
A DIRECT ELEMENT RESEQUENCING PROCEDURE

J. E. Akin
University of Tennessee

Brunel University

R. E. Fulford
University of Tennessee

SUMMARY

Element by element frontal solution algorithms are utilized in many of
the existing finite element codes. The overall computational efficiency of
this type of procedure is directly related to the element data input sequence.
Thus, it is important to have a pre-processor which will resequence these data
so as to reduce the element wavefronts to be encountered in the solution
algorithm. This paper reports on a direct element resequencing algorithm for
reducing the element wavefronts. It also generates computational byproducts
that can be utilized in the pre-front calculations and in various post-proces-
sors. Sample problems are presented and compared with other algorithms.

INTRODUCTION

Frontal solution procedures for finite element codes were presented
independently at about the same time by Hellen [l], Irons [2], and Melosh [3].
These codes utilize an element by element assembly and factorization of the
system equations. This procedure has been illustrated for simple models by
Hellen [l], and Irons [4]. When utilizing this elimination process one is
concerned with the maximum number of active columns or the maximum front
associated with any element in the system. This quantity depends solely on
the input order of the element incidences cards. By way of comparison, if one
were using a frontal solution of the completely assembled system equations, one
would be concerned with a wavefront defined by the nodal numbering system.
This study describes an algorithm for resequencing the element order so as to
reduce the element wavefronts.

THE ELEMENT RESEQUENCING STRATEGIES

Several bandwidth resequencing routines were published before the frontal
solution methods became popular. Thus, in investigating frontal reduction
methods one should also consider algorithms that were originally written for
reducing the bandwidth of a system of equations. Many of these routines are

195

effective in reducing both the nodal and element wavefronts. The Cuthill-
McKee [5] algorithm has been shown to be effective in reducing both the system
front and bandwidth [61. The most efficient nodal resequencing algorithms
written specifically for the system frontal method are probably those developed
by Levy [7] and King [81. The Cuthill-McKee algorithm is probably the most
commonly used method for reducing system fronts.

The above references are concerned with frontal solutions that are depen-
dent on the nodal numbering system. The present study is directed toward reduc-
ing wavefronts encountered in the element by element reduction procedure.
Define the front associated with a particular element to be equal to the front
of the previous element minus those degrees of freedom that made their last
appearance in the previous element plus those degrees of freedom which make
their first appearance in the particular element under consideration. This is
a quantity that needs to be reduced to save storage and increase the computa-
tional efficiency of the equation solving algorithm. The value of the maximum
element front is dependent on the input order of the element incidences list.
The optimum input sequence is the one that results in the smallest front.
Instead it is necessary to utilize a resequencing algorithm to obtain a reduced
front in hopes that the reduced value is near the optimum value.

Akin and Pardue [9] have presented two procedures for reducing wavefronts
by element resequencing strategies. Both of their procedures were based on
generalizations of the Cuthill-McKee method. The disadvantages of these
methods are that they require relatively large amounts of storage and initial
calculations. The second method has an additional disadvantage in that it
does not consider the number of nodes per element (element nodal degree) in
its tie breaking options. The present paper introduces a new direct element
resequencing strategy that has several advantages over the above methods.
First, it requires a much smaller number of initial calculations and storage
locations. In addition it has five levels of automatic tie breaking strategies
in the resequencing algorithm.

Most resequencing programs are based on the concepts of the level and
degree. The present study generalizes these concepts and utilizes the follow-
ing definitions: Nodes (or elements) adjacent to a given node (or element) are
said to be at the same level. The degree of a node (or element) is the number
of nodes or elements to which it is connected. The term current degree will
denote the degree based on the current number of unresequenced neighbors. For
example, if a node has eight element neighbors, three of which have been re-
numbered, then its element degree is eight and its current element degree
would be five.

Consider an effective front defined as, for element i,

'i = WiB1 + Fi - LiBl , i = 1, . . .) NE

where W. is the front width, F. the number of degrees of freedom first appear-
ing, L.ithe number of degrees &f freedom making last appearance, NE the number
of elehents and where W, E L, E 0. As a check on this calculation we know
W NE+1 - " The present strategy is based on the concept of minimum element

196

front growth. That is,
is minimum.

select new element i such that the quantity (Fi-Li-1)
Given a starting element as new element one the elements neighbor-'

ing this element (i.e. at the same 'level') are numbered according to this
strategy. Then all elements at the level of new element two are numbered. The
numbering continues in this fashion, level by level, until all elements have
been numbered. If a starting element is not given, the program could select
the one with the smallest or largest Fi.

In such a procedure one often encounters a number of ties of candidates
for the next few element numbers. The present code first selects the element
(or elements) with the minimum number of new nodes (i.e. the minimum Fi). If
this results in a tie then the element with the maximum number of existing nodes
is selected (i.e. the maximum Li). A second tie would be broken by choosing the
element with the smallest number of un-numbered element neighbors. If a tie
still exists, the element with the largest number of active nodes is selected.
Finally, should a tie still exist, the last element in the list is utilized.
Clearly, the rank of the tie breaking order could be changed.

EXAM-PLE

Clearly one problem is to define Fi and Li. This is accomplished by
defining two scratch arrays, say LFIRST and NOADJL, equal in length to the
number of nodes. When LFIRST(J) # 0, it equals the new element number in
which node J became active. It is initially zero. From this definition one
notes that for new element i the value of Fi is equal to the number of nodes
on that element for which LFIRST = 0. Once Fi is established the above group
of nodes have their zero value of LFIRST changed to i, the new element number.
Array NOADJL represents the current number of unnumbered elements adjacent to
each node. Initially it equals the total number of elements adjacent to each
point. Clearly when NOADJL(K) = 1 then node K is making its last appearance.
The value of Li for element i equals the number of nodes on the element for
which NOADJL= 1. Once an element is renumbered the current value of NOADJL for
each of its nodes is reduced by one. To illustrate the concepts consider the
three-element model shown in Figure 1. The original element wavefronts are
3,4 and 3. The histories of arrays NOADJL and LFIRST are given Table 1.
These are established in the following manner:

1. Set new W, = L, = 0, initialize NOADJL, zero LFIRST. Select the
new first element Ll. Say Ll = 2.

2. The nodes of Ll are 2,3 and 5. We observe:

NODE

2,

ARRAY COMIvmIT
LFIRST = 0 , new node ; set LFIRST = 1
NOADJL = 3 , node remains ; set NOADJL = 2

3, LFIRST = 0 , new node ; set LFIRST = 1
NOADJL = 1 , node leaves ; set NOADJL = 0

5, LFIRST = 0 , new node ; set LFIRST = 1
NOADJL = 2 , node remains ; set NOADJL = 1

197

Summary: There are three new nodes, the element front is 3, and one
node is leaving, i.e.:

*I =3:,~~= I, w, =w, +F,-L, =C+3-0=3.

3. The element neighbors of Ll = 2 are elements 1 and 3. Select L2 from
that list.

A. Consider candidate element 1: Its nodes are 1, 2, 6.

NODE COMMFJT

1, LFIRST = 0 , new node
NOADJL = 1 , node leaves

2, LFIRST = 1 , active since loop 1
NOADJL = 2 , node remains

6, LFIRST = 0 , new node
NOADJL = 2 , node remains

Summary : 2 new nodes, 1 node leaving, element active since loop 1,
1 old node (3 - 2 = 1)

B. Consider candidate element 3: Its nodes are 2, 5, 6.

NODE COMMENT

2, active since loop 1, remains

5, active since loop 1, leaves

6, new node, remains

Summary: 1 new node, 1 node leaving, element active since loop 1,
2 old nodes (3 - 1 = 2)

Select L2 = 3. Then F2 = 1, L2 = 1, W2 = W1 + F2 - L1 = 3 + 1 - 1 = 3

For nodes 2, 5, 6, set NOADJL = NOADJL - 1, and if LFIRST = 0,
set LFIRST = 2.

4. Are there any un-numbered elements adjacent to Ll? Yes, old element 1.
Consider element 1: Its nodes are 1, 2, 6.

NODE COMMENT

1, is new and leaves

2, is active since loop 1 and leaves

6, is active since loop 2 and leaves

198

summary ; 1 new node, 3 nodes leaving, element active since loop 1,
2 old nodes

Set L3 = 1, F3 = 1, L, = 3, W, = W, + F, - L, = 3 + 1 - 1 = 3.

For nodes 1, 2, 5, set LFIRST = 3 if LFIRST = 0, and set NOADJL =
NOADJL - 1.

5. No elements remain.
Check calculations: W, = W, + F, - L, = 3 + 0 - 3 = 0, check!
New element wavefronts are 3, 3, and 3. The new data are shown in
Figure 2.

APPLICATIONS

Cuthill [2] has applied various resequencing algorithms to the labelled
tree structure shown in Fig. 3. The present algorithm was also applied to this
structure and the results are compared with those of Cuthill in Table 2.

The second example test was a simple structure considered by Akhras and
Dhatt [lo]. It consists of three concentric circles divided, from the center,
into eight equal angular segments. Thus it contains eight triangular and
sixteen quadrilateral elements. These quadratic elements and their original
order are shown in [lo]. The third example was a quarter symmetry mesh of a
rectangle with a center circular hole. The original element data were generated
in a random order so as to cause a large initial wavefront. The fourth problem
was a half symmetry shell model. It involved a cylinder with hemispherical
caps supported horizontally on two vertical plate saddles. The fifth and sixth
problems involved complicated three-dimensional surfaces with branches.

The wavefront reduction data for these problems are given in Table 3.
These results show the algorithm to be efficient in reducing the maximum
element wavefront. It requires significantly less storage than the algorithm
used by Akin and Pardue [9]. Other applications to practical engineering
problems have shown reductions of at least thirty percent.

Table 4 shows some relative computation costs. The first item is a
measure of the cost of building the neighbors lists that the resequencing sub-
routine uses as a data base. These calculations are clearly the most expensive.
They can be done in various ways and it appears that more efficient procedures
can be developed. Much of these data could be utilized in the pre-front stage
of the solution algorithm. The second item shows the actual resequencing costs.
These are quite small and indicate that one should try several different start-
ing elements since most of the cost goes into the first choice.

Complete program listings and instructions are included in Reference [lo].

199

REFERENCES

1. Hellen, T. K.: A Front Solution for Finite Element Techniques, Central
Electricity Generating Board, R & D Dept. RD/B/N 1459, 1969.

2. Irons, B. M.: A Frontal Solution Program for Finite Element Analysis.
Intern. J. Num. Meth. Engr. 2, 5-32, 1970.

3. Melosh, R. J. and Bamford, R. M.: Efficient Solution of Load Deflection
Equations. J. Structural Div. ASCE, 95, ST4, 661-676, 1969.

4. Irons, B. M. and Kan, K. Y.: Equations Solving Algorithms for the Finite
Element Mehtod, Numerical and Computer Methods in Structural Mechanics,
S. J. Fenves, et al. (eds.). Academic Press, 497-512, 1973.

5. Cuthill, E. and McKee, J.: Reducing the Bandwidth of Sparse Symmetric
Matrices. Proc. ACM Nat. Conf., 157-172, 1969.

6. Cuthill, E.: Several Strategies for Reducing the Bandwidth of Matrices,
Sparse Matrices and Their Applications, D. J. Rose and R. D. Willoughby
(eds.). Plenum Publishing Co., New York, 157-166, 1972.

7. Levy, R.: Resequencing of the Structural Stiffness Matrix to Improve
Computational Efficiency. J. P. L. Quarterly Tech. Review, 1, 2,
61-70, 1971.

8. King, I. P.: An Automatic Reordering Scheme for Simultaneous Equations
Derived from Network Analysis. Intern. J. Num. Meth. Engr. 2, 523-533,
1970.

9. Akin, J. E. and Pardue, R. M.: Element Resequencing Algorithm for Frontal
Solutions, The Mathematics of Finite Elements and Applications, vol. 2,
J. R. Whiteman (ed.). Academic Press, London, 1976.

10. Akhras, G. and Dhatt, G.: An Automatic Node Relabelling Scheme for
Minimizing a Matrix Bandwidth. Intern. J. Num. Meth. Engr. 10,
787-797, wi'6.

11. Fulford, R. E.: A Wavefront and Bandwidth Reduction Algorithm. M. S.
Thesis Dept. Eng. Sci. & Mech., Univ. of Tenn., March, 1977.

200

Table 1

Logic Arrays for Example

NOADJL LFIRST

0 1 2 3 0 1 2 3

1 1 1 1 0 0 0 0 3

2 3 2 1 0 0 1 1 1

3 1 0 0 0 0 1 1 1

4 0 0 0 0 0 0 0 3

5 2 1 0 0 0 1 1 1

6 2 2 1 0 0 0 2 2

Table 2

Results for Labelled Tree

Algorithm Wavefront Profile

Original 7 107

Cuthill-McKee 9 101

Reverse CMK 4 54

King 5 59

Reverse K 3 38

Levy 2 37

Present 3 42

201

Table 3
Element Wavefront Reduction Achieved

by the Present Algorithm

Example Number Number Types*
of of

Number Nodes Elements

1 24 23 L-2
2 73 24 Q-8, T-6

3 272 121 T-6

4 630 639 Q-8 ,T-3
5 623 760 Q-4,L-2

6 253 281 Q-h,T-3

Wavefronh

Original** Resequenced Reduction,%

7 4 43
23 22 4

123 34 80
224 35 84

230 82 65
52 36 31

% L = Line Element, T = Triangle, Q = Quadrilateral

** Assuming one degree of freedom per node

Table 4
Algorithm Steps as Percent of Total Run Time

Total CPU Generate Resequence
Example Neighbors

Time * List Elements **

2 4.35 8.3% 10 %

3 17.47 67.5% 12.5%

4 42.70 80 % 7.5%

5 38.54 75 % 7 %
6 17.55 52 % 15 %

* Seconds on IBM 360165

** From four different starting elements

202

Element Incidences Adjoining Elements

(L) (NODES) (LADJL)

I 2 6

2 3 5

2 5 6

2 3

13

12

Figure 1. Iron's Element Front Example

;

1 2 3

Element Number

old 2 3 1

new 12 2

Figure 2. New Element Model

18

Figure 3. A Labelled Tree C21

203

