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SUMMARY 

Element by element frontal solution algorithms are utilized in many of 
the existing finite element codes. The overall computational efficiency of 
this type of procedure is directly related to the element data input sequence. 
Thus, it is important to have a pre-processor which will resequence these data 
so as to reduce the element wavefronts to be encountered in the solution 
algorithm. This paper reports on a direct element resequencing algorithm for 
reducing the element wavefronts. It also generates computational byproducts 
that can be utilized in the pre-front calculations and in various post-proces- 
sors. Sample problems are presented and compared with other algorithms. 

INTRODUCTION 

Frontal solution procedures for finite element codes were presented 
independently at about the same time by Hellen [l], Irons [2], and Melosh [3]. 
These codes utilize an element by element assembly and factorization of the 
system equations. This procedure has been illustrated for simple models by 
Hellen [l], and Irons [4]. When utilizing this elimination process one is 
concerned with the maximum number of active columns or the maximum front 
associated with any element in the system. This quantity depends solely on 
the input order of the element incidences cards. By way of comparison, if one 
were using a frontal solution of the completely assembled system equations, one 
would be concerned with a wavefront defined by the nodal numbering system. 
This study describes an algorithm for resequencing the element order so as to 
reduce the element wavefronts. 

THE ELEMENT RESEQUENCING STRATEGIES 

Several bandwidth resequencing routines were published before the frontal 
solution methods became popular. Thus, in investigating frontal reduction 
methods one should also consider algorithms that were originally written for 
reducing the bandwidth of a system of equations. Many of these routines are 
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effective in reducing both the nodal and element wavefronts. The Cuthill- 
McKee [5] algorithm has been shown to be effective in reducing both the system 
front and bandwidth [61. The most efficient nodal resequencing algorithms 
written specifically for the system frontal method are probably those developed 
by Levy [7] and King [81. The Cuthill-McKee algorithm is probably the most 
commonly used method for reducing system fronts. 

The above references are concerned with frontal solutions that are depen- 
dent on the nodal numbering system. The present study is directed toward reduc- 
ing wavefronts encountered in the element by element reduction procedure. 
Define the front associated with a particular element to be equal to the front 
of the previous element minus those degrees of freedom that made their last 
appearance in the previous element plus those degrees of freedom which make 
their first appearance in the particular element under consideration. This is 
a quantity that needs to be reduced to save storage and increase the computa- 
tional efficiency of the equation solving algorithm. The value of the maximum 
element front is dependent on the input order of the element incidences list. 
The optimum input sequence is the one that results in the smallest front. 
Instead it is necessary to utilize a resequencing algorithm to obtain a reduced 
front in hopes that the reduced value is near the optimum value. 

Akin and Pardue [9] have presented two procedures for reducing wavefronts 
by element resequencing strategies. Both of their procedures were based on 
generalizations of the Cuthill-McKee method. The disadvantages of these 
methods are that they require relatively large amounts of storage and initial 
calculations. The second method has an additional disadvantage in that it 
does not consider the number of nodes per element (element nodal degree) in 
its tie breaking options. The present paper introduces a new direct element 
resequencing strategy that has several advantages over the above methods. 
First, it requires a much smaller number of initial calculations and storage 
locations. In addition it has five levels of automatic tie breaking strategies 
in the resequencing algorithm. 

Most resequencing programs are based on the concepts of the level and 
degree. The present study generalizes these concepts and utilizes the follow- 
ing definitions: Nodes (or elements) adjacent to a given node (or element) are 
said to be at the same level. The degree of a node (or element) is the number 
of nodes or elements to which it is connected. The term current degree will 
denote the degree based on the current number of unresequenced neighbors. For 
example, if a node has eight element neighbors, three of which have been re- 
numbered, then its element degree is eight and its current element degree 
would be five. 

Consider an effective front defined as, for element i, 

'i = WiB1 + Fi - LiBl , i = 1, . . . ) NE 

where W. is the front width, F. the number of degrees of freedom first appear- 
ing, L.ithe number of degrees &f freedom making last appearance, NE the number 
of elehents and where W, E L, E 0. As a check on this calculation we know 
W NE+1 - " The present strategy is based on the concept of minimum element 
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front growth. That is, 
is minimum. 

select new element i such that the quantity (Fi-Li-1) 
Given a starting element as new element one the elements neighbor-' 

ing this element (i.e. at the same 'level') are numbered according to this 
strategy. Then all elements at the level of new element two are numbered. The 
numbering continues in this fashion, level by level, until all elements have 
been numbered. If a starting element is not given, the program could select 
the one with the smallest or largest Fi. 

In such a procedure one often encounters a number of ties of candidates 
for the next few element numbers. The present code first selects the element 
(or elements) with the minimum number of new nodes (i.e. the minimum Fi). If 
this results in a tie then the element with the maximum number of existing nodes 
is selected (i.e. the maximum Li). A second tie would be broken by choosing the 
element with the smallest number of un-numbered element neighbors. If a tie 
still exists, the element with the largest number of active nodes is selected. 
Finally, should a tie still exist, the last element in the list is utilized. 
Clearly, the rank of the tie breaking order could be changed. 

EXAM-PLE 

Clearly one problem is to define Fi and Li. This is accomplished by 
defining two scratch arrays, say LFIRST and NOADJL, equal in length to the 
number of nodes. When LFIRST(J) # 0, it equals the new element number in 
which node J became active. It is initially zero. From this definition one 
notes that for new element i the value of Fi is equal to the number of nodes 
on that element for which LFIRST = 0. Once Fi is established the above group 
of nodes have their zero value of LFIRST changed to i, the new element number. 
Array NOADJL represents the current number of unnumbered elements adjacent to 
each node. Initially it equals the total number of elements adjacent to each 
point. Clearly when NOADJL(K) = 1 then node K is making its last appearance. 
The value of Li for element i equals the number of nodes on the element for 
which NOADJL= 1. Once an element is renumbered the current value of NOADJL for 
each of its nodes is reduced by one. To illustrate the concepts consider the 
three-element model shown in Figure 1. The original element wavefronts are 
3,4 and 3. The histories of arrays NOADJL and LFIRST are given Table 1. 
These are established in the following manner: 

1. Set new W, = L, = 0, initialize NOADJL, zero LFIRST. Select the 
new first element Ll. Say Ll = 2. 

2. The nodes of Ll are 2,3 and 5. We observe: 

NODE 

2, 

ARRAY COMIvmIT 
LFIRST = 0 , new node ; set LFIRST = 1 
NOADJL = 3 , node remains ; set NOADJL = 2 

3, LFIRST = 0 , new node ; set LFIRST = 1 
NOADJL = 1 , node leaves ; set NOADJL = 0 

5, LFIRST = 0 , new node ; set LFIRST = 1 
NOADJL = 2 , node remains ; set NOADJL = 1 
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Summary: There are three new nodes, the element front is 3, and one 
node is leaving, i.e.: 

*I =3:,~~= I, w, =w, +F,-L, =C+3-0=3. 

3. The element neighbors of Ll = 2 are elements 1 and 3. Select L2 from 
that list. 

A. Consider candidate element 1: Its nodes are 1, 2, 6. 

NODE COMMFJT 

1, LFIRST = 0 , new node 
NOADJL = 1 , node leaves 

2, LFIRST = 1 , active since loop 1 
NOADJL = 2 , node remains 

6, LFIRST = 0 , new node 
NOADJL = 2 , node remains 

Summary : 2 new nodes, 1 node leaving, element active since loop 1, 
1 old node (3 - 2 = 1) 

B. Consider candidate element 3: Its nodes are 2, 5, 6. 

NODE COMMENT 

2, active since loop 1, remains 

5, active since loop 1, leaves 

6, new node, remains 

Summary: 1 new node, 1 node leaving, element active since loop 1, 
2 old nodes (3 - 1 = 2) 

Select L2 = 3. Then F2 = 1, L2 = 1, W2 = W1 + F2 - L1 = 3 + 1 - 1 = 3 

For nodes 2, 5, 6, set NOADJL = NOADJL - 1, and if LFIRST = 0, 
set LFIRST = 2. 

4. Are there any un-numbered elements adjacent to Ll? Yes, old element 1. 
Consider element 1: Its nodes are 1, 2, 6. 

NODE COMMENT 

1, is new and leaves 

2, is active since loop 1 and leaves 

6, is active since loop 2 and leaves 
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summary ; 1 new node, 3 nodes leaving, element active since loop 1, 
2 old nodes 

Set L3 = 1, F3 = 1, L, = 3, W, = W, + F, - L, = 3 + 1 - 1 = 3. 

For nodes 1, 2, 5, set LFIRST = 3 if LFIRST = 0, and set NOADJL = 
NOADJL - 1. 

5. No elements remain. 
Check calculations: W, = W, + F, - L, = 3 + 0 - 3 = 0, check! 
New element wavefronts are 3, 3, and 3. The new data are shown in 
Figure 2. 

APPLICATIONS 

Cuthill [2] has applied various resequencing algorithms to the labelled 
tree structure shown in Fig. 3. The present algorithm was also applied to this 
structure and the results are compared with those of Cuthill in Table 2. 

The second example test was a simple structure considered by Akhras and 
Dhatt [lo]. It consists of three concentric circles divided, from the center, 
into eight equal angular segments. Thus it contains eight triangular and 
sixteen quadrilateral elements. These quadratic elements and their original 
order are shown in [lo]. The third example was a quarter symmetry mesh of a 
rectangle with a center circular hole. The original element data were generated 
in a random order so as to cause a large initial wavefront. The fourth problem 
was a half symmetry shell model. It involved a cylinder with hemispherical 
caps supported horizontally on two vertical plate saddles. The fifth and sixth 
problems involved complicated three-dimensional surfaces with branches. 

The wavefront reduction data for these problems are given in Table 3. 
These results show the algorithm to be efficient in reducing the maximum 
element wavefront. It requires significantly less storage than the algorithm 
used by Akin and Pardue [9]. Other applications to practical engineering 
problems have shown reductions of at least thirty percent. 

Table 4 shows some relative computation costs. The first item is a 
measure of the cost of building the neighbors lists that the resequencing sub- 
routine uses as a data base. These calculations are clearly the most expensive. 
They can be done in various ways and it appears that more efficient procedures 
can be developed. Much of these data could be utilized in the pre-front stage 
of the solution algorithm. The second item shows the actual resequencing costs. 
These are quite small and indicate that one should try several different start- 
ing elements since most of the cost goes into the first choice. 

Complete program listings and instructions are included in Reference [lo]. 
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Table 1 

Logic Arrays for Example 

NOADJL LFIRST 

0 1 2 3 0 1 2 3 

1 1 1 1 0 0 0 0 3 

2 3 2 1 0 0 1 1 1 

3 1 0 0 0 0 1 1 1 

4 0 0 0 0 0 0 0 3 

5 2 1 0 0 0 1 1 1 

6 2 2 1 0 0 0 2 2 

Table 2 

Results for Labelled Tree 

Algorithm Wavefront Profile 

Original 7 107 

Cuthill-McKee 9 101 

Reverse CMK 4 54 

King 5 59 

Reverse K 3 38 

Levy 2 37 

Present 3 42 
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Table 3 
Element Wavefront Reduction Achieved 

by the Present Algorithm 

Example Number Number Types* 
of of 

Number Nodes Elements 

1 24 23 L-2 
2 73 24 Q-8, T-6 

3 272 121 T-6 

4 630 639 Q-8 ,T-3 
5 623 760 Q-4,L-2 

6 253 281 Q-h,T-3 

Wavefronh 

Original** Resequenced Reduction,% 

7 4 43 
23 22 4 

123 34 80 
224 35 84 

230 82 65 
52 36 31 

% L = Line Element, T = Triangle, Q = Quadrilateral 

** Assuming one degree of freedom per node 

Table 4 
Algorithm Steps as Percent of Total Run Time 

Total CPU Generate Resequence 
Example Neighbors 

Time * List Elements ** 

2 4.35 8.3% 10 % 

3 17.47 67.5% 12.5% 

4 42.70 80 % 7.5% 

5 38.54 75 % 7 % 
6 17.55 52 % 15 % 

* Seconds on IBM 360165 

** From four different starting elements 
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Element Incidences Adjoining Elements 

(L) (NODES) (LADJL) 

I 2 6 

2 3 5 

2 5 6 

2 3 

13 

12 

Figure 1. Iron's Element Front Example 

; 

1 2 3 

Element Number 

old 2 3 1 

new 12 2 

Figure 2. New Element Model 

18 

Figure 3. A Labelled Tree C21 
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