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SUMMARY 

Three-dimensional (3-D) finite strips are formulated by combining finite 
element shape functions with beam eigenfunctions. Because of the orthogonality 
of the beam functions, three-dimensional problems are reduced to a series 
of two-dimensional problems, often with stiffness matrices of very narrow 
bandwidth. These require considerably less computer memory and computation 
time to solve. Isoparametric and high order finite element shape functions 
are used in the formulation of the 3-D finite strips. Numerical examples 
such as the static and free vibration analyses of simply supported thick 
plates are presented. Results are compared with existing solutions. Good 
agreements are obtained in all cases. Potential applications of the 3-D 
finite strips include the static and dynamic analyses of voided slabs, thick 
box girders and axisymmetric thick-walled shell structures. 

INTRODUCTION 

Although the finite element method is at present the most powerful 
and versatile numerical approach for structural analysis, the computing 
cost can often be very high. This is particularly true in the case of three- 
dimensional structural analyses. In an attempt to reduce the computational 
requirements of the finite element method, researchers have developed the 
finite strip technique (ref.11, a semi-analytical method that couples simple 
polynomial expressions for one or two directions with beam eigenfunction 
series for the other directions. This reduces a two-dimensional problem 
to one dimension, and a three-dimensional problem to two dimensions. 
Furthermore, because of the orthogonal properties of the eigenfunction series, 
the terms of the series may become uncoupled depending on the type of boundary 
conditions, and the stiffness matrices of each term can be formed, assembled 
and solved separately, resulting in a substantial reduction in computing 
costs. The method.is suited for the analysis of structures having regular 
geometric plans and simple boundary conditions, and has been successfully 
applied to the static and the dynamic analyses of slabs, folded plate structures 
and box-girder bridges (ref. I). 

In this study, 3-D finite strips are formulated in two ways, one by 
coupling isoparametric quadrilateral and triangular plane-stress finite 
element shape functions with beam eigenfunctions, and the second by coupling 
high order quadr.ilateral plane-stress finite element shape functions with 
beam eigenfunctions. The stiffness, mass and load matrices are derived 
following standard finite element procedures. Three-dimensional elasticity 
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constitutive equations are used in the derivation of the various stiffness 
matrices. Applications of the 3-D finite strips to some prismatic solids 
such as thick plates are described. Numerical integration -using Legendre- 
Gauss or Radau-Gauss quadratures was employed in the derivations. 

SYMBOLS 

al’ a2, etc. 

a 
A 

[Bl 
[cl 
[Dl 
{F) ,(F) 

{gl 
h 

L,’ L2’ L3 

[Kl , [RI 
[Ml , [fll 
N 
n 

{PI 
P 

(41 
V 

us VY w 

x9 Y, = 

lengths of sides of a quadrilateral 
span of 3-D finite strips 
surface area of 3-D finite strips 
matrix relating strains to displacement components 
matrix containing finite strip displacement functions 
material constant matrix 

individual and assembled consistent load vectors 
vector containing distributed body forces 
thickness of plate 
triangular area co-ordinates 
individual and assembled stiffness matrices 
individual and assembled consistent mass matrices 
finite element shape functions 

number of nodes in finite elements 
vector containing concentrated nodal forces 
point in 5 - n space or a concentrated point 

load 
vector containing distributed surface forces 

volume of 3-D finite strip 
displacement components in the x, y and z directions 
Cartesian co-ordinates 
distance along lines of equal n (equation 8) 
indiv.i.dual and assembled nodal displacement vectors 
curvilinear co-ordinates 
finite element rotational degree of freedom &W/ax ) 

Si 
3-D finite strip rotational degree of freedom =(aw/aX& 
mass density 

circular natural frequencies 
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w XY 

!d 
XZ 

finite element skew symmetric rotational degree 
of freedom dadax - aday)/ 

3-D finite strip skew symmetric rotational degree 
of freedom dadax - au/as2 

ISOPARAMETRIC 3-D FINITE STRIPS 

A family of 3-D isoparametric quadrilateral and triangular finite strips 
can be developed by using the plane-stress isoparametric finite element 
shape functions reported by Ergatoudis (ref. 2). Considering only simply 
supported situations in which u=w=av/ay=O at the ends, a suitable set 
of displacement functions for a 3-D strip of span a (fig. 1) is 

OD n 
u = c C N u i im sin= 

m=l i=l a 

00 

v = c c” Nivimcosy 
m=l i=l 

(1) 

Q) n 
w= c C N w i im sin= a 

m=l i=l 

The x and z co-ordinates of the isoparametric section are defined as 

x q ; Nx ii 
i=l 
n 

z = C Nizi (2) 
i=l 

The most simple isoparametric quadrilateral is the four node IPLQ quardi- 
laterial (ref. 2) which has linearly varying displacements (fig. 2a). The 
shape functions for this finite element are simply 

Ni q +, (1 + SSi) (1 + W-Q) (3) 

Other more sophisticated isoparametric quadrilateral elements of the 
same family include the eight node IPQQ quadrilateral (ref. 2) whose dis- 
placements vary quadratically (fig. 2b), and the twelve node IPCQ quadrilateral 
(ref. 2) with cubically varying displacements (fig. 2~). 
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For the Isoparametric triangular finite elements, the shape functions 
are most conveniently expressed in terms of the area co-ordinates Ll, L2 and 

L3. 
The first element of the series is the three node IPCST constant strain 

triangle (fig. 3a) whose shape functions are simply the area co-ordinates 
(ref. 2). Thus, 

N1 q L,, N2 q L2, 
N3 

= L3 (4) 

Using a recurrence formula (ref. 21, more refined triangular elements 
such as the six node IPLST linear strain triangle (fig. 3b) and the ten 
node IPQST quadratic strain triangle (fig. 3c) can be formulated. 

Although in theory more refined elements can be derived by introducing 
additional nodes, such elements are often of limited practical use since 
they usually result in stiffness matrices having very large bandwidths. 

HIGH ORDER QUADRILATERAL 3-D FINITE STRIPS 

Because of its linearly varying displacements, the accuracy of the 
IPLQ 3-D finite strip is usually very limited. The strip could be refined 
by adding extra nodes as was done in the last section. However, such a 
procedure is not always desirable, since the bandwidths of the stiffness 
matrices are increased. The alternative, and probably most effective, 
approach is to introduce additional degrees of freedom at the nodes. Two 
high order plane stress quadrilateral finite elements were selected from 
the published literature for this purpose. 

The first element is the QCC3 in-plane quadrilateral with displacements 
u, v and the skew symmetric rotations 

w =- ’ (g - $) 
XY 2 

(5) 

as degrees of freedom (fig. 4a). This element was derived by Abu-Ghazaleh 
(ref. 3) and subsequently used by Scordelis (ref. 4) to analyze box-girder 
bridges. 

Using 
strip with 

w q 
xz 

as degrees of freedom is formulated (fig. 4a). Considering only simply 
supported cases, the displacement functions of the finite strip can be written 
as 

the shape function of this finite element, a high order 3-D finite 
u, VY w and the skew symmetric rotations 

(6) 

co 4 
u = c C [N +N w 

m=l i=l li Uim 2i xziml sin y 
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‘, 
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m=l i=l 

co 
; IN !!Ex 

w= c Ii Wim + N3i~xziml sin a 

(7) 

m=l i=l 
where the shape functions N ,i, .N2i and N3i are the same as those used for 
the finite element in reference 3. 

The other high order element selected is the plane stress QLC3 element 
developed by Sisodiya et al.(ref. 5). The nodal parameters of the element 
are 161 = [u, v, eZIT, i with ezi=(av/ax~)i where x 

5 
is a distance along lines 

equal n (fig. 4b); and at a general point P 

(8) 

of 

where a 1 and a3 are the lengths of opposite sides of a quadrilateral (fig. 4b). 

Adopting the shape function of the element for the 3-D finite strip, 
the displacement functions of a simply supported 3-D strip can be expressed 
as 

cm 
u=c 

m=l 

co 
v=c 

m=l 

co 
w q c 

m=l 

where 8 yi = 
and N 3i are 

(9) 

4 
.?I N 

i=l 
li "im sin= 

a 

4 
1 N 

i=l 
li 'im c0s-f a 

4 
C [N2i wim + N3i eyim] sin y 

i=l 

cadax, 1 ad xs ,i is as defined before. The functions Nli, N2i 

identical to those presented in reference 5. 

STIFFNESS, MASS AND LOAD MATRICES 

The stiffness and load matrices can be derived through the minimization 
of the total potential energy, a standard finite element procedure that 
leads to the familar expression 
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[ti (6) - tF1 = 0 (IO) 

in which [Kl is the stiffness matrix, {S) the unknown nodal displacement 
vector and (F) the consistent load vector. 
the stiffness matrix [Kl is 

A typical submatrix [Kijj of 

fKijl = JrBl $Dl [Bl .dV 
J 

(II) 

where [Bl is the so-called strain matrix that relates the strains to the 
displacement components and [Dl is the elasticity matrix for the material 
which can 'be isotropic or orthotropic. 
is 

A typical submatrix {Fi} of IF} 

iFi = {Pi) + j$lT{qjdA + .&~T~g~dV (I‘?) 

where [Gil contains the nodal displacement functions and the force terms 

represent concentrated, surface and body forces. 

Using the displacement functions defined in the previous sections, 
equation (II) would become 

(13) 

Because of the orthogonality of the series used, it can be shown that 
for llfm 

2 JJ!i3,1i[3: :13j] ,jxdz for 9, = m (14) 

l.e., the series terms are uncoupled and off-diagonal submatrices in the 
stiffness matrix are null matrices. 

To obtain the consistent load vector for the 3-D strips, the external 
applied loads are expressed in terms of series similar to those used for 
the displacement functions and substituted into the appropriate integrals 
in equation (12). Details of the derivation of the load terms can be found 
in reference 1. 

The formula for deriving the consistent mass matrix is quite standard, 
and is 

[Ml = Io[CITrCldV (15) 

where [Ml is the consistent mass matrix and p is the mass density 
of the material. 

As the displacement functions are either defined in terms of the cur- 
vilinear co-ordinates 5 and n or area co-ordinates L,, L2 and L 3, it 
is necessary to rewrite the derivatives and integrals of the displacements 
with respect to the local co-ordinate system. This is a fairly straightforward 
matter involving the determination of the Jacobian matrix (ref. 2). 
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Once the individual finite strip stiffness, mass and load matrices 
are formulated, they can be assembled in the usual manner to form the -static 
problem of 

riz1 (8) - {PI = 0 

or the free vibration problem of 

CL81 - flJ2 ml > (8) = 0 

(16) 

(17) 

where [El , [RI , (!?I and (8) are respectively the assembled stiffness, mass, 
load and displacement matrices, and w is the circular frequency of free 
vibration. 

ILLUSTRATIVE EXAMPLES 

Static and free vibration analyses were carried out for the simply 
supported thick, square plate shown in fig. 5. The central deflections 
due to uniformly distributed load and a central point load are shown in 
tables 1 and 2. The values shown were obtained with ten series terms. 
Comparing the present results with existing finite element solutions (ref. 
6) and closed form solutions (ref. 7) as well as the classical thin plate 
theory (ref. 81, it can be seen that the agreement is good. By doubling 
the number of series terms in a number of runs, it-was found that the displace- 
ment values remained unchanged. The first three lowest flexural frequencies 
for a simply supported square plate with a thickness vs. span ratio of 0.2 
are tabulated in table 3. Excellent agreement 'between the present frequencies 
and those obtained from finite element (ref. 9) and closed form (ref. 10) 
solutions can be seen, while the thin plate theory tends to overestimate 
the frequencies. The results in tables 1-3 indicate that the effects of 
thickness-shear deformation and rotary inertia can be accurately predicted 
by the present 3-D finite strip formulation. 

CONCLUDING REMARKS 

Three-dimensional (3-D) simply supported finite strips with quadri- 
lateral and triangular cross sections have been formulated using isopara- 
metric and high order finite element shape functions and beam eigenfunctions. 
In general, the accuracies of both the isoparametric and high order 3-D 
strips can be considered good since reasonably good results can be achieved 
even with a relatively coarse mesh. 

Three-dimensional finite strips with other than simply supported boundaries 
can be derived by employing the appropriate beam eigenfunctions to match 
the boundary conditions. Curved, and circular 3-D strips can be developed 
by using a cylindrical co-ordinate formulation. Continuous structures can 
be analyzed either by coupling the finite element shape functions with 
eigenfunctions of continuous beams (ref. II); or by using a finite strip 

159 



flexibility approach (ref. I). Potential applications of the 3-D finite 
strips include the static and dynamic analyses of voided slabs, thick box 
girders and axisymmetric thick-walled shell structures. These potential 
applications along with the above mentioned extension of the 3-D finite 
strip method are the topics of current investigations by the authors; and 
the results will be reported when they become available. 
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TABLE 1 COMPARISON OF CENTRAL DEFLECTIONS FOR 
SIMPLY SUPPORTED PLATES UNDER UDL 

IPLQ 
IPQQ 
IPCQ 
IPCST 
IPLST 
IPQST 
QCC3 
QLC3 
REF. 6 
REF. 7 
REF. 8 

- . _--. _ __i_-- - 
h/a=0.05 h/a=O.l h/a=0.2 h/a=0.25 

j- --.-.-- - -_ 
3692.1 463.4 64.1 35.4 
3694.0 482.1 65.5 36.3 
3704.2 487.2 67.1 36.4 
3681.1 462.1 63.2 34.2 
3688.5 465.2 64.8 36.3 
3701.1 471.3 66.1 36.5 
3683.1 465.4 64.3 35.5 
3686.5 465.1 64.5 35.8 
3575.2 461.2 64.8 35.9 
3588.8 463.2 65.2 36.2 
3549.6 443.7 55.5 28.4 

TABLE 2 COMPARISON OF CENTRAL DEFLECTIONS FOR 
SIMPLY SUPPORTED PLATES UNDER POINT LOAD 

IPLQ 
IPQQ 
IPCQ 
IPCST 
IPLST 
IPQST 
QCC3 
QLC3 
REF. 6 
REF. 8 

h/a=0.05 h/a=O.l h/a=0.2 h/a=0.25 
105.98 - 13.97 2.24 1.39 
106.52 14.47 2.31 1.43 
106.71 14.87 2.36 1.49 
104.92 13.88 2.27 1.39 
106.16 14.32 2.29 1.42 
106.89 14.77 2.32 1.48 
106.11 14.12 2.28 1.41 
106.31 14.16 2.30 1.41 
106.49 14.77 2.46 1.47 
101.34 12.67 1.58 0.81 

TABLE 3 COMPARISON OF CIRCULAR FREQUENCIES OF A 
SIMPLY SUPPORTED THICK PLATE (h/a=0.2) 

MODES OF VIBRATION 
BER OF HALF-WAVES IN x AND y DIRECTIONS) 

'9' 192 292 

IPLQ 1.0621 2.3324 3.4000 
IPQQ 1.0611 2.3251 3.2781 
IPLST 1.0625 2.3351 3.3386 
IPQST 1.0608 2.3284 3.2762 
QCC3 1.0631 2.3342 3.4017 
QLC3 1.0635 2.3289 3.3947 
THIN PLATE THEORY 1.1947 2.9867 4.7788 
REF. 10 1.0607 2.3291 3.3765 
REF. 9 j,O565 2.3235 3.2758 
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Figure l.- A typical 3-D finite strip. 

IPLQ ELEMENT IWQ ELEMENT IPCQ ELEMENT 

3-D STRIP 
(b) 

3-D STRIP 
(cl 

Figure 2.- Isoparametric quadrilateral 3-D finite strips. 
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STATIC ANALYSIS: Q = IO, E = 1.3 =0.3 

a/2 
klESH FOR QUADRILATERAL 3-D Sl&S 

‘MESH FOR TRlANGUlAR 3-D FlNllE “----&RIPS 

DYNAMIC ANALYSIS: a=I, E=l, d=O-3, p=l 
It 

I I I I I I 
I I 

I I I I I ! _ X 

ii- ESH FOR TRlANCiJLAR 3-D STRIPS ’ 

Figure 5.- Mesh sizes used for simply supported thick plate analyses. 
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