
THE CURRENT STATUS OF MICROCOMPUTER ARRAYS 

John C. Knight 
NASA Langley Research Center 

Robert G. Voigt 
Institute for Computer Applications in Science and Engineerin@ 

INTRODUCTION 

In this paper we survey scme current research on microcomputer arrays. 
There are a large number of projects currently under development, and some are 
at the stage of constructing hardware, while others are at the design and 
planning stages. We will not attempt to present an exhaustive discussion of 
these efforts, but rather a general overview of the topic followed by a more 
detailed discussion of three projects whose purposes are specifically 
scientific computation. 

MOTIVATION 

A microprocessor is the central processor of a small ccmputer in the form 
of a single integrated circuit. By combining a microprocessor with a memory 
and a few other components, a complete computer of rather limited power can be 
constructed. At the present time, microprocessors typically use a word size 
of 8 or 16 bits, use 16-bit word addressing, and have a l-word integer add 
time of a few microseconds. Often they do not provide multiply or divide 
instructions, and floating point operations must be explicitly programmed. The 
remarkable thing about microprocessors which makes them so attractive is their 
cost. At the time this paper was written, a microprocessor could be purchased 
for a few tens of dollars, and a complete microcomputer could be built for a 
few hundred dollars. 

As the general level of semiconductor technology advances, microprocessors 
will become even less expensive, faster, and more sophisticated. In addition, 
a complete microcomputer on a single integrated circuit, a few of which are 
produced now, will become more widely available. Many projections from the 
semiconductor industry have appeared in the literature and indicate the 
probable availability of 32-bit microprocessors with built-in floating point 
hardware by the early 1980's. 

*Research by the second author was performed under NASA Contract Number 
NASl-14101 while he was in residence at ICASE, NASA Langley Research Center, 
Hampton, Virginia. 

31 



lIlllllllll I III II II 

Despite the limited capabilities of a single microprocessor, it is clear 
that very significant computing power could be achieved by linking many of them 
(perhaps thousands) together in some way, and their very low cost now makes 
this financially feasible even though there remain technical problems. 

From the point of view of the problem to be solved, there appear to be two 
clear motivations for considering srrays of microprocessors. For problems of 
moderate size, those that tax the resources of present day computers (but can 
be solved), the motivation is one of reducing both the cost and the time for 
obtaining a solution. For example, in structural analysis one routinely solves 
design problems that require on the order of 10 minutes of CDC 6600 computer 
time. However, to optimize that design, the engineer might like to solve the 
basic problem hundreds of times. The conflict is clear, and a compromise on 
the number of runs is usually made. 

At the other end of the scale there are problems of significant importance 
that are simply too large for any present-day computers or those that will be 
available by 1980. For example, to model most of the details of the flow of a 
gas over a complex body, such as an 6 aircraft moving through the atmosphere, 
would require a grid in excess of 10 points over which the three-dimensional 
Navier-Stokes equations would be discretized. It is predicted (ref. 1) that in 
order to model this flow in a few hours of computer time, a computer capable of 
performing at a sustained rate of 1 billion floating point operations per 
second would be required, The current super computers are capable of peak 
rates on the order of 100 million floating point operations per second. It is 
conceivable that the required raw performance could be obtained with a large 
array of microprocessors. Whether or not such an array could be used effi- 
ciently for scientific problems is another question with no clesr answer at 
this point. A discussion of this problem is beyond the scope of this paper, 
but it may ultimately be the most difficult to solve. 

PROCESSOR ORGANIZATIONS 

If many microprocessors are going to be used in parallel in the solution 
of a large problem, then each processor will be working on a very small part 
of the problem at the ssme time. This leads to a requirement for some form of 
communication between the processors since in general each processor will need 
the results generated by others as it proceeds. For example, if many micro- 
processors are used to solve a discretized differential equation by Jacobi's 
method, they could be organized so that each processor corresponds to a node of 
the grid and is able to exchange data with its nearest row and column 
neighbors. The communications requirement is the most critical issue in the 
design of microprocessor networks. The expense of any completely general high 
performance interconnection scheme, such as direct connection of every 
processor to every other, beccmes prohibitive as the number of processors 
increases, An inadequate interconnection scheme on the other hand either 
limits performance of the network or limits the class of problems which can be 
successfully tackled. A detailed discussion of interconnection schemes may be 
found in reference 2. 

32 



In practice, three different approaches to this problem have been used. 
They are 

1. P processors, M memories, and a PxM electronic crossbar switch allowing 
any processor to access any memory. 

2. P processors each with a localmemory and all processors connected to a 
bus structure allowing transfer of data. 

3. P processors each with a local memory and arranged into some form. of 
regular lattice. Each processor is then permanently connected to a 
small subset of the others (usually its neighbors in the lattice). 

Figures 1, 2, and 3 show examples of these organizations. Most micro- 
processor networks do not conform exactly to one of these but add to the basic 
structure based on application-specific requirements. 

Within the basic structure, it is possible to arrange for all processors 
to be executing the same instruction at the ssme time in the sense of the 
Illiac IV, known as Single Instruction Multiple Data (SIMD), or for each 
processor to be working on its own program and then synchronizing with other 
processors as necessary, known as Multiple Instruction Multiple Data (MIMD). 
The choice of which scheme to use is very involved since each has its advan- 
tages and the intended application must influence the decision. 

NAVIER-STOKES COMPUTER 

A study by the RAND Corporation (ref. 3) has proposed a design for an 
array of microprocessors intended to be used specifically for the numerical 
solution of the Navier-Stokes equations on very large problems which cannot 
presently be tackled in realistic running times. 

The proposed number of processors is 10 000 arranged as a 100x100 square 
and operating in the SIMD mode. Each processor is connected to its four 
nearest neighbors only. Processors on the edges are considered as neighbors of 
appropriate edge processors on the opposite side, forming what amounts to a 
"wrap-around" connection. This simple ccmmunication scheme reduces the 
complexity of the hardware and has been shown to be feasible for the intended 
application (ref. 4). The organization of the individual processors is unusual 
since a single integrated circuit microprocessor is not used. The intended 
application does not require all of the facilities of a microprocessor and so 
the individual processors will consist of an adder, some registers, and a small 
amount of memory. These may be combined in a single special integrated circuit 
or constructed from a small number of commercially available components. Since 
no sequencing capability is included, control information will be broadcast to 
all of the processing elements from a central control unit. If necessary, 
individual processors can be selected by a set of row and column lines. The 
extreme simplicity of the processors means that individual arithmetic opera- 
tions may be quite slow, but since 10 000 will be performed in parallel, the 

33 



overall performance will be substantial. 

The amount of memory used is determined by the intended application. It 
is proposed to solve problems in three dimensions by using the array on a 
series of two-dimensional planes in sequence. Thus, data for one grid point 
from each plane have to be stored by each processor, and it is necessary to 
maintain several variables for each point. The memory will be large enough to 
ensure that no data transfers to or from peripheral equipment are necessary 
during problem solution. 

The performance exoected on the application of interest is very great. 
Assuming a 32-bit word, 500 nanosecond add time, and a total grid size of 
between l/2 million and 10 million points, the solution time is predicted to be 
between two and three orders of magnitude faster than for a general purpose 
computer of the CDC 7600 class. 

An interesting proposal in this design is the incorporation of a program 
accessible light-emitting diode (LED) on each processor. The purpose is to 
allow visual examination of certain aspects of the solution as it proceeds by 
arranging for each processor to switch on or off its LED based on local 
solution characteristics. 

WISPAC 

A group in the Department of Electrical and Computer Engineering at the 
University of Wisconsin has proposed an MIMD array for the solution of a wide 
range of partial differential equations (ref. 5). As with the previous design, 
the basic idea is to have computing power associated with each node of the 
discretized equations; however, the Wisconsin Parallel Array Computer (WISPAC!) 
is considerably more general in its design. Figure 4 shows the overall 
structure. 

WISPAC consists of a three-dimensional array of as many as 10Cx100x20 
'microcomputers, each connected to its six nearest neighbors and with edge 
nodes making "wrap-around" connections. The array is logically subdivided into 
sectors with from 5x5x5 to 25x25~20 nodes per sector. All of the nodes in a 
given sector are connected to a sector control computer, and all of these are 
connected to a master processor. A sector control computer is primarily 
responsible for overall program control, control of communication among micro- 
computers, and input/output to the outside through the master processor. 

The microcomputer at each node of the array contains a full micro- 
processor and local data and program memory, making it possible for each 
processor to execute different instructions simultaneously. This also allevi- 
ates the possible bottleneck of a single controller attempting to distribute 
instructions to the entire array. 

An interesting feature of the array design is an intra-array communication 
scheme in addition to the six nearest neighbor connections, Each processor can 

34 



function as a switch by accepting data flrom any one of its six nearest 
neighbors and passing the data on to any other. The logic for handling this 
ccmtnunication could be established for one particular problem by the sector 
control computer, or it could be changed during the solution of a problem by 
the individual node computers. This capability greatly increases the set of 
algorithms that one might expect to run efficiently on the array. Cammunica- 
tion between non-neighboring nodes using this mechanism does represent an over- 
head which increases significantly if data must be moved over long distances or 
if a large number of nodes must communicate over short distances. In addition, 
for nonuniform problems, selection of efficient ccmmnunication paths is a 
nontrivial problem. Reducing this overhead is perhaps the key to the effec- 
tiveness of the design. 

DISTRIBUTED ARRAY PROCESSOR 

International Computers Limited (ICL) has developed a machine called the 
Distributed Array Processor (DAP) (ref. 6) which is currently being marketed. 
The DAP consists of a large number of processors which are organized as a 
square array, with each processor connected to its four nearest neighbors. It 
is an SIMD machine and there is a control unit which broadcasts instructions 
to the processors in the array. Each processor contains an enable/disable bit 
which can be set under program control and determines whether that processor 
will execute the current instruction or no operation. 

The processors are unusual in that they operate on single bits. A 
processor consists of a l-bit adder, three l-bit registers, and typically, a 
4096 bit memory. The memories of all the processors taken together also 
constitute psrt of the memory of a conventional computer known as the host. 
This sharing of memory allows for very effective communication between the two 
systems and permits the host to operate on the data with no data transmis- 
sion, for example, to set up the initial problem and to extract results. The 
host and the DAP may operate concurrently on separate tasks provided the host 
does not use the part of its memory which is shared. For example, the host 
may be compiling a program to be run on the DAP while the DAP is executing a 
different program. 

As well as being able to communicate with its four nearest neighbors, 
each DAP processor is also connected to row and column "highways". These are 
data paths which allow data to be shared by all the processors in a row or 
column. 

Since each processor can only perform single bit addition, floating point 
operations have to be explicitly programmed in terms of l-bit operations. 
Multi-bit arithmetic can either be performed by one processor in bit serial 
mode or by a group of processors in parallel. In the first case, all of the 
bits of an operand are stored in one processor's memory, and in the second 
case, one bit from an operand is stored in each processor's memory. The 
precision of arithmetic operations and all the details of the arithmetic 
algoritkrm are therefore under program control. Thus, if a 29-bit floating 

35 



I lllll1lllIlll I Illll 

point format is most appropriate for a particular problem, it can be used and 
will be more efficient in both speed and use of memory than a longer format. 
As well as flexibility in determining arithmetic, the bit level operations give 
the DAP considerable diversity in problem solving. For example, the maximum 
element of an array which has been stored with all of the bits of an element in 
one memory can be found by a bit level algorithm whose time is proportional to 
the number of bits in the number format, not the size of the array. 

The manufacturer reports (ref. 7) the construction of a prototype DAP with 
1024 processors organized as a 32x32 square. Each is equipped with 1024 bits 
of storage. The time reported for a matrix multiplication involving 32x32 
matrices and using 32-bit floating point numbers wits 16 milliseconds. This 
corresponds to approximately 4 million floating point operations per second. 
Inversion of such a matrix was found to take 29 milliseconds. Typical produc- 
tion models are expected to be arrays of 32x32, 64x64, or 128x128 processors. 

PROJECTIONS 

Although microcomputer arrays are in their infancy, it is possible to 
identify some areas where significant problems must be overcome in order to 
achieve any degree of success in solving real scientific problems. In this 
section, we will outline some of these problems and indicate some possible 
solutions that are currently under consideration. 

Processor communication is still the major issue. No present design 
involving microprocessors has attempted to use the layout shown in figure 1. 
Some use the bus technique shown in figure 2, and most use a combination of 
the schemes shown in figures 2 and 3. The difficulty of connecting every 
processor to every other is that the complexity, and hence the cost, of the 
switch increases as the square of the number of processors. The 16x16 switch 
on the Csrnegie Mellon University C.mmp computer (ref. 8) proved to be one of 
the most difficult problems in that design. There have been recent proposals 
(for example, refs. 9 and 10) which use less than full cross bar switches in a 
tree structure. This idea reduces complexity at the cost of reduced general- 
ity. Decisions must be made regarding the routing of information which may 
prove to be an expensive overhead. 

At the other extreme, although the cost is minimal, the limitations of a 
nearest neighbor connection are clear, and it may be advantageous to augment 
this in some way, for example, with a global bus (ref. 11). In the end, exper- 
ience with some configurations will be needed in order to determine the best 
approach for a given subset of problems. 

Another critical issue that must be faced is that of control of the array. 
A control processor may be used to broadcast instructions to the array, or the 
computers in the array may execute their own sequence of instructions. The 
former approach requires that less hardware be invested at each node but 
reduces the algorithmic possibilities since any reasonably sized controller 
could support only a relatively snvzll number of instruction streams. Again, 

36 



the particular application should probably be a significant factor in the final 
design decision. 

The question of reliability must be faced also. Although individual 
integrated circuits msy have mean times to failure in the millions of hours, 
for a 100 000 node array with perhaps ten circuits per node, the failure rate 
may not be acceptable. Hardware will undoubtedly become more reliable, but 
array designers msy have to supply error detection schemes which reduce the 
impact of a failure. This might involve swftchfng a standby processor into 
the array where the faflure occurs. The Implication of this approach. on 
intra-processor communication is profound. 

Providing software for array computers is also a significant problem. 
Constructing an operating system is probably tractable. One solution would be 
to simply treat the array as a slave device to a host, allowing relatively 
routine modifications to the host operating system. The question of program- 
ming languages is more difficult. Potential users of array computers would 
prefer simply to run existing FORTRAN programs and to write new programs in 
standard FORTRAN. Experience with earlier parallel processors has shown that 
this usually produces very inefficient use of the array. The problem is that 
automatic detection and exploitation of parallelism are only marginally 
successful on real programs. New programming languages or modified versions of 
existing languages which give ready access to the unique features of the new 
hardware seem to be required. 

The performance of a computer in the solution of a problem depends heavily 
on the particular algorithm being used. Algorithm development in the recent 
past has been dominated by the need to make effective use of serial computers. 
The result has been significant improvements in serial algorithm performance. 
Unfortunately, efficient algorithms which exploit the capabilities of array 
processors have received little attention. Considerable development in this 
area is needed if this class of machines is to reach its full potential, 

37 



I I 11111l II II III III 

REFERENCES 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

Peterson, Victor L.: Computational Aerodynamics and the Numerical 
Aerodynamic Simulation Facility. Proceedings of NASA Ames Research 
Center Workshop on Future Computer Requirements for Computational 
Aerodynamics, Oct. 4-6, 1977, pp. 5-30. 

Sullivan, H.; and Bashkow, T. R.: A Large Scale Homogeneous Fully 
.Distributed Parallel Machine. 4th Annual Symposium on Computer 

Architecture Proceedings, 1977, pp. 105-117. 

Gritton, E. C.; et. al.: Feasibility of a Special Purpose Computer To 
Solve the Navier-Stokes Equations. Report No. R-2183-RC, RAND Corp., 
1977. 

Weiman, C.; and Grosch, C.: Parallel Processing Research in Computer 
Science: Relevance to the Design of a Navier-Stokes Computer. 
Proceedings of the 1977 International Conference on Parallel Processing, 
1977, pp. 175-182. 

Cyre, W. R.; et. al.: WISPAC: A Parallel Array Computer for Large- 
Scale System Simulation. Simulation, vol. 29, no. 5, Nov. 1977, 
pp. 165-172. 

Parkinson, D.: Technical Description of the Distributed Array Processor. 
Document No. AP-2, International Computers, Ltd., 1976. 

Flanders, P. M.; et. al.: Efficient High Speed Computing With the 
Distributed Array Processor. Proceedings of the Symposium on High 
Speed Computer and Algorithm Organization, 1977, pp. 113-128. 

Wulf, W. A.; and Bell, C. G.: C.mmp - A Multi-Mini-Processor. 
Proceedings of AFIPS 1972 Fall Joint Computer Conference, 1972, 
pp. 765-777. 

Lipovski, G. J.: On a Varistructured Array of Microprocessors. IEEE 
Trans. Comput., vol. C26, no. 2, Feb. 1977, pp. 125-138. 

Nutt, G. J.: Memory and Bus Conflict in an Array Processor. IEEE Trans. 
Comput., vol. C26, no. 6, June 1977, pp. 514-521. 

Jordan, H. F.: A Special Purpose Architecture for Finite Element 
Analysis. Report Number 78-9 (Contract NASl-14101), Institute for 
Computer Applications in Science and Engineering, Mar. 29, 1978. 
(Available as NASA CR-158918.) 

38 



P 

R 

0 

C 

E 

S 

S 

0 

R 

S 

ELECTRONIC. 
SWITCH 

Figure l.- General connection of processors and memories. 

39 



I I I I I~111111 I Ill Ill1 

P 
M R 
E 0 0 
M C 
0 E 
R l 

S 
I S 
E 0 
S 0 R 

S 

P - P 
4 

Figure 2.- Processors connected via a bus. 

40 



0 

Figure 3.- Processors connected as a lattice. 

41 



I 

TO OTHER 
SECTOR CONTROL 

COMPUTERS 

- 

/ 

0 
0 

1 

-- 

/ 

-_ ^_ 

/ 

/ / 
I / 

I *:?f':iE 
I I 
I 

LINKS I PROCESSOR I I 
I 

I 

Figure 4.- WISPAC structure. 

42 


