General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
DOE/NASA CONTRACTOR REPORT

DOE/NASA CR-150814

SOLAR SYSTEM INSTALLATION AT LOUISVILLE, KENTUCKY (Final Report)

Prepared from documents furnished by

Rademaker Corporation
Louisville, Kentucky

Under ERDA Contract E(49-18)-2385

Monitored by

National Aeronautics and Space Administration
George C. Marshall Space Flight Center, Alabama 35812

For the U. S. Department of Energy

U.S. Department of Energy
NOTICE

This report was prepared to document work sponsored by the United States Government. Neither the United States nor its agents the United States Department of Energy, the United States National Aeronautics and Space Administration, nor any federal employees, nor any of their contractors, subcontractors or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product or process disclosed, or represent that its use would not infringe privately owned rights.
Solar System Installation at Louisville, Kentucky (Final Report)

Author(s)
Rademaker Corporation
Louisville, Kentucky

Performing Organization Name and Address
National Aeronautics and Space Administration
Washington, D.C. 20546

Key Words
- Unclassified-Unlimited

Security Classification
- Unclassified

Distribution Statement
- Unclassified

Project Manager
WILLIAM A. BROOKSBANK, JR.
Manager, Solar Heating and Cooling Project Office

A contract for $20,729 was awarded in June 1976 for the installation of a solar space heating and domestic hot water system at 2400 Watterson Trail, Louisville, Kentucky, in cooperation with ERDA, now the Department of Energy (DOE).

The overall philosophy used by the designer, builder, and installer, Mr. Richard W. Rademaker, President of Rademaker Corporation, was to install both a liquid and a hot air system retrofit to his existing office and combined warehouse building. The 1080 sq. ft. office space is heated first and excess heat is dumped into the warehouse. Since solar heating is a business, hobby, and way of life to Mr. Rademaker, the two systems offered a unique opportunity to measure the performance and compare results of both air and liquid at one site.

The final report describes in detail the two solar systems. Information on the data acquisition system has been added to this report by the MSFC Technical Manager.
TABLE OF CONTENTS

I. General
- System Description and Operation 3
- Pictures of the Installation 6
- Piping and Duct Schematic (76-241-2) 26
- Elevation and Schematic Piping Layout of Hot Water System (76-241-5) 27
- Second Floor Plan (76-241-6) 28
- First Floor Plan (76-241-7) 29

II. Controls
- Control Logic Narrative (76-241-1) 31
- Controls Schematic (76-241-3) 32
- Controls Wiring Diagram (76-241-4) 33

III. Data Acquisition System
- Description 35
- Sensor Location Schematic 37
- Temperature Instrumentation Requirements 38

IV. Acceptance Test
- Acceptance Test Plan #1 44
- Acceptance Test Plan #2 50
- Test Performed for IBM 53

V. Interim Performance Criteria Certification 54

VI. Updated Key Information from Original Proposal 57

VII. Major Maintenance and Construction Problems Encountered and Recommendations 59

VIII. Operation and Maintenance Manual 62
SECTION I

GENERAL
SOLAR HEATING DEMONSTRATION PROJECT
RADEMAKER CORPORATION LOUISVILLE, KENTUCKY

FUNDED UNDER CONTRACT WITH ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION
DIVISION OF SOLAR ENERGY
PROGRAM OPPORTUNITY NOTICE DSE-75-2
CONTRACT NUMBER E(49-18) 2385

ORIGINAL PAGE IS OF POOR QUALITY
A. PROJECT INFORMATION:

BUILDING: Existing office warehouse built in 1969. Structure is steel Butler Building with masonry front.

CLIMATIC DATA: Latitude 38°. Total annual degree days 4660; for January only, 930. Average winter temperature 42°.

USEFUL HEAT GAIN AVAILABLE FROM COLLECTORS DURING MONTH OF JANUARY: 16,120 BTU per square foot.

B. BUILDING AND PROJECT DESCRIPTION:

Occupant of building is Rademaker Corporation, Bluegrass Industrial Park, Louisville, Kentucky. Building was constructed in 1969. It is a Butler Building with a total area of 10,000 square feet. The front portion of the building is office space with 1080 square feet of ground cover. The front wall of the office is brick veneer with relatively large glass area. The solar heating system described herein is for space heating and for heating domestic hot water. Two systems are employed, one is a liquid heating system employing ethylene glycol through six collectors of 40 square feet each inclined at 53°, facing south. The second system is an air collector system employing ten panels of 191/2 square feet each inclined at 33°, facing south. The liquid system uses a 560 gallon water tank for storage. The air system uses 110 cubic feet of one inch diameter washed river gravel for storage.

The auxiliary energy employed to heat the building is natural gas. The solar heating system is in fact a retrofit to the gas heating system which was installed in the building during its original construction.
C. SEQUENCE OF OPERATION:

The liquid system employs a heat exchanger built into the hot water storage tank which allows ethylene glycol to pump through the collectors when solar radiation is available introducing heat to the stored water. A pump is provided in the stored water loop which will pump water from the storage tank to the hot water coils of either of two air handlers when heat is demanded in the space. Control valves in each of the hot water coil circuits are operated from thermostats to allow water to flow to either or both of the water coils upon demands of their respective thermostats.

Domestic hot water is heated from the glycol circuit by a heat exchanger. The motor operated valve in the heat exchanger circuit controls the maximum temperature to which the domestic hot water can be heated.

A preheat glycol coil is provided in the perimeter office zone air handler to allow the glycol to be passed through the preheat coil to serve as an economizer within the glycol circuit allowing the glycol to flow in series from the heat exchanger within the storage tank to the preheat coil then back to the collector provided that the storage water temperature has reached a predetermined minimum temperature.

The air collector system employs eight dampers, all of which are motor operated together with a booster fan to introduce the air to the collectors and/or the rock storage bin to the respective air handling system for distribution to the space.

Return air taken from the space is allowed to flow through the collectors as long as radiant heat is available then through the booster fan and into the respective zone requiring heat. If no zones demand heat, the dampers position themselves to allow flow from the collector through the rock storage thus charging the rock storage with heat. When heat is not available at the collectors, but is present in the rock storage and is demanded by the space, the booster fan will draw air, counterflow, from the rock storage bin and pass it into the respective zone demanding heat. If excess heat exists and if heat is demanded in the warehouse, heat will be passed from the collectors or from the rock storage bin into the warehouse provided that no heat is demanded within the office space.
Roof View of Air Collectors

Back View of Liquid Collectors
End View of Air Collectors Looking W. S. W.

Close Up of Air Collectors
Air Vent on Collector

Back View on Liquid Collectors
Back View of Liquid Collectors

Close Up of Reflector Looking West
Temperature Gauges Showing Glycol Discharge Temperature - Upper Gauge with Reflector
Water Storage Tank - 560 Gallon
Glycol Pump P-1 & Pressure Gauge
Pump P.2
Rock Box
Temperature Control Panel

Perimeter Zone Return Air Duct and Counterflow Furnace and Water Heaters
Heat Exchanger on Left - Preheat Domestic Hot Water Heater in Middle - Gas Water Heater on Right
Conduit Rough-In Trough for Monitor
Water Coil Near Center of Picture and Glycol Coil Near Bottom Serving Perimeter Air Handler
Scheme showing layout of hot water system

Electrical Interconnection

Original page is of poor quality.
SECTION II

. CONTROLS
A. LIQUID COLLECTOR SYSTEM:
When the master liquid collector solar heat switch is placed in the "Automatic" position (Switch S-11), the differential thermostat T-1 will allow operation of the glycol pump P-2 through the action of Relay R-PG. R-PG has a 15 second time delay off cycle to prevent fluctuation of the glycol pump of the solid state circuit. When T-1 is closed, the liquid collector will be allowed to operate. When T-1 is open, the differential thermostat T-2 will allow operation. Radiation sensing thermostat T-BA under the collector panel near the top of a typical collector surface will operate with thermostat T-BA in the storage tank sensing average water temperature of the tank to allow operation of the glycol pump when the temperature is greater than the tank temperature. The domestic hot water solar heat switch S-2, when placed in the "Automatic" position will allow its pump P-2 to operate at the same time P-1 operates through Relay R-PW. Differential thermostat T-11 has one element T-11-A located on the glycol line leaving the collectors, and its auxiliary element T-11-B is on the bottom of the domestic hot water heater. A high limit safety thermostat T-11-C located off the center of the tank under the insulation of the tank allows Pump P-3 to stop if the temperature should exceed 180°F on the tank surface. When relay R-07 is energized, the valve V-3 opens to allow glycol to flow through the heat exchanger serving the domestic hot water circuit.

The room thermostat serving the exterior zone designated as T-5 is a two stage heat-one stage heat thermostat. The first stage of heat on this thermostat will energize Relay R-A1. Relay R-A1 energizes and provides Switch S-1 for the "Automatic" position (main office heated from liquid solar system switch). Hot water valve V-2 will open to permit heat after the glycol has already passed through the heat exchanger in the tank. (This serves as an economizer to extract more heat from the collector by increasing the efficiency of the collector.) A thermostat T-4 sensing the return glycol temperature from the hot water heat exchanger will not, however, let this valve open unless the water coming back is above 120°F.

The hot water pump P-2 which distributes water in the hot water heating system from the storage tank will be energized at any time Relay R-2 is energized indicating a demand for heat at either zone and provided that the temperature of the water in the top of the storage tank is sensed by thermostat T-7 and is above 65°F (indicating heat is available to be distributed to the hot water coils). A switch on the panel (S-4) allows the drafting room air handling unit to circulate from the liquid solar heater system. Thermostats T-10 in the drafting room will open when the temperature is greater than 85°F in the tank. Thermostats T-10 in the drafting room will close when the temperature is greater than 90°F in the tank. Thermostats T-10 in the drafting room will open in the summer to cool the collectors and to prevent overheating. When relay R-07 is energized, the damper D will open to allow heat to be distributed to the hot water coils.

The hot water pump P-2 which distributes water in the hot water heating system from the storage tank will be energized at any time Relay R-2 is energized indicating a demand for heat at either zone and provided that the temperature of the water in the top of the storage tank is sensed by thermostat T-7 and is above 65°F (indicating heat is available to be distributed to the hot water coils). A switch on the panel (S-4) allows the drafting room air handling unit to circulate from the liquid solar heater system. Thermostats T-10 in the drafting room will open when the temperature is greater than 85°F in the tank. Thermostats T-10 in the drafting room will close when the temperature is greater than 90°F in the tank. Thermostats T-10 in the drafting room will open in the summer to cool the collectors and to prevent overheating. When relay R-07 is energized, the damper D will open to allow heat to be distributed to the hot water coils.

B. AIR COLLECTOR SYSTEM:
The master switch for the air collector solar heat system is marked SA-1. Placing this switch in the "Automatic" position will allow the differential thermostat T-1 to cycle Relay R-3 if the solar radiation input as sensed by thermostat TA-IA is greater than the temperature at the bottom of the rock storage box as sensed by TA-IB. Switch SA-2 on the control panel when placed in the "Automatic" position allows the interior office zone to have heat introduced from the air solar system provided its room thermostat is calling for heat which can be controlled by Relay R-3. Relay R-3 will open damper D1 and will allow starting of fan F-1 which will introduce heat directly from the solar collector system to the interior zone provided relay R-3 is energized. If not, it will introduce heat from the rock storage stack assuming that thermostat T-3 indicates a temperature of at least 85°F at the top of the rock storage stack. If heat does not exist from either source, fan F-1 will not operate. Switch SA-3 when placed in the "Automatic" position allows heat to enter the office perimeter zone from the air solar collector system when thermostat T-5 calls for heat. (This gives the interior zone precedence on getting heat from the air collector system. When relay R-A1 is energized, damper D1 opens.)

Switch SA-4 when placed in the "Automatic" position allows heat to be introduced to the warehouse from the air solar collector system providing the room thermostat TA-6 serving the warehouse zone indicates the demand for heat and further provided that RA-7 and RA-8 relays are not energized indicating a demand for heat in either or the office zones. During the "Automatic" operation, the relay RA-5 upon demand of heat for TA-5 will open damper D2 and D3.

The damper which control heat selection from rock storage or from collectors are controlled by Relay R-3. If RA-3 is energized indicating that collectors have heat available, damper D2 will be closed and damper D3 will be closed. If RA-3 is not energized, damper D2 will be closed and damper D3 will open to allow heat to come from the rock storage stack. Relay RA-6 will be energized to allow opening of Damper D3 any time the solar collectors have heat available and provided that none of the three zones are demanding heat.

A second switch marked SA-5 with indication for "Automatic-Summer" will allow the system to work fully automatically as described above when placed in the "Automatic" position. When placed in the "Summer" position, however, relay RA-5 will be energized allowing heat to come into the building from the solar collector system. The control panel is designed to allow opening of Damper D3 any time the solar collectors have heat available.

Pilot lights are provided on the panel to indicate which dampers are opened and to indicate when fan F-1 is running, when each of the three pumps is running, and when the damper serving the drafting room is running.
SECTION III
DATA ACQUISITION SYSTEM
DESCRIPTION OF DATA ACQUISITION SYSTEM

In order to obtain information necessary for evaluation of the performance and operation of the solar heating system throughout the year, 47 sensors were installed within the system. These sensors were furnished by the government and installed at government expense in accordance with the document, "SHC-1006, August 4, 1976; Instrumentation Installation Guidelines for the National Solar Heating and Cooling Demonstration Program."

Table 1 schematic reflects the specific location of each of the sensors.

In Table 2, each sensor is described in terms of general location, and the parameter that is being measured. Each sensor is listed by an alpha-numeric code designation. The code designation indicates the following:

<table>
<thead>
<tr>
<th>Letter Designations</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Specific Heat</td>
</tr>
<tr>
<td>D</td>
<td>Direction or Position</td>
</tr>
<tr>
<td>EE</td>
<td>Electrical Energy</td>
</tr>
<tr>
<td>EP</td>
<td>Electrical Power</td>
</tr>
<tr>
<td>F</td>
<td>Fuel Flow Rate</td>
</tr>
<tr>
<td>HF</td>
<td>Heat Flow Meter</td>
</tr>
<tr>
<td>I</td>
<td>Incident Solar Flux (Insolation)</td>
</tr>
<tr>
<td>N</td>
<td>Performance Efficiency or Effectiveness</td>
</tr>
<tr>
<td>P</td>
<td>Pressure</td>
</tr>
<tr>
<td>PD</td>
<td>Pressure Differential</td>
</tr>
<tr>
<td>Q</td>
<td>Thermal Energy</td>
</tr>
<tr>
<td>RH</td>
<td>Relative Humidity</td>
</tr>
<tr>
<td>SM</td>
<td>Special Measurement</td>
</tr>
<tr>
<td>T</td>
<td>Temperature</td>
</tr>
<tr>
<td>TD</td>
<td>Differential Temperature</td>
</tr>
<tr>
<td>V</td>
<td>Velocity</td>
</tr>
<tr>
<td>W</td>
<td>Heat Transport Medium Flow Rate</td>
</tr>
<tr>
<td>Number Sequence</td>
<td>Data Group</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>001 to 099</td>
<td>climatological</td>
</tr>
<tr>
<td>100 to 199</td>
<td>collector</td>
</tr>
<tr>
<td>200 to 299</td>
<td>thermal storage</td>
</tr>
<tr>
<td>300 to 399</td>
<td>domestic hot water</td>
</tr>
<tr>
<td>400 to 499</td>
<td>space heating</td>
</tr>
<tr>
<td>500 to 599</td>
<td>space cooling</td>
</tr>
<tr>
<td>600 to 699</td>
<td>building/load</td>
</tr>
</tbody>
</table>

Each sensor provides data to a Site Data Acquisition Subsystem (SDAS) every 5 minutes around the clock. The SDAS digitizes the data and stores it on tape. Once a day the data is sent by telephone to an IBM facility in Huntsville, Alabama, where it is reduced. Monthly reports are prepared, one of which is sent to Rademaker Corporation.

The monitoring system will permit the government to determine the following kinds of information:

- Savings in conventional energy resulting from the use of solar energy for heating.

- Portion of the total heating load supplied by the solar energy.

- Efficiency of the system in converting solar radiation into useful thermal energy.

- Thermal performance and reliability of major subsystems or components over the demonstration period.
<table>
<thead>
<tr>
<th>No.</th>
<th>Designation</th>
<th>Number</th>
<th>Specification</th>
<th>Measurement</th>
<th>S/N</th>
<th>Range (°F)</th>
<th>Pipe Type</th>
<th>Pipe Size (inch)</th>
<th>Tube Size (inch)</th>
<th>Installation Method</th>
<th>Ref Fig No.</th>
<th>Thermowell Part No.</th>
<th>Pipe Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>T001</td>
<td>30</td>
<td>N113</td>
<td>Ambient air dry bulb temp</td>
<td></td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>154</td>
<td>553P857226</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>T100</td>
<td>2</td>
<td>0100</td>
<td>Collector array inlet temp liquid</td>
<td></td>
<td>CU</td>
<td>1</td>
<td>1</td>
<td>NA</td>
<td>2F03U42</td>
<td>557P72236</td>
<td>553P72236</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>T150</td>
<td>32</td>
<td>0100</td>
<td>Collector array outlet temp liquid</td>
<td></td>
<td>CU</td>
<td>1/1</td>
<td>1/1</td>
<td>NA</td>
<td>2F03U42</td>
<td>553P72236</td>
<td>553P72236</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>T102</td>
<td>34</td>
<td>N116</td>
<td>Collector absorber surface temp liquid</td>
<td></td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>534A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>T103</td>
<td>36</td>
<td>0100</td>
<td>Collector array inlet temp air</td>
<td></td>
<td>Air Duct</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>F132</td>
<td>557P85236</td>
<td>553P85236</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>T153</td>
<td>6</td>
<td>0100</td>
<td>Collector array outlet temp air</td>
<td></td>
<td>Air Duct</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>F132</td>
<td>553P85236</td>
<td>553P85236</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>T104</td>
<td>38</td>
<td>N116</td>
<td>Collector absorber surface temp air</td>
<td></td>
<td>Air Duct</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>534A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>T101</td>
<td>4</td>
<td>0200</td>
<td>Storage tank outlet temp-collector loop</td>
<td></td>
<td>CU</td>
<td>1/1</td>
<td>1/1</td>
<td>NA</td>
<td>2F03U42</td>
<td>553P72236</td>
<td>553P72236</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>T450</td>
<td>12</td>
<td>0201</td>
<td>Storage tank outlet-to-load temp</td>
<td></td>
<td>CU</td>
<td>1-1/4</td>
<td>1-1/4</td>
<td>NA</td>
<td>2F03U42</td>
<td>553P72236</td>
<td>553P72236</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>T400</td>
<td>7</td>
<td>0201</td>
<td>Storage tank temp load</td>
<td></td>
<td>CU</td>
<td>1-1/4</td>
<td>1-1/4</td>
<td>NA</td>
<td>2F03U42</td>
<td>553P72236</td>
<td>553P72236</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>T200</td>
<td>40</td>
<td>0202</td>
<td>Storage tank temp - top liquid</td>
<td></td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>2F03U154</td>
<td>553P180236</td>
<td>553P180236</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>T202</td>
<td>42</td>
<td>0202</td>
<td>Storage tank temp - bottom liquid</td>
<td></td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>2F03U154</td>
<td>553P180236</td>
<td>553P180236</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>T203</td>
<td>43</td>
<td>0202</td>
<td>Rock storage temp - top</td>
<td></td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>2F03U154</td>
<td>553P180236</td>
<td>553P180236</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>T205</td>
<td>45</td>
<td>0202</td>
<td>Rock storage temp - bottom</td>
<td></td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>2F03U154</td>
<td>553P180236</td>
<td>553P180236</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>T451</td>
<td>14</td>
<td>0200/0201</td>
<td>Rock storage, inlet-to-outlet differential temp</td>
<td></td>
<td>Air Duct</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>40</td>
<td>534A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>T452</td>
<td>16</td>
<td>0402</td>
<td>Glycol coil, inlet temp</td>
<td></td>
<td>CU</td>
<td>1</td>
<td>1</td>
<td>NA</td>
<td>2F03U42</td>
<td>553P72236</td>
<td>553P72236</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>T455</td>
<td>20</td>
<td>0401</td>
<td>Furnace outlet temp air</td>
<td></td>
<td>Air Duct</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>F132</td>
<td>553P85236</td>
<td>553P85236</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>T4001</td>
<td>24</td>
<td>0402</td>
<td>Perimeter air temp</td>
<td></td>
<td>Air Duct</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>F132</td>
<td>553P85236</td>
<td>553P85236</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 2
<table>
<thead>
<tr>
<th>No</th>
<th>Designation</th>
<th>Number</th>
<th>Location</th>
<th>Measurement</th>
<th>SN</th>
<th>Range (°F)</th>
<th>Probe Type</th>
<th>Probe Size (inches)</th>
<th>Tube Size (inches)</th>
<th>Installation Method</th>
<th>Ref. Fig. No.</th>
<th>Thermowell Part No.</th>
<th>Probe Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>T408</td>
<td>26</td>
<td>Q402</td>
<td>Air to warehouse temp</td>
<td></td>
<td></td>
<td>Air Duct</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>553P85736</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>T409</td>
<td>28</td>
<td>Q402</td>
<td>Air to interior temp</td>
<td></td>
<td></td>
<td>Air Duct</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>553P85736</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>T600</td>
<td>11</td>
<td>N406</td>
<td>Building indoor, avg. temp, downstairs</td>
<td></td>
<td></td>
<td>Air Duct</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>553P85736</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>T453</td>
<td>18</td>
<td>0000/</td>
<td>Under-floor rock storage, inlet-to-outlet</td>
<td></td>
<td></td>
<td>Air Duct</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>553P85736</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0201</td>
<td>differential temp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>T206</td>
<td>46</td>
<td>0202</td>
<td>Under-floor rock storage, internal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>553P85736</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Temp near inlet</td>
<td></td>
<td></td>
<td>F2031/154</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>T207</td>
<td>47</td>
<td>0202</td>
<td>Under-floor rock storage, internal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>553P85736</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>temp near outlet</td>
<td></td>
<td></td>
<td>F2031/154</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>T151</td>
<td>8</td>
<td>0202</td>
<td>Storage tank HX glycol inlet temp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>553P72</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>T401</td>
<td>9</td>
<td></td>
<td>Main storage temp outlet air</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>553P85</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>T403</td>
<td>10</td>
<td></td>
<td>Under-floor storage outlet air</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>553P85</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>T408</td>
<td>22</td>
<td></td>
<td>Air temp from warehouse</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>553P85</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>T457</td>
<td>31</td>
<td></td>
<td>Air temp from office</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>553P85</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>T402</td>
<td>48</td>
<td></td>
<td>Preheater glycol outlet temp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>553P72</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>T405</td>
<td>44</td>
<td></td>
<td>Auxiliary furnace air inlet temp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>553P72</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 2
<table>
<thead>
<tr>
<th>No.</th>
<th>Designation</th>
<th>Number</th>
<th>Function</th>
<th>Name Description</th>
<th>Min</th>
<th>Design</th>
<th>Max</th>
<th>Type</th>
<th>Flow Rate</th>
<th>Duct Dimensions (in.)</th>
<th>Model No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>W100</td>
<td>19</td>
<td>0100</td>
<td>Collector array flow rate - total</td>
<td></td>
<td></td>
<td></td>
<td>Air</td>
<td>0</td>
<td>430-2</td>
<td>MKV-1-1/4-J07</td>
</tr>
<tr>
<td>33</td>
<td>W410</td>
<td>13</td>
<td>0100</td>
<td>Collector array flow rate - total</td>
<td></td>
<td></td>
<td></td>
<td>Duct</td>
<td>0</td>
<td>430-2</td>
<td>MKV-1-1/4-J07</td>
</tr>
<tr>
<td>34</td>
<td>W400</td>
<td>15</td>
<td>0201</td>
<td>Space heating system - storage outlet to load flow rate</td>
<td>360FPM</td>
<td></td>
<td></td>
<td>Air</td>
<td>1-1/4</td>
<td>19 18</td>
<td>430-2</td>
</tr>
<tr>
<td>35</td>
<td>W405</td>
<td>15</td>
<td>0401</td>
<td>Perimeter air cond/htg unit, air flow rate</td>
<td>675FPM</td>
<td></td>
<td></td>
<td>Air</td>
<td>19 18</td>
<td>430-2</td>
<td>MKV-1-1/4-J07</td>
</tr>
<tr>
<td>36</td>
<td>W401</td>
<td>17</td>
<td>0401</td>
<td>Storage flow rate, air</td>
<td>575FPM</td>
<td></td>
<td></td>
<td>Air</td>
<td>19 18</td>
<td>430-2</td>
<td>MKV-1-1/4-J07</td>
</tr>
<tr>
<td>37</td>
<td>W407</td>
<td>23</td>
<td>0402</td>
<td>Perimeter air cond/htg unit, flow rate of solar heated air</td>
<td>400FPM</td>
<td></td>
<td></td>
<td>Air</td>
<td>19 18</td>
<td>430-2</td>
<td>MKV-1-1/4-J07</td>
</tr>
<tr>
<td>38</td>
<td>W406</td>
<td>27</td>
<td>0402</td>
<td>Solar heating loop to warehouse zone flow rate of solar heated air</td>
<td>400FPM</td>
<td></td>
<td></td>
<td>Air</td>
<td>19 18</td>
<td>430-2</td>
<td>MKV-1-1/4-J07</td>
</tr>
<tr>
<td>39</td>
<td>W409</td>
<td>29</td>
<td>0402</td>
<td>Interior zone air cond/htg unit, flow rate of solar heated air</td>
<td>400FPM</td>
<td></td>
<td></td>
<td>Air</td>
<td>19 18</td>
<td>430-2</td>
<td>MKV-1-1/4-J07</td>
</tr>
<tr>
<td>40</td>
<td>F400</td>
<td>35</td>
<td>0410</td>
<td>Perimeter air cond/htg unit, natural gas auxiliary inlet flow, totalized</td>
<td>2.1CFM</td>
<td></td>
<td></td>
<td>Air</td>
<td>19 18</td>
<td>430-2</td>
<td>MKV-1-1/4-J07</td>
</tr>
<tr>
<td>41</td>
<td>W403</td>
<td>37</td>
<td>0406</td>
<td>Under-floor rock storage, air flow</td>
<td>400CFM</td>
<td></td>
<td></td>
<td>Air</td>
<td>19 18</td>
<td>430-2</td>
<td>MKV-1-1/4-J07</td>
</tr>
</tbody>
</table>

TABLE 2
<table>
<thead>
<tr>
<th>No</th>
<th>Designation</th>
<th>Number</th>
<th>Qualification</th>
<th>Name</th>
<th>Phase</th>
<th>Configuration (2 or 6 wire)</th>
<th>Full Scale Input</th>
<th>Power (kWatts)</th>
<th>Mode No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>42</td>
<td>EP101</td>
<td>39</td>
<td>0102</td>
<td>Collector loop pump power, pump F1</td>
<td>1</td>
<td>120</td>
<td>4.6</td>
<td>1.85**</td>
<td>PCS-19F</td>
</tr>
<tr>
<td>43</td>
<td>EP102</td>
<td>41</td>
<td>0403</td>
<td>Perimeter zone air cond/htg unit fan power</td>
<td>1</td>
<td>120</td>
<td>4.9</td>
<td>3.6**</td>
<td>PCS-28F</td>
</tr>
<tr>
<td>44</td>
<td>EP103</td>
<td>21</td>
<td></td>
<td>Fan F1 power</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>EP400</td>
<td>25</td>
<td></td>
<td>Operating power, liquid system (P2 & PFF2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

** R = [Black] and #8 gage

TABLE 2
<table>
<thead>
<tr>
<th>No</th>
<th>Designation</th>
<th>Number J-Box</th>
<th>S/A</th>
<th>Justification</th>
<th>Name</th>
<th>Model No</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>46</td>
<td>1001</td>
<td>3</td>
<td></td>
<td>0001</td>
<td>Collector plane total insolation Liquid collector</td>
<td>PIP Model 2</td>
<td>Eppley Laboratories Inc.</td>
</tr>
<tr>
<td>47</td>
<td>1002</td>
<td>5</td>
<td></td>
<td>0001</td>
<td>Collector plane total insolation Air collector</td>
<td>PIP Model 2</td>
<td>Eppley Laboratories Inc.</td>
</tr>
</tbody>
</table>

TABLE 2
SECTION IV

ACCEPTANCE TEST
ACCEPTANCE TEST PLAN #1

FOR

SOLAR HEATING SYSTEM

RADEMAKER CORPORATION

LOUISVILLE, KENTUCKY

Performed 7/3/78
by
Thomas Empson and Harry Sladen
of
Rademaker Corporation

A. LIQUID COLLECTOR SYSTEM (Refer to Drawings 76-241-2 and 76-241-4)

1. Place the master liquid solar heat switch into the "Automatic" position. Note water temperature below center of tank at point where sensor TL-8B is located. Hawthorne controller TL-8A should allow cycling of the glycol pump, provided collector sensing element is 15° higher than tank sensing element temperature. Check this in early morning prior to the time when collectors are warm and glycol pump should be off. When unit cycles on, note water temperatures entering tank heat exchanger and see if unit cycles off as glycol temperature exceeds tank temperature. If it does, this circuit is not performing satisfactorily.

2. Place the main office heat switch in the "Automatic" position. Raise the setting of the room thermostat in the perimeter zone. The valve serving the water coil for this zone (V2) should open at the same time the hot water circulating pump (P2) should start. Valve V4 in the glycol circuit serving the preheat coil
for the perimeter zone should also open, provided the bulb thermostat TL-4 in the return glycol line is sensing above 125°. If the stat is not causing this valve to open, drop the setting of TL-4 to assure that the electric circuit is functioning correctly and will allow the glycol valve to open when the return glycol temperature is acceptably warm.

3. Place the drafting room unit heating switch in the "Automatic" position. Thermostat T-10 in the Drafting Room, if raised above room temperature, should allow the valve (V-3) to open and pump P-2 to start at the same time. Likewise, the fan should start at the same time, allowing heat from the unit to the Drafting Room.

4. Take the temperature of the water in the domestic hot water storage tank. Preferable check-out should occur when the water tank is approximately room temperature and when the glycol temperature is above 120°. This would then allow the domestic hot water differential control (TL-11) to cycle the domestic hot water pump (P-3) and, at the same time, to open the domestic hot water glycol valve (V-1) to allow introduction of heat to the heat exchanger serving the domestic hot water from the glycol circuit. Observe the temperature of the water in the storage tank and, as it rises above the glycol circuit temperature, it should shut off the glycol valve (V-1) and stop the domestic hot water circulating pump (P-3).
5. Note the Lapse Time Meter for Pumps P-1, P-2, and P-3, and the pilot lights for the three pumps and Drafting Room fan. Note to see if these function at the same time as the respective piece of equipment is energized.

6. Place the office perimeter zone gas heat switch in the "Automatic" position and raise the heating thermostat in the perimeter office zone. This should cause gas heat to come on to supplement the solar heating system. Both solar and gas can work together.

7. Place each of the respective system mode switches in the "Off" position and see if the respective system shuts down accordingly. Follow-up by placing the master liquid solar heat switch to the "Off" position and all respective switches associates with the liquid solar heating system should shut down, including the glycol pump.

B. AIR COLLECTOR SYSTEM

1. Place the master switch SA-1 in the "Automatic" position. This should allow the fan to start if the temperature sensed by the thermostat on the hot air collector (TA-1A) is 20° greater than the temperature at the bottom of the rock storage box, as sensed by TA-1B. Assuming that the respective system switches are all in the "Off" position and the summer override switch is in the "Automatic" position, and provided heat exists at the hot air collector, Damper #4 should be opened and Damper #3 should be opened, with all others being closed. This allows the fan to charge the rock storage with heat from the collectors.
2. Place the interior office heating switch to the "Automatic position and adjust the thermostat from this zone (TA-2) to call for heat. This should close Damper #4 and open Damper #7 which allows the introduction of heat to the interior zone. See Damper Schedule for ease of determination of respective damper position. This schedule is on Drawing 76-241-2.

3. Reposition the interior office switch to the "Off" position and place the main office heat (perimeter zone) to the "Automatic" position. Raise the setting of the room thermostat serving the perimeter zone (thermostat TL-5). This should allow Damper #1 to open. It should be noted at this point that if the collectors are putting out heat as previously described, Damper #2 will be opened, Damper #3 will be closed under this situation. However, if the collectors are not warm and if the rock storage has heat within it as sensed by Thermostat TA-3, Damper #3 will be opened and Damper #2 will be closed, allowing heat to be introduced from the rock storage. Again, refer to the Damper Schedule and see if the dampers are in the proper position.

4. Now, with all air system switches in the "Off" position (except the warehouse zone), place this one in the "Automatic" position. Damper #5 should open to allow heat to enter the warehouse, provided the room thermostat in the warehouse (TA-6) is calling for heat. Again, check the Damper Schedule to assure that all dampers are assuming their proper position.
It is necessary to check each of the zone operations with the hot air collector in operation during the day and, likewise, during the period when no heat is available in the collectors and heat is already stored in the rock storage. Under each situation, the Damper Schedule should be carefully noted. Likewise, the pilot lights should be observed for each respective damper and the fan to determine if the pilot lights are giving a true indication of the operating mode. Also, note the Lapse Time Meter which operates when the fan is in operation to determine the number of hours used correctly.

5. Place the summer override switch in the "Summer" position and check to see if dampers have assumed the positions indicated in the Damper Schedule, namely, that Damper #8 is opened allowing venting by gravity without the fan operation.

6. During the checking of each damper sequence, the exact travel of each of the dampers should be observed to assure that tight shut-off is accomplished and that full opening is accomplished by each respective damper motor. This will prevent overheating of any single zone to the linkage. Also, check temperatures of air being introduced to each respective zone to get a general idea of the output capability of the collectors and/or the rock storage system as relates to that respective zone.

7. Generally observe the system to assure that heat is not being dissipated from the system to the outdoors through the collectors.
This can be noted easily by watching the temperature of the air at the fan discharge when it is drawing from the collectors. If, at any time, the temperature drops below the temperature in the rock storage, which is usually ambient temperature (approximately 70-75°), then the system is dissipating heat instead of collecting it. The probable cause of this would be an inoperative or miscalibrated differential temperature control. A similar check should be made by observing the differential control function for the glycol loop with the reference temperature being the temperature of the water at the lower quarter of the tank. It should be noted that the glycol pump may occasionally stop, whereas the air system will continue to function. The reason for this is that the water storage temperature may have raised to a point where the glycol loop would be dissipating heat instead of absorbing it, whereas it is not likely to happen on the air system because the ambient condition of the rock near the bottom of the rock stack will seldom rise above 75°. This is due to the residual effect of the rock as it absorbs heat at the top of the stack and offers wide gradient between top and bottom, whereas the water temperature tends to be somewhat more even from bottom to top.
TEST PERFORMED 7-4-78.

ACCEPTANCE TEST PLAN #2

FOR

SOLAR HEATING SYSTEM

RADEMAKER CORPORATION

LOUISVILLE, KENTUCKY

This test plan was developed to evaluate the instrumentation in both solar heating systems at the Rademaker Corporation installation. These tests will be coincident with at least two Site Data Acquisition Subsystem (SDAS) scans (640 seconds) to permit the recording of measurements under essentially steady-state conditions.

I. Air Collector Solar Energy Heating System Tests

A. Solar energy available at collectors (TA-1A, 1B)

1. De-activate both solar heating systems including air handling unit (AHU) fans as well as all load switches and thermostats. 8:10 a.m.

2. Activate AHU fan for interior zone (F-4). 8:20 a.m.

3. Activate AHU fan for perimeter zone (F-3). 8:30 a.m.

4. Activate air collector solar heating system (SA-1). 8:40 a.m.

5. Demand heat by warehouse (SA-4, TA-6). 8:50 a.m.

6. Demand first stage heat by perimeter zone (SA-3, F-5). 9:00 a.m.

7. Demand heat by interior zone (SA-2, TA-).

B. Solar energy available only in storage (TA-3).

1. De-activate both solar heating systems including air handling unit (AHU) fans as well as all load switches and thermostats. 9:20 a.m.

2. Activate AHU fan for interior zone (F-4). 9:30 a.m.

3. Activate AHU fan for perimeter zone (F-3). 9:40 a.m.

4. Activate air collector solar heating system (SA-1). 9:50 a.m.
5. Demand heat by warehouse (SA-4, TA-6).
6. Demand first stage heat by perimeter zone (SA-3, T-5). 10:00 a.m.
7. Demand heat by interior zone (Sa-2, TA-). 10:20 a.m.

C. Solar energy not available.

1. De-activate both solar heating systems including air handling unit (AHU) fans as well as all load switches and thermostats. 10:30 a.m.
2. Activate AHU fan for interior zone (F-4). 10:40 a.m.
3. Activate AHU fan for perimeter zone (F-3). 10:50 a.m.
4. Activate air collector solar heating system (SA-1). 11:00 a.m.
5. Demand heat by warehouse (SA-4, TA-6). 11:10 a.m.
6. Demand first stage heat by perimeter zone (SA-3, T-5) 11:20 a.m.
7. Demand heat by interior zone (SA-2, TA-). 11:30 a.m.
8. Demand second stage heat by perimeter zone(SA-3, T-5)

II. Liquid Collector Solar Energy Heating System Tests

A. Solar energy available at collectors (T-8A, 8B).

1. De-activate both solar heating systems including AHU fans as well as all load switches & thermostats. 11:40 a.m.
2. Activate liquid collector solar heating system and AHU fan for perimeter zone (S-1). 11:50 a.m.

B. Solar energy available only in storage (T-7).

1. Demand first stage heat by perimeter zone (S-3, T-5). 12:00 p.m.
2. Demand heat by drafting room (S-4, T-10). 12:10 p.m.

C. Solar energy not available.

1. Demand heat by drafting room. 12:20 p.m.
2. Demand first stage heat by perimeter zone (S-3, T-5) 12:30 p.m.
3. Demand second stage heat by perimeter zone (S-3, T-5). 12:40 p.m.

TEST FINISHED 12:50 p.m.

*Numbers in parentheses refer to designations of switches and thermostats.
July 19, 1977

Rademaker Corporation
2400 Watterson Trail
Louisville, Kentucky

Attention: Mr. Richard W. Rademaker
Reference: Our Telecon of July 19, 1977

Gentlemen:

The fan/pump test we are requesting involves operation of your system in the following states. Each state should be maintained for at least ten (10) minutes and the start time of each test state should be recorded. Also, please record the damper and valve positions appropriate for each state. A desirable mode in which to perform the test would be Mode 1 - "Heat from Collector to Perimeter System"

State 1

<table>
<thead>
<tr>
<th>Condition</th>
<th>Action</th>
<th>Time</th>
<th>State 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pi (Collector Loop Pump)</td>
<td>ON</td>
<td>3:45 EDT</td>
<td>DM# 2 x 4</td>
</tr>
<tr>
<td>F1 (Collector Loop Fan)</td>
<td>ON</td>
<td>3:55 EDT</td>
<td>State 1-2</td>
</tr>
</tbody>
</table>

State 2

<table>
<thead>
<tr>
<th>Condition</th>
<th>Action</th>
<th>Time</th>
<th>State 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pi and F2 (load Loop Pump)</td>
<td>ON</td>
<td>3:55 EDT</td>
<td>DM# 3 x 4</td>
</tr>
<tr>
<td>F1 and F2 (Building Area Fan Coil)</td>
<td>ON</td>
<td>4:05 EDT</td>
<td></td>
</tr>
</tbody>
</table>

State 3

<table>
<thead>
<tr>
<th>Condition</th>
<th>Action</th>
<th>Time</th>
<th>State 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pi, F2 and F3 (DHW Loop Pump)</td>
<td>ON</td>
<td>4:08 EDT</td>
<td></td>
</tr>
<tr>
<td>F1, F2 and F3 (Perimeter AH Fan)</td>
<td>ON</td>
<td>4:20 EDT</td>
<td></td>
</tr>
</tbody>
</table>

State 4

<table>
<thead>
<tr>
<th>Condition</th>
<th>Action</th>
<th>Time</th>
<th>State 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pi, F2 and F3 (DHW Loop Pump)</td>
<td>ON</td>
<td>4:25 EDT</td>
<td></td>
</tr>
<tr>
<td>F1, F2, F3 and F4 (Interior AH Fan)</td>
<td>ON</td>
<td>4:35 EDT</td>
<td></td>
</tr>
</tbody>
</table>

State 5

<table>
<thead>
<tr>
<th>Condition</th>
<th>Action</th>
<th>Time</th>
<th>State 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pi, F2, F3 and F4 (Interior AH Fan)</td>
<td>ON</td>
<td>4:38 EDT</td>
<td></td>
</tr>
</tbody>
</table>

All Closed

<table>
<thead>
<tr>
<th>Condition</th>
<th>Action</th>
<th>Time</th>
<th>State 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>F3, F4, both - ON</td>
<td>No Pumps Running</td>
<td>4:48 EDT</td>
<td></td>
</tr>
</tbody>
</table>

Note: The Middle 5 Min. Period Of Each State Should Give Accurate Readings.
SECTION V

INTERIM PERFORMANCE CRITERIA CERTIFICATION
August 27, 1975

National Aeronautics & Space Administration
George C. Marshall Space Flight Center
Marshall Space Flight Center, Alabama 35812

Attention: Mr. Thomas Davidson, FA33

Subject: Contract E (49-18) 2333

Gentleman:

This will acknowledge your letter of August 18. Consider this letter as our letter of certification that our solar array meets the Interim Performance Criteria where applicable.

Yours very truly,

RADEMAKER CORPORATION

R. W. Rademaker
President

RWR/b
INTERIM PERFORMANCE CRITERIA
CERTIFICATION

DEMONSTRATION CONTRACTOR Rademaker Corporation

SYSTEM LOCATION Louisville, Kentucky

SYSTEM TYPE Space Heating and Domestic Hot Water Heating

CERTIFIED BY
Authorized Representative R. W. Rademaker

DATE August 25, 1976
SECTION VI

UPDATED KEY INFORMATION FROM ORIGINAL PROPOSAL
One of the primary aims of the installation was to determine the comparative results of the air system versus the liquid system operating under a similar environment. Since the system has currently been operating through two winters, a considerable amount of information has become available to the writer as a result of observation even without detailed information from the monitoring system. First of all, there is relatively little difference in the apparent performance of the air system and the liquid system due to their variation in tilt angle. It appears that the air system responds more readily to the diffuse radiation situation which is partly because it is oriented more flatly and, secondarily, because it is operating with respect to a lower reference temperature.

Experiments have been conducted using a reflector on one of the collectors which is very easy to see on the photographs accompanying this presentation. It is apparent that during clear days (heavy direct insolation), the reflector has a significant added benefit during summer cycle of operation with temperatures being as much as 20° higher with the same flow. The system was installed with separate circuits from each respective collector so that results such as this could be easily obtained.

It was thought when the system was designed that the glycol preheat coil would serve considerable value for extracting the maximum heat from the liquid system. In actual practice, however, it is observed that the heat from the glycol is extracted within the tank due to the fact that the demands upon the system are always heavy with respect to the insolation. In other words, the heat is being demanded as fast as it can be absorbed by the collectors. The temperature of the glycol relatively always stays below the 120° temperature which was set as the point at which glycol could pass through the preheat coil prior to reentering the collector loop. When it is allowed to enter this preheat coil at a lower temperature, it drops the whole temperature threshold of the storage and thereby merits nothing to the system.

It should further be noted that additional surface was added to the heat exchanger within the storage tank after the system had been placed in operation the first year since it was obvious that heat transfer was not sufficient during static conditions.
SECTION VII

MAJOR MAINTENANCE AND CONSTRUCTION PROBLEMS ENCOUNTERED AND RECOMMENDATIONS
MAJOR MAINTENANCE AND CONSTRUCTION PROBLEMS ENCOUNTERED AND RECOMMENDATIONS

Generally, there were some problems encountered and they are listed herein.

1. Glazing Problem

The Kalwall applied to the SDI collectors degraded rather heavily during the first summer and winter. It was replaced in the early summer of 1977 and went through the second winter with considerable improvement. Apparently, the Kalwall Pr•mium II is better than the original Kalwall. Likewise, the glazing on the Solaron collectors showed a white deposit between the layers of glass after the first winter of operation. This glazing was replaced in 9 of the 10 panels at the same time the above mentioned glazing was replaced. The new glazing appears to have less of a problem, however, some evidence of white deposits has reoccurred after about 14 months. The condensation between the layers of glass has not been eliminated. The writer has concluded that it is very nearly impossible to eliminate this problem, no matter how carefully the instructions of the manufacturer are followed.

2. Insulation

The Armaflex insulation used on the outside of the building tended to stiffen up and show considerable degrading during the first summer and winter. During the summer of 1977, the Armaflex was covered with a fiberglass insulation and then the complete insulation package was covered with a plastic material and sealed at all joints. Likewise, cans were placed over the edges of the insulation to assure that no water could get through to reduce the value of the insulation. The net result was considerable gain during the next winter’s operation. The recommendation of the writer would be not to use Armaflex outdoors. It works quite satisfactorily indoors. The manufacturer’s paint applied to that which was outdoors did not appear to make much difference. The degrading still occurred.

3. Controls

Problems occurred with the differential temperature control devices which are manufactured by Hawthorne. The units originally installed tended to stutter upon start-up and shut-down causing the fans and pumps respectively to chatter at start-up and shut-down. This was solved by the introduction of time-delay relays in the circuits. Likewise, the manufacturer sent replacement units which still seemed to have the same problem occasionally. Time-delay relays are recommended to eliminate this occurrence.

4. Glycol

A freeze-up with 20% glycol solution used temporarily during the first winter proved to be evidence that it is desirable to use a greater percentage of glycol. 40% glycol solution is recommended for this part of the country. The problem did not occur due to pipes bursting as a result of freezing, but, instead, failure of the liquid to flow through the pipes even though the sun had increased the temperature of the liquid at the collectors to the point
4. Glycol (continued)

where it would melt below the slush point. Failure of the liquid to flow
caused glycol to be ejected through a gasket in one of the motorized valves
due to increased pressure when the relief valve was isolated due to the
presence of slush. No problem has occurred with respect to this since the
40% glycol was installed prior to the second winter.

5. Maintenance

Practically no maintenance problems have occurred with either of the systems
other than those items outlined above. Generally, the air system is shut
down during the summertime since the slight leakage of the dampers entering
each of the two air handling systems causes an added load to the air condi-
tioning system. This leakage does not seem to be a problem during the winter,
however, the writer does intend to replace the damper #1 serving the outer
zone since that leakage is more evident and the use of a tighter seal damper
will make the job a better one.
SECTION VIII

OPERATION AND MAINTENANCE MANUAL
Solar AIR heating systems produce more usable energy than liquid solar systems. An independent test of side by side air and liquid solar systems at Colorado State University states: "the air system operated 45 percent longer during the day than the liquid system and collected 38 percent more heat." This is a consequence of stratified heat storage in the pebble bed for the air system and nearly uniform temperature in the water storage tank of the liquid system. This is described in terms of the solar system performance equation on page four of this brochure.

The SOLARON AIR COLLECTOR offers the following advantages:

- 10 Year performance warranty.
- Safe, reliable and virtually maintenance-free operation.
- Freedom from damage by freezing or boiling.
- Absence of pipes which can corrode and leak.
- Requires no antifreeze or stagnation pressure relief controls.
- Approved by HUD and ERDA for Federally funded projects.

MR—MANUFACTURER

Solaron's business is the practical application of solar energy. We design, manufacture and market solar heating systems for industrial, commercial, agricultural process drying and residential buildings. The heart of our system is the air-type solar collector, a design based on over 30 years research and development by Dr. George Loft. To contact the nearest Solaron dealer, call the SWEETS BUYLINE.

Design Assistance: Solaron has a complete design manual covering all aspects of solar system engineering, architectural requirements and economics. Contact Solaron for a copy of the design manual. Experienced and technical personnel are available to assist on any special applications.
The Solaron solar heating system is marketed throughout the U.S. by local distributors and dealers who are well established in the HVAC industry. The Solaron distributors maintain a complete stock of Solaron equipment. The distributors, who also handle major brands of heating and air conditioning equipment, work with dealers who are HVAC installing contractors. The Solaron dealers are established and reliable contractors who are familiar with installing heating equipment and associated ductwork. Both the distributors and dealers are thoroughly trained by Solaron in all aspects of solar heating, design, equipment application and installation. Solaron engineers and field servicemen support the distributors and dealers as required, and provide on site assistance.

The Solaron collector, air handler and controller and necessary ductwork is installed by the HVAC contractor. The general contractor usually builds the heat storage container. The system is then tested through all of the operating modes and thoroughly checked for proper operation.

OP—OVERALL PRODUCT, IN PLACE

SYSTEM OPERATION

HEATING FROM COLLECTOR Air, the circulating heat transfer medium is drawn through the collector where it is normally heated to about 120-150°F. When the space requires heat, the solar heated air is drawn through the air handling unit in which motorized dampers are automatically opened to direct the hot air to the space. The air then returns to the collector where it is again heated and the cycle repeats itself.

HEATING FROM STORAGE At night or on cloudy days when solar energy is unavailable or when heat is needed in the space, the automatic control system directs the building return air into the bottom of the heat storage unit, up through the pebbles where the air is heated, through the air handling unit and into the space. When the solar heated air does not maintain the space thermostat setting, the automatic control turns on the auxiliary heater to add to the required heat.

STORING HEAT When the space temperature is satisfied the automatic control system diverts the air into the heat storage unit where the heat is absorbed by the pebble bed. The air returns to the collector where it is heated and this cycle is repeated.

SUMMER WATER HEATING In the summer, when space heating is not required, air is drawn through the collector where it is heated and then through the water heat exchanger coil. The solar heated air transfers its heat to the water which is being circulated through the coil and the air is then returned back to the collector inlet.

SOLARON DOMESTIC WATER HEATING SYSTEM

The Solaron Domestic Water Heater System involves a very simple operating cycle. Solar energy is collected by the south facing collector 1. Air is circulated by the heat exchange unit 2 where the solar energy is transferred to the water being circulated by the domestic water circulating pump 5. Solar heated water is continuously circulated into the storage tank 3 as long as the Solaron control unit indicates that solar energy is available at the collectors 1 and until tank temperature in the storage tank 3 reaches 160 degrees F. When hot water is required water is drawn from the conventional domestic hot water heater 4 and preheated water is drawn from the storage tank 3 into the conventional domestic water heater.
The Solaron collector is an advanced type of an air heating, flat plate collector. Our exclusive internal manifolding allows the Solaron collector to be completely modular. Factory preassembled collector panels are plugged into each other with a minimum of installation time. Air inlets and outlets are field cut into each collector array as required. The Solaron solar collector is designed for installation on any structurally sound surface, such as a roof, wall or specially made supports.

The Solaron solar collector has the following general construction characteristics:

Absorber: 28 gauge steel with porcelain enamel coating.

Glazing: Two 1/8" sealed special low iron tempered glass panels with a long life EPDM perimeter gasket. Glass plate can be easily removed for service or replacement.

Pan: 20 gauge steel, fully insulated with 3/4" fiberglass batt. Painted external surfaces.

Connection Ports: Unique flange configuration permits tight air seal automatically as modules are installed.

Cap Strip: Painted steel designed to provide weather seal between panels.

A drawing of a typical installation is shown to the left. The collectors can be grouped as shown or in any of the configurations shown on page 2. Typical Collector Arrays. Due to the Solaron internal manifold technique (i.e. air flow from one panel to another internally) the external duct connections are minimized as shown above (i.e. one inlet and one outlet for 8 panels, 156 ft²). This technique reduces field labor and leads to an economical installation.

CONTACT SOLARON TO OBTAIN SYSTEM SCHEMATICS SHOWING HOW TO COMBINE SOLAR HEATING WITH

- Heating & air conditioning
- Heat pumps
- V.A.V. systems
- Multiple zones
- Process water heating
- Make-up air heating
- Process air htg-drying
- Swim pool water htg.
- Industrial & agricultural heating

OPTIMUM STORAGE SIZE

The heat storage unit must be built and installed by the local contractor to Solaron standard drawings and specifications. Contact Solaron for a copy of these specs.

SOLARON AUTOMATIC CONTROL UNIT

The automatic temperature control unit is included as part of the Solaron system. The controller handles all of the operational modes which are shown in the schematics on page 2. The controller operates the solar side of the system and ties into a 2-stage thermostat to provide solar and/or auxiliary heat to the space as required. The standard controller can be modified (with Solaron hardware) to combine with heat pumps or other types of auxiliary heating systems. Solaron can provide technical assistance to design special controllers for large projects or special applications.
Comparison of various types of solar heating systems can only be done properly if the entire solar system is evaluated over an entire heating season. Collector efficiency is an instantaneous point in time measurement and is not a valid parameter to evaluate the solar system performance. The ideal situation for a solar system is to keep the fluid inlet temperature to the collector as low as possible and have a high usable temperature for space heating. Therefore, the ideal solar system has heat stratified in the storage unit. An air solar system using rocks as the thermal storage provides this stratification. Therefore, the inlet temperature to an air collector is typically 70°F where the liquid collector inlet temperature is 130°F.

Two collectors of similar construction can be compared using the performance equation. When the average collector inlet temperature (Tl) is used, the liquid systems produce almost the same heat output as the air system.

\[
\text{AIR} \quad Q_i = \frac{0.69(300)(0.75) - (0.8)(70 - 40)}{3} \text{ BTU} \text{ per ft}^2 \text{ Day} \\
\text{LIQUID} \quad Q_i = \frac{0.90(300)(0.75) - (0.8)(130 - 40)}{3} \text{ BTU} \text{ per ft}^2 \text{ Day}
\]

However, this is still an instantaneous point in time measurement which doesn’t take into account the fact that the air system will typically collect for longer periods at time and therefore deliver more total heat output. When these systems are evaluated over an entire season, the results are as reported by the C.S.U. report #209-2686-1. Because of the stratification, the temperature of the air returning to the collector from the bottom of storage is always near room temperature. Thus, the air collector can deliver useful heat from early morning to late afternoon, the liquid system starts up later in the morning and shuts off earlier in the afternoon and therefore, when system performance is evaluated over an entire season it shows that AIR solar systems actually produce more usable energy than liquid systems. The C.S.U. report that the air solar system delivered considerably more heat output than the same sized liquid system right next to it.

1 Solar Collector Area. The collector area can be determined by using the Solaron Conversion Factors shown to the right. The design heat loss is divided by the S.C.F. to get ft² of collector. Recommendations – Annual fuel savings for space heating should equal 30% to 70%. Annual fuel savings for applications with a more uniform load throughout the year can be higher than 70%.

2 Air Flow Rate. 2 SCFM to 3 SCFM per ft² of solar collector area. Contact Solaron for special applications such as make-up air heating, outside air heating for drying or industrial or agricultural process heating.

3 Heat Storage Size: ½ to ¾ ft² ft² per ft² of solar collector area. Rock size ½ to 1½ diameter.

Example: Project at 40° N. Latitude. 500 ft² Collector Area.

If Orientation is 20° to the west. The relative collector area required to provide the same annual fuel savings as a system at 40° to 500 ft².

If the optimum collector tilt would be 45° to 55° (i.e., L = 5 to L = 15). If the collectors were at a tilt of 35° (i.e., L = 5) the relative collector area required would be 1.03 = 500 ft²; 515° ft² If both conditions exist (i.e., 20° West & 35° tilt) the correction would be (1.04 (L = 35)) = 505.6 ft².

Solar collector area = design heat loss (S.C.F. - (1.04) (L = 35)) / 515° ft²
For information on the Solaron Collector Panel Details contact
Soloran Corporation, 300 Galleria Tower-South, 720 S. Colorado
Blvd, Denver, CO 80222.
SD5 Solar Collector

Shown for flat roof installation in South Florida. Sloping roofs accommodated by adjusting rear strut length.

USES - water heating, space heating, and pool heating
DIMENSIONS - 4' x 10' nominal
WEIGHT - 140 lbs. including roof mounting hardware, 150 lbs. wet
COLLECTOR PLATE - .012" thick copper
PIPING - 100 ft. of ½" copper 4¼" on centers, sinusoidal layout, parallel arrangement available by special order
PIPE/PLATE CONNECTION - collector-plate grooved to accept 1/2 of pipe circumference for excellent heat transfer, 100% capillary flow solder bond.
BOX - extruded aluminum sides, .032" aluminum sheet backing
INSULATION - 1" polyurethane (closed cell) or technifoam isocyanurate
GLAZING - .040" Kalwall Sun-lite Premium, for double glazed northern unit, inner glazing .025" Kalwall Sun-lite Premium, outer .040" WIND LOADING - designed for 30 lbs./sq. ft.
VARIATIONS - collector can be manufactured in various lengths, widths, etc. to meet specific requirements
PERFORMANCE - the SDI collector has been tested by Desert Sunshine Exposure Tests, Inc., Black Canyon Stage, Arizona using The National Bureau of Standards' Test Procedure. SDI has a computer program to predict performance under various conditions based on the results of this testing. Large installations can be designed optimizing tank size and number of collectors.

TECHNICAL SPECIFICATIONS

PUMP & CONTROLLER - for residential domestic water-use, pump, controller and check valve are mounted in one package. The controller uses two low voltage sensors to compare tank temperature to collector temperature and instructs the pump to circulate only when energy can be added to the system.
PUMP - March 809, 115 VAC or Teel 1P760
FLOW - ¾ to 1 g.p.m. depending on piping run. Pumps drawing up to 2 amps at 115 VAC may be substituted for multiple collector systems
CONTROLLER FEATURES -
1. All solid-state industrial grade construction.
2. Custom aluminum enclosure with "irridited" and sealed finish.
3. Control box may be operated reliably from freezing to over 120 degrees Fahrenheit.
4. Thermistor sensors will operate from 50 degrees below zero to 300 degrees above zero, Fahrenheit.
5. Sensors isolated from high voltage... safe 9 volt signal... no conduit or electrician required.
6. One year guarantee.
7. Operating cost less than one cent per 10 hour day, including pump.

Solar Collector with Roof Mounting Hardware
single glazed -
double glazed
Solar Water Heating System
(same as above plus pump, controller and check valve)
single glazed -
double glazed -

* Pricing* (F.O.B. West Palm Beach)

* In the absence of a quotation, prices subject to change without notice. 68
Solar Collector
Test Report

Model: SD5 "Standard"

Solar Development, Inc.
4180 Westroads Drive
West Palm Beach, FL 33407

FLORIDA SOLAR ENERGY CENTER
RESEARCH DEVELOPMENT AND
DEMONSTRATION DIVISION
300 STATE ROAD 401
CAPE CANAVERAL, FLORIDA 32920
This solar collector was tested by the Florida Solar Energy Center (FSEC) in accordance with prescribed methods and was found to meet the minimum standards established by FSEC. The purpose of the tests is to verify initial performance conditions and quality of construction only. The resulting certification is not a guarantee of long term performance or durability.

DESCRIPTION

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross Length</td>
<td>3.062 meters</td>
</tr>
<tr>
<td>Gross Width</td>
<td>1.235 meters</td>
</tr>
<tr>
<td>Gross Depth</td>
<td>0.093 meters</td>
</tr>
<tr>
<td>Gross Area</td>
<td>3.782 square meters</td>
</tr>
<tr>
<td>Transparent Frontal Area</td>
<td>3.545 square meters</td>
</tr>
<tr>
<td>Volumetric Capacity</td>
<td>5.1 liters</td>
</tr>
<tr>
<td>Weight (empty)</td>
<td>44.4 kilograms</td>
</tr>
<tr>
<td>Number of Cover Plates</td>
<td>One</td>
</tr>
<tr>
<td>Flow Pattern</td>
<td>Serpentine</td>
</tr>
</tbody>
</table>

Efficiency Equations:

- **First Order**: \(\eta = 64.1 - 632.6 \frac{(T_i - T_a)}{I} \)
- **Second Order**: \(\eta = 61.9 - 427.2 \frac{(T_i - T_a)}{I} - 2699.1 \left(\frac{(T_i - T_a)}{I}\right)^2 \)

Tested per ASHRAE 93-77

MATERIALS

- **Enclosure**: Aluminum frame
- **Glazing**: Kalwall Sun-Lite Premium II (fiberglass reinforced plastic)
- **Absorber**: Formed copper fin bonded to copper tube, black paint
- **Insulation**: Celotex Thermax (polyisocyanurate 2.54 cm)

RATING

The collector has been rated for energy output on measured performance and an assumed standard day. Total solar energy available for the standard day is 5045 watt-hour/m² (1600 BTU/ft²) distributed over a 10 hour period.

Output energy ratings for this collector based on the second order efficiency curve are:

<table>
<thead>
<tr>
<th>Collector Temperature</th>
<th>Energy Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Temperature, 35°C (95°F)</td>
<td>38,600 Kilojoules/day</td>
</tr>
<tr>
<td>Intermediate Temperature, 50°C (122°F)</td>
<td>28,600 Kilojoules/day</td>
</tr>
<tr>
<td>High Temperature, 100°C (212°F)</td>
<td>3,200 Kilojoules/day</td>
</tr>
</tbody>
</table>
1. COLLECTOR DESCRIPTION

1.1 Collector Identification

Manufacturer and Address: Solar Development, Inc.
4180 Westroads Drive
West Palm Beach, FL 33407

Collector Model Number: SD5 "Standard"

1.2 Collector Construction

Overall Dimensions:
- Length: 3.062 m
- Width: 1.235 m
- Depth: 0.093 m

Overall Front Area: (length x width) = 3.782 m²

Height of outlet above inlet when collector tilt is 90°: 1.045 m

Glazing:
- Material: Kalwall
- Thickness: 0.064 cm (0.025 inch)
- Transmittance*: 88%
- No. of Cover Plates: One

Transparent Frontal Dimensions:
- Length: 3.007 m
- Width: 1.179 m
- Area: 3.545 m²

Absorber:
- Material: Copper alloy 110
- Length: 2.997 m
- Width: 1.194 m
- Area: 3.578 m²

Absorber Coating: Black paint by Cypress Coatings
- Absorptivity*: Unknown
- Emissivity*: Unknown
Air Spacing Glazing to Absorber: Approx. 4.5 cm

Insulation:
- Type: Cellotex Thermex
- Dimensions: 2.54 cm
- K-Factor*: 0.02 Watts/m \(^{0}\)C (0.13 Btu/hr-ft\(^2\)-\(^{0}\)F/in)

Heat Transfer Fluid:
- Material: Water
- Density: 977.81 kg/m\(^3\) at 70\(^{0}\)C
- Specific Heat: 4189.6 J/kg \(^{0}\)C at 70\(^{0}\)C

Collector Weight: 44.4 kg

Collector Weight/Area: 11.7 kg/m\(^2\)

Collector Fluid Capacity: 5.1 liters

Collector Fluid Capacity/Area: 1.35 liters/m\(^2\)

Normal Operating Temperature Range: 24\(^{0}\)C to 93\(^{0}\)C

Manufacturers Recommended Fluid Flow Rate: 2.8 liters/min (0.75 GPM)

Manufacturers Recommended Maximum Operating Pressure: 276 kilopascals (40 psig) tested to 1103 (160 psig)

Cover Plate Wind Load Maximum*: 1436 Pascals (30 psf)

*Information provided by manufacturer; not verified by FSEC.
2. RESULTS

2.1 Introduction

Results of the thermal performance tests are presented in graphical and tabular form. The first graph shows the efficiency plot in the International System of Units (Metric units). Following this is a comparison of the collector efficiency before and after exposure testing. Finally, the tabulated data is presented. The performance graphs and the tabulated data are also presented in Section 2.6 in English units of measure.

2.2 Explanation of Results

The Solar Development, Inc. model SD5 "Standard" solar collector was tested for time constant and thermal performance. The time constant was found to be 1.3 minutes. A thermal performance test was conducted during the period from 12 February to 14 February 1978. An incident angle modifier test will be conducted. After these tests were completed the collector was filled with water, capped with a pressure relief valve set at 414 kPa and placed on an exposure rack for a period of 40 days. During this period there were at least thirty days on with the total daily insolation was greater than 4730 watt-hours per square meter (1500 Btu/ft²) and at least one day on which there was a four-hour period with a minimum insolation level of 1013 watts per square meter (321 Btu/hr-ft²). During the exposure test the collector rack was adjusted to keep the angle between the incoming solar radiation and a normal to the collector surface less than five degrees at solar noon. On three of the last ten days of exposure, the collector was sprayed with water to simulate rain. A second thermal performance test was conducted during the period 21 April to 25 April 1978.

The second performance test revealed a slight decrease in performance, but within the required limits. After all the tests had been completed, the collector was disassembled and inspected. The inspection revealed minor outgassing deposits around the perimeter of the inside surface of the cover plate. No other evidence of deterioration was found.
THERMAL PERFORMANCE

SOLAR DEVELOPMENT SD5 "STANDARD"

EFFICIENCY = 61.9 - 427.2 DT/I - 2699.1 DT/I^2

(CTI - TA)/I (C-SQ M)/W

FLORIDA SOLAR ENERGY CENTER
Cor. Genernal, Florida 1976
COMPARISON OF THERMAL PERFORMANCE BEFORE AND AFTER EXPOSURE

SDI SD5 "STANDARD"

BEFORE EXPOSURE
○ AFTER EXPOSURE

FLORIDA SOLAR ENERGY CENTER
East University Florida 1988
<table>
<thead>
<tr>
<th>TEST DATE</th>
<th>SOLAR TIME</th>
<th>TA</th>
<th>TE</th>
<th>FLOW</th>
<th>AVE</th>
<th>TOTAL</th>
<th>WATT</th>
<th>15 WATT</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/12/78</td>
<td>10:12 AM</td>
<td>16.1</td>
<td>73.2</td>
<td>4.29</td>
<td>287.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/12/78</td>
<td>10:12 AM</td>
<td>16.1</td>
<td>73.2</td>
<td>4.29</td>
<td>287.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/12/78</td>
<td>10:12 AM</td>
<td>16.1</td>
<td>73.2</td>
<td>4.29</td>
<td>287.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/12/78</td>
<td>10:12 AM</td>
<td>16.1</td>
<td>73.2</td>
<td>4.29</td>
<td>287.4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The first order efficiency curve is:

Efficiency = \(\frac{1}{1 + \frac{1}{A}} \)

The units on (T1-TA)/I are (W-30)/W.

The second order efficiency curve is:

Efficiency = \(\frac{1}{1 + \left(\frac{1}{A} \right)^2} \)

The units on (P1-P0)/I are (W-30)/W.
<table>
<thead>
<tr>
<th>TEST</th>
<th>TILT</th>
<th>RAINDROP</th>
<th>INCL</th>
<th>MESS</th>
<th>SPEC HEAT</th>
<th>IN P</th>
<th>WIND</th>
<th>WIND</th>
<th>DIF IN</th>
<th>% SUN</th>
<th>11-16</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0</td>
<td>0.0685</td>
<td>4190.1</td>
<td>354.5</td>
<td>1.2</td>
<td>326.1</td>
<td>103.3</td>
<td>143.5</td>
<td>51.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0.0688</td>
<td>4190.2</td>
<td>355.1</td>
<td>1.0</td>
<td>326.1</td>
<td>104.0</td>
<td>141.1</td>
<td>51.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0.0680</td>
<td>4190.1</td>
<td>364.4</td>
<td>1.4</td>
<td>376.4</td>
<td>104.3</td>
<td>14.9</td>
<td>50.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>0.0678</td>
<td>4190.2</td>
<td>374.2</td>
<td>1.4</td>
<td>169.1</td>
<td>139.1</td>
<td>14.5</td>
<td>50.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>0.0687</td>
<td>4181.8</td>
<td>330.6</td>
<td>1.3</td>
<td>163.8</td>
<td>138.5</td>
<td>14.1</td>
<td>32.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0</td>
<td>0.0679</td>
<td>4181.9</td>
<td>326.1</td>
<td>1.3</td>
<td>119.1</td>
<td>152.3</td>
<td>14.3</td>
<td>32.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>0</td>
<td>0.0687</td>
<td>4181.7</td>
<td>351.4</td>
<td>1.2</td>
<td>150.1</td>
<td>135.5</td>
<td>15.1</td>
<td>32.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>0</td>
<td>0.0686</td>
<td>4181.7</td>
<td>350.4</td>
<td>1.7</td>
<td>151.1</td>
<td>135.1</td>
<td>16.1</td>
<td>25.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0.0668</td>
<td>4207.3</td>
<td>362.0</td>
<td>1.1</td>
<td>152.1</td>
<td>135.1</td>
<td>15.1</td>
<td>32.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0.0697</td>
<td>4207.6</td>
<td>363.0</td>
<td>1.0</td>
<td>165.1</td>
<td>167.1</td>
<td>16.1</td>
<td>70.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>0</td>
<td>0.0669</td>
<td>4238.2</td>
<td>365.3</td>
<td>1.0</td>
<td>168.3</td>
<td>168.3</td>
<td>18.9</td>
<td>70.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>0</td>
<td>0.0670</td>
<td>4208.6</td>
<td>365.4</td>
<td>1.6</td>
<td>161.5</td>
<td>161.5</td>
<td>18.9</td>
<td>74.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>0</td>
<td>0.0696</td>
<td>4172.8</td>
<td>350.7</td>
<td>4.0</td>
<td>257.1</td>
<td>36.1</td>
<td>20.0</td>
<td>21.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>0</td>
<td>0.0686</td>
<td>4178.7</td>
<td>351.0</td>
<td>3.5</td>
<td>294.1</td>
<td>139.7</td>
<td>14.4</td>
<td>5.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>0</td>
<td>0.0693</td>
<td>4178.4</td>
<td>390.2</td>
<td>4.4</td>
<td>272.4</td>
<td>167.6</td>
<td>15.0</td>
<td>3.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>0</td>
<td>0.0693</td>
<td>4178.4</td>
<td>389.9</td>
<td>3.2</td>
<td>279.9</td>
<td>165.0</td>
<td>15.0</td>
<td>4.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variable</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>WIND</td>
<td>Wind speed (meters/second or miles/hour)</td>
<td></td>
</tr>
<tr>
<td>WIND DIR</td>
<td>Wind direction (degrees east from north)</td>
<td></td>
</tr>
<tr>
<td>DIF IN</td>
<td>Diffuse instantaneous insolation (watts/square meter or BTU/hour-square foot)</td>
<td></td>
</tr>
<tr>
<td>% DIFF INSOL</td>
<td>Percent of the incoming radiation that was diffuse</td>
<td></td>
</tr>
<tr>
<td>TI-TA</td>
<td>Temperature difference between the inlet fluid temperature and ambient air (°C or °F)</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1. The test number is simply a number assigned for use by FSEC

2. Stars indicate that no data was taken on the indicated parameter during that test.

3. The data presented in the test report best represent the performance of the collector during testing. The actual data points were chosen to be at the temperatures recommended by ASHRAE.
2.4 Results of Static Tests

2.4.1 Pressure Test

Date of Test: 10 December 1977
Static Test Pressure: 1103 kilopascals (160 psig)
Duration of Test: 15 minutes

2.4.2 Pressure Drop Test

Date of Test: 23 April 1978
Air Temperature: 25.6°C (78.1°F)
Inlet Temperature: 27.1°C (80.7°F)
Flow Rate: 4.24 L/min (1.12 GPM)
Inlet Pressure: 142.6 kPa (20.7 psig)
Pressure Drop: 8.00 kPa (1.16 psi)

2.4.3 Exposure Test

Start Date: 25 February 1978
Completion Date: 6 April 1978
No. of Days of Exposure: 40
No. of Days of Exposure when insolation exceeded 4730 watts/m² (1500 BTU/ft²): 30
Pressure Relief Setting: 414 kPa (60 psig)
Spray Tests:
- Dates: 30 March, 02 April, 03 April 1978
- Insolation: 946 Watts/m² (300 Btu/hr-ft²), 1060 Watts/m² (336 Btu/hr-ft²), 996 Watts/m² (316 Btu/hr-ft²)

2.4.4 Inspection Results:
- Cover Plate: a minor amount of outgassing deposit was detected around the perimeter of the inside surface of the cover plate.
- Absorber Plate: No evidence of deterioration
- Absorptive Coating: No evidence of deterioration
- Collector Enclosure: No evidence of deterioration
- Insulation: No evidence of deterioration
- Gaskets, Caulking & Sealants: No evidence of deterioration
2.3 Computer Printout Key

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEST</td>
<td>Number assigned to the data for a particular test</td>
</tr>
<tr>
<td>DATE</td>
<td>Date on which the test was performed</td>
</tr>
<tr>
<td>SOLAR TIME</td>
<td>Solar time at the start and finish of the test</td>
</tr>
<tr>
<td>TA</td>
<td>Ambient air temperature (°C or °F)</td>
</tr>
<tr>
<td>TI</td>
<td>Temperature of the transfer fluid at the collector inlet (°C or °F)</td>
</tr>
<tr>
<td>TE</td>
<td>Temperature of the transfer fluid at the collector exit (°C or °F)</td>
</tr>
<tr>
<td>FLOW</td>
<td>Volumetric flow rate of the transfer fluid (liters/minute or gallons/minute)</td>
</tr>
<tr>
<td>AVE IN</td>
<td>Average instantaneous insolation (watts/square meter or BTU/hour-square foot)</td>
</tr>
<tr>
<td>TOTAL IN</td>
<td>Total (integrated) insolation in the plane of the collector during the test period (joules/square meter or BTU/square foot)</td>
</tr>
<tr>
<td>DEL T</td>
<td>Total (integrated) temperature rise across the collector during the test period (degree centigrade minutes or degree fahrenheit minutes)</td>
</tr>
<tr>
<td>EFFIC</td>
<td>Calculated collector efficiency for the test period (percent)</td>
</tr>
<tr>
<td>(TI-TA)/I</td>
<td>Value calculated for the abscissa of the efficiency graph. (°C - square meter/watt or °F - hour - square foot/BTU)</td>
</tr>
<tr>
<td>TILT</td>
<td>Angle which the collector was tilted from the horizontal (degrees)</td>
</tr>
<tr>
<td>AZIM</td>
<td>Collector azimuth angle (degrees = m due south; east positive)</td>
</tr>
<tr>
<td>INCI</td>
<td>Angle between the incoming radiation and a normal to the collector surface (degrees)</td>
</tr>
<tr>
<td>MASS</td>
<td>Mass flow rate of the transfer fluid (kilograms/second or pounds mass/minute)</td>
</tr>
<tr>
<td>SPEC HEAT</td>
<td>Specific heat of the transfer fluid (joules/kilogram - °C or BTU/pound mass - °F)</td>
</tr>
<tr>
<td>IN P</td>
<td>Gage pressure at the collector inlet (kiloNewtons/square meter or pounds/square inch)</td>
</tr>
</tbody>
</table>
2.5 **Explanation of Efficiency Curve**

The test data is presented in tabular form and as an efficiency curve. The efficiency curve is based on the following equation:

\[\eta = FR(\tau a)_e - FRU_L \left(\frac{T_i - Ta}{I} \right) \]

where:

- \(\eta \) = collector efficiency
- \(FR \) = heat removal factor
- \((\tau a)_e \) = effective transmissivity-absorptivity product
- \(U_L \) = over-all heat loss coefficient
- \(T_i \) = transfer fluid temperature at the collector inlet
- \(Ta \) = ambient air temperature
- \(I \) = instantaneous level of solar radiation

The standard form of the equation of a straight line is:

\[Y = b + mX \]

where:

- \(b \) = Y axis intercept
- \(m \) = slope

From these two equations it can be seen that a straight line should result if a plot of efficiency versus the quantity \(\frac{T_i - Ta}{I} \) is made and if the slope and intercept functions can be assumed constant. It then becomes apparent that the slope of the line is a function of the over-all heat loss coefficient and the Y axis intercept is a function of the transmissivity of the cover plate(s) and the absorptivity of the absorber plate(s). In reality, however, \(U_L \) is not constant under the test conditions since it varies with the temperature of the collector and ambient weather conditions. Therefore a second order curve is used to describe the thermal performance of the collector. That is:

\[Y = c + bX + aX^2 \]

The intercept is still related to \((\tau a)_e \) and the slope at any point on the curve is proportional to the heat loss rate for that value of \(\frac{T_i - Ta}{I} \).
2.6 Performance Test Results, English Units

Following is a repetition of the thermal performance curve. Although identical to the previous graph (see Sec. 2.1) in content, this graph and computer printout is presented in English units.
The efficiency curve does not give absolute values for the overall heat loss coefficient and \((\tau a)_e\) since both are multiplied by the factor \(F_R\). However, the plot does indicate relative values for these two quantities that can be used for comparing collectors. Determination of the absolute values of \((\tau a)_e\) and \(U_L\) would require additional measurements beyond the tests performed.

The \(X\) quantity, \(\frac{T_i - T_a}{I}\), can be determined from measurements made during testing. The collector efficiency can be calculated from the following equation:

\[
\eta = \frac{m \cdot C_p \int \Delta T \, dt}{A \int I \, dt}
\]

where:

- \(\dot{m} \) = mass flow rate of the transfer fluid
- \(C_p \) = specific heat of the transfer fluid
- \(\int \Delta T \, dt \) = integrated (total) temperature rise across the collector
- \(A \) = gross frontal area
- \(\int I \, dt \) = integrated (total) solar radiation received by the collector during the test.

The data is collected during a series of test runs. Each data point, represented as a plus sign on the efficiency plot, is the result of a test run, the exact length of the run being determined by the collector time constant. The line drawn on the plot is a second order least squares curve fit of the data points.
THERMAL PERFORMANCE
SOLAR DEVELOPMENT SD5 "STANDARD"

EFFICIENCY

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

(TI-TA)/I (F-HR-SQ FT)/BTU
EFFICIENCY = 61.9 -75.3 DT/I -83.8 DT/I^2
COMPARISON OF THERMAL PERFORMANCE BEFORE AND AFTER EXPOSURE

SDI SD5 "Standard"

——— BEFORE EXPOSURE

○ AFTER EXPOSURE

\[
\text{EFFICIENCY} = \frac{\text{(TI-TA)}/I}{\text{F-HR-SQ FT}}/\text{BTU}
\]
<table>
<thead>
<tr>
<th>DATE</th>
<th>READIGHT</th>
<th>TOTAL</th>
<th>AREA</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/11/78</td>
<td>10:23</td>
<td>62.4</td>
<td>164.1</td>
</tr>
<tr>
<td>4/12/78</td>
<td>10:23</td>
<td>63.1</td>
<td>164.4</td>
</tr>
<tr>
<td>4/13/78</td>
<td>10:14</td>
<td>63.4</td>
<td>164.2</td>
</tr>
<tr>
<td>4/14/78</td>
<td>11:16</td>
<td>62.7</td>
<td>164.8</td>
</tr>
<tr>
<td>4/15/78</td>
<td>12:01</td>
<td>64.6</td>
<td>165.0</td>
</tr>
<tr>
<td>4/16/78</td>
<td>12:12</td>
<td>64.3</td>
<td>163.5</td>
</tr>
<tr>
<td>4/17/78</td>
<td>12:12</td>
<td>64.3</td>
<td>163.2</td>
</tr>
<tr>
<td>4/18/78</td>
<td>12:12</td>
<td>64.7</td>
<td>162.4</td>
</tr>
<tr>
<td>4/19/78</td>
<td>14:45</td>
<td>64.2</td>
<td>195.3</td>
</tr>
<tr>
<td>4/20/78</td>
<td>11:27</td>
<td>61.1</td>
<td>196.4</td>
</tr>
<tr>
<td>4/21/78</td>
<td>11:30</td>
<td>53.5</td>
<td>197.2</td>
</tr>
<tr>
<td>4/22/78</td>
<td>11:17</td>
<td>53.8</td>
<td>198.0</td>
</tr>
<tr>
<td>4/23/78</td>
<td>10:40</td>
<td>56.1</td>
<td>73.8</td>
</tr>
<tr>
<td>4/24/78</td>
<td>10:30</td>
<td>64.0</td>
<td>74.2</td>
</tr>
<tr>
<td>4/25/78</td>
<td>14:11</td>
<td>78.7</td>
<td>78.7</td>
</tr>
<tr>
<td>4/26/78</td>
<td>14:57</td>
<td>69.7</td>
<td>77.3</td>
</tr>
</tbody>
</table>

The first order efficiency curve is:
\[\text{Efficiency} = \frac{30.4 - 14.3}{10.5} \times 100\% \]

The second order efficiency curve is:
\[\text{Efficiency} = \frac{30.4 - 14.3}{10.5} \times 100\% \]
<table>
<thead>
<tr>
<th>TEST</th>
<th>TILT</th>
<th>DEC</th>
<th>MASS</th>
<th>SPEC HEAT</th>
<th>IN P</th>
<th>WIND</th>
<th>WIND</th>
<th>DIR IN</th>
<th>A/DIR</th>
<th>A/DIR</th>
<th>MODEL</th>
<th>SD5 "Standard"</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>8.0</td>
<td>0.0</td>
<td>9.06</td>
<td>1.001</td>
<td>51.4</td>
<td>23.7</td>
<td>52.8</td>
<td>37.8</td>
<td>14.3</td>
<td>32.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>8.0</td>
<td>0.0</td>
<td>9.10</td>
<td>1.001</td>
<td>51.7</td>
<td>23.3</td>
<td>52.8</td>
<td>38.0</td>
<td>14.4</td>
<td>32.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>8.0</td>
<td>0.0</td>
<td>8.99</td>
<td>1.001</td>
<td>52.7</td>
<td>3.2</td>
<td>50.0</td>
<td>47.1</td>
<td>14.8</td>
<td>41.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>8.0</td>
<td>0.0</td>
<td>8.77</td>
<td>1.001</td>
<td>54.3</td>
<td>3.1</td>
<td>49.8</td>
<td>50.5</td>
<td>14.8</td>
<td>41.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>8.0</td>
<td>0.0</td>
<td>9.09</td>
<td>0.999</td>
<td>43.0</td>
<td>2.0</td>
<td>103.</td>
<td>50.3</td>
<td>14.4</td>
<td>40.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>8.0</td>
<td>0.0</td>
<td>8.99</td>
<td>0.999</td>
<td>4.1</td>
<td>2.9</td>
<td>110.</td>
<td>51.5</td>
<td>14.6</td>
<td>31.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>8.0</td>
<td>0.0</td>
<td>9.09</td>
<td>0.999</td>
<td>4.1</td>
<td>2.9</td>
<td>77.</td>
<td>51.4</td>
<td>14.0</td>
<td>32.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>8.0</td>
<td>0.0</td>
<td>9.07</td>
<td>0.999</td>
<td>4.6</td>
<td>5.6</td>
<td>32.7</td>
<td>15.2</td>
<td>19.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>8.0</td>
<td>0.0</td>
<td>8.84</td>
<td>1.005</td>
<td>52.0</td>
<td>3.2</td>
<td>97.</td>
<td>50.8</td>
<td>13.5</td>
<td>1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>8.0</td>
<td>0.0</td>
<td>8.84</td>
<td>1.005</td>
<td>52.0</td>
<td>3.2</td>
<td>97.</td>
<td>50.8</td>
<td>13.5</td>
<td>1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>8.0</td>
<td>0.0</td>
<td>8.85</td>
<td>1.005</td>
<td>53.0</td>
<td>3.4</td>
<td>97.</td>
<td>51.0</td>
<td>13.0</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>8.0</td>
<td>0.0</td>
<td>8.86</td>
<td>1.005</td>
<td>53.0</td>
<td>3.4</td>
<td>97.</td>
<td>51.0</td>
<td>13.0</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>8.0</td>
<td>0.0</td>
<td>9.08</td>
<td>0.998</td>
<td>50.9</td>
<td>28.7</td>
<td>50.4</td>
<td>14.0</td>
<td>5.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>8.0</td>
<td>0.0</td>
<td>9.08</td>
<td>0.998</td>
<td>50.7</td>
<td>2.8</td>
<td>29.4</td>
<td>50.7</td>
<td>14.4</td>
<td>9.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>8.0</td>
<td>0.0</td>
<td>9.16</td>
<td>0.998</td>
<td>56.0</td>
<td>9.3</td>
<td>27.8</td>
<td>53.2</td>
<td>13.0</td>
<td>9.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>8.0</td>
<td>0.0</td>
<td>9.16</td>
<td>0.998</td>
<td>56.0</td>
<td>9.3</td>
<td>27.8</td>
<td>53.2</td>
<td>13.0</td>
<td>9.7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
NUM
B
ER
D 300-1-
12

EFFECTIVE: APRIL 1, 1974
SUPERSEDES: NEW

JOB: RAPEMAKER CORPORATION
LOUISVILLE, KENTUCKY
Date Submitted: By:
P1 Model # 1600
P2 Model # 1610

SPECIFICATIONS:
MOTORS
1750 RPM. Three Phase 200V or 230/460V 60C
Sleeve Bearing Motors. Also available in Single
Phase with overload protection except 3 HP.

BODY
Cast Iron with flanged in-line connections.
Companion flanges are included

IMPELLER
Cast Bronze, Closed, Dynamically Balanced.

DRIVE COUPLING
Non-Metalltc / Vibration Dampening

SHAFT
Stainless Steel with Cupro-Nickel Sleeve.

FRAME
Sleeve Bearing; Disc Type; Oil lubricated.
REMOVABLE BEARING CARTRIDGE FITS ALL
MODELS. Dip Stick to measure oil level.

MECHANICAL SEAL
Standard—250°F Operating Temp.

WORKING PRESSURE
176 PSI... in accordance with ASA B16.1

NOTE: Flanges are tapped for gauges

SIZES & DIMENSIONS:
March circulators are proven for solar energy applications - have been first choice since 1967. From the 3 gpm Model 809 to the large 22 gpm models, all are powered by energy-saving magnetic drive, the most efficient drive possible.

Magnetic drive, with no troublesome shaft seals is uniquely energy conscious, converting full motor horsepower into pumping power. The 809's 1/20 hp motor draws only 0.38 amp — costs less to operate than a 40-watt light bulb. And since there's no shaft seal, there's no seal wear, no seal leakage...

Dynamically balanced magnets combined with micro-balanced motor fan assures extremely quiet operation. Bronze head resists rust and foreign deposit build-up. The compact 809 weighs just over four pounds and is easily installed either vertically or horizontally.

March solar energy pumps are designed for commercial service as well as residential applications. In addition to the 3 gpm model shown, others are available with capacities to 22 gpm and heads to 45 feet. For special applications requiring design assistance, contact the March corporate office.
MAGNETIC DRIVE

March's proven magnetic drive eliminates the troublesome, old-fashioned shaft seal. There can be no seal wear, power-robbing friction or leakage thru the seal. Impeller and drive magnets are permanent ceramic type. They prevent slippage and insure that full motor horsepower is converted into pumping power. Energy requirements are lowered as all the energy produced by the motor is utilized, especially important in solar systems. March seal-less drive also provides for faster, easier motor service, as the motor can be removed without draining, refilling and reheating the system.

SPECIFICATIONS

<table>
<thead>
<tr>
<th>Model</th>
<th>Flow Rate</th>
<th>Head</th>
<th>Impeller Size</th>
<th>HP</th>
<th>RPM</th>
<th>Volts</th>
<th>Cycles</th>
<th>Phase</th>
<th>Watts</th>
<th>Amps</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>809</td>
<td>3 gpm</td>
<td></td>
<td>1/8" MPT</td>
<td></td>
<td>1200</td>
<td>115/230</td>
<td>60</td>
<td>Single</td>
<td>1750</td>
<td>.36</td>
<td>4.5 lbs</td>
</tr>
<tr>
<td>809DF</td>
<td>3.4 gpm</td>
<td></td>
<td>1/8" MPT</td>
<td></td>
<td>1750</td>
<td>115/230</td>
<td>60</td>
<td>Single</td>
<td>1750</td>
<td>.26</td>
<td></td>
</tr>
<tr>
<td>809DF-24</td>
<td>3.4 gpm</td>
<td></td>
<td>1/8" MPT</td>
<td></td>
<td>1750</td>
<td>115/230</td>
<td>60</td>
<td>Single</td>
<td>1750</td>
<td>.26</td>
<td></td>
</tr>
<tr>
<td>809HS</td>
<td>5.3 gpm</td>
<td>11.6</td>
<td>5/8" MPT</td>
<td></td>
<td>3500</td>
<td>115/230</td>
<td>60</td>
<td>Single</td>
<td>3500</td>
<td>1.2</td>
<td>8.0 lbs</td>
</tr>
</tbody>
</table>

Model 809
The original solar energy circulating pump.

Model 809 HS
3500 RPM model for almost twice the capacity and nearly three times the head.

Model 809 DF
Dual fans for quiet, cool operation in closed-in or hot environments.

Model 809 DF-24
As above except 24 volt version.

Higher capacity models are also available. Contact March or nearest March distributor for details.
1" 552 SERIES HIGH CAPACITY REVERSIBLE MOTOR OPERATED VALVES

<table>
<thead>
<tr>
<th>Valve Series</th>
<th>Pipe Connections and diameters (Threaded Valve Connections are NPT Conduct Conductor is 1/2" STD)</th>
<th>Valve Ports - Size</th>
<th>Service Port Cv Factor (Based on U.S. gal.)</th>
<th>Optional Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>552BR3302</td>
<td>1" Pipe Thread Female</td>
<td>2-way</td>
<td>.65"</td>
<td>9.2</td>
</tr>
<tr>
<td>552BR3303</td>
<td>1" Pipe Thread Female</td>
<td>3-way</td>
<td>.5"</td>
<td>9.2</td>
</tr>
</tbody>
</table>

Fan coil valves for chilled water and hot water applications

Steam and hot water valves

<table>
<thead>
<tr>
<th>Valve Series</th>
<th>Pipe Connections and diameters (Threaded Valve Connections are NPT Conduct Conductor is 1/2" STD)</th>
<th>Valve Ports - Size</th>
<th>Service Port Cv Factor (Based on U.S. gal.)</th>
<th>Optional Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>552BR3402</td>
<td>1" Pipe Thread Female</td>
<td>2-way</td>
<td>.5"</td>
<td>9.2</td>
</tr>
<tr>
<td>552BR3403</td>
<td>1" Pipe Thread Female</td>
<td>3-way</td>
<td>.5"</td>
<td>9.2</td>
</tr>
</tbody>
</table>

CYCLE TIME

Full open to full close:
- 2-way — 18 seconds
- 3-way — 24 seconds

"BR" SERIES REVERSIBLE MOTOR OPERATED VALVES FOR HEATING AND COOLING FAN COIL APPLICATION

Designed to operate on high differential applications

<table>
<thead>
<tr>
<th>Valve Series</th>
<th>Pipe Connections and diameters (Threaded Valve Connections are NPT Conduct Conductor is 1/2" STD)</th>
<th>Valve Ports - Size</th>
<th>Service Port Cv Factor (Based on U.S. gal.)</th>
<th>Optional Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>681BR307</td>
<td>1/2" Pipe Thread Female</td>
<td>2-way</td>
<td>5/16"</td>
<td>2.4</td>
</tr>
<tr>
<td>681BR309</td>
<td>1/2" Pipe Thread Female</td>
<td>3-way</td>
<td>7/16"</td>
<td>5/16"</td>
</tr>
<tr>
<td>687BR307</td>
<td>450 (SAE) Inverted Flare</td>
<td>2-way</td>
<td>5/16"</td>
<td>2.4</td>
</tr>
<tr>
<td>687BR309</td>
<td>450 (SAE) Inverted Flare</td>
<td>3-way</td>
<td>7/16"</td>
<td>5/16"</td>
</tr>
<tr>
<td>672BR307</td>
<td>3/4" Pipe Thread Female</td>
<td>2-way</td>
<td>5/16"</td>
<td>2.4</td>
</tr>
<tr>
<td>672BR309</td>
<td>3/4" Pipe Thread Female</td>
<td>3-way</td>
<td>7/16"</td>
<td>5/16"</td>
</tr>
<tr>
<td>654BR307</td>
<td>5/8" O.D. Sweat</td>
<td>2-way</td>
<td>5/16"</td>
<td>2.4</td>
</tr>
<tr>
<td>654BR309</td>
<td>5/8" O.D. Sweat</td>
<td>3-way</td>
<td>7/16"</td>
<td>5/16"</td>
</tr>
<tr>
<td>635BR307</td>
<td>7/8" O.D. Sweat</td>
<td>2-way</td>
<td>5/16"</td>
<td>5.4</td>
</tr>
<tr>
<td>635BR309</td>
<td>7/8" O.D. Sweat</td>
<td>3-way</td>
<td>7/16"</td>
<td>5/16"</td>
</tr>
</tbody>
</table>

STEAM AND HIGH TEMPERATURE WATER VALVES

Same as above except first number after "BR" changes to "5".

EXAMPLE: 681BR407

See page four for 400 type specifications.

ORDERING EXAMPLE

<table>
<thead>
<tr>
<th>Valve Series</th>
<th>Lead Length</th>
<th>Power Requirements</th>
<th>Optional Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>654BR309</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obtain Valve</td>
<td>A standard 18" lead is supplied with all valves. Lead lengths other than 18" can be supplied. Valves ordered with auxiliary sealed switches only available with 18" leads.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valve Series</td>
<td>654BR309</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead Length</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Value Models</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ORDERING EXAMPLE

For control panel monitoring or operating auxiliary equipment on standard models. It is actuated on the valve opening cycle and is reset at valve closure. For pilot duty only.

STRAP-ON SUMMER/WINTER CHANGE OVER SWITCH

Encapsulated switch complete-ly sealed against moisture and factory wired to operate valve motor only. It will operate on thermostat heating contacts with water temperatures of 80° F. or higher. Will operate on lower valve motor only. For pilot duty only.

AUXILIARY SWITCH

For control panel monitoring or operating auxiliary equipment on standard models. It is actuated on the valve opening cycle and is reset at valve closure. For pilot duty only.

E554BR309-18000

S5/8" O.D. SWEAT VALVE, THREE-WAY, 120 VOLT, 10" LEADS

Begin with complete Valve Series Number. Add letters and numbers denoting Lead Length.

Power requirements and Optional Equipment as shown above.

92
PREFIXES FOR CONDUIT TYPES

The prefixes "61", "62", "63", "64", and "65" before the valve part number designates the following:

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Countries</th>
<th>Conduit</th>
<th>Type of Valve Connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>"61"</td>
<td>Finland only</td>
<td>13/16 - 18</td>
<td>BSP-PL or 16MM (1/2" Nom.) Water Tube Sweat</td>
</tr>
<tr>
<td>"62"</td>
<td>Spain only</td>
<td>3/4 - 18</td>
<td>BSP-TR or 16MM (1/2" Nom.) Water Tube Sweat</td>
</tr>
<tr>
<td>"63"</td>
<td>E.E.C.</td>
<td>3/4 - 15</td>
<td>BSP-PL or 16MM (1/2" Nom.) Water Tube Sweat</td>
</tr>
<tr>
<td>"64"</td>
<td>U.S.A. (Str. Pipe)</td>
<td>1/2 - 14</td>
<td>RfTR or 5/8" O.D. (1/2" Copper) Water Tube Sweat</td>
</tr>
<tr>
<td>"65"</td>
<td>United Kingdom</td>
<td>3/4 - 18</td>
<td>BSP-PL or 596" O.D. (1/2" Nom.) Water Tube Sweat</td>
</tr>
</tbody>
</table>

INVERTED FLARE TYPE CONNECTIONS

FOR USE WITH 687 "BR" SERIES VALVES

A. Inverted flare nut and elbow assembly, female, for 5/8" O.D. tubing
 Part No. 436A214. Length of fitting 15/16".
B. Inverted flare nut and coupling assembly, female, for 5/8" O.D. tubing
 Part No. 436A220. Length of fitting 1 - 11/16".
C. Inverted flare nut assembly, female, for 5/8" to 7/8" O.D. tubing
 Part No. 436A252. Length of fitting 1 - 27/32".
D. Inverted flare nut and nipple assembly, male, for 5/8" O.D. tubing
 Part No. 436A229. Length of fitting 3".
E. Inverted flare nut and elbow assembly, male, for 5/8" O.D. tubing
 Part No. 436A214. Length of fitting 1 - 15/16".

Fits directly to shut-off valve.
IMPORTANT NOTE FOR FAN COIL INSTALLATIONS

INSTALLATION

These high performance, high differential capability valves are motor driven both to the open and the closed position. A three-wire, S.P.D.T. thermostat is required, or a two-wire thermostat can be used when options 2, 3, or 4 are added. For optional control packages, 2, 3, or 4, a constant power source is required to the valve. (See wiring diagrams.)

TWO-WAY VALVES

When installing a two-way valve, the flow direction is from end B to end A. Port markings A and B are located on the bottom of the valve body.

MOUNTING

Valve motor and gear train will not function properly when valve motor housing must be protected from dripping. Motor housing need not be protected from condensation on its exterior. Motor must be installed in horizontal piping if valve is positioned in a horizontal position. One and two-way valves, like all other mechanical equipment, are subject to failure and should be inspected with due regard to accessibility to enable quick and convenient servicing or replacement.

THREE-WAY VALVES

When installing three-way diverting valves, end B is the service end and end A is the bypass end. The inlet port is unmarked. Port markings A and B are located on the bottom of the valve body.

Three-way valves supplied with option 6 (two-wire control package and drop-on changeover switch provide automatic change-over from high to low and vice versa when wired as shown in diagram, No. 1.) With water temperature of 80°F or higher, the valve will operate on the thermostatic heating contacts. With water temperature of 60°F or lower, the valve will operate on the thermostatic cooling contacts.

Three-way valves, paired with a common outlet, are derated as shown in the specifications.

VALVES WITH SWEAT CONNECTIONS

The two sweating connection valves must be used between the valve housing and the valve body to protect the mechanism and external parts from flame and excessive heat. The aluminum shells are factory assembled and may be removed after testing. On valves with manual operation, place lever in manually open position before gilding.

INSTRUCTIONS FOR SWEATING

Use only lead or tin base solder with melting point below 600°F.

Do not overheat valve body.

Ends of water supply tubing must be thoroughly clean for a maximum distance of 1" from end.
Electric Room Thermostats

TA-1501 AND TC 1101, 1102, 1103, 1191

TA-1501

Electric Controller Room Thermostats Two-Position, Heating

For on-off control with heat anticipation of low current devices such as actuators, relays and motor pull-up coils.

- **Benetnal operated snap action SPST switch**
 - Color coded 6 leads
 - 2 to 4 leads installed
 - Terminal heat anticipation
 - Differential 2°F

- Mounts on flush or surface switch box or directly on wall (24 volt only)
- Dimensions: 4-1/8" high x 2-1/8" wide x 1-5/8" deep

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Control Dial Range</th>
<th>Full Load Amps</th>
<th>Locked Rotor Amps</th>
<th>Pilot Duty VA</th>
</tr>
</thead>
<tbody>
<tr>
<td>TA-1501</td>
<td>35-85°F (11.7-29°C)</td>
<td>1</td>
<td>1</td>
<td>6</td>
</tr>
</tbody>
</table>

Accessories

- A1 101: Lock cover kit
- A1 104: Door stoppers
- A1 130: Tithe plate (may limit heat control)
- A1 501: Primary heat cover kit (small)
- A1 508: Surface mounting base
- A1 561: Auxiliary mounting plate
- A1 607: Selector switch sub-base (951)
- A1 609: Selector switch sub-base one (951) and (951)
- A1 1101: 1-1/2" guard
- A1 1104: Cleei aluminum guard
- A1 1105: Plastic guard
- A1 1150: Flange guard
- A1 1160: Plastic guard
- Front 116 plastic wrench

Options

- 40°F 10°F right depression 17°F 24V flush-mounted dial & thermostat
- 60°F 10°F right depression 24V flush-mounted dial & thermostat
- 62°F 10°F right depression 24V flush-mounted dial & thermostat

Non-adjustable right depression controlled by a centrally located time clock such as A1 174 or A1 175 or by selector switch sub-base (A1 602 or A1 603)

TC-1101/1102/1103

Electric Controller Room Thermostats Two-Position, Heating and/or Cooling

For low or line voltage on-off control of fan coils, fans, motor starters and contactors.

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Control Dial Range</th>
<th>Full Load Amps</th>
<th>Locked Rotor Amps</th>
<th>Pilot Duty (VA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC 1101</td>
<td>35-85°F (11.7-29°C)</td>
<td>4.4</td>
<td>2.2</td>
<td>26.0</td>
</tr>
<tr>
<td>TC 1102</td>
<td>45-75°F (7.1-16°C)</td>
<td>4.4</td>
<td>2.2</td>
<td>26.0</td>
</tr>
<tr>
<td>TC 1103</td>
<td>45-75°F (7.1-16°C)</td>
<td>4.4</td>
<td>2.2</td>
<td>26.0</td>
</tr>
</tbody>
</table>

(Continued on next page)
Tight Seal Damper-Insulated Blades
Opposed Blade Operation

SPECIFICATIONS
1. All welded construction.
2. Frame constructed of 14 ga. galvanized steel. Open beam type construction provides integral top & bottom blade stops.
3. Blades feature double skin construction with 14 ga. channel reinforcement welded between the skins, forming a structural closed beam; with full length thermal insulation.
4. Blades pivot on 1/2" (1.27cm) dia. CRS stub shafts in sintered bronze self-lubricating bearings.
5. Shaft extension feature is standard on any blade shaft.
6. Blade linkage is completely enclosed in the side frame.
7. Maximum blade span is 72" (183cm). Units with longer spans are made in multiple sections and require jack shafts.
8. Maximum blade deflection is 1/8" (3.2cm) at center, for a 72" (183cm) long blade at 6" W.G.
9. Extruded neoprene & polyurethane is inserted in all blade edges and ends affording extremely efficient tight shut-off.
10. Maximum duct velocity is 3000 ft./min.
11. Maximum static pressure is 6" W.G. for a 72" (183cm) blade length.
12. Maximum height, for a single section, is 84" (213cm).

Drill blade & bolt by others - in field.

Blade clip supplied with TSD-400-UD-1

TSD-400-UD-1
Blade clip is shipped loose with thru bolts to permit positioning on any blade when actuator is mounted inside the duct.

TSD-400-UD-0
Any shaft on the opposite side of the damper from the linkage may be extended as much as 6 inches from the blade to drive the damper when actuator is mounted outside the duct.

LOUVERS & DAMPERS INC.

CUSTOM MANUFACTURERS OF LOUVERS, DAMPERS AND AIR CONTROL DEVICES
100% SOLID STATE DIFFERENTIAL TEMPERATURE CONTROLS
FOR YOUR SOLAR SYSTEMS

A COMPLETE FAMILY OF VERSATILE, HIGH QUALITY CONTROLLERS WHICH PROVIDE A COST-EFFECTIVE SYSTEM COMPONENT FOR VIRTUALLY EVERY APPLICATION.

- Applied Research Laboratories safety tested and approved.
- Designed for simple installation with a minimum of labor.
- No professional trades required for installation.
- One year replacement warranty.
- 100% true solid state epoxy encapsulated circuitry.
- Maximum quality control—each unit is individually tested.
- Durable and attractive black phenolic case with black anodized aluminum face plate.
- Fused to protect circuitry from output overload.
- Power line surge and lightning protected.
- High reliability, low voltage sensors.
- 4 ampere (480 watt) controlled A.C. output.
- Stable operation on line voltage from 105 – 130 VAC.
- Transformer line isolation rated at 1600 VAC.
- No minimum or maximum wire length to sensor.
- Two standard sensors supplied with each differential control.
- Instant mounting with pressure sensitive backing material.

Hawthorne Industries, Inc.

SOLAR ENERGY DIVISION
CONTROL SYSTEMS - RESEARCH & DEVELOPMENT
1501 South Dixie - West Palm Beach, Florida 33401 - Phone 305/659-5400

Patent Pending - Made in U.S.A.
00% SOLID STATE DIFFERENTIAL TEMPERATURE

MODEL # H 1500
THE ACTIVATOR

The H 1500 Activator control is a low voltage controlled solid state switch to power auxiliary equipment on a solar system.

Typical Applications:
- Auto drain control for thermo-siphon solar systems as freeze protection (solenoid valves)
- To power a small heating element in a solar collector as frost protection
- Switching unit to shift the output of a solar system from one storage tank to another at a predetermined temperature
- Switching unit to turn on an auxiliary heating element to maintain a minimum temperature in a solar storage tank
- To switch a solar home heating system from solar to conventional auxiliary heating at a predetermined temperature

- Let your ingenuity be your guide.

Features:
- Low voltage control 5-1 VAC maximum short circuit current 4 ma
- Cutout may be selected for 120 VAC power normally on or off
- Controller power requirement 4 watts, 117 VAC 60 HZ
- Light emitting diode power on indicator
- 4 amp (480 watt) controlled output
- Sensor activates or deactivates circuit by shorting

MODEL # H 1504
FIXFLO CONTROLLER WITH ACTIVATOR

The Model #H 1504 is identical to the #H 1503 Fixflo controller, with the addition of the features of the Model #H 1500 (the Activator).

In this unit, the normally on or normally off A.C. power is controlled by a normally open or normally closed sensor.

MODEL # H 1505
FIXFLO CONTROLLER WITH DUAL OUTLET

The Model #H 1505 is identical to the #1503 with the addition of an auxiliary (dual) outlet which may be used to power two pumps, one on either side of a heat exchanger, or operate a relay or solenoid valve.

MODEL # H 1510
VARIFLO CONTROLLER

The Model #H 1510 is a versatile solid state differential temperature controller with a variable flow rate feature.

This controller must be used with a pump that is speed controllable. The following pumps have been tested and found to perform well with the Model #H 1510 controller:

March Model 821BR and 809
Tecumseh Model 1P701 and 1P760
Sunstrand Model LA4302
Grundfos Model UPS20-429 and UPS25-425

Note: Cast iron pump housing. Do not use for direct circulation of domestic water.

The March Model 809 and Tecumseh Model 1P760 pumps are not recommended for use with the Model #H 1510 control, even with a single panel installation, as their flow rates are already too low; thus, there is no advantage to speed control of these pumps. However, they do speed control, and may fit a special requirement.

The Model #H 1510 is a true differential temperature controller. The flow rate (speed) of the pump is controlled by the amount of differential. A very low flow rate is started with a 3-4°F differential and is increased to full pump flow when a 23-24°F differential is reached.
URE CONTROLS FOR YOUR SOLAR SYSTEMS

THE ADVANTAGES OF AUTOMATIC FLOW RATE CONTROL ARE MANY

1. The proper flow rate through the solar collector is automatically adjusted based on the amount of energy to be gained, holding plate temperatures down and increasing overall system performance.
2. Eliminates frequent pump cycling, thus extending pump life.
3. All recommended pump motors operate at lower temperatures throughout their speed control range, extending expected pump life.
4. Only the energy required for efficient system operation is used resulting in a power savings.
5. System installation cost is lowered by eliminating the plumbing bypass around the pump commonly used to adjust for a desired flow rate.
6. The proper flow rate is automatically established, eliminating time-consuming bypass adjustments.

The #H 1510 Varflo control also offers upper temperature limit and frost cycle features as explained in the last 2 items of the #H 1503 with the optional sensors.

MODEL # H 1511
VARIFLO CONTROLLER WITH ACTUATOR

The #H 1511 Varflo control is identical to the #H 1510 with the addition of the features of the Actuator Model #H 1500. In this unit, the normally on or normally off A.C. power is controlled by normally open or normally closed sensors.

MODEL # H 1512
VARIFLO CONTROLLER WITH DUAL OUTLET

The Model #H 1512 Varflo controller is identical to the Model #H 1510 with the addition of an auxiliary A.C. outlet (dual outlet) which may be used to power two pumps, one on either side of a heat exchanger. (Note: This auxiliary outlet is also speed controlled and is not suitable for relay or solenoid valve control).

MODEL # H 1530
RELAY PACKAGE

The #H 1530 is an accessory for Models #H 1503 and #H 1500 controllers, extending output load capabilities to 1 h.p.
A must if pump motor has high starting current or running current above 4 amps.

The relay package comes complete with conduit mounting and A.C. line cord for connection to the controller.

SENSORS

#H 1525 Standard thermistor sensor 10K ohm at 25°C, 1% curve matched.

OPTIONAL ACCESSORIES

#H 1514 Upper temperature limit 85°F. Pool
#H 1515 Upper temperature limit 165°F. Hot water.
#H 1520 Frost cycle sensor with thermistor 35°F.
#H 1535 Mounting Plate
#H 1540 Ram-tite Cover
SPECIFICATIONS:

- Controller power requirement 117 VAC, 60 Hz
 - H-1504 and H-1511—7 watts
- Power supply regulation for stable operation on power line voltages from 105—130 VAC, 60 Hz (all units).
- Transformer isolation from power line 1600VAC.
- Thermistor sensor voltages 8.3 VDC maximum short circuit 4.15 ma. Actuator sensor voltages 5.1 VAC, 60 Hz. Maximum short circuit current 4 ma.
- All sensor terminals are short circuit overload protected.
- Controlled A.C. output 4 amp. (480 watt) at 120 VAC overload protected with 4 amp. 3 AG fuse.
- All units have varistor line spike and lightning protection.
- Fixflo controllers 50F differential to turn on.
- Variflo controllers 3—40F start with 200F span to full on.
- Indicator lamp solid state light emitting diode.
- Controller case durable phenolic thermo plastic with black anodized aluminum face plate and white epoxy silk-screen lettering. Case dimensions 6" x 3¾" x 2¾".
- Sensor case black anodized aluminum or nickel plated copper.
- All circuitry self-extinguishing epoxy encapsulated.
- Shipping weight—2 lbs.
- All units Applied Research Laboratories approved. Test #21588.

WARRANTY

This controller is warranted against defects in workmanship or materials under normal use for one year from date of purchase. Liability in all events is limited to purchase price paid and liability under the aforesaid warranty is limited to replacing or repairing any part or parts which are defective in material or workmanship and are returned to our factory, shipping cost prepaid. No other warranty, expressed or implied, nor representation of merchantability or fitness for a particular purpose, except as set forth in this warranty, is made or authorized by Hawthorne Industries, Inc.

Extremely strong, pressure sensitive foam tape on the back of the controller case provides for instant mounting of the unit.
Uses house heating boiler to provide plenty of hot water for all family needs.

FEATURING:

- Ample storage: 40 and 52 gallon models
- Thermostatically controlled water temperature: Easily adjustable.
- Self contained circulating pump with corrosion proof bronze waterways (WaterBank I)
- Easy to install: No chimney connection needed. Pump and controls are completely wired at factory
- WaterBank I stores hot water from the tankless coil in the house heating boiler
- WaterBank II heats water, using boiler water for heat source
- No tankless coil needed.

5 YEAR GUARANTEE

Complete tank assembly (less circulating pump) exchanged free if tank leaks in first five years. (One year if heater is used in other than one family dwelling.) All other components guaranteed against defects in material or workmanship for one year. Complete details and conditions on guarantee certificate available from company on request.

THE GLASS-LINED WATER HEATER CO.

13000 ATHENS AVENUE / CLEVELAND, OHIO 44107 / 216-521-1377
WaterBank I WaterBank II

<table>
<thead>
<tr>
<th>WATERBANK I</th>
<th>WATERBANK II</th>
<th>CIRCULATOR</th>
<th>HEIGHT</th>
<th>DIAMETER</th>
<th>TANK CAPACITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>W14M</td>
<td>MARSH</td>
<td>59 3/4"</td>
<td>16"</td>
<td>40 GAL</td>
<td></td>
</tr>
<tr>
<td>W14T</td>
<td>TACO</td>
<td>59 3/4"</td>
<td>16"</td>
<td>40 GAL</td>
<td></td>
</tr>
<tr>
<td>W15M</td>
<td>MARCH</td>
<td>59 3/4"</td>
<td>18"</td>
<td>52 GAL</td>
<td></td>
</tr>
<tr>
<td>W15T</td>
<td>TACO</td>
<td>59 3/4"</td>
<td>18"</td>
<td>52 GAL</td>
<td></td>
</tr>
<tr>
<td>W25S</td>
<td>SUNDSTRAND</td>
<td>59 3/4"</td>
<td>18"</td>
<td>52 GAL</td>
<td></td>
</tr>
</tbody>
</table>

USE SPECIAL WATERBANK CHECK VALVE TO PREVENT CHATTERING

THE GLASS-LINED WATER HEATER CO.
Advanced Engineering in Water Heaters
13000 ATHENS AVENUE / CLEVELAND, OHIO 44107 / 216 • 521-1377