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SUMMARY 

The concept of equalizing energy levels was shown to be a viable 
additional criterion in assisting the analyst in laying out finite element 
grids according to the isoenergetic discretization technique. In addition it 
is clear that similar problems specifically with respect to mesh refinement 
in piecewise approximation theory are being researched. 

Further, common criteria in both areas are being developed in an effort 
to cope with the question of discretization for improved piecewise 
approximations. 

INTRODUCTION 

One of the most fundamental decisions which a finite element analyst 
must make is how to discretize the continuum. Research on optimum mesh 
configurations has been primarily based on the minimization of the potential 
energy functional with respect to both the nodal displacements and nodal 
co-ordinates [refs. 1,2,3,4,5]. This leads to the following set of non-linear 
equations 

[kl {A) - IF) = 0 (1) 

and Q {n}T a[kl ax {A) - @ {A] = 0 
j j 

(2) 

where (Al is in general a column vector of unknown values of the displacement 
field and its derivatives at the nodal points 

[kl is the stiffness matrix 

CF) is a column vector of nodal forces 

and 
xj 

is the co-ordinate of node j 

A solution of these equations will yield the best possible approximate 
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solution for a given number of elements and initial topology. However, the 
computational effort in solving these equations is excessive and there is no 
guarantee that the global minimum has been achieved. As a result two 
alternative approaches have been employed. 

One procedure is to approximately satisfy equation (2), that is until the 
left hand side is less than some prescribed tolerance E [refs. 4,5]. This 
still involves the calculation of the derivatives of [k] and IF) with respect 
to the nodal co-ordinates. 

The other approach is to develop a set of guidelines such that "near 
optimum" grids can be obtained [refs. 1,2,3,6,7] without explicitly dealing 
with equation (2). The fundamental concept in this method is based upon the 
observation that optimal grids align themselves along lines of constant strain 
enera density - so-called isoenergetics [refs. 2,8]. These contours provide 
the stress analyst with a picture of the location of stress concentrations, 
relative density of elements to be allocated to various regions and proper 
element orientation with respect to the critical stress gradients. This 
latter aspect is of major importance for the so-called simplex elements which 
are available in almost all finite element software packages and are used in 
complex non-linear analyses to reduce the computational costs. 

The primary objective of this paper is to present an interactive 
isoenergetic discretization technique which incorporates the concept of 
equalizing energy levels as an additional criterion in assisting the analyst 
in laying out finite element grids. In addition, a mesh refinement approach 
employing a similar criterion in the piecewise approximate solutions of 
differential equations is presented. This suggests a possible refinement 
strategy in finite element analysis. 

ISOENERGETIC DISCRETIZATION PROCEDURE 

This procedure for generating efficient mesh configurations incorporates 
not only the necessary topological considerations but also the response 
characteristics of the problem. The steps involved are as follows: 

Step (1) An initial course grid is sketched on a digitizer or produced by 
automatic mesh generation schemes whichever is appropriate. 

Step (2) The grid is analyzed and the strain energy density values are 
calculated at the nodes and/or the integrating points if applicable. 
The number of contours to be plotted is selected by the user based 
upon the maximum energy density differences. Subsequently, the 
isoenergetics and initial grid are superimposed or displayed 
separately on the CRT screen. 

Step (3) Given this display of information the stress analyst can 

(a) Modify the initial grid such that the element gradation 
reflects the density of isoenergetics and element orientation, 
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in the case of triangles, is directed along lines orthogonal to 
the contours, that is, in the direction of the maximum strain 
energy density gradient. 

or (b) Select an arbitrary number of isoenergetic contours within which 
a neti mesh can be defined consistent with the above 
characteristics of the isoenergetics. 

Both these operations can be done at a display terminal orwith a 
hard copy of the isoenergetics on a digitizing table. 

Clearly, steps (2) and (3) can be repeated until two successive configurations, 
whose modification usually only involves a shifting of the isoenergetics, 
provide little or no improvement in the strain energy content. 

EQUALIZING ENERGY LEVELS 
a 

One of the most interesting observations during the study of optimal grid 
configurations was that for a class of one dimensional problems the energy 
content in all the elements was equal [refs. 3,1]. This notion of equal 
energy levels for optimal meshes was arrived at independently by Prager 
[ref. 31. Subsequently Masur (private communication) examined bars under vary- 
ing axial forces and beams subjected to lateral loads, both with arbitrary 
variations of the cross section. He concluded that it appears to be futile to 
search for. a universally valid optimality criterion in terms of the average 
energy in the entire element. 

However, for all the various one and two dimensional problems studied, 
there was a very definite trend for the total energy content between the 
isoenergetic contour levels in the high strain gradient regions of the optimal 
grid to be equalized. Figure 1 shows clearly that for the special case of a 
linearly varying tapered bar subjected to a constant load P the optimized grid 
yields an equal amount of energy in each element. This is not exactly true 
for the parabolic taper; however there is clearly a tendency for the optimal 
element energy contents to be equalized relative to the unoptimized grids. 
Figures 2 and 3 demonstrate the same general trend, but in these two dimen- 
sional plane stress examples rather than dealing with a specific element 
the energy content between contours is calculated and then compared to the 
other bands of elements or contour levels of elements. The calculation of the 
energy content between contours is simply found by summing the product of the 
element strain energy density and the corresponding volume for each element 
within the particular contour. The results show that there is a general trend 
to equalizing the energy content in each contour level of the optimal grid 
relative to the unoptimized mesh. 

It should be noted that this equalization effect is most noticeable in 
the immediate vicinity of the high strain gradients both for the one and two 
dimensional problems. 

This result has proven extremely useful in providing an additional 
criterion for evaluating the effectiveness of the already established 
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isoenergetic discretization procedure. 

Several examples were re-examined after using the above mentioned 
isoenergetic discretization procedure to see if the near optimum grids had 
relatively equalized energy levels. A typical result is shown in figure 4 
which clearly indicates the above trend. Consequently, this observation was 
introduced into the discretization procedure as an additional indicator along 
with the shifting of the isoenergetic contours and the variation in the total 
strain energy content to assist the analyst in establishing when further mesh 
modifications are required. 

SIMILARITIES IN APPROXIMATION THEORY 

In reviewing the mathematical literature dealing with splines having 
variable knots the following in&resting results were found. 

In a paper by De Boor [ref. 101 on the topic of good approximations by 
splines with variable knots it is suggested that in approximating a function 
f by elements of S$, the N knots tl, t2 . . . tN should be chosen such that 

t 

/ 

i+l 
] fk (r) j1'k dr 

t; 

is approximately constant as a function of i, where 

f is the function being approximated or a solution of a boundary value 
problem 

Sk N is a spline of order k (or, degree < k) with N knots 

This concept has been tried by Do&on [ref. 111 in a scheme for the 
adaptive solution of ordinary differential equations. The procedure is as 
follows: using a current piecewise polynomial approximation of o der less than 
k to the solution f, a piecewise constant approximation g to f (k?- is assumed. 
Then a new knot is selected so as to equalize 

I 1 g(r) I1'k dr 
d 

over the subintervals. 

Subsequently Sewell [ref. 121 extended Dodson's results to piecewise 
polynomial approximations in two dimensions. In particular Doason gave an 
algorithm for the automatic partitioning of an interval which provided the 
basic ideas for an automatic triangulation algorithm proposed by Sewell. 
From an error bound theorem developed in this work it is recommended that for 
a good approximation the integral 
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/I max 
i+j =k 

1 Dxi Dyj f 1' dA 

should be distributed as evenly as possible among the grid of triangles, where 

Throughout the presentation a polynomial of degree less than k is 
assumed in each triangle; consequently an estimate of the above integrand must' 
be made. This is accomplished by approximating each kth derivative within a 
triangle by a piecewise constant function G.. 

J 
As a result the following elemental product 

Ga A 
j j 

should be distributed as evenly as possible among the elements having areas 

Ad- 
In order to achieve this a continual mesh refinement process was carried 

o t by subdividing those elements with the highest values of G.O A.. This 
clearly ensures the necessary grid refinement near the high g&die&s or 
singularities of the solution or function being approximated. 

Referring back to the notion of equalizing energy levels, a similar 
criterion has been suggested in this paper for mesh modification; specifically 
the energy within each contour should be distributed as evenly as possible 
between successive contour levels in the vicinity of the high gradients of the 
solution field; that is, 

% =u2=u 
3 

. . . 

where urn = c u" v 
j mj m.1 

in which U 0 is the piecewise constant strain energy density function of 
mj 

element j in level m 

v is the volume of element j in level m 
mj 

and Yll is the total energy in contour level m 

An important point to note here is that the above criterion is concerned 
with mesh modification rather than mesh refinement which Do&on and Sewell 
presented. 
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Further, from the research studied to date this criterion is best applied 
to contour levels rather than an examination of the individual elements. This 
suggests that future mesh modification and refinement schemes should consider 
bands of elements to be repositioned rather than individual finite elements. 

CONCLUSIONS 

The concept of equalizing energy levels was shown to be a viable 
additional criterion in assisting the analyst in laying out finite element 
grids according to the isoenergetic discretization technique. In addition it 
is clear that similar problems specifically with respect to mesh refinement 
in piecewise approximation theory are being researched. 

Further, common criteria in both areas are being developed in an effort 
to cope with the question of discretization for improved piecewise 
approximations. 
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Figure l.- Strain energy levels for 2 one-dimensional problems. 
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Figure 2 .- Strain energy levels for a two-dimensional corner load proglem. 
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Figure 3.- Strain energy levels for a two-dimensional mid-edge load problem. 
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Figure b.- Strain energy levels in a near optimized grid using isoenergetics. 
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