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ABSTRACT
1

> At 37 GHz, the frequency at which the Nimbus-6 Electrically Scanning Microwave Ra-
1

diometer (ESMR-6) measures upwelling radiance, if has been shown theoretically that the

atmospheric scattering and the relative independence on electromagnetic polarization of the

radiances emerging from hydrometeors make it possible to monitor remotely active rainfall g

over land. In order to verify experimentally these theoretical findings and to develop an al-

gorithm to monitor rainfall over land, the digitized ESMR-6 measurements were examined

statistically.

Horizontally and vertically polarized brightness temperature pairs (TH , Tv) from

ESMR-6. were sampled for areas of rainfall over land as determined from the rain recording

stations and the WSR-57 radar, and areas of wet and dry ground (whose thermodynamic
t

temperatures were greater than 5°C) over the Southeastern United States. These three cate-

gories of brightness temperatures were found to be significantly different in the sense that

r' the chances that the mean vectors of any two populations coincided were less than 1 in 100.
i^

Since these categories were significantly different, classification algorithms were then devel-

oped. 	 Three decision rules were examined: the Fisher linear classifier, the Bayesian quadratic

a
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i
A STATISTICAL TECHNIQUE FOR DETERMINING RAINFALL OVER LAND

EMPLOYING NIMBUS-6 ESMR MEASUREMENTS

1, INTRODUCTION

Precipitation is a fundamental meteorological parameter and it functions as an indica-

tor, determinant, or component of the distribution and amount of latent heat release which

V	 is critical to the understanding of storm and global atmospheric energetics and of the total
i

hydrological cycle. The ability to monitor the coverage and movement of rain over land

areas is important because of the direct impact of rain on crop production and also its in-

fluence on insect breeding areas and migration (Idso et al. 1975). Moreover, the destructive

effects duc to heavy rainfall could be reduced by advance warnings furnished by satellites l
that map regions of heavy rain.

Since the advent of the polar orbiting and geosynchronous satellites, quantitative tech-

niques have been developed to estimate rainfall indirectly. Estimations of rainfall have
j

been made by correlating rain rate and amount with either cloud cover and type, cloud

'I	 brightness, or cloud temperature utilizing visible and infrared sensors on board these

satellites (Barret, 1970, 1973; Martin and Scherer, 1973; Martin et al., 1975; Follansbee	 j

and Oliver, 1975; Oliver and Scoffield, 1976; and Griffith et al., 1976). However, all these

techniques suffer from being only indirectly related to rainfall.

The microwave technique developed by Wilheit et al. (1977) has a direct physical rela-

tionship with rain rate but only over ocean areas. This technique establishes a relationship

between rain rate in the dynamic range of 1-20 mm hr -1 and brightness temperatures (TB)
j

x	measured by the Electrically Scanning Microwave Radiometer on board Nimbus-5 (ESMR-5),

r	 which senses at 19.35 GHz upwelling radiation emitted by the earth and its atmosphere.a.

Meneely (1974) demonstrated that rainfall rate and coverage cannot be delineated using

ESMR-5 measurements over land areas. This is because the rain has only a weak effect on

the upwellint TB from the land and the effect of soil moisture is comparable. Thus, although

rain-like patterns can be discerned in the data, they correspond to both active rain areas and 	 `a

1	 '

;l:



c

areas with moist soil. McFarland and Blanchard (1977), however, did demonstrate that

rain amounts over land could be estimated indirectly by monitoring temporal changes in

the ESMR-5 TB .

Savage and Weinman (1975) and Savage of al. (1976) demonstrated theoretically that 	
1

at 37.0 GHz (the frequency at which the Nimbus-6 ESMR [ESMR-6] sensor measures up-

welling radiance) the scattering by hydrometeors is strong enough to provide a qualitative

estimate of rain coverage over land. Furthermore, Weinman and Guetter (1977) demonstrated	 j

from a theoretical consideration that the upwelling radiation at 37.0 GHz emerging from

hydrometeors was essentially unpolarized and therefore was in contrast to a wet surface

4

	

	 background. According to the electromagnetic theory, if the emissivity of a surface is re-

duced by increasing its dielectric constant (as by adding moisture), then the emissivity will

be highly polarized when viewed obliquely. These results are demonstrated in Figure 1 which

displays theoretically calculated bipolarized 37.0 GHz T B at 50° incidence angle with the

earth surface for a given rain rate. These T B 's were derived from a radiative transfer model

withLambertian reflection (Born and Wolf, 1975) from land surfaces at a thermodynamic

temperature of 299.1 ° K and with a fixed dielectric constant and an atmospheric freezing

level at 4 km (Wilheit et. al., 1977). It is seen from this figure that as rain rate increases

(beyond 4 mm hr-1 ) the T decreases due to strong backscattering by the large raindrops.

Also, the polarization difference becomes smaller. Moreover, Hall et al. (1978) inferred 	
a

theoretically that information analogous to that provided by the National Weather Service

radar summary charts can be produced when both ESMR-6 and the Temperature Humidity 	 j

Infrared Radiometer (THIR) 11.5 µm data on board Nimbus-6 are used.. Thus, if is reason-

able to conclude from these theoretical considerations that rain coverage over dry land -sur-

faces can be at least' qualitatively monitored employing 37.0 GHz radiometer measurements

from ESMR-6,

It is the purpose of this paper to substantiate the above conclusions and to arrive at an

algorithm for the detection of rain overland by statistically analyzing ESMR-6 data. This

statistical analysis will be performed by first sampling three categories of ESMR-6 TB's
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(representing rain over land, wet land surfaces without rain, and dry land surfaces), then

testing these populations for unqueness and separability, and finally developing a classifica-

tion algorithm to delineate rain over land.

2. THE ESMR-6 SYSTEM

The ESMR-6 system flown aboard Nimbus-6 (Wilheit, 1975) receives the thermal radia-

tion upwelling from the earth's surface and atmosphere in a 250 MHz band centered at 37

GHz. The antenna beam scans electrically an arc of 70° in 71 steps ahead of the spacecraft

along a conical surface with a constant earth incidence angle of 50° every 5.3 seconds. The

nominal resolution is 20 km crosstrack and 45 km downtrack. The instrument measures both

horizontal and vertical polarization components by using two separate radiometric channels.

The data are calibrated using warm (instrument ambient) and cold (cosmic background) in-

puts to the radiometer. Calibration errors have been observed in the data which appear to

arise from a modulation of the loss in the antenna related to the sun angle and from an unex-

plained excess of noise in the data from the warm calibration source. An empirical correction

was applied to these errors for all the data used in this study.

The TB, as observed from the satellite is dependent upon the emission from the earth's

surface modified by the intervening atmosphere. The emissivity, being a function of the di-

electric constant, is variable over land surfaces (depending on vegetation, soil type, soil mois-

ture, etc.) and generally is large (Ca. 0.9). In `.rain situations three constituents contribute,

significantly to the absorption: molecular oxygen (Meeks and Lilly, 1963), water vapor

(Staelin, 1966) and liquM water droplets (Mie, 1908; Gunn and East, 1954). Water droplets

contribute more significantly to absorption and re-enuttance than the other constituents 3

and are the only source of scattering at this frequency.. Ice crystals are essentially transparent.

3. DATA SAMPLING

Simultaneous ground stations and radar measurements of rain and ,ESMR-6'T B were

needed in order to develop an algorithm which classified a given ESMR-6 instantaneous field

of view (IFOV) as rain over land, dry land surface, or wet land surface. Eight daytime syn-

optic scale rainfall cases over the southeastern United States wereused where surface rainrate

-	
4	 -,
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data taken from stations reporting hourly rainfall amounts and from the WSR-57 radar coin-

cided with Nimbus-6 overpass to within 5 minutes. The surface temperature in each of these

cases was not less than 5°C. Rain areas were sampled witliin areas delineated as rain by either

the WSR-57 radar (rain rates > 2.5 mm lnr 1) and/or the stations reporting hourly rainfall

amounts. The dates and time of the occurrance of these cases are given in Table 1. Wet land

surfaces were sampled upwind and adjacent to the raincells observed on the WSR-57 radar

and dry land surfaces were sampled over areas where rain had not fallen within a 24-hour period

previous,co the Nimbus-6 pass.

Table 1

Dates of Synoptic Rain Cases Used to Develop ESMR-6 Classification Algorithms

,ia

Figure 2 illustrates the sampling technique. The figure shows the ESMR-6 horizontally

polarized TB's (°K) measured at approximately 1655 GMT January 6, 1976 together with

rainfall data as delineated by the WSR-57 radar (located at Waycross, Georgia at 1700 GMT)

and by stations reporting hourly rainfall amounts. The ESMR-6 TB's are within the field of

view of the radar where the circle shows the outer bounds of the PPI image at a 232 km radius.

The shaded area represents rain (rainrate > 2.5 mm lu -1). , The large dots are hourly rain re-

cording stations where rain amounts (in inches) for hours ending at 1700, 1600, and 1500

GMT are displayed according to model in the figure. IY no rain had fallen during that period,

no measurements are shown. Station models reporting temperature, present weather, cloud

type and amount, and wind direction and speed for 1800 GMT are also given. The small dots

x

5

3

Case Date Time

1 31 July 1975 1620 GMT
2 4 August 1975 1635 GMT
3 1 October 1975 1700 GMT
4 7 November 1975. 1700 GMT
5 12 November 1975 1700 GMT
6 29 December 1975 1717 GMT
7 3 January 1976 1715 GMT
8 6 January 1976 1655 GMT
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Shaded area delineates rain rates > 2.5 nun hr - t . Circle shows outer bounds of PPI
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locate the center of the ESMR-6 footprints. For this case, ESMR-6 T B 's representing rain

over land was sampled within the shaded area. The T B 's representing wet land surfaces were

sampled southwest of the'shaded area since the rain area was moving northeast, and TB's

x representing dry land surfaces were sampled over western Georgia where rain had not fallen , .

within 24 hours of the Nimbus-6 pass.

4. STATISTICAL ANALYSIS

Elementary statistics of the total sampled data (ESMR-6 measurements where surface

' thermodynamic temperatures were greater than 5°C) are presented in Table 2. The table

gives for each category the sample size., the mean and standard deviation of the horizontally

and vertically polarized TB , the correlation, between horizontally and vertically polarized TB,

s and the mean difference between polarized TB' These data are also shown as a scatter plot in

Figure 3. In this figure the "C" represents the mean of the population and each frequency

concentration ellipse encompasses 68 percent (one standard deviation) of the data within
r

the population. The ellipses reveal the extent of scattering of data from each population,

the correlation between the dual polarization T B's, TH and TV, within each population (the

t higher the correlation the larger the eccentricity of the ellipse), and the extent of overlap

4
among the populations. The three concurrent lines drawn in this figure are the Fisher (1938) i

linear discr^ Mnant lines which separate two-by-two the rain over land area (SR), the dry

i land surface (SD ), and the wet land surface (SW ) populations represented by the TB pairs

(Tn' Tv)'

It can be seen from Figure 3 and Tabie 2, that TB's from rain areas over land are colder

t than those TB 's from dry land surface areas. Further, the difference between the mean hori-

zontally and vertically polarized T B 's from rain areas overland (6.45°K) is much smaller than
i
r' that for wetland surfaces (16.81 0 K). This is in accordance with theoretical findings that

hydrometers are essentially unpolarized (Wienman and Guetter,,1.977) whereas wet land sur-

faces are polarized. It is also seen from Figure 3 that the largest overlap occurs between the 's

data obtained from rainfall areas and wet land surfaces. The reason for this is that sometimes

,nr»

!1	 --
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	 Figure 3. Horizontally polarized vs. vertically polarized ESMR-6 TI for each sampled

category(rain over land, and wet and dry land SUIT, ces). The C's represent the mean

} points of the populations and the sllipses encompass 68 percent (one standard deviation)

of the data from the respective categories. The three concurrent lilies are the Fisher

.:

	

	 Linear discriminant lilies which separate two-by-two the three populations representing

rain over land and wet and dry land surfaces.
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Table 2

Elementary Statistics of Sampled Data (Surface Temperature > 5°C)

Rain Area Dry Ground Wet Soil

Sample Size: N 216 189 66

THR TVR THD TVD - Tjnv TVW

,lean: µ 254.53 260.98 271.46 278.18 252.05 268.86

Mean Brightness Temperature
Difference 6.45 6.72 16.81

Standard Deviation: d 7.21 5.81 6.18 7.20 9.41 7.64

Sample Correlation Coefficient
BetweenT H and Tv: p 0.55 0 .37 0.82

in sampling rain over land the total upwelling radiance received by the radiometer con—

tains a direct surface contribution. This may occur when an IFOV of the ESMR-6;
i

measurement is partially filled with moderate to heavy rain or when it is completely

filled with light rain (background being wet land surface). Consequently, the T B 's for

each category are somewhat similar, thus producing the overlap between rain over land

and wet land surface classes.

Since the surface emission is given by eTs , where e is the surface emissivity and TS is	 a

the surface thermodynamic temperature, there is an influence of Ts on ESMR-6 measured

dry land surface TB . A decrease in TS results in a decrease in T B from dry ground and con-

sequently, the TB contrast between dry land surfaces and rain over land will also decrease.

1 These effects can be observed in Figures 4`and 5 and Tables 3 and 4. The figures and tables

^.	 are identical to Figure and Table 2 respectively except that Figure 4 and Table 3 correspond

to cases where the surface thermodynamic temperatures were above 15°C while Figure 5

and Table 4 correspond to cases where the surface thermodynamic temperatures were between 	 =-

tween 5 and 15°`C. It is clear from Figure 5 and Table 4 that rain over land

9
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Rain Area Dry Ground Wet Soil

Sample Size: N 112 145 26

THR TVR THD TVD Tm, , Tw
Mean: p 258.57 263.22 270.22 ` 276.61 256.81 273.62

Mean Brightness Temperature
Differences

4.65 6.39 16.81

Standard. Deviation: d 5.70 6.36 6.07 6.16 4.22 3.90

Sample Correlation Coefficient
Between TH and TV: p

0.53 0.42 0.05

Rain Area Dry Ground Wet Soil

Sample Size`. N 104 98 28

THR TVR_ THD TVD THw TVw

Mean:µ 249.92 258.78 248.11 261.57 244.04 261.82

Mean Brightness Temperature
Difference

8.S6 13.46 17.78

Standard Deviation: d 5.16 4.40 11.08 6.58 7.87 5.59

Sample Correlation Coefficient
Between TH and Ty: p

0.43 0.58 0.84
4

1
3

Table 3

Elementary Statistics of Sampled Data (Surface Temperature > 15°C)

l

Table 4

Elementary Statistics of Sampled Data (Surface Temperature 5-15°C)



Rain Dry 'Wet

Tt, Tv TH Tv TH Tv

Number of Cells 8 8 8 9 6 S

Degrees of Freedom 5 -5 5 6 3 2

Table Value of X2 at 0.01 15.09 15.09 15.09 16.81 11.34 9.21

Observed Value of X2 14.57 28.17 1	 18.99 11.59 8.93 10.33

t

is difficult to delineate from dry land surfaces when the surface thermodynamic temperature

is below 15°C. ,Since the populations in Figure 5 cannot be separated, the Fisher linear dis-

criminant ,tines are not drawn.
;j

Figure 6 displays the .marginal densities (histograms) of the total sampled horizontally

and vertically polarized Tn's from the three populations. Table 5 presents the results of the

chisquare test (Cochran, 1952) performed to validate the normal distribution of the data.

Since each observed chi-square value in Table 5 is comparable to the corresponding critical

(table) value at one percent, it is assumed that each marginal distribution of the data is Gaussian.

Therefore, it is reasonable to assume that the data front each of the populations SR, Sn- or Sw

satisfy the bivar.iate Gaussian density distribution

1	 l

f(X)	 exp --(- ki )T c`1 (	 u)	 (1)
2fI_ Icl
	

2

Where is the two dimensional column vector (T it , Tv), a .is the mean of X, c is the covariance

rnatrix of the population, c- 1 is the inverse of c, Icl is the determinant of c, and{ — xl)T is

the transpose of (x — ii). The 1r_and c are estimated using the sampled data from each class.

The ti's are provided by Table 2 and c, c-1, and Icl by Table 6.
t 	

V

Table S

Chi-Square Test for Normality
^

	

	 7
r

{

:t	 i
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Matrix Inverse

THR TVR THR TVR

THR 52.23 23.02 0.0273 —0.01.85

TVR 1	 23.02 33.93 -0.0185 0.0420

Matrix Inverse

THD TVD THD TVD

THD 38.36 16.51 0.030 -0.010`

TVD 1	 16.51 52.14 —0.010 0.022

Matrix ' Inverse

THw TVw THw' Tvw

Tmv 90.39 59.73 0.034 —0.035

r—TVw
59.73 58.28 --0.035 0.053

1

Table 6

Covariance Matricies of Sampled Data.
u

Covariance Matrix Determinant: 1242.424

Rain Area

i
a	 1



Prior to employing the data in Table 2 for the purpose of developing classification

algorithms, the data were examined to verify whether the three populations were statis-

tically distinguishable from one another. To accomplish this, an F (variance ratio) test, in

terms of Hotelling's T2 and Mahalanobis's D 2 (Kshirsagar, 1972) was performed to determine

the significance of the differences between the means of any two classes. Then the simultaneous

confidence intervals were estimated for these differences by Scheffe's procedure (Scheffe, 	 r

1943; Bennett, 1951).

Table 7 displays D 2 and T2 as well as the computed and table (critical) values of F. The

difference between the means of any two classes is highly significant since the observed

value of F is much higher for each pair of classes than the corresponding critical (table) value

of F at the 1 percent confidence level. That is, the probability that the mean vectors of any

two populations are identical is less than 1 in 100.

Table 8 shows the estimated confidence intervals. It can be seen that only the interval
t

for the differences between the wet land surface and rainfall over land mean horizontal polari-

zation TB 's contains zero. Therefore, the three populations are distinguishable from one another

when the dual polarization information is taken into consideration. However, the lower bounds

of the mean differences between rainfall over land and wet land surface T B 's is smaller than those
ti

of the other two pairs. This indicates that it will be more difficult to distinguish an area of 1

ram over land from wet land surfaces,
1

5. CLASSIFICATION ALGORITHMS

Since the populations were found to be statistically distinguishable and satisfied the

Gaussian frequency distribution, three classification techniques were considered with the pur-

pose of developing an efficient and effective classification algorithm to detect and delineate

}	 active rainfall over land from dry and wet land surfaces. The three techniques are: the Bayesian

t

	

	 classifier, the Fisher linear discriminant classifier, and a non.-parametric linear discriminant

classifier.

16
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Between the Mahalanobis's Hotelling's The Observed Table Value
Means of Distance Squared T2 Variance Ratio ofFat 117oD'- F

Rain and Dry 9.13 920.35 459.04 3.83

Dry and Wet 6.03 295.13 146.28 3.87`

Rain and Wet 4.00 202.06 100.67 3.86

1

1

Table 7

Significance Between Means (F Test)

Table 8
`i

Simultaneous Confidence Intervals for Differences Between Mean Brightness
Temperatures Representing Rain (R), Dry (D), and Wet (W) Areas

i

Polarization Rain—Dry Dry-Wet Wet-Rain

14.88 < µHD	 PHR 15.89 < AHD	 P14W —1.15 < 14 HR	 µFIwHorizontal
< 18.98 < 22.93 < 6.11

15.00 < ,uvo — YvR 6.04 < µvD — Pvw 4.93 < µvw ^ AVRVertical.
< 19.20 < 12.60 < 10.83

The Bayesian classifier is a parametric classifier (i.e., it assumes the functional form of the
a

relevant density function). The non-parametric linear discriminant classifier does not assume

a density function (Bond and Atkinson, 1972). The Fisher linear discriminant classifier may

be either parametric or non-parametric (Fisher, 1938). All three methods are termed Super-

vised in the sense that it is necessary to use known; sample data for the various classes to train
1	 ,

the algorithms. Algorithms were developed using all three classifiers and tested using indepen-

dent data. It was found that the results from the Bayesian classifier were superior to the other

two methods. Hence, only the Bayesian classification technique will be described in the

following.

17
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The Bayesian classifier is a Gaussian parametric maximum likelihood quadratic classifier

which requires the knowledge of the a priori probabilities for the occurrence of each class

(Duda and Hart, 1973; Fu et al., 1969). It minimizes the average loss due to misclassification

by assuming that each misclassification ,3s equally costly.

It minimizes the conditional average loss:

3
"	 L (X, SO	 E X ( Sk I S) P (Si 1 X)	 (2)

=1

where X (Sk I Si) is the loss incurred when a measurement 'x = (TH , Tv) actually belonging

to class Sk is placed in class S i and P (S i I'x) is the a priori probability of the class S i occurring

having observed t The symmetrical loss function X (S k l S) is given by:

0 i=k
A (Sk I Si) =	 if	 i, k	 1, 2, 3	 (3)

1	 ilk

Hence, all misclassifications are equally costly and equation 2 now reduces to:

L (X, Sk )	 1 — P (Sk J X)	 (4)
i

where P (Sk 1'x) is the conditional probability that the class Sk to which'x is assigned is

correct.

The likelihood function P (Sk 130 is given by the Bayes' ruler

P (x I SO P (Sk )
P ( Sk X)	 (5)

S
F, 	 ( X I 

SI) P (Si
=1

where P ('x I Si ) is the bivariate Gaussian probability density function of x given that x is in

Si , and P (S) is the a priori probability of the class S j occurring. Sample data sizes given in

Table 2 provide the values of P (S). They are 0.459, 0.401, and 0.140 for the classes SR, S D ,	 t

and , SW respectively.

18
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Since the loss given by equation 4 is to be minimized, the quadratic discriminant functions

are:

g; (x)	 P(S;)P(x I S;), i=1,2,3	 (6)

These functions, considering the relationship in equation 1, lead to the following decision

F	 rule. The measurement x belongs to the class S;. if:

2 In P(Sk ) — in I ck I— (3 —Tk )T c^ 1 ( - µk ) >

(7)
2 1n P(S) — In I c;	 p, )T c;`1 (x

for all i i- k, where ci and -9i  are the covariance .matrix and the mean vector of the class S i .

Then, by substituting the relevant values into equation 7, one arrives at the following Bay-

esian algorithm. The pixel corresponding to the given vector (TH , Tv) is,rainfall over land,

dry land surface, or wet land surface respectively, depending on which of the following values

is the largest:
PR (TH , Tv) _ —0.027 TH2 + 0.038 TH Tv — 0.042.T y2

(8)
+3.826 TH + 12.250 TV — 2094.097

PD (TH, Tv)

	

	 0.030 TH2 + 0.020 TH Ty 0.022 TV 

+ 10.720 TH + 6.811 Ty — 2412.165

Ply (TH, Tv) -0.034 TH2 +0.070 TH Tv — 0.053 TV 
,;

	

	 (10)
— 1.678 TH + 10.846 Tv — 1261.721

The quadratic function'

_	 fi _1

3

	

	 has a chi-square distribution with two degrees of freedom (Sclieffe, 1959). Therefore, a con-

fidence value F can be associated with each classified pixel. F is given by:

QK (X)
F(x) = 255 1

	

	 (12)	 ,Y
nQ
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where nQ is the distance, in terms of standard deviation from the mean, to which zero confi-

dence value is assigned.

'	 6. ERROR ANALYSIS

An error estimate was made in order to evaluate quantitatively the performance of the

Bayesian classification algorithm. The error rates were computed according to the asymp-

totic formulas given by Okamoto (1963), assuming that the population satisfies the Gaussian

distribution, have different means, and have the same covariance matrices. The results are

shown in Table 9. Virtually all of the misclassification probability in each case was accounted

for by the first term of the asymptotic expansion:

2
1 A) -k

r
exp 2dz	 (13)
 !.'

where	 —'

Ni + N2 — S	 2 (Ni + N2)

Aa= Ni +N -2
D2	

Nl NZ	
(14)

D is Mahalanobis' distance
3

q

and N1 , N2 are sample sizes of the populations under consideration. Only a small fraction
k

is contributed by the rest of the third order terms. From Table 9 it is clear that the

chance of incorrectly classifying wet land surfaces or dry land surfaces as rain over land is

nearly 23 percent. But when a given pixel is classified as a raining area and each of the eight ,

contiguous pixels that cluster around it is also classified as rain over land, then the chance of

misclassification of that central pixel is reduced to 7.7 X 10-6 percent assuming each pixel is

independently classified.

Table 10 displays the actual probabilities that the Bayesian algorithm classify the

sampled training data into the various population is as indicated. The av;arage accuracy is the

mean of the diagonal elements of the corresponding error matrix, and these averages com-

pare well with the estimated average. G

20



Classified Rain Dry Wet

Rain 89.35 6.02 4.63

Dry 7.41 91.53 1.06

Wet 27.27 15.15 57:58

Table 9

Probabilities of Misclassification:
'	 Theoretical ,Computation

Classified	 _ Rain Dry Wet

Rain 77.15 6.66 16.19

Dry 6.67 82.08 11.25

Wet 16.28 11.29 72.43

Average accuracy: 77:22 percent
}

r

Table 10

Bayesian Classification Error Matrix
`	 Determined from Sampled Data

y



Table I 

Probabilities of Misclassification:
Theoretical Computation (Cl5°C) 	 1

a

Classified Rain Dry Wet

Rain 45.99 36.23 17.78

Dry 36.26 23.99 39.75

Wet 18.03 41.86 40.11

Average Accuracy: 36.70 percent
t

Table 12

Probabilities of Misclassification:
Theoretical Computation (>15°C) 	 1

Classi fied_ Rain Dry ` Wet

Rain 74.83 11.76 13.41

Dry 11.75 77.66 10.59

Wet 13.59 10.72 75.69

Average accuracy: 76.06 percent

7. ALGORITHM EVALUATION

A case not previously used in sampling was tested to verify qualitatively the performance
4	 `

1	 of the Bayesian classification algorithm. This case consisted of a synoptic seine fain pattern s

over the Southeastern United States (14 September, 1976) which was observed by the ESMR-6

sensor (surface thermodynamic temperature 515°C). Figure 7 shows tile, ,rainfall area

t	 •
22
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Figure 7, Rainfall over the Southeast United States as delineated by the WSR757 ;rlclar and

hourly minfall reporting stations. Tlnne of the data is apprgxunately 1 630 CCMT,	 t

September 14, 1976, Shaded areas represent WSR-57 observed rain (,rain rates

2.5 nun l r,}. Dots represent Hourly rainfall reporting stations.
°f
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delineated by the WSR-57 radars and liourly rainfall reporting stations, The'approximate

time of the radar PPI images was 1,630 GMT (within 5 lllimltcs of the Nimbus 6 pass). 'file

;i

	

	 re.porting times or the hourly ,precipitation amounts were .1500, 1600, and 1700 GHAT. The

shaded area Within the WSRr57 .radar PPI range (232 kill) is rainfall area with rain rates

greater thin 2.5 mill llr- 1 , The .ri dars were located at Waycross and Macon, Georgia; Charles-

ton, South Carolina; anti Wilmington and Gapc TTatteras, North Carolina. Sur ace station

1

	

	 data (present weather, tel iperatures, cloud type and amount, precipitation anloll.ilt ill 01TGe

hours, and wind velocity and direction) were taken tit 1500 CrNIT. Hourly rainfall is also

shown. (See model .in 1ligurc 7.)

The Bayesian (70 percent and 80 percent confidence) classification:naps are seen iil

1•Zigures 8 and 9 respectively. Areas or clouds most likely producing raid arc dolincat:ed by

the Nhllbus-6 T1'-11R 11.5 ^Lm channot where equivalent black body teillpetatllres (T l3:tl )

270Q K`(Shcnk et at., 1976). Rain areas in the absence or rain producing clouds are con-

'

	

	 sidered misclassifications, legions only covered by clusters or contiguous pixels, classified

into a single individual class are shown, since the probability of misclassi 'ying clustel""is llluell

less than that or a single pixel.

1t is seen by comparing the two Bayesian classifitcation. maps at 70 percent and 80 per
i

cent confidence level (.Figures S and 9 respectively) with the map delineating observed rain

(Figure 7) that they agree well, particularly at the 80 percent confidence level. No attempt

was made to'verify wet .land surrac.es.,' The 80 perceirt confidence Bayesian classification,

:However, did not delineate rain over eastern South Carolina as well as the 70 percent: courtt-

deuce Classification. i
The Illaill CilSCre ,panc.ies found between the 1 SMR7-6 observed rainrall and ground

observed rainfall is seen_ over North Carolina and Southwestern Georgia. Tbe raanrtih illtt%

sated by 13SMR-6 over North Carolina maybe suspended liquid water in 'the clouds and/or 	 }

24
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Nimbus-6 Orbit Date and Time
September 14, 1976 1630 GMT

C7 ESMR-6 derived rain whose
THIR 11.5µm T BB < 2701K

7 ESMR-6 derived rain whose
THIR 11.54m T BB > 270°K

ERM ESMR -6 derived wet ground

-J 21'N

18'W
W'W

I i^,urr S. FS11IK-h cirri^L'd ralnf,lll 11 141-11)H110 11 u.rrlV the Klyesiall c • lassifirr with a coli i-

kIctlii lc %c'l Ut 70	 t -iil c• cic piits c • (IlliN - Ac• iit blackbody Ic • nil i c •"Mires ( I 13B) of 270')K

as nic,rsurrcl by the Nimbus-h I IIIR 1 1,5 ch,nlnrl. Arras tll.it have 1'BB -1 270'K

represent cloud :over. 'fink• ul' Nimbus -o hiss 1620 (AMT, Septc • nihc• i 1 .4, 1070.
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`i

virga ahead of the rain area (the area of rain was moving northeastward towards North

Carolina), The ESMR-6 delineated rain over Southwestern Georgia, which was upstream

from the rain area, may be due to wet land surfaces produced by the rain that fell a few

hours prior to the Nimbus-6 pass.
>r

The Bayesian classification algor. tlnm was applied to another test case (1645 GMT,

August 27, 1 976, surface thermodynamic temperatures were >15°C) over the same geo-

graphical area as the previous case in order to determine whether the surface characteristics

(vegetation, soil moisture, and Surface rougluiess) had influenced the classification

performed in the previous case. During this period, the area Was under the influence of a.

Berintida h.igli and there was only convective rainfall in the area, particularly along the Gulf

States. Figure 10 Shows the 80 percent confidence level Bayesian classifications map super-

imposed over the surface station models. The reporting time for these stations was 1500	 3

GMT. The figure shows that the only -areas classified as rain over land were along the Gulf

coast. The regions in the previous case where the algoritlun slowed rainfall were classified

r
as dry land surfaces. Hence, there were no influences of extraneous surface characteristics

oil the outcome of the previous case study.

However, contradicting results occurred )vlien the Bayesian classification algorithm was

applied to a night time Nimbus-6 pass over the sane geographical area (0525 GMT, Septem-

ber 13, 1976) where surface thermodynamic temperatures were >15'C and there was no

synoptic scale rainfall, Almost all pixels were classified by the algorithm as raiii over land.

An examination of the ESMR-6 vertically polarized. TB 's showed that the temperatures were

below 0°C. This anomally lnay be attributed to th.e change in the surface emissivity caused

i

	

	 by the presence of dew oil 	 vegetation. The 0600 GMT National Weather Service snap

indicated that tine conditions were ideal for the formation of dew. A large anticyclone cell-

tered over Virginia produced clear shies, winds less than 5 kts and dew point temperature 	 `.
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Figure 10. ESMR-6 derived rainfall distribution using the Bayesian classifier with a

confidence level of 80 %. Time of Nimbus-6 pass-1645 GMT, August 27, 1976.
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differences of less than VC over the majority of the reporting stations in the Southeast United

States. Therefore, the classification algorithin trained by data sampled from. NimbLls-6 day

time passes can be employed only when dew is absent.

x

S. CONCL[1SION:

Statistical analyses were performed on the sampled ESMR-6 data for the purpose of

detecting rainfall areas over land from dry and wetland surfaces. It was found that synoptic

scale rainfall over land, where surface thermodynamic temperatures were greater than 15°C

and where the vegetation was not covered with dew, could be delineated despite the large

ESMR-6 IFOV. However, there was some ambiguity in distinguishing between rainfall over

land and wet land surfaces.
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