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r	 .^

i	 ABSTRACT

3A semi-empirical model based on a Gaussian vorticity distribution has been developed

for determining eddy diffusivity and wind transport distributions in the polar stratosphere.
€3

The model uses as input data pressure surface heights measured at periods of the year when
°.s

the stratospheric polar vortex exhibits .nearly circular patterns around the pole. The com-

ponents of the polar wind velocities that result from a Prandtl eddy viscosity distribution

are found to be in general agreement with those obtained by other investigators.
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A VORTEX MODEL FOR TRANSPORT IN THE

POLAR STRATOSPHERE

A.	 INTRODUCTION

A vortex based model has been developed to calculate the eddy diffusivity distribu-

tion and the components of the wind velocities in the polar stratosphere and mesosphere

in the altitude range 15-60 km. The model is semi-empirical in its application, and re-

quires input data of measured, pressure surface heights between 100mb and 0.4mb during

the late fall-early winter months when the pressure contours exhibit well developed and

t`

relatively undistorted circular patterns centered at or near the north pole.	 In addition to

determining the wind transport, the model is also useful in investigating the relationship

between eddy viscosity and mean flow, and the effect of these parameters on polar

stratospheric ozone.

a

This paper describes the mathematical development of the polar vortex, model, and

the numerical computer techniques that are employed in performing the calculations.
f:

Results generated by the model are presented and discussed.

B.	 THE EQUATIONS OF MOTION

The geometric configuration and coordinate system that are used to develop the polar

vortex wing .model are shown in Figures 1 and 2. The coordinate system is fixed to a

point of observation O at latitude X on the surface of ,,the Earth which is rotating with

angular velocity w.	 In this rotating coordinate system the velocity vector V of a particle

may be written in cylindrical coordinates (r,	 z) as	 v

l

i. fl







a
where

r and z are unit vectors in the r, 0 and z directions, respectively, 	 y
,s

u = the zonal component of velocity,
f

v the meridional component of velocity,	 >

w = the vertical component of velocity.

We note that at large latitudes X when O is close to the north pole, the curved distance

from the pole to O closely coincides with the r axis of the rotating cylindrical coordinate
i

i^	 system.

The general equation of motion for an element of unit mass, with respect to the

rotating coordinate system is (Craig, 1960):

+ dV	 1	 ,
i	 a = — - — OP - 2w x V + g + f ,	 (2)

dt	 p

4

where

k	 a is the •acceleration of the unit mass of air,

1 -^
r —VP  is the force _ due to the pressure gradient,

P

- 2(w x V) is the Coriolis force due to the Earth's rotation,L
F	 a

g is the force due to gravity, which acts only in z direction, 	 3

s	 f is the frictional force,

p is the air density.

,l

4
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We may express certain terms in the above equation in cylindrical coordinates as follows:

a= (r - r^ 2 )r+(r¢ +2r) +zz

apn 1 ap 	ap ^
OP	 r+--0+—z

ar	 r ao	 az

Cj x	 uccsinar + (vcosinX + wc.ocosX)O - ucOcosXZ

Therefore, Equation (2), in component form, becomes:

l ap
Y - r^ 2 _ - — + 2uwsinX + fI	(3a)

P ar

I aP
r^ + 2i = - - — 2(vcosinX + wwcosX) + to	 (3b)

Pr ao

I ap
z =--- +2uwcosA+g+fZ	(3c)

P az

C. THE ZONAL WIND SPEED

The vortex model assumes a vorticity t which has a Gaussian distribution with axial

Y

f,
symmetry about the center of the coordinate system near the north pole:

r2

to e 2U
2 	 (4)

-m

where r is the radial distance from the center and a is the width of the distribution.

From the definition of vorticity 	 0 x V, Stokes' Theorem may be applied around a

cylindrical contour of constant zonal speed:

O
r2R _ `

• 0 x Vds =f
o
 to e 2v2 21rrdr = ^SV dl 27rRu	 (5)ff 

5
o



where u is the zonal component of the wind velocity and R is the radial distance from the

center at the point where the zonal speed is to be calculated.

I

Integrating Equation (5) we obtain

2Trto	 R2
R2

1	 e 2	 21rRu .
1

2 —

2v2

We may define the vortex strength K and vortex radius A as

K2
to 02

A — v.

and obtain the zonal speed u as a function of K, A, and R:

^	
2K

R2
U	 K 1 - e

_

 2A 2 	 (g)

	

R	 a

For the calculation of the zonal, speed, we assume that the atmosphere has a mean
G

constantr zonal flow in circular patterns moving with angular speed 92 relative to the

	

center f erotatingcoordina e system.	 its motion should ter	 th 	 i t y m. Tl .mot. n	 ld not be	 with the

angular rotation of the Earth. To a first approximation we may neglect the effect .f
x

friction on the _zonal speed due to the weak radial gradients of u. Also, since r., = constant,

r = 0. The in Equation (3a) may also be written as

do ds do u

— dt -d`tas=r



Hence the meridional equation of motion Equation (3a) becomes

u2	 1 aP
— _.._ = — — + 2utosinX

r	 p ar

or,
aP	 u2
— = p — ± 2ucosinX .	 (9)
ar	 r

The ± sign is introduced to differentiate between zonal flow toward the East (cyclonic)

rind flow toward the West (anticyclonic), respectively, in the Northern Hemisphere.

 -^- )Noting that sine = cos \ R .♦ — cos R whe re RE is the Earth's radius, we may
E	 E

integrate the above equation:

	

f

P	 R	 112r
	dP	 p	 ± 2pucocos --dr	 (10)

	

ef fRr 	
r	 RE )

r

where Pref is a chosen reference pressure and Rref is the distance from the pole where

Pref is measured. R in the distance from the pole of the point at which the zonal speed

u is to be calculated.

The hydrostatic equation may be written:
F.

	

f

p	
'
z

	dP = -g
J
 pdz = pg(z - zref)	 (11)

	

Pref	 zref

where we have assumed that p is equal to the average density over the pressure surface.

'	 Thus Equation (10) becomes

1	 R u2 (R,K,A)	 r

z = zref
	

± 2uwcos (	 dr. .	 (12)
$. Rref RE

7
j

i
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i
where (Rref, zre.) defines the position of the reference point, chosen to correspond to the

position of maximum latitude on the measured isobaric surface (see Fig. 3). (R, z) are

the coordinates of the point at which the zonal speed u is to be determined.

From Equation (8) we recall that u is a function of R, K and A. Equation (8) may

be substituted into Equation ( 12) which is then solved to furnish the vortex strength K

and vortex radius A as functions of the altitude z and the radial distance R from the

origin.

If z and R are known on an isobaric surface, then Equation (12) may be solved nu-

merically for K and A. Using the following notations:

n = index for a pressure surface,

m = number of data points on the nth pressure surface,

i = index of data point on a pressure surface,

we may rewrite Equations (8) and (12) for the nth contour as:

'^ n)2

2gn 	.s
uin =— 1 - e A n 	 i = 1,... . m 	(13)

'	 rhn_

	

1	 Ri,n F u 2	 r
zi,n	 zref,n - 

g	
rn ± 2wuq^n cos	 dr	 i	 1, .... ,m	 (14)

R	 \ Eref, n

From pressure contour maps published by the Environmental Science Services Administra..

tion (ESSA, 1969, 1970), we obtain data points Rref,n, zi,n, Ri,n (i = l , .... , m) for the

nth pressure contour. Typically, the pressure contours consist of isobars at 0.4, 2, 5, 10,

30, 50, and 100 millibars,

8

t





Equation (13) is used to calculate Ui n at each R i,n for the ti ll ' contour. For each

contour there are in values of u, which are then used as input data to Equation (14). Note

that K 11 and A ll are functions only of the particular contour, and do not depend on the

distance front the pole. From the resulting in equations the best values of K„ and A ll can

be found by the method of least squares for the ti ll ' contour.

Since each contour may be considered as data taken at a certain average height, the

h it 's and An 's are therefore functions of height, curves may be fitted to them by least

squares to provide K(z) and A(z) as continuous functions of height z within the altitude

range of the data. Front these curves the zonal wind may be calculated as a function of

latitude R and height z according to Equation (8):

2K(z)	 -	
tt

u( R,z) =	
11	

I - e 2A(z,)`' 	 (15)

D. THE MERIDIONAL WIND SPEED

The effect of frictional forces on the nteridional wind speed (which is roughly two

orders of ntagtotude smaller than the zonal wind) is not neg ligible, as was the case for the

calculation of the zonal wind. We rewrite the 0 equation of motion Equation (3b):

1 aP

r^ + 2i^ _ - — — - 2(vwsinX + wwcosX ) + t	 (3b)
pr 30

Also, if we assume steady state motion and axial synunetry, r
*aall

= 0, = 0 and a = 0.

Hence the above equation becomes

A

-'(vwsinA + wwcosx) = t0 	 ( 1 h)

10
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II: frictional tierces in the atmosphere are generally thought to he similar in behavior to

forces due to eddy stresses arising front lurhulent motion. It .';m he Shown that the eddy

Is
stresses give rise to ;1 lore, the 0 :on1j)MIL'lll of Whl:h :;III be rel)reSCnled IS (See 0,11g,

1`)(10):

I	 a	 all

—/	
(17)

p az ` az )

\01cre r is :;died the coetticic11t of eddy viscosity.

I he 11111clional form of a is not compiclely known. Various (Denis have been

suggested. ;1111ong which is the following d11e to Prandtl Mess,less, I x)59):

I
e= pl- laze =— PC K (18)

where I is a characteristic mixing length, which is alialogous to the nlolecul;u mean tree

IM111 in a Illrbldell:e tree -' IIu,Itlon. 11111 e K is called the kincnl.inc eddy viscosity.

since the vertical wind Sneed w is small compared to the meridlonal wind speed v,

A 110111ts 11CAI Ills 11 11e the wwcos\ tee 111 in Equation OWW Wray he nee•Ic:1.'k1, yielding:

I a	 au
`wvsinx	 to _ — — — ptK

alp az ( 

a	 all

az p` " a,
wh: ncr	 v ^' —

_'pwsin\

O
au

I 
all

a
—

z a
—

zaz 	 J
'pwsin\

(I`1)
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Using this expression. we calculated the meridional wind v at any given location from the

a	
a

u
zonal wind ,hear — , since the latter was readily obtained from Equation (15) using nu-

a/

nierical computer techniques. We note that the approximation in deriving Equation (I,-))

improves at larger latitudes. 	 O

E. THE VERTICAL WIND SPEED

For calculating the vertical wind speed w, we make use of the equation of

continuity

O	 apt + V ' p V= 0	 (20)

a
Furthermore, il' we consider the atmosphere to he in a steady state, 

ac = 0, and the above

equation reduces to:

In cylindrical coordinates (r, 0, z) the divergence of a vector A is given by:

V- A = - 
a 

(rA)+ 
I	 + aAl

r ar	 r	 r 30	 az

.,. Equation (21) may be rewritten as:

V	
(pV) _ I a (pN) + I a(pu ► + a(pw) 

= 0.	 (22)
r ar	 r 30	 az

From axial symmetry 
a

a^ (pu) =0, and Iquation (12) becomes

la	 a
ar (prv) + az (pw) = 0

1'_
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or,

p v + p av + v 
ap + w ap + p —

aw
 = 0.	 (23)r	 ar	 ar	 az	 az

a We assume that the equation for hydrostatic equilibrium is valid:

•

di,	 - gpdz..	 (24)

Using the ideal gas law and assuming isothermal layers (i.e.. the temperature is approxi-

mately constant over the thin layer bchveCll z t and Z2), we may integrate the above

equation to yield:

1'	 g

RT1 /

a r
0	 where P t and 1)2 are pressures measured at the heights z t and z2, respectively. We Wray

therefore write:

I ap	 In(P,/Pt)
p az	 z2 - zt

0
which is substituted into Equation (23) to give

aw	 v	 av	 v ap	 In(), /Pt )
- W	 -	 ( ' 7)

az	 r	 ar	 p ar	 z, - zt

Since the density change with respect to latitu-.ie is small, 	 e 
ap

 term may be neglected,

and we obtain:

3 	 v av	 In(P,, /pt)
—= -- -- w	 ('8)
az	 r	 or	 z2 - zt

l'6)

I?
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0

This equation is a first order differential equation which is solved by numerical con ► puter

techniques by the n ► ethod of finite differencing. To do this, the equation is expressed in

finite difference form as follows:

C	 Wi+ 1,j - wi, i 
= - vi—j
	 V i

 
,j+ 

t - vij - w ► •1 I

► t(P; + t /Pi)	
(29)

Oz	 rj	 Ar	 zi+ t - z;

o	 ^

where Az and Ar are chosen grid spacings for altitude and latitude, respectively. and i,j are

level indices. The above equation is readily solved for w i+ t j if w; j is known. Hence the

boundary condition was specified to be w; j = 0 at an altitude of 15 km to approximate
n

the real physical situation. The values of the v's, P's and z's were known front previous

,^

o	 calculation of the meridional speed and front the input pressure contour data.

P. INPUT DATA AND NUMERICAL COMPUTATION OF WIND SPEEDS

The algorithm for calculating the zonal, meridional and vertical wind speeds according

to the polar vortex model was coded in FORTRAN and run on the 113M S/95 Computing

System at Goddard Spare Flight ('enter (GSFC). The input data for the model were ex-

tracted I rom pressure contour naps that exhibited nearly circular vortices around the

North Pole, examples of which are given in Figures 4 and 5 for the 2mh and 0.4mb stir-

faces, respectively. Each chart represents a weekly or monthly average of the measured

data. Figure 6 shows a summary of the input data obtained from the charts for the 0.4,

5, 10, 30, 50 and 100 millibar surfaces, measured during October 1967. Each curve

represents the variation of the height with latitude of each isobaric surface. It was found

O

I
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4

that the late fall/winter months was the time of the year when 'there was the best likeli-

hood for finding well developed circular vorticies.

As described in Section C above, data values of zi,n, Ri,n, Rref,n and zref,n Were ob-

tained from the nth isobaric contour. Rref,n and zref,n were chosen to be the end point

of the nth curve. These values were used to compute the best values of the vortex

t strength Kn and vortex radius An at the average height of that contour. A fifth degree

polynomial was then fitted by least squares to the K's for the several isobars. A similar

fit was made for the A's. Thus K and A were obtained as functions of altitude z, the

p plots of which are shown in Figures 7 and 8. Equation (15) was then used to calculate

the zonal wind speed u at grid points (R, z) in the latitude range 90°-45°N and the alti-

tude range , 15-60 km. A contour plot of the resulting zonal winds is shown in Figure 9.

The kinematic Prandtl eddy viscosity was then calculated at each point according to

Equation (18), using a mixing length of 10 meters, which is close to estimates made by

Holton (1972). The resulting kinematic eddy viscosity contour distribution is shown in

Figure 10. Figure 11 shows a cut of the Prandtl viscosity profile at 40°N latitude, and

also values used by other investigators. The profile at 80°N is shown in Figure 12. It
d

is seen that the profile derived from this model at a given latitude exhibits a wavelike

variation with altitude. The magnitudes of the eddy viscosities are of the order of 10
a

meter2/sec in agreement with values used by Cunnold, et al., (1975) and by Justus (1978).

The rneridional wind speed v at each grid point is then determined from Equation (19);

resulting in the contour plot shown in Figure 13.	 -I

18
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The vertical winds w at the grid points were calculated bN the recursion relation

Eeluation (29). imposing the condition that the vertical wind component is zero at the

lower boundary at 1 5km. This condition is a reasonable assumption since it is known uiat

vertical motion is negligible at that height. The resulting vertical wind contours ar, given

in Figure 14.

G. DISCUSSION OF RESULTS AND C'ONC'LUSIONS

Using nrea 1,ured pressure contour ► lata as input, the polar vortex wind tttodel is used

to calculate the Prandtl eddy viscosity distribution and the associated stratospheric wind

components in the latitude range 90°N-45°N and at altitudes between 15 and 00knt. The

magnitudes of the kinematic eddy viscosity, derived by assuming an experintrnt:dly reason-

ahle nixing length, were found to approximately agree with values used by Wofsy and

McElroy (1973) in duplicating the observed distribution of methane in a one-dimensional

che Ili ical-dittusive n ► odel, and by ('unsold, et al., (0 7 5) and .luaus (1973). Ilowever,

unlike the others, the eddy viscosity distribution obtained and used by the present model

exhibits pronounced latitude-altitude dependence with a wavelike vertical st ► ucture in any

given latitude plane.

The magnitudes of the zonal, meridional and vertical winds derived by this model were

of the order of meters, centimeters and millimeters, respectively, in agreement with results

published by the other investigators (Cunnold, et al., and Vincent, 1963). It was found

that for cyclonic zonal flow in the Northern Ilen ► nphrre, the flow direction in a nteridional

plane is radially toward the Dole at lower altitudes, increasing upward at intermediate

.p
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levels, and radially outward at higher altitudes, as expected from fluid-dynamical

considerations.

:a	

g'

The present model is capable of utilizing experimental satellite data for deriving the

corresponding eddy viscosity and wind distributions, in a semi-empirical manner. Further-
,R:

more, by being a purely fluid-dynamical F ?del, it avoids the problem of circular reason:
c

ing characteristic of the Wofsy model. The senior author has always been ill at ease with

 the reasoning which derives eddy diffusivity by matching constituent profiles in photo-

chemical mode ls, !  then using the eddy diffusivity thus derived for transport in other chem-

ical kinetic models. Also, the empirical nature of our model permits a study of variations

of eddy transport with latitude and time of year, and from one year to another.
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