-1 A 231
IF	 [II-LLB.D(J))	 330,310,330 A 232

310: AK=(KXX(J)+KYY(J))12. A 233
AKK(J)=AK A 234
IF	 iJ -NB)	 320,340s340 A 235

320. J=J+.I A 236
GO TO 340 A 237

330 AK=0. A 238
340 VP=VP+(W(I-1)*ANSP2/386.4-AK)*EYP A'239

Z'MP=,ZMP-ANSP24(RT(I-I))*ETHP/386,4 A 240
EY=EYP+ DX.(I -I)*ETHP+DX( I-1)**2*ZMP/(2.E6*EI(1-1)) +DX(I-1) **3*VP/(6 A 241

1.E6 *EI(I-1)) A 242
ETH =.ETHP+DX(I- 1)*ZMP/(1.E6* EI(I-1) ) +DX(1-1) **2*VP/(2.E6*EI(1-1}) A 243
ZM=ZMP ♦ DX(I -1)*VP A 244
V=VP A 245
IF	 (M.EQ.2)	 GO TO 350 A 246
EYI(I)=EY A 247
fANI(I)=ETH A 248
IF	 (loGT.N)	 GO TO 360 A 244

ZPZP=ZM A 250.
V P =V A 251
EYP=EY A 252
ETHP=ETH A 253
GO TO 300 A 254

350 EY2(I)=EY A 255
EAN2(L)=ETH A 256
ZMP=ZM A 257	 j

VP=V A 258
EYP=EY A 259.
ETHP=ETH A 260
IF	 (I.GT.N)	 GO TO 370 A 261
GO TO 300 A 262

360 )<,=2 A 263
ZMI=ZM A 264
VR1=V A 265	 cJ = ] A U6

:



A 267
A 268
A 269
A 270
A 271
A 272
A 2 73
A Zi4
A 275
A 276
A 277
A 278
A 279
A 280
A 281
A zee
A 283
A 2e4
A 285
A 286
A 267
A 288
A 284
A 290
A 291
A 292
A 293
A 294
A Z$5
A 296
A 297
A 2$B
A 299
A 300
A 301
A 302

A 303

A 304
r

I=1
EYP=I...
ZMP =0,.

ETHP=O.
VP=D.
GO TO 300
D ET-VR 1 # ZM— V* ZM 1
IF	 (DETP.EQ.O.)	 GO TO 420
IF	 (riA. E 0.1)	 GO	 TO 400
IF	 (ABS(DET).LT.1.)	 GO TO 450
IF	 (DETP*DET)	 360,420j,420
DOLD=DETP
14A=1
IF	 (ABS(DET).LT.1.)	 GO TO 450
IF	 (DIN.'LT.1.E-6)	 GO TO	 450
DIN=DIN/2.
DETPP =DETP
DETP=DET
SPD=SPD^-DIN.
GU TO 290
IF	 (ABS( DET).LT.1.)	 GO TO 450
IF	 (DGLD*DET)	 350s420s410
CONTINUE
IF	 (ABS (OET).LT.1.)	 GO TO 450
IF	 01N. LT. 1. E-6)	 GO TO 450
DIN=DIN/2.,
SPD=SPD+DIf4
DETPP=DETP
UETP =DET
GO TO 290
IF	 (LN-54) 440,4409430
WRITE	 (3,1080)
Lis= 1
WRITE	 (3s 1110)	 SPDs DET
LN=LN+I
SPD=SPD+DSP
DINT-DSP
IF	 (SPO.GT.SPL)	 60 TO 610

370

380
390

400

410

420
430

440.



DETPP=DFTP A 305
DFTP=DET A 306
SSPD=SPD A 307
GO TO 290 A 308

450 OVA=0 A 309
WRITE	 (3,1110)	 SPD P DET A 310
LN = Lh+l A 311
IF	 (LN-50)	 470,470,460 A 312

460 6RITE	 (3s10601 A 313
LN=1 A 314

470 WRITE	 (3,1120)	 NC A 315
WRITE	 (3,1130) A 316
WRITE	 (3PI110)	 SPD,DET A 317
CRT (NC)=SPD A 318
NC=NC+l A 319
LN=LN+3 A 320
EYl(1)-0. A 321
EY2(11 = 1. A 322
DTX=O. A 323
I=1 A 324
IF	 (LN-50) 490x490,480 A 325

460 WRITE	 (3,1080) A 326
LN=1 A 327

450 WRITE	 (3,1140) A 328
LN = LN+2 A 329

500 DEFL(I)=V*EYI(I)—VP1*EY2(I) A 330
IF	 (IoNE.11	 GO TO 510 A 331
EYTHM-V A 332
GO TO 5ZO A 333

510 EYTH(I)=EAN1(I)*V—EAN2(:)*VRl A 334
520 DEFA=ABS(DEFL(I)) A 335

DMXA =ABS(DTX) A 336
I= I+1 A 337
IF	 (DEFA-D(4XA)	 540, 540, 530 A 338

530 DTX=DEFL(I-1) A 339
540 IF	 (I-N)	 550,554,560 A 340
550 Go TO 500 A 341
5to DO 570 I = 1,N A 342



r—moo

U PC ( I ) = DEFL ( I ) /DTX
EYTH(I)=EYTH(I)/DTX
EEYTH ( NC-1sI) = EYTH(I)

570	 DOPC ( NC—isi) = DPC(I)
00 600 I=1sN
LN=LN+1
IF (Lid-54) 590R590#580

560

	

	 WRITE (3x1080)
LN=1

590	 WRITE (3#1150) I#DPC(I)sEYTH(I)
LN-LN+1

600

	

	 CONTINUE•.
SPD=SSPO+DSP
DETP=O.
GO TO 290.

610	 CONTINUE
D0 620 IK = 1s N8
KXX(IK) = KXX(IK) —AKK(IK)

620	 KYYIIKI=KYY(IK)—AKK(IK)
NCS=NC-1
DO 650 II=lsNC5
WMDD ( II)=0.

€	 00 630 JJ=1 9N
630	 WMOD . IIi)=WMOD ( II)+RT ( JJ)*EEYTH( IIsJJ)**2+W(JJ) *DDPC ( II#JJ)**2

WMOD ( II)=WMDD ( II)/386.4
DO 640 KI-l:>N
EEYTH ( IIsKI) = EEYTH ( II#KI)/(WMCD(II )**0.,5)

w	 640. ODPC ( IIPKI) = DDPC(Ilo KI )/( WMOD(II)**0.5)
650	 CONTINUE

i	 DG 660 II=1sNCS
WRITE ( 3#1190) IIsCRTIII)sWMOD(II)

f	 DO 660 JJ=1#N
WRITE ( 3.91200) JJ,DDPC ( IIsJJ)s EEYTH ( IIsJJ)

660...	 CONTINUE
WRITE ( 3,1210)
DO 680 I I =.lsNCS	 I

DG 670 . JJ=T#NCS	

OTtiX(.II # JJ)=0.
o

ra

P^

A 343

A 344
A 345

A 346
A 347

A 348

A 349
A 350
A 351
A 352
A 353
A 354
A 355
A 356
A 357
A 358
A 3.59
A 360
A 361

362
A 363
A 364
A 365
A 366
A 367
A 368
A 369
A 370
A 371
A 372.
A 373
A 374
A 375
A 376
A 377
A 378
A 379
	

N

A 380



C
C
690
700
710
720
730
740.
750
760
770
780
790
600
810
824
830
840
850
860

670

DO 67U KI=isN
Tf4X(IIPJJ) -TMX(II , JJ)+W(KI) * DDPC ( JJ,KI) *DDPC(II.KI) / 396.4 +RT(Ki)*E
IEYTH(IIsKI)*EEYTH(JJ,KI)/386.4

CONTINUE
WRITE (3sI160) (TMX(IIsJJ)sJJ= 1sNCS)
CONTINUE
NCT=NCS
CALL TMM

FORMAT (8A101
FORMAT (1Xs3 (8A10/lX) )
FORMAT (/s20Xs-0MO0AL ANALYSIS VERSION 39 .APRIL 6s 19770)
FORMAT (12I5)
FORMAT (12I5)
FORMAT (1015)
FORMAT ( 8G10.3)
FORMAT (215s4G1092)
FORMAT (9I5)
FORMAT ( 6G10.3 )
FORMAT (I:5s5Xs6G10.3)
FORMAT (SG10.3)
FORMAT (I5s5X,2610.31
FORMAT (1015}
FORMAT (6G10.3)
FORMAT (3G10.3)
FORMAT ( 3G.10.3)
FORMAT (//slOXst-NCYCLE=#sI3s5Xs*NSTEP=#sI3s5Xs #N.INT=*s I3s5XsfNINC=
lssl3s5X , ONOPT=$sl3s/s10Xs*SPEED2 = itsF10 2,5XsiOANGACL(1/SEC)=OsF10.3
2s5Xst-BETA=ifs F1055,// }
FORMAT (120H STATION NO. 	 WEIGHT	 LENGTH SHAFT DIA. SHAFT D

IIA.	 I	 IF—P[rLAR MOM• IT-TRANS• MCM. 	 EX10-6	 El
2s/120H	 (LP)	 (IN.) OUTSIDE	 INSIDE	 t
3IN**4)	 (LP—IN*#2)	 (LB-IN**2)	 sI)
FORMAT (I7sF16.3,F12.3,F10.3sF10.3sF11.2sF12.3sF16.3sF11.2sG10.3)
FORMAT (16 Xs 7H-------s 5Xs 7H-------17Xs F16.3s F12.3/ )
FORMAT (/s34Xv0- LINEAR SUPPORT BEARING STIFFNESS CHARACTERICSO/)
FORMAT 15XP16HBEARING BEARINGs12Xs3HKXX3,16Xs3HKXYs16Xi3HKYXs16xs3

6 70

6b0.

A 381

A 362

A 383
A 384

A 385
A 386
A 387
A 388
A 389
A 390

A 391

A 392
A 393
A 394

A 395
A 396

A 397

A 398
A 399
A 400
A 401
A 402
A 403
A 404
A 405
A 406
A 407
A 408
A 409
A 410
A 411
A 412
A 413
A 414
A 415
A 416
A 417
	

r^

A 418



A 419
A 420
A 421
A 422
A 423
A 424
A 425
A 426
A 427
A 428
A 429
A 430
A 431
A 432
A 433
A 434
A 435
A 436
A 437
A 438
A 434
A 440
A 441
A 442
A 443
A 444
A 445
A 446
A 447
A 448
A 449
A 450
A 451
A 452
A 453
A 454
A 455
A 456

N
l^il

1HKYYs/5Xs6HNUMBEks3Xs6HLOCATIONs8Xs7H(LB/IN)911Xs7H(LB/IN)s11X97HI
2L6 /Ih1 s 11 Xs 7H ( LB/ 1141 )

920	 FORMAT (5XP13s8XsI3s9XsF11. lip 5XsF11.1s8XsF11.IsBXsF11.11
930	 FDRKAT (/s35X9#	 LINEAR SUPPORT BEARING DAMPING CHARACTERISTICS#/

1)
940	 FORMAT (5Xs1bHDAMPING DAI'iPING,12Xs3HCXXs16X93HCXYs16X,3HCYX,16Xs3

1HCYYs1 s5Xs 6HNUMBERs3XsBHLOCATIONs6Xs11H ( LB—SEC / IN)s10Xs11H ( LB—SEC/
2IN)s10Xs11H(LB—SEC/IN)PlOXs11H(LB—SEC/INI)

950	 FORMAT (// PIOXs # FULL BEARING NO. 09 I2s3X9 0AT STATION #, I3s/)
960	 rORMAT (10X##BEARING STIFFNESS LB/ IN#9//94(4(5XsG15.31s/)s//s10X9#

1BEARING DAMPING LB—SEC 1 IN09//s4 ( 4(5X9G15 . 31s/))
970	 FORMAT i/fs20Xs # EXTERNAL FORCES * s/s5Xs#STATION NO * #s10XstX # s15X9#Y

1 #s ! 1

980	 FORMAT (10Xs13s2(5XsGl5e5))
990	 FORMA T (// s20Xs 0 SKEWED DI'SC # s/s5Xs #STATION N O.#r10X .9#SKEW ( RAD)#s5X

l.s#PHASE ANGLE (AEG.#s/)
1000 FORMAT (l0Xs13s2(5XpGl5.5))
1010 FORMAT (/// s25Xs#ROTOR U1,SALAMICE IN OZ. — IN.#s/)
1020 FORMAT (5Xs#STATIOh# 910X9 # X—UNBALANCE #s10Xs # Y—UNBALANCE#s/1
1030 FORMAT (8X#12s12XsF10,3v1'lX#F10.3)
1040 FORMAT (1/ s20Xs #SHAFT INITIAL CONDITIONS # s/1s5Xs#STATION NO.ts5Xs#

1BOW —MILS it s 5Xs # M'HASE AtiGLE # s5Xs#X—DISP # slOX#Y—DISP #sIOXs # X—VELisIOX
2s#Y—VEL#9 / s34Xs #( DEGREES) # s6Xs # (MILS) # s10Xs #( MILS) # s10Xs # MIL/IN#sl
30Xs0M+IL/IC( #s /)

1050 FORMAT (5XP13s6(5X,F10.2))
1066 FORMAT (//s10XssAVERAGE BEARING STIFFNESS USED FOR CRITICAL SPEED

1CALCULATIONS#)
1070 FORMAT (IOXs#BEARING NO.#s12s5X,#STIFFNESS(LB /IN)#,F12.2)
1080 FORMAT (1H1r/)
109G FORMAT (//s5Xs# INITIAL SPEED--#sF10.2s5Xs0FINAL SPEED=09F10.2s5Xs#

1SPEED INCREHENT =0 sF10 . 2,#	 RPM#s//)
1100 FORMAT (/13Xs3HRPMs2OXs5HOELTAs12Xs2HK1s13Xs2Hi.2/)
1110 FORMAT (10XsF8,ls9XsE17.9)
1120 FORMAT (// slOXs #CRITICAL SPEED NO.#s12)
1130 FGRKAT (/910Xs14HCRITICAL SPEEDsilXs5HDELTA91)
1140 FORMAT ( fs 12Xs6HSTA Nov 10Xs 14HNET DEFLECT IONPlOXs5HANGLEl
1150 FOR.M;AT (12X9I5sl3XsF9.5s13XsF9.5)
1160 FORMAT (5Xs10(F8.2s2X))



1170 FORMAT	 (//slOX p *14ONLINEAR	 BEARING FOKCES # s//v5Xs#BEARING NO.#s0s0 A 457
1STATIOM td0.t-s4X, pL CAVITATI€]N#,5Xs#VISCOSITY#s6X,-ORADIUS#s9Xs#LENGTH A 458
2#j,9Xs#CLEARANCE# s/s35Xs#CGNDITI€[i;t p6Xs#tB/IN**2#,7Xa# IIN.I#s1OXs#I A 459

3IN.) #s1UXs# {IN.)#^/) A 460

1180 FORMAT	 IlOXsI5910X s. I5slOXsI5s5XoEI O * 4s5XsE10 . 4s5XsE10.4s5Xj p E14 . 4) A 461
1190 FORMAT	 ( IHIs Its 10Xs#CRITICAL	 SPEE D h0. #s I5s15XsFl0.ls#1RPN #s Is10Xs# A 462

1MODAL MAS5 =#, F10.3s2Xs # LE— S.EC ** 2/IN#s/ / slOXs#THE.ORTHONORMAL MORE A 463
2SHAPES#s/i p 5X,##STATION#sBXs#TRANSLATIONAL#r7Xo*ROTATIONAL#1 A 464

1200 FORMAT	 (9Xs I3s 10X, F10.5s 10X, F.10.5) A 465
1210 FORMAT	 (1//s1OX90THE ORTHOGONAL CONDITIONS OF MODES 09 /1 A 466

END A 467—

W
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SUBROUTINE TMM
	

1

G	 #****#*##**#+***#*#**#*##*####*#******#**#*****#**********#**#*#*
	

2
C	 THIS SUBROUTINE CONTROLS THE MODAL ANALYSIS OPERATION AFTER THE

	
3

C	 PLANAR CTITICAL SPEEDS AND MODE SHAPES HAVE BEEN CALCULATED*
	 4

5
COMPLEX BoC
	

6
i	 REAL KXX#KXYsKYXPKYYsMFXjpt4FYpMUXsMUYsKMXtKMY

	
7

COMMON /BLK1/ N,NB,NNLItisNMBsNFPNU, NSsNBOWPISTABsIMODEsISKUsNNCTsN
	

a
IUFPT
	

9
CO MON /BLK2/ ISKIPsNSTEP, NCYCLEsNITP sNINT,NPLRTsNDRBITsNTIMEsNSPE

	
10

lEDJNINCsNOPTjpNT
	

11
COMMON /BLK3/ CRT(10)sLLBD(101 sLLNB(5)sLLNMB(9)sA► LSK1101,LLNT{101s	 •12
1LLUF(10)sLLFF(10)v LLUT(10)
	

13
COMMON /BLK4/ KXX( 10)sKXY(10)sKYX(10 )#KYYIIO)PCXX(10)sCXY(IO)OCYX(

	
14

110)sC YY(10) s SLNIiB (9t4s4)sCLNMB(9s4s4)
	

15
COMMON /BLK5/ UX(10)sUY(10)sFX(10)*FYi101sFSK(10)sPSK(IO)

	
16

COMMON /BLK6/ BOW(100)sPBDW( 100)PXIDC(100)sYIDC(100)sVXIDC(100)sVY
	

17
11DC(100)sf3XA(100)sBYA(100)
	

1e
COMMON /BLK7/ C.MX(10plO1sKMX110,10)sEMXIIOPIO)*CMY(IOs10)sKMY(IOs1

	
19

101:EMY110s10)
	

20
COMMON /BLK81 MFX(10)yMFY(10) sMUX(10)sMUY(101sMBX(10)sMBY(IO)

	
21

COMMON /BLK9/ DOPC(10s100)sEEYTH(10s100)
	

22
COMMON /BLK1O/ SPSsSPFsSPNsSPEEDI

	
23

COMMON /BLKI1/ ODX( 10., IO)sDOY(IOPIO)PEOX41091C)sEDY(10s10)
	

24
COMMON /BLK15/ RP(100)sRT(100)
	

25
COMMON /BLK16/ SPEED2PANGSP,ANGACLsFSPEED

	
26

COMMON 19LKIBI AKK'(10)
	

27
COMMON /BLK20/ A1( 2s1O1sA2(2s10)sA3(2si0)sBI(2s1O)s82(2s10)sB3(2s1

	
26

10)
	

29
COMMON /BLK24/ B(20s21),C(20)
	

30
COMMON /BLK25/ BETA
	

31
COMMON /BLK29/ PASP
	

32
IF (NdOW.EQ.0) GO TO 10
	

33
CALL SFTBOW
	

34
10	 CONTINUE
	

35
r	

_CALL TMODEI
	

36
IF (ISTAB9EQ9l) GO TO 20

	
37
	 N

CALL STAB •(3
	

38

O
1	 0

A rd



1 39
1 40
1 41
1	 42
1 43
1 44
1	 45
1 46
1 47
1	 48
1 49
1 50
1	 51
1 52
1	 53
1 54
1	 55
1	 56
1 57
1	 58
1 59
1 60
1 61
1 62

1 63
1 64
1 65
1 66
1 67
1 68
1 69
1 70
1 71
1 72
1	 73'.
1	 74
1 75
1 76

00

20	 CONTINUE
IF (ISKU.EQ.1) GO TO 30
CALL UBST (O,SPEED2)

30	 CONTINUE
IF (ISKIP.EQ.1) GO TO 120
SPEED-SPEED2
NSTEPI=NSTEP+1
STEP=NSTEP
TCYCLE=60./SPEED
TIME=O,
IINT=1
IP (N-INC.E ©90) GO. TO 50
CALL UBST (1,SPEED)
00 40 I = 1s NNCT
I I = 'I+NNC T
A3(1,i)=REAL(C(I))*0.9
83 (l,i) =REAL(C(IL))*0.9
A2(1iI)=—AIMAG(C(I))*SPEED*0.10471975*0.9

40	 B2(1,I)=—AIMAG(C(Ii)) *SPEED*0.10471975*0.9
GO TO 60

50	 CALL TINC
IF (NB.OWeEQ.0) GO TO 60
CALL S FTBOW

60

	

	 CONTINUL
REWIND 7
CALL TSTORE (NNCT,1.s0.U)
ICOUNT=1
NK=O
NPLUS=O
IF (ANGACL.NE.0 ) NPLUS=99999
NJrNPLUS+1
PASP=d.
DO 110 I=IINT,NCYCLE
TEEM=TIME
00 . 100 J=1sNS'TEP

€	 GELTAT =TCYCLE /STEPi	
IF (J.GT.NJ) t(K=I

i	 CALL TMODE2 (TIMEYDELTATsSPEEDsNK)



1 NA

CALL TACCEL
	

77
T I VE=T If4E+DELTAI

	
78

GO TO i700801 hIltT
	

79
70	 CALL TBETA (NNCTfDEL7AT,EETA)

	
80

GO TO 90
	

82
bG	 CALL T1t4TG (NNCT,90ELTAT)

	
82

9G	 C COT IWE
	

83
ICDUNT=I CCU NT+1

	
84

CALL TSTCRE (fiNCTvlC0UHT;pTIME)
	 85

PAS P= PAS T+UELTAT*SPEED*U.04719
	

86
TCYCL E=60. /SPEED

	
87

100	 COIAT 1140E
	

88
110	 CONTINUE

	
89

CALL TOLSPL (TIME)
	

90
110	 CQN.TINUE

	
91

RETURN
	

92
END
	

93—



SUBROUTINE TMODE1 C 1
C C 2

C THIS SUBROUTINE CALCULATES THE MODAL COEFFICIENTS WHICH ARE INDEPE C 3
C OF SPEED AND ACCELERATION. THEY CAN.BE USED IN OTHER SUBROUTINES. C 4
C C 5

REAL KXXsKXYsKYXsKYYsMFXsMFYPMUXsMUYsKMXsKMY C 6
COMMON / BLKI / NiNBrN N LIN s NriBrNF : NUPNSPNBOWPISTABPIMCUEsISKUrNNCTPN C 7

IUFPT C 8
COMMON	 /BLK3/	 CRT(10)sLLBD(10.)sLLNB(51:PLLNMB(9)sLLSK(10)jPLLNT110)i C 9

ILLUF(10)sLLFF(10)sLLUT{10) C 10
COMMON /BLK41	 KXX(10)sKXY(10)sKYX(10)sKYY(10)sCXX(10)sCXY(10)sCYX( C 11

110),CYY(10)sSLNMB(9s4s4.)sCLNMB(9s4s4) C 12
COMMON /BLK7/ CMX ( 10s10 ) sKMX( 10s10)PEMX ( IOs1Q1sCMY ( 10s1D ) sKMY ( 10s1 C. .13

10)sEMY(10.91.01 C 14
COMMON	 /BLKB/	 MFX(10)sMFY(10).MULE(10)sMUY(10)rMBX(10)rMBY(10) C 15
COMMON /BLK9/ DDPC(10s100)sEEYTH(l0s100) C 16
COKMON /BLK11/	 DOX(10s10)sDUY(IOsIO)sEOX(10r101sEDY(10s10) C 17
COMMON /BLK22/ )!(100) C 18
COMMON	 /BLK35/	 WMY(I0)s VIS(51., ANR(51.PANL(5)sANC(5)PNLB(5) C 19
DO 10 I=1sNNCT C 20
DO 1U J = 1,NNCT C 21
CMX(IsJ) = 0. C 22
CMY(IsJ)=0. C 23
lcMl([IrJ)=0.. C 24.
KMY-(IsJ)=0.. C 25
DOX(IsJ)=0, C 26
DOY(lsJ) = 0. C 27
EOX(IsJ) =0.. C 28
E(]Y (I,J1 =0. C 29

10 CONTINUE C 30
DO .30 I=1sNB C 31
J= LLBD( I) C 32
DO 20 K= I NNC T C 3.3
DO 20 L=I.sNNCT C 34 1

CMX(KsL) = CMX(KsL)+CXX(I)*DDPC(K	 J)*DDPC(L,J) C 35
CMY(KsL)=CMY(KYL)+CYY(I)*DDPC.(KPJ)*DDPC(LPJ) C 36
KMX.(KsL)zKMX(KsL)+KXX(I)*DDPC(K,J)*DDPC(LrJ) C. 37 c
KMY (KsL)=KMY(KsL)+KYY(I)*DDPC(KPJ)*DDPC(LsJ) C 38

3.+^'	 a-..q.Na	 `^..o.^
r-fi	 rash	 M,, a...,.

.:..^_-	 _, _	 _.	 .,_	 i	 -	 -...,	 ..	 -	 -'.-...-	 ..	 _	 .-	 cw^'"a"r	 '•M.A'_iC^ "^ cgwy.^ /rma-s;n^	 - ,T.
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a

L,X (KsL)=DGX(K,L)+CXY(I)*DGPC(K,J)*DDFC(LsJ) C 39
DUY(K,L)=DOY(KsL)+CYX(I)*DDPC(K,JI*DDPC(L,J) C 40
EOX(KsL)=EG'X(KPL)+KXY(I)*DDPC(K,J)*DDPC(LsJ) C 41

20 EDY(K,L)=EDY(KPL)+KYX(I)*DDPC(KsJ)*DGPC(L,J) C 42

36 CONTINUE C 43

IF	 (NMB.EG.0)	 GU TO 50 C 44

DU 40 I=1sNB6 C 45
L=LLNMB(I) C 46

DO	 ,tJ	 J=1,NN'CT C 47
DO 40 K=1sNN'CT C 48
CMk (JsK)-CMX(JpK)+CLNMB(I,1,1)*DDPC(J,L)*.DDPC( KsL)+CLNMB(I , ls2)**D C 49

1DPC ( JsL)*EEYTH ( KPL)+CLNMB(I,2s11 *EEYTH ( JsL)*DDPC ( K,L)+CLNMB ( I,2s2) C 50
2*EEYTH(JsL)*EEYTh(K,L) C 51
C1'tY(J,K)=CMY(J, K)+CLNMB ( Is3,3)*DDPC ( JsL)*DDPC ( K,L)+CLN ( O(I,3 , 4)*DD C 52
IPC(JsL)*EEYTH ( KsL)+CLNMB ( Is4,3) *EEYTH ( JPL)*DDPC ( K,L)+CLNMB ( I,4,4)* C 53
2EEYTH(JsL)*E[YTH(l;PL) C 54

KMX(JsK) = KMX(JsK) + SLt4MB ( Isl:l) *D DPC(J , L)*DDPC ( K#L)+SLNtp,B ( I,ls2)*DU C 55
1PC(JsL) * EEYTH ( K,L)+SLtail9B(Is2sl)*EEYTH ( JsL)*DDPC ( KsL)+SLNMB ( I,2s2)* C 56
2EEYTN(JsL)*EEYTH(KsL) C 57
KViY(J,K)=1SMY(JsK)+SLNMB(Fs3,3)*DDPC(JsLI*DDPC(K,L)+SLNMB(I,3,4)*DD C 58

IPC(.J , L)*EEYTH ( KsL)+SLN.MB(I , 4,3)*EEYTH ( JsLI*DDPC ( KsL)+SLNMB ( I,4s4)* C 59
2EEYTH(J,L)*EEYTH(KsL) C 60

DOX(JsK)=DDX(JsK) +CLNMB ( I,1,3)*DDPC(JsL)*DDPC ( K,LI+CLNMB ( Is1,4) *DD C 61
1PC(JsL)*EEYTH(K,L)+CLNMB(Is2s3)*EEYTH(J,L)*DDPC(KsL)+CLNMB(Ii2s4)* C 62
2EEYTH(JsL)*EEYTH( KsL) C 6.3

OCY(JsK)=DfiY(J,K)+CLNMB(Is3s1)*DDPC(JPL)*DDPC(KsL)+CLNMB(I,3,2)*DD C 64
IPC(JsL) * EEYTH ( KsL)+CLNMB ( Is4s1) *EEYTH ( JsLI*DDPC(KPLI+CLNMB ( I,4s2)* C 65
2EEYTH(JsL)*EEYTH(K,L) C 66

EOX(JsK)=EDX(J,K)+SLKMB(Isls3l*DDPC(J,L)*DDPC(KPL)+SLNMB(I,1,4)*DD C 67
IPC(JsLI*EEYTH ( Ks! )+SLi,IMB ( Is2,3) * EEYTH ( J,L)*DDPC ( K,L)+SLNMB ( I,2,4)* C 68
2EEYTH(JsL)*EEYTH(K,L) C 69

46 EDY(J,K)=EOY(Js.K)+SLNMB(Is.3s.l)*DDPCIJsL)*DDPC(K,L)+SLNHB(Is3s2)*DD C 70
IPC(JYL)*EEYTH(KsL)+SLPF,B(Is4,i1*EEYTH(J,L)*DDPC(KsL)+SLNMB(Is4s2)* C 71
2EEYTH(JsL)*EEYTH(K,L) C 72

:C cONTINUE C 73
DD 60	 I=19 N1:CT C 74
VFX(I)=O. C 75

60 hFY(I)=0. C 76	 ^

i



IF	 (NNLIN.EQv0) GO TO 90 C 77
DO 80	 I=I.PNNCT C 78
DO 70 J=IDN C 79

70	 MFYtI.)=MFY(I)+DDPC(IPJ)*W(J) c 80
al

.60	 CONTINUE C 82
90	 CONTI fili E C 83

..RETURN C 84
END c 85—
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SUBROUTINE STAB	 0	 1

D	 2

THIS SUBROUTINE CALCULATES THE DAMPED NATURAL FREQUENCIES	 0	 3
AND THE STABILITY OF THE ROTOR BEARING SYSTEM USING LEVERRIERS 	 0	 4
ALGORITHM.	 0	 5

D	 6
REAL KXXp K XY* K YXjp K YYs MFX p M FY P MUX P MUY p KMXP KMY	 D	 7

REAL LOS}	 D	 8
COMMON /8LK-l/ N#NBoNNLINjNMBiNFPNUsNSPNBOW.*ISTABiPIMODEjISKU,*NNCT#N 0	 9

lUFPT	 D 10
COMMON /BLK3/ CRT(10)YLLED(IO)PLLNB(51PLLNMB(9)#LLSK(IOIPLLNT(I0) p D 11

1LLUF(10).pLLFF(1G)pLLUT(10)	 D 12

COMMON /BLK7/ CMX(10PIO)PKMX(IOPIO)PEMX(10 p lG)PCMY(IOPIO)PKMY(IOsI D 13
10)PEMY(10j1O)	 D 14

COMMON /BLKB/ MFX(10)PMFY(10)PMUX(10)PMUY(10)PMBXIIOJPMBY(I0) 	 0 15
COMMON iBLK9/ DDPC(I0 p I001 p EEYTH(I0o100)	 D 16
COMMON /BLKIO/ SPSPSPFjSPNjPSPEED1 	 0 17
COMMON /BLKII/ DOX(10,#10)jDDY(10j,10)PEOX(IOsIGItEOY(10.vlO) 	 D IS
COM14ON /BLK15/ RP(100)#RT(100)	 D 19
COMMGIA /BLK14/ A(42)PU(42)PV(42)oH(42)PB(42)oC(42) 	 D 20
COMMON AM(40 p 40) p BM(40 p 40) p CM(4Om40) p DM(40 p 40)jEM(40p40),PFM(2) 	 D 21
N3=MN-CT*4	 D 22
00 10 l=ljN3	 D 23
DU 10 J=IPN3	 D, 24
AM(I,PJ)*Oo	 D 25
00 30 I=IoNNCT	 D 26
DO 20 J z lpt,&CT	 0 27
11=I*14NCT	 D 28
Jl-J+NNCT	 D 29
12=I+NNCT*2	 0 30
J2=J+NNCT*2	 D 31
13=1+NNCT*3	 D 32
J3=J+NNCT*3	 5	 0 33
AM(I,PJ)= — CV4X(L,RJ)	 0	 34
AM ( I p J 1 ) z— DbX ( 1.9 J)	 ti	 D 35
AM ( Is J2 ) a —KMX ( I s J )	 D 36AM 

(Ij J3) --EOX( IjJ )	 0 37
AM(lIoJ)= —DOY(IpJ)	 D 38

W4

Ln
w
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AM(11pJ1)=_Cf1Y{IsJ)
AMiI1,J21=—EOY(I, J)

20

	

	 AM(I1,J3)=—jQ1Y(I9J)
AM(12s1)=10
AM(I3,I1) =1.
AM(I,I2)=AMII,12)-(CRT(I)*3.14159/30.)**2

20AM{II:I3) =AM I1,I3)—ICRT(I)*3.14159/ 30.1**2
kSPEED=SPEEDI*3.1.4159/30.
DO 40 I=1,14NCT
DO 40 J=1,NNCT
I1=I+14NCT
J1=J+NNCT
J2=J+t4NCT*2
DO 40 K=i,N
AM(lj Jl)= AH(IsJI) -RSPEED*RP(K)*EEYTH( IsK)*EEYTH(JsK)/386.4

40	 AM(I1,J)=AM(I1,J)+RSPEED*RP(K)*EEYTH(I,K)*EEYTH( JoK1/386.4
N4=NNCT# 4
TRACE =O.
A'( N4+1) =1.
DO 50 I=1, N4

{	 50	 TRACE=TRACE—W I,I)
A(N4)=TRACE
DO 70 I=1jN4
00 60 J=1,N4

60	 BM(I,J)=AM(IsJf
70

	

	 BM I,I)=BM(I,I)+TRACE
DO 80 I=1s N4
Dt^fiI 11=BN1{I,il

60	 CONTINUE
DO 140 K=2p.N4
K1-N4`+1--K
TRACE=O.
DO . 90 I=lj N4
00 90 J=1sN4
CM{I,J)-0.
DO 90 L=1, h4

90	 CM( P.JJ=CM(IPJ)+AM(I,L)*BM(LoJ)
00 100 I=1sN4

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
.57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76



TK=K D 78
A(K1l=TRACE/TK D 79
00 120 I=loN4 D 80
DO 110 J=1,N4 0 81

11.0 Bm(i,J)=CM(I,J) D 82
120 BM(I,I)=BM(I,I)+A(K1) D 83

DO 130 1=1sN4 D 84
CM(IPK)=BM(Isl) D 65

130 CONTINUE D 86
140 CONTINUE D 87

NPLU52=N4+2 D 88
CALL PROOT	 (N4,CGNVPNPLUS2) D 89
WRITE	 (3,180) D 90
WRITE	 (3s210)	 SPEEDI D 91

' WRITE	 (3s190) D 92
DO 160 I=1:N4,Z D 93
K = N4 — I+1 D 94
,l= (I+1)12 D 95
UNDF =CRT(J) D 96
DMF=0. D 97
AMF=O. D 98
LOBZ 00 D 99
UNF-0. D 100
IF	 (V(K).E0.0.)	 GO TO 150 D 101
IF	 (U(K).Ea.0.)	 GO TO	 150 D.102
DMF=V(K)*9.549296 D 103
AMF=( U(K)*U (K)+V.(K)*V(K))/(-2.*U(K)*V(K)) V104
LOD =-2.*3.141:9*U(K)/V(K) D 105
IF	 (A8S(U(K)Y.GT.ABS(V(K))) 	 GO TO 150 D 106
UMF=(U(K)*U(K)+V(K)*V(K)1*9.549296 1((V(K)*V(KI—U(K)*U(K)) **.5) D 107

150 CONTINUE D 108
WRITE	 (3#2001	 J, UNDF, U (K ), DMPPUNF, AMFP LDD D 109

160 CONTINUE D 110
IF..(IMODE.EQ,O)	 GO	 T D Ill
£AEI. DMODE D 112

170 CCPTIVUE D 113
RETURN D

Ln
114

y

kr;

t/T



L D 115
16(7 FORMAT ( Mils // ) D 116
190 FORMAT	 I5X,t-MODEt, 4X,tUNDAMPEDts7X,tDAf1PINGtsBX ,tDAMPED t s9Xjp#UNBAL D 117

1ANCEFf6XFOAMP.#l11X,t LOG#,/s5XstND. ts5X,tFREQUENCYt,6X#OEXPONENTt , D 118
27XstFREQUENCYss6XstFREQUENCYt,bXsOFACT4Rt,9XstDECiiEMENTt,/i13XPt(R D 119
3PM)i,9X,t(.l/SEC)$p6Xst(RPM)ts lOXst(RPM)t,10XP$(DIM) t ,lOX P $ (DIM1 t, / D 120
4,13Xst(AVE,	 Kits//) D 121

2G4 FORMAT	 (6XsI2p5(5XiF10.2),5X,#ElO@4) D 122
210 FORMAT	 (t	 SPEED	 IN RPM =	 0sFl5.Z) 0.123

END D 124—
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E	 i
E	 2
E	 3
E	 4
E	 5
E	 6
E	 7
E	 8
E	 9
E 10
E II
E 12
E 13
E 14
E 15
E 16
E 17
E 18
E 19
E 20
E 21
E 22
E 23
E 24
E 25
E 26
E 27
E 28
E 29
E 30
E 31
E 32
E 33
E 34
E	 3.5

E 36
E 37
E 38

N
Ln
V

SUBROUTI1,4E PRUOT (N:CONV,NPLUS2)
COMMON /nLK14/ A(42) sU (42),V(42)sH(42)jB(42)sC(42)

C
C	 THIS IS A SUBROUTINE SALVING FOR THE R OU TS OF A POLYN OM IAL
C

C ONV= I *E-35
NC=N+1

C	 SEND COEFFICIENTS TO REDUCED COEFFICIENT STORAGE
DG 10 I=1st4C

1G	 H[I)=A[Il
C	 INITIALIZE GUESSES AND SET REVERSAL INDICATOR NORMAL

P-0.

R=0«
IREV=1

C	 SCALING TO BE DONE AT THIS POINT
C	 REMOVE ALL ZERO.ROOTS
20	 IF (H(I)) ,50P30,00
30	 NC=NC—I

V(NC)=0.
U(NC)=0.
DU 40 I=1PNC

^0.	 H(I)=H(I+1.)
GO TO 20

C	 TEST FAR VARIOUS DEGREES
50	 IF .(NC -1) 60P46OP60
6G	 IF (NC-2) 60P70s80
70	 R= H(11/H[2)

GO TO 330.
80	 IF (NC-3) 100,90,100
90	 P=H(2)/Hl3)

G=H(1)IH13)
60 TO 380

C	 TEST TO REVERSE COEFFICIENTS AND 00 SO IF TEST SUCCEEDS
100	 IF ( ABS(H(NC-I) /.H(f♦ C))—ABS ( H(2)/H(1)) ) 110s1 . 70s170
11.0	 IRE . V = -IR EV

M=NC/2
00 120 I=10M



E 39
E 40
E 41
E 42
E 43
E 44
E 45
E 46
E 47
E 48
E 49
E 50
E 51
E 52
E 53
E 54
E 55
E 56
E 57

E 58
E 59
E 60
E 61
E 62
E 63
E 64
E 65
E 66
E 67
E 68
E 69
E 70
E 71
E 72
E 73
E 74
E 75
E 76

N
La
OD

NL=NC+1—I
F=H(NL)
H(NL)=H(I)

120 H(I)=Er
IF	 (0)	 140#1309140

130 P=O.
GO TO 150

140 P=P/U
4=1..10

I5C IF	 (R)	 16Ox170#160
160
C NEWTON#	 CALCULATE F (R) AND TEST FOR ROOT
170 E=5. E-20

B(NC)=H(NC)
C(t4C)=H(NC)

' B(NC+1).=0.
C (NC+1)=0.
NP=NC-1

1b0 DO 310 a=1#1000
0O 190 Ii=1sNP
I=1^C—I1
B(I)=H(I)+R*B(I+11

190 C(I)=B(I)+R*C(1+1)
IF	 (ABS(B(1)/H(1))—E)	 330x3309200

200 IF	 (C(2))	 220#210#220
210 R=R+1,

GO..TO	 230
220 R=R-8 ( 1) /C (2 l
C MAKE A BAIRSTCW REDUCTION AND CORRECT
230 00 240 I1=10NP

I=NC—I1
q(I1=HI1)—P$B(I+11-0^6(I+2)

240 C(I)=B(I)—P*C(I+1)—O*C(I+2)
C TEST FOR CONVERGENCE OF BAIRSTOW PROCESS..

IF	 (H(2))	 26Os2t0#260
250 IF	 (ABS(8(2)/H(1))—E)	 270#270#280
260 IF	 (ABS (8 (2) /H(2) )--E ) 	 270# 270x 280
270 IF	 (ABS(B(1)1H(1))—E)	 380#38Ox260

5



340

350
360
37 0

C

350

390

400

410

C
420

E 77
.E 78

E 79
E 80
E 81
E 82
E 63
E 84
E 65
E 86
E 87
E 88
E 89
E 90
E 91
E 92
E 93
E 94
E 95
E 96
E 97
E 98
E 99
E 100
E 101
E 102

E 103
E 104
E 105
E 106
E 107
E 108
E 109
E 110
E 111
E 112
E 113
E 114

CBAR=C(2)-B(2)
D=C(3)**2-CBAR*C(4)
IF (D) 300#290#300
P=P-2.

GO TO 310
P=P+(€3(2)*C(31-8(1)*C(4))/D'
G.-O+(^-B(2)*.CBAR+B(1)*C(3)110
CONT INUE
E=E*10.
IF (E-CONV) 180:180.320
CONY=E
G0 T.0 180
LINEAR, COMPUTE AND STORE LINEAR ROOTS
NC=NC-i
V(Nc)=0.
IF ( IREV ) 340P350050
U(NC)=1./R
GO TO 360
U(NC)=R
00 370 I=1#hC
i^(I1=8{I+11
GO TO 50
QUADRATIC. SOLVE QUADRATIC AND STORE ROOTS
NC =NC-2

IF (IREV) 390#400,400
GP=1./Q
PP=P/(Q*2*0)
GO TO 410
4P=Q
PP=P/2.0
F=(PP)**2-QP
IF (F) 420t43OP430
CASE OF IMAGINARY ROOTS.
U (NC+1)=-PP

U(NC)=-PP
V t.NC+11=SQRT (-F )

(PAC+1l



i

J
a

i

N
i

q^q

1

E 115
E 116
E 117
E 118

E 119
E 120

E 1"Z1

E 1.22

E 123
E 124

E 125

E 126—

GO TO 444
C	 CASE Of REAL RUfjTS.
430	 U(NC+I)=—S.IGN(ABS(PP)+SQRT(F)PPP)

V(NC+1)=4.
U(NC)=QPIU(NC+I)
V (IBC) =Q.

C	 FORK NEW REDUCED COEFFICIENTS
440	 DO 4.50 I=I,NC
450	 h(I)=8(I+2)

GU TO 50
460	 RETURN

END
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F
F
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F
F
F
F
F
F
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F
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SUBROUTINE UM06E

THIS SUBROUTINE CALCULATES THE DAMPED MODE SHAPES OF THE SYSTEM
USING THE LEVERRIERS ALGORITHM.

COMPLEX SMODE(22100),SHAPE(40),ClpC2,C3
COMPLEX CD(401
DIMENSION Z(100), P(100)
COMMON / BLKl / N,NB,NNLIN , NMBsNF , NU,NSiNBOW , ISTABsIMCDEsISKUPNNCT*N

LUFPT
COMMON /8LK9/ D&PC(10j10C)xEEYTH(10#l00)
COMMON /BLK14/ AA( 42) sU (42)sV(42),H(42),BB(42),CC(421
COMMON A. ( 40x40),5 ( 40940) , C(4Os4Ol#D ( 4Op4O ) vE(4Om4O ) oFM(2I
N4=NNCT*4
DO 110 I=1sIMODE
KK=N4-2*1f2
IF (A8S(V(KK)).LT.1.1 GO TO 110
C1=CMPLXIU ( KK),V(KK))
C2=1./C1
N 3=N4-1
DO 1.0 J=1,N4
SHAPE ( J)rCMPLX ( 0.t0.)
SHAPE(1)=CMPLX ( 1.,0.1
DO 50 J-1, N3
DO 20 K=1,N4
CD(K)=CMPLX(D(K,J),0*)
DO 30 L = 1, N4
DO 30 K=1,J
CD(L)=CD(L)*C2
CONTINUE
DO 40 K =1,N4
SEIAPE(K)=SHAPL(K)+CD(K)
CONTINUE
DO 60 J=1sN	 4
SNODE(1sJ)=CMPLX(0.,0.)	 I
SMQDE (2, J) = CEMPLX (0., 0. )
P2=(x'4/2
r;l=nz /2

c '^=



GO 80	 J =lj NI F 39
JL=J+rte F 40
JM=J+N2 +N1 F 41
DO 70 K = 1sN F 42
SMGDE(1,K)=5140DE(1,K1+SHAPE(JL)*DDPC(JsK) F 43

70 SMODE(2,K)=SM ODE(Z,K)+SHAPE(JM)*OUPC(JPK) F 44
b0 CONTINUE F 45

ZMAX=0. V 46

Dq 90 J=IjN F 47
Dl=REAL (SM0DE (1s J) ) F 48
DZ=REAL(SN0DE(2sJ)1 F 49
2(J)=SQRT(D1*0I4D2*DZ) F 50
P(J) = 57..295779*ATAN2( —D2,DI) F 51
IF	 (ZMAX.GT.Z(J)1	 GO	 TO 90 F 52
ZMAX=Z(J) F 53

90 CONTINUE F 54
VI=99549296*V(KK) F 55
WRITE	 (3,220)	 U(KK)PV(KK)PVI F 56
WRITE	 ( 3s130) F 57
DO 100 J = 1sN F 58
X1=REAL(SM€;DE(1,J))/ZMAX F 59
X2-AlMAG(SMODE(1,J))1ZMAX F 60
X3=REALIS MODE (2,J))IZMAX F 61
X4=AIMAG(SMGDE(2,J))IZMAX F 62
TMAJ = (.5*(X1*X1+X2*X2+X3*X3+X4*X4)+(.25*(X1*X1+X2*X2 — X3*X3—X4*X4)* F 63

1*2+(XI*X3*X2*X4)**2}**.51**.5 F 64
TMIN=(92*X3 —X1*X4)1TMAJ F 65
CON1 = 2.*(X1*X3+X2 # X4) F 66
CON2=(XI*XI+X2*X2—X3*X3—X4*X4) F 67
PHASE = .5*57.29518 *ATArl2(CDN1iCC1N2) F 68
IF	 (PHASE:.LT.(J)	 PHASE=PPA.SE+360. F 69
ZDIt9=Z(J)/ZMAX F 70
WRITE	 (3p l4(,)	 JsTI•kAJ,Tt IN#PHASE,P(J)sZDtM F 71

1G0 CONTINUE F 72
Ilia Cut^TIVUE F 73

RF TURN F 74
C F

N
75	 rn

12G F i] k ,%AT	 (1H1,///,10Xvi4EJGLNVECTGR	 FCR	 EIGENVALUE=rt,F10.2,t-+ig ,F10.2, F 76



10I	 DAMPED FREQUENCY=0pFl2.2,0RPK*)	 F 77
130	 FORMAT (/,5X,#STATION#,3XpAMAJINt AXIS#,SXPOMINCR AXIS#,5X,#ELLIPSE F 76

1;^s8XriPP H ASE # sIOX P ;O POTOR #,/, 5Xs#Ni3. # p 37X, # ANGL . EO:lOX, # ANGLE O PIOXi#A F 79
2HPLITUDE #, /I)	 F 80

140	 FORMAT (5X,I3,7X,5(F10.3,5X))	 F 81
END	 F 82—

-^ a
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SUBROUTINE UBST	 (IND,SD) G 1
C **##T#****#******#*#*###*####**##******#**##* G 2
C THIS SUBROUTINE CALCULATES THE UNBALANCE RESPONSE OF ROTOR SYSTEM G 3
C USING THE PLARAk MUIDES, WHICH CAN LATER BE TRANSE13RMED INTO REAL G 4
C DISPLACEMENTS. G 5
C *##############*###*#*#*######*###*##*##*#******#********* G 6

REAL	 ViBX,MBY G 7.
DIMENSION SPED(50) G 8
COMPLEX	 BfC,UUM G 9
COMPLEX EUM G 10
REAL	 KXX'sKXYtKYXPKYYoMFX,MFYPMUX,MUYsKMX:KMY G 11
COMMON /BLK1/ N,NBsNKI LINsNMB,NF,NUsN5.,NBOWsISTAB91MODEsISKUPNNCTsN G 12

lUFFT G 13
COMMON	 /BLK3/	 CRT(10),LLBD(10),LLNB(5),LLNMB(9)PLLSK(I0)sLLNT(10)i G 14

1LLUF(10),LLFF(10),LLUT(10) G 15
COMMON	 /BLK5/	 UX(10).,UY(10), FX(10),FY(10)PFSK(10)#PSK(10) G 16
CFiMN /BLK7/ C.MX(10,10),KMX(10,10).vfMX(IOYIC).sCIIY(10P10),KVY(10,1 G 17

1C),EMY(10,1G) G 18
LL1'f.Oill	/BLKE/	 1'.FX(10).IFFY(I0'),E:UX(10},MUY(10)sMBk(1C),MBY(1C) G 19
CJVfVLN	 IRLK9/	 ubPC(16,1C0),LEYTH(10,100) G 20
Ca;i• .F.L14	 1bLK101	 SPSx5PF,5F1l,SPEEDI C 21
C!I	 f bP4	 IBLKII/	 Lt:X(1G,lG),DOY(1G,LO),EEIX(1D,1G),EGY(IC,10) G 22

Id L lc15/	 FP (100),RT(100 G 23
[.	 Ct.	 /i3LK1 Z 1	 AKK (13) G 24
CC;i':f'0N	 /iLK21/	 EMXi10.* 10),0MYt10.* 10 G 2a
Cohi'I ' f:	 /bLK241	 P(2Cf21},C(20 G 26
C1,NiiLi,	 L UI5F7^	 ili'i,:L.}sLi,f^,P.XI`{1G.5C)sE^GT^PY^ % i1c:^10),IGISPYI(3G,50) G 27

1s Xi-,Ai( 1C,t(, 	 Xf4IV	 10,50),PNAJ(10,50}sP(4 IP:I10	 50	 it0Uht3Y(4002] G 28
SP I=SPN G 2 c
IJ=1 G 30
DO 170 JSP=1,50 G 31
IF	 (IND.EG.I)	 GC TO	 10 G 32
SP=SPS+(JSF-1)*SPI G 33
IF	 (SP.GT•SPF)	 GO TO	 180 G 34

ANGSP=SP*3.14I59/30. G 35
SPEt)(IJ)=St G 36
GO TO 20 G 37

10 ANGSP=SD*3.14159/30. G 38

N



3U

4G
5G
66

70

60
9Iri

IOU
110

CC114TIMUE G 39
tjrl=NNCT*2 G 40
V:f x NKC T*Z+1 G 41
DUN=CMPLX(U.RI-) G 42
EUK=CMPLX(I.P0.) G 43

DO	 30	 I=1,irNCT G 44
rux(I) =G. G 45
{'UY(I) = G. G 46
COf.T T1AJE G 47

IF	 (VL,.EQ * 0)	 CG	 TF l 	60 G 4E

UEi	 "10	 1=1:NU G 4r
J = LLUF(I) G 50

DO 40 K=1pNNCT G 51
I' IJX(K}=1Et)X(K)+ANGSP*ANGSP*GX(1)*LDFC(K,J) G .Z
1 ,,OY(K)=^:UY(k)+AKGSP*At".GSF*(jY(I)*D0PC(KPJ) G 53
CONTINUE G 54
CONTINUE G 55
IF	 (t S, kC.0)	 GC:	 TO	 ^-a G 56
Lc BG	 1=1sN5 C 57
J=LLSK( I.) G 58
PAS=FSK(I1/57.2957F G 59
PCGS=COS (PAS) G 60
PSIN = SIN(PAS) G 61
00 70 K=IP NNC T G 62

('UX(K)=u MUX(K) +ANGSP * ANGSP * FSK(I) * PCQS *( RP(J ) —RI(J))*EEYTH(K#J)/386 G 63
1. 4 G 64

MUY(K)=MUY(K)+ANGSP*ANGSP*FSK(I)*PSIN*(RF(J) —RT(J))*EEYTH(KsJ)138E G 65
1.4 G 66
CONTINUE G 67
CONTINUE G .68
IF INBOU*EQ.4) GO TO 110 G 69

DO 100 I=1,NKCT G 70
MUX(I)=KUX(1) +KBX(I) G 71
MUY(I)=MUY(I)+VtBY(I) G 72
CONTINUE. G 73
DO 120 K=IPNNCT G 74
00 120 L = lvNNCT G 75	 *^
E1"X(KPL) = EOX(KsL) G 76	 Ln



LMY(.K.PL) = EDY(K,#L) G 77
DMX(KsL) = GOX(KsL) G 76
DMY (Ks L )=DOY ( Ks L l G 79
DO 120 J=1sN G 80
DMX(K,L) = DMX(K.PL)+ANGSP*RP(J)*EEYTH(KsJI*EEYTH(LsJ)/386.4 G 81
DMY(KsL)=OMY(KsL) —ANGSP*RP(J)*EEYTH(K#J)*EEYTH(LPJ)/386.4 G 82

120 CONTINUE G 83
DO 140 I=1s10 G 84
D© 130 J=1,.11 G B5

130 B ( IsJ)=CMPLX ( 0.s0.) G 86
140 C(I) = CMPLX(0.90 * ) G 87

DO 160 I-1sNNCT G 88
II= I+NNCT G 89
00 150 J=1sNNCT G 90
J J= J+NNCT G 91
B(I,J)=B(ljJ)+KMX ( IsJ)*EUM+CMX(IPJ)*DUM *ANGSP G 92
B(IIPJ)=B(IIsJ) + EriY(IPJ I* EUM+Df4Y ( I p J)*DUM*ANGSP G 93
B(IsJJ ) = BtisJJ1 + EMX(IsJ) * EUM+DMX(IsJ) * DUM*ANGSP G 94

150 B(11.PJJ)=B(IlsJJ)+KMY(T—,J)*EUM+CMYCIsJ)*DUt',4--ANGSP G 95
B(I.oI ) = B(I,I)+((.CRT ( I)*3.14159130.)**2 — ANGSP **2)*EU14 G 96
B(IIsII) =B(IIs1I )+{( CRT(I) * 3,.1411 g / 30.)**2 — At*GSF**2) *EUM G 97
r,LX=f,NCT*2+1 G 98
B(Isi4EX )=-•' CMPLX ( MUX(l)yMUY ( I)) G 99

1t,G B ( IIsNEX )=—LM PLX ( MWY(Ils — MUX{I)1 G 100
CALL	 SALVE	 (Nt4 p VM) G 101
IF	 (IND.E0 * 1)	 RETURN G 102
CALL	 ELLIP	 (NNsIJ) G 103
IJ=IJ+1 G IG4

170 CONTINUE G 10:
1Lc1 CONTINUE G 106

hPF=1J-1 G 107
CALL UPRINT	 (NPP , SPED) G 108
RETURN G 109
END G 110—
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H 32
H 33
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n^
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SUBROUTINE	 SOLVE	 (N; Np `M)
COMPLE X BsCsDUtrMYsCQNJG
COhM&H	 /BLK24/	 L(20sz1)sC (20)
DG 80
K=1

1G IF	 (CABS(8(K,I)).GT.0.,000001)	 GO TO 20

K=K+1
IF	 (K-111:)	 IOPIOP90

20 IF	 (1 — K)	 30s5G,90
30 GO 4G M= I,MN.

DUMMY=B(I,M)

40 B(Kpm)=GUMMY
10 II=I+1

IF	 ( II.GT ,NN)	 GO T O 60
DO 70 N-IIsNN

T IF	 (CABS(B(N,I)).LT.0.000001)	 GO TO	 70
f S0=(CABS(B(IsI)))**2

DUMMY=B(N,I)*CQNJG(B(I, I))/SQ
GO 60	 1;=I, MM

60 B(Ns M)=B(NpM)—B(1pM)*DUM14Y
70 COFTINUE
SG CONTINUE

G© TO 100
40 IF	 ( I . EO.t-Ili)	 WRITE	 (3j,156) 

IF	 (I.LT * NN)	 WRITE	 (3s160)
STOP

C START SACK SUBSTITUTIONS
100 1z14N
110 GUNNY=(C.OsG.0)

IF	 (I.EG.NN)	 GO TO 130
JJJ=I+I
00 120 J=JJJsNN

120 outiNY =DursmYfB ( I s J ) #C f J)
130 SC=(CA6S(B(I,I)))**2

Cfl)--(OilmK y + B(IImr, ))*C oft, JG(B(Is111	 S,0
1=1-1
IF	 ( I )	 140914U#110



140 kETURN H 39
C H 40
150 fdktlkT	 (4Xol9HMATRIX	 HAS	 ZERO ROW) H 41
ILO FORMAT	 (4Xs22HPATRIX HAS ZERO COLUMN) H 42

END H 43—

c+
00
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I
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SUBk GUT
^^ 

1 NE ELL I P
J
 (NNY I  1

**j*********4*** ^ T*T**T .*T ^^7 ^TT ^TTT ^^^^^TT ^^^T ^^^7'^7 ^^^+TTTTY^TTTTT

THIS CALCULATES THE REAL DISPLACEMENTS FROM MEDAL COCIRDINATES
ANN THE INTO ELLIPTICAL ORBITS. ALSO CALCULATES THE PHASE ANGLES
KITH PROBES AT X — DIR AND Y—DIR.

COMPLEX B,C
COMMON /BLK1/ NsflBPtINLINsNMBsNFPNUsNSsNBOWsISTABsIMCDEsiSKUPNNCTsN

1UFPT
COMMON /BLK3/ CRT(10)sLLBD(10)sLLNB(5)sLLNMB(9)sLLSK(10)PLLNT(10)i
1LLUF(10)sLLFF(10)s LLUT (10)

COMMON /BLK9/ D'UPC(10 ► 100)sEEYTH(10 ► 100)
COMMON /BLK24/ B(20s21)sC(20)
COMMON UDISPXR(10s50) ► UDISPXI(10150)sUDISPYR(10s50)sUOISPYI(10s50)

IPXPiAJ(10 ► 50)sXMIhi(10,50) ► PMAJ(10s50)sPMINIIOP50)sADUMMY(4002)
00 10 1=1,010
xf1AJ(Is IJ)=0.
XMIN(I ► IJ)=0.
PMAJ (Is IJ) =0.
FrMlm(lsIJ)=04
00 50 I=lpWUFPT
II=LLUTfi
X1=0.
x2=0.
x3=0.
X4 =0.
NNCT=(INI2
00 20 J=1:NNCT
JJ=J+PINCT
C1=REAL(C(J))
C2=AIMAG(C(J))
C3=REAL(C(JJ) )
C4=A IMAG (C (JJ) )
X1=X1+C1*DDPC(JsII)#1000.
x2=X2+C2*DDPC(J s II)*1000.
x3=X3+C3*DDPC(JsII)*1000.
X4=X4+C4*DDPC (Js II)*;000.

UOISPXR(IsIJ)=X1

`r

C
C

C
C

10

20



UL)lSPXI(IPlJ)=X2 1 39
LDISPYktl.PIJ)=X3 1 40
UDlSPYI(IpIJJ=X4 1 41
XfliAJ(1.91.J1 x;(.5*(XI*XI+7(2*X2+X3*X3+X4*X4)+( * 25*(XI*3(I+X2*X2 — x3*X3— X 1 42

14*X4)-r*2+(X1*X3+X2*X4)**2)***5)**.5 1 43
XMIN(IPIJ)=(X2*X3 —Xl4X4)/XPIAJ(IjPIJ) 1 44
CON41=2 * *( Xl*X3+X2*X4) 1 45
COt-12=(XI*Xl+X2*X2—X3*X3—X4*X4) 1 46
IF	 (CfJN2.EQ.0.)	 CO	 T13	 30 1 47
PMAJ(IoIJ)--.5*57.29578*ATAN2(CONIsCON2) 1 48
GO TO 40 r 49

3C	 PIIAJ(Iplj)=.Co 1 50
40	 CONTINUE I 51

IF	 (FMAJ(lPlJ).LT90 * )	 FMAJ(IjIJ)-PMAJ(IPIJ)+360o 1 52
50	 CONTINUE 1 53

RETURN I 54
END
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J
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J
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J
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7
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SUBROUTINE UPRINT (NPPoSPED)

THIS SUBROUTINE PRINT OUT THE UNBALANCE RESPONSE OF THE ROTOR AND
ITS CORRESPONDING ELLIPTICAL ORBITS.

DIMENSION SPED(50)
COMMUN /BLK1/ NfNB,NNLI!(,NMB,NF,NU, NSsNBOW,ISTAB,IMODE,ISKUsNNCTPN

lUFPT
COMMCN /BLK3/ CRT(IO),LLBD(10),LLNB(5),LLNMB(9),LLSK(10),LLNT(IO))

ILLUF(10)sLLFF(10)sLLUT(10)
COMMON U0ISPXR(10,50) sUOISPXI(10,50),UDISPYR(10,50),UDISPYI1100501

1sXMAJ(1Us50) sXMIN(1Os50)sPMAJ(10,50),PMIN(10,50)* ADUMMY(4002)
DO 20 II=isNUFPT
NTB=LLUT(IIl
WRITE (3s60) NTB
WRITE (3,501
DO 10 JJ=I,NPP
P=PANG(UDISPYI(II,JJ)sUDISPYR(II,JJ11
PA=CLiS(P*3.14159/180.)
R=UDISPYI(II, JJ) /PA
WRITE (3s60) SPED(JJ)sUDISPXR( IIsJJ ),UDISPXI(II,JJ)sUD[SPYR(IIsJJ)

1,UDISPYI(II,JJI
CONTINUE
CONTINUE
DO 40 II=I,NUFPT
NTB=LLUT(II)
WRITE (3,80) NTB
kRITE (3,70)
DO 30 JJ=1sNPP
PX=57.29575*ATAF12(—UDISPXI(II,JJ1sUDISPXR(IIsJJ))
PY=57.29578#ATAR2(— UDISPYR(II,JJ),—UDISPYI(II,JJ))
WRITE (3s90) SPED(JJ),XMAJ(II,JJ ),XMIN(Ii,JJ),PMAJ(II,JJ),PXsPY
CONTINUE
RETURN

FORMAT (//,9Xs$SPEED;gPIOXs$X—REAL#,10X, #X—IMAGOPIOX,OY—REALO,lOX,O
IY—IMAGx)
FOPMAT (5XsF10.0s4(5XsF10.5))



70	 FOkMAT i//,9X,i0SPEED#s8Xs$MAJOR AXIS #,$X,0t4INOR AXISVi2Xso	 MAJOR J 39
1 AXIS ANGLtit, 5Xs#PRGBE AT X#, 5Xs #PROBE AT Y#s /sSX,-0(RPM)#s12X**(MI J 40
2LS)*,.1OXs#(ItILS)$PIOXs#DEGREES-$sIOX,#PHASE DEG#sEXs#PHASE DEG#s/) 	 J 41

80	 FORMAT (1HIs//s# UNBALANCE RESPONSE OF STATION NO.#sl5s/)	 J 42
90	 FORMAT (5XsF10.0s6(4XsF13.5)) 	 J 43

END	 J 44—

0



FUMCTION PANG	 (AFCS,AFSN) K 1
C K 2
C *	 THIS	 15 A FUNCTION USED	 TO CALCULATE THE ANGLE	 **** K 3
C *	 WHOSE ARCTAN VALUE	 IS GIVEN K 4
C K 5

ACS-AFCS K 6
ASN=AFSN K 7
IF	 (ASN)	 40s1Gs40 K 8

10 IF	 (ACS)	 20930P30 K 9
2G ANEW=160.0. K 10

GO TO 120 K 11
30 ANG=0.0 K 12

GO TO 12o K 13
40 IF	 (ACS)	 90,50,60 K 14
50 IF	 (ASN)	 6OP30970 K 15
60 ANG=270. K 16

GO TO IN K 17
70i ANG=90. K 18

G q TO 120 K 19
80 ANG=O. K 20

GO TO 100 A 21
90 ANG:-180. K 22
100 ASN = ASN/ACS K 23

{ ACS=ABS(ASN) K 24
ACS=ATAN(ACS) K 25
ANG=ANG+ACS*57.295780 K 26
IF	 (ASN)	 110P120s120 K 27

110 ANG=— ANG K 28
120 IF	 (ANG)	 130s 140v 140 K 29
130 ANG=ANG+360. K 30
140 PANG=ANG K 31

P RETURN K 32
ENO K 33—

N
V
W



SUBROUTINE	 SFTBOW L 1
C L 2
C THIS SUBROUTINE CALCULATES THE SHAFT BOW EFFECTS INTO MODAL L 3
C COORDINATES.	 (FOR	 INITIAL	 CONDITIONS AND UNBALANCE EFFEC L 4
C ********}***************************************************** L 5

DIMENSIDN BX(100)0	 B y (lo0) L 6

DIMENSION	 X(1G)o	 Y(10),	 Z(i0,10) L 7
REAL MBXsMBY L 8

COMMON /BLK1/ N,NBPNNLINsNMBFNFsNU,NS,NBOWsISTABPIMODEsISKUsNNCTsN L 9
IUFPT L 10
COMMON	 /BLK3I	 CRT(10)sLLBD(10) sLLNB(5)sLLNMB(9),LLSK(10)sLLNT(10)r L 11

1LLUFt10),LLFF(10),LLUT(10) L 12
COMMON	 /BLK6/	 BOW(1001sPBOW(100)sXIDC (1001,YIDC(IOOIPVXTDC(100)sVY L 13
IIDC(100)P8XA(100),BYA(100) L 14
COMMON	 19LK8/	 MFX(10)sMFY(10) PMUX(10),MUY(10)sM8X(10)sMBY(1Q) L 15

' COMMON	 /BLK9/	 DDPC(10v100)PEEYTH(10s100) L 16
COMMON /BLK15/	 RP(100),RT(100) L 17
COMMON /BLK18/ AKK(10) L 18
COMMON 18LK19/ DX(100) L 19
COMMON /BLK22/ W(100) L 20
DO 10	 I=1,N L 21
CT=PBOW(I)*3..14159/180. L 22
8X(I) = BOW(I)*COS(CT)/100G. L 23

10 BY(I)=BOW(I)*SIN(CT)/1.000. L 24
TC=(BX(2)—BX(1))/DX(1) L 25
TO=(BY(2)—BY(1))/DX(1) L 26
BXA(1)=ATAN(TC) L 27
BYA(1)=ATAN(TD) L 28
TC = L8X(N)— BX(N-1)IlDX(N-1) L 29
TD=(BY(N) —BY(N-11)/DX(N-1) L 30
BXA(N) = ATAN(TC) L 31
BYA(N) = ATAN(ID) L 32
NI=N-1 L 33
DO 20	 1 =2sr11 L 34
TC = (BX(1+11 —BX(1-111/(DXII-1)+DX(I)) L 35
TD=(BY(1+1)—BY(I-1))/(DXtl-1) +DX(I)) L 36
BXA(I) = ATAN(TC) L 37
BYA(I.) = ATAN (TO ) L 38

N
v
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i
3

i

zc

30

40

50
60

c

E

70

L 39
L 40
L 41
L 42
L 43
L 44
L 45
L 46
L 47
L 48
L 49
L 50
L 51
L 52
L 53
L 54
L 55
L 56
L 57
L .58
L 59
L 60—

z.

CONTINUE
DO 60 I=I:NNCT
X(I) =0.
Y(I)=0.
DO 40 J=I*NNCT
Z(I,J)=0.
DO 30 K=IPNB
L=LLBD(K)
Z(IsJ) = Z( Is J) — DGPC(I,L)*AKK ( K)*DDPC(J,LI
CONTINUE
DO 50 Kr-l#N
X(I)=X(I )+( DDPC ( I,K)*W(K) * BX(i'^)+EEYTH ( I,K)*RT ( K)*BXA ( K))138604
Y(I)=Y(I) +( UDPC ( I,K)*W(K) * BY(K)^̀ EEYTHIIPK) *RT(K)*BYA ( K)1/386.4
Z(I,I)=Z ( I,I)+(CRT ( I)*0.1047197)**2
DO 70 I=IPKNCT
MBX(I)=0.
MBY(I)=0.
DO 70 J=IsNNCT
t.Bx(I)=MBX ( I)+Z(IfJ)*X(J)
MBY(I) = MBY(I) + Z(I,J)*Y(J)
RETURN
END

.e
cn



SUBROUTINE TMODE2 (T,DELTAT,SPEED,NK)	 M	 I
C	 M	 2
C	 THIS SUBROUTINE CALCULATES THE MODAL COEFFICIENTS FOR TRANSIENT	 M	 3.

C	 RESPONSE ANALYSIS	 M	 4
C	 **####**#*#*##*##**#*#####*###*###*.#####************# M	 5

REAL MBX,MBY	 M	 6
REAL KXX,KXY,KYX,KYY,MFX,MFY,MUX,MUYsKMX,KMY	 M	 7
COMMON /3LKI/ N,NB,NNLINiNMBPNFsNUsNS,NBOWsISTAB.sIMADE,ISKUPNNCT,N M 	 8
IUFPT	 H	 9

COMMON / BLK2; ISKlPsNSTEPsNCYCLE , NITPsNINTPNPLDTsNORBIT , NTIME , NSPE M 10
1ED,NINCPNOPT,NT	 M 11
COMMON /BLK3/ CRT(10),LLBD(10)sLLNB(5),LLNMB(9),LLSK(10)sLLNT(10)s M 12
1LLUF(10),LLFF(10),LLUT(10)	 M 13
COMMON /BLK5/ UX(10)sUY(10),FX(10)sFY(10),FSK(10)sPSK(l0) 	 M 14
COMMON / BLK6 / BOW(100),PBDW ( 100),XIDC(100),YIDC(.100)sVXIDC(100)PVY M 15

IIDCIl001sBXA(100),8YA(1001 	 H 16
COMMON / BLK71 CMX ( I0,lO1,KMX ( 10110) , EMX(10,10),CMY { 10,10f,KMY(10s1 M 17
10),EMY (10s10)	 M 18
COMMON IBLKB/ 14FK(101,MFY(10) sMUX(10 ) *MUYI10f,MBX ( 10)sMBY ( 101	 M 19
COMMON /BLK9/ DDPC(10,100),EEYTH(10sl00)	 M 20
COMMON /BLK11/ DOX(1Os101,DOY(i0,10),EOX(IOP1O)sEQY(1Os10)	 M 21
COMMON /BLK.15/ RP(100)PRT(100)	 H 22
COMMON /BLK16I SPEED2sANGSP,ANGACLsFSPEED 	 M 23
COMMON IBLK181 AKK(10)	 N 24
COMMON tOLK 21/ DMX(10>^l0)sDMY(10s10)	 M 25
COMMON /BLK29/ PASP	 M 26
PI=3914159	 M 27
ANGSP=SPEED* PI/30. 	 M 28
00 10 I=1 , NNCT	 M 29
Plux (I) = 0.	 M 30
MUY(I) = 0.	 M 31
NFX(I) = 0. 	 M 32

10	 MFY( I)=0,,	 N 33
IF (NU.EQ.0) GO TO 40	 M 34
00 30 I = isNU	 M 35
J=LLUF(l)	 M 36
PHI=ATAN2(UY(I)sUX(I)) 	 11 37
OMT=ANGSP*TtPHI	 M 38

.._

NV



_	 now
*—	 T

w^

IF	 M.EQ.G) OMT=PASP+PHI M 39

TME=(UX(I)*UX(I)+UY(I)*UY(1)1**0.5 M 40
D© 20 K=lshNCT M 41
rTUX(K.)=kIUX(K)+(A.NGACL*SIN(GMT)+ANGSP*ANGSP*COS(OMT))*TKE* DDPC ( K,J) M 42

20 MUY(K)=tiUY(K)+(ANGSP*ANGSP*SIN(OMT1—ANGACL*CCtStOFT))*TME*DDPC(KsJ) M 43
30 CONTINUE M 44
40 IF	 (NS.EG.0)	 GO TO 60 M 45

TIME=T M 46
DO 50	 I=1PNS M 47
KK=LLSK(I) M 48
CAN=At:GSP*TIME+PSK(I) /57.79578 M 49
IF	 INK,EQ * O)	 CAt:=PASP+PSK(I)/57.29578 M 50
DO 50 J=1sNNCT M 51
ttUX(J)=MUX(J)+(ANGSP*ANGSP*COS(CAN)+ANGACL*SIN(CAN1)*FSK (I)* (RP(KK M 52

1) —RT(KK))*EEYTH(JsKK)/386e4 M 53
50 f.UY(J)=MUY(J)+(APIGSP*ANGSP*SIN(CAN1—At4GACL*C©S(CAti))*FSX(I)*(RP(KK M 54

1) —RT(KK))*EEYTH(JsKK)/386.4 M 55
6C IF	 (NBOW+E0.0)	 60	 TO.60 M 56

DO 70 I=l iNNCT M 57
TMAG= (MBY (I) **2+t'iBX (I) **2) **0.5 M 58
ANG=ATAh2(MBY(I)sM6X(I)) M 54
TANG=ANG+T*ANGSP M 60
IF	 (NK.EQ.0)	 TANG=PASP+ANG M 61
NUX(I)=t:UX(I)+TMAG*CDS(TANG) M 62

70 MUY(I)=rUY(I)+TPAG*SIN(TANG) M 63
8C CONTINUE M 64

IF	 (NK. EQ.1)	 GO	 TO	 100 M 65
D© 90 K = IsNNCT M 66
DO 90 L=1sh:NCT M 67
EMiX(KsL)=EC,X(KsL) M 68
EMY(KsL)=EGY(KsL) M 69
DMik(KsL)=DGX(KA) M 70
DMY(KsL)=D(fY(KsL) M 71
Do 90	 J=1sN M 72
EMX(KsL) = EMX(KsL)+0.5*ANGACL*RP(J)*EEYTH(KsJ)*EEYTH(LsJ)/386.4 M 73
EMY(KsL) = EM'fY(KsLJ — C.;*ANGACL*RP(J)*EEYTH(KsJ)*EEYTH(LsJ)/386.4 M 74
014X(KsL) = DMX(K,L)+ANGSP*'RP(J)*EEYTH(K,J)*EEYTH(L,J)/386.4 M 75

90 DMY(KsL)=DMY(KsL)—ANGSP*RP(J)*EEYTH(KsJ)*EEYTH(LsJ1/386.4 M 76

t

q
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SUBROUTINE	 TACCEL N 1
C N 2
C THIS SUBROUTINE CALCULATES THE MODAL ACCELERATION BY SOLVING N 3
C THE MODAL ECUATIONS OF MOTION N 4
C#***###*##**##*#***#**** *******#*********************** N 5

REAL	 KXX,KXY, KYX.KYY,NFx,MFYiMUXsMUYsKl1X,KMY N 6
COMMON /BLK1/	 NiNBsNNLIN,NMBsNFPNU,NSsNBOW, ISTABs IMODEs ISKU,NNCT*N N 7

IUFPT N 8
COMMOM	 /BLK3/	 CRT(10),LLBD(10)*LLNB (5),LLNMB(9),LLSK(10)sLLNT(l0): N 9

1LLUF(10)sLLFF(10)5LLUT(i0) N 10
COMMON	 /BLk7/	 CMX(10s10)PKMX(10P10) PEMX(10,10)jCMY(10,10)sKMY(10P1 N 11

1G)PEMY(10i010) N 12
COMMON	 /BLK6/	 MEX(10)s MFY(10)sMUX(10)sMUY(10)sMBX(10),MBY(10) N 13
COMMON	 /BLK9/ DDPC(10,100),EEYTH(10,100) N 14
COMMON	 /BLK20/	 A1(2,10)sA2(2,10)sA342,10)sB1(2t10)PB2(2o10)PB3(2sl N 15

10) N 16
COMMON	 /BLK21/ DMX(10,10)90MY(10s101 N 17
IF	 (NNLIN.EG.0)	 GO	 TO	 10 N 18
CALL BNF N 19

10 CONTINUE N 20
DO 30 I=1,NNCT N 21
AI(IPI1 =MFX(I)+MUX(I) — (CRT(I)*0.104719751**2*A3(1sI) N 22
B1(1sI) =MFY(I)+MUY(i) — (CRT(I)*0.10471975)**2 *B3(l,i) N 23
DO 20	 J=1,NNCT N 24
A1(1,I) =A1(IiI) —CMX( IsJ)*A2(IsJ) —KMX(I,J)*A3(1#J) —DMX(IsJ)*B2(l,J) N 25

1 —EMX(IsJ)*B3(IPJ) N 26
20 B1(1sI)=B1(1,I)--CMY( I,J)* B2(1, J)—KMY (IyJ)*B3(1sJ)—DMY(I,J)*AZ(1,J) N 27

1 —EMY(IsJ)*A3(1sJ) N 28
30 CONTINUE N 29

RETURN N 30
END N 31—

NV
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SUbRULTINL	 TINTG	 (NNCTsDELTAT) 0 1

C ***#^k************^x*#*******^k*##************#**#**#**#*****#**# 0 2

C THIS	 SUBROUTINE INTEGRATES THE MODAL 'ACCELERATION INTO VELOCITY D 3

C AND DISPLACEMENT BY MODIFIED EULER METHOD 0 4
C **#********************************************************** p 5

CUMMON /BLK2/	 ISKIPsNSTEPsNCYCLEsNITP,NINTsNPLCTjPNORBITsNTI M E:NS P E 0 6

IEDsNINCsNOPTsNT 0 7

COMMON	 /BLK20/	 A1(2s10)sA2(.2s10)sA3(2s10)sBl(2J IO1s62(2l101sB3(2s1 0 8

10) q 9
DG 10 I=IsNNCT 0 10
A2(2,I)=A2(lsl)+DELTAT*AI(IsI) 0 11
82(2,I)- B2(lsI )+DELTAT*BI( 1sl) 0 12
A3(2-sI)=A3(l,I)+DELTAT*0.50*(A2(19I)+A2(2sI)1 0 13

16 B3(29I)=B3(lsi)+DELTAT}4.50*(82(IsI)+82(2ill) 0 14
DO 20 I-IsNNCT 0 15

A1 (It I} = Al(2s.I) 0 16

A2 (Is 1)='A2(2sI1 0 17

A9(1sIl= A3(2sll 0 18

Bl(lsI) =Bl(2sI) 0 19

B2 (l p I ) = B2 (2,.I 1 0 20
20 03 ( IsI) =B3(2sI) 0 21

RETURN 0 22

!	 - END 0 23—

OD.0



-,	 ^^^^'''^^	 ^►	 _.. a	 mss. ^	 ^"'^"	 _	 _ .	 ..	 ..	 ....._	 . ^ _..	 .-	 _. _	 ...».-...._	 .o.^.,.	 .^, .+

SUBROUTINE	 TBETA	 (NNCTp0ELTAT p BETA) P I
C ****##*###*#*+#*#*******#*****#***#*####*#***#*************#* P 2

C THIS SUBROUTINE INTEGRATES THE MODAL ACCELERATION'S	 INTO MODAL P 3
C VELOCITY AND DISPLACEMENT BY NEWMARK BETA METHOD P 4
C *##******* * ** ***#*#**#*##***#*###****#***#********#***** P 5

DIMENSION	 STORE(6910) P 6
COMMON	 /BLK20/	 A1(2r10)sA2(2s10)sA3(2s10)sB1(2s10)PB2(2s10)lB3(211 P 7

1.0) P 8
DO 10	 I=I,NNCT P 9

ST0RE(lpl)-Al(lsI) P 10
STORE(2sI) = B1(Isl) P 11
STORE(3sI)=A2(1sI) P 12

STORE(4sI) = B2(IsI) P 13
STORE(5oI)-A3(1rI) P 14

10 STORE( 6sI)=B3(1sI) P 15
DO	 20	 I=19 NNI C T P 16

A2(lsI)=STORE(3sI)+DELTAT*ST(IRE(1sI) P 17
B2(1sI)=STORE(4si)+DELTAT*STDRE(2,I) P 18

A3(.IsI)=STORE(5sI)+.5*DELTAT*(STORE(3sI)+A241iI11 P 19
2G B3(191)=STORE(69I)+.5*DELTAT*(STURE(4,I)+62(1sI)) P 20

CALL TACCEL P 21

DO 30	 I=1,NNCT P 22
A2(IsI)=STORE(3sI)+.5*DELTAT*(Al(1sI)+STORE(1,I)) P 23
B2(1sI)=STORE(4sI)+.5*DELTAT*(B1(1,I)+STORE(2sI)1 P 24
A3(1sI)=STORE(5,I)+DELTAT*STORE(3,I)+(.5— BETA)*STURE(1sI)*DELTAT*D P 25

IELTAT+BETA*DELTAT*DELTAT* A1(l p i) P 26
B3(lsli=STORE(691)+DELTAT*STORE14sI)+(.5—BETA)*STURE(2iI)*DELTAT*D P 27
IELTAT+BETA*DELTAT*DELTAT*B1(1sI) P 28
A3(2,I)=A3(1sI) P 29

3G B3(2sI)=B3(Io1) P 30

RETURN P 31
END P 32—

m
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SUBROUTINE TINC 0 1
C**#**#**#**##*#####***#####*# *##*#*##******#****#*********** Q 2
C THIS SUBROUTINE	 TPANSFORMS THE ROTOR INITIAL CONDITIONS	 INTO 0 3
C MODAL	 INITIAL	 CONDITIONS OF	 VELOCITIES AND DISPLACEMENTS 0 4
C 0 5

DIMENSION	 XTH(100),	 YTH(100)s	 VXTH(100),	 VYTH(100) 0 6
COMMON	 /BLK1/ N,NB,NNLIN,NMB ► NF, NU,NSPNBOW p ISTABPIMODEsISKUPNNCToN Q 7

lUFPT Q 8
COMMON	 /BLK6/ BOW(100),PBOW(100),XIDC(100),YIDC(100),VXIDC(100),VY 0 9

II0C(100),BXA(100),EYA(100) 0 10
COMMUN	 /BLK9/	 DDPC(10,100),EE.YTH(10P100) 0 .11
COMMON	 /BLK15/	 RP(100)PRT(1001 0 12
COMMON	 /BLK19/	 DX(100) . 0 13
COMMON	 IBLK201	 A1(2,10),A2(2,10),A3(2,10) p B1(2i10l.PB2(2.i10)s83(2s1 Q 14

101 0 15
COMhEN	 IOLK22. 1	 W(100) 0 16
00	 10 I=11100 fl 17
XIDC(I)=XIDC(I)/1000. 0 18
YIOC(I)=YIDC(I)/1000. 0 19
VXIDC(I) = VXIDC(I)/1000. 0 20

16 VYIDC(I)=VYIDC(I)/1000. Q 21
TC=(XIOC(2) — XIDC(1))/DX(1) 0 22
TD=(YIDC(2) — YIDC(1))'/DX(1) 0 23
TE=(VXIDC(21 — VXIDCII))/OX(T) 0 24
TF=(VYIDC(2) — VYIDC(1))/DX;1) 0 25
XTH(1) = ATAN(TC) Q 26
YTH(1)=ATAN(TD) 0 27
VXTH(1)=ATAN(TE) 0 28
VYTH(1)=ATAN(TF) 0 29
TC=(XIDC (N) — XIDC(N--1))/DX(N-11 0 30
TD=0 IDC(N) — YIDC(N-1))/DX(N-1) 0 31
TE=(VXIDC(N) — VXIDC( y -1))/DX(N-1) 0 32
TF=(VYIDC(N.)--VYIDC(N-1))/DX(N-1) Q 33
YTH(N)=ATAN(TD) 0 34
XTH(N)=ATAN(TC) 0 35
VXTH(N)=ATAN(TE) 0 36
VYTH(N)=ATAN(TF) 0 37
N1=N--1 0 38

N
OD
N

F



G0 20 1=2,N1	 Q 39
TC=(XIOC(I+1) —XIDC(I-1))/(DX(I-1)+DX(I))	 Q 40
TD=(YIDC(I+1)—YIDC(I-1))/(DX(I-1)+DX( I))	 Q 41
TE=(VXIDC(1+1) —VXIDC(I-1))/(DX(I-1)+DX( I)) 	 Q 42
TF=(VXIDC(I+1) — VYIDC(I-1)1/(DX(I-1)+DX(I)) 	 Q 43
XTH(I)=ATAN(TC)	 Q 44
YTH(I)=ATAN(TD)	 Q 45
VXTH(I)=ATAN(TE)	 0 46
VYTH(I)=ATAN(TF)	 Q 47

20	 CONTINUE	 0 48
DO 30 1=1,#NNCT	 Q 49
A3(1.PI)=0.	 Q 50
03(191)=0,	 Q 51
A2(l,I)= 4. 	 Q 52
82(1sI)=0.	 0 53
DO 30 J=ljoH	 Q 54
A3(1sI)=A3(1,I)+(DDPC(I,J)*WIJ)*XIDC(J)+EEYTH(-IsJI*RT ( J)*XTH ( J))/3 Q 55

166.4	 Q 56
B3(1,I) = B3(1,I)+(DDPC(IsJ)*W(J)*YIDC(J)+EEYTH(I:J)*RT(J)*YTH( J1I/3 Q 57

166.4	 Q 58
A2 (lsl) = A2(1,I)+(DDPC(IsJ)*W(J)*VXIDC(J)+EEYTH( IsJ)*RT ( J)*VXTH ( J)l Q 59

1/366.4	 0 60
30.	 82(lsI)=B2(1pI)+(DDPC(IsJ)*W(J)*VYIDC(J)+EEYTH(I,J)*RT(J)*VYTH(JI) 	 Q 61

11386.4	 Q 62
RETURN	 Q 63
END	 Q 64—

VD +^
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SUBROUTINE	 TSTOkE	 ( NNCIPICGUNT , TIME) R 1
C R 2
C THIS	 SUBROUTINE STORES THE MEDAL DISPLACEMENTS FOR EACH TIME R 3
C STEP	 INTO TAPE 7 R 4
C R 5

COMMON	 / BLK20 / A1(2s10 ) sA2(2 , 10),A3 ( 2,101sBI ( 2s1U)sB2 ( 2 p lO)iB3(2,1 R 6
10) R 7

00	 10	 I=1,NNCT R B

WRITE	 ( 7)	 A341 , I)s83 ( 1PI1 R 9
1G CONTINUE R 10

RETURN R 11
END R 12—

.'i
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SUE PGLiI INE T uISPL ( FT I1-1 E )
C****#* #T#k*#**##***### *###*##***#**#####*#**#####*#
C	 THIS SC B&GUT INE CALCULATES THE TRANSIENT RESPONSE FROM THE MODAL
C	 LISPLACLMENTS STORED IN TAPE 7 AND OUTPUT IT IN TABULAR FORE! OR
C	 IN CALCLMP FLOTS
C*Tit=FFF*i#kkk*##k##*##### kk#######*##*k##*k# k###**^k########

LOMMON I 8LK1 I NsNBP NNLINs NMBsNF,NU,NSsNBOWP:ISTABs IMODEsIS .KUsNNCTsN
1LFPT

COMMON /BLK2/ ISKIPPNSTEPsNCYCLEsNITPsNINTsNPLOTsNORBITsNTIMEsNSPE
IEUsPl1PyC,(dGNTshT
CLfMCN /6LK3/ CRT(10)sLLBD(10)sLLNB(5)sLLNMO19)sLLSK(10)sLLNT(10)s

1LLLJF(10)pLLFF(10)pLLUT(l0)
CON111' N /BLK Cl/ GDPC(10s100)*EEYTH(10s100)
CL]MMUN /BLK16/ SPEF029ANGSPPANGACLsFSPEED
CLh,MON SX(4001),5Y(4001)
IF (NPLGT.NE.0) GO TO" 10
CALL CALCOMP (10)

I U	 CJNT,1NIJE
NLPT=NkTEP*NCYCLE+l.
00 100 I=IPNT

RE4IND 7

IU = LLP1T(1 )
SPEED=SPEED2
STLP=NSTEP

Ncc=1
VPP=NCC4NSTEP
DELTAT=60.I(SPEED*5TFP)

TIVE=G.
WRITE I3s120) 10
XMAX=O.
YNIQX=O.
IJK=C
NCLV,=I
DLL t,0 J=I.PNLPT

XZG*
Y=O..
CO 20 K=lsr4NCT
DEAD (7) AXsBY

S	 1
S	 2
S	 3
S	 4
S	 5
S	 6
S	 7
S	 8
S	 9
S 10
S 11
S 12
S 13
S 14
S 15
S 16
S 17
S 19
s 19
S 20
S 21
S 22
S 23
S 24
S 25
S 26
S 27
S 28
S 29
S 30
S 31
S 32
S 33
S 34
S 35
S 36
S 37	 OD
S 36
	 ul

e^



X=X+AX*DDPC(K,ID)*IOOU. S 39
2G Y=Y+8Y*D0PC(KsID)*1u00. S 40

IF	 (A8S(X)•LE.XMAX)	 GC	 TO	 30 S 41
XMAX=ABS(X) S 42

3U IF	 (A6S(Y).Lt.YNAX)	 GC	 TO	 40 S 43

YMAX=ABS(Y) S 44
4G IF	 (J.NE.t+CCM)	 (0	 TO	 50 S 4.5

IJK =IJK +l S 46
A 8 = S OR T( X*X+Y*Y) S 47
P=PAtiG(X,Y) S 48
i,KITE	 (3,130)	 J,TIVExX,Y,AB :PsSPEED S 49
NCCM=IJK *NITP+1 S 50

50 SX(J)=X S 51
SY(J)-Y S 52
TI!'1E=TIKE+0 EL TAT S 53
SPEED=SPLED+DELTAT*ANGACL *9.54929 S 54
IF	 (K.NE.NPP)	 GO	 TO	 60 S 55
t4 CC=NCC+1 S 56
MPP = NCC*NSTEP S 57
DELTAT = EEO./(SPEED#STEM S 50

GU CONTINUE S 59
IF	 (MORBITo! 0.0)	 GG TO 70 S 60
CALL	 03PLOT	 (X(lAX,YMAX,NLPTsIDPNSTEP) S 61

7U IF	 (NTINL.EO.C)	 GO	 TO 80 S 62
CALL	 TMFLCT	 (XFAX,YMAYoNLPT,ID,FTIME * NSTEP) S 63

86 IF	 (NSPEED.LQ.0)	 GO TO 90 S 64
CALL	 SOPLOT S 65

96 CONTINUE S 66
100 CONTINUE S 67

IF	 (NPLCT.NE.0)	 GO	 TO	 11.0 S 68
CALL	 ENCPLT S 69

I1U CGNTINUE S 70
PETURN S 71

C S 72
120 FORPAT	 (IHIsIGXs*MGDAL	 TRANSIENT ANALYSIS AT STATION NO.0*139/1s10 S 73

1X,3, STFP	 hO. s ip 5Xsv-TItw E(SECONDS)#, 5Xs#X —MILS#s10Xs#Y — MILSiOsSX.P*ABS-0 S 74
21SPL;9,6XP-$PHASE	 ANGLE-s,6Xs #SPEED(RPM)#, //) S 75	 ^'00

13C FORMAT	 (12X,I4,5X.F10. 5,5XsF10.5.6XsF10.5,6XsF10.5s6XsF10.2s6XsF10 S 76	 Q'
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SUBROUTINE	 L6PLGT	 (XMAX,YMAX p NLPT,ID,NSTEP) T 1
C+###*********###*#*#****#**#***************** T 2
C ] HIS	 SUbKUUlINE	 PLOTS THE TRANSIENT ORBITS 	 IN X AND	 Y DIRECTIONS T 3
Cr*t*w}**********#^k#***#*#*****#*#**#**********##******###** T 4

CUM ,1LN	 /BLK28/	 AL1(8),AL2(8)sAL3(8) T 5
COMMON	 5X(4C0I)jp SY(40G1) T 6
CALL	 PLUT	 (15.,5.,-3) T 7
CALL	 SYhBJL.	 (-3.0,-4.00 p . 105sAL1,0 . 0i80) T 8
CALL	 SYMBOL	 (-3.0v-4.25s.105sAL2s0.0,80) T 9
CALL	 SYhBOL	 (-3.G,-4.50,.105sAL3,0.0,80) T 10
C=AMAXI(XKAXsYPlAX) T 11
G =1. T 12
IF	 (C.LT.1.)	 G =10. T 13
B=C*G/3.+I. T 14
o- AINT (F) /C T 15

E=-3. &, D T 16
CALL	 AXIS	 (-3.0,-3.0,11HY —DIR(MILS)t11,6.Ot90.OsE#D) T 17

CALL	 AXIS	 (-3.0o-3.Gs11HX—DIR(141LS),-1196.0,0.0PEsD) T 18

CALL	 PLOT	 (3.,-3., 3) T 19
CALL	 PLOT	 (3.13.s2) T 20
CALL	 PLOT	 (-3.,3.,2) T 21
CALL	 SYPIIOL	 (1.0,3.25,.14,11HSTATIGN	 NOop0.0,11) T 22
CAL_	 NUMBEK	 (2.2,3.25,.14 p ID,0.0,2HI3) T 23
KK=1 T 24
JJ=O T 25
DO	 30	 J=.IoNLPT T 26

X=SX(J) T 27
Y=SY(J) T 28
X =X/D T 29

Y=Y/D T 30
IF	 (J.NE.1)	 GL	 TO	 10 T 31
CALL	 PLAT	 (X,Y,3) T 32

10 CALL	 PLOT	 (XvYs2) T 33
IF	 (J.EG * KK)	 GU	 TO	 20 T 34
CU TO 30 T 35

2G CALL	 SYMBOL	 (X,Ys.01^75,11,0.,-1) T 36
CALL	 PLCT	 (Y' p Y,3) T 37
„J=JJ+1 T 38

m
OD



KK=JJ4MSTEP+1 T 39
3G CONTINUE T 40

CALL NEWBLOK T 41
RETURN, T 42
Euo T 43-

j
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b
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5UbRIL'TIi-iL	 IFv LLT	 (X VAX sYMAXsNLPTjIDpFTIMEPNSTEPI U 2

,;4*****4-4**	 t^?,* -4**"	 *# *#	 ******# ###*#****#*#***##*#***###* U 2
THIS SUBKOUI1NE PLOTS	 TRANSIENT RESPONSE AMPLITUDES VS REAL TINE U 3

***#,****#**#*4#*****#******#**#********##*** U 4
LC,•MLI-4	 /cLKIE/	 SPEED2 ,ANGSPPANGACL , FSPEED U 5
W114RUN	 /'sLK2E/	 AL1(F),AL2(8)sAL3(8) U 6
Cili°ii0114'	 5X(40G1)1SY(4001) U 7
C=AMAX1(X,9AX,YMAX) U 8
G=1. U 9
IF	 (C.LT.1.)	 G=10. U 10
B=C*G/2.f1. U 11
G=Al	 T(S)/G U 12
C C=--2. *O U 13
CALL	 PLOT	 (5.,2.s-3) U 14

L=FTlNL *1G00. / L.+1. U 15
F=4INT(E)/100G. U 16
CALL	 AXIS	 (G.C,G.G, I:HTIFs^E IN	 SECONDS,-15s8 . 0,0.0,0 . 0sF) U 17
CALL	 AXIS	 (G.Gs0.0,23HROTOR DISPLACEMEtIT—MILS#23,4.s90.sCCPD1 U 18
CALL	 PLOT	 (0.,2.0s3) U. 19
CALL	 PLOT	 (6.0,2.0j2) U 20
CALL	 SYhBOL	 ((j.Gs-1.1,.105,AL1,0.0s80) U ?-,
CALL	 SYh6OL	 (0.0.-1.3,.105iAL2s0.0 p 80) U 22
CALL SYMBOL	 (0.0 — 1 . 5,.105 , AL3s0 . 0,80) U 23
CALL	 SYMBOL	 (3.524.0,.14,11HSTATION NO.,0.v11) U 24
CALL	 NUMBEk	 (4.7s4. 0,.14,IDs0 . 0,2HI3) U 25
CALL	 SYMBOL	 (6.0,3.c,G.105,12HX=	 sY=,0.:12) U 26
CALL	 SYhBOL	 (6.4,3. g sG.105 p 11s0.,-1) U 27
CALL	 SYP•DOL	 (7.3s3.9y0.105p2p0. p-1) U 28
it =C U 29

CUNT I.NUE U 30
o j= 0 U 31

FK=1 U 32
TIME=Q. U 33
SPEED=SFEF02 U 34
STEP=NSTEP U 35
GELTAT=G. U 36
DD	 5L	 1-=1PNI LPT U 37
l Ir:E = TI,'?E # DE LTAT U 38

.aa
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T=TIME U 39
SP IED=SHECD+DELTAI'iANGACL#9954929 U 40
X=SX(I) U 41T=T . /F U 42
Z = X/D+2. U 43
N=L3 U 44
IF. (P,,FC.C)	 GCS 	TO	 20 U 45
Y = SY(.I1 U 46
Z=Y/D+2. U 47
N=2 U 48

2G .. CONTINUE U 49
IF	 '(I.NE.I)	 GL	 T6	 30 U 5Q
CALL	 PLUT.(TsZ,3) U 51

R; CALL	 PLOT	 (T,Z,2) U 52
IF':(I.EC.KK)	 GO	 TO	 40 U. 53
Cr T© 5U U 54

40 CALL SYMBOL	 (T,Z, •07, Np0 *p-1 ) U 55
DELTAT=60 /(SPEED*STEP) U 56
.3.1-JJ+1 U 57
KK=JJ*NSTEP+1 U 58

50 CON TINUE U 59
IF	 (Y.-'.EQ.1)	 GO	 TO	 60 U 60
M = 1 U 61
GG to 10 U 62

bo CGATINUE U. 63
CALL NE1 BLGK U 64
kETURN U 65
E ND U 66—



SUBRLUTiNE '':DPLET	 V	 I

C	 TO RESERVE FOR FUTURE DISPLACEMENT-SPEED PLOTS 	 V	 3

kETURIA	 V	 5
END	 V	 6-
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SUBRL.UTINE UNF
C	 t F ir r fr fr#hXr^r^ ##mom# fF^r rkXf*##kk####*#ak##^k##########*#*####*#
C	 THIS SUBROUTINE CALCULATES THE NONLINEAR BEARING FORCES FOR EACH
C	 TIME STLP . THE BEARING USED ARE ASSUMED TO BE SHORT JOURNAL
C	 CrARI1,sG 166 DEG. CAUITATED FILM OR WITH 360. DEG FLUID FILM,
C	 THI S CAN ALSO BE USED TO APPROXIMATE STRAIGHT SEAL FORCES.
Cr**************#**##****##**#*#******#**#*#***###*#***#*#

REAL LEN
PEAL NFxsMFY
REAL. KXXYKYY
CE1T M6 1114 /BLK1/ NsfTBPtINLINPNMBsNF,NUsNSsNBOWsISTABsIMODEsISKUsNNCTON

IUFPT
Cati p$GN /BLK3/ CRT(1G) s LLBD ( 10)sLLN6 ( 5)sLLNMB(9 ) sLLSKI101sLLNT (10)s

ILLUF (1.0)sLLFF(1G), LLUT(10)
C(1MMbN /BLtc4/ RXX(10),KXY(10)sKYX(10)PK"(10)sCXX(10)sCXY(10)sCYX(

110)sCYY(10)sSL^lPtB(9s4,4)sCLNMB(9s4s4)
CUMMCN /BLKt/ VPX(10),MFY(10)sMUX(10),MUYi10)sMBX(10)sMBY(101
CtMVfjtr iBLK4/ DDPC(10s100)sEEYTH(10.s100)
COPiMfrt-4 /BLK16/ SFEED2sANGSPsANGACLsFSPEED
CLIff''ON /BLKIB/ AKK(10)
COMMON /BLK20/ A1(2s10)sA2(2*10)sA3(2s10)sBl(2s10)sB2{2s10)s83(2sl

10)
C	 /dLK35/ VlMY(10)sVIS(5)sR(5)sLEN(5)sC(5),NLB(5)
DJ 10 I=1,NluCT
PFX(I)=0.

iC	 OFY(I)=0.
bli 60 I =ls NNLIN
L=LLNB(I)
Y=0 0

Y=O.
Uk=O.

VY =0 .
E9 2 0 J=I.P.W.CT
X=X+A3 (1 s J)'DiiPC (J, L )
Y=Y+B3 (lo J) l', D CPC (J s L) o
V}( - Vk{- A2 I1 J 1 *CDPC (Js''^1^
VY=VY+B2 (1.,J)*DDFC (J4)LlZ

cC	 C0t.TINUE	
yyÔ,,



3G
40

SD=O. W 40
UEU=G. W 41
SC=SGRT(D) W 42.
U=X*VX+Y*VY W 43

(iU=C (I) *S . D4ANG SP W 44
GEU=Ii/^U	 A W 45
EU=SG/C(I) W 46
IF	 (EU.GT.1.)	 LU=.99 W 47
PHIDCT=(X*VY-Y* V)()I(ANGSP*D) W 48
P I -3.1415 9 W 49
TEST=(1.--2.*PHIDOT) W 50
SIGN=1. w 51
SICNI = 1,, W 52
.IF	 (TEST.LT.Q.)	 SIGN = - 1. W 53
IF	 (DEU.LT.0.)	 SIGNI=-1. W 54
CS=EU*ABS(TEST)/SQRT(EU*EU*TEST**2+4.*DEU* DEU) W 55
AS=(1.+EU)I(1.-EU) W .56
IF	 (CS.E4.0.)	 GO TO	 30 W 57
U=SORT((1.-CS)/(1.+CS)) W 58
GO TO 40 W 59
U=O. w 60
CON TDWE W 6.1.
TI1 =SIGN*4. *Eli*GS* *3/ ( ( 1.-EU*EU*CS*CS)**21 W 62
C1=(1.-£U*EU) W 63
C2=(3.-5. *AS*AS) W 64
C3=(5.-3.*AS*AS) W 65
TA=ATAN(U*(AS*AS-1.)/(AS*(1.+U*U))) W 66
C4=(1,+2.*EU*EU) W 67
CON=PI*C4/( C1**2.5) W. 68
COt^2=(C2*U*U+C3*AS*AS)/(U*U+AS'SAS)**2+(C2+C3*AS*AS*U*U)/{l.+AS*:AS* W. 69

l Li *u	 z W 70

T12=COO+SIGN1*(2.*C4*TA/(Cl**2.5)- U*CON2 /(C l **2)) W 71
CON=2./C1.**1.5 W 72

TI3=CON*(PI/2.+SIGNI*(TA-AS*U*(U*U-AS*AS)/(U*U+AS*AS)**2-AS*U*(1.- W 73
IAS'SAS*U*U)/(1.+AS*A5*U wU)**2)) W 74
SC,t,=VIS(I)*ANGSP*2.*R(I)*L€N(I)**3 1(8. *C(I)*C(I')) W 75

F1 = SOtl-(iiU*TLST*TTI+2.*DEU*TI2) W 76

N
tD



rx=-- (FI *X +F2*Y)/5D
FY=(F2*X—F1*Y)/SD
:,RIIL	 (3.o7G)	 F1sF-2.9FX.*FYsXsY
Iu=t4U,(I)
FX=rk+KkXt1Gl'^X+pKK(IG1*X	

,F't = r'f+KYY(IC^i*Y+bKF'(ID}^Y
GG 5u	 K=1,NMC1
,•.FX(K)=MFX(k.)+FK*DDPC(KtL)

S{; ll.FY(FC)-i-FY(K)+FY-^DDPC(K,L)
GG CGhTI Al l UF

I^ r T OF tw
C
70 F GPVAT	 (5X, CG15. 5 )

E NG

F,^=5LII*(cU4TLST*TII+2.*DEU*TII) W 77
W 78
W 79
W 80
W 81.
W 62
W 83
W 84
W 85
W 86
W 87
W 88
w e9
W 90
W 91—

N
U7
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I:_i

INPUT INSTRUCTIONS FOR PROGRAM MODAL 2

1. Read 3 comment cards (1 to 80 columns)

2. N, NB, NNLIN, NMB, NF, NU, NS, NBOW, ISTAB, IMODE,. ISKU, NUFPT

(1215)

N - No. of mass stations (mart. 100)

NB - No. of regular linear bearings (max. 10)

NNLIN - No. of nonlinear bearings (max. 5)

NMB No. of convent resisting bearings (32 coeff.)(e.g )

balance piston) (max. 3)

NF = No. of external force (max. 10)

NU = No. of unbalance (max. 10)

N3 No. of skewed disc (max. 10)

NBOW = 1 bow shaft (Input shaft bow data)

0 no shaft bow

IS LAB = 1

= 0

IMODE a 0

^l

ISKU 0

=z

NUFPT 1

3. ISKIP, NSTEP, NCYCLE, NITP, NINT, NPLOT, NORBIT, NTIME, NSPEED,

NINC, NOPT, NT (1255)

....	 ..........,..	 -'-----T.-..,^.+.r•,,.,,-	 ..,.... ....,. - 	 __. ....w......,^sa,.-.r..n,m^s^.s «s:xss,a«r^,.n , 	 __^.,.__.	 _,.._..._. ,.,mow,-,.^,vA+r>:1^cr^ 	 ..•--.-m.,-•.•



F,

F ,

ISKIP - O
^.

NSTEP - 100

r	 f NCYCLE - 20

NITP - No. of	 per steps	 printoutP 

NINT = l Newark - a intergration (with iteration)

= 2 Euler Integration i

NPLOT	 0 plots of transient desired

1 no plots

NORBIT	 1

NTIME _ 1

NSPEED = O
F 3

^. NINC = 0 input initial condition
#^

'.

= l initial conditions from steady state orbit with small
perturbation t

NOPT	 0

NT	 1
a

^

4. LLBD (J), J = 1, NB. (1015). Skip (4) and (5} if. NB	 0 Bearing k

location station numbers. A

5. NSPD (I5)

NSPD = number of speed cases of transient analysis

6. SSPEED (I), I = 1, NSPD (SG10.3) (max. 8)

SSPEED (I)	 Speed for the I ts transient case

7. ((KKxx (I, J)	 KKxy (I, J). KKyx (I, J), KKyy (I, J), IMac (I, J),

KCxy (I, J), KCyx (I, J), KCYy (I, J), J _ 1, NB) 1 = 1, NSPD)

8 bearing stiffness and damping coefficients in NSPD sets of NB

cards,

}

I
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8. ((LLNB (I, J), INLB (I, J), BVIS (I, J), BANR (I, J), BANL (I, J),

BAN (I, J), J - 1, NNLIN) I - 1, NSPD)

(2110, 4G10.3)

(Skip if NNLIN - 0)

'

	

	 LLNB (I, J) m station no. of Jth nonlinear bearings

INLB (I, J) - bearing no. of Jth nonlinear bearings

BVIS (I, J) - viscosity of lubricant (lb /in2)

BANR (I, J) Y radius of Jth bearing (in)

BANL (I, J) = length of Jth bearing (in) 	 r

BANC (I, J)	 clearance of Jth bearing (in)

A linear bearing station must be assigned to a nonlinear bearing
9
a

k	 even with zero linear stiffness and damping.

9. LLNMB (J), J - 1, NMB (M) (skip 7 and 8 if NMB s 0
.i 	 S

!

	

	 LUMP? (J) = station no. of the Jth moment resisting bearing

*Only one set for all speed cases.

10. NMB sets of card, each set 4 cards (8G10.3)
{

Bk , Bk , Bk , Bk , Be 	 B.c , Be , Be
x?c	 xe	 xy	 x	 x^	 xy	 xI

Bk , Bk , Bk , Bk , Be,, ,  Be, , ,  Bc , Bc
^	 ex	 ee	 ey

,
	 6^	 9y	 6,

Bkyx , Skye , Bkyy , Bkyv , Bcyx , Bcye , Bcyy, Bey*

I	 Bk^x, Bk^e, Bk,y , Bk#, Bcfx , Bew Bch , Be,,)
4

!

	

	 These are the 32 bearing stiffness and damping coefficients for

a moment resisting bearing. The first subscript represents the.

direction of force, and the second subscript represents displace-

ment.

-.—r
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y

«	
j

-

x = x-direction displacement

e = rotation At positive y-axis (right-hand rule) 	 i

y y-direction displacement

• rotation at negative x-axis (right-hand rule)

11. NGYR, E, SPMM1 0 SPEED ANGACL, FSPMM, BETA (I5, 5x, 5GLD.3)
i

NGYR = 1 calculation shaft gyroscopics

= 0 no. shaft gyroscopics

E - Section Young ' s Moducus- x 10
_8
 (E 30. for steel.)

SPEEDI - Rotor operating speed (RPM) (use for gyroscopic

calculation in damped modes)

SPEED2 • use as initial speed for transient
ANGACL . rad/sect (use in transient cal.)

TSPEED = 0

BETA - Beta parameter used For Newmark beta integration

(usually - 1/6)

12. E=; (J), DX(J), DEXT (J), DINT (J), RP(J), RT(J), ZM6 (J), R4(J),

J = 1, N.

(N cards )	 ( 8(F1a.3))
9

I. EXTW (J) external weights at J--mass station (1b)

DX(J) a length of Jth element (in) 'r

DEXT(J) = external diameter of Jth element (in)
r1

DINT (J) R internal diameter of Jth element (in) }^.

RP(J) = polar moment of inertia at Jth station ( lb--in 2)

st Zr
. RT(J) transverse moment of ine--tia at Jth station (lb-in2)

It
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y

f

f,

J`

i

c

z

i

EMG(J) = Young's modules of Jth element x 10 -6
 

(=L lb/inz

if set to zero)

RO(J)	 density of Jth element (- 0.283 lb/in 3 if set to zero)

13. LLFF(J), F`X(J), FY(J), J - 1, NF (15, Sx, 2G10.3) NP_cards,

skip if NF - 0

LLFF M - station no. of Jth external force

FXM - forces in x-direction (lb)

FY(J) - forces in y-direction (lb)

14. LLUF(J). UX(J). UY(J), J - 1, NU

(15, 5x, 2G10.3) NU cards, skip if NU - 0

LLUFM - station no. of Jth unbalance

UX(J) - unbalance at x-direction (oz-in)

UY(J) - unbalance at y-direction (oz-in)

15. LLSK(J), FSK(J), PSK(J), J - 1, NS

(15, 5x, 2G10.3) NS cards, skip if NS - 0

LLSK(J)	 station no. of Jth skewed disc

FSK(J) = maximum skew of the disc (rad) (positive skew is

opposite to positive 6')

PSK(J) - angle betwaen maximum skew to the x-axis (rad)

16. LLNi (J) , J - 1, NT (1015), 	 (NT - 1)

LLNT(J) = station which the transient results are used in	 -

frequency spectrum analysis

17. BOW(J) , PBOW(J) , XIC (J) , yTC (J) , VXIC (J) , jryjC (J) , J = 1,	 .N: .

OG10.3)
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BOW(J) Jth station initial bow (mile) (- 0 if no bow)

PBOWW angle of bow to the positive x-axis (red)

(- 0 if no bow)

XICM Jth station :Lnitial displacement (mile)

TIC(J) Jth station initial displacement at y-direction (mile)

VXIC(J) n. . Jth ' station iuL.Aal velocity at x-direction. (mils/sec)

VYI:C(J) - Jth station initial velocity at y-direction (mile/see)

IR. SPI, SPL, DSP (3G10.3)

SPI - initial speed (RPM)

SPI, - final speed (REM) 	 (for critical speed analysis)

DSP - speed increment (RPM)

19. TITLEI, TITLE2, TITLE3

3 TME cards for label in plots (l to 80 columns)



C
C
C

C
C
C

C

C
C

C
C.
C
C
C

O

Oro

L^
ri

FRL,GRAC1	 i,iGDES(INPUT, GUT PUT sTAPE1=INPUToTAPE3 = OUTPUT sTAPE7 , TAPE10) A 1

THIS PROGRAM CALCULATES 	 THE UNDAMPED CRITICAL SPEEDS AND THEIR A 3
ClikRESPONDINC	 MGDE	 SHAPES. A 4

A	 AMxIMLj.'l P:UmBER OF FIGHT SPEED CASES OF TRANSIENT ANALYSIS A 5
LAtv	 BE	 ( 1 61AINED	 [M	 ONE	 SINGLE	 ANALYSIS, A 6
TRANSIENT MOTIUN ORBITS AND AMPLITUDE 	 VS TIME PLOT AT ONE A 7
PA.R11CULAR	 STATION WILL	 BE GENERATED FOR EVERY SPEED CASE A 8
FAST	 FOURIER TRANSFCRMATION IS APPLIED TO PRODUCE FREQUENCY A 9
SPECIRUM ANALYSIS	 FOR	 EVERY SPEED CASE A 10
CAh,PBELL	 YLDIS OF THE	 SYSTEM ARE ALSO GENERATED A 11

BY K.	 C.	 CHOY A 12
GEPAf IMENT LF	 ViLCI-ANICAL	 ENGINEERING,	 UNIVERSITY OF VIRGINIA A 13

'ARCH 4s	 1977 A 14
##*T***##*	 *#**************##****##*##******###*****#*** A 15

CUNPLEX	 BB(20s21)sCC(20) A 16
REAL.	 KXX(10),KXY(10),KYX(101PKYY(I01sMFX(10),MFY(IOIPMUY(10)PMUX(1 A 17

10)PKMX(10s10)sKt •iY(10o] O),NIBX (10)PMBY( 10) A 18
kEAL	 KK XX(1Gs1C)sKKXY(10,#IO.)sKKYX(1Os10)#KKYY(IOsIO1iKCXX(1OlPIO)PC A 19

1CXY( 10slU )sKCYX(IOPIO)sKCYY(10olO) A 20
CIMENSIOM SSPEEO(10) A 21
DIMENSION COMEM11(8), 	 COMENT2(8)s	 COMENT3(8) A 22
DIME14SION	 EM6(100)s	 CRTt10)s	 LLBO ( 10),	 LLNB ( 5)s	 LLNM8(9)s	 LLSK ( 10) A 23

1s	 LLNT(IU),	 LLUF(1G)s	 LLFFUO),	 LLUT(101 A 24
DINENSION	 DX(100),	 47(100),	 ENER ( 100),	 EY1 ( 100)a	 EY2(100),	 DPC(1001 A 25
0IMEN.SIVb DEFL(I00), 	 LB(100)s	 SK(100)s	 WA(50)s	 DEXT(10019	 DINT(100 A 26

1) A 27
DIMfNSIGN	 EXTW(100)s	 SWI(100)s	 RO(100),	 RTI1001,	 RP(1001,	 EI(100) A 28
CItP	 :SILN	 4^MC,0(50),	 AKK(10) A 24
DIMLNiSIO"N EAN1(1CG) s 	 EAN2 ( 1001,	 EYTH(100)s. EEYTH(109100 )• 	 DDPC ( 10, A 30

1100) A 31
GIV,EKSIE,Fs	 TNX(10s10) A 32
DIM EN SIO N' A1(2sI0 )s 	A2(2s10),	 A3(2,I0 )f 81(2s14) s 	 BZ(2s101s	 631221 A 33

1G) A 34
DIMENS16fir	 tMX(IO,IG)s	 CMY( 10PIO)s	 DMX(10si0)s	 DIY(10210 ) 2	 EHX(10 # 1 A 35

1C)s	 Etl y (1Cs10) A 36
01tiONSIONI	 DEJX(10s10) s. 	 DOY ( 10,10),	 EOX(10s10 ) s	 EOY ( 10,101 A 37
DIMENSION	 AAA(42)s	 CBB(42)s	 CCC(42),	 HHH(42)s	 UUU(42)s	 VVV(42) A 38

waw

'Y



DINEr.5IGii	 CXX(1(,),	 CX.Y(10)jp	 CYX(10),	 C Y Y(1 0), 	 UX(10)s	 UY(101 A 39
DIN EI:SILN	 FX(16),	 FY(10) A 40
Gii;EPtSiC!?(	 5LHrIB((),4,4),	 CLNMES(9,4,4) A 41
UIPPiSIDIt	 SNLb(:,8,3 )s 	FSK(10 )s 	PSK(10 )s 	BRW ( 1C0), PBDW ( 100) A 42
HhENSIGH BXA ( 100),	 BYA ( 100)s	 XIDC ( 100)s	 YIDC ( 100)r	 VX10MG01s	 VY A 43

1IUi:(1C0} A 44
01hENSIuN	 ADUt•MY (P002) A 45
DIMENSION	 ALACEL1(E),	 ALABELZ( 8),.ALABEL3(8) A 46
01hEI SII : t;	 h'Y(10},	 VIS(5),	 ANR ( 5):	 Ah^L { 5),	 ANC [ 5),	 NLB[51 A 47
DIMEt,?SIDIv	 FC{5.12),	 SFC(E, 512) A 48
DIMENSION	 6VIS ( E,5),	 BANR ( 6,5),	 BANL ( Bs51s	 BANC ( 8s5)r	 INLB(8s5) A 49
CbtJiEdti	 / BLK1/	 Ni NBtNNLINsNMB,NEsNU,KSst4BOW91STABsI Ii Ej DEs ISKUsNCT#.4U A 50

1FPT A 51
CuEd"HiN	 /BLK[/	 ISKIP,trSTEP,NCYCLEsNITPsNINTsNPLCJTsNDRBITPNTIME,NSPE A 52

1ED.N11.CiNF-PTs11T A 53
C 0V1".Gh)	 /BLK3 / CP,Ts L L B U o LLNB, LLNNBs LLSKs LLNT, LLUFs LL FFs LLUT A 54
C011.1"61 .4 	 /BLK4 / KXX,KXY oK YXsKYYsCXXsCXYsCYXvCYYsSLNMB , CLNMB A 55
CiJt'rt •1.ON	 /dLK5/	 UX,UYsFX, FYsFSKsPSK A 56
C0P*,F,0N	 /BL66t	 BL WsPBCW, XIDCsYIOCsVX1DC#VYIDCsBXAsBYA A 57
COMMON	 /BLK7/ ChXsKMX,EIiiX,CMYsKMY,EMY A 58
C.EM 014	 1 6LK8 / 	 MFX,NFY,*MUX,MU `dvMBXsMBY A 59.
COrFLM	 / BLK9/ DDPCs EEYTH A 60
COMMON /uLK101 5PS,SPF, 5PN,SPEEDI A 61
C0VIg C*N /3LK11/	 DOXvDLY, ELXsEBY A 62
COMMON /BLK14/ AAA,UUUP VVVsHHHPBBBsCCC A. 63
C0IING13	 /BLK151	 PP:FcT A 64
LUFMCM	 / BLK16/ SPEED29 ANGSP, ANGACLs FSPEED A 65
LON411UR /BLKIS/	 AKK A 66
C0I1.I'ON	 /LLK19I	 OX A 67
CUPiki N	 /BLK20/	 A1, A2, A3, 81 9 BZs B3 A 68
C 0111•i0fI	 / BLK 21I	 I1MX, DHY A 69
CCi'it'^GI`	 /BLKc2/	 Wi A 70
C6t• F-0 N'	 /BLK24 /	 CB: CC A 71
CGI^Iii,^i	 / - LK 2:/	 B ETA A 72

.	 C(rt'lit^1.	 I9LK281	 ALABFL1 s ALAEEL2,ALABEL3 A 73
CG14?1(JIi	 /BLK25/	 HASP A 74
C0ViP'Gfit	 /i3LK35/	 WilYsVIS,ANR,ANLsANC p N'LB A 75
CJIit•16H	 /BLK39/	 NSPO,SSPEED A 76

w0
r

1	 _t



CUN116H	 IBLK401	 FC,5EC A 77

031WLid /RLK41/ KKXXPKKXY,KKYX,KKYYPFCXXvKC)(YsKCYXsKCYY A 78
C01--MUN	 /61 L K^2/	 LVLS.,f-ANF, BANL9 $ ANC#INLB A 79
CLimmOti	 atlt Mm y A 80
MiPLI zu A 81
PEAL)	 ( 1,7301	 CfJr. fNTI A 82
READ	 ( 1,730)	 CONEPi12 A 83
BEAU	 ( I,730)	 COVENT3 A 84
WPITE	 13s1110f A 85
kK I Tk	 (3040) COMENT 1,COMENT2,COMENT3 A 86
1011L	 (3050) A 87
READ (1060)	 td,t4B,NRLINPNMB,NF,NUsNS9NBUW,TSTAB#IM00EsISKUsNUFPT A 88
READ	 (1,7701 I5i(IP,NiSTEP,NCYCLE.NITP#NINT9NPLOTONORBITsNTIMEsNSPEE A 89

141, P^Ia^iC,lVOf'T,N4T A 90

READ	 (1,7ts0)	 (LLBD(J),J=I,NBI A 91
PLAD	 (1,7001	 USP.O A 92

DEAD	 (1,7101	 (S5PEED(J),J-1,NSPD) A 93
IF (UM0.01 GO 10 30 A 94
DO 20	 I=1, NS P G A 93
BEAD	 (1,7901	 (KKXX( I, J),K.KXYIIPJ)PKKYX(Isa)sKKYYIIPJIPKCXX(IsJ)PKC A 96
IXY(I,J),KCYX(I,J),KCYY(IsJ)sJ=19NBI A 97

2C CON'T1NUE A 98
30 CUNTINUE A 99

IF	 Ihf4LIi4.E4.01	 GO	 70	 50 A 100
GO 40	 I=I, NSPU A 101
REND	 (1,k001	 (LLMB(J)rINLB(IsJ1lBVIS(IsJ.19BANR(IsJ1iBANL(IsJ)sBANC A 102

1(I,Jf,J=L,E^NLItt1 A 103
4G CONTINUE A 104
SG C©14TINUE A 105

It=	0414B.E4.0)	 GU TV	 60 A 105
KEAU	 (1, 4310)	 (LL14MB( J),J = 1,NMB1 A 107
DEAD	 (L,4•;20)	 ((((SLNMB(I,J9K)PK = 194)s(CLNMB(19J9KIsK:1s41)sJ=1s41s A 108

11=1,ht^t]1 A 109
60 cUN7INuE A 110	 {

READ (1,830) N-GYR9FPSFEED'L*S.PEEQ2sAN ACLPFSPEEDP BETA A 111
READ	 (1,4s4G)	 ( EX TW( J1, DX(JIPDEXT(.I),DIi.	 tJ),RP(JIsRTIJIsEM6IJ1sR0[ A 112

1s1.,J=1,°1 A 113	 0
It-	 (kF.LG.0)	 CG	 TO	 70 A 114	 "'



READ	 (1s850)	 (LLFF(J),FX(J)vFY(J),J=1,)4F) A 115

7G C0NTiMUE A 116
IF	 (IgU.L- U.C)	 Go	 To	 80 A 117

READ	 (1,1350)	 (LLUF(J)sUX(.J),UY(J)oJ=li)4U) A 118
E0 CnliTINU E A 119

IF	 MS.EQo01	 GO TO 90 A 120
READ	 (1,850)	 (LLSK(J1rFSF(J)#PSK(J1sJ=I, 14S) A 121

90 C0NTI14UE A 122
IF	 (NT.E0.0)	 GO TO 100 A 123
READ	 (1#860)	 (LLNT(J),J=1,147) A 124

100 CONTINUE A 125
(LEAD	 (19870)	 (BOW(J)sPBGW(J)jPXIDC(Jf,YIDC(J) p VXIDC(J1,VYIDC(J)iJ-1 A 1Z6

1P14) A 127
READ	 (1,880)	 SPIPSPL:DSP A 128
READ	 (1,730)	 ALABELI A 129
READ	 (1#730)	 ALABEL2 A 130
READ	 (1,7301	 ALABEL3 A 131
WRITE	 ( 3s(s901	 11CYCLE , tiSTCPivNINT,NINCoNOPT , SPEE02sAHGACLPBETA A 132
WRITE	 ( 39900) A 133
GO 110 I = 1,N A 134
IF	 (RO(1).EG.O.G) ROM -0.283 A 135
ENER(I1=3.14159*(DEXT(I)**4. —DINT(I1**4.1/64. A 136
IF	 (EM6(i).EQ.0.0)	 EM6(1)=E A 137
EI(I)=E h 6(I)*ENLRtll A 138.
DL = A6S(DX(I)) A 139

110 SWI(I)=3.14159*(DEXT(I)**2.—DINT(I)**2.1*DL*RO(I1/490 A 140
W(1)=SWl(1) /2.+EXTWt11 A 141

4:T =w(1) A 142
ZLT -DX (l l A 143
Do 120	 I=2st4 A 144
W(I)=SWl(I--1)/2.O+SWl(l) /2.O+EXTW (I) A 145

C W.(I)=TGTAL EFFECTIVE	 SHAFT WEIGHT A 146
WT=WT+W(I) A 147

120 ZLT=ZLT+DX(Il A 148
IF	 (i4GYR)	 130,150, 1	 0 A 149

130 i( P(1)=RP(1)+ ENER (1)*RB(1)*D X(11 A 150
RT(1) =RT(11+SW1(1)*((DEXT(1)**2.O+DINT(11**Z.0)I16.0+t(DX(1)/2.01* A 151
t^2.0)/3.01/2.G A 152

La
0



l k.0

3.0

1^G

}v	 1 G

0

rw,

Pry

[J) 1ti0 I = 2 ► #+	 A 153
^^(I} =K F' (I)+RG(I}EtlRtl# #Q1Eii)+ENERiI-'I)*QXii-11*ROII-11	 A 154
Flil)=RT(I#+S4ri(I)#(([3kxT(I)##7..0 ♦DINT(I)#2.0)/ 16.0+((QX ( I)/2.0)* A 155

l?.G1/3.G)/2.E^+5)l1(I^1)^t((3EXT(I'11**2.0+QINT(I-1)**2.01/16.0+((OX A 156
1{ I_1}/Z.f^} #c.(Y1/3 0112.0 	 A 157

C l,'N T I NUL	 A 158
5Rf =G.0	 A 1.59
Do 160 I=1,N	 A 160
Sri}'=Slf'+ n`PtI) 	 A 161
t}!J I fs J I= I: ra	 A 162
6RI.TE (3,9101 (I,k1(I)POX(I),QEXT(I).sDINT(I),ENER(I)#RP(I1#RT(I)#EM A 16.3

lo(I)stI(I))	 A 164
IF ( 1 -50) .160,170,180	 A 163
WRITE (3s 111C)	 A 166
Ct7., T.INUE	 A 167
WKITL ( 3.#920) WT,ZLT	 A 168
Uu I ri(3 I=1skSPG	 A 169
WVI,TE (3,720) I,SSPEED(i)	 A 170
WRITE (3P930)	 A 171
WRITE (3, 94(i)	 A 172
WRITE (3050) (.JoLLODI J ),KKX , .X ( F,J1,KKXY ( I,J) * KKYXII # J) * KKYY(I*JIPJ A 173

1 =i ► t;B)	 A 174
WRITE (3,.960)	 A 175
WRITL (3:970)	 A 176
WRITE (3 9`0) (J, LL BO(J),PKCXX(IPJ),KCXY(IsJ)iPKCYXIIsJ)sKCYYIIPJIPJ A 177

1 IANB)	 A 178
COOT INUE	 A 179
IF (F=t}B.EQs0) GU TO 210	 A 180
G u 200 I =7., Nt1B	 A 181
4RITE (3,-960) i,LUIMB t7) 	 A 182
kPITE (3,990) " i(SLNre(ItJPK),K-1*4)sJ = l ► 4fs(( CtNMB ( I,J#K1#K=1#4 )# J A 1831 =114)	 A 184
c(i(JI(,,UE	 A 185
IF it-Uiti.t G.0) GO TO 2 f O	 A 186
%t; 230 I =!.,NSPC	 A 187
ViITL (3,720) I,SSPEED(I)	 A 188
WP I IE ( 3,120(,)	 A 189
Du 220 J=IPNNLIN	 A 190

w
0
V.



kRITE (3;1210) J,LLIIBIJ)#IliL`s( I,Jf,BV15(I,J),BAIIRIIPJ1,BAIILIIsJIPB 	 A 191
IANC(IvJ) A 192

02 0 C CI -4T I NuE A 193
23G CONTINUE A 194
240 IF	 (tiF.E0.0)	 GU	 TO	 250 A 195

WRITE	 (3,1000) A 196
TRITE	 (3xI010)	 ILLFF(J)#FX(J)xFY(J)xJ =1#NF) A 197

250 IF	 (NS.E0.0)	 60	 TO	 260 A 198
WRITE	 (3x.1020) A 199
6R.ITE	 (3#1030)	 (LLSK(J)PFSK(J)xPSK(J1xJ=IxMSI A 200

21,0 IF	 (hU.E4.0)	 GG TO	 260 A 201
1"RITE	 (3x1040) A 202
WRITE	 (3x1050) A 203
WRITE	 (3x.1060)	 (LLUF(J)xUX(J)#UY(J)#J =l#NU) A 204
DO 270	 J=I,PiU A 205
(.X(J)=UX(JJ/(16.*31:&.41 A 206

270 UY(J) =UY(J)/(16. 4366.4) A 207
260 CONTINUE A 208

WRITE	 (3#1070) A 209
DO 290 J=10M A 210
WRITE	 (3#1080)	 J PBOW(J)xPBOW(JIPXIQC(J)xYIDC(J)sVXIGC(JIPVYIDC(J1 A 211

290 CONTINUE A 212
00 300	 1=1x100 A 213
XIDc(I)=XIDC4l)/1000. A 214
YIDC(I)=YIDC(1)/1000. A 215
VXIDC(I)=VXIDC(IIJ1000. A 216

300 VYIDC(I)=VYIDC(I)/1000. A 217
WRITE	 (3, 1090) A 218
DO 310	 I=1#NB A 219
AVK = (KKXX(I#I)+KKYY(1,I)) /2. A 220
kR1TE	 (3,11130)	 I#AVK A 221

310 COI,TIttUE A 222
FC=1 A 223

C I;C=LGCAL	 CRITICAL	 SPEED	 ti p . A 224
C 4.RITE	 (3#700) A 225

WRITE	 (3,1110) A 226
LN=.3 A 227

C SPI=INITIAL	 SPEED#SPL=FIIiAL	 SPEEDxDSP = SPEED 	 INCREMENT— RPM A 228

w0
co
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SPD=SP1 A 229
DETP=O. A 230
KA=D A 231
118 =0 A 232

C IF.{ LN-50) 54, 54, 53 A 233
WRITE	 (3:1110) A 234
URITE	 (3,#1120)	 SPIsSPLjvDSP A 235
LN=1 A 236
WRITE	 {3,1130) A 237
Lei=LN+3 A 238
DIN=DSP A 239

320 I=1 A 240
J=1 A 241
SPSQ=SPD*SPD A 24:2

C COMPUTE ANG. VELOCITY A 243
ANSP=SPD*0.10471 9176 A 244
ANSP2=ANSP*ANSP A 245
VP=O. A 246
ZMP.=O. A 247
EYP = 0.. A 248
ETHP=I.D A 249
J" = 1 A 250

3.30 =.I +1 A 251
Ii=I-1 A 252
IF	 (II-LLSD(J)) 360P34OP360 A 253

340 AK w (KKXX(IsJ)+KKYY(IPJ)) /2. A 254
AKK(d)=AK A 255
IF. 0 — NO)	 350,370,370. A 256

350 J=J+1 A 257
GO TO 370 A 258

360 . AK=09 A 259
370 VP s:VP+{W(I-1)*AHSPZ/386.4 —AK) *EYP A 260

. Z)1P=Zi4P-AN.SP2*(RT(I-1))*E7HP/386.4 A 261
EY-FYP+DX( I-1)* ETHP+DX( 1-1)**2*ZMP/(2.E6*EItl —l)) +DX(1-1J **3*VP/(6 A 262

1.E6*EI(I-1)) A 263
ETH*ETHP+€)X(I —i)*ZHP/ (1.E6*EI( I-1 )) +DX(i-1) **2*VP/(2.E6*EItI-1)) A 264
ZO MZMP+DX(1-1)*VP A 265	 0

{

s

V=VP A 266



r

IF	 (M.E4.2)	 GO	 TO	 380 A 267
EYi(I)=EY A 268
E AN I(I)=ETH A 269
IF	 (I.GT.N)	 GO	 TO	 390 A 270
ZmP=ZM A 271
V P=V A 272

EYP=EY A 273
ETHP=ETH A 274
bO TO 330 A 275

380 EY2(I)=EY A 276
EAN2(I)=ETH A 277
ZIP=ZM A 278
VP=V A 279
EYP=EY A 280
ETHP=ETH A 281
IF	 (I.GT.N)	 G© TO 400 A 282
GO TO 330 A 283

390 M=2 A 284
ZMI=ZM A 285
VR1=V A 286
J=l A 287f
I=1 A 288
EYP=I. A 289
Zt7P =0., A 290
ETHP=O, A 291
V P= 0. A 292
GO TO 330 A 293

400 DET=VR1*ZM—V*ZM1 A 294
IF	 (DETP. E0.0.)	 GO TO 450 A 295
IF	 (MA . EQ * I)	 GO TO 430 A 296
IF	 (ABS(DET).LT.I.)	 GO	 TO	 480 A 297
IF	 (DETP*DET)	 41OP45OP450 A 298

410 DOLD=DETP A 299
420 NA=1 A 300

IF	 (ABS(DET).LT.1.)	 GO TO 480 A 301
IF	 (DIN * LT.19E-6)	 LO TO 480 A 302
DINaDIN/2. A 303
DETPP=DETP A 304

wr
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[ DETP=DET A 305
f SPD=SPD-DIN A 306
1 GO TO 320 A 307

430 IF	 (A$S(DET).LT.1.)	 GO TO	 480 A 308
IF	 (DOLD*DET)	 420.#450,440 A 309

440 CONTINUE A 310
IF	 (ABS ( DET).LT . l.)	 GO TO 460 A 311
IF	 (DIN.LT.I.E-6'1	 GO TO 480 A 312
DIN=DIN/2. A 313
SPD=SPD +DIN A,314
DETPP=DETP A 315
DETP-DEi A 316
GO TO 320 A 317

450 . IF	 (L N-54) . 470, 47OP 460 A 318
460 WRITE	 ( 3,1110) A 319

LN=l A 320
474 WRITE	 (3s1140) SPDsDET A 321

LN=LN+1 A 322
SPD:=SPD+DSP A 323	 i

DIN-DSP A 324
IF	 (SPD,GT.SPL)	 GO TO 640 A 325
UETPP=DETP A 326
DETP= DET A 327	 ?
SSPD = SPD A 328
GU TO 320 A 329

480 MA = O A 330
WRITE	 (3,1140)	 SP D P DET. A 331
LN= LPG+l A 332
IF	 (LN-50)	 500,50Os490 A 333

490 WRITE	 (3s1110) A 334
LM-1 A 335k	

500 WRITE	 (391150)	 NC A 336
WRITE	 ( 3P I160) A 337
WRITE	 (3s1140)	 SPDsDET
CRT(VC) ^^

A 338
= SPD A 339

NC-NC+ l bb A 340
LN =LN+3 A 341	 u'
EYl (1)=0. : A 342



EY2(1)*1. A 343
DTX=O. A 344
I=1 A 345
IF	 (LN-50)	 52OP52OP510 A 346

510 WRITE	 (3s1110) A 347
L N=.1 A 348

520 WRITE	 0s1170) A 349
LN=LN+2 A 350

530 DEFL(I) = V*EY1(I)—VR1*EY2(I) A 351
IF	 (I.NE91)	 GO	 TO	 540 A 352
EYTH(I) = V A 353
GO TO 550 A 354

540 EYTH(I)=EAN1(I)*V—EAN2(I)*VRL A 355
550 DEFA=ASS(DEFL(I)l A 356

DMXA-ABS(DTX) A 357
I=I+1 A 358
IF	 (DEFA — DMXA)	 5709570,560 A 359

560 DTX-DEFL(I-1) A 360
570 IF	 (I —N)	 580,580,590 A 361
560 GO TO 530 A 362
590 DO 600	 I=1pN A 363

DPC(I)=DEFL(I)/DTX A 364
EYTH(I)=EYTH(I) /DTX A 365
EEYTH(NC — 1 p l)-EYTH(I) A 366

600 DDPC(NC-1,1)= DPC(I) A 367
DO 630 I=1sN A 368
LN=LN+1 A 3.69
IF	 (LN-54)	 62OP62OP610 A 370

610 WRITE	 (3.1110) A 371
LN=1 A 372

620 WRITE	 (3s1180)	 IsDPC(I)sEYTH(I) A 373
LN=LN+1 A 374

630 CONTINUE A 375
SPD=SSPD+DSP A 376
DETP=O. A 377
GO TO 320 A 378

640 CONTINUE A 379	 H
NCS=NC-1 A 380	 ~'



... 

DO 670	 II=IINCS
WMGD(II)=0.
DO 650 JJ=1sN

650 4MGD(iI)-WM(ID(II)+RT(JJ)*EEYTH(II,JJ)**2+W(JJ)*DDPC(IIiJJ)**2
WM0D(II)=WMOD(II)1386.4
DO 660 KI=1sN
EEYTH(IIsKI)=EEYTH(IIsKI)/'(WMBD(II) **0.5)

660 DOPC(IIsKI )=DDPC(IIsKI)/(WMOD(II1**0.5)
670. CONTINUE

DO 690 II=lPN CS.
DO 680 JJ=1sNCS
TMX(II,JJ)=0.
DO 660 KI-1sN
TMX(IIsJJ)=TMX( ItsJJ)+W(Ki)*DDPC(JJsKI)*DDPC(IIsKI)/386.4+RT(KI)*E
IEYTH(IIsKI)*EEYIH(JJPKI)/386.4

p	 680 CONTINUE
WRITE	 (3s1190)	 (TMX(II,JJ1sJJ- I*NCS)

690 CONTINUE
NCT=NCS
CALL TMM

C
C
700 FORMAT	 (I5)
714 FORMAT (8G10.3)
72.0. FORMAT	 (//,5Xsit SPEE0 CASE NO. *s I5s5XsF15.0s#RPMf)
'730 FORMAT (8A10)
740	 FORMAT (LXs3(8A10/IX))
750	 FORMAT (/,20Xs'#FiODAL ANALYSIS VFRSInN at APRIL 6. 1977*1
760
770
780
790
600
810
820
830
840
850.

FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT

(12I5)
(12I5)
(1015).
(8G10*3)
(2I5s 4G10 2 )
(9151
(8 G10.3 )
(I5s5X,6G10.3)	 p C

(8G10 * 3)	 m
(I5,5X,2G10.3)

-	
t

A 381
A 382
A 383
A 384
A 385
A 386
A 387
A 388
A 389
A 390
A 391
A 392
A 393
A 394
A 395
A 396
A 397
A 396
A 399
A 400
A 402
A 402
A 403
A 404
A 405
A 406
A 407
A 408
A 409
A 410
A 411
A 412
A 413
A 414
A 415
A 416
A 417
	 w

A 418
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860	 FORMAT (1015)	 A 419

870	 FORMAT (6G1C.3)	 A 420
880	 FORMAT (3G10.3)	 A 421
690

	

	 FORMAT (//210Xs#NCYCLE=OsI3s5XsONSTEP = #sI3s5Xs#NINT= #sI3s5Xs#NINC = A 422
1#sl3 p 5Xj t-NOPT=it sI3#/ s10Xs iI SPEED2=#sF10 .2s5XPOANGACL(IISEC)-stFIO *3 A 423
2s5Xs*BETA=#sF10.5s/1) 	 A 424

900	 FORMAT (120H STATION NO *	 WEIGHT	 LENGTH SHAFT DIA. SHAFT D A 425
11A *	I	 IP—PEDLAR MOM. IT—TRANS. MOM. 	 EX10-6	 E[	 A 426
2s/120H	 (LP)	 (IN*) OUTSIDE	 INSIDE	 I A 427
3IN**4)	 (LP—IN**2)	 (LB—IN**2)	 P/)	 A 428

910	 FORMAT (171Fl6.39Fl2.3.oF10. 3sFIO.3,oFllo2vFl2e3.#FI693PFII * 29GI003)	 A 429
920	 FORMAT (16Xs 7H-------s 5xs 7H--------/7Xs F16.39 F12.3/ 1	 A 430
930	 FORMAT (1s34Xs0	 LINEAR SUPPORT BEARING STIFFNESS CHARACTERICS011 A 431
940

	

	 FORMAT (5Xs16HBEARING BEARINGs12Xs3HKXX 9 16Xs3HKXYs16Xs3HKYXi16Xs3 A 432

1HKYYs/ 5Xr6HNUMBERs:3Xs8HLOCATlONs8Xs7H (LB/IN)sl1Xs7H(LB/iN1il1Xs7H( A 433
2L'B/IN)s11Xs7HdL8/IN))	 A 434

950	 FORMAT ( 5XsI396XsI3s9XsFll.ls5XsF11.1s8XsF11.Is8XPF11.1) 	 A 435
960	 FORMAT (/s35Xs#	 LINEAR SUPPORT BEARING DAMPING CHARACTERISTICS* / A 436

1)	 A 437
970

	

	 FORMAT (5Xs16HOAMPING DAMPINGs12Xs3HCXXs16Xs3HCXYs16Xs3HC` yXs16Xs3 A 438
1HCYYs/s5Xs6HNUMBERs3X s8HLOCATIONs6Xs11H(LB-SEC/IN)s10Xs11H(LB —SEC/ A 439
2IN)slOX,11H(LB—SEC/IN)s10Xs11H(LB — SEC /IN)) 	 A 440

960	 FORMAT (1/s10Xs#FULL BEARING NO. #sI2s3Xs#AT STATION#sI3s1) 	 A 441
990	 FORMAT (IOXPOBEARING STIFFNESS LB/IN#s//s4(4(5Xs615.3)s/)s/ /s10Xs# A 442

18EARING DAMPING LB—SEC/TN#,/ 19414(5XsG15.3)s/))	 A 443

1000 FORMAT (//s20Xs#E.XTERNAL FORCES#s/s5Xs#STATION N0 * *s10Xs #X#s15Xs#Y A 444
1#r/)	 A 445

1010 FORMAT (10XsI3s2('5XsG15.5)) 	 A 446
1020 FORMAT (//s20Xs*SKEWED DISC#s /s5Xs#STATION N0 * #s10Xs#SKEW(RAD)10s5X A 447

Is#PHASE ANGLE DEG.#s/) 	 A 448
1030 FORMAT (l0Xt13s2(5XoGl5e51) 	 A 449
1040 FORMAT (//Is25Xs#ROTOR UNBALANCE IN 02— IN90s /) 	 A 450
1050 FORMAT (5Xs*STATION#s1OXs#X—UNBALANCEOPIOXs#Y —UNBALANCE#s/)	 A 451
1060 FORMAT (8X,I2vI2XpFI0.3s11XpF10&3)	 A 452
1070 FORMAT (//s20Xs#SHAFT INITIAL CONDITIONS#s 1195Xs#STATION NO.fs5Xs# A 453

18OW—NILS#s59s#PHASE ANGLE#,5Xs#X—DISP#s10X#Y—OISP#s10Xs #X—VEL#s10X A 454
2P#Y—VEL#s/s34Xs*(DEGREES)$ p 6X#O(MILS)OPIOXP#(MILS)#sIOX,#MILIIN#sl A 455
30Xs#.MIL /INI,/) 	 A 456

wN

LL
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1080 FORMAT (5X,I3,6(5XsFi0.2)) A 457
1090 FORMAT ( 11s10XsIAVERAGE BEARING STIFFNESS USED FOR CRITICAL SPEED A 458

1CALCULATIONSs) A 459
1100 FORMAT (IOXssBEARING NO.ss I2s5X,sSTIFFNESS(LBIIN)ssF12.2) A 460
1110 FORMAT (1HIs/) A 461
1120 FORMAT (I/s5Xs#	 INITIAL SPEED S #sF10.2s5X;#FINAL	 SPEED s ovF10.2s5Xs3 A 462

1SPEED INCREMENT= s p F10.290 	RPMss//) A 463
1130 FORMAT (/13Xs3HRPM, 2OXs5HDELTA,12XsZHKlsl3Xs2HK2 /) A 464
1140 FORMAT (10XsFb.l,9XsE17.9) A 465
1150 FORMAT ( / /slOXPOCRITICAL SPEED NO.ssI2) A 466
1160 FORMAT ( /s10Xs14HCRITICAL SPEEOs11Xs5H0ELTAs /) A 467
1170 FORMAT (/s12Xs6HSTA NOsl0X,14HNET DEFLECTIONsIOX p 5HANGLE) A 468
1180 FORMAT (12XsI5s13XsF9.5,13XsF9.5) A 469
1190 FORMAT (5Xs10(F8.2s2X)) A 470
1200 FORMAT ( / /s10X,ONONLINEAR BEARING DATA$;//o5Xs#NONLINEAR *v6X#OaTAT A 471

lION NO,#s4Xs0BEARING NO.$s4X; sVISCOSITYiOs6XPORADIUS $s9XsOLENGT'HIO i 9 A 472
2Xs#CLEARAt7CE*s /s5Xv$BEARING 	 -$s 38Xo$L8/IN * *2sr7X;O(IN.)ss10XPO(IN. A 473
3)at s10Xs0(IN * )ts /) A 474

1210 FORMAT ( 5Xs.I5slGX#I5s10XsI5tlOX;E10.4s5XsEL0.495XpFl0.4t5XsE1004) A 475
END A 476—



SUBROUTINE TMM B 1

C B 2

C	 THIS SUBROUTINE CONTROLS THE MODAL ANALYSIS OPERATION AFTER THE B 3

C	 PLANAR CTITICAL SPEEDS AND MODE SHAPES HAVE BEEN CALCULATED. B 4C*********************************************************** B 5

COMPLEX BxC 8 6
REAL	 KXX,KXYsKYXsKYYPMFXFtiFYPMUX p i4UYPKMXPKMY B 7

REAL KKXXsKKXYRKKYXsKKYYPKCXXsKCXYPKCYXPKCYY B B
COMMON /8LK1/ N,.NBxNNLINsNMB,NFxNUPNS ,NBDW*ISTAB,IMCDE,ISKU#NNCTsN B 9

1.UFP.T B 10
COMMON IBLK2/ ISKIPPNSTEPsNCYCLEPNITPPNINTsNPLDTPNDRBITPNTIMEPNSPE B . 11

lEDxNINCxNClPTxNT B 12

COKMGN	 /BLK3/ CPT(10) xLLBO(10)xLLNB(5),LLNMB(9)xLLSK(10)sLLNT(10)s B 13

1LLUF(10)xLLFF(10)9LLUT(10) B 14
CGMMCN /BLK4/ KXX(10)xKXY(10)xKYX(10 )xKYY(IOIxCXX(10),CXY(IOIPCYX( 8 15

110)sCYY(10)xSLNt'kB(9s4x4)xCLNMB(9x4x41 B 16
COMMON /BLK5/	 UX(10)xUY(10)xFX(10)sFY(10),FSK(IO)xP5K(IOI B 17

COMMON /BLK6/	 BCW(.I00)xPBOW(100)xXIDC (IOOJPYIDC(100)PVXIDC(IOOIPVY B 18

lIDC(100) p 8XA(100)v6YA(100) 8 19
COMMON	 IBLK7/ CI"X( 10#10) p KMX(10PIO)sEMX(10,x1.0)sCMY(1Os10)sKIIY(10#1 8 20
10)xEMY(10x10) 8 21

COMMON /BLK8/ MFX(IO)oMFY(10)sMUX (10),MUY(10)sMBX(10)#MBY(IOI 6 22
COMMON /BLK91 UDPC(10s100)#EEYTH(10s100) 8 23
COMMON /BLK101 SPSsSPFsSPNxSPEEDI B 24
COMMON	 /BLK11/ OOX(10.s10)PDOY(lO#10)sEOX(1Os10)sEDY(10t10) B 25
COMMON /BLK15/ FP(100)sRT(100) B 26

COMMON /BLK16/ SPEE02sANGSPxANGACLxFSPEED B 27

COMMON /BLK161 AKK(10 ) B 28
COMMON	 /BLK20/. A1( 2s'10)sA2(2s10)sA3 (2910).PBl(2 y 10)s82(2.*101#63(2s1 B 29

10) 8 30
COMMON /BLK24/	 B(20s21)PC(20) B 31
COMMON IBLK251 BETA 8 32
COMMON IBLK291 PASP 8 33
COMMON	 /BLK35/ WMY(10) xVIS(5)sANR(5)#ANL15lsANC(5)xNLB(5) 8 34
COMMON /BLK39/ NSPD,SSPEED(10) B 35
COMMON /BLK401	 FC(512)xSFC(8s512) 8 36
COMtiON18LK41/	 KKXX(10x10):KKXY(10x10 )sKKYX(1Os10)sKKYY(10i101.#KCX 8 37

lX(10s10)xKCXY(10:10),KCYX(1Ox10)xKCYY(1Ox10) B 38

w
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COMMON /BLK42/ BVIS(8,5),BANR(8, 5)sBANL(8)5)1BANC(8P5)PINLB(8s5) 	 B 39
COMMON Sl(4001)sS2(4001)	 B 40
IF (NBOW-EQ.0) GO TO 10	 B 41
CALL SFTBOW	 B 42

10	 CONTINUE	 B 43
STEP=NSTEP	 8 44
FMAX =0. 	B 45
NUM=NCYCLE*NSTEP	 B 46
CALL CALCOMP (10)	 B 47
D€] 140 K*1,NSPD	 B 48
XMAX=O.	 8 49
YMAX=O.	 B 50
SPEED2=SSPEED(K)	 8 51
DELTAT=60./(SSPEE0(K)*STEP) 	 B 52
DO 20 J=1sNB	 B 53
KXX(J)=KKXX(K,J) — AKK(J)	 8 54
KXY(J) = KKXY(KsJ)	 B 55
KYX(J)=KKYX(KsJ)	 B 56
KYY(J)=KKYY(K,J1 —AKK(J)	 B 57
CXX(J)=KCXX(K,J) 	 B 58
CXY(J) z KCXY(K,J)	 B 59
CYX(J.1=KCYX(Kj,J)	 B 60
CYY(J)= KCYY(KoJ)	 B 61

20	 CONTINUE	 6 62
IF (NNLIN.EQ.0) GO TO 40	 B 63
DO 30 J = 1,NNLIN	 B 64
VIS(J)=BVIS(KPJ)	 B. 65
ANR(J) = BANR(KsJI	 B 66
ANL(J) = BANL(K,J)	 B 67
ANC(J)=BANC(KsJ)	 B 68
NLB(J)=INLB(K,J) 	 B 69

30	 CONTINUE 	 8 70
40	 CONTINUE	 B 71

SPEED=SPEED2	 O	 B 72
CALL THUDE1	 B 73
NSTEPl=NSTEP+I	 8 74
TIME=O.	 y,	 B 75
I IN T=1	 8 76

- 	 -1
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IF ( hl lNC.f G.?'j) GO TO 60
CALL UBST (1sSPEEC)
DO 5.0 I=1,I*NCT
II=I+NNCT

B3 (1, I)=REAL (C(II))*.9
A2(1rI)=—A.IMAG(C(I))*"PEED*0.10471975*.9

50	 82(1,I).=—AIIIAG(C(II))*SPEED*0 10471975*.9
GO Try 70

60	 CALL TINC
IF (ty 8OW * EG.0) GO TO 70
CALL SFTBOW

7G	 C0NiTIMUE
ICOUtT=1
CALL ISTORE (NNCTs is Xt'jAXP YMAX)
NK=O
NPLUS=4
IF (ANG.ACLoNE.O.) t:PLU5=99999
NJ=NPLUS+I
PASP=0.
Dq 110 i =1 l;um
T<IME=TIHE+DELTAT
IF (I.GT.NJ) hK=1
CALL TMODE2 (TIt,EPDELTATsSPEED,NK)
CALL TACC Et
GO TO (B(3s90.) s HINT

80	 CALL TBETA (NNCIPOELTAT,BETA)
GO TO 100

90	 CALL TINTG' , (NNC7, DELTAT)
1G0	 CONTINWE

I.rOUNT=I CbUNT+l
CALL TSTOPE (NNCZsiC0UNT,)(MAX,YMAX)
PASP= PA.SP*bELTAT*SPEED

.110	 CONTINUE
CALL TFFT (FC.sNSTEP).
00 130 J=1,512
CFC=FC(J)*SSFEED(1) /S5PEED(K)
IF (CFC.LT.FMAX) GC TO 120

B 77
B 78
B 79
B 80
B 81
B 82
8 83
D 84
B 85
B 86
B 87
8 88
B E9
B 90
B 91
B 92
8 93
B 94
B 95
8 96
B 97

k	 B 98
B 99
B 100
B 101
B 102
B 103
B 104
B 105
8 106
B 107
B 108
B 1.09
B 110
8 111.
B 112
B 113
	 w

8 114
	 co



8 115
B 116
B 117
B 118
B 119
B 120
B 121
B 122
B 123
B 124
B 125
8 1.26—

FMAX =CFL
120	 CONTINUE
130	 SFCtKP J)=CFC

FTIME=TIME
t4PLT=20*NSTEP*l
IF ("PLOT.ES.I) GO TO 144
CALL OSPLOT (XYAX,YMAX,tiPLTsLLNT(I)PNSTEPoK1
CALL T HPLO T (XMAXsYMAXPNPLT,LLNT(11sFTIHE,NSTEP)

140	 CONTINUE
CALL SPLOT (FMAX)
RETURN
E 14
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C	 1
C	 2
C	 3
C	 4
C	 5

C	 6
C	 7
C	 8
C	 9
C 10
C 11
C 12
C 13
C 14
C 15
C 16
C 17
C 18
C 19
C 20
C 21
C 22
C 23
C 24
C 25
C 26
C 27
C 28
C 29
C 30
C 31
C 32
C 33
C 34
C 35
C 36
C 37
C 38

wNa

SUBROUTINE TMODE1
C*##**#**#*********#**#####**##*##*###***##**#*##**######*#**#
C	 THIS SUBROUTINE CALCULATES THE MODAL COEFFICIENTS WHICH ARE INDEPE
C	 CF SPEED AND ACCELERATION. THEY CAN BE USED IN OTHER SUBRCUTII;E$.
C	 **##*######***#*r*#**#*#*****###***##****##*****#^#***#*#*####

REAL KXX, KXY, KYX,KYY,MFXPMFY,MUXPMUY,KMXoKMY
COMME14 / BLK1 / N.oNBYNNLINPNMBPNF RNU,NS , NBOW , ISTABsIMlIDEPISKUsNNCTsN

lUFPT
COMMON /i3LK3/ CRT(10),LLBD(10)sLLNB(5)sLLNMlB(9)sLLSK(10)sLLNT1101,

1LLUF(10)sLLF'F(1fi)sLLUT(I0)
COMMON /BLK4/ KXX(10),KXYiIO),KYX(10),KYY(IO)sCXX(10),CXY(10),CYX(

110),CYY(10)sSLNt',D(9p4s4)sCLN?,18(9s4,4)
COMMON /BLK7/ C14)((10sI0).PKMX(1Os10)jPEMkX(10PIO),CiiY(10,9i0) sKMY(10o1
10.)sENY:(IOr10)
COMMON 18LK8/ MFX(10),MFY(10),MUX(10),MUY(10)#MfBX(10)PMBY(10)
COMMON /.BLK9/ DDPC(.1Gs100),EEYTH(10,100
CO:MiMON /BLKII/ OOX(10,10),DOY(10sI0) sEOX (10,10)sEOY(10s10)
COMMON /BLK22/ W(100)
COMMON IBLK35/ WMY.(10),VIS(5) ,ANR (5) sANL15 ).,ANCC(5), NLB(5)
DO 10 I=1sNNCT
00 10 J=1sNNCT
CMx(I,J.)=0.
CMIY (Is J f =0.
KMaX(IsJ)=0.
KtiY(IrJ)=0.
DOX(19J)=0.
DOY(I,J)z0.
EOX(I,J)=0.
^nwcr._rti.n.

I .	 d UNI INUt

DO 30 I=1sNB
J=t,LEG(I
DO 20 K=l$ NNC T
50 ZO L=1s NNC T
C'iX (K# L) =CriX. (K P L) *CXX,(I) #DDPC { Ks J) *DDPC (Ls J )
Ct4 Y( Ks.L)=CMY(KvL)+CYY(I)*DDPC(KwJ)*DDPC(LoJ)
KMX(K,L)=KMXiKjL)4KXX(I)*t1DPC(KsJ)*DDPC(LPJ)
K14Y(K.PL) KM7Y(KjwL)+KYY(I)*DDPC(KPJ)*DDPC(LrJ)



DCX(KsL)=DDX(K,L)+CXY(I)*DDPC(KsJ)*DDPC(LsJ) C 39
I)OY(KPL)=DUY(KsL);-r y X(I)*DDPC(K#J)*BOPC(LjPJ) C 40
EGX(KsL)= EDX( Y,,*L)+KX:Y(I)*DDPC(K,J)*DDPC(LsJ) C 41

2E) EOY(K,L)=E(IY( K,L)+KYX(I)*DDPC(KsJ)*DDPC(LsJ) C 42
30 CONTMUE C 43

IF (NM *EQe0) GG TO 50 C 44
DG 40 I c IPSHR C 45
L=LLt{MB{ I1 C 46
00 40 J=1sNNCT C 47
DO 40 K = 1,NhCT C 48
CMX(JsK)=CtX(J,K)+CLNMB(Is1s1)*DDPC(JivL)*DDPC(K,L)+CLNHBf.Is1,21 **D C 49

1UPC(JsL)*EEYTH(KsL)+CLHMB(Ii2s1)*EEYTH(JsL)*DDPC(KsL)+CLNMB(Is2s2) C 50
2*EEYTH(JsL)*EEYTH(KsL) C 51

CMY(JsK)=CMY(J, KI+CLNMB(Is3,3)*DDPC(J.PL)*DDPC(KsL)+CLNMB(Is3v4)*DD C 52

IPC(JsL)*EEYTH(K,LI+CLNMB(Is4s3)*EEYTH(JsL1*DDPC(K,L)+CLNMB(Is4s4)* C 53
2EEY'Th(JsL)*EEYTH(KsL) C 54

KMX(JsK)=KMX(JsK)+SLNMB(Isls1)*DDPC (J,L)*DDPC(KPL)+SLNMB(Isls2)*DD C 55
I.PC(J,L)*EEYTH(KsL)+5LNMB(is2s1)*EEYTH(JsL)*DDPC(KsL) +SLNMB(Is2s2)* C 56
2EEYTHIJsL)*EEYTH(K,L) C 57

KMY(JsK)=KMY(JsK)+SLHMB(Is3s3)*DDPC(JsL)*DDPC{KPL) +SLNMB(103r4) *00 C 56
1PC(JsL)*EEYTH(KPL1+SLNMB(Is4s3)*EEYTH[JsL)*DDPC(K,L)+SLNMB(Is4s4)* C 59
2EEYTH(J,L)*EEYTH(KsL) C 60

DOX(J,K)=DOX(J,K)+CLNMB(Isls3)*DDPC(JsL)*DDPC(KsL)+CLNMB{Isl y 4) *DD C 61
1PC(JsL)*EEYTH(KsL)+CLNMB(Is2s3)*EEYTH(JsL1*DDPC(KsL?+CLNMB(Is2s41* C 62

2EEYTH(JsL)*EEYTH(KsL) C 63
DOY(JsK)=DO Y(JPKI+CLNMBtIs3s1)*DDPC(JsL)*DDPC(KsL)+CLNMB(Is3s2)*DD C 64

IPC(JsL)*EEYTH(K,L)+CLNMB(Is4s1)*EEYTHtJ,L)*ODPC(KsL)+CLNMB(Is4,2)* C 65
ZEEYTH(JsL)*EEYTH(K,L) C 66

EOX(J,K)=EGX(JsK)+SLNMB(Isls3)*DDPC(JsL)*ODPC(K,L) +SLNMB(I,1 ► 41 *DD C 67
IPC(JsL)*EEYTH(KsL)+SLNM B(Is2s3)*EEYTH(JsL)*DDPC(K,FL3+SLNMB(Ls2s4)* C 68
2EEYTH(JsL)*EEYTH(KsL) C 69

40 EOY( JsK)=E UY(JsK) +SLfIMB(I,3s1)*DDPC(JPL)*DDPC(KsL)+SLNMB(Is3s2)*DD C 70

1PC(JsL)*EEYTH(KPL)+SLNMO(Is4s1)*EEYTH(JsL)*DDPC[KsL1+SLHM8(I,4s21* C 71
2EEYTH(JsL)*EEYT14(KsL) C 72

50 CONTINUE C 73
DO 60	 I=Isht;CT C 74
MFX(I)=0. C 75

60 1:FY(I )=0. C 76

.:::	 _	 A



IF	 {1v14L114.EQ.0)	 GO	 TI, 90 C 77
I DO CO I=1sNNCT C 78

DG 70 J=10N C 79
70. MFY(I)=IIFY.(I)+DDPC(IsJ)*W(J) C 80

WMY(I) = MFY(I) C. 81
PG CONTINUE C 82
90 CONTINUE C 83

RETURN C 84
END C 85-

}

}}
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SUBROUTINE UBST	 (IIvfl, SD) D 1
C 2
C	 THIS SUBROUTIfiE CALCULATES THE UNBALANCE RESPGNSE OF ROTOR SYSTEM D 3
C	 US114G THE PLARAX MODES. WHICH CAI; LATER BE TRANSFORMED INTO REAL D 4
C	 DISPLACEMENTS. D 5
C	 ****#***************Ptak:****#**#*#*#***#***#*####*#***####*#### D 6

REAL MBX,MBY D 7
DIhENSION SPED150) D 8
COMPLEX B,CiblJM 0 9
COVPLEX EU9 D 10
REAL KXXPXXY P KYXPKYYPMFXPMFY,PUXPMUYPKMXPKMY D 11
COHNGN /BLKI/ NPNEsNNLINPHMBsIiFi NU,)iSsNBDWP ISTABs IMGDE.PISKUsNHCTPN D 12

IUFPT D 13
CDMM014 /BLK3/ CRT(10),LLBD(10), LLUB (5),LLNM6(9),LLSK(10)sLLNT(10) p 0 14

1LLIJF(10),pLLFF(10),LLUT(10) D 15
COMMON /BLKS/ UX(1O)PUY(10),FX(10)PFY(10)#FSK(I0),vPSK(10) D 16
COf4MO1J /BLK7/ CM X(IOPI9),KKX(10, 10)sEHX(10.* 10)PCFIYi10,i01sKMYI30R1 D 17

101,EV,Y(l0,10) 0 18
COMMON /BLKB/ MFX(IOI,MFY(1O),MUX(101,MUY(10)#MBX(10),MBY(10) D 19
COMMON /BLY9/ DDPC(I0,I00),EEYTH(10,1001 D 20
COMM614 /BL9101 SPSsSPF:SP1i*SPEEDI D 21
COMMON /BLKII/ BOX(I0,101sDOY (10s10)PEOX(lOs1DlPEOY(10#10) 0 22
COMMG)i /BLK15/ PP(10G)sRT(10G1 0 23
CCimmclu /BLK18/ AKK( 101 D 24
COMM011 /BLK21/ DKXf l0, 10),DMY(10,101 D 25
COMMON /BLKZ4/ 8(20,21)AC(201 D 26
COMMON UDISPXR(10, 50),[JDISPXI(20s50)sUDISPYR(10,50)PUDISPYI(10,5.0) D 27

I, XMA J( lfi,501sXiiiN[10,50)PPMAJ(IOs501sPMIN (I0,50),ADUPINY(4002) 0 28
SPI=SPN D 29
IJ=1 D 30
AJNGSP = SD*3.14159/30. 0 31
NN-NIICT*2	 92 D 32
'► M z hhCT*Z#1
CrUPi=CMPLXi0.,1.)

D
0

33
34

EU1►=CHPLX(I.s0.) D 35
DO 10 l z l p N)(CT	 , ' D 36
oux (11 i0. D 37
YUY[i1=0. 0 38

w
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10 CONTINUE D' 39
IF	 (NU. EQ.0)	 GO TO 40 D 40
DO 30	 I=I,NU D 41
J=LLUF(I) D 42
00 20 K=IsNNCT D 43
KUX(K)=MUX(K)+ANGSP*ANGSP*UX(I)*DDPC(KsJ) D 44
MUY(K)=MUY(K)+ANGSP=ANGSP*UY(I)*DDPC(KsJ) D 45

20 CONTINUE D 46
30 CONTINUE D 47
4G IF	 (NS.EO.0)	 GO TO 70 D 48

DO	 60	 1='{	 `.S D 49
J=LLSK(I) D 50
PAS=PSK(I)/57.29578 D 51
PCGS-CPS(PAS) D 52
PSIN=SIN(PAS) D 53
DD 50 K=1:NNCT D 54
MUX(K)	 VtUX(K) +ANGSP*ANGSP*FSK(I)*PCOS *( RP(J) — RT' ( J)I*EEYTH ( KsJ)/386 D 55

1.4 D 56
50 MUY. ( K);-.MUY ( K)+ANGSP # ANGSP * FSK(I) *PSIN* ( RP(J)—RT(J))*EEYTH(KsJ) / 386 D 57

1.4 D 56
60 CONTINUE D 59
70 CONTINUE D 60

IF	 (NBDk.E4.0)	 GO - TO 90 D 61
DO 80 I=1,NNCT D 62
MUX(I)=MUX(I)+MBX(I) D 63

80 MUY(I)=MUY(I)+MBY(I) D 64

90 CONTINUE D 65
DO 100 K=1pNNCT D 66

DO 100 L=1,NNCT D 67
EMX(KsL) = EGX(KsL) D 68
EMY(KsL)=EDY(K,L) D 69

DMX(KPL) = DCX(K,L) D 70
DMY(KPL)=DDY(K:L) D 71
DO 100 J=1, N D 72
DMX(KPL)=DMX(K,L)+ANGSP*RP(J)*ECYTH(KPJ)*EEYTH(LsJ)/386.4 D 73
DMY(KsL) = DMY(KP L)-ANGSP * RP(J)*EEYTFi ( KrJ)*EEYTH ( LsJ) / 386.4 D 74

100 C ONT 114UE D 75
Del	 12U	 I = Is10 D 76
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DO 110 J=1,11 D 77
1.10 B(Is.f) =CMPLXIO.sO.} 0 78
120 C(I)=CMPLX(O.sO.) D 79

IF	 (NNLIN.EQ.0)	 GO TO 140 0 80
DO 13 0 	I=1PNNCT 0 81

1.30 NUY(I)=MUY(I)—MFY.(I) D 82
1+40 CONTINUE 0 P s

DO 160 I=1,NNCT 0 84
II=I+NNCT D 85
DO 15:0 J=1,NNCT 0 86
JJ=J+NNCT D 87
B(IsJ)=BIIsJ)+KMX(IsJ)*EUM+CMXIIsJ)*DUM*ANGSP 0 Be
B(II,J) - B(IIsJ)+EMY(I , J)*EUM +DMY(I , JI*DUB! *ANGSP D 89
B(IsJJ)=B(IPJJ)+EMX(IsJ)*EUM+DMXIIsJ)*DUM*ANGSP D 90

150 BIIIP J J1=BIII ,JJI+KMY(IsJ) *EUM+CMYII*J) *DUM*ANGSP D 91
8(IsI) -B(Ipl )+<< CRT(I) *3.14159 / 30.1**2—ANGSP **2)*EUM D 9.2
B(II, .II)=B(IIsII) + (ICRT(I) *3.14159 / 30.1**2-ANGSP **21*EUM D 93
NEX = NNCT*2+1 D 94
B(IsNEX)=—CMPLX{M.UX(I)sMUY(I)) D 95

160 BtIIiNEX) =—CMPLX(MUY(I)s —MUX(I)) D 96
CALL. SOLVE	 (NNsYM) 0 97
RETURN 0 98
END D 99—
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SUBROUTINL	 SOLVE	 (hNvMM) E 1
COKPLEX	 BPCPDUt,MY,C[JNJC E 2
COMMON	 /BLK24/	 8 (20s 21) tC (20) E 3

DO 80	 I = 1sNN E 4
K=I E 5

10 Ir	 (CABS(B(KoI)).GT.0.000001)	 GO	 TO 20 E 6
K=K+1 E 7
IF	 (K — MIN)	 IOPIOa90 E 6

20 IF	 (I —K)	 30s50,90 E 9
30 00 40 M=IPMM E 10

Dur1mY=8 (Is N) E 11
B(I,M)=B(K,M) E 12

40 B(KsM)=DUMMY E 13
50 II=I+1 E 14

IF	 (II.GToNN)	 GG TO	 80 E 15
DO 70 N = II,NN E 16
IF	 (CAR.5(B(NsI)).LT.0.000001) 	 G€7	 TO	 70 E 17
SQ = (CAtjS(B(IsI)))**2 E 18
DUMMY = b(N,I)*C0NJG(B(I,I))/SQ E 19
00 60 M=IsMM E 20

60 8(H,M)=B(NsM)—B(I,M)*DUMMY E 21
70 CONTINUE E 22
1:0 CONTINUE E 23

GO TO 100 E 24
90 IF	 (I.EQoNN)	 WFITE	 (3s150) E 25

IF	 (I.LI.NN)	 WRITE	 (3,160) E 26
STOP E 27

C START BACK SUBSTITUTIONS E 26
100 I=NN E 29
110 D Ut;MY =(O.Os 0.0) E 30

IF	 (I.EC * NN)	 G(I	 TO	 130 E 31
JJJ=I+I E 32
DO 12:0	 J=JJJ,NN E 33

120 DUMMY-DUMMY+B(IsJ)*C(J) E 34
130 SQ=(CAUS(9(IsI))1*#2 E 35

C(I)= — (DUMMY+B(IvViti))*CONJG(B(I,I))/SQ E 36
1=1-1 E 37
IF	 (I)	 140P140ollO E 38
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140 RETURN E 39
C E 40
150 FORMAT (4X,19HMATRIX HAS ZERO ROW) E 41
160 FORMAT	 (4XP22HMATRIX HAS ZERO COLUMN) E 42

ENE} E 43—
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1

FUNCj IUN	 PAMG	 (A[ CS.9 AFSN } F 1
C F 2
C #	 THIS	 IS A FUNCTION USED	 TO CALCULATE	 THE ANGLE	 *#** F 3
C *	 WHOSE	 ARCTAN VALUE	 IS GIVEN F 4
C F 5

ACS=AFCS F 6

ASN z AFSN F 7

IF	 (ASN)	 40P10#40 F B

10 IF	 (ACS)	 20s30s30 F 9
2r ANG=150.0 F 10

CO TO 120 F 11
36 ANG=0.0 F 12

GU TC 120 F 13
4U IF	 (ACS)	 90P50jp 50 F 14
50 IF	 (ASN)	 600OP70 F 15
6C ANG=270. F 16

GO TO 120 F 17
70 ANG=90. F 18

CO TO 120 F 19
p 4 ANG=O. F 20

GO TO 100 F 21
9C ANG=-180. F 22
100 ASN=ASN/ACS F 23

ACS=ABS(ASNi F 24
ACS=ATAN(ACS) F 25
ANG=ANG+ACS *J7. 29 5780 F 26
IF	 (ASN)	 110PIMP120 F 27

110 APJG=—ANG F 28

120 IF	 (ANG)	 130, 140,P 140 F 29
130 ANG-ANG+360. F 30
140 PANG=ANG F 31

RETURN F 32
END F 33—
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SUBROUTINE SFTBOW G 1
C ******+****#******************#*************************#**** G 2
C THIS SUBROUTINE CALCULATES THE SHAFT BOW EFFECTS INTO MODAL G 3
C COORDINATES.	 (FOR INITIAL CONDITIONS AND UNBALANCE EFFEC G 4
C G 5

DIMENSION BX(100)s	 BY(100) G 6
DIMENSION X(10),	 Y(10),	 2(10,10) G 7
PEAL	 MBX,MBY G 8
COMMON IBLK1/ N,NBshNLIN,NMB,NF,NU, NSsNBOWsISTABsIMQDEsISKUsNNCTON G 9

IUFPT G 10
COMMON	 /BLK3/	 CRT(10),LL84(101,LLNB(5)sLLNMB(9)#LLSKIIO)PLLNT(10)s G 11
1LLUF(10),LLFF(10)PLLUT(10) G 12
COMMGN /BLK6 / BOW(100) s PBOW ( 1001sXIDC ( 100)sYIDC ( 100),YXIDCI1001sYY G 13
IIDC(100)P9XA(100),BYA{100) G 14
COMMON	 /BLK9/	 MFX(101sMFY(10),MUX(10),MUY(10),MBX(.10)sMBYI1.0) G 15
COMMON /BLK9/ D0PC(10s100),EEYTH(10,100) G 16

COMMGN /BLK151 RP(1001,RT(100) G 17
COWN /BLK18/ AKK(10) G 18
COMMON /BLK19/ DX(100) G 19
COMMON IBLK221 W(100) G 20
D.G 10	 I=1sN G 21
CT=PBOW(I)*3.141591180. G 22
SX(I)=BOW(I)*C.GS(CT)/1000. G 23

10 BY( I)=BOW (I)*SIN(CT)/1000. G 24
TC=IBX(2)—BX(1))IDX(1) G 25
T0=(BY(21 —BY(1)l/ DX(1) G 26
BXAtl)=ATAN(TC) G 27
BYA(l)-ATAN(TD) G 28
TC=(BX(N)--BX(N-1))/DX(N-1) G 29
TD=(BY(N)—BY(N-1))/DX(N-1) G 30
BXA(N)=AT'AN(TC) G 31
BYA(t4)=ATAN( TD) G 32
NI M N-1 G 33
DO 20 I=2sN1 G 34
TC=(BX(1+1)—BX(1-1)1/(DX(I-1)+DX(I)) G 35
TD=(BY(I+I)—BY(I-1))/(DX(I-1)+DX(I)) G 36
BXA(i)=ATAN(TC) G 37
BYA(I)=ATAN( T0) G 38	 r°

i

i



.-T ,.,: ..	 ...	 ...	 ..	 r	 :.....• ...-:.. r„_..	 .,..f=	 _	 .+--^-'wpm:	 .. .' ..r.--^"--..-.-+r^^^=	 ..-c ice.'	 ._f _-^_^__^^...-

20	 CONTINUE	 G 39
DO 60 I=IiNNCT	 G 40
X(I)=0.	 G 41
Y(I)=0.	 G tit
DO 40 J=1vNNCT	 G 43
Z(I,Jl=O.	 G 44
DO 30 K=1,NB	 G 45
L=LLBD(K)	 G 46

30	 Z(I,J)=Z(IsJ)—DLPC(I,L)*AKK(K)*DDPC(JsL) 	 G 47
40	 CONT114UE	 G 48

DO 50 K=1/ N	 G 49
X(I) = X(I)+(DUPC(IsK)*W(K)'P BX(K)+EEYTH(I#K)*RT(K)*EXA(K))/386.4 	 G	 50

50	 Y(I)=Y(I)+(DDPC(I:K)*W(K)*BY(K)+EEYTH(IsK)*RT(K)*BYA(K))/386.4	 G 51
60	 Z(IsI)=Z(I,I)+(CRT(I)*O..I047197)*42 	 G	 52

DO 70 I=1fNNCT	 G 53
MBX(I)=0.	 G 54
V,BY(I)=0.	 G 55
DU 70 J-1fNNCT	 G 56
MBX(I) = MBX(I)+Z(I,J)*X(J)	 G 57

70	 MBY(I)=MBY(1)+Z(I,J)*Y(J)	 G 58
RETURN	 G 59
END	 G 60-
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SUBROUTINE TMODL2	 fT,DELTATvSPEEDpNKl H 1
j	 C****#*****#*#########***#* ##***############*##*###*###*## H 2

C THIS SUBROUTINE CALCULATES THE MODAL COEFFICIENTS FOR TRANSIENT H 3
C RESPONSE ANALYSIS H 4
C *********************************************#**#**************** H 5

REAL MBX,MBY H 6
r REAL KXXsKXYsKYXsKYYsMFX,MFY:MUXsMUY,KMXsKMY H 7

COMMON /BLKI/ NsNBsNNLINsNMBs NFsNUivNSsNBOWsISTABsIMODEsISKUsNNCt,N H 8
LUFPT H 9
COMMON /BLK2/ ISKIP, NSTEPsNCYCLEsNITP ,NINT,NPLOTsNORBIT,NTIME,NSPE H 10

IEDsNINC,NDPTsNT H 11
COMMON /BLK31 CRT( 10)sLLBD(10)sLLNB(5),LLNMB(9)sLLSK(10)sLLNT(IO)s H 12
1LLUF(10)sLLFF(10)sLLUT(10) H 13
COMMON IBLK5/ UX(10) oUY(10)sFX(10)oFY(10)PFSKIIOlsPSK(.101 H 14
COMMON /BLK6/ BOW(100)sPBIIW(IO OIPXIDC(IO0)sYIDC(100)sVXIDC(100)sVY H 15
110Ci100)s0XA(100)s8YA(100) H 16
COMMON /SLK7/ CMX(10, 10)sKMX(10sIO1sEMXIIO,IO)sCMYIl0,10)sKMY(IOs1 H 17

1019EMY(10si0) H 18
COMMON /BLKB/ MFX(10)P,MFY( 10)sMUX(10)sMUY(10)shBX(10)jPMBYtlO) H 19
COMMON IBLK91 DDPC(l0,100),EEYTH(10,100) H 20
COMMON /BLKII/ DOX( 10s10),DOYIIOs101,EOX(I0s1.0),£OY(IOPIO) H 21
COMMON /BLK15/ RP(100),RT(100) H 22
COMMON /BLK16/ SPEED2,ANGSP,ANGACL,FSPEED H 23
COMMON /BLK18/ AKK(10) H 24
COMMON /BLK21/ DMX(10,10)sDMY(10910) H 25
C.€]MMON /BL.K29/	 PASP H 26
FI=3.14159 H 27
ANGSP=SPEED*PI/30. H 28
DO 10 1=1sNNCT H 29
roux(I)=0. H 30
HUY(I)=0. H 31
MFX(I)=O. H 32

10 MFY(I)=0. H 33
IF	 (NU.E0.0)	 GO TO 40 H 34
00 .30 I=1, NU	 C H 35
J=LLUF(I) H 36
PHI= AT.AN2IUY(I),UX(I)) 	 G]p H 37
OMT=ANGSP#.T+PHI H 38



IF	 (NK.Eu.0)	 6V.T=PASP+PHI H 39
1fiE = (UX(I)*UX(I)+UY(I)*UY(l))**0.5 H 40
IF	 (VK.E4.0)	 OiiT = PASP+PHI H 39
TME=(UX(I)*UX(I)+UY(I)*UY(I))**0.5 H 40
00	 20 K=1sI4NCT H 41
P,UX(K)=PIUX(K)+(AtJGACL*Slit(OMT)+ANGSP*ANGSP*COS(OMT))*TKE*DDPC(K,J) H 42

20 riUY(K)=MUY(K)+CANGSP*ANGSP*SIN(OMT)-ANGACL*CGS(OtIT))*TVE*DDPC(K,J) H 43
30 CONTINUE H 44
40 IF	 (NS.EQ.0)	 GLi	 TO	 60 H 45

lI r-E=T H 46
DU	 50	 I=1.04S H 47
KK=LLSK(I) H 48
CAN=A)JGSP*TIME+PSK(I)/57.29578 H 49
IF	 (NK.EQo 0)	 CAN=PASP+PSK(I)/57.29578 H 50
DO 50	 J=IPNNCT H 51
h+UX(J) = rtUX(J)+(ANGSP*ANGSP*COS(CA-iii)+ANGACL*SIN(CAN))*FSK(I)*(RP(KK H 52

1) — RT(KK))*EEYTH(JsKK)/386.4 H 53
50 KUY(J)=MUY(J)+(APIGSP*ANGSP*SIN(CAt4) —ANGACL*COS(CAN))*FSK(I)*(RP(KK H 54

I) — KT(KK))*EEYTH(JPFK)/3E6 * 4 H 55
60 IF	 (NBOW.EG.0)	 GO TO	 80 H 56

DG 70 I=1 N NNCT H 57
TMAG=CPY(I)**2+MBX(I)**2)**0.5 H 58
AhG = ATAN2(MBY(I)sMBX(I)) H 59
TANG=ANG+T*ANGSP H 60
IF	 (NK.EO.0)	 TANG=PA.SP+AiJG H 61
MUX(I)=MUX(I)+lMAG*COS(TANG) H 62

70 i•:UY(I)=MUY(I)+THAG*SIM(TANG) H 63
80 CONTINUE H 64

IF	 (NK.EQ.l)	 GO	 TO	 100 H 65
DO 90	 K=l,liNCT H 66
0(J 90	 L =1P NKC T H 67
EMX(KsL)=EOX(K,L) H 68
EMY(KsL)=EGY(K,L) H 69
DMX(KsL) = DOX(K,L) H 70
DMY(KfL) = DOY(K,L) H 71
00 90 J=1sN H 72
EViX(K.oL.)=EMX(K,L1+0.5*ANGACL*RP(J)*EEYTH(K,J)*EEYTH(LPJ)/386.4 H 73
EMY(K,L) = EMY(K,L)-0.5*ANGACL*RP(J)*EEYTH(K,J), *EEYTH(LiJ) /386.4 H 74

w
w
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tl^LiKi l=SKY.(K,L)*ANGSF#RF(J)*EEYTH(K#J)*EEYTH(L:J)/386.4	 H 75

90	 OKYIKPL)xDMY(K,,L)—Ar4(;SP#RFIJ)*EEYTH(KoJI*EEYTH[LPJ)/S86.4 	 H 76
SPEE®=SPEED*304*ANGAC.L*DELTATIPI 	 H 77

100	 CruhTI)+HE	 H 78
RE?LRf;	 H 74
END	 H 80—
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SU6ROUTINk	 TACCkL I 1

THIS SUBROUTINE CALCULATES THE MODAL ACCELERATION BY SOLVING I 3
THE MODAL	 EQUATIONS OF IIOT10N I 4

REAL KXXs KXYs KYX, K YYt MFX, MFYs MUXs MUY, KMX, KMY I 6
COhKON /BLK1/ NyNBPNNLIN,NM Bt NFPNU/NS,t)BCWPISTABsIMODE:ISKUPNNCT,N I 7
IUFPT I 8
COMMON	 /BLK3/ CRT(:IO),LLBD(10)PLLNB(5)PLLNMB(9)*LLSK(10)#LLNTIIOIP I 9

1LLUF(1.0).sLLFF(1G)PLLUT(.10) I 10
.COMMON	 /BLK7/ CMX(10sIO)PKMX(10s10),EMX(1Os10)sCMY(1Os10)sKMY(1011 I 11
l0),ERY(10910) I 12

COMMON	 /BLK8/	 MFX(10)PMFY(10)iMUX(lO)PMUY(10)sMBX(10)PMBY(IO) I. 13
COMMON /BLK9/ DUPC(10PI00)sEEYTH(10,100) I 14
COMM0	 /BLKZO/	 AL(2s10),A2(ZP10)sA3(2r10)PB1(2i10)sB2(2910),PB3(2s1 I 15

10) I 16
COW-16N	 /BLK21/ DrsX(10s10)jPDMY(l0.v10) I 17
IF	 (flNLlN * EQ.0)	 GO TO 10 1 16
CALL BNF I 19
CONI INUE 1 20
GU 30	 I = is t0NCT I 21
A1(l p I) =N{F X(I)+IitJX (I)--(CRT (I) *[).1047I ci75) **2*A3 (1s l) I 22
B1(1,I) FMFY(1)+14UY(I) — (CRT(I)*0.10471975)**2*B3(1^I) I 23
DO 20 J=1s1INCT I 24
Al(ls l)-A1(1s1) —CMX(IoJ)*A2(1,J) —KMX( Is J)*A3(1sJ)—DhX[IsJ)*82(2.q J) I 25

1 —EV,X(IsJ)*B3(1,J) I 26

Bl.(1,l)=B1(1,l)--CMY(IPJI*'B2(1rJ) —KMY(IsJ)*B3(1PJI-DMY(IPJ)*A2(1sJ) I 27
1 — EMY(I#J)*A3(1,J) I 28

CONTINilE I 29
R ETUR N' I 30

END I 31—
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SUBROUTINE TINTG	 (NNCT,DELTAT) J 1
C ***#***##*****#*#***##*******#*#*****#*****#*******##************ J 2
C THIS.SUBROUTINE INTEGRATES THE MODAL ACCELERATION INTO VELOCITY J 3
C AND DISPLACEMENT BY MODIFIED EULER METHOD J 4
L *#*#*#*##***#***##*******#***###****#**************************# J 5

COMMUN /BLKZ/ i SK: R,NSTEPsNCYCLEPNITPsNINT,NPLOTPNCRBIT,NTIME,NSPE J 6
IED,NINCPNOP1,NT J 7

i
COMMON /dLK20/ A 1(2s1 0 )sA2(2s10),A3(2 p lO)sBI(2s10)sB2(2s.101283(2*1 J 8

10) J 9
DO 10	 I=1,NNCT J 10
A2(Z,I) =AZ(.ls?) +DELTAT*A1(1,I) .) 11
82(2,1) = B2(1,I)+DELTAT*B1(T.oI) J 12
A3(2	 I) =A3(19I)+DELTAT#0.50*(A2(1,I)+A2(Z,L)) J 13

10 83(2pl)cB3t1sI1+DELTAT*0.50*(BZIIPI)+BZ(2 ► I)) J 14
DO 20 I=Is NNC T J 15
A1(1,I1=Al(2:I1 J 16
A2(I,I)=A2(291) J 17
A3(I,I)=A3(.2,I) J 18
B1t1I1=81t2^I) J 19B2(l,.I) -B2(2sII J 20

ZO 83 (ls i)=B3(2,I) J 21
RETURN J 22
END J 23—
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SUBROUTINE TBETA	 (NNCTsDELTATsBETA) K 1
C K 2

C THIS SUBROUTINE	 INTEGRATES THE MODAL ACCELERATIONS	 INTO MODAL K 3

C.. VELOCITY AND DISPLACEMENT	 BY	 NEWMARK BETA METHOD K 4
C **#**#***#**##**#*##*********#***#**#*#*#####*#*#*********** K 5

DIMENSIGN	 STORE(6-910) K 6

COMMON	 /BLK20/	 A1(2,10)PA2(2,IO),A3(2, 1 0)sBl(2 p 10)	 B2(2s10)PB3(2s1 K 7

10) K B.
DO 10 'I=1, NNCT K 9

ST0RE(IsI)=A1(I,I) K 10
STORE( 2jI) = B1(I#I) K 11

STGRE(3sI)=A2(l,i) K 12

STORE(4sI)=B2(IsI) K 13
STGRE(5,I)=A3(lAl) K 14

10 STORE(6,I)=B3(lsI) K 15

DG 20	 I=1sNNCT K 16
A2(ltl) =STORE(3.#I)+DELTAT*STORE(1sI) K 17

B2(lol)=STORE(4sI)+DELTAT*STORE(2it) K 16
A3(1,I)=STORE(5jl) +.5*DELTAT *(STbRE(3,I)+A2(1sI.)1 K 19

20 B3'11pl)=STORE(6sI)+.5*DELTAT*(.STORE(4ol)+B2(lsI)) K 20
CALL TACCEL K 21
DLL 30	 I=I.sNNCT K 22
A2(IsI)=STORE (3,I)+.5*DELTAT*(AI(I,I)+STORE( l s I)) K 23
B2(1sI)=STORE(4,I)+.5*DELTAT*( B1(1sI )+STORE(2sI)) K 24
A3(IsI) = STGRE ( 5sI)+DELTAT * STORE ( 3sI)+(.5—BETA) *STORE(lsI)*DELTAT*D K 25
1ELTAT+BETA*DELTAT*DELTAT* AI(1,9I) K 26

B3(1,I)=SlDRE ( 6sI)+DELTAT * STORE ( 4,I)+(.5—BETA) *STORE ( 2sIl*DELTAT*D K 27
1ELTAT+BETA*DELTAT*DELTAT* Bl(1 p i) K 28

- A3(2sI)=.A3(lsI). K 29

30 B3(Z,I)=B3(lsI) K 30

PETURtd K 31

END K 32--
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SUBROUTINE TINC L 1

C ***^a*#*******^a********************************************** L 2

C THIS SUBROUTINE TRANSFORMS THE ROTOR INITIAL CONDITIONS 	 INTO L 3

C MODAL	 INITIAL CONDITIONS OF	 VELOCITIES AND DISPLACEMENTS L 4
C *************+***********************************#*******#***** L 5

DIMENSION	 XTH(100 ) p	 YTH(100)s	 VXTH ( 100)s	 VYTH ( 100) L 6

COMMON / BLK1/ NsNBPNNLINsNMB , NF,NU,N5,NBOWPISTABsIM © DE,ISKUP NNC T P N L 7

1UFPT L 8

COMMON	 / BLK6 / 	BOW(100 ) sPBOW ( 100)#XIDC ( 100),YIDC ( 10 n )sVXIDC ( 10 0 )P VY L 9

.IIDC ( 100)PBXA ( 100)PBYA ( 100) L 10

COMMON	 IBLK9 / ODPC ( 10vl00 ) sEEYTH ( 10v100) L 11
COMMON	 /BLK15/	 RP(100)#RT(100) L 12

COMMON IBLK19 / DX(100) L 13

COMMON	 /BLK20/	 Al(2s10),A2(2s10)sA3(2s10)961[2s10).,B2(2,101sB3(2i1 L 14

10) L 15

COMMON	 IBLK221	 W(100) L 16

TC=(XIOC(2) —XIDC(1))/DX(1) L 17

TO=(YIAC(2) —YIDC(1))/DX(1) L 18

.TE=(VXIDC(2) —VXIDC(1))/DX(1) L 19

TF • (VYIDC(2) —VYIDC(11)/DX(1) L 20

XTH(11=ATAN(TC) L 21

YTH(I )=ATAN(TD) L 22
VXTH(1)=ATAN(TE) L 23

VYTH(1)=ATAN(Tf) L 24

TC=(XIDC(N) — XIDC(N—l))/DX(N-1) L 25

T0=(YIDC ( N) — YIDC ( N-1))/DX ( N-1) L 26
TE=(VXIDC(N) —VXIDC(N-1)1/DX(N-11 L 27

TF=(VYIDC ( N) —VYIDC ( N-1))/DX ( N-1) L 28

YTH(N) =ATAN ( TD) L 29

XTHWh	 A TAN( TC) L 30

VXTH ( N) =ATAN ( TE) L 31
VYTH(N)=ATAN(TF) L 32

N1=N-1 L 33
DD 10	 I=29NI L 34
TC=(XIDC(I+1)—XIDC(I-1))/(DX(I-11+DX(Ii) L 35

TO=(YIDC ( 1+1) —YIDC ( I-1))/(DX ( I-1)+DX(I)) L 36
TE=(VXIDC(I+1) —VXIDC(I-1))/(DX(I-1)+DX(I)) L 37

TF-(VYIUC( I+1) —VYIDC ( I-1))/(DX ( I-1)+DX ( I)) L 38

wwV



•	 XTH(1)=ATAN(TC) L 39
YTH (I )--ATAh1(TD) L 40
VXTH(I)=AT AN( TE) L 41
VYTH(I)=ATAN(TF) L tit

10	 CaNTINUE L 43
00 20 I=1sHFiCT L 44
A3(3,I)=L). L 45
B3(IPI) = 0. L 46
A2(l,I)=0. L 47
fsZ(1 j I)=O. L 48
Vo ZO J=1sN. L 49
A3(1sT)=A3(1sI)+(DOPC(I:J)*W(J)*XIDC(J)+EEYTH(IsJ)*RT( J )*XTH( J ))/3 L 50

186. y L 51
B3(lsi)=B3(I,I)+(DDPC(I,J)*WS . J)*YIDC(J)+EEYTH(IsJ)*RT(J)*YT H (J$1/ 3 L 52

lb6.4 L 53
AZ( lsI)= A2( 1sI)+(DDPC(I,J)*W(.J.) * VXIDC(J)+EEYTH(I#J)*RT(J)*V Y T H (J)) L 54

1/366.4 L 55
2.0	 B2( Isl)= L2(1,I)+(D DPC(I.sJ)*WtJ)*VYIDC(J)+EEYTH(I,J)*RT(J)*VYTH(J)) L 56

1/386.4 L 57
RETURN L 58
END L 59—
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SUBROUTINE	 TSTORE	 (NNCTsICOUNTsXMAXsYMAX) M 1
C *#*#*#**##******#*#**#****#****#**#**#*****#**********##****##** M 2
C THIS SUBROUTINE	 STORES THE MODAL DISPLACEMENTS FOR EACH TIME M 3
C STEP INTO THE STORAGE BLOCK M 4
C #***.**#***#***###****##**************#*##.****#*#**##**##***#**** M 5

COMMON /BLK3/	 CRT(10)sLLB0(10)s LLNB (5)sLLNMB(9)sLLSK(1D)sLLNT(10)s M 6
1LLUF(.l0),LLFF(10),LLUT(10) M 7
COMMON	 /BLK9/ 0DPClI0 p l00) p EEYTH(10,100) M 8
COMMON	 /BLK201	 A1(2s10)sA2(2s10)9A3(2s10)sBl(2 p lO)PB2(2slO ) p B3(2s1 M 9

10) M 10
COMMON S1(4001)sS2(4001) M 11
S1(ICOUNT)=0. M 12
S2(ICOUNT) =0. M 13
J-LLNT(l) M 14
00 10	 I=1,NNCT M 15
SI(iCOUNT)=SI(ICOUNT)+DDPC(IsJ)*A3il#l)*10009 M 16

10 S2( ICOUNT)=S2(ICOUNT)+DDPC(19J)*B3(1sI)*10009 M 17
X=ABS(Sl(ICOUNT)) M 18
Y*A6S(S2(ICO UNT)) M 19
IF	 (X.GT9XMAX)	 XMAX=X M 20

IF	 (Y.GT.YMAX)	 YMAX=Y M 21
RETURN M 22

END M 23—
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SUbkOUTINE BNF N	 1
C 2
C THIS SUBROUTINE CALCULATES THE NONLINEAR BEARING FORCES FOR EACH N	 3
C TIME STEP	 THE	 BEADING USED ARE ASSUMED TO BE SHORT JOURNAL N	 4
C BEARING 180 DEG,	 CAVITATED FILM OR	 WITH 360. DEG FLUID FILM, N	 5
C THIS CAN ALSO BE USED TO APPROXIMATE STRAIGHT SEAL FORCES. N	 6
C ##**##******#**###***###*#**#****##*#****#*#*#*****#**#**##** N	 7

REAL LCN	 N	 B

REAL MFX,MFY	 N	 9
REAL KXXsKYY	 N 10
COMhGN /BLK1/ (Vs NB, NNLINs#4MB.NF,NU,NSPNBOWsTSTABsIMDDEsISKUtNNCTsN N 11
IUFPT	 N 12

COMMOR /BLK3/ CRT(1 0), LLBD(10),LLNB(5)sLLNMB(9)sLLSK(10)sLLNT(10)s N 13
1LLUF(10)sLLFF(10),LLUT(i0) 	 N 14
COMMON /BLK4/ KXX(10)sKXY(10),KYX(IOIsKYY(10)sCXX(10)sCXY(10)sCYX( N 15

110),CYY(10)sSLNMB(9o4,4),CLNMB(9s4s41 	 N 16
COMMON 18LK61 MFX(1 0)s MFY(10),MUX(10IsMUY(10),MBX(IOIsMBY (10) 	N 17
COMMON /BLK9/ 0DPC(10,100),EEYTH(10s100) 	 N 18
COMMON /BLK161 SPEEDZ,ANG.SP,ANGACL,FSPEED	 N 19
COMMON /BLK18/ AKK (10) 	 N 20
C011MON /BLK20/ A1(2.s10),A2(2,10)sA.3(2110)sBl(2s10)s82(2s10),B3(2s1 N 21

10)	 N 22
COMMON /BLK35/ WMY(10),VIS(5)sR(5),LEN(5)sC(5)sNLB(51	 K. 23
00 10 I=1*NNCT	 N 24
MFX(I:):=0.	 N	 25

10	 MFY(I)=0.	 N 26
DO 70 I-I1NRLIN	 N 27
FX=0..	 N 28
FY=O.	 N 29
L=LLNB(I)	 N 30

X=O.	 N 31
Y=O.	 N 32
VX=O..	 N 33
VY=O.	 N 34
DO 20 J=1,NNCT	 la 35

)(: X+A3(1,J)*DDPC(J ,L) 	 N 36
Y=Y+B3(1iJ)*.DDPC(JsL)	 N 37	 w

r
VX=VX+A2(1s J)#GI3PC(J,L)	 N 38	 c
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VY-VY+82(1PJ)*DDPC(J,L) N 39

20 CONTINUE	 - N 40
D=X*X+Y*Y N 41
IF	 (D.LT.1.E-12)	 GO TO 50 N 42
SO -0. N 43
DEU=O. N 44
SD=SQRT(D) N 45
U-X*VX+Y*VY N 46

DU x C(I)*SD*ANGSP N 47
DEU=U/DU N 48
EU=SD/C(I) N 49
IF	 (EU.GT.1.)	 EU= * 99 N 50
PHIDOT=(X*VY—Y*VX)/(ANGSP*0) N 51
PI=3.14159 N 52
TEST=(1 * -2.*PHIDOT) N 53
SIGN = 1. N 54

SIGN1=1. N 55
IF	 (TEST-LT-O-)	 SIGN =—l. N 56

IF	 (DEU.LT * 0.)	 SIGNI C -1. N 57
CS=EU*ABS(TEST)/SQRT(EU*EU*TEST**2+4 * *DEU*DEU) N 58
AS=(1.+EU)/(i.—EU) N 59

{ IF	 (CS.EQ * 0.)	 GO	 TO	 30 N 60
U= SORT( (Ie —CS)/ Its +CS}1 N 61
GO TO 40 N 62

3C U=0* N 63
40 CONTINUE N 64

TIl=SIGN*4.*EU*CS**31((1. —EU*EU*CS*CS)**2) N 65
C1=(1. —EU*EU) N 66
C2=(3*-5.*AS*AS) N 67	 j

z C^ 0 C3=(5.-3**AS*AS) N 68
TA-AT:.N(U*(AS*AS-1.1/SAS*(l.+U*U))) N 69

. C4=(1.+29*EU*EU) N 70
CON=PI*C4/(C1**2.5) N 71

*AS*Ci3h2=(C2*U*U+C3*-AS*AS}/(U*U+AS*AS)**2+(C2+C3*AS*AS*U*U)/(1.+AS N 72
lU*U)**2 N 73
TI2-CON+SIGNI*(2.*C4*TA/(Cl**2.5) —U*CON2/(Cl**2)) N 74

jZ' CON=2./C1**1.5 N 75
TI3=CON*(PII2.+SIGN1*(TA— AS*U*(U*U—AS*AS)I(U*U+AS*AS)**2 —AS*U*(1.— N 76 '^
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1AS*AS*U*U11(1.+AS*AS*U*U)* *21 } N 77
SDhi=ViS ( I.)*AivGSF * 2.*R(I!*LEN(I)**/(8.*C ( I}*C(T!) N 78
FI=SfJM*(EU*TEST*TI1+2.*DEU*TI2) N 79
F2=S©M*( EU*TEST *TI3+2. *DFU*TIl) N 80
FX= — (FI*X+F2*Y)/SD N 81
FY = (F2*X-F1*Y11SD N 82

50	 CONTINUE N 83

ID xNLB(I) N 84

FX=FX+KXX(ID)*X+AKK(ID).*X N 85
FY=FY+KYY(ID)*Y+AKK( ID) *Y N 86
DO 80 K=I P NNCT N 87
tFX(K)=VFX(K)+F.X*DDPC(KsL) N 88

60	 MFY(KImFiFY(K)+FY*DDPC(KsL) N 89
70	 CONTINUE N 90

RETLIRN N 91
END N 92--
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1.0

a

SUBRUUTIWE OBPLOT	 (XMAX,YMAXsNLPTPIOPNSTEP,IJ) 0 1

THIS SUBROUTINE PLOTS THE TRANSIENT ORBITS 	 IN X AND Y DIRECTIONS 0 3
*****************#******************#**T********##***###*#**##*## 0 4
COMMON	 /BLK28/	 AL1(8)#AL2(81,AL3(81 0 5
COMMON	 /BLK39/ NSPD,SSPEED(10) 0 6
COMMO((	 SX(4001),SY{40011 0 7
CALL	 PLOT	 (15.,5.,-31 0 8
CALL	 SYMBOL	 (-3.0,-4.0O3.105,AL1,0.0,80) 0 9
CALL SYMBOL	 (-3.0,-4.25..i05,AL2,0.0,80) 0 10
CALL	 SYMBOL	 (-3.0,-4.50,.105,AL3 * 090s80) 0 11
CALL	 SYMBOL	 (-3.,-4.75s9105,25HROTOR	 SPEED-	 RPMs0.p25) 0 12
CALL	 NUMBER	 (-1.9,-4.75,.105,SSPEED(IJ),0.,4HF6.01 0 13
C=AMAX1(XMAX,YMAX) 0 14
G = 1. 0 15
IF	 (C.LT.1.)	 G=10. 0 16
B=C*G/3.+1. 0 17
D =AINT(B)/G 0 18
E = -3.*D 0 19	 r

CALL AXIS	 (-3.0,-3.0,i1HY —DIR(MILS)s11,6.0P90.OsEsD1 0 20
CALL AXIS	 (-3.0,-3.0,1LHX —DIR(MiLS),-11,6.0PO.OPEPD) 0 21
CALL	 PLOT	 (3.,-3..,3) 0 22
CALL	 PLOT	 (3.,3.,2) 0 23
CALL	 PLOT	 (-3..3.,2) 0 24
CALL	 SYMBOL	 (I.0,3.25,.14,1'^HSTATI0N NO.s0 . 0s11) 0 25
CALL NUMBER	 (2.2,3.25,.14,I0,0.0,2HI3) 0 26
KK = 1 0 27
JJ;O 0 28
DO 30 J-1sNLPT 0 29
x=SK(J) 0 30
Y=SY(J) 0 31
X=X/0 0 32
Y=YID 0 33
IF	 (J.NE.1)	 GO TO 10 0 34
CALL	 PLOT	 (YPYs3 )	 ^^^, ^ 0 35
CALL	 PLOT	 (X.PYs2) 0 36
IF	 (J.EG.KK)	 GO	 TO	 20 0

w
37

GO TO 30 0 38



N

2G	 CALL SYMBOL (XpY,.0875p11,0.s-1)
	 0 34

CALL PLOT (XPYP3)
	

0 40
JJ=JJ+1
	 0 41

KK=JJ*NSTEP+1
	 a tit

30	 CONTINUE .	 0 43
CALL NEWBLOK
	 0 44

RETURN
	 D 45

END
	 0 46-

w



SUBROUTINE	 TMPLOT	 (XMAXtYMAXoNLPT,ID#FTIMEPNSTEPI P 1
****#***#*****###***********#********#********#******************* P 2

C THIS SUBROUTINE PLOTS TRANSIENT RESPONSE AMPLITUDES VS REAL TIME P 3
C P 4

COMMON /BLK16/ SPEED2,ANGSP,ANGACL,FSPEED P 5
C06MON IBLK281	 AL1(8)9AL2(8),AL3(6) P 6
COMMON SX ( 4001), SY (4001) P 7
C = AMAXI(XMAXsYMAX) P 8
G=1. P 9
IF	 (C.LT.I.)	 G=10.	 - P 10

p 11
D= AINT(B)/G P .12
CC=-29*D P 13
CALL PLOT (5a92.9-3) P 14
E-FTIME*1000./6.+I. P 15
F =AINT(.E)/I000. P lb
CALL AXIS	 (0.090.091.5HTIME	 IN SECONDS #-1598.0s0..0s0.0sF) P 17
C A LL AXIS	 (0.0s090923HROTOR DISPLACEMENT—MILSs23s4.,90.9CCs01 P 18
CALL PLOT (0.s2.0s3) P 19
CALL	 PLOT	 (8.0#2..092) P 20
CALL SYMBOL t0.0s- 1..19.1059AL1s0.0,80) P 21
CALL SYMBOL	 (0.09- 1.3s.105sAL2s0.0s80) P 22
CALL SYMBOL	 (0.0#-1.5s.105sAL3s0.0,9B0) P 23
CALL	 SYMBOL	 (3.5.,4.09.14s11HSTATION NO.sO.sil) P 24
CALL NUMBER	 (4.7s4.09.149I0.0.0s2Hl3) P 25
CALL SYMBOL	 (6.0,3.8#0.105s12HX=	 sY-90.#12) P 26
CALL SYMBOL	 (6.4#3.9,0.1059 1190.,-1 . ) P 27
CALL SYMBOL	 (7.3s3.990.L05#2,0.#-1) P 28
M=0 P .29

10 CONTINUE p 30
JJ=O P 31.
KK=1 P 32
TIME;=O. P 33
SPEED=SPEED2 P 34
STEP=NSTEP P 35

: .DELTAT*0. P 36
D q 	 5.0 T=1.oNLPt P 37
TIME=TIME+DELTAT P 38

4)
a

u`
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30

40

54

60

T=TIVE
SPEED=SPEED+DELTAT*ANGACL*9*54929
x=SX(l)
T=T/F
Z=x /D + 2.
ra = ^ I;
IF (Y.EQ.0) GO TO 20
Y=SY(I)
Z=Y/D+2.
N=2
CONT.IM)c
IF (IoNE.1) Gu TO 30
CALL PLOT (TPZs3)
CALL PLOT (T,Z,2}
IF (I.EQ.KK) GG TO 40
GO TO 50
CALL SYMBOL (T,Z,.G7,Np0.,—l)
DELTAT=60.1(SPEED*STEP)
JJ=JJ+1
KK=JJ*NSTEP+1
CON TINUE
IF (N+. EG .1) GO TO 60

M=1
GO TO 10

CONTINUE
CALL NEWBLOK
R ETURN

END

P 39
P 40
P 41
P 42
P 43
P 44
P 45
P 46
P 47
P 48
P 49
P 50
P 51
P 52
P 53
P 54
P 55
P 56
P 57
P 58
P 59
P 60
P 61
P 62
P 63
P 64
P 65
P 66—
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SUBROUTINE TUFT (CCsNSTEP) 	 0	 1
C	 *##****#*t#*******#**#*#**###****##*#*######**##**#*#*##*####*# 0 	 2
C	 THIS SUBROUTINE SAMPLES DATA FOR THE FAST FOURIER TRANSFORMATION	 Q	 3
C	 Q	 4

DIMENSION A(1024)i 8(1024)s CC1512) 	 0	 5
COMMON S1(4001)sS2(4001) 	 Q	 6
00 10 I=1#1024	 Q	 7
A(I)=0.	 Q	 8

10	 B(l)=4.	 Q	 9
N=NSTEP/10	 0 10
M=NSTEP*4+1	 C 11
DO 20 I=1s160	 0 12

0 13
20	 A(I)-S1(J)	 Q 14

CALL OFT (10pl024 p 3oAtB)	 0 15
.	 DO 30 I=1,512	 0 16

C.=SQRT(A.(I) *A(I1 +8(I1*B(I))	 0 17
CCII)=C	 Q 18

30	 WRITE Oo0l IsC	 Q 19
RETURN	 Q 20

c	 0 21
.	 40	 FORMAT (5Xs1.5,5XsF15.5)	 Q 22

END	 Q 23-

a

i

wr
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SUBROUTINE	 OFT	 (NFWR2&pNTYPE * XREsXIM? R 1
AENS1CN XRE(N)s	 XIM(N) R 2

C R 3
C	 CALCULATES FOURIER SERIES FOR DR FROM THE VECTOR A	 WHOSE LENGTH R 4
C	 IS N WHERE N=	 2**NPWR2 R 5
C R 6

C	 DURING FOURIER ANALYSIS, 	 THE	 INPUT VECTOR	 (XREoXIM)	 REPRESENTS R 7

C	 CONSECUTIVE	 SAMPLES	 OF	 THE	 TIME	 FUNCTION X(N*DELTATI R 8

C	 THE SUBROUTINE RETURNS THE COEFFICIENTS OF THE COMPLEX FOURIER R 9
C	 SKIES REPRESENTATIGN OF THE TIME FUNCTION R 10
C R 11
C	 DURING FOURIER	 SYNTHESIS,	 THE	 INPUT VECTOR	 (XR.E,XIM1	 CONSISTS R 12
C	 OF THE ABOVE MENTIONED FOURIER COEFFICIENTS. R 13
C	 THE	 SUBROUTINE RETURNS THE ORIGINAL TIME FUNCTION, 	 SAMPLED AT R 14
L	 EVENLY SPACE{	 INCREMENTS R 15
C R 16
C	 THIS	 SUBROUTINE ALLOWS A FORTY PERCENT TIME	 SAVING IF THE R 17
C	 TIME	 FUNCTION	 IS REAL. OR	 IF THE FOURIER COEFFICIENTS ARE	 THE R 18
C	 COEFFICIENTS OF A	

REAL 
FUNCTION R 19

C R 20
C.	 FOR FOURIER ANALYSIS 	 CF	 A REAL FUNCTION IT	 IS UNNECESSARY TO R 2.1
C	 INSERT ZEROS	 Its	 THE	 XIM LOCATIONS BEFORE CALLING THIS SUBROUTINE R 22
C R 23
C	 FCR FOURIER SYNTHESIS OF A REAL FUNCTION ONE NEED ENTER ONLY R 24
C	 THE REAL AND IMAGINARY PARTS OF THE FIRST 	 (ONE HALF N + 1) R 25
C	 FOURIER COLFFICIENTS	 THE SUBROUTINE AUTOMATICALLY ASSUMES R 26
C	 THAT THE	 REMAINING COEFFICIENTS ARE HERMITIAN SYMMETRIC R 27

C R 28
C	 NTYPE = 1	 COMPUTE FOURIER ANALYSIS OF COMPLEX VECTOR X R 29
C	 NTYPE =	 2	 COMPUTE	 FOURIER SYNTHESIS OF COMPLEX VECTOR X R 30
C	 NTYPE = 3	 COMPUTE FGURIER ANALYSIS OF REAL VECTOR X R 31
C	 NTYPE	 = 4	 COMPUTE FOURTER SYNTHESIS OF REAL VECTOR X R 32

C R 33

C	 THIS SUBROUTINE SETS UP AND CALLS SUBROUTINE FFT R 34
C***#*####*T#*########**##******#**#**###*##**********#******* R 35
C R 36
C	 DEFINE CONSTANTS R 37

co

1'	 -.
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C R 38

C DEFINE CONSTANTS R 37
C R 38

NPW141=NPWR2-1 R 39
N2=N/2 R 40
N2Pl=N2+1 R • 41

N2PZ=N2.+2 R 42
N4=N 14 R 43
N4PI=N4+1 R 44
N4P2=N4+2. R 45
Z=N R 46
C=6.283185:3/2 R 47

C R 48
C GO TO PROPER STATEMENT"NUMBER ACCORDING TO NTYPE R 49
C R 50

GO TO (10s20s30,90), NTYPE R 51
C R 52
C STATEMENTS ls2 FOR A COMPLEX VECTOR X R 53

R 54
10.. CALL	 FFT	 (IjPNPWR2,*iVsXREsXIM) R 55

RETURN R 56
20 CALL FFT	 (OsNPWR2 p Njp XRE ,XIM) R 57

RETURN R 58
C R 59	 s

C STATEMENT 3 FOR FOURIER ANALYSIS OF A REAL VECTOR X R 60
C SEE RANDOL READ.*S MA THESISo	 ELECTRICAL ENGG p RICE UNIVs 1968 R 61
C INSERT EVEN ELEMENTS OF XRE INTO XIM R 62	 j

f	 30' DO 40 I=2,Ns2 R 63

I2=1/2 R 64
IM1=1-1 R 65.
XIM(12) = XRE(I) R 66	 i

40 X.RE.(12 )=XRE I IM1} R 67	 I
CALL	 FFT. (1.-NPWhl p N 2p XREsXIM) R 68

C R 69
C SEPARATE THE OUTPUT INTO ODD AND EVEN PARTS WITH ADDITIONAL R 70
C DIVISION BY 2 R 71	 t°

3



w

C R 72
XRE(I1=itkE(1112.. R 73
XP.E(N2P1)=XIM(I)/2. R 74
XIti(1}=G. R 75
XIP.((iZP11=0. R 76
DO 50	 I-2rh4Pl R 77
J = Nz 4 I R 78
K=N2+2-I R 79
XRE(J) = 0.25*(XIV(I)+XIM(K)) R 80
XIM.(J)=0.25 $ (-XRE(I)+XRE(K)) R 81
XRE(I)=0.25*(XRE(I)+XRE(K)) R 82

50 XIM(1)=0.25*(XlFi(I)-XINt(K)) R 83
DO 60	 I=N4P2rW2 R 84
J=N2+I R 65
K = NZ+2-I R 86
L=N2+K R 87
XRE(I) = XRE(K) R 88

f XRE(J)=XRE(L) R J39
XIMtl)=-XIM(K) R 90

60 X110,(J)=-XIN(L1 R 91
C COMB111E THE	 DFT*S OF ODD AND	 EVEN ELEMENTi R 92
C R 93

SAVE =XRE(1)-XRWJ2P1) R 94

DO 70	 I=I,NZ R 95
J=112+.I R 96
Z = I-1 R 97
ANGLE =Z*C R 98
WRE= COS (ANGLE ) R 99
V.IM =-SIPI(ANGLE) R 100
XRE(I)=XRL(I)+WRE*XRE(J)-WIM*XIM(J) R 101

70 XIK(I)=XIM(I)+INIM*XRE(J)+WRE*XIM(J) R 102
XRE(N2P'l) = SAVE R 103
XIM()12P11=0. R 104
DO 80 I=N2P2pN R 105
J=14+Z-1 R 106

- XRE(I)=XRE(J) R 107	 1
E0 XlMfl)=-XIN(J) R 108	 v

PETUPM R 109	 9
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R 110
R 131
R 112
R 113
R 114
R 115
R 116
R 117
R 118
R .119
R 120
R 121
R 122
R 123
R 124
R 125
R 126
R 127
R 128
R 129
R 130
R 131
R 132
R 133
R 134
R 135
R 136
R 137
R 138
R 139
R 140
R 141
R 142—

C.

C STATEMENT 9 FOR FOURIER SYNTHESIS OF L1 REAL VECTOR X
C'- SEPARATE AND REARRANGE

.	 90 DO 100 I=1s N2
J=N2+I
K=N2+2 -I
L=I- 1
ANGLE=Z*C
WRE=COS(ANGLE)
WIM-SIN(ANGLE)
S:UMI=XIM(I)+XIM(K)
SUM2=XRE (I)-XRE (K)	 s

t XRE(J) =XRE ( I)+XRE ( K) —WRE*SUMI—WIM*SUM2
100 XIMtJI=XIM(I)—XIM(K)+WRE*SUM2-WIM*SUM1

Oq 110 1=1,N2
J=N2+I
XRE(I)=XRE(J)
X.IM(i)=XIMtJ)

110 XIH(J)=0*
CALL FFT (0,NPWY1sN2sXRE,XIM)

C
C REARRANGE RESULTS
C

00 120 I Rls K2
J=N2P1—I
Kr2*J-1

120 XRE(K)=XRE(J)
D© 130 I=1rN2
d=2*I
XRE(J)Zxlm(I)

130 XIM(I)=0*



SUBROUTINE	 FFT	 (IREV,NPWR2pNpXREjXIM) S I

DIMENSION	 XRE(N-)s	 Xlr.(N)p	 kRE(1024),	 WIM(1024) p 	 INDEX(1024) S 2

EQUIVALENCE	 (WRE(1)sINDEX(l)) S 3
C S 4
C CALCULATES	 THE DISCRETE	 FOURIER TRANSFORM OF A	 SEQUENCE OF EQUALLY S 5
C SPACED	 SAMPLES	 (sF	 THE	 COMPLEX	 FUNCTION	 X(I) S 6
C S 7

C SEE	 GOLD AND RADER,	 DIGITAL	 PROCESSING OF	 SIGNALS S 8

C CHAPTER	 6 PAGE	 176. S 9
C S 10

C SET	 IREV	 = 0 TO OBTAIN THE DFT S 11
C DFT(J)	 =	 SUM ON K	 OF	 X(K)*EXP (+6,283*SQRT( —I)*JK/N) S 12
C S 13

C SET	 IREV	 =	 1	 TO OBTAIN	 THE	 IDFT S 14
C IDFT(J)	 =	 X(J)	 =	 (I/N)*(SUM	 ON	 K OF	 DFT(K)*EXP(-6.283 *SQRT( —I)* S 15
C JK/N)) S 16

C S 17
C NPWR2	 THE BASE TWO LOGARITHM OF THE NUMBER OF ELEMENTS IN THE S 16
C SEQUENCE S 19
C N	 =	 2**(NP4tR2;	 = NUMBER	 CIF	 ELEMENTS	 IN	 THE COMPLEX	 VECTOR X S 20
C S 21

C XRE AND XIM CONTAIN THE SEQUENCE TO BE TRANSFORMEDo	 THIS S 22

C SUBROUTINE REPLACES	 XRE AND XIM BY THE REAL	 AND	 IMAGINARY PARTS S 23

C OF	 THEIR TRANSFORM. S 24
C S 25
C WRE AND WIM ARE VALUES OF THE COMPLEX EXPONENTIAL S 26

C S 27

C INDEX	 IS A VE-CTGR CONTAINING ONES WHERE	 INDICES HAVE ALREADY BEEN S 28

C REVERSED. S 29
C S 30

C WRITTEN	 BY JETHRO MEEK	 (RICE	 UNIVERSITY,	 HOUSTON#	 TEXAS) S 31

C JUNEs	 1970. S 32

C S 33
C S 34

C DEFINE CONSTANTS AND	 PREPARE FOR COMPUTATION S 35
C S 36

DO IG	 1=1s N S 37

IG INOEX(I)=O S 38

w
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S 39
S 40
S 41
S 42
S 43
S 44
S 45
S 46
S 47
S 46
S 49
S 50
S	 5.1
S 52
S 53
S 54
S 55
S 56
S 57
S 58
S 59
S 60
S 61
S 62
S 63
S 64
S 65
S 66
S 67
S 68
S 69
S 70
S 71
S 72
S 73
S 74
S 75
S 76

w
w

O .)
mC

C

70
80

C
C

60

50

ZN=N
RATIG=1./ZN
C=RATIO+6.2631653
IF (IREV) 30,20,30
5=1.
GO TO 40
S=--1.

PUT THE INPUT SEQUENCE IN SIT REVERSED ORDER
INSERT X{IBFOK+l) IN EOCATIOti X(IAFTR+1)s INHERE IAFTR IS THE
SASE TEN VERSION OF A NUMBER FORMED BY REVERSING THE BINARY
DIiGITS OF THE BINARY TRANSLATION OF THE BASE TEN INDEX 16FOR.
FIRST AND LAST.ELE14ENTS OF VECTOR X ARE ALREADY IN THE PROPER
LOCATIONS.

DO 90 IDa=3,N
IBFOR=IDO-2
IF (INDEX(IBFGR)) 90,50,90
IAFTR=O
NDNO[i=N
NNUM=18FOR
IADD=1
COMPUTE IAFTR

00 70 I= I,NPWP2..
NDNOMaNDNOM /2
NOUOT=NhUM/NDNOM
IF (NQUOT) 60P70#60
NNUM=NNUM—NDNOM
IAFTR=IAFTR+IADD
IF $NNUN) 70s80,70
IADD=2#IADD.
IBFPI=I6FDR+1
IAFPI=IAFTR+I

INSERT X(IBFOR+I) INTO X(IAFTR+I)

20

30
C
C
C
C
C
C
C
C
40



XRE(IAFP1)=XRE(IBFP1) S 77
XRE(.IBFP1)=SAVE S 78
SAVE=XIM(IAFP1) S 79
XI(•1(IAFP1) = XlM(IFJFP1) . S BO
XIMr(IBFPI)=SAVE S 81
INDEX(IAFTR) = 7 S 82

90 CONTINUE 5 83
C S 84
C CALCULATE TWIDDLE	 FACTORS	 WRE AND	 WIM S 85
C S 86

DO 100 I =IsN S 87
ZIM1 = I--1 S 88
T=ZIMI*C S 89
WRE (I )'= COS (T) S 90

100 WIP(I)=S*SIN(T) S 91
C S 92
C COMPUTE DISCRETE FOURIER TRANSFORM S 93
C SEE SIGNAL FLOk GRAPH,	 PAGE	 178, GOLD AND RADER S 94
C ISTEP	 INDEXES	 THE COLUMNS	 OF	 FIGURE 6.10 S 95
C THE ROWS OF THE SIGNAL FLOW GRAPH ARE DIVIDED INTO GROUPS S 96

.	 C NGRUP	 IS THE NUMBER OF GROUPS S 97
C IGOUP	 INDEXES THE GROUPS OF ROWS S 98
C EACH GROUP IS DIVIDED INTO PARIS OF ROWS CORRESPONDING TO THE NODE S 99
C PARIS. S 100
C NPAIR	 I5 THE NUMBER OF NODE PAIRS IN EACH GROUP S 101.
C IPAIR	 INDEXES	 ThE NODE PAIRS	 WITHIN GROUPS S 102
C IX1	 T_S	 THE INDEX OF THE FIRST NODE OF A NODE PAIR S 103
C IX2 IS	 THE	 INDEX OF	 THE SECOND NODE OF A NODE	 PAIR 5 104
C IW.IS	 THE	 INDEX OF	 THE TWIDDLE FACT O R	 FOR	 A NEDE PAIR S 105
C S 106

NN=1 5 107
Dq 12C	 ISTEP=IoNPWRZ 5 108
NN=2*NN S 109
NGRUP=N/NN S 110
NPAIR= N/(2 4 NGRUP) S 111
IX I=1 S 112
IX2=I+NPAIR S 113
DO	 120	 IGRUP=IPNGR1lP S 114

wwr
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I W=1	 S 115

00 110 IPAIR=IPNPAIR	 S 116
PRODR=WRE(IW)*XRE(IX2) — WIM(IW)*XIM(IX21	 S 117
PRDDI=WIM(IW)*XRE(IX2)+WRE(IW)*XIM(IX21	 S 118
SAVRE-XRE(IX1)	 S 119
SAVIN=XIM(IX1)	 S 120
XRE(IX1)=SAVRE+PRODR	 S 121
XIM(IX1 )=SAVIM+PRDDI	 S 122
XRE(IX2)=SAVRE-PRODR	 S 123
XIM(IX2)=SAVIM-PRDDI	 S 124
IX1=1X1+1	 S 125
IX2=IX2+1	 S 126

110	 IW-IW+NGRUP	 S 127
IX1= IXI+NPAIR	 S 128

120	 IX2=IX2+NPAIR	 S 129
C	 IF IDFT IS DESIREDs MULTIPLY BY RATIO (IIN)	 S 130

IF (IREV) 130,150,130	 S 131
130	 00 140 I = IPN	 S 132

XRE(I)=RATIO * XRE(I)	 S 133
140	 XIM ( I1=RATIO;*XIM(I)	 S 134
150	 RETURN	 S 135

END	 S 136-
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SUBROOTINE	 SPLO7	 (YMAX) T 1
C T 2

C i HIS SUBkCUTIfl GENERATES THE CAMPBELL PLOT OF 	 THE SYSTEM T 3

COMMUN /BLK39/ NSPDsSSPEED(10) T 5

CUMMON	 /BLK401	 FC(512),SFC(8,512) T 6

CALL	 PLOT	 (15.,1.,-3) T 7

CALL	 PLOT	 (0. * 5.r2) T 8

CALL	 PLOT	 (G.,O.s3) T 4

BASE=.6 T 10
SPf.AX=5.*SSPEED(1) T 11
SDV=SPMAX/6. T 12
CALL	 AXIS	 (O.pOsi22H	 FREQUENCY CPM	 ,--22s8.,0.s0.,SDV) T 13
DO 30 I=1,NSPD T 14
CALL	 PLOT	 (O., BASE,-3) T 15

LI7,
b,

YT=SFC(I#129) T 16
CALL	 NUMBER	 ( — .8 p O.s.14,SSPEED(l),04,4HF6.0) T 17

r
CALL	 SYMBOL	 ( — .6, — .17,.l4 p 3HRP('i3O.,3) T 18
CALL	 PLOT	 (O.,0.,3) T 19
CALL	 PLOT	 (0.2,0.,2) T 20
CALL	 PLOT	 (0.s0.,3) T 21
DIV=SSPLED(I)/(126.*SDV) T 22
X=O. T 23
DO 10 J=11512 T 24
Y=SFC(I,J)/YMAX T 25
IF	 (X.GT.8.)	 GC	 TO	 20 T 26

CALL	 PLOT.(XPYr2) T 27
X=X+DIV T 28

IG CONTINUE T 29

20 CONTItvUE T 30
CALL	 PLOT	 (06,G.03) T 31

30 COhTINUE T 32

CALL [NDPLT T 33
RETURN T 34

END T 35—
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UNIVERSITY OF VIRGINIA

School of Engineering and Applied Science

The University of Virginia's School of Engineering and Applied Science has an undergraduate
enrollment of approximately 1,000 students with a graduate enrollment of 350. There are approximately
120 faculty members, a majority of whom conduct research in addition to teaching,

Research is an integral part of the educational program and interests parallel academic specialties.
These range from the classical engineering departments of Chemical, Civil, Electrical, and Mechanical to
departments of Biomedical Engineering, Engineering Science and Systems, Materials Science, Nuclear
Engineering, and Applied Mathematics and Computer Science. In addition to these departments, there are
Interdepartmental groups in the areas of Automatic Controls and Applied Mechanics. All departments offer
the doctorate; the Biomedical and Materials Science Departments grant only graduate degrees.

The School of Engineering and Applied Science is an integral part of the University (approximately
1,400 full-time faculty with a total enrollment of about 14,000 full-time students), which also has
professional schools of Architecture, Law, Medicine, Commerce, and Business Administration. In addition,
the College of Arts and Sciences houses departments of Mathematics, Physics, Chemistry and others
relevant to the engineering research program. This University community provides opportunities for
interdisciplinary work in pursuit of the basic goals of education, research, and public service.


